aboutsummaryrefslogtreecommitdiffstats
path: root/include/prereq.mk
blob: 4a55c89ffcf9afd115aab72f64d4973c64bfc674 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# 
# Copyright (C) 2006-2007 OpenWrt.org
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#

ifneq ($(__prereq_inc),1)
__prereq_inc:=1

prereq:
	if [ -f $(TMP_DIR)/.prereq-error ]; then \
		echo; \
		cat $(TMP_DIR)/.prereq-error; \
		rm -f $(TMP_DIR)/.prereq-error; \
		echo; \
		false; \
	fi

.SILENT: prereq
endif

define Require
  export PREREQ_CHECK=1
  ifeq ($$(CHECK_$(1)),)
    prereq: prereq-$(1)

    prereq-$(1): FORCE
		echo -n "Checking '$(1)'... "
		if $(NO_TRACE_MAKE) -f $(firstword $(MAKEFILE_LIST)) check-$(1) >/dev/null 2>/dev/null; then \
			echo 'ok.'; \
		else \
			echo 'failed.'; \
			echo -e "$(PKG_NAME): $(strip $(2))" | perl -ne 's/\\\s*/\n/g,print' >> $(TMP_DIR)/.prereq-error; \
		fi

    check-$(1): FORCE
	  $(call Require/$(1))
    CHECK_$(1):=1

    .SILENT: prereq-$(1) check-$(1)
  endif
endef


define RequireCommand
  define Require/$(1)
    which $(1)
  endef

  $$(eval $$(call Require,$(1),$(2)))
endef

define RequireHeader
  define Require/$(1)
    [ -e "$(1)" ]
  endef
  
  $$(eval $$(call Require,$(1),$(2)))
endef

.NOTPARALLEL:
f='#n347'>347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/******************************************************************************
 * hvm/emulate.c
 * 
 * HVM instruction emulation. Used for MMIO and VMX real mode.
 * 
 * Copyright (c) 2008, Citrix Systems, Inc.
 * 
 * Authors:
 *    Keir Fraser <keir@xen.org>
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/sched.h>
#include <xen/paging.h>
#include <xen/trace.h>
#include <asm/event.h>
#include <asm/hvm/emulate.h>
#include <asm/hvm/hvm.h>
#include <asm/hvm/trace.h>
#include <asm/hvm/support.h>

static void hvmtrace_io_assist(int is_mmio, ioreq_t *p)
{
    unsigned int size, event;
    unsigned char buffer[12];

    if ( likely(!tb_init_done) )
        return;

    if ( is_mmio )
        event = p->dir ? TRC_HVM_IOMEM_READ : TRC_HVM_IOMEM_WRITE;
    else
        event = p->dir ? TRC_HVM_IOPORT_READ : TRC_HVM_IOPORT_WRITE;

    *(uint64_t *)buffer = p->addr;
    size = (p->addr != (u32)p->addr) ? 8 : 4;
    if ( size == 8 )
        event |= TRC_64_FLAG;

    if ( !p->data_is_ptr )
    {
        *(uint32_t *)&buffer[size] = p->data;
        size += 4;
    }

    trace_var(event, 0/*!cycles*/, size, buffer);
}

static int hvmemul_do_io(
    int is_mmio, paddr_t addr, unsigned long *reps, int size,
    paddr_t ram_gpa, int dir, int df, void *p_data)
{
    paddr_t value = ram_gpa;
    int value_is_ptr = (p_data == NULL);
    struct vcpu *curr = current;
    struct hvm_vcpu_io *vio;
    ioreq_t *p = get_ioreq(curr);
    unsigned long ram_gfn = paddr_to_pfn(ram_gpa);
    p2m_type_t p2mt;
    mfn_t ram_mfn;
    int rc;

    /* Check for paged out page */
    ram_mfn = gfn_to_mfn_unshare(curr->domain, ram_gfn, &p2mt);
    if ( p2m_is_paging(p2mt) )
    {
        p2m_mem_paging_populate(curr->domain, ram_gfn);
        return X86EMUL_RETRY;
    }
    if ( p2m_is_shared(p2mt) )
        return X86EMUL_RETRY;

    /*
     * Weird-sized accesses have undefined behaviour: we discard writes
     * and read all-ones.
     */
    if ( unlikely((size > sizeof(long)) || (size & (size - 1))) )
    {
        gdprintk(XENLOG_WARNING, "bad mmio size %d\n", size);
        ASSERT(p_data != NULL); /* cannot happen with a REP prefix */
        if ( dir == IOREQ_READ )
            memset(p_data, ~0, size);
        return X86EMUL_UNHANDLEABLE;
    }

    if ( (p_data != NULL) && (dir == IOREQ_WRITE) )
    {
        memcpy(&value, p_data, size);
        p_data = NULL;
    }

    vio = &curr->arch.hvm_vcpu.hvm_io;

