/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef CPU_ALL_H #define CPU_ALL_H #if defined(__arm__) || defined(__sparc__) #define WORDS_ALIGNED #endif /* some important defines: * * WORDS_ALIGNED : if defined, the host cpu can only make word aligned * memory accesses. * * WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #include "bswap.h" #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif /* NOTE: arm FPA is horrible as double 32 bit words are stored in big endian ! */ typedef union { float64 d; #if defined(WORDS_BIGENDIAN) \ || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) struct { uint32_t upper; uint32_t lower; } l; #else struct { uint32_t lower; uint32_t upper; } l; #endif uint64_t ll; } CPU_DoubleU; /* CPU memory access without any memory or io remapping */ /* * the generic syntax for the memory accesses is: * * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) * * store: st{type}{size}{endian}_{access_type}(ptr, val) * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): target cpu endianness or 8 bit access * r : reversed target cpu endianness (not implemented yet) * be : big endian (not implemented yet) * le : little endian (not implemented yet) * * access_type is: * raw : host memory access * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ static inline int ldub_p(void *ptr) { return *(uint8_t *)ptr; } static inline int ldsb_p(void *ptr) { return *(int8_t *)ptr; } static inline void stb_p(void *ptr, int v) { *(uint8_t *)ptr = v; } /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the kernel handles unaligned load/stores may give better results, but it is a system wide setting : bad */ #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) /* conservative code for little endian unaligned accesses */ static inline int lduw_le_p(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8); #endif } static inline int ldsw_le_p(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return (int16_t)val; #else uint8_t *p = ptr; return (int16_t)(p[0] | (p[1] << 8)); #endif } static inline int ldl_le_p(void *ptr) { #ifdef __powerpc__ int val; __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); return val; #else uint8_t *p = ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); #endif } static inline uint64_t ldq_le_p(void *ptr) { uint8_t *p = ptr; uint32_t v1, v2; v1 = ldl_le_p(p); v2 = ldl_le_p(p + 4); return v1 | ((uint64_t)v2 << 32); } static inline void stw_le_p(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; #endif } static inline void stl_le_p(void *ptr, int v) { #ifdef __powerpc__ __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); #else uint8_t *p = ptr; p[0] = v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; #endif } static inline void stq_le_p(void *ptr, uint64_t v) { uint8_t *p = ptr; stl_le_p(p, (uint32_t)v); stl_le_p(p + 4, v >> 32); } /* float access */ static inline float32 ldfl_le_p(void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_le_p(ptr); return u.f; } static inline void stfl_le_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_le_p(ptr, u.i); } static inline float64 ldfq_le_p(void *ptr) { CPU_DoubleU u; u.l.lower = ldl_le_p(ptr); u.l.upper = ldl_le_p(ptr + 4); return u.d; } static inline void stfq_le_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_le_p(ptr, u.l.lower); stl_le_p(ptr + 4, u.l.upper); } #else static inline int lduw_le_p(void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_le_p(void *ptr) { return *(int16_t *)ptr; } static inline int ldl_le_p(void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_le_p(void *ptr) { return *(uint64_t *)ptr; } static inline void stw_le_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_le_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_le_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_le_p(void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_le_p(void *ptr) { return *(float64 *)ptr; } static inline void stfl_le_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_le_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) static inline int lduw_be_p(void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return val; #else uint8_t *b = (uint8_t *) ptr; return ((b[0] << 8) | b[1]); #endif } static inline int ldsw_be_p(void *ptr) { #if