summaryrefslogtreecommitdiffstats
path: root/watch-library/hpl
diff options
context:
space:
mode:
Diffstat (limited to 'watch-library/hpl')
-rwxr-xr-xwatch-library/hpl/nvmctrl/hpl_nvmctrl.c782
-rwxr-xr-xwatch-library/hpl/trng/hpl_trng.c110
2 files changed, 892 insertions, 0 deletions
diff --git a/watch-library/hpl/nvmctrl/hpl_nvmctrl.c b/watch-library/hpl/nvmctrl/hpl_nvmctrl.c
new file mode 100755
index 00000000..c1d42c5e
--- /dev/null
+++ b/watch-library/hpl/nvmctrl/hpl_nvmctrl.c
@@ -0,0 +1,782 @@
+
+/**
+ * \file
+ *
+ * \brief Non-Volatile Memory Controller
+ *
+ * Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Subject to your compliance with these terms, you may use Microchip
+ * software and any derivatives exclusively with Microchip products.
+ * It is your responsibility to comply with third party license terms applicable
+ * to your use of third party software (including open source software) that
+ * may accompany Microchip software.
+ *
+ * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
+ * WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
+ * INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
+ * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
+ * LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
+ * LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
+ * SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
+ * POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
+ * ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
+ * RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
+ * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#include <hpl_flash.h>
+#include <hpl_user_area.h>
+#include <string.h>
+#include <utils_assert.h>
+#include <utils.h>
+#include <hpl_nvmctrl_config.h>
+
+#define NVM_MEMORY ((volatile uint16_t *)FLASH_ADDR)
+
+/**
+ * \brief NVM configuration type
+ */
+struct nvm_configuration {
+ hri_nvmctrl_ctrlb_reg_t ctrlb; /*!< Control B Register */
+};
+
+/**
+ * \brief Array of NVM configurations
+ */
+static struct nvm_configuration _nvm
+ = {(CONF_NVM_CACHE << NVMCTRL_CTRLB_CACHEDIS_Pos) | (CONF_NVM_READ_MODE << NVMCTRL_CTRLB_READMODE_Pos)
+ | (CONF_NVM_SLEEPPRM << NVMCTRL_CTRLB_SLEEPPRM_Pos)};
+
+/*!< Pointer to hpl device */
+static struct _flash_device *_nvm_dev = NULL;
+
+static void _flash_erase_row(void *const hw, const uint32_t dst_addr, uint32_t nvmctrl_cmd);
+static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size,
+ uint32_t nvmctrl_cmd);
+
+/**
+ * \brief Initialize NVM
+ */
+int32_t _flash_init(struct _flash_device *const device, void *const hw)
+{
+ ASSERT(device && (hw == NVMCTRL));
+ uint32_t ctrlb;
+
+ device->hw = hw;
+ ctrlb = _nvm.ctrlb & ~(NVMCTRL_CTRLB_RWS_Msk | NVMCTRL_CTRLB_MANW);
+ ctrlb |= hri_nvmctrl_get_CTRLB_reg(device->hw, NVMCTRL_CTRLB_RWS_Msk | NVMCTRL_CTRLB_MANW);
+ hri_nvmctrl_write_CTRLB_reg(device->hw, ctrlb);
+
+ _nvm_dev = device;
+ NVIC_DisableIRQ(NVMCTRL_IRQn);
+ NVIC_ClearPendingIRQ(NVMCTRL_IRQn);
+ NVIC_EnableIRQ(NVMCTRL_IRQn);
+ return ERR_NONE;
+}
+
+/**
+ * \brief De-initialize NVM
+ */
+void _flash_deinit(struct _flash_device *const device)
+{
+ device->hw = NULL;
+ NVIC_DisableIRQ(NVMCTRL_IRQn);
+}
+
+/**
+ * \brief Get the flash page size.
+ */
+uint32_t _flash_get_page_size(struct _flash_device *const device)
+{
+ (void)device;
+ return (uint32_t)NVMCTRL_PAGE_SIZE;
+}
+
+/**
+ * \brief Get the numbers of flash page.
