/* * utility.c - misc functions for cpufreq driver and Px statistic * * Copyright (C) 2001 Russell King * (C) 2002 - 2003 Dominik Brodowski * * Oct 2005 - Ashok Raj * Added handling for CPU hotplug * Feb 2006 - Jacob Shin * Fix handling for CPU hotplug -- affected CPUs * Feb 2008 - Liu Jinsong * 1. Merge cpufreq.c and freq_table.c of linux 2.6.23 * And poring to Xen hypervisor * 2. some Px statistic interface funcdtions * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include struct cpufreq_driver *cpufreq_driver; struct processor_pminfo *__read_mostly processor_pminfo[NR_CPUS]; struct cpufreq_policy *__read_mostly cpufreq_cpu_policy[NR_CPUS]; DEFINE_PER_CPU(spinlock_t, cpufreq_statistic_lock) = SPIN_LOCK_UNLOCKED; /********************************************************************* * Px STATISTIC INFO * *********************************************************************/ void cpufreq_residency_update(unsigned int cpu, uint8_t state) { uint64_t now, total_idle_ns; int64_t delta; struct pm_px *pxpt = cpufreq_statistic_data[cpu]; total_idle_ns = get_cpu_idle_time(cpu); now = NOW(); delta = (now - pxpt->prev_state_wall) - (total_idle_ns - pxpt->prev_idle_wall); if ( likely(delta >= 0) ) pxpt->u.pt[state].residency += delta; pxpt->prev_state_wall = now; pxpt->prev_idle_wall = total_idle_ns; } void cpufreq_statistic_update(unsigned int cpu, uint8_t from, uint8_t to) { struct pm_px *pxpt; struct processor_pminfo *pmpt = processor_pminfo[cpu]; spinlock_t *cpufreq_statistic_lock = &per_cpu(cpufreq_statistic_lock, cpu); spin_lock(cpufreq_statistic_lock); pxpt = cpufreq_statistic_data[cpu]; if ( !pxpt || !pmpt ) { spin_unlock(cpufreq_statistic_lock); return; } pxpt->u.last = from; pxpt->u.cur = to; pxpt->u.pt[to].count++; cpufreq_residency_update(cpu, from); (*(pxpt->u.trans_pt + from * pmpt->perf.state_count + to))++; spin_unlock(cpufreq_statistic_lock); } int cpufreq_statistic_init(unsigned int cpuid) { uint32_t i, count; struct pm_px *pxpt; const struct processor_pminfo *pmpt = processor_pminfo[cpuid]; spinlock_t *cpufreq_statistic_lock = &per_cpu(cpufreq_statistic_lock, cpuid); if ( !pmpt ) return -EINVAL; spin_lock(cpufreq_statistic_lock); pxpt = cpufreq_statistic_data[cpuid]; if ( pxpt ) { spin_unlock(cpufreq_statistic_lock); return 0; } count = pmpt->perf.state_count; pxpt = xmalloc(struct pm_px); if ( !pxpt ) { spin_unlock(cpufreq_statistic_lock); return -ENOMEM; } memset(pxpt, 0, sizeof(*pxpt)); cpufreq_statistic_data[cpuid] = pxpt; pxpt->u.trans_pt = xmalloc_array(uint64_t, count * count); if (!pxpt->u.trans_pt) { xfree(pxpt); spin_unlock(cpufreq_statistic_lock); return -ENOMEM; } pxpt->u.pt = xmalloc_array(struct pm_px_val, count); if (!pxpt->u.pt) { xfree(pxpt->u.trans_pt); xfree(pxpt); spin_unlock(cpufreq_statistic_lock); return -ENOMEM; } memset(pxpt->u.trans_pt, 0, count * count * (sizeof(uint64_t))); memset(pxpt->u.pt, 0, count * (sizeof(struct pm_px_val))); pxpt->u.total = pmpt->perf.state_count; pxpt->u.usable = pmpt->perf.state_count - pmpt->perf.platform_limit; for (i=0; i < pmpt->perf.state_count; i++) pxpt->u.pt[i].freq = pmpt->perf.states[i].core_frequency; pxpt->prev_state_wall = NOW(); pxpt->prev_idle_wall = get_cpu_idle_time(cpuid); spin_unlock(cpufreq_statistic_lock); return 0; } void cpufreq_statistic_exit(unsigned int cpuid) { struct pm_px *pxpt; spinlock_t *cpufreq_statistic_lock = &per_cpu(cpufreq_statistic_lock, cpuid); spin_lock(cpufreq_statistic_lock); pxpt = cpufreq_statistic_data[cpuid]; if (!pxpt) { spin_unlock(cpufreq_statistic_lock); return; } xfree(pxpt->u.trans_pt); xfree(pxpt->u.pt); xfree(pxpt); cpufreq_statistic_data[cpuid] = NULL; spin_unlock(cpufreq_statistic_lock); } void cpufreq_statistic_reset(unsigned int cpuid) { uint32_t i, j, count; struct pm_px *pxpt; const struct processor_pminfo *pmpt = processor_pminfo[cpuid]; spinlock_t *cpufreq_statistic_lock = &per_cpu(cpufreq_statistic_lock, cpuid); spin_lock(cpufreq_statistic_lock); pxpt = cpufreq_statistic_data[cpuid]; if ( !pmpt || !pxpt || !pxpt->u.pt || !pxpt->u.trans_pt ) { spin_unlock(cpufreq_statistic_lock); return; } count = pmpt->perf.state_count; for (i=0; i < count; i++) { pxpt->u.pt[i].residency = 0; pxpt->u.pt[i].count = 0; for (j=0; j < count; j++) *(pxpt->u.trans_pt + i*count + j) = 0; } pxpt->prev_state_wall = NOW(); pxpt->prev_idle_wall = get_cpu_idle_time(cpuid); spin_unlock(cpufreq_statistic_lock); } /********************************************************************* * FREQUENCY TABLE HELPERS * *********************************************************************/ int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table) { unsigned int min_freq = ~0; unsigned int max_freq = 0; unsigned int second_max_freq = 0; unsigned int i; for (i=0; (table[i].frequency != CPUFREQ_TABLE_END); i++) { unsigned int freq = table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; if (freq < min_freq) min_freq = freq; if (freq > max_freq) max_freq = freq; } for (i=0; (table[i].frequency != CPUFREQ_TABLE_END); i++) { unsigned int freq = table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID || freq == max_freq) continue; if (freq > second_max_freq) second_max_freq = freq; } if (second_max_freq == 0) second_max_freq = max_freq; if (cpufreq_verbose) printk("max_freq: %u second_max_freq: %u\n", max_freq, second_max_freq); policy->min = policy->cpuinfo.min_freq = min_freq; policy->max = policy->cpuinfo.max_freq = max_freq; policy->cpuinfo.second_max_freq = second_max_freq; if (policy->min == ~0) return -EINVAL; else return 0; } int cpufreq_frequency_table_verify(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table) { unsigned int next_larger = ~0; unsigned int i; unsigned int count = 0; if (!cpu_online(policy->cpu)) return -EINVAL; cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, policy->cpuinfo.max_freq); for (i=0; (table[i].frequency != CPUFREQ_TABLE_END); i++) { unsigned int freq = table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; if ((freq >= policy->min) && (freq <= policy->max)) count++; else if ((next_larger > freq) && (freq > policy->max)) next_larger = freq; } if (!count) policy->max = next_larger; cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, policy->cpuinfo.max_freq); return 0; } int cpufreq_frequency_table_target(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table, unsigned int target_freq, unsigned int relation, unsigned int *index) { struct cpufreq_frequency_table optimal = { .index = ~0, .frequency = 0, }; struct cpufreq_frequency_table suboptimal = { .index = ~0, .frequency = 0, }; unsigned int i; switch (relation) { case CPUFREQ_RELATION_H: suboptimal.frequency = ~0; break; case CPUFREQ_RELATION_L: optimal.frequency = ~0; break; } if (!cpu_online(policy->cpu)) return -EINVAL; for (i=0; (table[i].frequency != CPUFREQ_TABLE_END); i++) { unsigned int freq = table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; if ((freq < policy->min) || (freq > policy->max)) continue; switch(relation) { case CPUFREQ_RELATION_H: if (freq <= target_freq) { if (freq >= optimal.frequency) { optimal.frequency = freq; optimal.index = i; } } else { if (freq <= suboptimal.frequency) { suboptimal.frequency = freq; suboptimal.index = i; } } break; case CPUFREQ_RELATION_L: if (freq >= target_freq) { if (freq <= optimal.frequency) { optimal.frequency = freq; optimal.index = i; } } else { if (freq >= suboptimal.frequency) { suboptimal.frequency = freq; suboptimal.index = i; } } break; } } if (optimal.index > i) { if (suboptimal.index > i) return -EINVAL; *index = suboptimal.index; } else *index = optimal.index; return 0; } /********************************************************************* * GOVERNORS * *********************************************************************/ int __cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { int retval = -EINVAL; if (cpu_online(policy->cpu) && cpufreq_driver->target) { unsigned int prev_freq = policy->cur; retval = cpufreq_driver->target(policy, target_freq, relation); if ( retval == 0 ) TRACE_2D(TRC_PM_FREQ_CHANGE, prev_freq/1000, policy->cur/1000); } return retval; } int cpufreq_driver_getavg(unsigned int cpu, unsigned int flag) { struct cpufreq_policy *policy; int freq_avg; policy = cpufreq_cpu_policy[cpu]; if (!cpu_online(cpu) || !policy) return 0; if (cpufreq_driver->getavg) { freq_avg = cpufreq_driver->getavg(cpu, flag); if (freq_avg > 0) return freq_avg; } return policy->cur; } /********************************************************************* * POLICY * *********************************************************************/ /* * data : current policy. * policy : policy to be set. */ int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy) { int ret = 0; memcpy(&policy->cpuinfo, &data->cpuinfo, sizeof(struct cpufreq_cpuinfo)); if (policy->min > data->min && policy->min > policy->max) return -EINVAL; /* verify the cpu speed can be set within this limit */ ret = cpufreq_driver->verify(policy); if (ret) return ret; data->min = policy->min; data->max = policy->max; if (policy->governor != data->governor) { /* save old, working values */ struct cpufreq_governor *old_gov = data->governor; /* end old governor */ if (data->governor) __cpufreq_governor(data, CPUFREQ_GOV_STOP); /* start new governor */ data->governor = policy->governor; if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { printk(KERN_WARNING "Fail change to %s governor\n", data->governor->name); /* new governor failed, so re-start old one */ if (old_gov) { data->governor = old_gov; __cpufreq_governor(data, CPUFREQ_GOV_START); printk(KERN_WARNING "Still stay at %s governor\n", data->governor->name); } return -EINVAL; } /* might be a policy change, too, so fall through */ } return __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); } href='#n265'>265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 *  Button Hotplug driver
 *
 *  Copyright (C) 2008-2010 Gabor Juhos <juhosg@openwrt.org>
 *
 *  Based on the diag.c - GPIO interface driver for Broadcom boards
 *    Copyright (C) 2006 Mike Baker <mbm@openwrt.org>,
 *    Copyright (C) 2006-2007 Felix Fietkau <nbd@nbd.name>
 *    Copyright (C) 2008 Andy Boyett <agb@openwrt.org>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License version 2 as published
 *  by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kmod.h>
#include <linux/input.h>

