#include "project.h" #define BUFFER_SIZE 256 #define BIG_BUFFER_SIZE 600 volatile ring_t rx3_ring; static uint8_t rx3_ring_buf[BUFFER_SIZE]; volatile ring_t tx3_ring; static uint8_t tx3_ring_buf[BUFFER_SIZE]; volatile ring_t rx1_ring; static uint8_t rx1_ring_buf[BUFFER_SIZE]; volatile ring_t tx1_ring; static uint8_t tx1_ring_buf[BUFFER_SIZE]; #define TX1 GPIO9 #define TX1_PORT GPIOA #define RX1 GPIO10 #define RX1_PORT GPIOA #define TX3 GPIO10 #define TX3_PORT GPIOC #define RX3 GPIO11 #define RX3_PORT GPIOC void usart3_isr (void) { uint8_t data; /* Check if we were called because of RXNE. */ if (((USART_CR1 (USART3) & USART_CR1_RXNEIE) != 0) && ((USART_SR (USART3) & USART_SR_RXNE) != 0)) { /* Retrieve the data from the peripheral. */ data = usart_recv (USART3); ring_write_byte (&rx3_ring, data); //usart6_queue(data); } /* Check if we were called because of TXE. */ if (((USART_CR1 (USART3) & USART_CR1_TXEIE) != 0) && ((USART_SR (USART3) & USART_SR_TXE) != 0)) { if (ring_read_byte (&tx3_ring, &data)) { /*No more data, Disable the TXE interrupt, it's no longer needed. */ usart_disable_tx_interrupt (USART3); } else usart_send_blocking (USART3, data); } } void usart3_queue (uint8_t d) { ring_write_byte (&tx3_ring, d); usart_enable_tx_interrupt (USART3); } void usart3_drain (void) { while (!ring_empty (&tx3_ring)); } int usart3_write (char *ptr, int len, int blocking) { int ret; ret = ring_write (&tx3_ring, (uint8_t *) ptr, len, blocking); usart_enable_tx_interrupt (USART3); return ret; } void usart1_isr (void) { uint8_t data; /* Check if we were called because of RXNE. */ if (((USART_CR1 (USART1) & USART_CR1_RXNEIE) != 0) && ((USART_SR (USART1) & USART_SR_RXNE) != 0)) { /* Retrieve the data from the peripheral. */ data = usart_recv (USART1); ring_write_byte (&rx1_ring, data); } /* Check if we were called because of TXE. */ if (((USART_CR1 (USART1) & USART_CR1_TXEIE) != 0) && ((USART_SR (USART1) & USART_SR_TXE) != 0)) { if (ring_read_byte (&tx1_ring, &data)) { /*No more data, Disable the TXE interrupt, it's no longer needed. */ usart_disable_tx_interrupt (USART1); } else usart_send_blocking (USART1, data); } } void usart1_queue (uint8_t d) { ring_write_byte (&tx1_ring, d); usart_enable_tx_interrupt (USART1); } void usart1_drain (void) { while (!ring_empty (&tx1_ring)); } int usart1_write (char *ptr, int len, int blocking) { int ret; ret = ring_write (&tx1_ring, (uint8_t *) ptr, len, blocking); usart_enable_tx_interrupt (USART1); return ret; } void usart_init (void) { ring_init (&rx3_ring, rx3_ring_buf, sizeof (rx3_ring_buf)); ring_init (&tx3_ring, tx3_ring_buf, sizeof (tx3_ring_buf)); MAP_AF (TX3, GPIO_AF7); MAP_AF_PU (RX3, GPIO_AF7); usart_set_baudrate (USART3, 9600); usart_set_databits (USART3, 8); usart_set_stopbits (USART3, USART_STOPBITS_1); usart_set_parity (USART3, USART_PARITY_NONE); usart_set_flow_control (USART3, USART_FLOWCONTROL_NONE); usart_set_mode (USART3, USART_MODE_TX_RX); usart_enable_rx_interrupt (USART3); usart_enable (USART3); nvic_enable_irq (NVIC_USART3_IRQ); ring_init (&rx1_ring, rx1_ring_buf, sizeof (rx1_ring_buf)); ring_init (&tx1_ring, tx1_ring_buf, sizeof (tx1_ring_buf)); MAP_AF (TX1, GPIO_AF7); MAP_AF_PU (RX1, GPIO_AF7); usart_set_baudrate (USART1, 38400); usart_set_databits (USART1, 8); usart_set_stopbits (USART1, USART_STOPBITS_1); usart_set_parity (USART1, USART_PARITY_NONE); usart_set_flow_control (USART1, USART_FLOWCONTROL_NONE); usart_set_mode (USART1, USART_MODE_TX_RX); usart_enable_rx_interrupt (USART1); usart_enable (USART1); nvic_enable_irq (NVIC_USART1_IRQ); }