// SPDX-License-Identifier: GPL-2.0-only #include #include #include "rtl83xx.h" extern struct mutex smi_lock; extern struct rtl83xx_soc_info soc_info; /* Definition of the RTL930X-specific template field IDs as used in the PIE */ enum template_field_id { TEMPLATE_FIELD_SPM0 = 0, // Source portmask ports 0-15 TEMPLATE_FIELD_SPM1 = 1, // Source portmask ports 16-31 TEMPLATE_FIELD_DMAC0 = 2, // Destination MAC [15:0] TEMPLATE_FIELD_DMAC1 = 3, // Destination MAC [31:16] TEMPLATE_FIELD_DMAC2 = 4, // Destination MAC [47:32] TEMPLATE_FIELD_SMAC0 = 5, // Source MAC [15:0] TEMPLATE_FIELD_SMAC1 = 6, // Source MAC [31:16] TEMPLATE_FIELD_SMAC2 = 7, // Source MAC [47:32] TEMPLATE_FIELD_ETHERTYPE = 8, // Ethernet frame type field TEMPLATE_FIELD_OTAG = 9, TEMPLATE_FIELD_ITAG = 10, TEMPLATE_FIELD_SIP0 = 11, TEMPLATE_FIELD_SIP1 = 12, TEMPLATE_FIELD_DIP0 = 13, TEMPLATE_FIELD_DIP1 = 14, TEMPLATE_FIELD_IP_TOS_PROTO = 15, TEMPLATE_FIELD_L4_SPORT = 16, TEMPLATE_FIELD_L4_DPORT = 17, TEMPLATE_FIELD_L34_HEADER = 18, TEMPLATE_FIELD_TCP_INFO = 19, TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 20, TEMPLATE_FIELD_FIELD_SELECTOR_0 = 21, TEMPLATE_FIELD_FIELD_SELECTOR_1 = 22, TEMPLATE_FIELD_FIELD_SELECTOR_2 = 23, TEMPLATE_FIELD_FIELD_SELECTOR_3 = 24, TEMPLATE_FIELD_FIELD_SELECTOR_4 = 25, TEMPLATE_FIELD_FIELD_SELECTOR_5 = 26, TEMPLATE_FIELD_SIP2 = 27, TEMPLATE_FIELD_SIP3 = 28, TEMPLATE_FIELD_SIP4 = 29, TEMPLATE_FIELD_SIP5 = 30, TEMPLATE_FIELD_SIP6 = 31, TEMPLATE_FIELD_SIP7 = 32, TEMPLATE_FIELD_DIP2 = 33, TEMPLATE_FIELD_DIP3 = 34, TEMPLATE_FIELD_DIP4 = 35, TEMPLATE_FIELD_DIP5 = 36, TEMPLATE_FIELD_DIP6 = 37, TEMPLATE_FIELD_DIP7 = 38, TEMPLATE_FIELD_PKT_INFO = 39, TEMPLATE_FIELD_FLOW_LABEL = 40, TEMPLATE_FIELD_DSAP_SSAP = 41, TEMPLATE_FIELD_SNAP_OUI = 42, TEMPLATE_FIELD_FWD_VID = 43, TEMPLATE_FIELD_RANGE_CHK = 44, TEMPLATE_FIELD_VLAN_GMSK = 45, // VLAN Group Mask/IP range check TEMPLATE_FIELD_DLP = 46, TEMPLATE_FIELD_META_DATA = 47, TEMPLATE_FIELD_SRC_FWD_VID = 48, TEMPLATE_FIELD_SLP = 49, }; /* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in * RTL930X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag: */ #define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG // Number of fixed templates predefined in the RTL9300 SoC #define N_FIXED_TEMPLATES 5 // RTL9300 specific predefined templates static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] = { { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1 }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1 }, { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT }, { TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2, TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5, TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2, TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5, TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM1 }, }; void rtl930x_print_matrix(void) { int i; struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); for (i = 0; i < 29; i++) { rtl_table_read(r, i); pr_debug("> %08x\n", sw_r32(rtl_table_data(r, 0))); } rtl_table_release(r); } inline void rtl930x_exec_tbl0_cmd(u32 cmd) { sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_0); do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_0) & (1 << 17)); } inline void rtl930x_exec_tbl1_cmd(u32 cmd) { sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_1); do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_1) & (1 << 17)); } inline int rtl930x_tbl_access_data_0(int i) { return RTL930X_TBL_ACCESS_DATA_0(i); } static inline int rtl930x_l2_port_new_salrn(int p) { return RTL930X_L2_PORT_SALRN(p); } static inline int rtl930x_l2_port_new_sa_fwd(int p) { // TODO: The definition of the fields changed, because of the master-cpu in a stack return RTL930X_L2_PORT_NEW_SA_FWD(p); } inline static int rtl930x_trk_mbr_ctr(int group) { return RTL930X_TRK_MBR_CTRL + (group << 2); } static void rtl930x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w; // Read VLAN table (1) via register 0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1); rtl_table_read(r, vlan); v = sw_r32(rtl_table_data(r, 0)); w = sw_r32(rtl_table_data(r, 1)); pr_debug("VLAN_READ %d: %08x %08x\n", vlan, v, w); rtl_table_release(r); info->tagged_ports = v >> 3; info->profile_id = (w >> 24) & 7; info->hash_mc_fid = !!(w & BIT(27)); info->hash_uc_fid = !!(w & BIT(28)); info->fid = ((v & 0x7) << 3) | ((w >> 29) & 0x7); // Read UNTAG table via table register 2 r = rtl_table_get(RTL9300_TBL_2, 0); rtl_table_read(r, vlan); v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); info->untagged_ports = v >> 3; } static void rtl930x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info) { u32 v, w; // Access VLAN table (1) via register 0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1); v = info->tagged_ports << 3; v |= ((u32)info->fid) >> 3; w = ((u32)info->fid) << 29; w |= info->hash_mc_fid ? BIT(27) : 0; w |= info->hash_uc_fid ? BIT(28) : 0; w |= info->profile_id << 24; sw_w32(v, rtl_table_data(r, 0)); sw_w32(w, rtl_table_data(r, 1)); rtl_table_write(r, vlan); rtl_table_release(r); } void rtl930x_vlan_profile_dump(int profile) { u32 p[5]; if (profile < 0 || profile > 7) return; p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile)); p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4); p[2] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 8) & 0x1FFFFFFF; p[3] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 12) & 0x1FFFFFFF; p[4] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 16) & 0x1FFFFFFF; pr_info("VLAN %d: L2 learn: %d; Unknown MC PMasks: L2 %0x, IPv4 %0x, IPv6: %0x", profile, p[0] & (3 << 21), p[2], p[3], p[4]); pr_info(" Routing enabled: IPv4 UC %c, IPv6 UC %c, IPv4 MC %c, IPv6 MC %c\n", p[0] & BIT(17) ? 'y' : 'n', p[0] & BIT(16) ? 'y' : 'n', p[0] & BIT(13) ? 'y' : 'n', p[0] & BIT(12) ? 'y' : 'n'); pr_info(" Bridge enabled: IPv4 MC %c, IPv6 MC %c,\n", p[0] & BIT(15) ? 'y' : 'n', p[0] & BIT(14) ? 'y' : 'n'); pr_info("VLAN profile %d: raw %08x %08x %08x %08x %08x\n", profile, p[0], p[1], p[2], p[3], p[4]); } static void rtl930x_vlan_set_untagged(u32 vlan, u64 portmask) { struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 0); sw_w32(portmask << 3, rtl_table_data(r, 0)); rtl_table_write(r, vlan); rtl_table_release(r); } /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer */ static void rtl930x_vlan_fwd_on_inner(int port, bool is_set) { // Always set all tag modes to fwd based on either inner or outer tag if (is_set) sw_w32_mask(0, 0xf, RTL930X_VLAN_PORT_FWD + (port << 2)); else sw_w32_mask(0xf, 0, RTL930X_VLAN_PORT_FWD + (port << 2)); } static void rtl930x_vlan_profile_setup(int profile) { u32 p[5]; pr_info("In %s\n", __func__); p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile)); p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4); // Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12); p[2] = 0x1fffffff; // L2 unknown MC flooding portmask all ports, including the CPU-port p[3] = 0x1fffffff; // IPv4 unknown MC flooding portmask p[4] = 0x1fffffff; // IPv6 unknown MC flooding portmask sw_w32(p[0], RTL930X_VLAN_PROFILE_SET(profile)); sw_w32(p[1], RTL930X_VLAN_PROFILE_SET(profile) + 4); sw_w32(p[2], RTL930X_VLAN_PROFILE_SET(profile) + 8); sw_w32(p[3], RTL930X_VLAN_PROFILE_SET(profile) + 12); sw_w32(p[4], RTL930X_VLAN_PROFILE_SET(profile) + 16); } static void rtl930x_l2_learning_setup(void) { // Portmask