#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/kobject.h>

#define DRV_NAME	"button-hotplug"
#define DRV_VERSION	"0.4.1"
#define DRV_DESC	"Button Hotplug driver"

#define BH_SKB_SIZE	2048

#define PFX	DRV_NAME ": "

#undef BH_DEBUG

#ifdef BH_DEBUG
#define BH_DBG(fmt, args...) printk(KERN_DEBUG "%s: " fmt, DRV_NAME, ##args )
#else
#define BH_DBG(fmt, args...) do {} while (0)
#endif

#define BH_ERR(fmt, args...) printk(KERN_ERR "%s: " fmt, DRV_NAME, ##args )

#ifndef BIT_MASK
#define BIT_MASK(nr)            (1UL << ((nr) % BITS_PER_LONG))
#endif

struct bh_priv {
	unsigned long		*seen;
	struct input_handle	handle;
};

struct bh_event {
	const char		*name;
	char			*action;
	unsigned long		seen;

	struct sk_buff		*skb;
	struct work_struct	work;
};

struct bh_map {
	unsigned int	code;
	const char	*name;
};

extern u64 uevent_next_seqnum(void);

#define BH_MAP(_code, _name)		\
	{				\
		.code = (_code),	\
		.name = (_name),	\
	}

static struct bh_map button_map[] = {
	BH_MAP(BTN_0,		"BTN_0"),
	BH_MAP(BTN_1,		"BTN_1"),
	BH_MAP(BTN_2,		"BTN_2"),
	BH_MAP(BTN_3,		"BTN_3"),
	BH_MAP(BTN_4,		"BTN_4"),
	BH_MAP(BTN_5,		"BTN_5"),
	BH_MAP(BTN_6,		"BTN_6"),
	BH_MAP(BTN_7,		"BTN_7"),
	BH_MAP(BTN_8,		"BTN_8"),
	BH_MAP(BTN_9,		"BTN_9"),
	BH_MAP(KEY_RESTART,	"reset"),
	BH_MAP(KEY_POWER,	"power"),
	BH_MAP(KEY_RFKILL,	"rfkill"),
	BH_MAP(KEY_WPS_BUTTON,	"wps"),
	BH_MAP(KEY_WIMAX,	"wwan"),
};

/* -------------------------------------------------------------------------*/

static int bh_event_add_var(struct bh_event *event, int argv,
		const char *format, ...)
{
	static char buf[128];
	char *s;
	va_list args;
	int len;

	if (argv)
		return 0;

	va_start(args, format);
	len = vsnprintf(buf, sizeof(buf), format, args);
	va_end(args);

	if (len >= sizeof(buf)) {
		BH_ERR("buffer size too small\n");
		WARN_ON(1);
		return -ENOMEM;
	}

	s = skb_put(event->skb, len + 1);
	strcpy(s, buf);

	BH_DBG("added variable '%s'\n", s);

	return 0;
}

static int button_hotplug_fill_event(struct bh_event *event)
{
	int ret;

	ret = bh_event_add_var(event, 0, "HOME=%s", "/");
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "PATH=%s",
					"/sbin:/bin:/usr/sbin:/usr/bin");
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "SUBSYSTEM=%s", "button");
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "ACTION=%s", event->action);
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "BUTTON=%s", event->name);
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "SEEN=%ld", event->seen);
	if (ret)
		return ret;

	ret = bh_event_add_var(event, 0, "SEQNUM=%llu", uevent_next_seqnum());

	return ret;
}

static void button_hotplug_work(struct work_struct *work)
{
	struct bh_event *event = container_of(work, struct bh_event, work);
	int ret = 0;

	event->skb = alloc_skb(BH_SKB_SIZE, GFP_KERNEL);
	if (!event->skb)
		goto out_free_event;

	ret = bh_event_add_var(event, 0, "%s@", event->action);
	if (ret)
		goto out_free_skb;

	ret = button_hotplug_fill_event(event);
	if (ret)
		goto out_free_skb;