    if ( is_mmio && !value_is_ptr )
    {
        /* Part of a multi-cycle read or write? */
        if ( dir == IOREQ_WRITE )
        {
            paddr_t pa = vio->mmio_large_write_pa;
            unsigned int bytes = vio->mmio_large_write_bytes;
            if ( (addr >= pa) && ((addr + size) <= (pa + bytes)) )
                return X86EMUL_OKAY;
        }
        else
        {
            paddr_t pa = vio->mmio_large_read_pa;
            unsigned int bytes = vio->mmio_large_read_bytes;
            if ( (addr >= pa) && ((addr + size) <= (pa + bytes)) )
            {
                memcpy(p_data, &vio->mmio_large_read[addr - pa],
                       size);
                return X86EMUL_OKAY;
            }
        }
    }

    switch ( vio->io_state )
    {
    case HVMIO_none:
        break;
    case HVMIO_completed:
        vio->io_state = HVMIO_none;
        if ( p_data == NULL )
            return X86EMUL_UNHANDLEABLE;
        goto finish_access;
    case HVMIO_dispatched:
        /* May have to wait for previous cycle of a multi-write to complete. */
        if ( is_mmio && !value_is_ptr && (dir == IOREQ_WRITE) &&
             (addr == (vio->mmio_large_write_pa +
                       vio->mmio_large_write_bytes)) )
            return X86EMUL_RETRY;
    default:
        return X86EMUL_UNHANDLEABLE;
    }

    if ( p->state != STATE_IOREQ_NONE )
    {
        gdprintk(XENLOG_WARNING, "WARNING: io already pending (%d)?\n",
                 p->state);
        return X86EMUL_UNHANDLEABLE;
    }

    vio->io_state =
        (p_data == NULL) ? HVMIO_dispatched : HVMIO_awaiting_completion;
    vio->io_size = size;

    p->dir = dir;
    p->data_is_ptr = value_is_ptr;
    p->type = is_mmio ? IOREQ_TYPE_COPY : IOREQ_TYPE_PIO;
    p->size = size;
    p->addr = addr;
    p->count = *reps;
    p->df = df;
    p->data = value;

    hvmtrace_io_assist(is_mmio, p);

    if ( is_mmio )
    {
        rc = hvm_mmio_intercept(p);
        if ( rc == X86EMUL_UNHANDLEABLE )
            rc = hvm_buffered_io_intercept(p);
    }
    else
    {
        rc = hvm_portio_intercept(p);
    }

    switch ( rc )
    {
    case X86EMUL_OKAY:
    case X86EMUL_RETRY:
        *reps = p->count;
        p->state = STATE_IORESP_READY;
        hvm_io_assist();
        vio->io_state = HVMIO_none;
        break;
    case X86EMUL_UNHANDLEABLE:
        rc = X86EMUL_RETRY;
        if ( !hvm_send_assist_req(curr) )
            vio->io_state = HVMIO_none;
        else if ( p_data == NULL )
            rc = X86EMUL_OKAY;
        break;
    default:
        BUG();
    }

    if ( rc != X86EMUL_OKAY )
        return rc;

 finish_access:
    if ( p_data != NULL )
        memcpy(p_data, &vio->io_data, size);

    if ( is_mmio && !value_is_ptr )
    {
        /* Part of a multi-cycle read or write? */
        if ( dir == IOREQ_WRITE )
        {
            paddr_t pa = vio->mmio_large_write_pa;
            unsigned int bytes = vio->mmio_large_write_bytes;
            if ( bytes == 0 )
                pa = vio->mmio_large_write_pa = addr;
            if ( addr == (pa + bytes) )
                vio->mmio_large_write_bytes += size;
        }
        else
        {
            paddr_t pa = vio->mmio_large_read_pa;
            unsigned int bytes = vio->mmio_large_read_bytes;
            if ( bytes == 0 )
                pa = vio->mmio_large_read_pa = addr;
            if ( (addr == (pa + bytes)) &&
                 ((bytes + size) <
                  sizeof(vio->mmio_large_read)) )
            {
                memcpy(&vio->mmio_large_read[addr - pa], p_data, size);
                vio->mmio_large_read_bytes += size;
            }
        }
    }

    return X86EMUL_OKAY;
}

int hvmemul_do_pio(
    unsigned long port, unsigned long *reps, int size,
    paddr_t ram_gpa, int dir, int df, void *p_data)
{
    return hvmemul_do_io(0, port, reps, size, ram_gpa, dir, df, p_data);
}

static int hvmemul_do_mmio(
    paddr_t gpa, unsigned long *reps, int size,
    paddr_t ram_gpa, int dir, int df, void *p_data)
{
    return hvmemul_do_io(1, gpa, reps, size, ram_gpa, dir, df, p_data);
}

/*
 * Convert addr from linear to physical form, valid over the range
 * [addr, addr + *reps * bytes_per_rep]. *reps is adjusted according to
 * the valid computed range. It is always >0 when X86EMUL_OKAY is returned.
 * @pfec indicates the access checks to be performed during page-table walks.
 */
static int hvmemul_linear_to_phys(
    unsigned long addr,
    paddr_t *paddr,
    unsigned int bytes_per_rep,
    unsigned long *reps,
    uint32_t pfec,
    struct hvm_emulate_ctxt *hvmemul_ctxt)
{
    struct vcpu *curr = current;
    unsigned long pfn, npfn, done, todo, i, offset = addr & ~PAGE_MASK;
    int reverse;