+ */
+uint32_t _flash_get_total_pages(struct _flash_device *const device)
+{
+ (void)device;
+ return (uint32_t)FLASH_NB_OF_PAGES;
+}
+
+/**
+ * \brief Get the number of wait states for read and write operations.
+ */
+uint8_t _flash_get_wait_state(struct _flash_device *const device)
+{
+ return hri_nvmctrl_get_CTRLB_reg(device->hw, NVMCTRL_CTRLB_RWS_Msk);
+}
+
+/**
+ * \brief Set the number of wait states for read and write operations.
+ */
+void _flash_set_wait_state(struct _flash_device *const device, uint8_t state)
+{
+ hri_nvmctrl_write_CTRLB_RWS_bf(device->hw, state);
+}
+
+/**
+ * \brief Reads a number of bytes to a page in the internal Flash.
+ */
+void _flash_read(struct _flash_device *const device, const uint32_t src_addr, uint8_t *buffer, uint32_t length)
+{
+ uint32_t nvm_address = src_addr / 2;
+ uint32_t i;
+ uint16_t data;
+
+ /* Check if the module is busy */
+ while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Clear flags */
+ hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);
+
+ /* Check whether byte address is word-aligned*/
+ if (src_addr % 2) {
+ data = NVM_MEMORY[nvm_address++];
+ buffer[0] = data >> 8;
+ i = 1;
+ } else {
+ i = 0;
+ }
+
+ /* NVM _must_ be accessed as a series of 16-bit words, perform manual copy
+ * to ensure alignment */
+ while (i < length) {
+ data = NVM_MEMORY[nvm_address++];
+ buffer[i] = (data & 0xFF);
+ if (i < (length - 1)) {
+ buffer[i + 1] = (data >> 8);
+ }
+ i += 2;
+ }
+}
+
+/**
+ * \brief Writes a number of bytes to a page in the internal Flash.
+ */
+void _flash_write(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
+{
+ uint8_t tmp_buffer[NVMCTRL_ROW_PAGES][NVMCTRL_PAGE_SIZE];
+ uint32_t row_start_addr, row_end_addr;
+ uint32_t i, j, k;
+ uint32_t wr_start_addr = dst_addr;
+
+ do {
+ row_start_addr = wr_start_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
+ row_end_addr = row_start_addr + NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE - 1;
+
+ /* store the erase data into temp buffer before write */
+ for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
+ _flash_read(device, row_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
+ }
+
+ /* temp buffer update */
+ j = (wr_start_addr - row_start_addr) / NVMCTRL_PAGE_SIZE;
+ k = wr_start_addr - row_start_addr - j * NVMCTRL_PAGE_SIZE;
+ while ((wr_start_addr <= row_end_addr) && (length > 0)) {
+ tmp_buffer[j][k] = *buffer;
+ k = (k + 1) % NVMCTRL_PAGE_SIZE;
+ if (0 == k) {
+ j++;
+ }
+ wr_start_addr++;
+ buffer++;
+ length--;
+ }
+
+ /* erase row before write */
+ _flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_ER);
+
+ /* write buffer to flash */
+ for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
+ _flash_program(device->hw,
+ row_start_addr + i * NVMCTRL_PAGE_SIZE,
+ tmp_buffer[i],
+ NVMCTRL_PAGE_SIZE,
+ NVMCTRL_CTRLA_CMD_WP);
+ }
+
+ } while (row_end_addr < (wr_start_addr + length - 1));
+}
+
+/**
+ * \brief Appends a number of bytes in the internal Flash.