defined(__i386__) int val; asm volatile ("movzwl %1, %0\n" "xchgb %b0, %h0\n" : "=q" (val) : "m" (*(uint16_t *)ptr)); return (int16_t)val; #else uint8_t *b = (uint8_t *) ptr; return (int16_t)((b[0] << 8) | b[1]); #endif } static inline int ldl_be_p(void *ptr) { #if defined(__i386__) || defined(__x86_64__) int val; asm volatile ("movl %1, %0\n" "bswap %0\n" : "=r" (val) : "m" (*(uint32_t *)ptr)); return val; #else uint8_t *b = (uint8_t *) ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; #endif } static inline uint64_t ldq_be_p(void *ptr) { uint32_t a,b; a = ldl_be_p(ptr); b = ldl_be_p(ptr+4); return (((uint64_t)a<<32)|b); } static inline void stw_be_p(void *ptr, int v) { #if defined(__i386__) asm volatile ("xchgb %b0, %h0\n" "movw %w0, %1\n" : "=q" (v) : "m" (*(uint16_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 8; d[1] = v; #endif } static inline void stl_be_p(void *ptr, int v) { #if defined(__i386__) || defined(__x86_64__) asm volatile ("bswap %0\n" "movl %0, %1\n" : "=r" (v) : "m" (*(uint32_t *)ptr), "0" (v)); #else uint8_t *d = (uint8_t *) ptr; d[0] = v >> 24; d[1] = v >> 16; d[2] = v >> 8; d[3] = v; #endif } static inline void stq_be_p(void *ptr, uint64_t v) { stl_be_p(ptr, v >> 32); stl_be_p(ptr + 4, v); } /* float access */ static inline float32 ldfl_be_p(void *ptr) { union { float32 f; uint32_t i; } u; u.i = ldl_be_p(ptr); return u.f; } static inline void stfl_be_p(void *ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; stl_be_p(ptr, u.i); } static inline float64 ldfq_be_p(void *ptr) { CPU_DoubleU u; u.l.upper = ldl_be_p(ptr); u.l.lower = ldl_be_p(ptr + 4); return u.d; } static inline void stfq_be_p(void *ptr, float64 v) { CPU_DoubleU u; u.d = v; stl_be_p(ptr, u.l.upper); stl_be_p(ptr + 4, u.l.lower); } #else static inline int lduw_be_p(void *ptr) { return *(uint16_t *)ptr; } static inline int ldsw_be_p(void *ptr) { return *(int16_t *)ptr; } static inline int ldl_be_p(void *ptr) { return *(uint32_t *)ptr; } static inline uint64_t ldq_be_p(void *ptr) { return *(uint64_t *)ptr; } static inline void stw_be_p(void *ptr, int v) { *(uint16_t *)ptr = v; } static inline void stl_be_p(void *ptr, int v) { *(uint32_t *)ptr = v; } static inline void stq_be_p(void *ptr, uint64_t v) { *(uint64_t *)ptr = v; } /* float access */ static inline float32 ldfl_be_p(void *ptr) { return *(float32 *)ptr; } static inline float64 ldfq_be_p(void *ptr) { return *(float64 *)ptr; } static inline void stfl_be_p(void *ptr, float32 v) { *(float32 *)ptr = v; } static inline void stfq_be_p(void *ptr, float64 v) { *(float64 *)ptr = v; } #endif /* target CPU memory access functions */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define ldfl_p(p) ldfl_be_p(p) #define ldfq_p(p) ldfq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define stfl_p(p, v) stfl_be_p(p, v) #define stfq_p(p, v) stfq_be_p(p, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define ldfl_p(p) ldfl_le_p(p) #define ldfq_p(p) ldfq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define stfl_p(p, v) stfl_le_p(p, v) #define stfq_p(p, v) stfq_le_p(p, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ //#define GUEST_BASE 0x20000000 #define GUEST_BASE 0 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) #define h2g(x) ((target_ulong)(x - GUEST_BASE)) #define saddr(x) g2h(x) #define laddr(x) g2h(x) #else /* !CONFIG_USER_ONLY */ /* NOTE: we use double casts if pointers and target_ulong have different sizes */ #define saddr(x) (uint8_t *)(long)(x) #define laddr(x) (uint8_t *)(long)(x) #endif #define ldub_raw(p) ldub_p(laddr((p))) #define ldsb_raw(p) ldsb_p(laddr((p))) #define lduw_raw(p) lduw_p(laddr((p))) #define ldsw_raw(p) ldsw_p(laddr((p))) #define ldl_raw(p) ldl_p(laddr((p))) #define ldq_raw(p) ldq_p(laddr((p))) #define ldfl_raw(p) ldfl_p(laddr((p))) #define ldfq_raw(p) ldfq_p(laddr((p))) #define stb_raw(p, v) stb_p(saddr((p)), v) #define stw_raw(p, v) stw_p(saddr((p)), v) #define stl_raw(p, v) stl_p(saddr((p)), v) #define stq_raw(p, v) stq_p(saddr((p)), v) #define stfl_raw(p, v) stfl_p(saddr((p)), v) #define stfq_raw(p, v) stfq_p(saddr((p)), v) #if defined(CONFIG_USER_ONLY) /* if user mode, no other memory access functions */ #define ldub(p) ldub_raw(p) #define ldsb(p) ldsb_raw(p) #define lduw(p) lduw_raw(p) #define