// SPDX-License-Identifier: GPL-2.0-only /* Realtek RTL838X Ethernet MDIO interface driver * * Copyright (C) 2020 B. Koblitz */ #include #include #include #include #include #include #include #include "rtl83xx-phy.h" extern struct rtl83xx_soc_info soc_info; extern struct mutex smi_lock; /* * This lock protects the state of the SoC automatically polling the PHYs over the SMI * bus to detect e.g. link and media changes. For operations on the PHYs such as * patching or other configuration changes such as EEE, polling needs to be disabled * since otherwise these operations may fails or lead to unpredictable results. */ DEFINE_MUTEX(poll_lock); static const struct firmware rtl838x_8380_fw; static const struct firmware rtl838x_8214fc_fw; static const struct firmware rtl838x_8218b_fw; int rtl838x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val); int rtl838x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val); int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val); int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val); int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val); int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val); int rtl931x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val); int rtl931x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val); static int read_phy(u32 port, u32 page, u32 reg, u32 *val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_read_phy(port, page, reg, val); case RTL8390_FAMILY_ID: return rtl839x_read_phy(port, page, reg, val); case RTL9300_FAMILY_ID: return rtl930x_read_phy(port, page, reg, val); case RTL9310_FAMILY_ID: return rtl931x_read_phy(port, page, reg, val); } return -1; } static int write_phy(u32 port, u32 page, u32 reg, u32 val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_write_phy(port, page, reg, val); case RTL8390_FAMILY_ID: return rtl839x_write_phy(port, page, reg, val); case RTL9300_FAMILY_ID: return rtl930x_write_phy(port, page, reg, val); case RTL9310_FAMILY_ID: return rtl931x_write_phy(port, page, reg, val); } return -1; } static int read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_read_mmd_phy(port, devnum, regnum, val); case RTL8390_FAMILY_ID: return rtl839x_read_mmd_phy(port, devnum, regnum, val); case RTL9300_FAMILY_ID: return rtl930x_read_mmd_phy(port, devnum, regnum, val); case RTL9310_FAMILY_ID: return rtl931x_read_mmd_phy(port, devnum, regnum, val); } return -1; } int write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_write_mmd_phy(port, devnum, reg, val); case RTL8390_FAMILY_ID: return rtl839x_write_mmd_phy(port, devnum, reg, val); case RTL9300_FAMILY_ID: return rtl930x_write_mmd_phy(port, devnum, reg, val); case RTL9310_FAMILY_ID: return rtl931x_write_mmd_phy(port, devnum, reg, val); } return -1; } static u64 disable_polling(int port) { u64 saved_state; mutex_lock(&poll_lock); switch (soc_info.family) { case RTL8380_FAMILY_ID: saved_state = sw_r32(RTL838X_SMI_POLL_CTRL); sw_w32_mask(BIT(port), 0, RTL838X_SMI_POLL_CTRL); break; case RTL8390_FAMILY_ID: saved_state = sw_r32(RTL839X_SMI_PORT_POLLING_CTRL + 4); saved_state <<= 32; saved_state |= sw_r32(RTL839X_SMI_PORT_POLLING_CTRL); sw_w32_mask(BIT(port % 32), 0, RTL839X_SMI_PORT_POLLING_CTRL + ((port >> 5) << 2)); break; case RTL9300_FAMILY_ID: saved_state = sw_r32(RTL930X_SMI_POLL_CTRL); sw_w32_mask(BIT(port), 0, RTL930X_SMI_POLL_CTRL); break; case RTL9310_FAMILY_ID: pr_warn("%s not implemented for RTL931X\n", __func__); break; } mutex_unlock(&poll_lock); return saved_state; } static int resume_polling(u64 saved_state) { mutex_lock(&poll_lock); switch (soc_info.family) { case RTL8380_FAMILY_ID: sw_w32(saved_state, RTL838X_SMI_POLL_CTRL); break; case RTL8390_FAMILY_ID: sw_w32(saved_state >> 32, RTL839X_SMI_PORT_POLLING_CTRL + 4); sw_w32(saved_state, RTL839X_SMI_PORT_POLLING_CTRL); break; case RTL9300_FAMILY_ID: sw_w32(saved_state, RTL930X_SMI_POLL_CTRL); break; case RTL9310_FAMILY_ID: pr_warn("%s not implemented for RTL931X\n", __func__); break; } mutex_unlock(&poll_lock); return 0; } static void rtl8380_int_phy_on_off(int mac, bool on) { u32 val; read_phy(mac, 0, 0, &val); if (on) write_phy(mac, 0, 0, val & ~BIT(11)); else write_phy(mac, 0, 0, val | BIT(11)); } static void rtl8380_rtl8214fc_on_off(int mac, bool on) { u32 val; /* fiber ports */ write_phy(mac, 4095, 30, 3); read_phy(mac, 0, 16, &val); if (on) write_phy(mac, 0, 16, val & ~BIT(11)); else write_phy(mac, 0, 16, val | BIT(11)); /* copper ports */ write_phy(mac, 4095, 30, 1); read_phy(mac, 0, 16, &val); if (on) write_phy(mac, 0xa40, 16, val & ~BIT(11)); else write_phy(mac, 0xa40, 16, val | BIT(11)); } static void rtl8380_phy_reset(int mac) { u32 val; read_phy(mac, 0, 0, &val); write_phy(mac, 0, 0, val | BIT(15)); } /* * Reset the SerDes by powering it off and set a new operations mode * of the SerDes. 