#define DEBG(x) #define DEBG1(x) /* inflate.c -- Not copyrighted 1992 by Mark Adler version c10p1, 10 January 1993 */ /* * Adapted for booting Linux by Hannu Savolainen 1993 * based on gzip-1.0.3 * * Nicolas Pitre , 1999/04/14 : * Little mods for all variable to reside either into rodata or bss segments * by marking constant variables with 'const' and initializing all the others * at run-time only. This allows for the kernel uncompressor to run * directly from Flash or ROM memory on embedded systems. */ /* Inflate deflated (PKZIP's method 8 compressed) data. The compression method searches for as much of the current string of bytes (up to a length of 258) in the previous 32 K bytes. If it doesn't find any matches (of at least length 3), it codes the next byte. Otherwise, it codes the length of the matched string and its distance backwards from the current position. There is a single Huffman code that codes both single bytes (called "literals") and match lengths. A second Huffman code codes the distance information, which follows a length code. Each length or distance code actually represents a base value and a number of "extra" (sometimes zero) bits to get to add to the base value. At the end of each deflated block is a special end-of-block (EOB) literal/ length code. The decoding process is basically: get a literal/length code; if EOB then done; if a literal, emit the decoded byte; if a length then get the distance and emit the referred-to bytes from the sliding window of previously emitted data. There are (currently) three kinds of inflate blocks: stored, fixed, and dynamic. The compressor deals with some chunk of data at a time, and decides which method to use on a chunk-by-chunk basis. A chunk might typically be 32 K or 64 K. If the chunk is incompressible, then the "stored" method is used. In this case, the bytes are simply stored as is, eight bits per byte, with none of the above coding. The bytes are preceded by a count, since there is no longer an EOB code. If the data is compressible, then either the fixed or dynamic methods are used. In the dynamic method, the compressed data is preceded by an encoding of the literal/length and distance Huffman codes that are to be used to decode this block. The representation is itself Huffman coded, and so is preceded by a description of that code. These code descriptions take up a little space, and so for small blocks, there is a predefined set of codes, called the fixed codes. The fixed method is used if the block codes up smaller that way (usually for quite small chunks), otherwise the dynamic method is used. In the latter case, the codes are customized to the probabilities in the current block, and so can code it much better than the pre-determined fixed codes. The Huffman codes themselves are decoded using a multi-level table lookup, in order to maximize the speed of decoding plus the speed of building the decoding tables. See the comments below that precede the lbits and dbits tuning parameters. */ /* Notes beyond the 1.93a appnote.txt: 1. Distance pointers never point before the beginning of the output stream. 2. Distance pointers can point back across blocks, up to 32k away. 3. There is an implied maximum of 7 bits for the bit length table and 15 bits for the actual data. 4. If only one code exists, then it is encoded using one bit. (Zero would be more efficient, but perhaps a little confusing.) If two codes exist, they are coded using one bit each (0 and 1). 5. There is no way of sending zero distance codes--a dummy must be sent if there are none. (History: a pre 2.0 version of PKZIP would store blocks with no distance codes, but this was discovered to be too harsh a criterion.) Valid only for 1.93a. 2.04c does allow zero distance codes, which is sent as one code of zero bits in length. 6. There are up to 286 literal/length codes. Code 256 represents the end-of-block. Note however that the static length tree defines 288 codes just to fill out the Huffman codes. Codes 286 and 287 cannot be used though, since there is no length base or extra bits defined for them. Similarly, there are up to 30 distance codes. However, static trees define 32 codes (all 5 bits) to fill out the Huffman codes, but the last two had better not show up in the data. 7. Unzip can check dynamic Huffman blocks for complete code sets. The exception is that a single code would not be complete (see #4). 8. The five bits following the block type is really the number of literal codes sent minus 257. 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits (1+6+6). Therefore, to output three times the length, you output three codes (1+1+1), whereas to output four times the same length, you only need two codes (1+3). Hmm. 10. In the tree reconstruction algorithm, Code = Code + Increment only if BitLength(i) is not zero. (Pretty obvious.) 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 12. Note: length code 284 can represent 227-258, but length code 285 really is 258. The last length deserves its own, short code since it gets used a lot in very redundant files. The length 258 is special since 258 - 3 (the min match length) is 255. 13. The literal/length and distance code bit lengths are read as a single stream of lengths. It is possible (and advantageous)
#
# Copyright (C) 2008-2010 OpenWrt.org
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#