+ */
+void _flash_append(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
+{
+ uint32_t page_start_addr = dst_addr & ~(NVMCTRL_PAGE_SIZE - 1);
+ uint32_t size;
+ uint32_t offset = 0;
+
+ if (dst_addr != page_start_addr) {
+ /* Need to write some data to the end of a page */
+ size = min(length, NVMCTRL_PAGE_SIZE - (dst_addr - page_start_addr));
+ _flash_program(device->hw, dst_addr, buffer, size, NVMCTRL_CTRLA_CMD_WP);
+ page_start_addr += NVMCTRL_PAGE_SIZE;
+ offset += size;
+ }
+
+ while (offset < length) {
+ size = min(length - offset, NVMCTRL_PAGE_SIZE);
+ _flash_program(device->hw, page_start_addr, buffer + offset, size, NVMCTRL_CTRLA_CMD_WP);
+ page_start_addr += NVMCTRL_PAGE_SIZE;
+ offset += size;
+ }
+}
+
+/**
+ * \brief Execute erase in the internal flash
+ */
+void _flash_erase(struct _flash_device *const device, uint32_t dst_addr, uint32_t page_nums)
+{
+ uint8_t tmp_buffer[NVMCTRL_PAGE_SIZE];
+ uint32_t row_start_addr;
+ uint32_t i;
+
+ row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
+
+ memset(tmp_buffer, 0xFF, NVMCTRL_PAGE_SIZE);
+
+ /* when address is not aligned with row start address */
+ if (dst_addr != row_start_addr) {
+ row_start_addr += NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE;
+ for (i = 0; i < NVMCTRL_ROW_PAGES - 1; i++) {
+ _flash_write(device, dst_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
+ if (--page_nums == 0) {
+ return;
+ }
+ dst_addr += NVMCTRL_PAGE_SIZE;
+ if (dst_addr == row_start_addr) {
+ break;
+ }
+ }
+ }
+
+ while (page_nums >= NVMCTRL_ROW_PAGES) {
+ _flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_ER);
+ row_start_addr += NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE;
+ page_nums -= NVMCTRL_ROW_PAGES;
+ }
+
+ if (page_nums != 0) {
+ for (i = 0; i < page_nums; i++) {
+ _flash_write(device, row_start_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
+ row_start_addr += NVMCTRL_PAGE_SIZE;
+ }
+ }
+}
+
+/**
+ * \brief Execute lock in the internal flash
+ */
+int32_t _flash_lock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
+{
+ uint32_t region_pages;
+ uint32_t row_start_addr;
+
+ region_pages = (uint32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
+ row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
+
+ if ((page_nums != region_pages) || (dst_addr != row_start_addr)) {
+ return ERR_INVALID_ARG;
+ }
+
+ while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Clear flags */
+ hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);
+
+ hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr / 2);
+ hri_nvmctrl_write_CTRLA_reg(device->hw, NVMCTRL_CTRLA_CMD_LR | NVMCTRL_CTRLA_CMDEX_KEY);
+
+ return (int32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
+}
+
+/**
+ * \brief Execute unlock in the internal flash
+ */
+int32_t _flash_unlock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
+{
+ uint32_t region_pages;
+ uint32_t row_start_addr;
+
+ region_pages = (uint32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
+ row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
+
+ if ((page_nums != region_pages) || (dst_addr != row_start_addr)) {
+ return ERR_INVALID_ARG;
+ }
+
+ while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Clear flags */
+ hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);
+
+ hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr / 2);
+ hri_nvmctrl_write_CTRLA_reg(device->hw, NVMCTRL_CTRLA_CMD_UR | NVMCTRL_CTRLA_CMDEX_KEY);
+
+ return (int32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
+}
+
+/**
+ * \brief check whether the region which is pointed by address