0x1f is off. Other modes are * 0x01: QSGMII 0x04: 1000BX_FIBER 0x05: FIBER100 * 0x06: QSGMII 0x09: RSGMII 0x0d: USXGMII * 0x10: XSGMII 0x12: HISGMII 0x16: 2500Base_X * 0x17: RXAUI_LITE 0x19: RXAUI_PLUS 0x1a: 10G Base-R * 0x1b: 10GR1000BX_AUTO 0x1f: OFF */ void rtl9300_sds_rst(int sds_num, u32 mode) { // The access registers for SDS_MODE_SEL and the LSB for each SDS within u16 regs[] = { 0x0194, 0x0194, 0x0194, 0x0194, 0x02a0, 0x02a0, 0x02a0, 0x02a0, 0x02A4, 0x02A4, 0x0198, 0x0198 }; u8 lsb[] = { 0, 6, 12, 18, 0, 6, 12, 18, 0, 6, 0, 6}; pr_info("SerDes: %s %d\n", __func__, mode); if (sds_num < 0 || sds_num > 11) { pr_err("Wrong SerDes number: %d\n", sds_num); return; } sw_w32_mask(0x1f << lsb[sds_num], 0x1f << lsb[sds_num], regs[sds_num]); mdelay(10); sw_w32_mask(0x1f << lsb[sds_num], mode << lsb[sds_num], regs[sds_num]); mdelay(10); pr_info("SDS: 194:%08x 198:%08x 2a0:%08x 2a4:%08x\n", sw_r32(0x194), sw_r32(0x198), sw_r32(0x2a0), sw_r32(0x2a4)); } /* * On the RTL839x family of SoCs with inbuilt SerDes, these SerDes are accessed through * a 2048 bit register that holds the contents of the PHY being simulated by the SoC. */ int rtl839x_read_sds_phy(int phy_addr, int phy_reg) { int offset = 0; int reg; u32 val; if (phy_addr == 49) offset = 0x100; /* * For the RTL8393 internal SerDes, we simulate a PHY ID in registers 2/3 * which would otherwise read as 0. */ if (soc_info.id == 0x8393) { if (phy_reg == 2) return 0x1c; if (phy_reg == 3) return 0x8393; } /* * Register RTL839X_SDS12_13_XSG0 is 2048 bit broad, the MSB (bit 15) of the * 0th PHY register is bit 1023 (in byte 0x80). Because PHY-registers are 16 * bit broad, we offset by reg << 1. In the SoC 2 registers are stored in * one 32 bit register. */ reg = (phy_reg << 1) & 0xfc; val = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg); if (phy_reg & 1) val = (val >> 16) & 0xffff; else val &= 0xffff; return val; } /* * On the RTL930x family of SoCs, the internal SerDes are accessed through an IO * register which simulates commands to an internal MDIO bus. */ int rtl930x_read_sds_phy(int phy_addr, int page, int phy_reg) { int i; u32 cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 1; pr_info("%s: phy_addr %d, phy_reg: %d\n", __func__, phy_addr, phy_reg); sw_w32(cmd, RTL930X_SDS_INDACS_CMD); for (i = 0; i < 100; i++) { if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1)) break; mdelay(1); } if (i >= 100) return -EIO; pr_info("%s: returning %04x\n", __func__, sw_r32(RTL930X_SDS_INDACS_DATA) & 0xffff); return sw_r32(RTL930X_SDS_INDACS_DATA) & 0xffff; } int rtl930x_write_sds_phy(int phy_addr, int page, int phy_reg, u16 v) { int i; u32 cmd; sw_w32(v, RTL930X_SDS_INDACS_DATA); cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 0x3; for (i = 0; i < 100; i++) { if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1)) break; mdelay(1); } if (i >= 100) return -EIO; return 0; } /* * On the RTL838x SoCs, the internal SerDes is accessed through direct access to * standard PHY registers, where a 32 bit register holds a 16 bit word as found * in a standard page 0 of a PHY */ int rtl838x_read_sds_phy(int phy_addr, int phy_reg) { int offset = 0; u32 val; if (phy_addr == 26) offset = 0x100; val = sw_r32(RTL838X_SDS4_FIB_REG0 + offset + (phy_reg << 2)) & 0xffff; return val; } int rtl839x_write_sds_phy(int phy_addr, int phy_reg, u16 v) { int offset = 0; int reg; u32 val; if (phy_addr == 49) offset = 0x100; reg = (phy_reg << 1) & 0xfc; val = v; if (phy_reg & 1) { val = val << 16; sw_w32_mask(0xffff0000, val, RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg); } else { sw_w32_mask(0xffff, val, RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg); } return 0; } /* Read the link and speed status of the 2 internal SGMII/1000Base-X * ports of the RTL838x SoCs */ static int rtl8380_read_status(struct phy_device *phydev) { int err; err = genphy_read_status(phydev); if (phydev->link) { phydev->speed = SPEED_1000; phydev->duplex = DUPLEX_FULL; } return err; } /* Read the link and speed status of the 2 internal SGMII/1000Base-X * ports of the RTL8393 SoC */ static int rtl8393_read_status(struct phy_device *phydev) { int offset = 0; int err; int phy_addr = phydev->mdio.addr; u32 v; err = genphy_read_status(phydev); if (phy_addr == 49) offset = 0x100; if (phydev->link) { phydev->speed = SPEED_100; /* Read SPD_RD_00 (bit 13) and SPD_RD_01 (bit 6) out of the internal * PHY registers */ v = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80); if (!(v & (1 << 13)) && (v & (1 << 6))) phydev->speed = SPEED_1000; phydev->duplex = DUPLEX_FULL; } return err; } static int rtl8226_read_page(struct phy_device *phydev) { return __phy_read(phydev, 0x1f); } static int rtl8226_write_page(struct phy_device *phydev, int page) { return __phy_write(phydev, 0x1f, page); } static int rtl8226_read_status(struct phy_device *phydev) { int ret = 0, i; u32 val; int port = phydev->mdio.addr; // TODO: ret = genphy_read_status(phydev); // if (ret < 0) { // pr_info("%s: genphy_read_status failed\n", __func__); // return ret; // } // Link status must be read twice for (i = 0; i < 2; i++) { read_mmd_phy(port, MMD_VEND2, 0xA402, &val); } phydev->link = val & BIT(2) ? 1 : 0; if (!phydev->link) goto out; // Read duplex status ret = read_mmd_phy(port, MMD_VEND2, 0xA434, &val); if (ret) goto out; phydev->duplex = !!