for flooding broadcast traffic sw_w32(0x1fffffff, RTL930X_L2_BC_FLD_PMSK); // Portmask for flooding unicast traffic with unknown destination sw_w32(0x1fffffff, RTL930X_L2_UNKN_UC_FLD_PMSK); // Limit learning to maximum: 32k entries, after that just flood (bits 0-1) sw_w32((0x7fff << 2) | 0, RTL930X_L2_LRN_CONSTRT_CTRL); } static void rtl930x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 17 /* Execute cmd */ | 0 << 16 /* Read */ | 4 << 12 /* Table type 0b10 */ | (msti & 0xfff); priv->r->exec_tbl0_cmd(cmd); for (i = 0; i < 2; i++) port_state[i] = sw_r32(RTL930X_TBL_ACCESS_DATA_0(i)); pr_debug("MSTI: %d STATE: %08x, %08x\n", msti, port_state[0], port_state[1]); } static void rtl930x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 17 /* Execute cmd */ | 1 << 16 /* Write */ | 4 << 12 /* Table type 4 */ | (msti & 0xfff); for (i = 0; i < 2; i++) sw_w32(port_state[i], RTL930X_TBL_ACCESS_DATA_0(i)); priv->r->exec_tbl0_cmd(cmd); } static inline int rtl930x_mac_force_mode_ctrl(int p) { return RTL930X_MAC_FORCE_MODE_CTRL + (p << 2); } static inline int rtl930x_mac_port_ctrl(int p) { return RTL930X_MAC_L2_PORT_CTRL(p); } static inline int rtl930x_mac_link_spd_sts(int p) { return RTL930X_MAC_LINK_SPD_STS(p); } static u64 rtl930x_l2_hash_seed(u64 mac, u32 vid) { u64 v = vid; v <<= 48; v |= mac; return v; } /* * Calculate both the block 0 and the block 1 hash by applyingthe same hash * algorithm as the one used currently by the ASIC to the seed, and return * both hashes in the lower and higher word of the return value since only 12 bit of * the hash are significant */ static u32 rtl930x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed) { u32 k0, k1, h1, h2, h; k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff)); h1 = (seed >> 11) & 0x7ff; h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f); h2 = (seed >> 33) & 0x7ff; h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f); k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2 ^ ((seed >> 22) & 0x7ff) ^ h1 ^ (seed & 0x7ff)); // Algorithm choice for block 0 if (sw_r32(RTL930X_L2_CTRL) & BIT(0)) h = k1; else h = k0; /* Algorithm choice for block 1 * Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second * half of hash-space * 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket * divided by 2 to divide the hash space in 2 */ if (sw_r32(RTL930X_L2_CTRL) & BIT(1)) h |= (k1 + 2048) << 16; else h |= (k0 + 2048) << 16; return h; } /* * Fills an L2 entry structure from the SoC registers */ static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e) { pr_debug("In %s valid?\n", __func__); e->valid = !!(r[2] & BIT(31)); if (!e->valid) return; pr_debug("In %s is valid\n", __func__); e->is_ip_mc = false; e->is_ipv6_mc = false; // TODO: Is there not a function to copy directly MAC memory? e->mac[0] = (r[0] >> 24); e->mac[1] = (r[0] >> 16); e->mac[2] = (r[0] >> 8); e->mac[3] = r[0]; e->mac[4] = (r[1] >> 24); e->mac[5] = (r[1] >> 16); e->next_hop = !!(r[2] & BIT(12)); e->rvid = r[1] & 0xfff; /* Is it a unicast entry? check multicast bit */ if (!(e->mac[0] & 1)) { e->type = L2_UNICAST; e->is_static = !!(r[2] & BIT(14)); e->port = (r[2] >> 20) & 0x3ff; // Check for trunk port if (r[2] & BIT(30)) { e->is_trunk = true; e->stack_dev = (e->port >> 9) & 1; e->trunk = e->port & 0x3f; } else { e->is_trunk = false; e->stack_dev = (e->port >> 6) & 0xf; e->port = e->port & 0x3f; } e->block_da = !!(r[2] & BIT(15)); e->block_sa = !!(r[2] & BIT(16)); e->suspended = !!(r[2] & BIT(13)); e->age = (r[2] >> 17) & 3; e->valid = true; // the UC_VID field in hardware is used for the VID or for the route id if (e->next_hop) { e->nh_route_id = r[2] & 0x7ff; e->vid = 0; } else { e->vid = r[2] & 0xfff; e->nh_route_id = 0; } } else { e->valid = true; e->type = L2_MULTICAST; e->mc_portmask_index = (r[2] >> 16) & 0x3ff; } } /* * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */ static void rtl930x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e) { u32 port; if (!e->valid) { r[0] = r[1] = r[2] = 0; return; } r[2] = BIT(31); // Set valid bit r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16 | ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]); r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16; r[2] |= e->next_hop ? BIT(12) : 0; if (e->type == L2_UNICAST) { r[2] |= e->is_static ? BIT(14) : 0; r[1] |= e->rvid & 0xfff; r[2] |= (e->port & 0x3ff) << 20; if (e->is_trunk) { r[2] |= BIT(30); port = e->stack_dev << 9 | (e->port & 0x3f); } else { port = (e->stack_dev & 0xf) << 6; port |= e->port & 0x3f; } r[2] |= port << 20; r[2] |= e->block_da ? BIT(15) : 0; r[2] |= e->block_sa ? BIT(17) : 0; r[2] |= e->suspended ? BIT(13) : 0; r[2] |= (e->age & 0x3) << 17; // the UC_VID field in hardware is used for the VID or for the route id if (e->next_hop) r[2] |= e->nh_route_id & 0x7ff; else r[2] |= e->vid & 0xfff; } else { // L2_MULTICAST r[2] |= (e->mc_portmask_index & 0x3ff) << 16; r[2] |= e->mc_mac_index & 0x7ff; } } /* * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table * hash is the id of the bucket and pos is the position of the entry in that bucket * The data read from the SoC is filled into rtl838x_l2_entry */ static u64 rtl930x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0); u32 idx; int i; u64 mac; u64 seed; pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos); /* On the RTL93xx, 2 different hash algorithms are used making it a total of * 8 buckets that need to be searched, 4 for each hash-half * Use second hash space when bucket is between 4 and 8 */ if (pos >= 4) { pos -= 4; hash >>= 16; } else { hash &= 0xffff; } idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos); rtl_table_read(q, idx); for (i = 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl930x_fill_l2_entry(r, e); pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop); if (!e->valid) return 0; mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24 | ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]); seed = rtl930x_l2_hash_seed(mac, e->rvid); pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed); // return vid with concatenated mac as unique id return seed; } static void rtl930x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0); u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket int i; pr_debug("%s: hash %d, pos %d\n", __func__, hash, pos); pr_debug("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx, e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]); rtl930x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl930x_read_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl930x_fill_l2_entry(r, e); if (!e->valid) return 0; // return mac with concatenated vid as unique id return ((u64)r[0] << 28) | ((r[1] & 0xffff0000) >> 4) | e->vid; } static void rtl930x_write_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); // Access L2 Table 1 int i; rtl930x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static void dump_l2_entry(struct rtl838x_l2_entry *e) { pr_info("MAC: %02x:%02x:%02x:%02x:%02x:%02x vid: %d, rvid: %d, port: %d, valid: %d\n", e->mac[0], e->mac[1], e->mac[2], e->mac[3], e->mac[4], e->mac[5], e->vid, e->rvid, e->port, e->valid); pr_info("Type: %d, is_static: %d, is_ip_mc: %d, is_ipv6_mc: %d, block_da: %d\n", e->type, e->is_static, e->is_ip_mc, e->is_ipv6_mc, e->block_da); pr_info(" block_sa: %d, suspended: %d, next_hop: %d, age: %d, is_trunk: %d, trunk: %d\n", e->block_sa, e->suspended, e->next_hop, e->age, e->is_trunk, e->trunk); if (e->is_ip_mc || e->is_ipv6_mc) pr_info(" mc_portmask_index: %d, mc_gip: %d, mc_sip: %d\n", e->mc_portmask_index, e->mc_gip, e->mc_sip); pr_info(" stac_dev: %d, nh_route_id: %d, port: %d, dev_id\n", e->stack_dev, e->nh_route_id, e->port); } static u64 rtl930x_read_mcast_pmask(int idx) { u32 portmask; // Read MC_PORTMASK (2) via register RTL9300_TBL_L2 struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2); rtl_table_read(q, idx); portmask = sw_r32(rtl_table_data(q, 0)); portmask >>= 3; rtl_table_release(q); pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, portmask); return portmask; } static void rtl930x_write_mcast_pmask(int idx, u64 portmask) { u32 pm = portmask; // Access MC_PORTMASK (2) via register RTL9300_TBL_L2 struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2); pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, pm); pm <<= 3; sw_w32(pm, rtl_table_data(q, 0)); rtl_table_write(q, idx); rtl_table_release(q); } u64 rtl930x_traffic_get(int source) { u32 v; struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); return v >> 3; } /* * Enable traffic between a source port and a destination port matrix */ void rtl930x_traffic_set(int source, u64 dest_matrix) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); sw_w32((dest_matrix << 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl930x_traffic_enable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl930x_traffic_disable(int source, int dest) { struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6); rtl_table_read(r, source); sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0)); rtl_table_write(r, source); rtl_table_release(r); } void rtl9300_dump_debug(void) { int i; u16 r = RTL930X_STAT_PRVTE_DROP_COUNTER0; for (i = 0; i < 10; i ++) { pr_info("# %d %08x %08x %08x %08x %08x %08x %08x %08x\n", i * 8, sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12), sw_r32(r + 16), sw_r32(r + 20), sw_r32(r + 24), sw_r32(r + 28)); r += 32; } pr_info("# %08x %08x %08x %08x %08x\n", sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12), sw_r32(r + 16)); rtl930x_print_matrix(); pr_info("RTL930X_L2_PORT_SABLK_CTRL: %08x, RTL930X_L2_PORT_DABLK_CTRL %08x\n", sw_r32(RTL930X_L2_PORT_SABLK_CTRL), sw_r32(RTL930X_L2_PORT_DABLK_CTRL) ); } irqreturn_t rtl930x_switch_irq(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; u32 ports = sw_r32(RTL930X_ISR_PORT_LINK_STS_CHG); u32 link; int i; /* Clear status */ sw_w32(ports, RTL930X_ISR_PORT_LINK_STS_CHG); for (i = 0; i < 28; i++) { if (ports & BIT(i)) { /* Read the register twice because of issues with latency at least * with the external RTL8226 PHY on the XGS1210 */ link = sw_r32(RTL930X_MAC_LINK_STS); link = sw_r32(RTL930X_MAC_LINK_STS); if (link & BIT(i)) dsa_port_phylink_mac_change(ds, i, true); else dsa_port_phylink_mac_change(ds, i, false); } } return IRQ_HANDLED; } int rtl930x_write_phy(u32 port, u32 page, u32 reg, u32 val) { u32 v; int err = 0; pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, val); if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; val &= 0xffff; mutex_lock(&smi_lock); sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0); sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); v = reg << 20 | page << 3 | 0x1f << 15 | BIT(2) | BIT(0); sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & 0x1); if (v & 0x2) err = -EIO; mutex_unlock(&smi_lock); return err; } int rtl930x_read_phy(u32 port, u32 page, u32 reg, u32 *val) { u32 v; int err = 0; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); v = reg << 20 | page << 3 | 0x1f << 15 | 1; sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while ( v & 0x1); if (v & BIT(25)) { pr_debug("Error reading phy %d, register %d\n", port, reg); err = -EIO; } *val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff); pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, *val); mutex_unlock(&smi_lock); return err; } /* * Write to an mmd register of the PHY */ int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0); // Set data to write sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3); v = BIT(2) | BIT(1) | BIT(0); // WRITE | MMD-access | EXEC sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & BIT(0)); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err); mutex_unlock(&smi_lock); return err; } /* * Read an mmd register of the PHY */ int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3); v = BIT(1) | BIT(0); // MMD-access | EXEC sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1); do { v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1); } while (v & BIT(0)); // There is no error-checking via BIT 25 of v, as it does not seem to be set correctly *val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err); mutex_unlock(&smi_lock); return err; } /* * Calculate both the block 0 and the block 1 hash, and return in * lower and higher word of the return value since only 12 bit of * the hash are significant */ u32 rtl930x_hash(struct rtl838x_switch_priv *priv, u64 seed) { u32 k0, k1, h1, h2, h; k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff)); h1 = (seed >> 11) & 0x7ff; h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f); h2 = (seed >> 33) & 0x7ff; h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f); k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2 ^ ((seed >> 22) & 0x7ff) ^ h1 ^ (seed & 0x7ff)); // Algorithm choice for block 0 if (sw_r32(RTL930X_L2_CTRL) & BIT(0)) h = k1; else h = k0; /* Algorithm choice for block 1 * Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second * half of hash-space * 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket * divided by 2 to divide the hash space in 2 */ if (sw_r32(RTL930X_L2_CTRL) & BIT(1)) h |= (k1 + 2048) << 16; else h |= (k0 + 2048) << 16; return h; } /* * Enables or disables the EEE/EEEP capability of a port */ void rtl930x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable) { u32 v; // This works only for Ethernet ports, and on the RTL930X, ports from 26 are SFP if (port >= 26) return; pr_debug("In %s: setting port %d to %d\n", __func__, port, enable); v = enable ? 0x3f : 0x0; // Set EEE/EEEP state for 100, 500, 1000MBit and 2.5, 5 and 10GBit sw_w32_mask(0, v << 10, rtl930x_mac_force_mode_ctrl(port)); // Set TX/RX EEE state v = enable ? 0x3 : 0x0; sw_w32(v, RTL930X_EEE_CTRL(port)); priv->ports[port].eee_enabled = enable; } /* * Get EEE own capabilities and negotiation result */ int rtl930x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port) { u32 link, a; if (port >= 26) return -ENOTSUPP; pr_info("In %s, port %d\n", __func__, port); link = sw_r32(RTL930X_MAC_LINK_STS); link = sw_r32(RTL930X_MAC_LINK_STS); if (!