+ */
+bool _flash_is_locked(struct _flash_device *const device, const uint32_t dst_addr)
+{
+ uint16_t region_id;
+
+ /* Get region for given page */
+ region_id = dst_addr / (NVMCTRL_FLASH_SIZE / 16);
+
+ return !(hri_nvmctrl_get_LOCK_reg(device->hw, 1 << region_id));
+}
+
+/**
+ * \brief Enable/disable Flash interrupt
+ */
+void _flash_set_irq_state(struct _flash_device *const device, const enum _flash_cb_type type, const bool state)
+{
+ ASSERT(device);
+
+ if (FLASH_DEVICE_CB_READY == type) {
+ hri_nvmctrl_write_INTEN_READY_bit(device->hw, state);
+ } else if (FLASH_DEVICE_CB_ERROR == type) {
+ hri_nvmctrl_write_INTEN_ERROR_bit(device->hw, state);
+ }
+}
+
+/**
+ * \internal erase a row in flash
+ * \param[in] hw The pointer to hardware instance
+ * \param[in] dst_addr Destination page address to erase
+ */
+static void _flash_erase_row(void *const hw, const uint32_t dst_addr, uint32_t nvmctrl_cmd)
+{
+ while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Clear flags */
+ hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);
+
+ /* Set address and command */
+ hri_nvmctrl_write_ADDR_reg(hw, dst_addr / 2);
+ hri_nvmctrl_write_CTRLA_reg(hw, nvmctrl_cmd | NVMCTRL_CTRLA_CMDEX_KEY);
+}
+
+/**
+ * \internal write a page in flash
+ * \param[in] hw The pointer to hardware instance
+ * \param[in] dst_addr Destination page address to write
+ * \param[in] buffer Pointer to buffer where the data to
+ * write is stored
+ * \param[in] size The size of data to write to a page
+ */
+static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size,
+ uint32_t nvmctrl_cmd)
+{
+ ASSERT(!(dst_addr % 2));
+
+ uint32_t nvm_address = dst_addr / 2;
+ uint16_t i, data;
+
+ while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_PBC | NVMCTRL_CTRLA_CMDEX_KEY);
+
+ while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Clear flags */
+ hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);
+
+ for (i = 0; i < size; i += 2) {
+ data = buffer[i];
+ if (i < NVMCTRL_PAGE_SIZE - 1) {
+ data |= (buffer[i + 1] << 8);
+ }
+ NVM_MEMORY[nvm_address++] = data;
+ }
+
+ while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
+ /* Wait until this module isn't busy */
+ }
+
+ hri_nvmctrl_write_ADDR_reg(hw, dst_addr / 2);
+ hri_nvmctrl_write_CTRLA_reg(hw, nvmctrl_cmd | NVMCTRL_CTRLA_CMDEX_KEY);
+}
+
+/**
+ * \internal NVM interrupt handler
+ */
+void NVMCTRL_Handler(void)
+{
+ void *const hw = _nvm_dev->hw;
+
+ if (hri_nvmctrl_get_interrupt_READY_bit(hw)) {
+ if (NULL != _nvm_dev->flash_cb.ready_cb) {
+ _nvm_dev->flash_cb.ready_cb(_nvm_dev);
+ }
+ } else if (hri_nvmctrl_get_interrupt_ERROR_bit(hw)) {
+ hri_nvmctrl_clear_interrupt_ERROR_bit(hw);
+ if (NULL != _nvm_dev->flash_cb.error_cb) {
+ _nvm_dev->flash_cb.error_cb(_nvm_dev);
+ }
+ }
+}
+
+/*
+The NVM User Row contains calibration data that are automatically read at device
+power on.
+The NVM User Row can be read at address 0x804000.
+*/
+#ifndef _NVM_USER_ROW_BASE
+#define _NVM_USER_ROW_BASE 0x804000
+#endif
+#define _NVM_USER_ROW_N_BITS 64
+#define _NVM_USER_ROW_N_BYTES (_NVM_USER_ROW_N_BITS / 8)
+#define _NVM_USER_ROW_END (((uint8_t *)_NVM_USER_ROW_BASE) + _NVM_USER_ROW_N_BYTES - 1)
+#define _IS_NVM_USER_ROW(b) \
+ (((uint8_t *)(b) >= (uint8_t *)(_NVM_USER_ROW_BASE)) && ((uint8_t *)(b) <= (uint8_t *)(_NVM_USER_ROW_END)))
+#define _IN_NVM_USER_ROW(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_USER_ROW_END))
+
+/*
+The NVM Software Calibration Area can be read at address 0x806020.
+The NVM Software Calibration Area can not be written.