include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/kernel.mk

PKG_NAME:=button-hotplug
PKG_RELEASE:=3

include $(INCLUDE_DIR)/package.mk

define KernelPackage/button-hotplug
  SUBMENU:=Other modules
  TITLE:=Button Hotplug driver
  DEPENDS:=+kmod-input-core
  FILES:=$(PKG_BUILD_DIR)/button-hotplug.ko
  AUTOLOAD:=$(call AutoLoad,30,button-hotplug,1)
  KCONFIG:=
endef

define KernelPackage/button-hotplug/description
  Kernel module to generate button uevent-s from input subsystem events.
  If your device uses GPIO buttons, see gpio-button-hotplug.
endef

EXTRA_KCONFIG:= \
	CONFIG_BUTTON_HOTPLUG=m

EXTRA_CFLAGS:= \
	$(patsubst CONFIG_%, -DCONFIG_%=1, $(patsubst %=m,%,$(filter %=m,$(EXTRA_KCONFIG)))) \
	$(patsubst CONFIG_%, -DCONFIG_%=1, $(patsubst %=y,%,$(filter %=y,$(EXTRA_KCONFIG)))) \

MAKE_OPTS:= \
	ARCH="$(LINUX_KARCH)" \
	CROSS_COMPILE="$(TARGET_CROSS)" \
	SUBDIRS="$(PKG_BUILD_DIR)" \
	EXTRA_CFLAGS="$(EXTRA_CFLAGS)" \
	$(EXTRA_KCONFIG)

define Build/Prepare
	mkdir -p $(PKG_BUILD_DIR)
	$(CP) ./src/* $(PKG_BUILD_DIR)/
endef

define Build/Compile
	$(MAKE) -C "$(LINUX_DIR)" \
		$(MAKE_OPTS) \
		modules
endef