(link & BIT(port))) return 0; pr_info("Setting advertised\n"); if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(10)) e->advertised |= ADVERTISED_100baseT_Full; if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(12)) e->advertised |= ADVERTISED_1000baseT_Full; if (priv->ports[port].is2G5 && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(13)) { pr_info("ADVERTISING 2.5G EEE\n"); e->advertised |= ADVERTISED_2500baseX_Full; } if (priv->ports[port].is10G && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(15)) e->advertised |= ADVERTISED_10000baseT_Full; a = sw_r32(RTL930X_MAC_EEE_ABLTY); a = sw_r32(RTL930X_MAC_EEE_ABLTY); pr_info("Link partner: %08x\n", a); if (a & BIT(port)) { e->lp_advertised = ADVERTISED_100baseT_Full; e->lp_advertised |= ADVERTISED_1000baseT_Full; if (priv->ports[port].is2G5) e->lp_advertised |= ADVERTISED_2500baseX_Full; if (priv->ports[port].is10G) e->lp_advertised |= ADVERTISED_10000baseT_Full; } // Read 2x to clear latched state a = sw_r32(RTL930X_EEEP_PORT_CTRL(port)); a = sw_r32(RTL930X_EEEP_PORT_CTRL(port)); pr_info("%s RTL930X_EEEP_PORT_CTRL: %08x\n", __func__, a); return 0; } static void rtl930x_init_eee(struct rtl838x_switch_priv *priv, bool enable) { int i; pr_info("Setting up EEE, state: %d\n", enable); // Setup EEE on all ports for (i = 0; i < priv->cpu_port; i++) { if (priv->ports[i].phy) rtl930x_port_eee_set(priv, i, enable); } priv->eee_enabled = enable; } #define HASH_PICK(val, lsb, len) ((val & (((1 << len) - 1) << lsb)) >> lsb) static u32 rtl930x_l3_hash4(u32 ip, int algorithm, bool move_dip) { u32 rows[4]; u32 hash; u32 s0, s1, pH; memset(rows, 0, sizeof(rows)); rows[0] = HASH_PICK(ip, 27, 5); rows[1] = HASH_PICK(ip, 18, 9); rows[2] = HASH_PICK(ip, 9, 9); if (!move_dip) rows[3] = HASH_PICK(ip, 0, 9); if (!algorithm) { hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3]; } else { s0 = rows[0] + rows[1] + rows[2]; s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9); pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9); hash = pH ^ rows[3]; } return hash; } static u32 rtl930x_l3_hash6(struct in6_addr *ip6, int algorithm, bool move_dip) { u32 rows[16]; u32 hash; u32 s0, s1, pH; rows[0] = (HASH_PICK(ip6->s6_addr[0], 6, 2) << 0); rows[1] = (HASH_PICK(ip6->s6_addr[0], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[1], 5, 3); rows[2] = (HASH_PICK(ip6->s6_addr[1], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[2], 4, 4); rows[3] = (HASH_PICK(ip6->s6_addr[2], 0, 4) << 5) | HASH_PICK(ip6->s6_addr[3], 3, 5); rows[4] = (HASH_PICK(ip6->s6_addr[3], 0, 3) << 6) | HASH_PICK(ip6->s6_addr[4], 2, 6); rows[5] = (HASH_PICK(ip6->s6_addr[4], 0, 2) << 7) | HASH_PICK(ip6->s6_addr[5], 1, 7); rows[6] = (HASH_PICK(ip6->s6_addr[5], 0, 1) << 8) | HASH_PICK(ip6->s6_addr[6], 0, 8); rows[7] = (HASH_PICK(ip6->s6_addr[7], 0, 8) << 1) | HASH_PICK(ip6->s6_addr[8], 7, 1); rows[8] = (HASH_PICK(ip6->s6_addr[8], 0, 7) << 2) | HASH_PICK(ip6->s6_addr[9], 6, 2); rows[9] = (HASH_PICK(ip6->s6_addr[9], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[10], 5, 3); rows[10] = (HASH_PICK(ip6->s6_addr[10], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[11], 4, 4); if (!algorithm) { rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5) | (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0); rows[12] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6) | (HASH_PICK(ip6->s6_addr[13], 2, 6) << 0); rows[13] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7) | (HASH_PICK(ip6->s6_addr[14], 1, 7) << 0); if (!move_dip) { rows[14] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8) | (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0); } hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6] ^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ rows[12] ^ rows[13] ^ rows[14]; } else { rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5); rows[12] = (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0); rows[13] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6) | HASH_PICK(ip6->s6_addr[13], 2, 6); rows[14] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7) | HASH_PICK(ip6->s6_addr[14], 1, 7); if (!move_dip) { rows[15] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8) | (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0); } s0 = rows[12] + rows[13] + rows[14]; s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9); pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9); hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6] ^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ pH ^ rows[15]; } return hash; } /* * Read a prefix route entry from the L3_PREFIX_ROUTE_IPUC table * We currently only support IPv4 and IPv6 unicast route */ static void rtl930x_route_read(int idx, struct rtl83xx_route *rt) { u32 v, ip4_m; bool host_route, default_route; struct in6_addr ip6_m; // Read L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2); rtl_table_read(r, idx); // The table has a size of 11 registers rt->attr.valid = !!(sw_r32(rtl_table_data(r, 0)) & BIT(31)); if (!rt->attr.valid) goto out; rt->attr.type = (sw_r32(rtl_table_data(r, 0)) >> 29) & 0x3; v = sw_r32(rtl_table_data(r, 10)); host_route = !!(v & BIT(21)); default_route = !!(v & BIT(20)); rt->prefix_len = -1; pr_info("%s: host route %d, default_route %d\n", __func__, host_route, default_route); switch (rt->attr.type) { case 0: // IPv4 Unicast route rt->dst_ip = sw_r32(rtl_table_data(r, 4)); ip4_m = sw_r32(rtl_table_data(r, 9)); pr_info("%s: Read ip4 mask: %08x\n", __func__, ip4_m); rt->prefix_len = host_route ? 32 : -1; rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1; if (rt->prefix_len < 0) rt->prefix_len = inet_mask_len(ip4_m); break; case 2: // IPv6 Unicast route ipv6_addr_set(&rt->dst_ip6, sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)), sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4))); ipv6_addr_set(&ip6_m, sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)), sw_r32(rtl_table_data(r, 8)), sw_r32(rtl_table_data(r, 9))); rt->prefix_len = host_route ? 128 : 0; rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1; if (rt->prefix_len < 0) rt->prefix_len = find_last_bit((unsigned long int *)&ip6_m.s6_addr32, 128); break; case 1: // IPv4 Multicast route case 3: // IPv6 Multicast route pr_warn("%s: route type not supported\n", __func__); goto out; } rt->attr.hit = !!(v & BIT(22)); rt->attr.action = (v >> 18) & 3; rt->nh.id = (v >> 7) & 0x7ff; rt->attr.ttl_dec = !!(v & BIT(6)); rt->attr.ttl_check = !!(v & BIT(5)); rt->attr.dst_null = !!(v & BIT(4)); rt->attr.qos_as = !!(v & BIT(3)); rt->attr.qos_prio = v & 0x7; pr_info("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid); pr_info("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n", __func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null); pr_info("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len); out: rtl_table_release(r); } static void rtl930x_net6_mask(int prefix_len, struct in6_addr *ip6_m) { int o, b; // Define network mask o = prefix_len >> 3; b = prefix_len & 0x7; memset(ip6_m->s6_addr, 0xff, o); ip6_m->s6_addr[o] |= b ? 0xff00 >> b : 0x00; } /* * Read a host route entry from the table using its index * We currently only support IPv4 and IPv6 unicast route */ static void rtl930x_host_route_read(int idx, struct rtl83xx_route *rt) { u32 v; // Read L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1); idx = ((idx / 6) * 8) + (idx % 6); pr_debug("In %s, physical index %d\n", __func__, idx); rtl_table_read(r, idx); // The table has a size of 5 (for UC, 11 for MC) registers v = sw_r32(rtl_table_data(r, 0)); rt->attr.valid = !!(v & BIT(31)); if (!rt->attr.valid) goto out; rt->attr.type = (v >> 29) & 0x3; switch (rt->attr.type) { case 0: // IPv4 Unicast route rt->dst_ip = sw_r32(rtl_table_data(r, 4)); break; case 2: // IPv6 Unicast route ipv6_addr_set(&rt->dst_ip6, sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 2)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 0))); break; case 1: // IPv4 Multicast route case 3: // IPv6 Multicast route pr_warn("%s: route type not supported\n", __func__); goto out; } rt->attr.hit = !!