ldsw(p) ldsw_raw(p) #define ldl(p) ldl_raw(p) #define ldq(p) ldq_raw(p) #define ldfl(p) ldfl_raw(p) #define ldfq(p) ldfq_raw(p) #define stb(p, v) stb_raw(p, v) #define stw(p, v) stw_raw(p, v) #define stl(p, v) stl_raw(p, v) #define stq(p, v) stq_raw(p, v) #define stfl(p, v) stfl_raw(p, v) #define stfq(p, v) stfq_raw(p, v) #define ldub_code(p) ldub_raw(p) #define ldsb_code(p) ldsb_raw(p) #define lduw_code(p) lduw_raw(p) #define ldsw_code(p) ldsw_raw(p) #define ldl_code(p) ldl_raw(p) #define ldub_kernel(p) ldub_raw(p) #define ldsb_kernel(p) ldsb_raw(p) #define lduw_kernel(p) lduw_raw(p) #define ldsw_kernel(p) ldsw_raw(p) #define ldl_kernel(p) ldl_raw(p) #define ldfl_kernel(p) ldfl_raw(p) #define ldfq_kernel(p) ldfq_raw(p) #define stb_kernel(p, v) stb_raw(p, v) #define stw_kernel(p, v) stw_raw(p, v) #define stl_kernel(p, v) stl_raw(p, v) #define stq_kernel(p, v) stq_raw(p, v) #define stfl_kernel(p, v) stfl_raw(p, v) #define stfq_kernel(p, vt) stfq_raw(p, v) #endif /* defined(CONFIG_USER_ONLY) */ /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) /* ??? These should be the larger of unsigned long and target_ulong. */ extern unsigned long qemu_real_host_page_size; extern unsigned long qemu_host_page_bits; extern unsigned long qemu_host_page_size; extern unsigned long qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 void page_dump(FILE *f); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); void page_unprotect_range(target_ulong data, target_ulong data_size); #ifdef CONFIG_DM #define SINGLE_CPU_DEFINES #endif #ifdef SINGLE_CPU_DEFINES #if defined(TARGET_I386) #define CPUState CPUX86State #define cpu_init cpu_x86_init #define cpu_exec cpu_x86_exec #define cpu_gen_code cpu_x86_gen_code #define cpu_signal_handler cpu_x86_signal_handler #elif defined(TARGET_ARM) #define CPUState CPUARMState #define cpu_init cpu_arm_init #define cpu_exec cpu_arm_exec #define cpu_gen_code cpu_arm_gen_code #define cpu_signal_handler cpu_arm_signal_handler #elif defined(TARGET_SPARC) #define CPUState CPUSPARCState #define cpu_init cpu_sparc_init #define cpu_exec cpu_sparc_exec #define cpu_gen_code cpu_sparc_gen_code #define cpu_signal_handler cpu_sparc_signal_handler #elif defined(TARGET_PPC) #define CPUState CPUPPCState #define cpu_init cpu_ppc_init #define cpu_exec cpu_ppc_exec #define cpu_gen_code cpu_ppc_gen_code #define cpu_signal_handler cpu_ppc_signal_handler #elif defined(TARGET_MIPS) #define CPUState CPUMIPSState #define cpu_init cpu_mips_init #define cpu_exec cpu_mips_exec #define cpu_gen_code cpu_mips_gen_code #define cpu_signal_handler cpu_mips_signal_handler #elif defined(TARGET_SH4) #define CPUState CPUSH4State #define cpu_init cpu_sh4_init #define cpu_exec cpu_sh4_exec #define cpu_gen_code cpu_sh4_gen_code #define cpu_signal_handler cpu_sh4_signal_handler #else #error unsupported target CPU #endif #else /* SINGLE_CPU_DEFINES */ #define CPUState CPUX86State #define cpu_init cpu_x86_init int main_loop(void); #endif /* SINGLE_CPU_DEFINES */ void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags); void cpu_abort(CPUState *env, const char *fmt, ...); extern CPUState *first_cpu; extern CPUState *cpu_single_env; extern int code_copy_enabled; #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */ #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */ #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */ #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */ void cpu_interrupt(CPUState *s, int mask); void cpu_reset_interrupt(CPUState *env, int mask); int cpu_breakpoint_insert(CPUState *env, target_ulong pc); int cpu_breakpoint_remove(CPUState *env, target_ulong pc); void cpu_single_step(CPUState *env, int enabled); void cpu_reset(CPUState *s); /* Return the physical page corresponding to a virtual one. Use it only for debugging because no protection checks are done. Return -1 if no page found. */ target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr); #define CPU_LOG_TB_OUT_ASM (1 << 0) #define CPU_LOG_TB_IN_ASM (1 << 1) #define CPU_LOG_TB_OP (1 << 2) #define CPU_LOG_TB_OP_OPT (1 << 3) #define CPU_LOG_INT (1 << 4) #define CPU_LOG_EXEC (1 << 5) #define CPU_LOG_PCALL (1 << 6) #define CPU_LOG_IOPORT (1 << 7) #define CPU_LOG_TB_CPU (1 << 8) /* define log items */ typedef struct CPULogItem { int