// SPDX-License-Identifier: GPL-2.0-only #include #include "rtl83xx.h" extern struct mutex smi_lock; extern struct rtl83xx_soc_info soc_info; /* Definition of the RTL930X-specific template field IDs as used in the PIE */ enum template_field_id { TEMPLATE_FIELD_SPM0 = 0, // Source portmask ports 0-15 TEMPLATE_FIELD_SPM1 = 1, // Source portmask ports 16-31 TEMPLATE_FIELD_DMAC0 = 2, // Destination MAC [15:0] TEMPLATE_FIELD_DMAC1 = 3, // Destination MAC [31:16] TEMPLATE_FIELD_DMAC2 = 4, // Destination MAC [47:32] TEMPLATE_FIELD_SMAC0 = 5, // Source MAC [15:0] TEMPLATE_FIELD_SMAC1 = 6, // Source MAC [31:16] TEMPLATE_FIELD_SMAC2 = 7, // Source MAC [47:32] TEMPLATE_FIELD_ETHERTYPE = 8, // Ethernet frame type field TEMPLATE_FIELD_OTAG = 9, TEMPLATE_FIELD_ITAG = 10, TEMPLATE_FIELD_SIP0 = 11, TEMPLATE_FIELD_SIP1 = 12, TEMPLATE_FIELD_DIP0 = 13, TEMPLATE_FIELD_DIP1 = 14, TEMPLATE_FIELD_IP_TOS_PROTO = 15, TEMPLATE_FIELD_L4_SPORT = 16, TEMPLATE_FIELD_L4_DPORT = 17, TEMPLATE_FIELD_L34_HEADER = 18, TEMPLATE_FIELD_TCP_INFO = 19, TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 20, TEMPLATE_FIELD_FIELD_SELECTOR_0 = 21, TEMPLATE_FIELD_FIELD_SELECTOR_1 = 22, TEMPLATE_FIELD_FIELD_SELECTOR_2 = 23, TEMPLATE_FIELD_FIELD_SELECTOR_3 = 24, TEMPLATE_FIELD_FIELD_SELECTOR_4 = 25, TEMPLATE_FIELD_FIELD_SELECTOR_5 = 26, TEMPLATE_FIELD_SIP2 = 27, TEMPLATE_FIELD_SIP3 = 28, TEMPLATE_FIELD_SIP4 = 29, TEMPLATE_FIELD_SIP5 = 30, TEMPLATE_FIELD_SIP6 = 31, TEMPLATE_FIELD_SIP7 = 32, TEMPLATE_FIELD_DIP2 = 33, TEMPLATE_FIELD_DIP3 = 34, TEMPLATE_FIELD_DIP4 = 35, TEMPLATE_FIELD_DIP5 = 36, TEMPLATE_FIELD_DIP6 = 37, TEMPLATE_FIELD_DIP7 = 38, TEMPLATE_FIELD_PKT_INFO = 39, TEMPLATE_FIELD_FLOW_LABEL = 40, TEMPLATE_FIELD_DSAP_SSAP = 41, TEMPLATE_FIELD_SNAP_OUI = 42, TEMPLATE_FIELD_FWD_VID = 43, TEMPLATE_FIELD_RANGE_CHK = 44, TEMPLATE_FIELD_VLAN_GMSK = 45, // VLAN Group Mask/IP range check TEMPLATE_FIELD_DLP = 46, TEMPLATE_FIELD_META_DATA = 47, TEMPLATE_FIELD_SRC_FWD_VID = 48, TEMPLATE_FIELD_SLP = 49, }; /* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in * RTL930X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag: */ #define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG // Number of fixed templates predefined in the RTL9300 SoC #define N_FIXED_TEMPLATES 5 // RTL9300 specific predefined templates static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] = { { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1 }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1 }, { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT }, { TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2, TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5, TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2, TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5, TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM1 }, }; void rtl930x_print_matrix(void) { int i; struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); for (i = 0; i < 29; i++) { rtl_table_read(r, i); pr_debug("> %08x\n", sw_r32(rtl_table_data(r, 0))); } rtl_table_release(r); } inline void rtl930x_exec_tbl0_cmd(u32 cmd) { sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_0); do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_0) & (1 << 17)); } inline void rtl930x_exec_tbl1_cmd(u32 cmd) { sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_1); do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_1) & (1 << 17)); } inline int rtl930x_tbl_access_data_0(int i) { return RTL930X_TBL_ACCESS_DATA_0(i); } static inline int rtl930x_l2_port_new_salrn(int p) { return RTL930X_L2_PORT_SALRN(p); } static inline int rtl930x_l2_port_new_sa_fwd(int p) { // TODO: The definition of the fields changed, because of the master-cpu in a stack return RTL930X_L2_PORT_NEW_SA_FWD(p); } inline static int rtl930x_trk_mbr_ctr(int group) { return RTL930X_TRK_MBR_CTRL + (group << 2); } static void rtl930x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w; // Read VLAN table (1) via register 0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1); rtl_table_read(r, vlan); v = sw_r32(rtl_table_data(r, 0)); w = sw_r32(rtl_table_data(r, 1)); pr_debug("VLAN_READ %d: %08x %08x\n", vlan, v, w); rtl_table_release(r); info->tagged_ports = v >> 3; info->profile_id = (w >> 24) & 7; info->hash_mc_fid = !!(w & BIT(27)); info->hash_uc_fid = !!(w & BIT(28)); info->fid = ((v & 0x7) << 3) | ((w >> 29) & 0x7); // Read UNTAG table via table register 2 r = rtl_table_get(RTL9300_TBL_2, 0); rtl_table_read(r, vlan); v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); info->untagged_ports = v >> 3; } static void rtl930x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w; // Access VLAN table (1) via register 0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1); v = info->tagged_ports << 3; v |= ((u32)info->fid) >> 3; w = ((u32)info->fid) << 29; w |= info->hash_mc_fid ? BIT(27) : 0; w |= info->hash_uc_fid ? BIT(28) : 0; w |= info->profile_id << 24; sw_w32(v, rtl_table_data(r, 0)); sw_w32(w, rtl_table_data(r, 1)); rtl_table_write(r, vlan); rtl_table_release(r); } void rtl930x_vlan_profile_dump(int profile) { u32 p[5]; if (profile < 0 || profile > 7) return; p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile)); p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4); p[2] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 8) & 0x1FFFFFFF; p[3] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 12) & 0x1FFFFFFF; p[4] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 16) & 0x1FFFFFFF; pr_info("VLAN %d: L2 learn: %d; Unknown MC PMasks: L2 %0x, IPv4 %0x, IPv6: %0x", profile, p[0] & (3 << 21), p[2], p[3], p[4]); pr_info(" Routing enabled: IPv4 UC %c, IPv6 UC %c, IPv4 MC %c, IPv6 MC %c\n", p[0] & BIT(17) ? 