(val & BIT(3)); // Read speed ret = read_mmd_phy(port, MMD_VEND2, 0xA434, &val); switch (val & 0x0630) { case 0x0000: phydev->speed = SPEED_10; break; case 0x0010: phydev->speed = SPEED_100; break; case 0x0020: phydev->speed = SPEED_1000; break; case 0x0200: phydev->speed = SPEED_10000; break; case 0x0210: phydev->speed = SPEED_2500; break; case 0x0220: phydev->speed = SPEED_5000; break; default: break; } out: return ret; } static int rtl8226_advertise_aneg(struct phy_device *phydev) { int ret = 0; u32 v; int port = phydev->mdio.addr; pr_info("In %s\n", __func__); ret = read_mmd_phy(port, MMD_AN, 16, &v); if (ret) goto out; v |= BIT(5); // HD 10M v |= BIT(6); // FD 10M v |= BIT(7); // HD 100M v |= BIT(8); // FD 100M ret = write_mmd_phy(port, MMD_AN, 16, v); // Allow 1GBit ret = read_mmd_phy(port, MMD_VEND2, 0xA412, &v); if (ret) goto out; v |= BIT(9); // FD 1000M ret = write_mmd_phy(port, MMD_VEND2, 0xA412, v); if (ret) goto out; // Allow 2.5G ret = read_mmd_phy(port, MMD_AN, 32, &v); if (ret) goto out; v |= BIT(7); ret = write_mmd_phy(port, MMD_AN, 32, v); out: return ret; } static int rtl8226_config_aneg(struct phy_device *phydev) { int ret = 0; u32 v; int port = phydev->mdio.addr; pr_info("In %s\n", __func__); if (phydev->autoneg == AUTONEG_ENABLE) { ret = rtl8226_advertise_aneg(phydev); if (ret) goto out; // AutoNegotiationEnable ret = read_mmd_phy(port, MMD_AN, 0, &v); if (ret) goto out; v |= BIT(12); // Enable AN ret = write_mmd_phy(port, MMD_AN, 0, v); if (ret) goto out; // RestartAutoNegotiation ret = read_mmd_phy(port, MMD_VEND2, 0xA400, &v); if (ret) goto out; v |= BIT(9); ret = write_mmd_phy(port, MMD_VEND2, 0xA400, v); } pr_info("%s: Ret is already: %d\n", __func__, ret); // TODO: ret = __genphy_config_aneg(phydev, ret); out: pr_info("%s: And ret is now: %d\n", __func__, ret); return ret; } static int rtl8226_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 val; int addr = phydev->mdio.addr; pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled); read_mmd_phy(addr, MMD_AN, 60, &val); if (e->eee_enabled) { e->eee_enabled = !!(val & BIT(1)); if (!e->eee_enabled) { read_mmd_phy(addr, MMD_AN, 62, &val); e->eee_enabled = !!(val & BIT(0)); } } pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled); return 0; } static int rtl8226_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { int port = phydev->mdio.addr; u64 poll_state; bool an_enabled; u32 val; pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled); poll_state = disable_polling(port); // Remember aneg state read_mmd_phy(port, MMD_AN, 0, &val); an_enabled = !!(val & BIT(12)); // Setup 100/1000MBit read_mmd_phy(port, MMD_AN, 60, &val); if (e->eee_enabled) val |= 0x6; else val &= 0x6; write_mmd_phy(port, MMD_AN, 60, val); // Setup 2.5GBit read_mmd_phy(port, MMD_AN, 62, &val); if (e->eee_enabled) val |= 0x1; else val &= 0x1; write_mmd_phy(port, MMD_AN, 62, val); // RestartAutoNegotiation read_mmd_phy(port, MMD_VEND2, 0xA400, &val); val |= BIT(9); write_mmd_phy(port, MMD_VEND2, 0xA400, val); resume_polling(poll_state); return 0; } static struct fw_header *rtl838x_request_fw(struct phy_device *phydev, const struct firmware *fw, const char *name) { struct device *dev = &phydev->mdio.dev; int err; struct fw_header *h; uint32_t checksum, my_checksum; err = request_firmware(&fw, name, dev); if (err < 0) goto out; if (fw->size < sizeof(struct fw_header)) { pr_err("Firmware size too small.\n"); err = -EINVAL; goto out; } h = (struct fw_header *) fw->data; pr_info("Firmware loaded. Size %d, magic: %08x\n", fw->size, h->magic); if (h->magic != 0x83808380) { pr_err("Wrong firmware file: MAGIC mismatch.\n"); goto out; } checksum = h->checksum; h->checksum = 0; my_checksum = ~crc32(0xFFFFFFFFU, fw->data, fw->size); if (checksum != my_checksum) { pr_err("Firmware checksum mismatch.\n"); err = -EINVAL; goto out; } h->checksum = checksum; return h; out: dev_err(dev, "Unable to load firmware %s (%d)\n", name, err); return NULL; } static int rtl8390_configure_generic(struct phy_device *phydev) { u32 val, phy_id; int mac = phydev->mdio.addr; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); /* Internal RTL8218B, version 2 */ phydev_info(phydev, "Detected unknown %x\n", val); return 0; } static int rtl8380_configure_int_rtl8218b(struct phy_device *phydev) { u32 val, phy_id; int i, p, ipd_flag; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl838x_6275B_intPhy_perport; u32 *rtl8218b_6276B_hwEsd_perport; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6275) { phydev_err(phydev, "Expected internal RTL8218B, found PHY-ID %x\n", val); return -1; } /* Internal RTL8218B, version 2 */ phydev_info(phydev, "Detected internal RTL8218B\n"); h = rtl838x_request_fw(phydev, &rtl838x_8380_fw, FIRMWARE_838X_8380_1); if (!h) return -1; if (h->phy != 0x83800000) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl838x_6275B_intPhy_perport = (void *)h + sizeof(struct fw_header) + h->parts[8].start; rtl8218b_6276B_hwEsd_perport = (void *)h + sizeof(struct fw_header) + h->parts[9].start; if (sw_r32(RTL838X_DMY_REG31) == 0x1) ipd_flag = 1; read_phy(mac, 0, 0, &val); if (val & (1 << 11)) rtl8380_int_phy_on_off(mac, true); else rtl8380_phy_reset(mac); msleep(100); /* Ready PHY for patch */ for (p = 0; p < 8; p++) { write_phy(mac + p, 0xfff, 0x1f, 0x0b82); write_phy(mac + p, 0xfff, 0x10, 0x0010); } msleep(500); for (p = 0; p < 8; p++) { for (i = 0; i < 100 ; i++) { read_phy(mac + p, 0x0b80, 0x10, &val); if (val & 0x40) break; } if (i >= 100) { phydev_err(phydev, "ERROR: Port %d not ready for patch.