mask; const char *name; const char *help; } CPULogItem; extern CPULogItem cpu_log_items[]; void cpu_set_log(int log_flags); void cpu_set_log_filename(const char *filename); int cpu_str_to_log_mask(const char *str); /* IO ports API */ /* NOTE: as these functions may be even used when there is an isa brige on non x86 targets, we always defined them */ #ifndef NO_CPU_IO_DEFS void cpu_outb(CPUState *env, int addr, int val); void cpu_outw(CPUState *env, int addr, int val); void cpu_outl(CPUState *env, int addr, int val); int cpu_inb(CPUState *env, int addr); int cpu_inw(CPUState *env, int addr); int cpu_inl(CPUState *env, int addr); #endif #if defined(__i386__) || defined(__x86_64__) static __inline__ void atomic_set_bit(long nr, volatile void *addr) { __asm__ __volatile__( "lock ; bts %1,%0" :"=m" (*(volatile long *)addr) :"dIr" (nr)); } static __inline__ void atomic_clear_bit(long nr, volatile void *addr) { __asm__ __volatile__( "lock ; btr %1,%0" :"=m" (*(volatile long *)addr) :"dIr" (nr)); } #elif defined(__ia64__) #include "ia64_intrinsic.h" #define atomic_set_bit(nr, addr) ({ \ typeof(*addr) bit, old, new; \ volatile typeof(*addr) *m; \ \ m = (volatile typeof(*addr)*)(addr + nr / (8*sizeof(*addr))); \ bit = 1 << (nr % (8*sizeof(*addr))); \ do { \ old = *m; \ new = old | bit; \ } while (cmpxchg_acq(m, old, new) != old); \ }) #define atomic_clear_bit(nr, addr) ({ \ typeof(*addr) bit, old, new; \ volatile typeof(*addr) *m; \ \ m = (volatile typeof(*addr)*)(addr + nr / (8*sizeof(*addr))); \ bit = ~(1 << (nr % (8*sizeof(*addr)))); \ do { \ old = *m; \ new = old & bit; \ } while (cmpxchg_acq(m, old, new) != old); \ }) #endif /* memory API */ extern uint64_t phys_ram_size; extern int phys_ram_fd; extern uint8_t *phys_ram_base; extern uint8_t *phys_ram_dirty; /* physical memory access */ #define TLB_INVALID_MASK (1 << 3) #define IO_MEM_SHIFT 4 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT)) #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */ /* acts like a ROM when read and like a device when written. As an exception, the write memory callback gets the ram offset instead of the physical address */ #define IO_MEM_ROMD (1) typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); void cpu_register_physical_memory(target_phys_addr_t start_addr, unsigned long size, unsigned long phys_offset); int cpu_register_io_memory(int io_index, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write, void *opaque); CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index); CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index); void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, int len, int is_write); static inline void cpu_physical_memory_read(target_phys_addr_t addr, uint8_t *buf, int len) { cpu_physical_memory_rw(addr, buf, len, 0); } static inline void cpu_physical_memory_write(target_phys_addr_t addr, const uint8_t *buf, int len) { cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1); } uint32_t ldub_phys(target_phys_addr_t addr); uint32_t lduw_phys(target_phys_addr_t addr); uint32_t ldl_phys(target_phys_addr_t addr); uint64_t ldq_phys(target_phys_addr_t addr); void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); void stb_phys(target_phys_addr_t addr, uint32_t val); void stw_phys(target_phys_addr_t addr, uint32_t val); void stl_phys(target_phys_addr_t addr, uint32_t val); void stq_phys(target_phys_addr_t addr, uint64_t val); void cpu_physical_memory_write_rom(target_phys_addr_t addr, const uint8_t *buf, int len); int cpu_memory_rw_debug(CPUState *env, target_ulong addr, uint8_t *buf, int len, int is_write); #define VGA_DIRTY_FLAG 0x01 #define CODE_DIRTY_FLAG 0x02 /* read dirty bit (return 0 or 1) */ static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) { return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff; } static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, int dirty_flags) { return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; } static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) { phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff; } void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, int dirty_flags); void cpu_tlb_update_dirty(CPUState *env); void dump_exec_info(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)); /*******************************************/ /* host CPU ticks (if available) */ #if defined(__powerpc__) static inline uint32_t get_tbl(void) { uint32_t tbl; asm volatile("mftb %0" : "=r" (tbl)); return tbl; } static inline uint32_t get_tbu(void) { uint32_t tbl; asm volatile("mftbu %0" : "=r" (tbl)); return tbl; } static inline int64_t cpu_get_real_ticks(void) { uint32_t l, h, h1; /* NOTE: we test if wrapping has occurred */ do { h = get_tbu(); l = get_tbl(); h1 = get_tbu(); } while (h != h1); return ((int64_t)h << 32) | l; } #elif defined(__i386__) static inline int64_t cpu_get_real_ticks(void) { int64_t val; asm volatile ("rdtsc" : "=A" (val)); return val; } #elif defined(__x86_64__) static inline int64_t cpu_get_real_ticks(void) { uint32_t low,high; int64_t val; asm volatile("rdtsc" : "=a" (low), "=d" (high)); val = high; val <<= 32; val |= low; return val; } #elif defined(__ia64) static inline int64_t cpu_get_real_ticks(void) { int64_t val; asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory"); return val; } #elif defined(__s390__) static inline int64_t cpu_get_real_ticks(void) { int64_t val; asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc"); return val; } #elif defined(__sparc_v9__) static inline int64_t cpu_get_real_ticks (void) { #if defined(_LP64) uint64_t rval; asm volatile("rd %%tick,%0" : "=r"(rval)); return rval; #else union { uint64_t i64; struct { uint32_t high; uint32_t low; } i32; } rval; asm volatile("rd %%tick,%1; srlx %1,32,%0" : "=r"(rval.i32.high), "=r"(rval.i32.low)); return rval.i64; #endif } #endif /* profiling */ #ifdef CONFIG_PROFILER static inline int64_t profile_getclock(void) { return cpu_get_real_ticks(); } extern int64_t kqemu_time, kqemu_time_start; extern int64_t qemu_time, qemu_time_start; extern int64_t tlb_flush_time; extern int64_t kqemu_exec_count; extern int64_t dev_time; extern int64_t kqemu_ret_int_count; extern int64_t kqemu_ret_excp_count; extern int64_t kqemu_ret_intr_count; #endif #endif /* CPU_ALL_H */ 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/*
* GPIO Button Hotplug driver
*
* Copyright (C) 2012 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2008-2010 Gabor Juhos <juhosg@openwrt.org>
*
* Based on the diag.c - GPIO interface driver for Broadcom boards
* Copyright (C) 2006 Mike Baker <mbm@openwrt.org>,
* Copyright (C) 2006-2007 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2008 Andy Boyett <agb@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/kobject.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/gpio_keys.h>
#define DRV_NAME "gpio-keys"
#define BH_SKB_SIZE 2048
#define PFX DRV_NAME ": "
#undef BH_DEBUG
#ifdef BH_DEBUG
#define BH_DBG(fmt, args...) printk(KERN_DEBUG "%s: " fmt, DRV_NAME, ##args )
#else
#define BH_DBG(fmt, args...) do {} while (0)
#endif
#define BH_ERR(fmt, args...) printk(KERN_ERR "%s: " fmt, DRV_NAME, ##args )
struct bh_priv {
unsigned long seen;
};
struct bh_event {
const char *name;
unsigned int type;
char *action;
unsigned long seen;
struct sk_buff *skb;
struct work_struct work;
};
struct bh_map {
unsigned int code;
const char *name;
};
struct gpio_keys_button_data {
struct delayed_work work;
struct bh_priv bh;
int last_state;
int count;
int threshold;
int can_sleep;
struct gpio_keys_button *b;
};
extern u64 uevent_next_seqnum(void);
#define BH_MAP(_code, _name) \
{ \
.code = (_code), \
.name = (_name), \
}
static struct bh_map button_map[] = {
BH_MAP(BTN_0, "BTN_0"),
BH_MAP(BTN_1, "BTN_1"),
BH_MAP(BTN_2, "BTN_2"),
BH_MAP(BTN_3, "BTN_3"),
BH_MAP(BTN_4, "BTN_4"),
BH_MAP(BTN_5, "BTN_5"),
BH_MAP(BTN_6, "BTN_6"),
BH_MAP(BTN_7, "BTN_7"),
BH_MAP(BTN_8, "BTN_8"),
BH_MAP(BTN_9, "BTN_9"),
BH_MAP(KEY_BRIGHTNESS_ZERO, "brightness_zero"),
BH_MAP(KEY_CONFIG, "config"),
BH_MAP(KEY_COPY, "copy"),
BH_MAP(KEY_EJECTCD, "eject"),
BH_MAP(KEY_HELP, "help"),
BH_MAP(KEY_LIGHTS_TOGGLE, "lights_toggle"),
BH_MAP(KEY_PHONE, "phone"),
BH_MAP(KEY_POWER, "power"),
BH_MAP(KEY_RESTART, "reset"),
BH_MAP(KEY_RFKILL, "rfkill"),
BH_MAP(KEY_VIDEO, "video"),
BH_MAP(KEY_WIMAX, "wwan"),
BH_MAP(KEY_WLAN, "wlan"),
BH_MAP(KEY_WPS_BUTTON, "wps"),
};
/* -------------------------------------------------------------------------*/
static __printf(3, 4)
int bh_event_add_var(struct bh_event *event, int argv, const char *format, ...)