    /*
     * Clip repetitions to a sensible maximum. This avoids extensive looping in
     * this function while still amortising the cost of I/O trap-and-emulate.
     */
    *reps = min_t(unsigned long, *reps, 4096);

    /* With no paging it's easy: linear == physical. */
    if ( !(curr->arch.hvm_vcpu.guest_cr[0] & X86_CR0_PG) )
    {
        *paddr = addr;
        return X86EMUL_OKAY;
    }

    /* Reverse mode if this is a backwards multi-iteration string operation. */
    reverse = (hvmemul_ctxt->ctxt.regs->eflags & X86_EFLAGS_DF) && (*reps > 1);

    if ( reverse && ((PAGE_SIZE - offset) < bytes_per_rep) )
    {
        /* Do page-straddling first iteration forwards via recursion. */
        paddr_t _paddr;
        unsigned long one_rep = 1;
        int rc = hvmemul_linear_to_phys(
            addr, &_paddr, bytes_per_rep, &one_rep, pfec, hvmemul_ctxt);
        if ( rc != X86EMUL_OKAY )
            return rc;
        pfn = _paddr >> PAGE_SHIFT;
    }
    else if ( (pfn = paging_gva_to_gfn(curr, addr, &pfec)) == INVALID_GFN )
    {
        if ( pfec == PFEC_page_paged || pfec == PFEC_page_shared )
            return X86EMUL_RETRY;
        hvm_inject_exception(TRAP_page_fault, pfec, addr);
        return X86EMUL_EXCEPTION;
    }

    done = reverse ? bytes_per_rep + offset : PAGE_SIZE - offset;
    todo = *reps * bytes_per_rep;
    for ( i = 1; done < todo; i++ )
    {
        /* Get the next PFN in the range. */
        addr += reverse ? -PAGE_SIZE : PAGE_SIZE;
        npfn = paging_gva_to_gfn(curr, addr, &pfec);

        /* Is it contiguous with the preceding PFNs? If not then we're done. */
        if ( (npfn == INVALID_GFN) || (npfn != (pfn + (reverse ? -i : i))) )
        {
            if ( pfec == PFEC_page_paged || pfec == PFEC_page_shared )
                return X86EMUL_RETRY;
            done /= bytes_per_rep;
            if ( done == 0 )
            {
                ASSERT(!reverse);
                if ( npfn != INVALID_GFN )
                    return X86EMUL_UNHANDLEABLE;
                hvm_inject_exception(TRAP_page_fault, pfec, addr & PAGE_MASK);
                return X86EMUL_EXCEPTION;
            }
            *reps = done;
            break;
        }

        done += PAGE_SIZE;
    }

    *paddr = ((paddr_t)pfn << PAGE_SHIFT) | offset;
    return X86EMUL_OKAY;
}
    

static int hvmemul_virtual_to_linear(
    enum x86_segment seg,
    unsigned long offset,
    unsigned int bytes_per_rep,
    unsigned long *reps,
    enum hvm_access_type access_type,
    struct hvm_emulate_ctxt *hvmemul_ctxt,
    unsigned long *paddr)
{
    struct segment_register *reg;
    int okay;

    if ( seg == x86_seg_none )
    {
        *paddr = offset;
        return X86EMUL_OKAY;
    }

    /*
     * Clip repetitions to avoid overflow when multiplying by @bytes_per_rep.
     * The chosen maximum is very conservative but it's what we use in
     * hvmemul_linear_to_phys() so there is no point in using a larger value.
     */
    *reps = min_t(unsigned long, *reps, 4096);

    reg = hvmemul_get_seg_reg(seg, hvmemul_ctxt);

    if ( (hvmemul_ctxt->ctxt.regs->eflags & X86_EFLAGS_DF) && (*reps > 1) )
    {
        /*
         * x86_emulate() clips the repetition count to ensure we don't wrap
         * the effective-address index register. Hence this assertion holds.
         */
        ASSERT(offset >= ((*reps - 1) * bytes_per_rep));
        okay = hvm_virtual_to_linear_addr(
            seg, reg, offset - (*reps - 1) * bytes_per_rep,
            *reps * bytes_per_rep, access_type,
            hvmemul_ctxt->ctxt.addr_size, paddr);
        *paddr += (*reps - 1) * bytes_per_rep;
        if ( hvmemul_ctxt->ctxt.addr_size != 64 )
            *paddr = (uint32_t)*paddr;
    }
    else
    {
        okay = hvm_virtual_to_linear_addr(
            seg, reg, offset, *reps * bytes_per_rep, access_type,
            hvmemul_ctxt->ctxt.addr_size, paddr);
    }

    if ( okay )
        return X86EMUL_OKAY;