	NETLINK_CB(event->skb).dst_group = 1;
	broadcast_uevent(event->skb, 0, 1, GFP_KERNEL);

 out_free_skb:
	if (ret) {
		BH_ERR("work error %d\n", ret);
		kfree_skb(event->skb);
	}
 out_free_event:
	kfree(event);
}

static int button_hotplug_create_event(const char *name, unsigned long seen,
		int pressed)
{
	struct bh_event *event;

	BH_DBG("create event, name=%s, seen=%lu, pressed=%d\n",
		name, seen, pressed);

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	event->name = name;
	event->seen = seen;
	event->action = pressed ? "pressed" : "released";

	INIT_WORK(&event->work, (void *)(void *)button_hotplug_work);
	schedule_work(&event->work);

	return 0;
}

/* -------------------------------------------------------------------------*/

static int button_get_index(unsigned int code)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(button_map); i++)
		if (button_map[i].code == code)
			return i;

	return -1;
}
static void button_hotplug_event(struct input_handle *handle,
			   unsigned int type, unsigned int code, int value)
{
	struct bh_priv *priv = handle->private;
	unsigned long seen = jiffies;
	int btn;

	BH_DBG("event type=%u, code=%u, value=%d\n", type, code, value);

	if (type != EV_KEY)
		return;

	btn = button_get_index(code);
	if (btn < 0)
		return;

	button_hotplug_create_event(button_map[btn].name,
			(seen - priv->seen[btn]) / HZ, value);
	priv->seen[btn] = seen;
}

static int button_hotplug_connect(struct input_handler *handler,
		struct input_dev *dev, const struct input_device_id *id)
{
	struct bh_priv *priv;
	int ret;
	int i;

	for (i = 0; i < ARRAY_SIZE(button_map); i++)
		if (test_bit(button_map[i].code, dev->keybit))
			break;

	if (i == ARRAY_SIZE(button_map))
		return -ENODEV;

	priv = kzalloc(sizeof(*priv) +
		       (sizeof(unsigned long) * ARRAY_SIZE(button_map)),
		       GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->seen = (unsigned long *) &priv[1];
	priv->handle.private = priv;
	priv->handle.dev = dev;
	priv->handle.handler = handler;
	priv->handle.name = DRV_NAME;

	ret = input_register_handle(&priv->handle);
	if (ret)
		goto err_free_priv;

	ret = input_open_device(&priv->handle);
	if (ret)
		goto err_unregister_handle;

	BH_DBG("connected to %s\n", dev->name);

	return 0;

 err_unregister_handle:
	input_unregister_handle(&priv->handle);

 err_free_priv:
	kfree(priv);
	return ret;
}

static void button_hotplug_disconnect(struct input_handle *handle)
{
	struct bh_priv *priv = handle->private;

	input_close_device(handle);
	input_unregister_handle(handle);

	kfree(priv);
}

static const struct input_device_id button_hotplug_ids[] = {
	{
                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
                .evbit = { BIT_MASK(EV_KEY) },
        },
	{
		/* Terminating entry */
	},
};

MODULE_DEVICE_TABLE(input, button_hotplug_ids);

static struct input_handler button_hotplug_handler = {
	.event =	button_hotplug_event,
	.connect =	button_hotplug_connect,
	.disconnect =	button_hotplug_disconnect,
	.name =		DRV_NAME,
	.id_table =	button_hotplug_ids,
};

/* -------------------------------------------------------------------------*/

static int __init button_hotplug_init(void)
{
	int ret;

	printk(KERN_INFO DRV_DESC " version " DRV_VERSION "\n");
	ret = input_register_handler(&button_hotplug_handler);
	if (ret)
		BH_ERR("unable to register input handler\n");

	return ret;
}
module_init(button_hotplug_init);

static void __exit button_hotplug_exit(void)
{
	input_unregister_handler(&button_hotplug_handler);
}
module_exit(button_hotplug_exit);

MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_LICENSE("GPL v2");