\n", mac + p); return -1; } } for (p = 0; p < 8; p++) { i = 0; while (rtl838x_6275B_intPhy_perport[i * 2]) { write_phy(mac + p, 0xfff, rtl838x_6275B_intPhy_perport[i * 2], rtl838x_6275B_intPhy_perport[i * 2 + 1]); i++; } i = 0; while (rtl8218b_6276B_hwEsd_perport[i * 2]) { write_phy(mac + p, 0xfff, rtl8218b_6276B_hwEsd_perport[i * 2], rtl8218b_6276B_hwEsd_perport[i * 2 + 1]); i++; } } return 0; } static int rtl8380_configure_ext_rtl8218b(struct phy_device *phydev) { u32 val, ipd, phy_id; int i, l; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl8380_rtl8218b_perchip; u32 *rtl8218B_6276B_rtl8380_perport; u32 *rtl8380_rtl8218b_perport; if (soc_info.family == RTL8380_FAMILY_ID && mac != 0 && mac != 16) { phydev_err(phydev, "External RTL8218B must have PHY-IDs 0 or 16!\n"); return -1; } read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_info("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6276) { phydev_err(phydev, "Expected external RTL8218B, found PHY-ID %x\n", val); return -1; } phydev_info(phydev, "Detected external RTL8218B\n"); h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8218b_1); if (!h) return -1; if (h->phy != 0x8218b000) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl8380_rtl8218b_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8218B_6276B_rtl8380_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start; rtl8380_rtl8218b_perport = (void *)h + sizeof(struct fw_header) + h->parts[2].start; read_phy(mac, 0, 0, &val); if (val & (1 << 11)) rtl8380_int_phy_on_off(mac, true); else rtl8380_phy_reset(mac); msleep(100); /* Get Chip revision */ write_phy(mac, 0xfff, 0x1f, 0x0); write_phy(mac, 0xfff, 0x1b, 0x4); read_phy(mac, 0xfff, 0x1c, &val); i = 0; while (rtl8380_rtl8218b_perchip[i * 3] && rtl8380_rtl8218b_perchip[i * 3 + 1]) { write_phy(mac + rtl8380_rtl8218b_perchip[i * 3], 0xfff, rtl8380_rtl8218b_perchip[i * 3 + 1], rtl8380_rtl8218b_perchip[i * 3 + 2]); i++; } /* Enable PHY */ for (i = 0; i < 8; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x00, 0x1140); } mdelay(100); /* Request patch */ for (i = 0; i < 8; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0b82); write_phy(mac + i, 0xfff, 0x10, 0x0010); } mdelay(300); /* Verify patch readiness */ for (i = 0; i < 8; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0xb80, 0x10, &val); if (val & 0x40) break; } if (l >= 100) { phydev_err(phydev, "Could not patch PHY\n"); return -1; } } /* Use Broadcast ID method for patching */ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0xff00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); write_phy(mac, 0xfff, 30, 8); write_phy(mac, 0x26e, 17, 0xb); write_phy(mac, 0x26e, 16, 0x2); mdelay(1); read_phy(mac, 0x26e, 19, &ipd); write_phy(mac, 0, 30, 0); ipd = (ipd >> 4) & 0xf; i = 0; while (rtl8218B_6276B_rtl8380_perport[i * 2]) { write_phy(mac, 0xfff, rtl8218B_6276B_rtl8380_perport[i * 2], rtl8218B_6276B_rtl8380_perport[i * 2 + 1]); i++; } /*Disable broadcast ID*/ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0x00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); return 0; } static int rtl8218b_ext_match_phy_device(struct phy_device *phydev) { int addr = phydev->mdio.addr; /* Both the RTL8214FC and the external RTL8218B have the same * PHY ID. On the RTL838x, the RTL8218B can only be attached_dev * at PHY IDs 0-7, while the RTL8214FC must be attached via * the pair of SGMII/1000Base-X with higher PHY-IDs */ if (soc_info.family == RTL8380_FAMILY_ID) return phydev->phy_id == PHY_ID_RTL8218B_E && addr < 8; else return phydev->phy_id == PHY_ID_RTL8218B_E; } static int rtl8218b_read_mmd(struct phy_device *phydev, int devnum, u16 regnum) { int ret; u32 val; int addr = phydev->mdio.addr; ret = read_mmd_phy(addr, devnum, regnum, &val); if (ret) return ret; return val; } static int rtl8218b_write_mmd(struct phy_device *phydev, int devnum, u16 regnum, u16 val) { int addr = phydev->mdio.addr; return rtl838x_write_mmd_phy(addr, devnum, regnum, val); } static int rtl8226_read_mmd(struct phy_device *phydev, int devnum, u16 regnum) { int port = phydev->mdio.addr; // the SoC translates port addresses to PHY addr int err; u32 val; err = read_mmd_phy(port, devnum, regnum, &val); if (err) return err; return val; } static int rtl8226_write_mmd(struct phy_device *phydev, int devnum, u16 regnum, u16 val) { int port = phydev->mdio.addr; // the SoC translates port addresses to PHY addr return write_mmd_phy(port, devnum, regnum, val); } static void rtl8380_rtl8214fc_media_set(int mac, bool set_fibre) { int base = mac - (mac % 4); static int reg[] = {16, 19, 20, 21}; int val, media, power; pr_info("%s: port %d, set_fibre: %d\n", __func__, mac, set_fibre); write_phy(base, 0xfff, 29, 8); read_phy(base, 0x266, reg[mac % 4], &val); media = (val >> 10) & 0x3; pr_info("Current media %x\n", media); if (media & 0x2) { pr_info("Powering off COPPER\n"); write_phy(base, 0xfff, 29, 1); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (!(power & (1 << 11))) write_phy(base, 0xa40, 16, power | (1 << 11)); } else { pr_info("Powering off FIBRE"); write_phy(base, 0xfff, 29, 3); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (!(power & (1 << 11))) write_phy(base, 0xa40, 16, power | (1 << 11)); } if (set_fibre) { val |= 1 << 10; val &= ~(1 << 11); } else { val |= 1 << 10; val |= 1 << 11; } write_phy(base, 0xfff, 29, 8); write_phy(base, 0x266, reg[mac % 4], val); write_phy(base, 0xfff, 29, 0); if (set_fibre) { pr_info("Powering on FIBRE"); write_phy(base, 0xfff, 29, 3); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (power & (1 << 11)) write_phy(base, 0xa40, 16, power & ~(1 << 11)); } else { pr_info("Powering on COPPER\n"); write_phy(base, 0xfff, 29, 1); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (power & (1 << 11)) write_phy(base, 0xa40, 16, power & ~(1 << 11)); } write_phy(base, 0xfff, 29, 0); } static bool rtl8380_rtl8214fc_media_is_fibre(int mac) { int base = mac - (mac % 4); static int reg[] = {16, 19, 20, 21}; u32 val; write_phy(base, 0xfff, 29, 8); read_phy(base, 0x266, reg[mac % 4], &val); write_phy(base, 0xfff, 29, 0); if (val & (1 << 11)) return false; return true; } static int rtl8214fc_set_port(struct phy_device *phydev, int port) { bool is_fibre = (port == PORT_FIBRE ? true : false); int addr = phydev->mdio.addr; pr_debug("%s port %d to %d\n", __func__, addr, port); rtl8380_rtl8214fc_media_set(addr, is_fibre); return 0; } static int rtl8214fc_get_port(struct phy_device *phydev) { int addr = phydev->mdio.addr; pr_debug("%s: port %d\n", __func__, addr); if (rtl8380_rtl8214fc_media_is_fibre(addr)) return PORT_FIBRE; return PORT_MII; } /* * Enable EEE on the RTL8218B PHYs * The method used is not the preferred way (which would be based on the MAC-EEE state, * but the only way that works since the kernel first enables EEE in the MAC * and then sets up the PHY. The MAC-based approach would require the oppsite. */ void rtl8218d_eee_set(int port, bool enable) { u32 val; bool an_enabled; pr_debug("In %s %d, enable %d\n", __func__, port, enable); /* Set GPHY page to copper */ write_phy(port, 0xa42, 30, 0x0001); read_phy(port, 0, 0, &val); an_enabled = val & BIT(12); /* Enable 100M (bit 1) / 1000M (bit 2) EEE */ read_mmd_phy(port, 7, 60, &val); val |= BIT(2) | BIT(1); write_mmd_phy(port, 7, 60, enable ? 0x6 : 0); /* 500M EEE ability */ read_phy(port, 0xa42, 20, &val); if (enable) val |= BIT(7); else val &= ~BIT(7); write_phy(port, 0xa42, 20, val); /* Restart AN if enabled */ if (an_enabled) { read_phy(port, 0, 0, &val); val |= BIT(9); write_phy(port, 0, 0, val); } /* GPHY page back to auto*/ write_phy(port, 0xa42, 30, 0); } static int rtl8218b_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 val; int addr = phydev->mdio.addr; pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled); /* Set GPHY page to copper */ write_phy(addr, 0xa42, 29, 0x0001); read_phy(addr, 7, 60, &val); if (e->eee_enabled) { // Verify vs MAC-based EEE e->eee_enabled = !!(val & BIT(7)); if (!e->eee_enabled) { read_phy(addr, 0x0A43, 25, &val); e->eee_enabled = !!(val & BIT(4)); } } pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled); /* GPHY page to auto */ write_phy(addr, 0xa42, 29, 0x0000); return 0; } static int rtl8218d_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 val; int addr = phydev->mdio.addr; pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled); /* Set GPHY page to copper */ write_phy(addr, 0xa42, 30, 0x0001); read_phy(addr, 7, 60, &val); if (e->eee_enabled) e->eee_enabled = !!(val & BIT(7)); pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled); /* GPHY page to auto */ write_phy(addr, 0xa42, 30, 0x0000); return 0; } static int rtl8214fc_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 poll_state; int port = phydev->mdio.addr; bool an_enabled; u32 val; pr_debug("In %s port %d, enabled %d\n", __func__, port, e->eee_enabled); if (rtl8380_rtl8214fc_media_is_fibre(port)) { netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", port); return -ENOTSUPP; } poll_state = disable_polling(port); /* Set GPHY page to copper */ write_phy(port, 0xa42, 29, 0x0001); // Get auto-negotiation status read_phy(port, 0, 0, &val); an_enabled = val & BIT(12); pr_info("%s: aneg: %d\n", __func__, an_enabled); read_phy(port, 0x0A43, 25, &val); val &= ~BIT(5); // Use MAC-based EEE write_phy(port, 0x0A43, 25, val); /* Enable 100M (bit 1) / 1000M (bit 2) EEE */ write_phy(port, 7, 60, e->eee_enabled ? 