    /* If this is a string operation, emulate each iteration separately. */
    if ( *reps != 1 )
        return X86EMUL_UNHANDLEABLE;

    /* This is a singleton operation: fail it with an exception. */
    hvmemul_ctxt->exn_pending = 1;
    hvmemul_ctxt->exn_vector = TRAP_gp_fault;
    hvmemul_ctxt->exn_error_code = 0;
    hvmemul_ctxt->exn_insn_len = 0;
    return X86EMUL_EXCEPTION;
}

static int __hvmemul_read(
    enum x86_segment seg,
    unsigned long offset,
    void *p_data,
    unsigned int bytes,
    enum hvm_access_type access_type,
    struct hvm_emulate_ctxt *hvmemul_ctxt)
{
    struct vcpu *curr = current;
    unsigned long addr, reps = 1;
    uint32_t pfec = PFEC_page_present;
    struct hvm_vcpu_io *vio = &curr->arch.hvm_vcpu.hvm_io;
    paddr_t gpa;
    int rc;

    rc = hvmemul_virtual_to_linear(
        seg, offset, bytes, &reps, access_type, hvmemul_ctxt, &addr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    if ( unlikely(vio->mmio_gva == (addr & PAGE_MASK)) && vio->mmio_gva )
    {
        unsigned int off = addr & (PAGE_SIZE - 1);
        if ( access_type == hvm_access_insn_fetch )
            return X86EMUL_UNHANDLEABLE;
        gpa = (((paddr_t)vio->mmio_gpfn << PAGE_SHIFT) | off);
        if ( (off + bytes) <= PAGE_SIZE )
            return hvmemul_do_mmio(gpa, &reps, bytes, 0,
                                   IOREQ_READ, 0, p_data);
    }

    if ( (seg != x86_seg_none) &&
         (hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3) )
        pfec |= PFEC_user_mode;

    rc = ((access_type == hvm_access_insn_fetch) ?
          hvm_fetch_from_guest_virt(p_data, addr, bytes, pfec) :
          hvm_copy_from_guest_virt(p_data, addr, bytes, pfec));

    switch ( rc )
    {
    case HVMCOPY_bad_gva_to_gfn:
        return X86EMUL_EXCEPTION;
    case HVMCOPY_unhandleable:
        return X86EMUL_UNHANDLEABLE;
    case  HVMCOPY_bad_gfn_to_mfn:
        if ( access_type == hvm_access_insn_fetch )
            return X86EMUL_UNHANDLEABLE;
        rc = hvmemul_linear_to_phys(
            addr, &gpa, bytes, &reps, pfec, hvmemul_ctxt);
        if ( rc != X86EMUL_OKAY )
            return rc;
        return hvmemul_do_mmio(gpa, &reps, bytes, 0, IOREQ_READ, 0, p_data);
    case HVMCOPY_gfn_paged_out:
        return X86EMUL_RETRY;
    case HVMCOPY_gfn_shared:
        return X86EMUL_RETRY;
    default:
        break;
    }

    return X86EMUL_OKAY;
}

static int hvmemul_read(
    enum x86_segment seg,
    unsigned long offset,
    void *p_data,
    unsigned int bytes,
    struct x86_emulate_ctxt *ctxt)
{
    return __hvmemul_read(
        seg, offset, p_data, bytes, hvm_access_read,
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt));
}

static int hvmemul_insn_fetch(
    enum x86_segment seg,
    unsigned long offset,
    void *p_data,
    unsigned int bytes,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    unsigned int insn_off = offset - hvmemul_ctxt->insn_buf_eip;

    /* Fall back if requested bytes are not in the prefetch cache. */
    if ( unlikely((insn_off + bytes) > hvmemul_ctxt->insn_buf_bytes) )
        return __hvmemul_read(
            seg, offset, p_data, bytes,
            hvm_access_insn_fetch, hvmemul_ctxt);

    /* Hit the cache. Simple memcpy. */
    memcpy(p_data, &hvmemul_ctxt->insn_buf[insn_off], bytes);
    return X86EMUL_OKAY;
}

static int hvmemul_write(
    enum x86_segment seg,
    unsigned long offset,
    void *p_data,
    unsigned int bytes,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    struct vcpu *curr = current;
    unsigned long addr, reps = 1;
    uint32_t pfec = PFEC_page_present | PFEC_write_access;
    struct hvm_vcpu_io *vio = &curr->arch.hvm_vcpu.hvm_io;
    paddr_t gpa;
    int rc;

    rc = hvmemul_virtual_to_linear(
        seg, offset, bytes, &reps, hvm_access_write, hvmemul_ctxt, &addr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    if ( unlikely(vio->mmio_gva == (addr & PAGE_MASK)) && vio->mmio_gva )
    {
        unsigned int off = addr & (PAGE_SIZE - 1);
        gpa = (((paddr_t)vio->mmio_gpfn << PAGE_SHIFT) | off);
        if ( (off + bytes) <= PAGE_SIZE )
            return hvmemul_do_mmio(gpa, &reps, bytes, 0,
                                   IOREQ_WRITE, 0, p_data);
    }