+*/
+#ifndef _NVM_SW_CALIB_AREA_BASE
+#define _NVM_SW_CALIB_AREA_BASE 0x806020
+#endif
+#define _NVM_SW_CALIB_AREA_N_BITS 128
+#define _NVM_SW_CALIB_AREA_N_BYTES (_NVM_SW_CALIB_AREA_N_BITS / 8)
+#define _NVM_SW_CALIB_AREA_END (((uint8_t *)_NVM_SW_CALIB_AREA_BASE) + _NVM_SW_CALIB_AREA_N_BYTES - 1)
+#define _IS_NVM_SW_CALIB_AREA(b) \
+ (((uint8_t *)(b) >= (uint8_t *)_NVM_SW_CALIB_AREA_BASE) && ((uint8_t *)(b) <= (uint8_t *)_NVM_SW_CALIB_AREA_END))
+#define _IN_NVM_SW_CALIB_AREA(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_SW_CALIB_AREA_END))
+
+/**
+ * \internal Read left aligned data bits
+ * \param[in] base Base address for the data
+ * \param[in] bit_offset Offset for the bitfield start
+ * \param[in] n_bits Number of bits in the bitfield
+ */
+static inline uint32_t _user_area_read_l32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
+ const uint8_t n_bits)
+{
+ return base[bit_offset >> 5] & ((1 << n_bits) - 1);
+}
+
+/**
+ * \internal Read right aligned data bits
+ * \param[in] base Base address for the data
+ * \param[in] bit_offset Offset for the bitfield start
+ * \param[in] n_bits Number of bits in the bitfield
+ */
+static inline uint32_t _user_area_read_r32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
+ const uint8_t n_bits)
+{
+ return (base[bit_offset >> 5] >> (bit_offset & 0x1F)) & ((1 << n_bits) - 1);
+}
+
+int32_t _user_area_read(const void *base, const uint32_t offset, uint8_t *buf, uint32_t size)
+{
+ ASSERT(buf);
+
+ /** Parameter check. */
+ if (_IS_NVM_USER_ROW(base)) {
+ if (!_IN_NVM_USER_ROW(base, offset)) {
+ return ERR_BAD_ADDRESS;
+ }
+ /* Cut off if request too many bytes */
+ if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
+ return ERR_INVALID_ARG;
+ }
+ } else if (_IS_NVM_SW_CALIB_AREA(base)) {
+ if (!_IN_NVM_SW_CALIB_AREA(base, offset)) {
+ return ERR_BAD_ADDRESS;
+ }
+ /* Cut off if request too many bytes */
+ if (!_IN_NVM_SW_CALIB_AREA(base, offset + size - 1)) {
+ return ERR_INVALID_ARG;
+ }
+ } else {
+ return ERR_UNSUPPORTED_OP;
+ }
+
+ /* Copy data */
+ memcpy(buf, ((uint8_t *)base) + offset, size);
+ return ERR_NONE;
+}
+
+uint32_t _user_area_read_bits(const void *base, const uint32_t bit_offset, const uint8_t n_bits)
+{
+ volatile uint32_t *mem_base = (volatile uint32_t *)base;
+ uint32_t l_off, l_bits;
+ uint32_t r_off, r_bits;
+
+ /** Parameter check. */
+ if (_IS_NVM_USER_ROW(base)) {
+ ASSERT(_IN_NVM_USER_ROW(base, bit_offset >> 3) && _IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3));
+ } else if (_IS_NVM_SW_CALIB_AREA(base)) {
+ ASSERT(_IN_NVM_SW_CALIB_AREA(base, bit_offset >> 3)
+ && _IN_NVM_SW_CALIB_AREA(base, (bit_offset + n_bits - 1) >> 3));
+ } else {
+ ASSERT(false);
+ }
+
+ /* Since the bitfield can cross 32-bits boundaries,
+ * left and right bits are read from 32-bit aligned address
+ * and then combined together. */
+ l_off = bit_offset & (~(32 - 1));
+ r_off = l_off + 32;
+ l_bits = 32 - (bit_offset & (32 - 1));
+ if (n_bits > l_bits) {
+ r_bits = n_bits - l_bits;
+ } else {
+ l_bits = n_bits;
+ r_bits = 0;
+ }
+ return _user_area_read_r32_bits(mem_base, bit_offset, l_bits)
+ + (_user_area_read_l32_bits(mem_base, r_off, r_bits) << l_bits);
+}
+
+/** \internal Write 64-bit user row
+ * \param[in] _row Pointer to 64-bit user row data.
