#include #include #include #include "watch.h" #include "bme280.h" #include "app.h" ApplicationState application_state; char buf[16] = {0}; /** * @brief Zeroes out the application state struct. */ void app_init() { memset(&application_state, 0, sizeof(application_state)); } void app_wake_from_backup() { // This app does not support BACKUP mode. } void app_setup() { watch_enable_external_interrupts(); watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING); watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING); watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true); watch_enable_buzzer(); watch_enable_leds(); // pin A0 powers the sensor on this board. watch_enable_digital_output(A0); watch_set_pin_level(A0, true); delay_ms(10); watch_enable_i2c(); watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_SOFTRESET, BME280_SOFT_RESET_CODE); delay_ms(10); application_state.dig_T1 = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T1); application_state.dig_T2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T2); application_state.dig_T3 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T3); application_state.dig_H1 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H1); application_state.dig_H2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_H2); application_state.dig_H3 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H3); application_state.dig_H4 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4) << 4) | (watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4 + 1) & 0xF); application_state.dig_H5 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5 + 1) << 4) | (watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4); application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6); watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE); watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 | BME280_CONTROL_PRESSURE_SAMPLING_NONE | BME280_CONTROL_MODE_FORCED); watch_enable_display(); watch_rtc_register_tick_callback(cb_tick); } /** * Nothing to do here. */ void app_prepare_for_standby() { } /** * @todo restore the BME280's calibration values from backup memory */ void app_wake_from_standby() { } /** * Displays the temperature and humidity on screen, or a string indicating no measurements are being taken. */ bool app_loop() { // play a beep if the mode has changed in response to a user's press of the MODE button if (application_state.mode_changed) { // low note for nonzero case, high note for return to clock watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100); application_state.mode_changed = false; } // If the user is not in clock mode and the mode timeout has expired, return them to clock mode if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) { application_state.mode = MODE_CLOCK; application_state.mode_changed = true; } // If the LED is off and should be on, turn it on if (application_state.light_ticks > 0 && !application_state.led_on) { watch_set_led_green(); application_state.led_on = true; } // if the LED is on and should be off, turn it off if (application_state.led_on && application_state.light_ticks == 0) { // unless the user is holding down the LIGHT button, in which case, give them more time. if (watch_get_pin_level(BTN_LIGHT)) { application_state.light_ticks = 3; } else { watch_set_led_off(); application_state.led_on = false; } } switch (application_state.mode) { case MODE_CLOCK: do_clock_mode(); break; case MODE_TEMP: do_temp_mode(); break; case MODE_LOG: do_log_mode(); break; case MODE_PREFS: do_prefs_mode(); break; case MODE_SET: do_set_time_mode(); break; case NUM_MODES: // dummy case, just silences a warning break; } application_state.mode_changed = false; return true; } /** * Reads the temperature from the BME280 * @param p_t_fine - an optional pointer to an int32_t; if provided, the t_fine measurement * (required for humidity calculation) will be returned by reference. * Pass in NULL if you do not care about this value. * @return a float indicating the temperature in degrees celsius. */ float read_temperature(int32_t *p_t_fine) { // read24 reads the bytes into a uint32 which works for little-endian values (MSB is 0) uint32_t raw_data = watch_i2c_read24(BME280_ADDRESS, BME280_REGISTER_TEMP_DATA) >> 8; // alas the sensor's register layout is big-endian-ish, with a nibble of zeroes at the end of the LSB. // this line shuffles everything back into place (swaps LSB and MSB and shifts the zeroes off the end) int32_t adc_value = (((raw_data >> 16) | (raw_data & 0xFF00) | (raw_data << 16)) & 0xFFFFFF) >> 4; // this bit is cribbed from Adafruit's BME280 driver. support their open source efforts by buying some stuff! int32_t var1 = ((((adc_value >> 3) - ((int32_t)application_state.dig_T1 << 1))) * ((int32_t)application_state.dig_T2)) >> 11; int32_t var2 = (((((adc_value >> 4) - ((int32_t)application_state.dig_T1)) * ((adc_value >> 4) - ((int32_t)application_state.dig_T1))) >> 12) * ((int32_t)application_state.dig_T3)) >> 14; int32_t t_fine = var1 + var2; // if we got a pointer to a t_fine, return it by reference (for humidity calculation). if (p_t_fine != NULL) *p_t_fine = t_fine; if (application_state.is_fahrenheit) { return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32; } else { return ((t_fine * 5 + 128) >> 8) / 100.0; } } /** * Reads the humidity from the BME280 * @param t_fine - the t_fine measurement from a call to read_temperature * @return a float indicating the relative humidity as a percentage from 0-100. * @todo the returned value is glitchy, need to fix. */ float read_humidity(int32_t t_fine) { int32_t adc_value = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_HUMID_DATA); // again, cribbed from Adafruit's BME280 driver. they sell a great breakout board for this sensor! int32_t v_x1_u32r = (t_fine - ((int32_t)76800)); v_x1_u32r = (((((adc_value << 14) - (((int32_t)application_state.dig_H4) << 20) - (((int32_t)application_state.