    if ( (seg != x86_seg_none) &&
         (hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3) )
        pfec |= PFEC_user_mode;

    rc = hvm_copy_to_guest_virt(addr, p_data, bytes, pfec);

    switch ( rc )
    {
    case HVMCOPY_bad_gva_to_gfn:
        return X86EMUL_EXCEPTION;
    case HVMCOPY_unhandleable:
        return X86EMUL_UNHANDLEABLE;
    case HVMCOPY_bad_gfn_to_mfn:
        rc = hvmemul_linear_to_phys(
            addr, &gpa, bytes, &reps, pfec, hvmemul_ctxt);
        if ( rc != X86EMUL_OKAY )
            return rc;
        return hvmemul_do_mmio(gpa, &reps, bytes, 0,
                               IOREQ_WRITE, 0, p_data);
    case HVMCOPY_gfn_paged_out:
        return X86EMUL_RETRY;
    case HVMCOPY_gfn_shared:
        return X86EMUL_RETRY;
    default:
        break;
    }

    return X86EMUL_OKAY;
}

static int hvmemul_cmpxchg(
    enum x86_segment seg,
    unsigned long offset,
    void *p_old,
    void *p_new,
    unsigned int bytes,
    struct x86_emulate_ctxt *ctxt)
{
    /* Fix this in case the guest is really relying on r-m-w atomicity. */
    return hvmemul_write(seg, offset, p_new, bytes, ctxt);
}

static int hvmemul_rep_ins(
    uint16_t src_port,
    enum x86_segment dst_seg,
    unsigned long dst_offset,
    unsigned int bytes_per_rep,
    unsigned long *reps,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    unsigned long addr;
    uint32_t pfec = PFEC_page_present | PFEC_write_access;
    paddr_t gpa;
    int rc;

    rc = hvmemul_virtual_to_linear(
        dst_seg, dst_offset, bytes_per_rep, reps, hvm_access_write,
        hvmemul_ctxt, &addr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    if ( hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3 )
        pfec |= PFEC_user_mode;

    rc = hvmemul_linear_to_phys(
        addr, &gpa, bytes_per_rep, reps, pfec, hvmemul_ctxt);
    if ( rc != X86EMUL_OKAY )
        return rc;

    return hvmemul_do_pio(src_port, reps, bytes_per_rep, gpa, IOREQ_READ,
                          !!(ctxt->regs->eflags & X86_EFLAGS_DF), NULL);
}

static int hvmemul_rep_outs(
    enum x86_segment src_seg,
    unsigned long src_offset,
    uint16_t dst_port,
    unsigned int bytes_per_rep,
    unsigned long *reps,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    unsigned long addr;
    uint32_t pfec = PFEC_page_present;
    paddr_t gpa;
    int rc;

    rc = hvmemul_virtual_to_linear(
        src_seg, src_offset, bytes_per_rep, reps, hvm_access_read,
        hvmemul_ctxt, &addr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    if ( hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3 )
        pfec |= PFEC_user_mode;

    rc = hvmemul_linear_to_phys(
        addr, &gpa, bytes_per_rep, reps, pfec, hvmemul_ctxt);
    if ( rc != X86EMUL_OKAY )
        return rc;

    return hvmemul_do_pio(dst_port, reps, bytes_per_rep, gpa, IOREQ_WRITE,
                          !!(ctxt->regs->eflags & X86_EFLAGS_DF), NULL);
}

static int hvmemul_rep_movs(
   enum x86_segment src_seg,
   unsigned long src_offset,
   enum x86_segment dst_seg,
   unsigned long dst_offset,
   unsigned int bytes_per_rep,
   unsigned long *reps,
   struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    unsigned long saddr, daddr, bytes;
    paddr_t sgpa, dgpa;
    uint32_t pfec = PFEC_page_present;
    p2m_type_t p2mt;
    int rc, df = !!(ctxt->regs->eflags & X86_EFLAGS_DF);
    char *buf;

    rc = hvmemul_virtual_to_linear(
        src_seg, src_offset, bytes_per_rep, reps, hvm_access_read,
        hvmemul_ctxt, &saddr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    rc = hvmemul_virtual_to_linear(
        dst_seg, dst_offset, bytes_per_rep, reps, hvm_access_write,
        hvmemul_ctxt, &daddr);
    if ( rc != X86EMUL_OKAY )
        return rc;

    if ( hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3 )
        pfec |= PFEC_user_mode;

    rc = hvmemul_linear_to_phys(
        saddr, &sgpa, bytes_per_rep, reps, pfec, hvmemul_ctxt);
    if ( rc != X86EMUL_OKAY )
        return rc;

    rc = hvmemul_linear_to_phys(
        daddr, &dgpa, bytes_per_rep, reps,
        pfec | PFEC_write_access, hvmemul_ctxt);
    if ( rc != X86EMUL_OKAY )
        return rc;