+ */
+static int32_t _user_row_write_exec(const uint32_t *_row)
+{
+ Nvmctrl *hw = NVMCTRL;
+ uint32_t ctrlb = hri_nvmctrl_read_CTRLB_reg(NVMCTRL);
+
+ /* Denie if Security Bit is set */
+ if (hri_nvmctrl_get_STATUS_reg(hw, NVMCTRL_STATUS_SB)) {
+ return ERR_DENIED;
+ }
+
+ /* Do Save */
+
+ /* - Prepare. */
+ while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
+ /* Wait until this module isn't busy */
+ }
+ hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);
+ hri_nvmctrl_set_CTRLB_MANW_bit(hw);
+
+ /* - Erase AUX row. */
+ hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)(_NVM_USER_ROW_BASE / 2));
+ hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_EAR | NVMCTRL_CTRLA_CMDEX_KEY);
+ while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* - Page buffer clear & write. */
+ hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_PBC | NVMCTRL_CTRLA_CMDEX_KEY);
+ while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
+ /* Wait until this module isn't busy */
+ }
+ *((uint32_t *)NVMCTRL_AUX0_ADDRESS) = _row[0];
+ *(((uint32_t *)NVMCTRL_AUX0_ADDRESS) + 1) = _row[1];
+
+ /* - Write AUX row. */
+ hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)(_NVM_USER_ROW_BASE / 2));
+ hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_WAP | NVMCTRL_CTRLA_CMDEX_KEY);
+ while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
+ /* Wait until this module isn't busy */
+ }
+
+ /* Restore CTRLB */
+ hri_nvmctrl_write_CTRLB_reg(NVMCTRL, ctrlb);
+
+ return ERR_NONE;
+}
+
+int32_t _user_area_write(void *base, const uint32_t offset, const uint8_t *buf, const uint32_t size)
+{
+ uint32_t _row[2]; /* Copy of user row. */
+
+ /** Parameter check. */
+ if (_IS_NVM_USER_ROW(base)) {
+ if (!_IN_NVM_USER_ROW(base, offset)) {
+ return ERR_BAD_ADDRESS;
+ } else if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
+ return ERR_INVALID_ARG;
+ }
+ } else if (_IS_NVM_SW_CALIB_AREA(base)) {
+ return ERR_DENIED;
+ } else {
+ return ERR_UNSUPPORTED_OP;
+ }
+
+ memcpy(_row, base, 8); /* Store previous data. */
+ memcpy((uint8_t *)_row + offset, buf, size); /* Modify with buf data. */
+
+ return _user_row_write_exec(_row);
+}
+
+int32_t _user_area_write_bits(void *base, const uint32_t bit_offset, const uint32_t bits, const uint8_t n_bits)
+{
+ uint32_t _row[2]; /* Copy of user row. */
+ uint32_t l_off, l_bits;
+ uint32_t r_off, r_bits;
+
+ /** Parameter check. */
+ if (_IS_NVM_USER_ROW(base)) {
+ if (!_IN_NVM_USER_ROW(base, bit_offset >> 3)) {
+ return ERR_BAD_ADDRESS;
+ } else if (!_IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3)) {
+ return ERR_INVALID_ARG;
+ }
+ } else if (_IS_NVM_SW_CALIB_AREA(base)) {
+ return ERR_DENIED;
+ } else {
+ return ERR_UNSUPPORTED_OP;
+ }
+
+ /* Since the bitfield can cross 32-bits boundaries,
+ * left and right bits are splitted for 32-bit aligned address
+ * and then saved. */
+ l_off = bit_offset & (~(32 - 1));
+ r_off = l_off + 32;
+ l_bits = 32 - (bit_offset & (32 - 1));
+ if (n_bits > l_bits) {
+ r_bits = n_bits - l_bits;
+ } else {
+ l_bits = n_bits;
+ r_bits = 0;
+ }
+
+ memcpy(_row, base, 8); /* Store previous data. */
+ if (l_bits) {
+ uint32_t l_mask = ((1 << l_bits) - 1) << (bit_offset & (32 - 1));
+ _row[bit_offset >> 5] &= ~l_mask;
+ _row[bit_offset >> 5] |= (bits << (bit_offset & (32 - 1))) & l_mask;
+ }
+ if (r_bits) {
+ uint32_t r_mask = (1 << r_bits) - 1;
+ _row[r_off >> 5] &= ~r_mask;
+ _row[r_off >> 5] |= bits >> l_bits;
+ }
+ return _user_row_write_exec(_row);
+}
+
+/**
+ * \brief Return if given address is in Flash RWWEE array range.