'y' : 'n', p[0] & BIT(16) ? 'y' : 'n', p[0] & BIT(13) ? 'y' : 'n', p[0] & BIT(12) ? 'y' : 'n'); pr_info(" Bridge enabled: IPv4 MC %c, IPv6 MC %c,\n", p[0] & BIT(15) ? 'y' : 'n', p[0] & BIT(14) ? 'y' : 'n'); pr_info("VLAN profile %d: raw %08x %08x %08x %08x %08x\n", profile, p[0], p[1], p[2], p[3], p[4]); } static void rtl930x_vlan_set_untagged(u32 vlan, u64 portmask) { struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 0); sw_w32(portmask << 3, rtl_table_data(r, 0)); rtl_table_write(r, vlan); rtl_table_release(r); } /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer */ static void rtl930x_vlan_fwd_on_inner(int port, bool is_set) { // Always set all tag modes to fwd based on either inner or outer tag if (is_set) sw_w32_mask(0, 0xf, RTL930X_VLAN_PORT_FWD + (port << 2)); else sw_w32_mask(0xf, 0, RTL930X_VLAN_PORT_FWD + (port << 2)); } static void rtl930x_vlan_profile_setup(int profile) { u32 p[5]; pr_info("In %s\n", __func__); p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile)); p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4); // Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12); p[2] = 0x1fffffff; // L2 unknown MC flooding portmask all ports, including the CPU-port p[3] = 0x1fffffff; // IPv4 unknown MC flooding portmask p[4] = 0x1fffffff; // IPv6 unknown MC flooding portmask sw_w32(p[0], RTL930X_VLAN_PROFILE_SET(profile)); sw_w32(p[1], RTL930X_VLAN_PROFILE_SET(profile) + 4); sw_w32(p[2], RTL930X_VLAN_PROFILE_SET(profile) + 8); sw_w32(p[3], RTL930X_VLAN_PROFILE_SET(profile) + 12); sw_w32(p[4], RTL930X_VLAN_PROFILE_SET(profile) + 16); pr_info("Leaving %s\n", __func__); } static void rtl930x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 17 /* Execute cmd */ | 0 << 16 /* Read */ | 4 << 12 /* Table type 0b10 */ | (msti & 0xfff); priv->r->exec_tbl0_cmd(cmd); for (i = 0; i < 2; i++) port_state[i] = sw_r32(RTL930X_TBL_ACCESS_DATA_0(i)); pr_debug("MSTI: %d STATE: %08x, %08x\n", msti, port_state[0], port_state[1]); } static void rtl930x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 17 /* Execute cmd */ | 1 << 16 /* Write */ | 4 << 12 /* Table type 4 */ | (msti & 0xfff); for (i = 0; i < 2; i++) sw_w32(port_state[i], RTL930X_TBL_ACCESS_DATA_0(i)); priv->r->exec_tbl0_cmd(cmd); } static inline int rtl930x_mac_force_mode_ctrl(int p) { return RTL930X_MAC_FORCE_MODE_CTRL + (p << 2); } static inline int rtl930x_mac_port_ctrl(int p) { return RTL930X_MAC_L2_PORT_CTRL(p); } static inline int rtl930x_mac_link_spd_sts(int p) { return RTL930X_MAC_LINK_SPD_STS(p); } static u64 rtl930x_l2_hash_seed(u64 mac, u32 vid) { u64 v = vid; v <<= 48; v |= mac; return v; } /* * Calculate both the block 0 and the block 1 hash by applyingthe same hash * algorithm as the one used currently by the ASIC to the seed, and return * both hashes in the lower and higher word of the return value since only 12 bit of * the hash are significant */ static u32 rtl930x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed) { u32 k0, k1, h1, h2, h; k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff)); h1 = (seed >> 11) & 0x7ff; h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f); h2 = (seed >> 33) & 0x7ff; h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f); k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2 ^ ((seed >> 22) & 0x7ff) ^ h1 ^ (seed & 0x7ff)); // Algorithm choice for block 0 if (sw_r32(RTL930X_L2_CTRL) & BIT(0)) h = k1; else h = k0; /* Algorithm choice for block 1 * Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second * half of hash-space * 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket * divided by 2 to divide the hash space in 2 */ if (sw_r32(RTL930X_L2_CTRL) & BIT(1)) h |= (k1 + 2048) << 16; else h |= (k0 + 2048) << 16; return h; } /* * Fills an L2 entry structure from the SoC registers */ static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e) { pr_debug("In %s valid?\n", __func__); e->valid = !!(r[2] & BIT(31)); if (!e->valid) return; pr_debug("In %s is valid\n", __func__); e->is_ip_mc = false; e->is_ipv6_mc = false; // TODO: Is there not a function to copy directly MAC memory? e->mac[0] = (r[0] >> 24); e->mac[1] = (r[0] >> 16); e->mac[2] = (r[0] >> 8); e->mac[3] = r[0]; e->mac[4] = (r[1] >> 24); e->mac[5] = (r[1] >> 16); e->next_hop = !!(r[2] & BIT(12)); e->rvid = r[1] & 0xfff; /* Is it a unicast entry? check multicast bit */ if (!(e->mac[0] & 1)) { e->type = L2_UNICAST; e->is_static = !!(r[2] & BIT(14)); e->port = (r[2] >> 20) & 0x3ff; // Check for trunk port if (r[2] & BIT(30)) { e->is_trunk = true; e->stack_dev = (e->port >> 9) & 1; e->trunk = e->port & 0x3f; } else { e->is_trunk = false; e->stack_dev = (e->port >> 6) & 0xf; e->port = e->port & 0x3f; } e->block_da = !!(r[2] & BIT(15)); e->block_sa = !!(r[2] & BIT(16)); e->suspended = !!