{
static char buf[128];
char *s;
va_list args;
int len;
if (argv)
return 0;
va_start(args, format);
len = vsnprintf(buf, sizeof(buf), format, args);
va_end(args);
if (len >= sizeof(buf)) {
WARN(1, "buffer size too small");
return -ENOMEM;
}
s = skb_put(event->skb, len + 1);
strcpy(s, buf);
BH_DBG("added variable '%s'\n", s);
return 0;
}
static int button_hotplug_fill_event(struct bh_event *event)
{
int ret;
ret = bh_event_add_var(event, 0, "HOME=%s", "/");
if (ret)
return ret;
ret = bh_event_add_var(event, 0, "PATH=%s",
"/sbin:/bin:/usr/sbin:/usr/bin");
if (ret)
return ret;
ret = bh_event_add_var(event, 0, "SUBSYSTEM=%s", "button");
if (ret)
return ret;
ret = bh_event_add_var(event, 0, "ACTION=%s", event->action);
if (ret)
return ret;
ret = bh_event_add_var(event, 0, "BUTTON=%s", event->name);
if (ret)
return ret;
if (event->type == EV_SW) {
ret = bh_event_add_var(event, 0, "TYPE=%s", "switch");
if (ret)
return ret;
}
ret = bh_event_add_var(event, 0, "SEEN=%ld", event->seen);
if (ret)
return ret;
ret = bh_event_add_var(event, 0, "SEQNUM=%llu", uevent_next_seqnum());
return ret;
}
static void button_hotplug_work(struct work_struct *work)
{
struct bh_event *event = container_of(work, struct bh_event, work);
int ret = 0;
event->skb = alloc_skb(BH_SKB_SIZE, GFP_KERNEL);
if (!event->skb)
goto out_free_event;
ret = bh_event_add_var(event, 0, "%s@", event->action);
if (ret)
goto out_free_skb;
ret = button_hotplug_fill_event(event);
if (ret)
goto out_free_skb;
NETLINK_CB(event->skb).dst_group = 1;
broadcast_uevent(event->skb, 0, 1, GFP_KERNEL);
out_free_skb:
if (ret) {
BH_ERR("work error %d\n", ret);
kfree_skb(event->skb);
}
out_free_event:
kfree(event);
}
static int button_hotplug_create_event(const char *name, unsigned int type,
unsigned long seen, int pressed)
{
struct bh_event *event;
BH_DBG("create event, name=%s, seen=%lu, pressed=%d\n",
name, seen, pressed);
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
event->name = name;
event->type = type;
event->seen = seen;
event->action = pressed ? "pressed" : "released";
INIT_WORK(&event->work, (void *)(void *)button_hotplug_work);
schedule_work(&event->work);
return 0;
}
/* -------------------------------------------------------------------------*/
static int button_get_index(unsigned int code)
{
int i;
for (i = 0; i < ARRAY_SIZE(button_map); i++)
if (button_map[i].code == code)
return i;
return -1;
}
static void button_hotplug_event(struct gpio_keys_button_data *data,
unsigned int type, int value)
{
struct bh_priv *priv = &data->bh;
unsigned long seen = jiffies;
int btn;
BH_DBG("event type=%u, code=%u, value=%d\n", type, data->b->code, value);
if ((type != EV_KEY) && (type != EV_SW))
return;
btn = button_get_index(data->b->code);
if (btn < 0)
return;
button_hotplug_create_event(button_map[btn].name, type,
(seen - priv->seen) / HZ, value);
priv->seen = seen;
}
struct gpio_keys_button_dev {
int polled;
struct delayed_work work;
struct device *dev;
struct gpio_keys_platform_data *pdata;
struct gpio_keys_button_data data[0];
};
static int gpio_button_get_value(struct gpio_keys_button_data *bdata)
{
int val;
if (bdata->can_sleep)
val = !!gpio_get_value_cansleep(bdata->b->gpio);
else
val = !!gpio_get_value(bdata->b->gpio);
return val ^ bdata->b->active_low;
}
static void gpio_keys_polled_check_state(struct gpio_keys_button_data *bdata)
{
int state = gpio_button_get_value(bdata);
if (state != bdata->last_state) {
unsigned int type = bdata->b->type ?: EV_KEY;
if (bdata->count < bdata->threshold) {
bdata->count++;
return;
}
if ((bdata->last_state != -1) || (type == EV_SW))
button_hotplug_event(bdata, type, state);
bdata->last_state = state;
}
bdata->count = 0;
}
static void gpio_keys_polled_queue_work(struct gpio_keys_button_dev *bdev)
{
struct gpio_keys_platform_data *pdata = bdev->pdata;
unsigned long delay = msecs_to_jiffies(pdata->poll_interval);
if (delay >= HZ)
delay = round_jiffies_relative(delay);