+ */
+static bool _is_valid_rww_flash_address(uint32_t addr)
+{
+#define RWWEE_ADDR_START NVMCTRL_RWW_EEPROM_ADDR
+#define RWWEE_ADDR_END (NVMCTRL_RWW_EEPROM_ADDR + NVMCTRL_PAGE_SIZE * NVMCTRL_RWWEE_PAGES)
+
+ if ((addr < NVMCTRL_RWW_EEPROM_ADDR)
+ || (addr > (NVMCTRL_RWW_EEPROM_ADDR + NVMCTRL_PAGE_SIZE * NVMCTRL_RWWEE_PAGES))) {
+ return false;
+ }
+ return true;
+}
+
+/**
+ * \brief Get the RWWEE flash page size.
+ */
+uint32_t _rww_flash_get_page_size(struct _flash_device *const device)
+{
+ (void)device;
+ return (uint32_t)NVMCTRL_PAGE_SIZE;
+}
+
+/**
+ * \brief Get the total page numbers of RWWEE flash.
+ */
+uint32_t _rww_flash_get_total_pages(struct _flash_device *const device)
+{
+ (void)device;
+ return (uint32_t)NVMCTRL_RWWEE_PAGES;
+}
+
+/**
+ * \brief Reads a number of bytes in the internal RWWEE Flash.
+ */
+int32_t _rww_flash_read(struct _flash_device *const device, const uint32_t src_addr, uint8_t *buffer, uint32_t length)
+{
+ /* Check if the address is valid */
+ if (!_is_valid_rww_flash_address(src_addr) || !_is_valid_rww_flash_address(src_addr + length)) {
+ return ERR_BAD_ADDRESS;
+ }
+
+ _flash_read(device, src_addr, buffer, length);
+
+ return ERR_NONE;
+}
+
+/**
+ * \brief Writes a number of bytes in the internal RWWEE Flash.
+ */
+int32_t _rww_flash_write(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
+{
+ uint8_t tmp_buffer[NVMCTRL_ROW_PAGES][NVMCTRL_PAGE_SIZE];
+ uint32_t row_start_addr, row_end_addr;
+ uint32_t i, j, k;
+ uint32_t wr_start_addr = dst_addr;
+
+ /* Check if the address is valid */
+ if (!_is_valid_rww_flash_address(dst_addr) || !_is_valid_rww_flash_address(dst_addr + length)) {
+ return ERR_BAD_ADDRESS;
+ }
+
+ do {
+ row_start_addr = wr_start_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
+ row_end_addr = row_start_addr + NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE - 1;
+
+ /* store the erase data into temp buffer before write */
+ for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
+ _rww_flash_read(device, row_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
+ }
+
+ /* temp buffer update */
+ j = (wr_start_addr - row_start_addr) / NVMCTRL_PAGE_SIZE;
+ k = wr_start_addr - row_start_addr - j * NVMCTRL_PAGE_SIZE;
+ while ((wr_start_addr <= row_end_addr) && (length > 0)) {
+ tmp_buffer[j][k] = *buffer;
+ k = (k + 1) % NVMCTRL_PAGE_SIZE;
+ if (0 == k) {
+ j++;
+ }
+ wr_start_addr++;
+ buffer++;
+ length--;
+ }
+
+ /* erase row before write */
+ _flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_RWWEEER);
+
+ /* write buffer to flash */
+ for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
+ _flash_program(device->hw,
+ row_start_addr + i * NVMCTRL_PAGE_SIZE,
+ tmp_buffer[i],
+ NVMCTRL_PAGE_SIZE,
+ NVMCTRL_CTRLA_CMD_RWWEEWP);
+ }
+
+ } while (row_end_addr < (wr_start_addr + length - 1));
+
+ return ERR_NONE;
+}
diff --git a/watch-library/hpl/trng/hpl_trng.c b/watch-library/hpl/trng/hpl_trng.c
new file mode 100755
index 00000000..43ede044
--- /dev/null
+++ b/watch-library/hpl/trng/hpl_trng.c
@@ -0,0 +1,110 @@
+/**
+ * \file
+ *
+ * \brief True Random Number Generator
+ *
+ * Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Subject to your compliance with these terms, you may use Microchip
+ * software and any derivatives exclusively with Microchip products.