$(eval $(call KernelPackage,button-hotplug))
r int k; /* number of bits in current code */ int l; /* bits per table (returned in m) */ register unsigned *p; /* pointer into c[], b[], or v[] */ register struct huft *q; /* points to current table */ struct huft r; /* table entry for structure assignment */ register int w; /* bits before this table == (l * h) */ unsigned *xp; /* pointer into x */ int y; /* number of dummy codes added */ unsigned z; /* number of entries in current table */ struct { unsigned c[BMAX+1]; /* bit length count table */ struct huft *u[BMAX]; /* table stack */ unsigned v[N_MAX]; /* values in order of bit length */ unsigned x[BMAX+1]; /* bit offsets, then code stack */ } *stk; unsigned *c, *v, *x; struct huft **u; int ret; DEBG("huft1 "); stk = malloc(sizeof(*stk)); if (stk == NULL) return 3; /* out of memory */ c = stk->c; v = stk->v; x = stk->x; u = stk->u; /* Generate counts for each bit length */ memzero(stk->c, sizeof(stk->c)); p = b; i = n; do { Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), n-i, *p)); c[*p]++; /* assume all entries <= BMAX */ p++; /* Can't combine with above line (Solaris bug) */ } while (--i); if (c[0] == n) /* null input--all zero length codes */ { *t = (struct huft *)NULL; *m = 0; ret = 2; goto out; } DEBG("huft2 "); /* Find minimum and maximum length, bound *m by those */ l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; /* minimum code length */ if ((unsigned)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; /* maximum code length */ if ((unsigned)l > i) l = i; *m = l; DEBG("huft3 "); /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) { ret = 2; /* bad input: more codes than bits */ goto out; } if ((y -= c[i]) < 0) { ret = 2; goto out; } c[i] += y; DEBG("huft4 "); /* Generate starting offsets into the value table for each length */ x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } DEBG("huft5 "); /* Make a table of values in order of bit lengths */ p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); n = x[g]; /* set n to length of v */ DEBG("h6 "); /* Generate the Huffman codes and for each, make the table entries */ x[0] = i = 0; /* first Huffman code is zero */ p = v; /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = -l; /* bits decoded == (l * h) */ u[0] = (struct huft *)NULL; /* just to keep compilers happy */ q = (struct huft *)NULL; /* ditto */ z = 0; /* ditto */ DEBG("h6a "); /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { DEBG("h6b "); a = c[k]; while (a--) { DEBG("h6b1 "); /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l) { DEBG1("1 "); h++; w += l; /* previous table always l bits */ /* compute minimum size table less than or equal to l bits */ z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ DEBG1("2 "); f -= a + 1; /* deduct codes from patterns left */ xp = c + k; if (j < z) while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } DEBG1("3 "); z = 1 << j; /* table entries for j-bit table */ /* allocate and link in new table */ if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == (struct huft *)NULL) { if (h) huft_free(u[0]); ret = 3; /* not enough memory */ goto out; } DEBG1("4 "); hufts += z + 1; /* track memory usage */ *t = q + 1; /* link to list for huft_free() */ *(t = &(q->v.t)) = (struct huft *)NULL; u[h] = ++q; /* table starts after link */ DEBG1("5 "); /* connect to last table, if there is one */ if (h) { x[h] = i; /* save pattern for backing up */ r.b = (uch)l; /* bits to dump before this table */ r.e = (uch)(16 + j); /* bits in this table */ r.v.t = q; /* pointer to this table */ j = i >> (w - l); /* (get around Turbo C bug) */ u[h-1][j] = r; /* connect to last table */ } DEBG1("6 "); } DEBG("h6c "); /* set up table entry in r */ r.b = (uch)(k - w); if (p >= v + n) r.e = 99; /* out of values--invalid code */ else if (*p < s) { r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ r.v.n = (ush)(*p); /* simple code is just the value */ p++; /* one compiler does not like *p++ */ } else { r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ r.v.n = d[*p++ - s]; } DEBG("h6d "); /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != x[h]) { h--; /* don't need to update q */ w -= l; } DEBG("h6e "); } DEBG("h6f "); } DEBG("huft7 "); /* Return true (1) if we were given an incomplete table */ ret = y != 0 && g != 1; out: free(stk); return ret; } STATIC int INIT huft_free( struct huft *t /* table to free */ ) /* Free the malloc'ed tables built by huft_build(), which makes a linked list of the tables it made, with the links in a dummy first entry of each table. */ { register struct huft *p, *q; /* Go through linked list, freeing from the malloced (t[-1]) address. */ p = t; while (p != (struct huft *)NULL) { q = (--p)->v.t; free((char*)p); p = q; } return 0; } STATIC int INIT inflate_codes( struct huft *tl, /* literal/length decoder tables */ struct huft *td, /* distance decoder tables */ int bl, /* number of bits decoded by tl[] */ int bd /* number of bits decoded by td[] */ ) /* inflate (decompress) the codes in a deflated (compressed) block. Return an error code or zero if it all goes ok. */ { register unsigned e; /* table entry flag/number of extra bits */ unsigned n, d; /* length and index for copy */ unsigned w; /* current window position */ struct huft *t; /* pointer to table entry */ unsigned ml, md; /* masks for bl and bd bits */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ /* make local copies of globals */ b = bb; /* initialize bit buffer */ k = bk; w = wp; /* initialize window position */ /* inflate the coded data */ ml = mask_bits[bl]; /* precompute masks for speed */ md = mask_bits[bd]; for (;;) /* do until end of block */ { NEEDBITS((unsigned)bl) if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) do { if (e == 99) return 1; DUMPBITS(t->b) e -= 16; NEEDBITS(e) } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); DUMPBITS(t->b) if (e == 16) /* then it's a literal */ { slide[w++] = (uch)t->v.n; Tracevv((stderr, "%c", slide[w-1])); if (w == WSIZE) { flush_output(w); w = 0; } } else /* it's an EOB or a length */ { /* exit if end of block */ if (e == 15) break; /* get length of block to copy */ NEEDBITS(e) n = t->v.n + ((unsigned)b & mask_bits[e]); DUMPBITS(e); /* decode distance of block to copy */ NEEDBITS((unsigned)bd) if ((e = (t = td + ((unsigned)b & md))->e) > 16) do { if (e == 99) return 1; DUMPBITS(t->b) e -= 16; NEEDBITS(e) } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); DUMPBITS(t->b) NEEDBITS(e) d = w - t->v.n - ((unsigned)b & mask_bits[e]); DUMPBITS(e) Tracevv((stderr,"\\[%d,%d]", w-d, n)); /* do the copy */ do { n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); #if !defined(NOMEMCPY) && !defined(DEBUG) if (w - d >= e) /* (this test assumes unsigned comparison) */ { memcpy(slide + w, slide + d, e); w += e; d += e; } else /* do it slow to avoid memcpy() overlap */ #endif /* !NOMEMCPY */ do { slide[w++] = slide[d++]; Tracevv((stderr, "%c", slide[w-1])); } while (--e); if (w == WSIZE) { flush_output(w); w = 0; } } while (n); } } /* restore the globals from the locals */ wp = w; /* restore global window pointer */ bb = b; /* restore global bit buffer */ bk = k; /* done */ return 0; underrun: return 4; /* Input underrun */ } STATIC int INIT inflate_stored(void) /* "decompress" an inflated type 0 (stored) block. */ { unsigned n; /* number of bytes in block */ unsigned w; /* current window position */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ DEBG(""); return 0; underrun: return 4; /* Input underrun */ } /* * We use `noinline' here to prevent gcc-3.5 from using too much stack space */ STATIC int noinline INIT inflate_fixed(void) /* decompress an inflated type 1 (fixed Huffman codes) block. We should either replace this with a custom decoder, or at least precompute the Huffman tables. */ { int i; /* temporary variable */ struct huft *tl; /* literal/length code table */ struct huft *td; /* distance code table */ int bl; /* lookup bits for tl */ int bd; /* lookup bits for td */ unsigned *l; /* length list for huft_build */ DEBG(" 1) { huft_free(tl); free(l); DEBG(">"); return