summaryrefslogtreecommitdiffstats
path: root/movement/lib/TOTP/sha256.c
diff options
context:
space:
mode:
Diffstat (limited to 'movement/lib/TOTP/sha256.c')
-rw-r--r--movement/lib/TOTP/sha256.c372
1 files changed, 372 insertions, 0 deletions
diff --git a/movement/lib/TOTP/sha256.c b/movement/lib/TOTP/sha256.c
new file mode 100644
index 00000000..cb83f535
--- /dev/null
+++ b/movement/lib/TOTP/sha256.c
@@ -0,0 +1,372 @@
+/*
+ * FIPS-180-2 compliant SHA-256 implementation
+ *
+ * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * This file is part of mbed TLS (https://tls.mbed.org)
+ */
+/*
+ * The SHA-256 Secure Hash Standard was published by NIST in 2002.
+ *
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ */
+
+#include "sha256.h"
+
+#include <string.h>
+#include <stdio.h>
+
+/* Implementation that should never be optimized out by the compiler */
+static void mbedtls_zeroize( void *v, size_t n ) {
+ volatile unsigned char *p = v; while( n-- ) *p++ = 0;
+}
+
+/*
+ * 32-bit integer manipulation macros (big endian)
+ */
+#ifndef GET_UINT32_BE
+#define GET_UINT32_BE(n,b,i) \
+do { \
+ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
+ | ( (uint32_t) (b)[(i) + 1] << 16 ) \
+ | ( (uint32_t) (b)[(i) + 2] << 8 ) \
+ | ( (uint32_t) (b)[(i) + 3] ); \
+} while( 0 )
+#endif
+
+#ifndef PUT_UINT32_BE
+#define PUT_UINT32_BE(n,b,i) \
+do { \
+ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
+ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
+ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
+ (b)[(i) + 3] = (unsigned char) ( (n) ); \
+} while( 0 )
+#endif
+
+void mbedtls_sha256_init( mbedtls_sha256_context *ctx )
+{
+ memset( ctx, 0, sizeof( mbedtls_sha256_context ) );
+}
+
+void mbedtls_sha256_free( mbedtls_sha256_context *ctx )
+{
+ if( ctx == NULL )
+ return;
+
+ mbedtls_zeroize( ctx, sizeof( mbedtls_sha256_context ) );
+}
+
+void mbedtls_sha256_clone( mbedtls_sha256_context *dst,
+ const mbedtls_sha256_context *src )
+{
+ *dst = *src;
+}
+
+/*
+ * SHA-256 context setup
+ */
+void mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 )
+{
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ if( is224 == 0 )
+ {
+ /* SHA-256 */
+ ctx->state[0] = 0x6A09E667;
+ ctx->state[1] = 0xBB67AE85;
+ ctx->state[2] = 0x3C6EF372;
+ ctx->state[3] = 0xA54FF53A;
+ ctx->state[4] = 0x510E527F;
+ ctx->state[5] = 0x9B05688C;
+ ctx->state[6] = 0x1F83D9AB;
+ ctx->state[7] = 0x5BE0CD19;
+ }
+ else
+ {
+ /* SHA-224 */
+ ctx->state[0] = 0xC1059ED8;
+ ctx->state[1] = 0x367CD507;
+ ctx->state[2] = 0x3070DD17;
+ ctx->state[3] = 0xF70E5939;
+ ctx->state[4] = 0xFFC00B31;
+ ctx->state[5] = 0x68581511;
+ ctx->state[6] = 0x64F98FA7;
+ ctx->state[7] = 0xBEFA4FA4;
+ }
+
+ ctx->is224 = is224;
+}
+
+static const uint32_t K[] =
+{
+ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
+ 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
+ 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
+ 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
+ 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
+ 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
+ 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
+ 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
+ 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
+ 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
+ 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
+ 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
+ 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
+ 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