schedule_delayed_work(&bdev->work, delay);
}
static void gpio_keys_polled_poll(struct work_struct *work)
{
struct gpio_keys_button_dev *bdev =
container_of(work, struct gpio_keys_button_dev, work.work);
int i;
for (i = 0; i < bdev->pdata->nbuttons; i++) {
struct gpio_keys_button_data *bdata = &bdev->data[i];
gpio_keys_polled_check_state(bdata);
}
gpio_keys_polled_queue_work(bdev);
}
static void gpio_keys_polled_close(struct gpio_keys_button_dev *bdev)
{
struct gpio_keys_platform_data *pdata = bdev->pdata;
cancel_delayed_work_sync(&bdev->work);
if (pdata->disable)
pdata->disable(bdev->dev);
}
static irqreturn_t button_handle_irq(int irq, void *_bdata)
{
struct gpio_keys_button_data *bdata = (struct gpio_keys_button_data *) _bdata;
button_hotplug_event(bdata, bdata->b->type ?: EV_KEY, gpio_button_get_value(bdata));
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static struct gpio_keys_platform_data *
gpio_keys_get_devtree_pdata(struct device *dev)
{
struct device_node *node, *pp;
struct gpio_keys_platform_data *pdata;
struct gpio_keys_button *button;
int error;
int nbuttons;
int i = 0;
node = dev->of_node;
if (!node)
return NULL;
nbuttons = of_get_child_count(node);
if (nbuttons == 0)
return NULL;
pdata = devm_kzalloc(dev, sizeof(*pdata) + nbuttons * (sizeof *button),
GFP_KERNEL);
if (!pdata) {
error = -ENOMEM;
goto err_out;
}
pdata->buttons = (struct gpio_keys_button *)(pdata + 1);
pdata->nbuttons = nbuttons;
pdata->rep = !!of_get_property(node, "autorepeat", NULL);
of_property_read_u32(node, "poll-interval", &pdata->poll_interval);
for_each_child_of_node(node, pp) {
enum of_gpio_flags flags;
if (!of_find_property(pp, "gpios", NULL)) {
pdata->nbuttons--;
dev_warn(dev, "Found button without gpios\n");
continue;
}
button = &pdata->buttons[i++];
button->gpio = of_get_gpio_flags(pp, 0, &flags);
if (button->gpio < 0) {
error = button->gpio;
if (error != -ENOENT) {
if (error != -EPROBE_DEFER)
dev_err(dev,
"Failed to get gpio flags, error: %d\n",
error);
return ERR_PTR(error);
}
} else {
button->active_low = flags & OF_GPIO_ACTIVE_LOW;
}
if (of_property_read_u32(pp, "linux,code", &button->code)) {
dev_err(dev, "Button without keycode: 0x%x\n",
button->gpio);
error = -EINVAL;
goto err_out;
}
button->desc = of_get_property(pp, "label", NULL);
if (of_property_read_u32(pp, "linux,input-type", &button->type))
button->type = EV_KEY;
button->wakeup = !!of_get_property(pp, "gpio-key,wakeup", NULL);
if (of_property_read_u32(pp, "debounce-interval",
&button->debounce_interval))
button->debounce_interval = 5;
}
if (pdata->nbuttons == 0) {
error = -EINVAL;
goto err_out;
}
return pdata;
err_out:
return ERR_PTR(error);
}
static struct of_device_id gpio_keys_of_match[] = {
{ .compatible = "gpio-keys", },
{ },
};
MODULE_DEVICE_TABLE(of, gpio_keys_of_match);
static struct of_device_id gpio_keys_polled_of_match[] = {
{ .compatible = "gpio-keys-polled", },
{ },
};
MODULE_DEVICE_TABLE(of, gpio_keys_polled_of_match);
#else
static inline struct gpio_keys_platform_data *
gpio_keys_get_devtree_pdata(struct device *dev)
{
return NULL;
}
#endif
static int gpio_keys_button_probe(struct platform_device *pdev,
struct gpio_keys_button_dev **_bdev, int polled)
{
struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct gpio_keys_button_dev *bdev;
struct gpio_keys_button *buttons;
int error;
int i;
if (!pdata) {
pdata = gpio_keys_get_devtree_pdata(dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (!pdata) {
dev_err(dev, "missing platform data\n");
return -EINVAL;
}
}
if (polled && !pdata->poll_interval) {
dev_err(dev, "missing poll_interval value\n");
return -EINVAL;
}
buttons = devm_kzalloc(dev, pdata->nbuttons * sizeof(struct gpio_keys_button),
GFP_KERNEL);
if (!buttons) {
dev_err(dev, "no memory for button data\n");
return -ENOMEM;
}
memcpy(buttons, pdata->buttons, pdata->nbuttons * sizeof(struct gpio_keys_button));
bdev = devm_kzalloc(dev, sizeof(struct gpio_keys_button_dev) +