(v & BIT(20)); rt->attr.dst_null = !!(v & BIT(19)); rt->attr.action = (v >> 17) & 3; rt->nh.id = (v >> 6) & 0x7ff; rt->attr.ttl_dec = !!(v & BIT(5)); rt->attr.ttl_check = !!(v & BIT(4)); rt->attr.qos_as = !!(v & BIT(3)); rt->attr.qos_prio = v & 0x7; pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid); pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n", __func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null); pr_debug("%s: Destination: %pI4\n", __func__, &rt->dst_ip); out: rtl_table_release(r); } /* * Write a host route entry from the table using its index * We currently only support IPv4 and IPv6 unicast route */ static void rtl930x_host_route_write(int idx, struct rtl83xx_route *rt) { u32 v; // Access L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1); // The table has a size of 5 (for UC, 11 for MC) registers idx = ((idx / 6) * 8) + (idx % 6); pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid); pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n", __func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null); pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len); v = BIT(31); // Entry is valid v |= (rt->attr.type & 0x3) << 29; v |= rt->attr.hit ? BIT(20) : 0; v |= rt->attr.dst_null ? BIT(19) : 0; v |= (rt->attr.action & 0x3) << 17; v |= (rt->nh.id & 0x7ff) << 6; v |= rt->attr.ttl_dec ? BIT(5) : 0; v |= rt->attr.ttl_check ? BIT(4) : 0; v |= rt->attr.qos_as ? BIT(3) : 0; v |= rt->attr.qos_prio & 0x7; sw_w32(v, rtl_table_data(r, 0)); switch (rt->attr.type) { case 0: // IPv4 Unicast route sw_w32(0, rtl_table_data(r, 1)); sw_w32(0, rtl_table_data(r, 2)); sw_w32(0, rtl_table_data(r, 3)); sw_w32(rt->dst_ip, rtl_table_data(r, 4)); break; case 2: // IPv6 Unicast route sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1)); sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2)); sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3)); sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4)); break; case 1: // IPv4 Multicast route case 3: // IPv6 Multicast route pr_warn("%s: route type not supported\n", __func__); goto out; } rtl_table_write(r, idx); out: rtl_table_release(r); } /* * Look up the index of a prefix route in the routing table CAM for unicast IPv4/6 routes * using hardware offload. */ static int rtl930x_route_lookup_hw(struct rtl83xx_route *rt) { u32 ip4_m, v; struct in6_addr ip6_m; int i; if (rt->attr.type == 1 || rt->attr.type == 3) // Hardware only supports UC routes return -1; sw_w32_mask(0x3 << 19, rt->attr.type, RTL930X_L3_HW_LU_KEY_CTRL); if (rt->attr.type) { // IPv6 rtl930x_net6_mask(rt->prefix_len, &ip6_m); for (i = 0; i < 4; i++) sw_w32(rt->dst_ip6.s6_addr32[0] & ip6_m.s6_addr32[0], RTL930X_L3_HW_LU_KEY_IP_CTRL + (i << 2)); } else { // IPv4 ip4_m = inet_make_mask(rt->prefix_len); sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL); sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 4); sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 8); v = rt->dst_ip & ip4_m; pr_info("%s: searching for %pI4\n", __func__, &v); sw_w32(v, RTL930X_L3_HW_LU_KEY_IP_CTRL + 12); } // Execute CAM lookup in SoC sw_w32(BIT(15), RTL930X_L3_HW_LU_CTRL); // Wait until execute bit clears and result is ready do { v = sw_r32(RTL930X_L3_HW_LU_CTRL); } while (v & BIT(15)); pr_info("%s: found: %d, index: %d\n", __func__, !!(v & BIT(14)), v & 0x1ff); // Test if search successful (BIT 14 set) if (v & BIT(14)) return v & 0x1ff; return -1; } static int rtl930x_find_l3_slot(struct rtl83xx_route *rt, bool must_exist) { int t, s, slot_width, algorithm, addr, idx; u32 hash; struct rtl83xx_route route_entry; // IPv6 entries take up 3 slots slot_width = (rt->attr.type == 0) || (rt->attr.type == 2) ? 1 : 3; for (t = 0; t < 2; t++) { algorithm = (sw_r32(RTL930X_L3_HOST_TBL_CTRL) >> (2 + t)) & 0x1; hash = rtl930x_l3_hash4(rt->dst_ip, algorithm, false); pr_debug("%s: table %d, algorithm %d, hash %04x\n", __func__, t, algorithm, hash); for (s = 0; s < 6; s += slot_width) { addr = (t << 12) | ((hash & 0x1ff) << 3) | s; pr_debug("%s physical address %d\n", __func__, addr); idx = ((addr / 8) * 6) + (addr % 8); pr_debug("%s logical address %d\n", __func__, idx); rtl930x_host_route_read(idx, &route_entry); pr_debug("%s route valid %d, route dest: %pI4, hit %d\n", __func__, rt->attr.valid, &rt->dst_ip, rt->attr.hit); if (!must_exist && rt->attr.valid) return idx; if (must_exist && route_entry.dst_ip == rt->dst_ip) return idx; } } return -1; } /* * Write a prefix route into the routing table CAM at position idx * Currently only IPv4 and IPv6 unicast routes are supported */ static void rtl930x_route_write(int idx, struct rtl83xx_route *rt) { u32 v, ip4_m; struct in6_addr ip6_m; // Access L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1 // The table has a size of 11 registers (20 for MC) struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2); pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid); pr_debug("%s: nexthop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n", __func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null); pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len); v = rt->attr.valid ? BIT(31) : 0; v |= (rt->attr.type & 0x3) << 29; sw_w32(v, rtl_table_data(r, 0)); v = rt->attr.hit ? BIT(22) : 0; v |= (rt->attr.action & 0x3) << 18; v |= (rt->nh.id & 0x7ff) << 7; v |= rt->attr.ttl_dec ? BIT(6) : 0; v |= rt->attr.ttl_check ? BIT(5) : 0; v |= rt->attr.dst_null ? BIT(6) : 0; v |= rt->attr.qos_as ? BIT(6) : 0; v |= rt->attr.qos_prio & 0x7; v |= rt->prefix_len == 0 ? BIT(20) : 0; // set default route bit // set bit mask for entry type always to 0x3 sw_w32(0x3 << 29, rtl_table_data(r, 5)); switch (rt->attr.type) { case 0: // IPv4 Unicast route sw_w32(0, rtl_table_data(r, 1)); sw_w32(0, rtl_table_data(r, 2)); sw_w32(0, rtl_table_data(r, 3)); sw_w32(rt->dst_ip, rtl_table_data(r, 4)); v |= rt->prefix_len == 32 ? BIT(21) : 0; // set host-route bit ip4_m = inet_make_mask(rt->prefix_len); sw_w32(0, rtl_table_data(r, 6)); sw_w32(0, rtl_table_data(r, 7)); sw_w32(0, rtl_table_data(r, 8)); sw_w32(ip4_m, rtl_table_data(r, 9)); break; case 2: // IPv6 Unicast route sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1)); sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2)); sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3)); sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4)); v |= rt->prefix_len == 128 ? BIT(21) : 0; // set host-route bit rtl930x_net6_mask(rt->prefix_len, &ip6_m); sw_w32(ip6_m.s6_addr32[0], rtl_table_data(r, 6)); sw_w32(ip6_m.s6_addr32[1], rtl_table_data(r, 7)); sw_w32(ip6_m.s6_addr32[2], rtl_table_data(r, 8)); sw_w32(ip6_m.s6_addr32[3], rtl_table_data(r, 9)); break; case 1: // IPv4 Multicast route case 3: // IPv6 Multicast route pr_warn("%s: route type not supported\n", __func__); rtl_table_release(r); return; } sw_w32(v, rtl_table_data(r, 10)); pr_debug("%s: %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", __func__, sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)), sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)), sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)), sw_r32(rtl_table_data(r, 8)), sw_r32(rtl_table_data(r, 9)), sw_r32(rtl_table_data(r, 10))); rtl_table_write(r, idx); rtl_table_release(r); } /* * Get the destination MAC and L3 egress interface ID of a nexthop