+ 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
+ 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
+};
+
+#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
+#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
+
+#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
+#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
+
+#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
+#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
+
+#define F0(x,y,z) ((x & y) | (z & (x | y)))
+#define F1(x,y,z) (z ^ (x & (y ^ z)))
+
+#define R(t) \
+( \
+ W[t] = S1(W[t - 2]) + W[t - 7] + \
+ S0(W[t - 15]) + W[t - 16] \
+)
+
+#define P(a,b,c,d,e,f,g,h,x,K) \
+{ \
+ temp1 = h + S3(e) + F1(e,f,g) + K + x; \
+ temp2 = S2(a) + F0(a,b,c); \
+ d += temp1; h = temp1 + temp2; \
+}
+
+void mbedtls_sha256_process( mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_LENGTH] )
+{
+ uint32_t temp1, temp2, W[64];
+ uint32_t A[8];
+ unsigned int i;
+
+ for( i = 0; i < 8; i++ )
+ A[i] = ctx->state[i];
+
+ for( i = 0; i < 16; i++ )
+ GET_UINT32_BE( W[i], data, 4 * i );
+
+ for( i = 0; i < 16; i += 8 )
+ {
+ P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i+0], K[i+0] );
+ P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i+1], K[i+1] );
+ P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i+2], K[i+2] );
+ P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i+3], K[i+3] );
+ P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i+4], K[i+4] );
+ P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i+5], K[i+5] );
+ P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i+6], K[i+6] );
+ P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i+7], K[i+7] );
+ }
+
+ for( i = 16; i < 64; i += 8 )
+ {
+ P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], R(i+0), K[i+0] );
+ P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], R(i+1), K[i+1] );
+ P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], R(i+2), K[i+2] );
+ P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], R(i+3), K[i+3] );
+ P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], R(i+4), K[i+4] );
+ P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], R(i+5), K[i+5] );
+ P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], R(i+6), K[i+6] );
+ P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], R(i+7), K[i+7] );
+ }
+
+ for( i = 0; i < 8; i++ )
+ ctx->state[i] += A[i];
+}
+
+/*
+ * SHA-256 process buffer
+ */
+void mbedtls_sha256_update( mbedtls_sha256_context *ctx, const unsigned char *input,
+ size_t ilen )
+{
+ size_t fill;
+ uint32_t left;
+
+ if( ilen == 0 )
+ return;
+
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+
+ ctx->total[0] += (uint32_t) ilen;
+ ctx->total[0] &= 0xFFFFFFFF;
+
+ if( ctx->total[0] < (uint32_t) ilen )
+ ctx->total[1]++;
+
+ if( left && ilen >= fill )
+ {
+ memcpy( (void *) (ctx->buffer + left), input, fill );
+ mbedtls_sha256_process( ctx, ctx->buffer );
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while( ilen >= 64 )
+ {
+ mbedtls_sha256_process( ctx, input );
+ input += 64;
+ ilen -= 64;
+ }
+
+ if( ilen > 0 )
+ memcpy( (void *) (ctx->buffer + left), input, ilen );
+}
+
+static const unsigned char sha256_padding[SHA256_BLOCK_LENGTH] =
+{
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*
+ * SHA-256 final digest
+ */
+void mbedtls_sha256_finish( mbedtls_sha256_context *ctx, unsigned char* output )
+{
+ uint32_t last, padn;
+ uint32_t high, low;
+ unsigned char msglen[8];
+
+ high = ( ctx->total[0] >> 29 )