+ * It is your responsibility to comply with third party license terms applicable
+ * to your use of third party software (including open source software) that
+ * may accompany Microchip software.
+ *
+ * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
+ * WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
+ * INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
+ * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
+ * LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
+ * LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
+ * SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
+ * POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
+ * ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
+ * RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
+ * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#include <err_codes.h>
+#include <hpl_rand_sync.h>
+#include <hpl_trng_config.h>
+#include <utils_assert.h>
+
+static inline int32_t _trng_init(void *hw)
+{
+ if (hri_trng_get_CTRLA_reg(hw, TRNG_CTRLA_ENABLE)) {
+ return ERR_DENIED;
+ }
+ if (CONF_TRNG_RUNSTDBY) {
+ hri_trng_set_CTRLA_RUNSTDBY_bit(hw);
+ } else {
+ hri_trng_clear_CTRLA_RUNSTDBY_bit(hw);
+ }
+ if (CONF_TRNG_DATARDYEO) {
+ hri_trng_set_EVCTRL_DATARDYEO_bit(hw);
+ } else {
+ hri_trng_clear_EVCTRL_DATARDYEO_bit(hw);
+ }
+ return ERR_NONE;
+}
+
+int32_t _rand_sync_init(struct _rand_sync_dev *const dev, void *const hw)
+{
+ int32_t rc;
+
+ ASSERT(dev && hw);
+
+ rc = _trng_init(hw);
+ if (rc == ERR_NONE) {
+ dev->prvt = hw;
+ dev->n_bits = 32;
+ }
+ return rc;
+}
+
+void _rand_sync_deinit(struct _rand_sync_dev *const dev)
+{
+ _rand_sync_disable(dev);
+}
+
+int32_t _rand_sync_enable(struct _rand_sync_dev *const dev)
+{
+ ASSERT(dev);
+ ASSERT(dev->prvt);
+
+ hri_trng_set_CTRLA_ENABLE_bit(dev->prvt);
+ return ERR_NONE;
+}
+
+void _rand_sync_disable(struct _rand_sync_dev *const dev)
+{
+ ASSERT(dev);
+ ASSERT(dev->prvt);
+
+ hri_trng_clear_CTRLA_ENABLE_bit(dev->prvt);
+}
+
+int32_t _rand_sync_set_seed(struct _rand_sync_dev *const dev, const uint32_t seed)
+{
+ (void)dev;
+ (void)seed;
+ return ERR_UNSUPPORTED_OP;
+}
+
+uint32_t _rand_sync_read_one(const struct _rand_sync_dev *const dev)
+{
+ ASSERT(dev);
+ ASSERT(dev->prvt);
+ ASSERT(hri_trng_get_CTRLA_reg(dev->prvt, TRNG_CTRLA_ENABLE));
+
+ while (!hri_trng_get_INTFLAG_reg(dev->prvt, TRNG_INTFLAG_DATARDY)) {
+ /* Wait until data ready. */
+ }
+ return hri_trng_read_DATA_reg(dev->prvt);
+}