entry from * the SoC's L3_NEXTHOP table */ static void rtl930x_get_l3_nexthop(int idx, u16 *dmac_id, u16 *interface) { u32 v; // Read L3_NEXTHOP table (3) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3); rtl_table_read(r, idx); // The table has a size of 1 register v = sw_r32(rtl_table_data(r, 0)); rtl_table_release(r); *dmac_id = (v >> 7) & 0x7fff; *interface = v & 0x7f; } static int rtl930x_l3_mtu_del(struct rtl838x_switch_priv *priv, int mtu) { int i; for (i = 0; i < MAX_INTF_MTUS; i++) { if (mtu == priv->intf_mtus[i]) break; } if (i >= MAX_INTF_MTUS || !priv->intf_mtu_count[i]) { pr_err("%s: No MTU slot found for MTU: %d\n", __func__, mtu); return -EINVAL; } priv->intf_mtu_count[i]--; } static int rtl930x_l3_mtu_add(struct rtl838x_switch_priv *priv, int mtu) { int i, free_mtu; int mtu_id; // Try to find an existing mtu-value or a free slot free_mtu = MAX_INTF_MTUS; for (i = 0; i < MAX_INTF_MTUS && priv->intf_mtus[i] != mtu; i++) { if ((!priv->intf_mtu_count[i]) && (free_mtu == MAX_INTF_MTUS)) free_mtu = i; } i = (i < MAX_INTF_MTUS) ? i : free_mtu; if (i < MAX_INTF_MTUS) { mtu_id = i; } else { pr_err("%s: No free MTU slot available!\n", __func__); return -EINVAL; } priv->intf_mtus[i] = mtu; pr_info("Writing MTU %d to slot %d\n", priv->intf_mtus[i], i); // Set MTU-value of the slot TODO: distinguish between IPv4/IPv6 routes / slots sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16), RTL930X_L3_IP_MTU_CTRL(i)); sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16), RTL930X_L3_IP6_MTU_CTRL(i)); priv->intf_mtu_count[i]++; return mtu_id; } /* * Creates an interface for a route by setting up the HW tables in the SoC */ static int rtl930x_l3_intf_add(struct rtl838x_switch_priv *priv, struct rtl838x_l3_intf *intf) { int i, intf_id, mtu_id; // number of MTU-values < 16384 // Use the same IPv6 mtu as the ip4 mtu for this route if unset intf->ip6_mtu = intf->ip6_mtu ? intf->ip6_mtu : intf->ip4_mtu; mtu_id = rtl930x_l3_mtu_add(priv, intf->ip4_mtu); pr_info("%s: added mtu %d with mtu-id %d\n", __func__, intf->ip4_mtu, mtu_id); if (mtu_id < 0) return -ENOSPC; intf->ip4_mtu_id = mtu_id; intf->ip6_mtu_id = mtu_id; for (i = 0; i < MAX_INTERFACES; i++) { if (!priv->interfaces[i]) break; } if (i >= MAX_INTERFACES) { pr_err("%s: cannot find free interface entry\n", __func__); return -EINVAL; } intf_id = i; priv->interfaces[i] = kzalloc(sizeof(struct rtl838x_l3_intf), GFP_KERNEL); if (!priv->interfaces[i]) { pr_err("%s: no memory to allocate new interface\n", __func__); return -ENOMEM; } } /* * Set the destination MAC and L3 egress interface ID for a nexthop entry in the SoC's * L3_NEXTHOP table. The nexthop entry is identified by idx. * dmac_id is the reference to the L2 entry in the L2 forwarding table, special values are * 0x7ffe: TRAP2CPU * 0x7ffd: TRAP2MASTERCPU * 0x7fff: DMAC_ID_DROP */ static void rtl930x_set_l3_nexthop(int idx, u16 dmac_id, u16 interface) { // Access L3_NEXTHOP table (3) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3); pr_info("%s: Writing to L3_NEXTHOP table, index %d, dmac_id %d, interface %d\n", __func__, idx, dmac_id, interface); sw_w32(((dmac_id & 0x7fff) << 7) | (interface & 0x7f), rtl_table_data(r, 0)); pr_info("%s: %08x\n", __func__, sw_r32(rtl_table_data(r,0))); rtl_table_write(r, idx); rtl_table_release(r); } static void rtl930x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index) { int block = index / PIE_BLOCK_SIZE; sw_w32_mask(0, BIT(block), RTL930X_PIE_BLK_LOOKUP_CTRL); } /* * Reads the intermediate representation of the templated match-fields of the * PIE rule in the pie_rule structure and fills in the raw data fields in the * raw register space r[]. * The register space configuration size is identical for the RTL8380/90 and RTL9300, * however the RTL9310 has 2 more registers / fields and the physical field-ids are different * on all SoCs * On the RTL9300 the mask fields are not word-aligend! */ static void rtl930x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[]) { int i; enum template_field_id field_type; u16 data, data_m; for (i = 0; i < N_FIXED_FIELDS; i++) { field_type = t[i]; data = data_m = 0; switch (field_type) { case TEMPLATE_FIELD_SPM0: data = pr->spm; data_m = pr->spm_m; break; case TEMPLATE_FIELD_SPM1: data = pr->spm >> 16; data_m = pr->spm_m >> 16; break; case TEMPLATE_FIELD_OTAG: data = pr->otag; data_m = pr->otag_m; break; case TEMPLATE_FIELD_SMAC0: data = pr->smac[4]; data = (data << 8) | pr->smac[5]; data_m = pr->smac_m[4]; data_m = (data_m << 8) | pr->smac_m[5]; break; case TEMPLATE_FIELD_SMAC1: data = pr->smac[2]; data = (data << 8) | pr->smac[3]; data_m = pr->smac_m[2]; data_m = (data_m << 8) | pr->smac_m[3]; break; case TEMPLATE_FIELD_SMAC2: data = pr->smac[0]; data = (data << 8) | pr->smac[1]; data_m = pr->smac_m[0]; data_m = (data_m << 8) | pr->smac_m[1]; break; case TEMPLATE_FIELD_DMAC0: data = pr->dmac[4]; data = (data << 8) | pr->dmac[5]; data_m = pr->dmac_m[4]; data_m = (data_m << 8) | pr->dmac_m[5]; break; case TEMPLATE_FIELD_DMAC1: data = pr->dmac[2]; data = (data << 8) | pr->dmac[3]; data_m = pr->dmac_m[2]; data_m = (data_m << 8) | pr->dmac_m[3]; break; case TEMPLATE_FIELD_DMAC2: data = pr->dmac[0]; data = (data << 8) | pr->dmac[1]; data_m = pr->dmac_m[0]; data_m = (data_m << 8) | pr->dmac_m[1]; break; case TEMPLATE_FIELD_ETHERTYPE: data = pr->ethertype; data_m = pr->ethertype_m; break; case TEMPLATE_FIELD_ITAG: data = pr->itag; data_m = pr->itag_m; break; case TEMPLATE_FIELD_SIP0: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[7]; data_m = pr->sip6_m.s6_addr16[7]; } else { data = pr->sip; data_m = pr->sip_m; } break; case TEMPLATE_FIELD_SIP1: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[6]; data_m = pr->sip6_m.s6_addr16[6]; } else { data = pr->sip >> 16; data_m = pr->sip_m >> 16; } break; case TEMPLATE_FIELD_SIP2: case TEMPLATE_FIELD_SIP3: case TEMPLATE_FIELD_SIP4: case TEMPLATE_FIELD_SIP5: case TEMPLATE_FIELD_SIP6: case TEMPLATE_FIELD_SIP7: data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; break; case TEMPLATE_FIELD_DIP0: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[7]; data_m = pr->dip6_m.s6_addr16[7]; } else { data = pr->dip; data_m = pr->dip_m; } break; case TEMPLATE_FIELD_DIP1: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[6]; data_m = pr->dip6_m.s6_addr16[6]; } else { data = pr->dip >> 16; data_m = pr->dip_m >> 16; } break; case TEMPLATE_FIELD_DIP2: case TEMPLATE_FIELD_DIP3: case TEMPLATE_FIELD_DIP4: case TEMPLATE_FIELD_DIP5: case TEMPLATE_FIELD_DIP6: case TEMPLATE_FIELD_DIP7: data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; break; case TEMPLATE_FIELD_IP_TOS_PROTO: data = pr->tos_proto; data_m = pr->tos_proto_m; break; case TEMPLATE_FIELD_L4_SPORT: data = pr->sport; data_m = pr->sport_m; break; case TEMPLATE_FIELD_L4_DPORT: data = pr->dport; data_m = pr->dport_m; break; case TEMPLATE_FIELD_DSAP_SSAP: data = pr->dsap_ssap; data_m = pr->dsap_ssap_m; break; case TEMPLATE_FIELD_TCP_INFO: data = pr->tcp_info; data_m = pr->tcp_info_m; break; case TEMPLATE_FIELD_RANGE_CHK: pr_warn("Warning: TEMPLATE_FIELD_RANGE_CHK: not configured\n"); break; default: pr_info("%s: unknown field %d\n", __func__, field_type); } // On the RTL9300, the mask fields are not word aligned! if (!