    (void)gfn_to_mfn(current->domain, sgpa >> PAGE_SHIFT, &p2mt);
    if ( !p2m_is_ram(p2mt) && !p2m_is_grant(p2mt) )
        return hvmemul_do_mmio(
            sgpa, reps, bytes_per_rep, dgpa, IOREQ_READ, df, NULL);

    (void)gfn_to_mfn(current->domain, dgpa >> PAGE_SHIFT, &p2mt);
    if ( !p2m_is_ram(p2mt) && !p2m_is_grant(p2mt) )
        return hvmemul_do_mmio(
            dgpa, reps, bytes_per_rep, sgpa, IOREQ_WRITE, df, NULL);

    /* RAM-to-RAM copy: emulate as equivalent of memmove(dgpa, sgpa, bytes). */
    bytes = *reps * bytes_per_rep;

    /* Adjust source address for reverse copy. */
    if ( df )
        sgpa -= bytes - bytes_per_rep;

    /*
     * Will first iteration copy fall within source range? If not then entire
     * copy does not corrupt itself. If so, then this is more complex than
     * can be emulated by a source-to-buffer-to-destination block copy.
     */
    if ( ((dgpa + bytes_per_rep) > sgpa) && (dgpa < (sgpa + bytes)) )
        return X86EMUL_UNHANDLEABLE;

    /* Adjust destination address for reverse copy. */
    if ( df )
        dgpa -= bytes - bytes_per_rep;

    /* Allocate temporary buffer. Fall back to slow emulation if this fails. */
    buf = xmalloc_bytes(bytes);
    if ( buf == NULL )
        return X86EMUL_UNHANDLEABLE;

    /*
     * We do a modicum of checking here, just for paranoia's sake and to
     * definitely avoid copying an unitialised buffer into guest address space.
     */
    rc = hvm_copy_from_guest_phys(buf, sgpa, bytes);
    if ( rc == HVMCOPY_okay )
        rc = hvm_copy_to_guest_phys(dgpa, buf, bytes);

    xfree(buf);

    if ( rc == HVMCOPY_gfn_paged_out )
        return X86EMUL_RETRY;
    if ( rc == HVMCOPY_gfn_shared )
        return X86EMUL_RETRY;
    if ( rc != HVMCOPY_okay )
    {
        gdprintk(XENLOG_WARNING, "Failed memory-to-memory REP MOVS: sgpa=%"
                 PRIpaddr" dgpa=%"PRIpaddr" reps=%lu bytes_per_rep=%u\n",
                 sgpa, dgpa, *reps, bytes_per_rep);
        return X86EMUL_UNHANDLEABLE;
    }

    return X86EMUL_OKAY;
}

static int hvmemul_read_segment(
    enum x86_segment seg,
    struct segment_register *reg,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    struct segment_register *sreg = hvmemul_get_seg_reg(seg, hvmemul_ctxt);
    memcpy(reg, sreg, sizeof(struct segment_register));
    return X86EMUL_OKAY;
}

static int hvmemul_write_segment(
    enum x86_segment seg,
    struct segment_register *reg,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    struct segment_register *sreg = hvmemul_get_seg_reg(seg, hvmemul_ctxt);

    memcpy(sreg, reg, sizeof(struct segment_register));
    __set_bit(seg, &hvmemul_ctxt->seg_reg_dirty);

    return X86EMUL_OKAY;
}

static int hvmemul_read_io(
    unsigned int port,
    unsigned int bytes,
    unsigned long *val,
    struct x86_emulate_ctxt *ctxt)
{
    unsigned long reps = 1;
    *val = 0;
    return hvmemul_do_pio(port, &reps, bytes, 0, IOREQ_READ, 0, val);
}

static int hvmemul_write_io(
    unsigned int port,
    unsigned int bytes,
    unsigned long val,
    struct x86_emulate_ctxt *ctxt)
{
    unsigned long reps = 1;
    return hvmemul_do_pio(port, &reps, bytes, 0, IOREQ_WRITE, 0, &val);
}

static int hvmemul_read_cr(
    unsigned int reg,
    unsigned long *val,
    struct x86_emulate_ctxt *ctxt)
{
    switch ( reg )
    {
    case 0:
    case 2:
    case 3:
    case 4:
        *val = current->arch.hvm_vcpu.guest_cr[reg];
        HVMTRACE_LONG_2D(CR_READ, reg, TRC_PAR_LONG(*val));
        return X86EMUL_OKAY;
    default:
        break;
    }

    return X86EMUL_UNHANDLEABLE;
}

static int hvmemul_write_cr(
    unsigned int reg,
    unsigned long val,
    struct x86_emulate_ctxt *ctxt)
{
    HVMTRACE_LONG_2D(CR_WRITE, reg, TRC_PAR_LONG(val));
    switch ( reg )
    {
    case 0:
        return hvm_set_cr0(val);
    case 2:
        current->arch.hvm_vcpu.guest_cr[2] = val;
        return X86EMUL_OKAY;
    case 3:
        return hvm_set_cr3(val);
    case 4:
        return hvm_set_cr4(val);
    default:
        break;
    }