0x6 : 0); /* 500M EEE ability */ read_phy(port, 0xa42, 20, &val); if (e->eee_enabled) val |= BIT(7); else val &= ~BIT(7); write_phy(port, 0xa42, 20, val); /* Restart AN if enabled */ if (an_enabled) { pr_info("%s: doing aneg\n", __func__); read_phy(port, 0, 0, &val); val |= BIT(9); write_phy(port, 0, 0, val); } /* GPHY page back to auto*/ write_phy(port, 0xa42, 29, 0); resume_polling(poll_state); return 0; } static int rtl8214fc_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { int addr = phydev->mdio.addr; pr_debug("In %s port %d, enabled %d\n", __func__, addr, e->eee_enabled); if (rtl8380_rtl8214fc_media_is_fibre(addr)) { netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", addr); return -ENOTSUPP; } return rtl8218b_get_eee(phydev, e); } static int rtl8218b_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { int port = phydev->mdio.addr; u64 poll_state; u32 val; bool an_enabled; pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled); poll_state = disable_polling(port); /* Set GPHY page to copper */ write_phy(port, 0, 30, 0x0001); read_phy(port, 0, 0, &val); an_enabled = val & BIT(12); if (e->eee_enabled) { /* 100/1000M EEE Capability */ write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x003C); write_phy(port, 0, 13, 0x4007); write_phy(port, 0, 14, 0x0006); read_phy(port, 0x0A43, 25, &val); val |= BIT(4); write_phy(port, 0x0A43, 25, val); } else { /* 100/1000M EEE Capability */ write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x003C); write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x0000); read_phy(port, 0x0A43, 25, &val); val &= ~BIT(4); write_phy(port, 0x0A43, 25, val); } /* Restart AN if enabled */ if (an_enabled) { read_phy(port, 0, 0, &val); val |= BIT(9); write_phy(port, 0, 0, val); } /* GPHY page back to auto*/ write_phy(port, 0xa42, 30, 0); pr_info("%s done\n", __func__); resume_polling(poll_state); return 0; } static int rtl8218d_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { int addr = phydev->mdio.addr; u64 poll_state; pr_info("In %s, port %d, enabled %d\n", __func__, addr, e->eee_enabled); poll_state = disable_polling(addr); rtl8218d_eee_set(addr, (bool) e->eee_enabled); resume_polling(poll_state); return 0; } static int rtl8214c_match_phy_device(struct phy_device *phydev) { return phydev->phy_id == PHY_ID_RTL8214C; } static int rtl8380_configure_rtl8214c(struct phy_device *phydev) { u32 phy_id, val; int mac = phydev->mdio.addr; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); phydev_info(phydev, "Detected external RTL8214C\n"); /* GPHY auto conf */ write_phy(mac, 0xa42, 29, 0); return 0; } static int rtl8380_configure_rtl8214fc(struct phy_device *phydev) { u32 phy_id, val, page = 0; int i, l; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl8380_rtl8214fc_perchip; u32 *rtl8380_rtl8214fc_perport; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY id */ write_phy(mac, 0, 30, 0x0001); write_phy(mac, 0, 31, 0x0a42); write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6276) { phydev_err(phydev, "Expected external RTL8214FC, found PHY-ID %x\n", val); return -1; } phydev_info(phydev, "Detected external RTL8214FC\n"); h = rtl838x_request_fw(phydev, &rtl838x_8214fc_fw, FIRMWARE_838X_8214FC_1); if (!h) return -1; if (h->phy != 0x8214fc00) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl8380_rtl8214fc_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8380_rtl8214fc_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start; /* detect phy version */ write_phy(mac, 0xfff, 27, 0x0004); read_phy(mac, 0xfff, 28, &val); read_phy(mac, 0, 16, &val); if (val & (1 << 11)) rtl8380_rtl8214fc_on_off(mac, true); else rtl8380_phy_reset(mac); msleep(100); write_phy(mac, 0, 30, 0x0001); i = 0; while (rtl8380_rtl8214fc_perchip[i * 3] && rtl8380_rtl8214fc_perchip[i * 3 + 1]) { if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x1f) page = rtl8380_rtl8214fc_perchip[i * 3 + 2]; if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x13 && page == 0x260) { read_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0x260, 13, &val); val = (val & 0x1f00) | (rtl8380_rtl8214fc_perchip[i * 3 + 2] & 0xe0ff); write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1], val); } else { write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1], rtl8380_rtl8214fc_perchip[i * 3 + 2]); } i++; } /* Force copper medium */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x1e, 0x0001); } /* Enable PHY */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x00, 0x1140); } mdelay(100); /* Disable Autosensing */ for (i = 0; i < 4; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0x0a42, 0x10, &val); if ((val & 0x7) >= 3) break; } if (l >= 100) { phydev_err(phydev, "Could not disable autosensing\n"); return -1; } } /* Request patch */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0b82); write_phy(mac + i, 0xfff, 0x10, 0x0010); } mdelay(300); /* Verify patch readiness */ for (i = 0; i < 4; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0xb80, 0x10, &val); if (val & 0x40) break; } if (l >= 100) { phydev_err(phydev, "Could not patch PHY\n"); return -1; } } /* Use Broadcast ID method for patching */ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0xff00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); i = 0; while (rtl8380_rtl8214fc_perport[i * 2]) { write_phy(mac, 0xfff, rtl8380_rtl8214fc_perport[i * 2], rtl8380_rtl8214fc_perport[i * 2 + 1]); i++; } /*Disable broadcast ID*/ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0x00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); /* Auto medium selection */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x1e, 