i; } /* decompress until an end-of-block code */ if (inflate_codes(tl, td, bl, bd)) { free(l); return 1; } /* free the decoding tables, return */ free(l); huft_free(tl); huft_free(td); return 0; } /* * We use `noinline' here to prevent gcc-3.5 from using too much stack space */ STATIC int noinline INIT inflate_dynamic(void) /* decompress an inflated type 2 (dynamic Huffman codes) block. */ { int i; /* temporary variables */ unsigned j; unsigned l; /* last length */ unsigned m; /* mask for bit lengths table */ unsigned n; /* number of lengths to get */ struct huft *tl; /* literal/length code table */ struct huft *td; /* distance code table */ int bl; /* lookup bits for tl */ int bd; /* lookup bits for td */ unsigned nb; /* number of bit length codes */ unsigned nl; /* number of literal/length codes */ unsigned nd; /* number of distance codes */ unsigned *ll; /* literal/length and distance code lengths */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ int ret; DEBG(" 288 || nd > 32) #else if (nl > 286 || nd > 30) #endif { ret = 1; /* bad lengths */ goto out; } DEBG("dyn1 "); /* read in bit-length-code lengths */ for (j = 0; j < nb; j++) { NEEDBITS(3) ll[border[j]] = (unsigned)b & 7; DUMPBITS(3) } for (; j < 19; j++) ll[border[j]] = 0; DEBG("dyn2 "); /* build decoding table for trees--single level, 7 bit lookup */ bl = 7; if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) { if (i == 1) huft_free(tl); ret = i; /* incomplete code set */ goto out; } DEBG("dyn3 "); /* read in literal and distance code lengths */ n = nl + nd; m = mask_bits[bl]; i = l = 0; while ((unsigned)i < n) { NEEDBITS((unsigned)bl) j = (td = tl + ((unsigned)b & m))->b; DUMPBITS(j) j = td->v.n; if (j < 16) /* length of code in bits (0..15) */ ll[i++] = l = j; /* save last length in l */ else if (j == 16) /* repeat last length 3 to 6 times */ { NEEDBITS(2) j = 3 + ((unsigned)b & 3); DUMPBITS(2) if ((unsigned)i + j > n) { ret = 1; goto out; } while (j--) ll[i++] = l; } else if (j == 17) /* 3 to 10 zero length codes */ { NEEDBITS(3) j = 3 + ((unsigned)b & 7); DUMPBITS(3) if ((unsigned)i + j > n) { ret = 1; goto out; } while (j--) ll[i++] = 0; l = 0; } else /* j == 18: 11 to 138 zero length codes */ { NEEDBITS(7) j = 11 + ((unsigned)b & 0x7f); DUMPBITS(7) if ((unsigned)i + j > n) { ret = 1; goto out; } while (j--) ll[i++] = 0; l = 0; } } DEBG("dyn4 "); /* free decoding table for trees */ huft_free(tl); DEBG("dyn5 "); /* restore the global bit buffer */ bb = b; bk = k; DEBG("dyn5a "); /* build the decoding tables for literal/length and distance codes */ bl = lbits; if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) { DEBG("dyn5b "); if (i == 1) { error("incomplete literal tree"); huft_free(tl); } ret = i; /* incomplete code set */ goto out; } DEBG("dyn5c "); bd = dbits; if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) { DEBG("dyn5d "); if (i == 1) { error("incomplete distance tree"); #ifdef PKZIP_BUG_WORKAROUND i = 0; } #else huft_free(td); } huft_free(tl); ret = i; /* incomplete code set */ goto out; #endif } DEBG("dyn6 "); /* decompress until an end-of-block code */ if (inflate_codes(tl, td, bl, bd)) { ret = 1; goto out; } DEBG("dyn7 "); /* free the decoding tables, return */ huft_free(tl); huft_free(td); DEBG(">"); ret = 0; out: free(ll); return ret; underrun: ret = 4; /* Input underrun */ goto out; } STATIC int INIT inflate_block( int *e /* last block flag */ ) /* decompress an inflated block */ { unsigned t; /* block type */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ DEBG(""); /* bad block type */ return 2; underrun: return 4; /* Input underrun */ } STATIC int INIT inflate(void) /* decompress an inflated entry */ { int e; /* last block flag */ int r; /* result code */ unsigned h; /* maximum struct huft's malloc'ed */ /* initialize window, bit buffer */ wp = 0; bk = 0; bb = 0; /* decompress until the last block */ h = 0; do { hufts = 0; #ifdef ARCH_HAS_DECOMP_WDOG arch_decomp_wdog(); #endif r = inflate_block(&e); if (r) return r; if (hufts > h) h = hufts; } while (!e); /* Undo too much