    return X86EMUL_UNHANDLEABLE;
}

static int hvmemul_read_msr(
    unsigned long reg,
    uint64_t *val,
    struct x86_emulate_ctxt *ctxt)
{
    return hvm_msr_read_intercept(reg, val);
}

static int hvmemul_write_msr(
    unsigned long reg,
    uint64_t val,
    struct x86_emulate_ctxt *ctxt)
{
    return hvm_msr_write_intercept(reg, val);
}

static int hvmemul_wbinvd(
    struct x86_emulate_ctxt *ctxt)
{
    hvm_funcs.wbinvd_intercept();
    return X86EMUL_OKAY;
}

static int hvmemul_cpuid(
    unsigned int *eax,
    unsigned int *ebx,
    unsigned int *ecx,
    unsigned int *edx,
    struct x86_emulate_ctxt *ctxt)
{
    hvm_funcs.cpuid_intercept(eax, ebx, ecx, edx);
    return X86EMUL_OKAY;
}

static int hvmemul_inject_hw_exception(
    uint8_t vector,
    int32_t error_code,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);

    hvmemul_ctxt->exn_pending = 1;
    hvmemul_ctxt->exn_vector = vector;
    hvmemul_ctxt->exn_error_code = error_code;
    hvmemul_ctxt->exn_insn_len = 0;

    return X86EMUL_OKAY;
}

static int hvmemul_inject_sw_interrupt(
    uint8_t vector,
    uint8_t insn_len,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);

    hvmemul_ctxt->exn_pending = 1;
    hvmemul_ctxt->exn_vector = vector;
    hvmemul_ctxt->exn_error_code = -1;
    hvmemul_ctxt->exn_insn_len = insn_len;

    return X86EMUL_OKAY;
}

static int hvmemul_get_fpu(
    void (*exception_callback)(void *, struct cpu_user_regs *),
    void *exception_callback_arg,
    enum x86_emulate_fpu_type type,
    struct x86_emulate_ctxt *ctxt)
{
    struct vcpu *curr = current;

    switch ( type )
    {
    case X86EMUL_FPU_fpu:
        break;
    case X86EMUL_FPU_mmx:
        if ( !cpu_has_mmx )
            return X86EMUL_UNHANDLEABLE;
        break;
    default:
        return X86EMUL_UNHANDLEABLE;
    }

    if ( !curr->fpu_dirtied )
        hvm_funcs.fpu_dirty_intercept();

    curr->arch.hvm_vcpu.fpu_exception_callback = exception_callback;
    curr->arch.hvm_vcpu.fpu_exception_callback_arg = exception_callback_arg;

    return X86EMUL_OKAY;
}

static void hvmemul_put_fpu(
    struct x86_emulate_ctxt *ctxt)
{
    struct vcpu *curr = current;
    curr->arch.hvm_vcpu.fpu_exception_callback = NULL;
}

static int hvmemul_invlpg(
    enum x86_segment seg,
    unsigned long offset,
    struct x86_emulate_ctxt *ctxt)
{
    struct hvm_emulate_ctxt *hvmemul_ctxt =
        container_of(ctxt, struct hvm_emulate_ctxt, ctxt);
    unsigned long addr, reps = 1;
    int rc;

    rc = hvmemul_virtual_to_linear(
        seg, offset, 1, &reps, hvm_access_none, hvmemul_ctxt, &addr);

    if ( rc == X86EMUL_OKAY )
        hvm_funcs.invlpg_intercept(addr);

    return rc;
}

static const struct x86_emulate_ops hvm_emulate_ops = {
    .read          = hvmemul_read,
    .insn_fetch    = hvmemul_insn_fetch,
    .write         = hvmemul_write,
    .cmpxchg       = hvmemul_cmpxchg,
    .rep_ins       = hvmemul_rep_ins,
    .rep_outs      = hvmemul_rep_outs,
    .rep_movs      = hvmemul_rep_movs,
    .read_segment  = hvmemul_read_segment,
    .write_segment = hvmemul_write_segment,
    .read_io       = hvmemul_read_io,
    .write_io      = hvmemul_write_io,
    .read_cr       = hvmemul_read_cr,
    .write_cr      = hvmemul_write_cr,
    .read_msr      = hvmemul_read_msr,
    .write_msr     = hvmemul_write_msr,
    .wbinvd        = hvmemul_wbinvd,
    .cpuid         = hvmemul_cpuid,
    .inject_hw_exception = hvmemul_inject_hw_exception,
    .inject_sw_interrupt = hvmemul_inject_sw_interrupt,
    .get_fpu       = hvmemul_get_fpu,
    .put_fpu       = hvmemul_put_fpu,
    .invlpg        = hvmemul_invlpg
};

int hvm_emulate_one(
    struct hvm_emulate_ctxt *hvmemul_ctxt)
{
    struct cpu_user_regs *regs = hvmemul_ctxt->ctxt.regs;
    struct vcpu *curr = current;
    uint32_t new_intr_shadow, pfec = PFEC_page_present;
    struct hvm_vcpu_io *vio = &curr->arch.hvm_vcpu.hvm_io;
    unsigned long addr;
    int rc;