0x0000); } return 0; } static int rtl8214fc_match_phy_device(struct phy_device *phydev) { int addr = phydev->mdio.addr; return phydev->phy_id == PHY_ID_RTL8214FC && addr >= 24; } static int rtl8380_configure_serdes(struct phy_device *phydev) { u32 v; u32 sds_conf_value; int i; struct fw_header *h; u32 *rtl8380_sds_take_reset; u32 *rtl8380_sds_common; u32 *rtl8380_sds01_qsgmii_6275b; u32 *rtl8380_sds23_qsgmii_6275b; u32 *rtl8380_sds4_fiber_6275b; u32 *rtl8380_sds5_fiber_6275b; u32 *rtl8380_sds_reset; u32 *rtl8380_sds_release_reset; phydev_info(phydev, "Detected internal RTL8380 SERDES\n"); h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8380_1); if (!h) return -1; if (h->magic != 0x83808380) { phydev_err(phydev, "Wrong firmware file: magic number mismatch.\n"); return -1; } rtl8380_sds_take_reset = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8380_sds_common = (void *)h + sizeof(struct fw_header) + h->parts[1].start; rtl8380_sds01_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[2].start; rtl8380_sds23_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[3].start; rtl8380_sds4_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[4].start; rtl8380_sds5_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[5].start; rtl8380_sds_reset = (void *)h + sizeof(struct fw_header) + h->parts[6].start; rtl8380_sds_release_reset = (void *)h + sizeof(struct fw_header) + h->parts[7].start; /* Back up serdes power off value */ sds_conf_value = sw_r32(RTL838X_SDS_CFG_REG); pr_info("SDS power down value: %x\n", sds_conf_value); /* take serdes into reset */ i = 0; while (rtl8380_sds_take_reset[2 * i]) { sw_w32(rtl8380_sds_take_reset[2 * i + 1], rtl8380_sds_take_reset[2 * i]); i++; udelay(1000); } /* apply common serdes patch */ i = 0; while (rtl8380_sds_common[2 * i]) { sw_w32(rtl8380_sds_common[2 * i + 1], rtl8380_sds_common[2 * i]); i++; udelay(1000); } /* internal R/W enable */ sw_w32(3, RTL838X_INT_RW_CTRL); /* SerDes ports 4 and 5 are FIBRE ports */ sw_w32_mask(0x7 | 0x38, 1 | (1 << 3), RTL838X_INT_MODE_CTRL); /* SerDes module settings, SerDes 0-3 are QSGMII */ v = 0x6 << 25 | 0x6 << 20 | 0x6 << 15 | 0x6 << 10; /* SerDes 4 and 5 are 1000BX FIBRE */ v |= 0x4 << 5 | 0x4; sw_w32(v, RTL838X_SDS_MODE_SEL); pr_info("PLL control register: %x\n", sw_r32(RTL838X_PLL_CML_CTRL)); sw_w32_mask(0xfffffff0, 0xaaaaaaaf & 0xf, RTL838X_PLL_CML_CTRL); i = 0; while (rtl8380_sds01_qsgmii_6275b[2 * i]) { sw_w32(rtl8380_sds01_qsgmii_6275b[2 * i + 1], rtl8380_sds01_qsgmii_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds23_qsgmii_6275b[2 * i]) { sw_w32(rtl8380_sds23_qsgmii_6275b[2 * i + 1], rtl8380_sds23_qsgmii_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds4_fiber_6275b[2 * i]) { sw_w32(rtl8380_sds4_fiber_6275b[2 * i + 1], rtl8380_sds4_fiber_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds5_fiber_6275b[2 * i]) { sw_w32(rtl8380_sds5_fiber_6275b[2 * i + 1], rtl8380_sds5_fiber_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds_reset[2 * i]) { sw_w32(rtl8380_sds_reset[2 * i + 1], rtl8380_sds_reset[2 * i]); i++; } i = 0; while (rtl8380_sds_release_reset[2 * i]) { sw_w32(rtl8380_sds_release_reset[2 * i + 1], rtl8380_sds_release_reset[2 * i]); i++; } pr_info("SDS power down value now: %x\n", sw_r32(RTL838X_SDS_CFG_REG)); sw_w32(sds_conf_value, RTL838X_SDS_CFG_REG); pr_info("Configuration of SERDES done\n"); return 0; } static int rtl8390_configure_serdes(struct phy_device *phydev) { phydev_info(phydev, "Detected internal RTL8390 SERDES\n"); /* In autoneg state, force link, set SR4_CFG_EN_LINK_FIB1G */ sw_w32_mask(0, 1 << 18, RTL839X_SDS12_13_XSG0 + 0x0a); /* Disable EEE: Clear FRE16_EEE_RSG_FIB1G, FRE16_EEE_STD_FIB1G, * FRE16_C1_PWRSAV_EN_FIB1G, FRE16_C2_PWRSAV_EN_FIB1G * and FRE16_EEE_QUIET_FIB1G */ sw_w32_mask(0x1f << 10, 0, RTL839X_SDS12_13_XSG0 + 0xe0); return 0; } int rtl9300_configure_serdes(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; int phy_addr = phydev->mdio.addr; int sds_num = 0; int v; phydev_info(phydev, "Configuring internal RTL9300 SERDES\n"); switch (phy_addr) { case 26: sds_num = 8; break; case 27: sds_num = 9; break; default: dev_err(dev, "Not a SerDes PHY\n"); return -EINVAL; } /* Set default Medium to fibre */ v = rtl930x_read_sds_phy(sds_num, 0x1f, 11); if (v < 0) { dev_err(dev, "Cannot access SerDes PHY %d\n", phy_addr); return -EINVAL; } v |= BIT(2); rtl930x_write_sds_phy(sds_num, 0x1f, 11, v); // TODO: this needs to be configurable via ethtool/.dts pr_info("Setting 10G/1000BX auto fibre medium\n"); rtl9300_sds_rst(sds_num, 0x1b); // TODO: Apply patch set for fibre type return 0; } static int rtl8214fc_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; /* 839x has internal SerDes */ if (soc_info.id == 0x8393) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8214FC"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done whil patching still possible */ return rtl8380_configure_rtl8214fc(phydev); } return 0; } static int rtl8214c_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8214C"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done whil patching still possible */ return