(r[2] & BIT(13)); e->age = (r[2] >> 17) & 3; e->valid = true; // the UC_VID field in hardware is used for the VID or for the route id if (e->next_hop) { e->nh_route_id = r[2] & 0xfff; e->vid = 0; } else { e->vid = r[2] & 0xfff; e->nh_route_id = 0; } } else { e->valid = true; e->type = L2_MULTICAST; e->mc_portmask_index = (r[2] >> 16) & 0x3ff; } } /* * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */ static void rtl930x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e) { u32 port; if (!e->valid) { r[0] = r[1] = r[2] = 0; return; } r[2] = BIT(31); // Set valid bit r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16 | ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]); r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16; r[2] |= e->next_hop ? BIT(12) : 0; if (e->type == L2_UNICAST) { r[2] |= e->is_static ? BIT(14) : 0; r[1] |= e->rvid & 0xfff; r[2] |= (e->port & 0x3ff) << 20; if (e->is_trunk) { r[2] |= BIT(30); port = e->stack_dev << 9 | (e->port & 0x3f); } else { port = (e->stack_dev & 0xf) << 6; port |= e->port & 0x3f; } r[2] |= port << 20; r[2] |= e->block_da ? BIT(15) : 0; r[2] |= e->block_sa ? BIT(17) : 0; r[2] |= e->suspended ? BIT(13) : 0; r[2] |= (e->age & 0x3) << 17; // the UC_VID field in hardware is used for the VID or for the route id if (e->next_hop) r[2] |= e->nh_route_id & 0xfff; else r[2] |= e->vid & 0xfff; } else { // L2_MULTICAST r[2] |= (e->mc_portmask_index & 0x3ff) << 16; r[2] |= e->mc_mac_index & 0x7ff; } } /* * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table * hash is the id of the bucket and pos is the position of the entry in that bucket * The data read from the SoC is filled into rtl838x_l2_entry */ static u64 rtl930x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0); u32 idx; int i; u64 mac; u64 seed; pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos); /* On the RTL93xx, 2 different hash algorithms are used making it a total of * 8 buckets that need to be searched, 4 for each hash-half * Use second hash space when bucket is between 4 and 8 */ if (pos >= 4) { pos -= 4; hash >>= 16; } else { hash &= 0xffff; } idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos); rtl_table_read(q, idx); for (i = 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl930x_fill_l2_entry(r, e); pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop); if (!e->valid) return 0; mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24 | ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]); seed = rtl930x_l2_hash_seed(mac, e->rvid); pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed); // return vid with concatenated mac as unique id return seed; } static void rtl930x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0); u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket int i; pr_info("%s: hash %d, pos %d\n", __func__, hash, pos); pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx, e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]); rtl930x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl930x_read_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl930x_fill_l2_entry(r, e); if (!e->valid) return 0; // return mac with concatenated vid as unique id return ((u64)r[0] << 28) | ((r[1] & 0xffff0000) >> 4) | e->vid; } static void rtl930x_write_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); // Access L2 Table 1 int i; rtl930x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static void dump_l2_entry(struct rtl838x_l2_entry *e) { pr_info("MAC: %02x:%02x:%02x:%02x:%02x:%02x vid: %d, rvid: %d, port: %d, valid: %d\n", e->mac[0], e->mac[1], e->mac[2], e->mac[3], e->mac[4], e->mac[5], e->vid, e->rvid, e->port, e->valid); pr_info("Type: %d, is_static: %d, is_ip_mc: %d, is_ipv6_mc: %d, block_da: %d\n", e->type, e->is_static, e->is_ip_mc, e->is_ipv6_mc, e->block_da); pr_info(" block_sa: %d, suspended: %d, next_hop: %d, age: %d, is_trunk: %d, trunk: %d\n", e->block_sa, e->suspended, e->next_hop, e->age, e->is_trunk, e->trunk); if (e->is_ip_mc || e->is_ipv6_mc) pr_info(" mc_portmask_index: %d, mc_gip: %d, mc_sip: %d\n", e->mc_portmask_index, e->mc_gip, e->mc_sip); pr_info(" stac_dev: %d, nh_route_id: %d, port: %d, dev_id\n", e->stack_dev, e->nh_route_id, e->port); } /* * Add an L2 nexthop entry for the L3 routing system in the SoC * Use VID and MAC in rtl838x_l2_entry to identify either a free slot in the L2 hash table * or mark an existing entry as a nexthop by setting it's nexthop bit * Called from the L3 layer * The index in the L2 hash table is filled into nh->l2_id; */ static int rtl930x_l2_nexthop_add(struct rtl838x_switch_priv *priv, struct rtl838x_nexthop *nh) { struct rtl838x_l2_entry e; u64 seed = rtl930x_l2_hash_seed(nh->mac, nh->vid); u32 key = rtl930x_l2_hash_key(priv, seed); int i, idx = -1; u64 entry; pr_info("%s searching for %08llx vid %d with key %d, seed: %016llx\n", __func__, nh->mac, nh->vid, key, seed); e.type = L2_UNICAST; e.rvid = nh->fid; // Verify its the forwarding ID!!! l2_entry.un.unicast.fid u64_to_ether_addr(nh->mac, &e.mac[0]); e.port = RTL930X_PORT_IGNORE; // Loop over all entries in the hash-bucket and over the second block on 93xx SoCs for (i = 0; i < priv->l2_bucket_size; i++) { entry = rtl930x_read_l2_entry_using_hash(key, i, &e); pr_info("%s i: %d, entry %016llx, seed %016llx\n", __func__, i, entry, seed); if (e.valid && e.next_hop) continue; if (!e.valid || ((entry & 0x0fffffffffffffffULL) == seed)) { idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1 : ((key << 2) | i) & 0xffff; break; } } pr_info("%s: found idx %d and i %d\n", __func__, idx, i); if (idx < 0) { pr_err("%s: No more L2 forwarding entries available\n", __func__); return -1; } // Found an existing or empty entry, make it a