+ | ( ctx->total[1] << 3 );
+ low = ( ctx->total[0] << 3 );
+
+ PUT_UINT32_BE( high, msglen, 0 );
+ PUT_UINT32_BE( low, msglen, 4 );
+
+ last = ctx->total[0] & 0x3F;
+ padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
+
+ mbedtls_sha256_update( ctx, sha256_padding, padn );
+ mbedtls_sha256_update( ctx, msglen, 8 );
+
+ PUT_UINT32_BE( ctx->state[0], output, 0 );
+ PUT_UINT32_BE( ctx->state[1], output, 4 );
+ PUT_UINT32_BE( ctx->state[2], output, 8 );
+ PUT_UINT32_BE( ctx->state[3], output, 12 );
+ PUT_UINT32_BE( ctx->state[4], output, 16 );
+ PUT_UINT32_BE( ctx->state[5], output, 20 );
+ PUT_UINT32_BE( ctx->state[6], output, 24 );
+
+ if( ctx->is224 == 0 )
+ PUT_UINT32_BE( ctx->state[7], output, 28 );
+}
+
+/*
+ * output = SHA-256( input buffer )
+ */
+void mbedtls_sha256( const unsigned char *input, size_t ilen,
+ unsigned char* output, int is224 )
+{
+ mbedtls_sha256_context ctx;
+
+ mbedtls_sha256_init( &ctx );
+ mbedtls_sha256_starts( &ctx, is224 );
+ mbedtls_sha256_update( &ctx, input, ilen );
+ mbedtls_sha256_finish( &ctx, output );
+ mbedtls_sha256_free( &ctx );
+}
+
+/*
+* Compute HMAC_SHA224/256 using key, key length, text to hash, size of the text, output buffer and a switch for SHA224
+*/
+void HMAC_SHA256(const uint8_t* key, size_t key_length, const uint8_t *in, size_t n, uint8_t* out, int is224){
+ int digest_length = SHA256_DIGEST_LENGTH;
+ if (is224 == 1) {
+ digest_length = SHA224_DIGEST_LENGTH;
+ }
+
+ uint8_t i;
+ uint8_t k_ipad[SHA256_BLOCK_LENGTH]; /* inner padding - key XORd with ipad */
+ uint8_t k_opad[SHA256_BLOCK_LENGTH]; /* outer padding - key XORd with opad */
+ uint8_t buffer[SHA256_BLOCK_LENGTH + digest_length];
+
+ /* start out by storing key in pads */
+ memset(k_ipad, 0, sizeof(k_ipad));
+ memset(k_opad, 0, sizeof(k_opad));
+
+ if (key_length <= SHA256_BLOCK_LENGTH) {
+ memcpy(k_ipad, key, key_length);
+ memcpy(k_opad, key, key_length);
+ }
+
+ else {
+ mbedtls_sha256(key, key_length, k_ipad, is224);
+ memcpy(k_opad, k_ipad, SHA256_BLOCK_LENGTH);
+ }
+
+ /* XOR key with ipad and opad values */
+ for (i = 0; i < SHA256_BLOCK_LENGTH; i++) {
+ k_ipad[i] ^= HMAC_IPAD;
+ k_opad[i] ^= HMAC_OPAD;
+ }
+
+ // perform inner SHA256
+ memcpy(buffer, k_ipad, SHA256_BLOCK_LENGTH);
+ memcpy(buffer + SHA256_BLOCK_LENGTH, in, n);
+ mbedtls_sha256(buffer, SHA256_BLOCK_LENGTH + n, out, is224);
+
+ memset(buffer, 0, SHA256_BLOCK_LENGTH + n);
+
+ // perform outer SHA256
+ memcpy(buffer, k_opad, SHA256_BLOCK_LENGTH);
+ memcpy(buffer + SHA256_BLOCK_LENGTH, out, digest_length);
+ mbedtls_sha256(buffer, SHA256_BLOCK_LENGTH + digest_length, out, is224);
+}
+
+/*
+* Compute TOTP_HMAC_SHA224/256 using key, key length, text to hash, size of the text and a switch for SHA224
+*/
+uint32_t TOTP_HMAC_SHA256(const uint8_t* key, size_t key_length, const uint8_t *in, size_t n, int is224){
+ int digest_length = SHA256_DIGEST_LENGTH;
+ if (is224 == 1) {
+ digest_length = SHA224_DIGEST_LENGTH;
+ }
+
+ // STEP 1, get the HMAC-SHA256 hash from counter and key
+ uint8_t hash[digest_length];
+ HMAC_SHA256(key, key_length, in, n, hash, is224);
+
+ // STEP 2, apply dynamic truncation to obtain a 4-bytes string
+ uint32_t truncated_hash = 0;
+ uint8_t _offset = hash[digest_length - 1] & 0xF;
+ uint8_t j;
+ for (j = 0; j < 4; ++j) {
+ truncated_hash <<= 8;
+ truncated_hash |= hash[_offset + j];
+ }
+
+ // STEP 3, compute the OTP value
+ truncated_hash &= 0x7FFFFFFF; //Disabled
+ truncated_hash %= 1000000;
+
+ return truncated_hash;
+} \ No newline at end of file