rtl8380_configure_rtl8214c(phydev); } return 0; } static int rtl8218b_ext_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8218B (external)"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8) && soc_info.family == RTL8380_FAMILY_ID) { /* Configuration must be done while patching still possible */ return rtl8380_configure_ext_rtl8218b(phydev); } return 0; } static int rtl8218b_int_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8380_FAMILY_ID) return -ENODEV; if (addr >= 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8218B (internal)"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done while patching still possible */ return rtl8380_configure_int_rtl8218b(phydev); } return 0; } static int rtl8218d_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; pr_info("%s: id: %d\n", __func__, addr); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8218D"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done while patching still possible */ // TODO: return configure_rtl8218d(phydev); } return 0; } static int rtl8226_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; pr_info("%s: id: %d\n", __func__, addr); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8226"; return 0; } static int rtl838x_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8380_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8380 Serdes"; /* On the RTL8380M, PHYs 24-27 connect to the internal SerDes */ if (soc_info.id == 0x8380) { if (addr == 24) return rtl8380_configure_serdes(phydev); return 0; } return -ENODEV; } static int rtl8393_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; pr_info("%s: id: %d\n", __func__, addr); if (soc_info.family != RTL8390_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8393 Serdes"; return rtl8390_configure_serdes(phydev); } static int rtl8390_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8390_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8390 Serdes"; return rtl8390_configure_generic(phydev); } static int rtl9300_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL9300_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL9300 Serdes"; return rtl9300_configure_serdes(phydev); } static struct phy_driver rtl83xx_phy_driver[] = { { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214C), .name = "Realtek RTL8214C", .features = PHY_GBIT_FEATURES, .match_phy_device = rtl8214c_match_phy_device, .probe = rtl8214c_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC), .name = "Realtek RTL8214FC", .features = PHY_GBIT_FIBRE_FEATURES, .match_phy_device = rtl8214fc_match_phy_device, .probe = rtl8214fc_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_port = rtl8214fc_set_port, .get_port = rtl8214fc_get_port, .set_eee = rtl8214fc_set_eee, .get_eee = rtl8214fc_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_E), .name = "Realtek RTL8218B (external)", .features = PHY_GBIT_FEATURES, .match_phy_device = rtl8218b_ext_match_phy_device, .probe = rtl8218b_ext_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_eee = rtl8218b_set_eee, .get_eee = rtl8218b_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218D), .name = "REALTEK RTL8218D", .features = PHY_GBIT_FEATURES, .probe = rtl8218d_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .set_eee = rtl8218d_set_eee, .get_eee = rtl8218d_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8226), .name = "REALTEK RTL8226", .features = PHY_GBIT_FEATURES, .probe = rtl8226_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8226_read_mmd, .write_mmd = rtl8226_write_mmd, .read_page = rtl8226_read_page, .write_page = rtl8226_write_page, .read_status = rtl8226_read_status, .config_aneg = rtl8226_config_aneg, .set_eee = rtl8226_set_eee, .get_eee = rtl8226_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I), .name = "Realtek RTL8218B (internal)", .features = PHY_GBIT_FEATURES, .probe = rtl8218b_int_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_eee = rtl8218b_set_eee, .get_eee = rtl8218b_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I), .name = "Realtek RTL8380 SERDES", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl838x_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .read_status = rtl8380_read_status, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8393_I), .name = "Realtek RTL8393 SERDES", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl8393_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_status = rtl8393_read_status, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8390_GENERIC), .name = "Realtek RTL8390 Generic", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl8390_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL9300_I), .name = "REALTEK RTL9300 SERDES", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl9300_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, }, }; module_phy_driver(rtl83xx_phy_driver); static struct mdio_device_id __maybe_unused rtl83xx_tbl[] = { { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC) }, { } }; MODULE_DEVICE_TABLE(mdio, rtl83xx_tbl); MODULE_AUTHOR("B. Koblitz"); MODULE_DESCRIPTION("RTL83xx PHY driver"); MODULE_LICENSE("GPL");