nexthop entry pr_info("%s BEFORE -> key %d, pos: %d, index: %d\n", __func__, key, i, idx); dump_l2_entry(&e); nh->l2_id = idx; // Found an existing (e->valid is true) or empty entry, make it a nexthop entry if (e.valid) { nh->port = e.port; nh->fid = e.rvid; nh->vid = e.vid; nh->dev_id = e.stack_dev; } else { e.valid = true; e.is_static = false; e.vid = nh->vid; e.rvid = nh->fid; e.port = RTL930X_PORT_IGNORE; u64_to_ether_addr(nh->mac, &e.mac[0]); } e.next_hop = true; // For nexthop entries, the vid field in the table is used to denote the dest mac_id e.nh_route_id = nh->mac_id; pr_info("%s AFTER\n", __func__); dump_l2_entry(&e); rtl930x_write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e); // _dal_longan_l2_nexthop_add return 0; } static u64 rtl930x_read_mcast_pmask(int idx) { u32 portmask; // Read MC_PORTMASK (2) via register RTL9300_TBL_L2 struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2); rtl_table_read(q, idx); portmask = sw_r32(rtl_table_data(q, 0)); portmask >>= 3; rtl_table_release(q); pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, portmask); return portmask; } static void rtl930x_write_mcast_pmask(int idx, u64 portmask) { u32 pm = portmask; // Access MC_PORTMASK (2) via register RTL9300_TBL_L2 struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2); pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, pm); pm <<= 3; sw_w32(pm, rtl_table_data(q, 0)); rtl_table_write(q, idx); rtl_table_release(q); } u64 rtl930x_traffic_get(int source) { u32 v; struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); return v >> 3; } /* * Enable traffic between a source port and a destination port matrix */ void rtl930x_traffic_set(int source, u64 dest_matrix) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); sw_w32((dest_matrix << 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl930x_traffic_enable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl930x_traffic_disable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl9300_dump_debug(void) { int i; u16 r = RTL930X_STAT_PRVTE_DROP_COUNTER0; for (i = 0; i < 10; i ++) { pr_info("# %d %08x %08x %08x %08x %08x %08x %08x %08x\n", i * 8, sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12), sw_r32(r + 16), sw_r32(r + 20), sw_r32(r + 24), sw_r32(r + 28)); r += 32; } pr_info("# %08x %08x %08x %08x %08x\n", sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12), sw_r32(r + 16)); rtl930x_print_matrix(); pr_info("RTL930X_L2_PORT_SABLK_CTRL: %08x, RTL930X_L2_PORT_DABLK_CTRL %08x\n", sw_r32(RTL930X_L2_PORT_SABLK_CTRL), sw_r32(RTL930X_L2_PORT_DABLK_CTRL) ); } irqreturn_t rtl930x_switch_irq(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; u32 status = sw_r32(RTL930X_ISR_GLB); u32 ports = sw_r32(RTL930X_ISR_PORT_LINK_STS_CHG); u32 link; int i; /* Clear status */ sw_w32(ports, RTL930X_ISR_PORT_LINK_STS_CHG); pr_info("RTL9300 Link change: status: %x, ports %x\n", status, ports); rtl9300_dump_debug(); for (i = 0; i < 28; i++) { if (ports & BIT(i)) { /* Read the register twice because of issues with latency at least * with the external RTL8226 PHY on the XGS1210 */ link = sw_r32(RTL930X_MAC_LINK_STS); link = sw_r32(RTL930X_MAC_LINK_STS); if (link & BIT(i)) dsa_port_phylink_mac_change(ds, i, true); else dsa_port_phylink_mac_change(ds, i, false); } } return IRQ_HANDLED; } int rtl9300_sds_power(int mac, int val) { int sds_num; u32 mode; // TODO: these numbers are hard-coded for the Zyxel XGS1210 12 Switch pr_info("SerDes: %s %d\n", __func__, mac); switch (mac) { case 24: sds_num = 6; mode = 0x12; // HISGMII break; case 25: sds_num = 7; mode = 0x12; // HISGMII break; case 26: sds_num = 8; mode = 0x1b; // 10GR/1000BX auto break; case 27: sds_num = 9; mode = 0x1b; // 10GR/1000BX auto break; default: return -1; } if (!val) mode = 0x1f; // OFF rtl9300_sds_rst(sds_num, mode); return 0; } int rtl930x_write_phy(u32 port, u32 page, u32 reg, u32 val) { u32 v; int err = 0; pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, val); if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; val &= 0xffff; mutex_lock(&smi_lock); sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0); sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); v = reg << 20 | page << 3 | 0x1f << 15 | BIT(2) | BIT(0); sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & 0x1); if (v & 0x2) err = -EIO; mutex_unlock(&smi_lock); return err; } int rtl930x_read_phy(u32 port, u32 page, u32 reg, u32 *val) { u32 v; int err = 0; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); v = reg << 20 | page << 3 | 0x1f << 15 | 1; sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while ( v & 0x1); if (v & BIT(25)) { pr_debug("Error reading phy %d, register %d\n", port, reg); err = -EIO; } *val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff); pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, *val); mutex_unlock(&smi_lock); return err; } /* * Write to an mmd register of the PHY */ int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0); // Set data to write sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3); v = BIT(2) | BIT(1) | BIT(0); // WRITE | MMD-access | EXEC sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & BIT(0)); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err); mutex_unlock(&smi_lock); return err; } /* * Read an mmd register of the PHY */ int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3); v = BIT(1) | BIT(0); // MMD-access | EXEC sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & BIT(0)); // There is no error-checking via BIT 25 of v, as it does not seem to be set correctly *val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err); mutex_unlock(&smi_lock); return err; } /* * Calculate both the block 0 and the block 1 hash, and return in * lower and higher word of the return value since only 12 bit of * the hash are significant */ u32 rtl930x_hash(struct rtl838x_switch_priv *priv, u64 seed) { u32 k0, k1, h1, h2, h; k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff)); h1 = (seed >> 11) & 0x7ff; h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f); h2 = (seed >> 33) & 0x7ff; h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f); k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2 ^ ((seed >> 22) & 0x7ff) ^ h1 ^ (seed & 0x7ff)); // Algorithm choice for block 0 if (sw_r32(RTL930X_L2_CTRL) & BIT(0)) h = k1; else h = k0; /* Algorithm choice for block 1 * Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second * half of hash-space * 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket * divided by 2 to divide the hash space in 2 */ if (sw_r32(RTL930X_L2_CTRL) & BIT(1)) h |= (k1 + 2048) << 16; else h |= (k0 + 2048) << 16; return h; } /* * Enables or disables the EEE/EEEP capability of a port */ void rtl930x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable) { u32 v; // This works only for Ethernet ports, and on the RTL930X, ports from 26 are SFP if (port >= 26) return; pr_debug("In %s: setting port %d to %d\n", __func__, port, enable); v = enable ? 0x3f : 0x0; // Set EEE/EEEP state for 100, 500, 1000MBit and 2.5, 5 and 10GBit sw_w32_mask(0, v << 10, rtl930x_mac_force_mode_ctrl(port)); // Set TX/RX EEE state v = enable ? 0x3 : 0x0; sw_w32(v, RTL930X_EEE_CTRL(port)); priv->ports[port].eee_enabled = enable; } /* * Get EEE own capabilities and negotiation result */ int rtl930x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port) { u32 link, a; if (port >= 26) return -ENOTSUPP; pr_info("In %s, port %d\n", __func__, port); link = sw_r32(RTL930X_MAC_LINK_STS); link = sw_r32(RTL930X_MAC_LINK_STS); if (!(link & BIT(port))) return 0; pr_info("Setting advertised\n"); if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(10)) e->advertised |= ADVERTISED_100baseT_Full; if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(12)) e->advertised |= ADVERTISED_1000baseT_Full; if (priv->ports[port].is2G5 && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(13)) { pr_info("ADVERTISING 2.5G EEE\n"); e->advertised |= ADVERTISED_2500baseX_Full; } if (priv->ports[port].is10G && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(15)) e->advertised |= ADVERTISED_10000baseT_Full; a = sw_r32(RTL930X_MAC_EEE_ABLTY); a = sw_r32(RTL930X_MAC_EEE_ABLTY); pr_info("Link partner: %08x\n", a); if (a & BIT(port)) { e->lp_advertised = ADVERTISED_100baseT_Full; e->lp_advertised |= ADVERTISED_1000baseT_Full; if (priv->ports[port].is2G5) e->lp_advertised |= ADVERTISED_2500baseX_Full; if (priv->ports[port].is10G) e->lp_advertised |= ADVERTISED_10000baseT_Full; } // Read 2x to clear latched state a = sw_r32(RTL930X_EEEP_PORT_CTRL(port)); a = sw_r32(RTL930X_EEEP_PORT_CTRL(port)); pr_info("%s RTL930X_EEEP_PORT_CTRL: %08x\n", __func__, a); return 0; } static void rtl930x_init_eee(struct rtl838x_switch_priv *priv, bool enable) { int i; pr_info("Setting up EEE, state: %d\n", enable); // Setup EEE on all ports for (i = 0; i < priv->cpu_port; i++) { if (priv->ports[i].phy) rtl930x_port_eee_set(priv, i, enable); } priv->eee_enabled = enable; } static void rtl930x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index) { int block = index / PIE_BLOCK_SIZE; sw_w32_mask(0, BIT(block), RTL930X_PIE_BLK_LOOKUP_CTRL); } /* * Reads the intermediate representation of the templated match-fields of the * PIE rule in the pie_rule structure and fills in the raw data fields in the * raw register space r[]. * The register space configuration size is identical for the RTL8380/90 and RTL9300, * however the RTL9310 has 2 more registers / fields and the physical field-ids are different * on all SoCs * On the RTL9300 the mask fields are not word-aligend! */ static void rtl930x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[]) { int i; enum template_field_id field_type; u16 data, data_m; for (i = 0; i < N_FIXED_FIELDS; i++) { field_type = t[i]; data = data_m = 0; switch (field_type) { case TEMPLATE_FIELD_SPM0: data = pr->spm; data_m = pr->spm_m; break; case TEMPLATE_FIELD_SPM1: data = pr->spm >> 16; data_m = pr->spm_m >> 16; break; case TEMPLATE_FIELD_OTAG: data = pr->otag; data_m = pr->otag_m; break; case TEMPLATE_FIELD_SMAC0: data = pr->smac[4]; data = (data << 8) | pr->smac[5]; data_m = pr->smac_m[4]; data_m = (data_m << 8) | pr->smac_m[5]; break; case TEMPLATE_FIELD_SMAC1: data = pr->smac[2]; data = (data << 8) | pr->smac[3]; data_m = pr->smac_m[2]; data_m = (data_m << 8) | pr->smac_m[3]; break; case TEMPLATE_FIELD_SMAC2: data = pr->smac[0]; data = (data << 8) | pr->smac[1]; data_m = pr->smac_m[0]; data_m = (data_m << 8) | pr->smac_m[1]; break; case TEMPLATE_FIELD_DMAC0: data = pr->dmac[4]; data = (data << 8) | pr->dmac[5]; data_m = pr->dmac_m[4]; data_m = (data_m << 8) | pr->dmac_m[5]; break; case TEMPLATE_FIELD_DMAC1: data = pr->dmac[2]; data = (data << 8) | pr->dmac[3]; data_m = pr->dmac_m[2]; data_m = (data_m << 8) | pr->dmac_m[3]; break; case