lookahead. The next read will be byte aligned so we * can discard unused bits in the last meaningful byte. */ while (bk >= 8) { bk -= 8; inptr--; } /* flush out slide */ flush_output(wp); /* return success */ #ifdef DEBUG fprintf(stderr, "<%u> ", h); #endif /* DEBUG */ return 0; } /********************************************************************** * * The following are support routines for inflate.c * **********************************************************************/ static ulg crc_32_tab[256]; static ulg crc; /* initialized in makecrc() so it'll reside in bss */ #define CRC_VALUE (crc ^ 0xffffffffUL) /* * Code to compute the CRC-32 table. Borrowed from * gzip-1.0.3/makecrc.c. */ static void INIT makecrc(void) { /* Not copyrighted 1990 Mark Adler */ unsigned long c; /* crc shift register */ unsigned long e; /* polynomial exclusive-or pattern */ int i; /* counter for all possible eight bit values */ int k; /* byte being shifted into crc apparatus */ /* terms of polynomial defining this crc (except x^32): */ static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* Make exclusive-or pattern from polynomial */ e = 0; for (i = 0; i < sizeof(p)/sizeof(int); i++) e |= 1L << (31 - p[i]); crc_32_tab[0] = 0; for (i = 1; i < 256; i++) { c = 0; for (k = i | 256; k != 1; k >>= 1) { c = c & 1 ? (c >> 1) ^ e : c >> 1; if (k & 1) c ^= e; } crc_32_tab[i] = c; } /* this is initialized here so this code could reside in ROM */ crc = (ulg)0xffffffffUL; /* shift register contents */ } /* gzip flag byte */ #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ #define COMMENT 0x10 /* bit 4 set: file comment present */ #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ #define RESERVED 0xC0 /* bit 6,7: reserved */ /* * Do the uncompression! */ static int INIT gunzip(void) { uch flags; unsigned char magic[2]; /* magic header */ char method; ulg orig_crc = 0; /* original crc */ ulg orig_len = 0; /* original uncompressed length */ int res; magic[0] = NEXTBYTE(); magic[1] = NEXTBYTE(); method = NEXTBYTE(); if (magic[0] != 037 || ((magic[1] != 0213) && (magic[1] != 0236))) { error("bad gzip magic numbers"); return -1; } /* We only support method #8, DEFLATED */ if (method != 8) { error("internal error, invalid method"); return -1; } flags = (uch)get_byte(); if ((flags & ENCRYPTED) != 0) { error("Input is encrypted"); return -1; } if ((flags & CONTINUATION) != 0) { error("Multi part input"); return -1; } if ((flags & RESERVED) != 0) { error("Input has invalid flags"); return -1; } NEXTBYTE(); /* Get timestamp */ NEXTBYTE(); NEXTBYTE(); NEXTBYTE(); (void)NEXTBYTE(); /* Ignore extra flags for the moment */ (void)NEXTBYTE(); /* Ignore OS type for the moment */ if ((flags & EXTRA_FIELD) != 0) { unsigned len = (unsigned)NEXTBYTE(); len |= ((unsigned)NEXTBYTE())<<8; while (len--) (void)NEXTBYTE(); } /* Get original file name if it was truncated */ if ((flags & ORIG_NAME) != 0) { /* Discard the old name */ while (NEXTBYTE() != 0) /* null */ ; } /* Discard file comment if any */ if ((flags & COMMENT) != 0) { while (NEXTBYTE() != 0) /* null */ ; } /* Decompress */ if ((res = inflate())) { switch (res) { case 0: break; case 1: error("invalid compressed format (err=1)"); break; case 2: error("invalid compressed format (err=2)"); break; case 3: error("out of memory"); break; case 4: error("out of input data"); break; default: error("invalid compressed format (other)"); } return -1; } /* Get the crc and original length */ /* crc32 (see algorithm.doc) * uncompressed input size modulo 2^32 */ orig_crc = (ulg) NEXTBYTE(); orig_crc |= (ulg) NEXTBYTE() << 8; orig_crc |= (ulg) NEXTBYTE() << 16; orig_crc |= (ulg) NEXTBYTE() << 24; orig_len = (ulg) NEXTBYTE(); orig_len |= (ulg) NEXTBYTE() << 8; orig_len |= (ulg) NEXTBYTE() << 16; orig_len |= (ulg) NEXTBYTE() << 24; /* Validate decompression */ if (orig_crc != CRC_VALUE) { error("crc error"); return -1; } if (orig_len != bytes_out) { error("length error"); return -1; } return 0; underrun: /* NEXTBYTE() goto's here if needed */ error("out of input data"); return -1; }