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)application_state.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)application_state.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)application_state.dig_H2) + 8192) >> 14)); v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)application_state.dig_H1)) >> 4)); v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r; v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r; float h = (v_x1_u32r >> 12); return h / 1024.0; } void log_data() { watch_date_time date_time = watch_rtc_get_date_time(); uint8_t hour = date_time.unit.hour; int8_t temperature = read_temperature(NULL); for(int i = 0; i < MAX_DATA_POINTS - 1; i++) { application_state.logged_data[i] = application_state.logged_data[i + 1]; } application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true; application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour; application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature; } void do_clock_mode() { watch_date_time date_time = watch_rtc_get_date_time(); const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"}; watch_display_string((char *)months[date_time.unit.month - 1], 0); sprintf(buf, "%2d%2d%02d%02d", date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second); watch_display_string(buf, 2); watch_set_colon(); } void do_temp_mode() { int32_t t_fine; float temperature; float humidity; // take one reading watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 | BME280_CONTROL_MODE_FORCED); // wait for reading to finish while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK); temperature = read_temperature(&t_fine); humidity = read_humidity(t_fine); if (application_state.show_humidity) { sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature, application_state.is_fahrenheit ? 'F' : 'C'); } else { sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C'); } watch_display_string(buf, 0); watch_clear_colon(); } void do_log_mode() { bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid); uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour); int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature); if (!is_valid) { sprintf(buf, "LO%2d------", application_state.page); watch_clear_colon(); } else { sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature); watch_set_colon(); } watch_display_string(buf, 0); } void log_mode_handle_primary_button() { application_state.page++; if (application_state.page == MAX_DATA_POINTS) application_state.page = 0; } void do_prefs_mode() { sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C'); watch_display_string(buf, 0); watch_clear_colon(); } void prefs_mode_handle_primary_button() { // TODO: add rest of preferences (12/24, humidity, LED color, etc.) // for now only one, C or F } void prefs_mode_handle_secondary_button() { application_state.is_fahrenheit = !application_state.is_fahrenheit; } void do_set_time_mode() { watch_date_time date_time = watch_rtc_get_date_time(); watch_display_string(" ", 0); switch (application_state.page) { case 0: // hour sprintf(buf, "ST t%2d", date_time.unit.hour); break; case 1: // minute sprintf(buf, "ST t %02d", date_time.unit.minute); break; case 2: // second sprintf(buf, "ST t %02d", date_time.unit.second); break; case 3: // year sprintf(buf, "ST d%2d", date_time.unit.year + 20); break; case 4: // month sprintf(buf, "ST d %02d", date_time.unit.month); break; case 5: // day sprintf(buf, "ST d %02d", date_time.unit.day); break; } watch_display_string(buf, 0); watch_set_pixel(1, 12); // required for T in position 1 } void set_time_mode_handle_primary_button() { application_state.page++; if (application_state.page == 6) application_state.page = 0; } void set_time_mode_handle_secondary_button() { watch_date_time date_time = watch_rtc_get_date_time(); const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31}; switch (application_state.page) { case 0: // hour date_time.unit.hour = (date_time.unit.hour + 1) % 24; break; case 1: // minute date_time.unit.minute = (date_time.unit.minute + 1) % 60; break; case 2: // second date_time.unit.second = 0; break; case 3: // year // only allow 2021-2030. fix this sometime next decade date_time.unit.year = ((date_time.unit.year % 10) + 1); break; case 4: // month date_time.unit.month = ((date_time.unit.month + 1) % 12); break; case 5: // day date_time.unit.day = date_time.unit.day + 1; // can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th. // and it should roll over. if (date_time.unit.day > days_in_month[date_time.unit.month - 1]) { date_time.unit.day = 1; } break; } watch_rtc_set_date_time(date_time); } void cb_mode_pressed() { application_state.mode = (application_state.mode + 1) % NUM_MODES; application_state.mode_changed = true; application_state.mode_ticks = 300; application_state.page = 0; } void cb_light_pressed() { switch (application_state.mode) { case MODE_PREFS: prefs_mode_handle_secondary_button(); break; case MODE_SET: set_time_mode_handle_secondary_button(); break; default: application_state.light_ticks = 3; break; } } void cb_alarm_pressed() { switch (application_state.mode) { case MODE_LOG: log_mode_handle_primary_button(); break; case MODE_PREFS: prefs_mode_handle_primary_button(); break; case MODE_SET: set_time_mode_handle_primary_button(); break; default: break; } } void cb_tick() { // TODO: use alarm interrupt to trigger data acquisition. watch_date_time date_time = watch_rtc_get_date_time(); if (date_time.unit.minute == 0 && date_time.unit.second == 0) { log_data(); } if (application_state.light_ticks > 0) { application_state.light_ticks--; } if (application_state.mode_ticks > 0) { application_state.mode_ticks--; } }