pdata->nbuttons * sizeof(struct gpio_keys_button_data),
GFP_KERNEL);
if (!bdev) {
dev_err(dev, "no memory for private data\n");
return -ENOMEM;
}
bdev->polled = polled;
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_keys_button *button = &buttons[i];
struct gpio_keys_button_data *bdata = &bdev->data[i];
unsigned int gpio = button->gpio;
if (button->wakeup) {
dev_err(dev, DRV_NAME "does not support wakeup\n");
return -EINVAL;
}
error = devm_gpio_request(dev, gpio,
button->desc ? button->desc : DRV_NAME);
if (error) {
dev_err(dev, "unable to claim gpio %u, err=%d\n",
gpio, error);
return error;
}
error = gpio_direction_input(gpio);
if (error) {
dev_err(dev,
"unable to set direction on gpio %u, err=%d\n",
gpio, error);
return error;
}
bdata->can_sleep = gpio_cansleep(gpio);
bdata->last_state = -1;
if (bdev->polled)
bdata->threshold = DIV_ROUND_UP(button->debounce_interval,
pdata->poll_interval);
else
bdata->threshold = 1;
bdata->b = &pdata->buttons[i];
}
bdev->dev = &pdev->dev;
bdev->pdata = pdata;
platform_set_drvdata(pdev, bdev);
*_bdev = bdev;
return 0;
}
static int gpio_keys_probe(struct platform_device *pdev)
{
struct gpio_keys_platform_data *pdata;
struct gpio_keys_button_dev *bdev;
int ret, i;
ret = gpio_keys_button_probe(pdev, &bdev, 0);
if (ret)
return ret;
pdata = bdev->pdata;
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_keys_button *button = &pdata->buttons[i];
struct gpio_keys_button_data *bdata = &bdev->data[i];
if (!button->irq)
button->irq = gpio_to_irq(button->gpio);
if (button->irq < 0) {
dev_err(&pdev->dev, "failed to get irq for gpio:%d\n", button->gpio);
continue;
}
ret = devm_request_threaded_irq(&pdev->dev, button->irq, NULL, button_handle_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(&pdev->dev), bdata);
if (ret < 0)
dev_err(&pdev->dev, "failed to request irq:%d for gpio:%d\n", button->irq, button->gpio);
else
dev_dbg(&pdev->dev, "gpio:%d has irq:%d\n", button->gpio, button->irq);
if (bdata->b->type == EV_SW)
button_hotplug_event(bdata, EV_SW, gpio_button_get_value(bdata));
}
return 0;
}
static int gpio_keys_polled_probe(struct platform_device *pdev)
{
struct gpio_keys_platform_data *pdata;
struct gpio_keys_button_dev *bdev;
int ret;
int i;
ret = gpio_keys_button_probe(pdev, &bdev, 1);
if (ret)
return ret;
INIT_DELAYED_WORK(&bdev->work, gpio_keys_polled_poll);
pdata = bdev->pdata;
if (pdata->enable)
pdata->enable(bdev->dev);
for (i = 0; i < pdata->nbuttons; i++)
gpio_keys_polled_check_state(&bdev->data[i]);
gpio_keys_polled_queue_work(bdev);
return ret;
}
static int gpio_keys_remove(struct platform_device *pdev)
{
struct gpio_keys_button_dev *bdev = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (bdev->polled)
gpio_keys_polled_close(bdev);
return 0;
}
static struct platform_driver gpio_keys_driver = {
.probe = gpio_keys_probe,
.remove = gpio_keys_remove,
.driver = {
.name = "gpio-keys",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(gpio_keys_of_match),
},
};
static struct platform_driver gpio_keys_polled_driver = {
.probe = gpio_keys_polled_probe,
.remove = gpio_keys_remove,
.driver = {
.name = "gpio-keys-polled",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(gpio_keys_polled_of_match),
},
};
static int __init gpio_button_init(void)
{
int ret;
ret = platform_driver_register(&gpio_keys_driver);
if (ret)
return ret;
ret = platform_driver_register(&gpio_keys_polled_driver);
if (ret)
platform_driver_unregister(&gpio_keys_driver);
return ret;
}
static void __exit gpio_button_exit(void)
{
platform_driver_unregister(&gpio_keys_driver);
platform_driver_unregister(&gpio_keys_polled_driver);
}
module_init(gpio_button_init);
module_exit(gpio_button_exit);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_AUTHOR("Felix Fietkau <nbd@nbd.name>");
MODULE_DESCRIPTION("Polled GPIO Buttons hotplug driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRV_NAME);