TEMPLATE_FIELD_DMAC2: data = pr->dmac[0]; data = (data << 8) | pr->dmac[1]; data_m = pr->dmac_m[0]; data_m = (data_m << 8) | pr->dmac_m[1]; break; case TEMPLATE_FIELD_ETHERTYPE: data = pr->ethertype; data_m = pr->ethertype_m; break; case TEMPLATE_FIELD_ITAG: data = pr->itag; data_m = pr->itag_m; break; case TEMPLATE_FIELD_SIP0: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[7]; data_m = pr->sip6_m.s6_addr16[7]; } else { data = pr->sip; data_m = pr->sip_m; } break; case TEMPLATE_FIELD_SIP1: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[6]; data_m = pr->sip6_m.s6_addr16[6]; } else { data = pr->sip >> 16; data_m = pr->sip_m >> 16; } break; case TEMPLATE_FIELD_SIP2: case TEMPLATE_FIELD_SIP3: case TEMPLATE_FIELD_SIP4: case TEMPLATE_FIELD_SIP5: case TEMPLATE_FIELD_SIP6: case TEMPLATE_FIELD_SIP7: data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; break; case TEMPLATE_FIELD_DIP0: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[7]; data_m = pr->dip6_m.s6_addr16[7]; } else { data = pr->dip; data_m = pr->dip_m; } break; case TEMPLATE_FIELD_DIP1: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[6]; data_m = pr->dip6_m.s6_addr16[6]; } else { data = pr->dip >> 16; data_m = pr->dip_m >> 16; } break; case TEMPLATE_FIELD_DIP2: case TEMPLATE_FIELD_DIP3: case TEMPLATE_FIELD_DIP4: case TEMPLATE_FIELD_DIP5: case TEMPLATE_FIELD_DIP6: case TEMPLATE_FIELD_DIP7: data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; break; case TEMPLATE_FIELD_IP_TOS_PROTO: data = pr->tos_proto; data_m = pr->tos_proto_m; break; case TEMPLATE_FIELD_L4_SPORT: data = pr->sport; data_m = pr->sport_m; break; case TEMPLATE_FIELD_L4_DPORT: data = pr->dport; data_m = pr->dport_m; break; case TEMPLATE_FIELD_DSAP_SSAP: data = pr->dsap_ssap; data_m = pr->dsap_ssap_m; break; case TEMPLATE_FIELD_TCP_INFO: data = pr->tcp_info; data_m = pr->tcp_info_m; break; case TEMPLATE_FIELD_RANGE_CHK: pr_warn("Warning: TEMPLATE_FIELD_RANGE_CHK: not configured\n"); break; default: pr_info("%s: unknown field %d\n", __func__, field_type); } // On the RTL9300, the mask fields are not word aligned! if (!(i % 2)) { r[5 - i / 2] = data; r[12 - i / 2] |= ((u32)data_m << 8); } else { r[5 - i / 2] |= ((u32)data) << 16; r[12 - i / 2] |= ((u32)data_m) << 24; r[11 - i / 2] |= ((u32)data_m) >> 8; } } } static void rtl930x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr) { pr->stacking_port = r[6] & BIT(31); pr->spn = (r[6] >> 24) & 0x7f; pr->mgnt_vlan = r[6] & BIT(23); if (pr->phase == PHASE_IACL) pr->dmac_hit_sw = r[6] & BIT(22); else pr->content_too_deep = r[6] & BIT(22); pr->not_first_frag = r[6] & BIT(21); pr->frame_type_l4 = (r[6] >> 18) & 7; pr->frame_type = (r[6] >> 16) & 3; pr->otag_fmt = (r[6] >> 15) & 1; pr->itag_fmt = (r[6] >> 14) & 1; pr->otag_exist = (r[6] >> 13) & 1; pr->itag_exist = (r[6] >> 12) & 1; pr->frame_type_l2 = (r[6] >> 10) & 3; pr->igr_normal_port = (r[6] >> 9) & 1; pr->tid = (r[6] >> 8) & 1; pr->stacking_port_m = r[12] & BIT(7); pr->spn_m = r[12] & 0x7f; pr->mgnt_vlan_m = r[13] & BIT(31); if (pr->phase == PHASE_IACL) pr->dmac_hit_sw_m = r[13] & BIT(30); else pr->content_too_deep_m = r[13] & BIT(30); pr->not_first_frag_m = r[13] & BIT(29); pr->frame_type_l4_m = (r[13] >> 26) & 7; pr->frame_type_m = (r[13] >> 24) & 3; pr->otag_fmt_m = r[13] & BIT(23); pr->itag_fmt_m = r[13] & BIT(22); pr->otag_exist_m = r[13] & BIT(21); pr->itag_exist_m = r[13] & BIT (20); pr->frame_type_l2_m = (r[13] >> 18) & 3; pr->igr_normal_port_m = r[13] & BIT(17); pr->tid_m = (r[13] >> 16) & 1; pr->valid = r[13] & BIT(15); pr->cond_not = r[13] & BIT(14); pr->cond_and1 = r[13] & BIT(13); pr->cond_and2 = r[13] & BIT(12); } static void rtl930x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr) { r[6] = pr->stacking_port ? BIT(31) : 0; r[6] |= ((u32) (pr->spn & 0x7f)) << 24; r[6] |= pr->mgnt_vlan ? BIT(23) : 0; if (pr->phase == PHASE_IACL) r[6] |= pr->dmac_hit_sw ? BIT(22) : 0; else r[6] |= pr->content_too_deep ? BIT(22) : 0; r[6] |= pr->not_first_frag ? BIT(21) : 0; r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18; r[6] |= ((u32) (pr->frame_type & 0x3)) << 16; r[6] |= pr->otag_fmt ? BIT(15) : 0; r[6] |= pr->itag_fmt ? BIT(14) : 0; r[6] |= pr->otag_exist ? BIT(13) : 0; r[6] |= pr->itag_exist ? BIT(12) : 0; r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10; r[6] |= pr->igr_normal_port ? BIT(9) : 0; r[6] |= ((u32) (pr->tid & 0x1)) << 8; r[12] |= pr->stacking_port_m ? BIT(7) : 0; r[12] |= (u32) (pr->spn_m & 0x7f); r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0; if (pr->phase == PHASE_IACL) r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0; else r[13] |= pr->content_too_deep_m ? BIT(30) : 0; r[13] |= pr->not_first_frag_m ? BIT(29) : 0; r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26; r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24; r[13] |= pr->otag_fmt_m ? BIT(23) : 0; r[13] |= pr->itag_fmt_m ? BIT(22) : 0; r[13] |= pr->otag_exist_m ? BIT(21) : 0; r[13] |= pr->itag_exist_m ? BIT(20) : 0; r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18; r[13] |= pr->igr_normal_port_m ? BIT(17) : 0; r[13] |= ((u32) (pr->tid_m & 0x1)) << 16; r[13] |= pr->valid ? BIT(15) : 0; r[13] |= pr->cond_not ? BIT(14) : 0; r[13] |= pr->cond_and1 ? BIT(13) : 0; r[13] |= pr->cond_and2 ? BIT(12) : 0; } static void rtl930x_write_pie_action(u32 r[], struct pie_rule *pr) { // Either drop or forward if (pr->drop) { r[14] |= BIT(24) | BIT(25) | BIT(26); // Do Green, Yellow and Red drops // Actually DROP, not PERMIT in Green / Yellow / Red r[14] |= BIT(23) | BIT(22) | BIT(20); } else { r[14] |= pr->fwd_sel ? BIT(27) : 0; r[14] |= pr->fwd_act << 18; r[14] |= BIT(14); // We overwrite any drop } if (pr->phase == PHASE_VACL) r[14] |= pr->fwd_sa_lrn ? BIT(15) : 0; r[13] |= pr->bypass_sel ? BIT(5) : 0; r[13] |= pr->nopri_sel ? BIT(4) : 0; r[13] |= pr->tagst_sel ? BIT(3) : 0; r[13] |= pr->ovid_sel ? BIT(1) : 0; r[14] |= pr->ivid_sel ? BIT(31) : 0; r[14] |= pr->meter_sel ? BIT(30) : 0; r[14] |= pr->mir_sel ? BIT(29) : 0; r[14] |= pr->log_sel ? BIT(28) : 0; r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 3; r[15] |= pr->log_octets ? BIT(31) : 0; r[15] |= (u32)(pr->meter_data) << 23; r[15] |= ((u32)(pr->ivid_act) << 21) & 0x3; r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff; r[16] |= ((u32)(pr->ovid_act) << 30) & 0x3; r[16] |= ((u32)(pr->ovid_data) & 0xfff) << 16; r[16] |= (pr->mir_data & 0x3) << 6; r[17] |= ((u32)(pr->tagst_data) & 0xf) << 28; r[17] |= ((u32)(pr->nopri_data) & 0x7) << 25; r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0; } void rtl930x_pie_rule_dump_raw(u32 r[]) { pr_info("Raw IACL table entry:\n"); pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]); pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]); pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]); pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]); pr_info("Fixed : %06x\n", r[6] >> 8); pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8), (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8), (r[11] << 24) | (r[12] >> 8)); pr_info("R[13]: %08x\n", r[13]); pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff); pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf); pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]); } static int rtl930x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr) { // Access IACL table (2) via register 0 struct table_reg *q = rtl_table_get(RTL9300_TBL_0, 2); u32 r[19]; int i; int block = idx / PIE_BLOCK_SIZE; u32 t_select = sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)); pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select); for (i = 0; i < 19; i++) r[i] = 0; if (!pr->valid) { rtl_table_write(q, idx); rtl_table_release(q); return 0; } rtl930x_write_pie_fixed_fields(r, pr); pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf); rtl930x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]); rtl930x_write_pie_action(r, pr); // rtl930x_pie_rule_dump_raw(r); for (i = 0; i < 19; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); return 0; } static bool rtl930x_pie_templ_has(int t, enum template_field_id field_type) { int i; enum template_field_id ft; for (i = 0; i < N_FIXED_FIELDS; i++) { ft = fixed_templates[t][i]; if (field_type == ft) return true; } return false; } /* * Verify that the rule pr is compatible with a given template t in block block * Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0 * depend on the SoC */ static int rtl930x_pie_verify_template(struct rtl838x_switch_priv *priv, struct pie_rule *pr, int t, int block) { int i; if (!pr->is_ipv6 && pr->sip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP0)) return -1; if (!pr->is_ipv6 && pr->dip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP0)) return -1; if (pr->is_ipv6) { if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1] || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3]) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP2)) return -1; if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1] || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3]) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP2)) return -1; } if (ether_addr_to_u64(pr->smac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0)) return -1; if (ether_addr_to_u64(pr->dmac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0)) return -1; // TODO: Check more i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE); if (i >= PIE_BLOCK_SIZE) return -1; return i + PIE_BLOCK_SIZE * block; } static int rtl930x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx, block, j, t; int min_block = 0; int max_block = priv->n_pie_blocks / 2; if (pr->is_egress) { min_block = max_block; max_block = priv->n_pie_blocks; } pr_debug("In %s\n", __func__); mutex_lock(&priv->pie_mutex); for (block = min_block; block < max_block; block++) { for (j = 0; j < 2; j++) { t = (sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf; pr_debug("Testing block %d, template %d, template id %d\n", block, j, t); pr_debug("%s: %08x\n", __func__, sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block))); idx = rtl930x_pie_verify_template(priv, pr, t, block); if (idx >= 0) break; } if (j < 2) break; } if (block >= priv->n_pie_blocks) { mutex_unlock(&priv->pie_mutex); return -EOPNOTSUPP; } pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j); set_bit(idx, priv->pie_use_bm); pr->valid = true; pr->tid = j; // Mapped to template number pr->tid_m = 0x1; pr->id = idx; rtl930x_pie_lookup_enable(priv, idx); rtl930x_pie_rule_write(priv, idx, pr); mutex_unlock(&priv->pie_mutex); return 0; } /* * Delete a range of Packet Inspection Engine rules */ static int rtl930x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to) { u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0); pr_debug("%s: from %d to %d\n", __func__, index_from, index_to); mutex_lock(&priv->reg_mutex); // Write from-to and execute bit into control register sw_w32(v, RTL930X_PIE_CLR_CTRL); // Wait until command has completed do { } while (sw_r32(RTL930X_PIE_CLR_CTRL) & BIT(0)); mutex_unlock(&priv->reg_mutex); return 0; } static void rtl930x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx = pr->id; rtl930x_pie_rule_del(priv, idx, idx); clear_bit(idx, priv->pie_use_bm); } static void rtl930x_pie_init(struct rtl838x_switch_priv *priv) { int i; u32 template_selectors; mutex_init(&priv->pie_mutex); pr_info("%s\n", __func__); // Enable ACL lookup on all ports, including CPU_PORT for (i = 0; i <= priv->cpu_port; i++) sw_w32(1, RTL930X_ACL_PORT_LOOKUP_CTRL(i)); // Include IPG in metering sw_w32_mask(0, 1, RTL930X_METER_GLB_CTRL); // Delete all present rules, block size is 128 on all SoC families rtl930x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1); // Assign blocks 0-7 to VACL phase (bit = 0), blocks 8-15 to IACL (bit = 1) sw_w32(0xff00, RTL930X_PIE_BLK_PHASE_CTRL); // Enable predefined templates 0, 1 for first quarter of all blocks template_selectors = 0 | (1 << 4); for (i = 0; i < priv->n_pie_blocks / 4; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for second quarter of all blocks template_selectors = 2 | (3 << 4); for (i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 0, 1 for third half of all blocks template_selectors = 0 | (1 << 4); for (i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for fourth quater of all blocks template_selectors = 2 | (3 << 4); for (i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); } static u32 rtl930x_packet_cntr_read(int counter) { u32 v; // Read LOG table (3) via register RTL9300_TBL_0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3); pr_debug("In %s, id %d\n", __func__, counter); rtl_table_read(r, counter / 2); pr_debug("Registers: %08x %08x\n", sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1))); // The table has a size of 2 registers if (counter % 2) v = sw_r32(rtl_table_data(r, 0)); else v = sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); return v; } static void rtl930x_packet_cntr_clear(int counter) { // Access LOG table (3) via register RTL9300_TBL_0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3); pr_info("In %s, id %d\n", __func__, counter); // The table has a size of 2 registers if (counter % 2) sw_w32(0, rtl_table_data(r, 0)); else sw_w32(0, rtl_table_data(r, 1)); rtl_table_write(r, counter / 2); rtl_table_release(r); } const struct rtl838x_reg rtl930x_reg = { .mask_port_reg_be = rtl838x_mask_port_reg, .set_port_reg_be = rtl838x_set_port_reg, .get_port_reg_be = rtl838x_get_port_reg, .mask_port_reg_le = rtl838x_mask_port_reg, .set_port_reg_le = rtl838x_set_port_reg, .get_port_reg_le = rtl838x_get_port_reg, .stat_port_rst = RTL930X_STAT_PORT_RST, .stat_rst = RTL930X_STAT_RST, .stat_port_std_mib = RTL930X_STAT_PORT_MIB_CNTR, .traffic_enable = rtl930x_traffic_enable, .traffic_disable = rtl930x_traffic_disable, .traffic_get = rtl930x_traffic_get, .traffic_set = rtl930x_traffic_set, .l2_ctrl_0 = RTL930X_L2_CTRL, .l2_ctrl_1 = RTL930X_L2_AGE_CTRL, .l2_port_aging_out = RTL930X_L2_PORT_AGE_CTRL, .smi_poll_ctrl = RTL930X_SMI_POLL_CTRL, // TODO: Difference to RTL9300_SMI_PRVTE_POLLING_CTRL .l2_tbl_flush_ctrl = RTL930X_L2_TBL_FLUSH_CTRL, .exec_tbl0_cmd = rtl930x_exec_tbl0_cmd, .exec_tbl1_cmd = rtl930x_exec_tbl1_cmd, .tbl_access_data_0 = rtl930x_tbl_access_data_0, .isr_glb_src = RTL930X_ISR_GLB, .isr_port_link_sts_chg = RTL930X_ISR_PORT_LINK_STS_CHG, .imr_port_link_sts_chg = RTL930X_IMR_PORT_LINK_STS_CHG, .imr_glb = RTL930X_IMR_GLB, .vlan_tables_read = rtl930x_vlan_tables_read, .vlan_set_tagged = rtl930x_vlan_set_tagged, .vlan_set_untagged = rtl930x_vlan_set_untagged, .vlan_profile_dump = rtl930x_vlan_profile_dump, .vlan_profile_setup = rtl930x_vlan_profile_setup, .vlan_fwd_on_inner = rtl930x_vlan_fwd_on_inner, .stp_get = rtl930x_stp_get, .stp_set = rtl930x_stp_set, .mac_force_mode_ctrl = rtl930x_mac_force_mode_ctrl, .mac_port_ctrl = rtl930x_mac_port_ctrl, .l2_port_new_salrn = rtl930x_l2_port_new_salrn, .l2_port_new_sa_fwd = rtl930x_l2_port_new_sa_fwd, .mir_ctrl = RTL930X_MIR_CTRL, .mir_dpm = RTL930X_MIR_DPM_CTRL, .mir_spm = RTL930X_MIR_SPM_CTRL, .mac_link_sts = RTL930X_MAC_LINK_STS, .mac_link_dup_sts = RTL930X_MAC_LINK_DUP_STS, .mac_link_spd_sts = rtl930x_mac_link_spd_sts, .mac_rx_pause_sts = RTL930X_MAC_RX_PAUSE_STS, .mac_tx_pause_sts = RTL930X_MAC_TX_PAUSE_STS, .read_l2_entry_using_hash = rtl930x_read_l2_entry_using_hash, .write_l2_entry_using_hash = rtl930x_write_l2_entry_using_hash, .read_cam = rtl930x_read_cam, .write_cam = rtl930x_write_cam, .vlan_port_egr_filter = RTL930X_VLAN_PORT_EGR_FLTR, .vlan_port_igr_filter = RTL930X_VLAN_PORT_IGR_FLTR(0), .vlan_port_pb = RTL930X_VLAN_PORT_PB_VLAN, .vlan_port_tag_sts_ctrl = RTL930X_VLAN_PORT_TAG_STS_CTRL, .trk_mbr_ctr = rtl930x_trk_mbr_ctr, .rma_bpdu_fld_pmask = RTL930X_RMA_BPDU_FLD_PMSK, .init_eee = rtl930x_init_eee, .port_eee_set = rtl930x_port_eee_set, .eee_port_ability = rtl930x_eee_port_ability, .read_mcast_pmask = rtl930x_read_mcast_pmask, .write_mcast_pmask = rtl930x_write_mcast_pmask, .pie_init = rtl930x_pie_init, .pie_rule_write = rtl930x_pie_rule_write, .pie_rule_add = rtl930x_pie_rule_add, .pie_rule_rm = rtl930x_pie_rule_rm, .packet_cntr_read = rtl930x_packet_cntr_read, .packet_cntr_clear = rtl930x_packet_cntr_clear, };