    if ( hvm_long_mode_enabled(curr) &&
         hvmemul_ctxt->seg_reg[x86_seg_cs].attr.fields.l )
    {
        hvmemul_ctxt->ctxt.addr_size = hvmemul_ctxt->ctxt.sp_size = 64;
    }
    else
    {
        hvmemul_ctxt->ctxt.addr_size =
            hvmemul_ctxt->seg_reg[x86_seg_cs].attr.fields.db ? 32 : 16;
        hvmemul_ctxt->ctxt.sp_size =
            hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.db ? 32 : 16;
    }

    if ( hvmemul_ctxt->seg_reg[x86_seg_ss].attr.fields.dpl == 3 )
        pfec |= PFEC_user_mode;

    hvmemul_ctxt->insn_buf_eip = regs->eip;
    hvmemul_ctxt->insn_buf_bytes =
        hvm_get_insn_bytes(curr, hvmemul_ctxt->insn_buf)
        ? :
        (hvm_virtual_to_linear_addr(
            x86_seg_cs, &hvmemul_ctxt->seg_reg[x86_seg_cs],
            regs->eip, sizeof(hvmemul_ctxt->insn_buf),
            hvm_access_insn_fetch, hvmemul_ctxt->ctxt.addr_size, &addr) &&
         !hvm_fetch_from_guest_virt_nofault(
             hvmemul_ctxt->insn_buf, addr,
             sizeof(hvmemul_ctxt->insn_buf), pfec))
        ? sizeof(hvmemul_ctxt->insn_buf) : 0;

    hvmemul_ctxt->exn_pending = 0;

    rc = x86_emulate(&hvmemul_ctxt->ctxt, &hvm_emulate_ops);

    if ( rc != X86EMUL_RETRY )
        vio->mmio_large_read_bytes = vio->mmio_large_write_bytes = 0;

    if ( rc != X86EMUL_OKAY )
        return rc;

    new_intr_shadow = hvmemul_ctxt->intr_shadow;

    /* MOV-SS instruction toggles MOV-SS shadow, else we just clear it. */
    if ( hvmemul_ctxt->ctxt.retire.flags.mov_ss )
        new_intr_shadow ^= HVM_INTR_SHADOW_MOV_SS;
    else
        new_intr_shadow &= ~HVM_INTR_SHADOW_MOV_SS;

    /* STI instruction toggles STI shadow, else we just clear it. */
    if ( hvmemul_ctxt->ctxt.retire.flags.sti )
        new_intr_shadow ^= HVM_INTR_SHADOW_STI;
    else
        new_intr_shadow &= ~HVM_INTR_SHADOW_STI;

    if ( hvmemul_ctxt->intr_shadow != new_intr_shadow )
    {
        hvmemul_ctxt->intr_shadow = new_intr_shadow;
        hvm_funcs.set_interrupt_shadow(curr, new_intr_shadow);
    }

    if ( hvmemul_ctxt->ctxt.retire.flags.hlt &&
         !hvm_local_events_need_delivery(curr) )
    {
        hvm_hlt(regs->eflags);
    }

    return X86EMUL_OKAY;
}

void hvm_emulate_prepare(
    struct hvm_emulate_ctxt *hvmemul_ctxt,
    struct cpu_user_regs *regs)
{
    hvmemul_ctxt->intr_shadow = hvm_funcs.get_interrupt_shadow(current);
    hvmemul_ctxt->ctxt.regs = regs;
    hvmemul_ctxt->ctxt.force_writeback = 1;
    hvmemul_ctxt->seg_reg_accessed = 0;
    hvmemul_ctxt->seg_reg_dirty = 0;
    hvmemul_get_seg_reg(x86_seg_cs, hvmemul_ctxt);
    hvmemul_get_seg_reg(x86_seg_ss, hvmemul_ctxt);
}

void hvm_emulate_writeback(
    struct hvm_emulate_ctxt *hvmemul_ctxt)
{
    enum x86_segment seg;

    seg = find_first_bit(&hvmemul_ctxt->seg_reg_dirty,
                         ARRAY_SIZE(hvmemul_ctxt->seg_reg));

    while ( seg < ARRAY_SIZE(hvmemul_ctxt->seg_reg) )
    {
        hvm_set_segment_register(current, seg, &hvmemul_ctxt->seg_reg[seg]);
        seg = find_next_bit(&hvmemul_ctxt->seg_reg_dirty,
                            ARRAY_SIZE(hvmemul_ctxt->seg_reg),
                            seg+1);
    }
}

struct segment_register *hvmemul_get_seg_reg(
    enum x86_segment seg,
    struct hvm_emulate_ctxt *hvmemul_ctxt)
{
    if ( !__test_and_set_bit(seg, &hvmemul_ctxt->seg_reg_accessed) )
        hvm_get_segment_register(current, seg, &hvmemul_ctxt->seg_reg[seg]);
    return &hvmemul_ctxt->seg_reg[seg];
}