(i % 2)) { r[5 - i / 2] = data; r[12 - i / 2] |= ((u32)data_m << 8); } else { r[5 - i / 2] |= ((u32)data) << 16; r[12 - i / 2] |= ((u32)data_m) << 24; r[11 - i / 2] |= ((u32)data_m) >> 8; } } } static void rtl930x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr) { pr->stacking_port = r[6] & BIT(31); pr->spn = (r[6] >> 24) & 0x7f; pr->mgnt_vlan = r[6] & BIT(23); if (pr->phase == PHASE_IACL) pr->dmac_hit_sw = r[6] & BIT(22); else pr->content_too_deep = r[6] & BIT(22); pr->not_first_frag = r[6] & BIT(21); pr->frame_type_l4 = (r[6] >> 18) & 7; pr->frame_type = (r[6] >> 16) & 3; pr->otag_fmt = (r[6] >> 15) & 1; pr->itag_fmt = (r[6] >> 14) & 1; pr->otag_exist = (r[6] >> 13) & 1; pr->itag_exist = (r[6] >> 12) & 1; pr->frame_type_l2 = (r[6] >> 10) & 3; pr->igr_normal_port = (r[6] >> 9) & 1; pr->tid = (r[6] >> 8) & 1; pr->stacking_port_m = r[12] & BIT(7); pr->spn_m = r[12] & 0x7f; pr->mgnt_vlan_m = r[13] & BIT(31); if (pr->phase == PHASE_IACL) pr->dmac_hit_sw_m = r[13] & BIT(30); else pr->content_too_deep_m = r[13] & BIT(30); pr->not_first_frag_m = r[13] & BIT(29); pr->frame_type_l4_m = (r[13] >> 26) & 7; pr->frame_type_m = (r[13] >> 24) & 3; pr->otag_fmt_m = r[13] & BIT(23); pr->itag_fmt_m = r[13] & BIT(22); pr->otag_exist_m = r[13] & BIT(21); pr->itag_exist_m = r[13] & BIT (20); pr->frame_type_l2_m = (r[13] >> 18) & 3; pr->igr_normal_port_m = r[13] & BIT(17); pr->tid_m = (r[13] >> 16) & 1; pr->valid = r[13] & BIT(15); pr->cond_not = r[13] & BIT(14); pr->cond_and1 = r[13] & BIT(13); pr->cond_and2 = r[13] & BIT(12); } static void rtl930x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr) { r[6] = pr->stacking_port ? BIT(31) : 0; r[6] |= ((u32) (pr->spn & 0x7f)) << 24; r[6] |= pr->mgnt_vlan ? BIT(23) : 0; if (pr->phase == PHASE_IACL) r[6] |= pr->dmac_hit_sw ? BIT(22) : 0; else r[6] |= pr->content_too_deep ? BIT(22) : 0; r[6] |= pr->not_first_frag ? BIT(21) : 0; r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18; r[6] |= ((u32) (pr->frame_type & 0x3)) << 16; r[6] |= pr->otag_fmt ? BIT(15) : 0; r[6] |= pr->itag_fmt ? BIT(14) : 0; r[6] |= pr->otag_exist ? BIT(13) : 0; r[6] |= pr->itag_exist ? BIT(12) : 0; r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10; r[6] |= pr->igr_normal_port ? BIT(9) : 0; r[6] |= ((u32) (pr->tid & 0x1)) << 8; r[12] |= pr->stacking_port_m ? BIT(7) : 0; r[12] |= (u32) (pr->spn_m & 0x7f); r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0; if (pr->phase == PHASE_IACL) r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0; else r[13] |= pr->content_too_deep_m ? BIT(30) : 0; r[13] |= pr->not_first_frag_m ? BIT(29) : 0; r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26; r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24; r[13] |= pr->otag_fmt_m ? BIT(23) : 0; r[13] |= pr->itag_fmt_m ? BIT(22) : 0; r[13] |= pr->otag_exist_m ? BIT(21) : 0; r[13] |= pr->itag_exist_m ? BIT(20) : 0; r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18; r[13] |= pr->igr_normal_port_m ? BIT(17) : 0; r[13] |= ((u32) (pr->tid_m & 0x1)) << 16; r[13] |= pr->valid ? BIT(15) : 0; r[13] |= pr->cond_not ? BIT(14) : 0; r[13] |= pr->cond_and1 ? BIT(13) : 0; r[13] |= pr->cond_and2 ? BIT(12) : 0; } static void rtl930x_write_pie_action(u32 r[], struct pie_rule *pr) { // Either drop or forward if (pr->drop) { r[14] |= BIT(24) | BIT(25) | BIT(26); // Do Green, Yellow and Red drops // Actually DROP, not PERMIT in Green / Yellow / Red r[14] |= BIT(23) | BIT(22) | BIT(20); } else { r[14] |= pr->fwd_sel ? BIT(27) : 0; r[14] |= pr->fwd_act << 18; r[14] |= BIT(14); // We overwrite any drop } if (pr->phase == PHASE_VACL) r[14] |= pr->fwd_sa_lrn ? BIT(15) : 0; r[13] |= pr->bypass_sel ? BIT(5) : 0; r[13] |= pr->nopri_sel ? BIT(4) : 0; r[13] |= pr->tagst_sel ? BIT(3) : 0; r[13] |= pr->ovid_sel ? BIT(1) : 0; r[14] |= pr->ivid_sel ? BIT(31) : 0; r[14] |= pr->meter_sel ? BIT(30) : 0; r[14] |= pr->mir_sel ? BIT(29) : 0; r[14] |= pr->log_sel ? BIT(28) : 0; r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 3; r[15] |= pr->log_octets ? BIT(31) : 0; r[15] |= (u32)(pr->meter_data) << 23; r[15] |= ((u32)(pr->ivid_act) << 21) & 0x3; r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff; r[16] |= ((u32)(pr->ovid_act) << 30) & 0x3; r[16] |= ((u32)(pr->ovid_data) & 0xfff) << 16; r[16] |= (pr->mir_data & 0x3) << 6; r[17] |= ((u32)(pr->tagst_data) & 0xf) << 28; r[17] |= ((u32)(pr->nopri_data) & 0x7) << 25; r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0; } void rtl930x_pie_rule_dump_raw(u32 r[]) { pr_info("Raw IACL table entry:\n"); pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]); pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n", r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]); pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]); pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]); pr_info("Fixed : %06x\n", r[6] >> 8); pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8), (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8), (r[11] << 24) | (r[12] >> 8)); pr_info("R[13]: %08x\n", r[13]); pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff); pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf); pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]); } static int rtl930x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr) { // Access IACL table (2) via register 0 struct table_reg *q = rtl_table_get(RTL9300_TBL_0, 2); u32 r[19]; int i; int block = idx / PIE_BLOCK_SIZE; u32 t_select = sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)); pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select); for (i = 0; i < 19; i++) r[i] = 0; if (!pr->valid) { rtl_table_write(q, idx); rtl_table_release(q); return 0; } rtl930x_write_pie_fixed_fields(r, pr); pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf); rtl930x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]); rtl930x_write_pie_action(r, pr); // rtl930x_pie_rule_dump_raw(r); for (i = 0; i < 19; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); return 0; } static bool rtl930x_pie_templ_has(int t, enum template_field_id field_type) { int i; enum template_field_id ft; for (i = 0; i < N_FIXED_FIELDS; i++) { ft = fixed_templates[t][i]; if (field_type == ft) return true; } return false; } /* * Verify that the rule pr is compatible with a given template t in block block * Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0 * depend on the SoC */ static int rtl930x_pie_verify_template(struct rtl838x_switch_priv *priv, struct pie_rule *pr, int t, int block) { int i; if (!pr->is_ipv6 && pr->sip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP0)) return -1; if (!pr->is_ipv6 && pr->dip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP0)) return -1; if (pr->is_ipv6) { if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1] || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3]) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP2)) return -1; if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1] || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3]) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP2)) return -1; } if (ether_addr_to_u64(pr->smac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0)) return -1; if (ether_addr_to_u64(pr->dmac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0)) return -1; // TODO: Check more i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE); if (i >= PIE_BLOCK_SIZE) return -1; return i + PIE_BLOCK_SIZE * block; } static int rtl930x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx, block, j, t; int min_block = 0; int max_block = priv->n_pie_blocks / 2; if (pr->is_egress) { min_block = max_block; max_block = priv->n_pie_blocks; } pr_debug("In %s\n", __func__); mutex_lock(&priv->pie_mutex); for (block = min_block; block < max_block; block++) { for (j = 0; j < 2; j++) { t = (sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf; pr_debug("Testing block %d, template %d, template id %d\n", block, j, t); pr_debug("%s: %08x\n", __func__, sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block))); idx = rtl930x_pie_verify_template(priv, pr, t, block); if (idx >= 0) break; } if (j < 2) break; } if (block >= priv->n_pie_blocks) { mutex_unlock(&priv->pie_mutex); return -EOPNOTSUPP; } pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j); set_bit(idx, priv->pie_use_bm); pr->valid = true; pr->tid = j; // Mapped to template number pr->tid_m = 0x1; pr->id = idx; rtl930x_pie_lookup_enable(priv, idx); rtl930x_pie_rule_write(priv, idx, pr); mutex_unlock(&priv->pie_mutex); return 0; } /* * Delete a range of Packet Inspection Engine rules */ static int rtl930x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to) { u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0); pr_debug("%s: from %d to %d\n", __func__, index_from, index_to); mutex_lock(&priv->reg_mutex); // Write from-to and execute bit into control register sw_w32(v, RTL930X_PIE_CLR_CTRL); // Wait until command has completed do { } while (sw_r32(RTL930X_PIE_CLR_CTRL) & BIT(0)); mutex_unlock(&priv->reg_mutex); return 0; } static void rtl930x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx = pr->id; rtl930x_pie_rule_del(priv, idx, idx); clear_bit(idx, priv->pie_use_bm); } static void rtl930x_pie_init(struct rtl838x_switch_priv *priv) { int i; u32 template_selectors; mutex_init(&priv->pie_mutex); pr_info("%s\n", __func__); // Enable ACL lookup on all ports, including CPU_PORT for (i = 0; i <= priv->cpu_port; i++) sw_w32(1, RTL930X_ACL_PORT_LOOKUP_CTRL(i)); // Include IPG in metering sw_w32_mask(0, 1, RTL930X_METER_GLB_CTRL); // Delete all present rules, block size is 128 on all SoC families rtl930x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1); // Assign blocks 0-7 to VACL phase (bit = 0), blocks 8-15 to IACL (bit = 1) sw_w32(0xff00, RTL930X_PIE_BLK_PHASE_CTRL); // Enable predefined templates 0, 1 for first quarter of all blocks template_selectors = 0 | (1 << 4); for (i = 0; i < priv->n_pie_blocks / 4; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for second quarter of all blocks template_selectors = 2 | (3 << 4); for (i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 0, 1 for third half of all blocks template_selectors = 0 | (1 << 4); for (i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for fourth quater of all blocks template_selectors = 2 | (3 << 4); for (i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++) sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i)); } /* * Sets up an egress interface for L3 actions * Actions for ip4/6_icmp_redirect, ip4/6_pbr_icmp_redirect are: * 0: FORWARD, 1: DROP, 2: TRAP2CPU, 3: COPY2CPU, 4: TRAP2MASTERCPU 5: COPY2MASTERCPU * 6: HARDDROP * idx is the index in the HW interface table: idx < 0x80 */ static void rtl930x_set_l3_egress_intf(int idx, struct rtl838x_l3_intf *intf) { u32 u, v; // Read L3_EGR_INTF table (4) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 4); // The table has 2 registers u = (intf->vid & 0xfff) << 9; u |= (intf->smac_idx & 0x3f) << 3; u |= (intf->ip4_mtu_id & 0x7); v = (intf->ip6_mtu_id & 0x7) << 28; v |= (intf->ttl_scope & 0xff) << 20; v |= (intf->hl_scope & 0xff) << 12; v |= (intf->ip4_icmp_redirect & 0x7) << 9; v |= (intf->ip6_icmp_redirect & 0x7)<< 6; v |= (intf->ip4_pbr_icmp_redirect & 0x7) << 3; v |= (intf->ip6_pbr_icmp_redirect & 0x7); sw_w32(u, rtl_table_data(r, 0)); sw_w32(v, rtl_table_data(r, 1)); pr_info("%s writing to index %d: %08x %08x\n", __func__, idx, u, v); rtl_table_write(r, idx & 0x7f); rtl_table_release(r); } /* * Reads a MAC entry for L3 termination as entry point for routing * from the hardware table * idx is the index into the L3_ROUTER_MAC table */ static void rtl930x_get_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m) { u32 v, w; // Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0); rtl_table_read(r, idx); // The table has a size of 7 registers, 64 entries v = sw_r32(rtl_table_data(r, 0)); w = sw_r32(rtl_table_data(r, 3)); m->valid = !!(v & BIT(20)); if (!m->valid) goto out; m->p_type = !!(v & BIT(19)); m->p_id = (v >> 13) & 0x3f; // trunk id of port m->vid = v & 0xfff; m->vid_mask = w & 0xfff; m->action = sw_r32(rtl_table_data(r, 6)) & 0x7; m->mac_mask = ((((u64)sw_r32(rtl_table_data(r, 5))) << 32) & 0xffffffffffffULL) | (sw_r32(rtl_table_data(r, 4))); m->mac = ((((u64)sw_r32(rtl_table_data(r, 1))) << 32) & 0xffffffffffffULL) | (sw_r32(rtl_table_data(r, 2))); // Bits L3_INTF and BMSK_L3_INTF are 0 out: rtl_table_release(r); } /* * Writes a MAC entry for L3 termination as entry point for routing * into the hardware table * idx is the index into the L3_ROUTER_MAC table */ static void rtl930x_set_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m) { u32 v, w; // Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1 struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0); // The table has a size of 7 registers, 64 entries v = BIT(20); // mac entry valid, port type is 0: individual v |= (m->p_id & 0x3f) << 13; v |= (m->vid & 0xfff); // Set the interface_id to the vlan id w = m->vid_mask; w |= (m->p_id_mask & 0x3f) << 13; sw_w32(v, rtl_table_data(r, 0)); sw_w32(w, rtl_table_data(r, 3)); // Set MAC address, L3_INTF (bit 12 in register 1) needs to be 0 sw_w32((u32)(m->mac), rtl_table_data(r, 2)); sw_w32(m->mac >> 32, rtl_table_data(r, 1)); // Set MAC address mask, BMSK_L3_INTF (bit 12 in register 5) needs to be 0 sw_w32((u32)(m->mac_mask >> 32), rtl_table_data(r, 4)); sw_w32((u32)m->mac_mask, rtl_table_data(r, 5)); sw_w32(m->action & 0x7, rtl_table_data(r, 6)); pr_debug("%s writing index %d: %08x %08x %08x %08x %08x %08x %08x\n", __func__, idx, sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)), sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)), sw_r32(rtl_table_data(r, 6)) ); rtl_table_write(r, idx); rtl_table_release(r); } /* * Get the Destination-MAC of an L3 egress interface or the Source MAC for routed packets * from the SoC's L3_EGR_INTF_MAC table * Indexes 0-2047 are DMACs, 2048+ are SMACs */ static u64 rtl930x_get_l3_egress_mac(u32 idx) { u64 mac; // Read L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2 struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2); rtl_table_read(r, idx); // The table has a size of 2 registers mac = sw_r32(rtl_table_data(r, 0)); mac <<= 32; mac |= sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); return mac; } /* * Set the Destination-MAC of a route or the Source MAC of an L3 egress interface * in the SoC's L3_EGR_INTF_MAC table * Indexes 0-2047 are DMACs, 2048+ are SMACs */ static void rtl930x_set_l3_egress_mac(u32 idx, u64 mac) { // Access L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2 struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2); // The table has a size of 2 registers sw_w32(mac >> 32, rtl_table_data(r, 0)); sw_w32(mac, rtl_table_data(r, 1)); pr_debug("%s: setting index %d to %016llx\n", __func__, idx, mac); rtl_table_write(r, idx); rtl_table_release(r); } /* * Configure L3 routing settings of the device: * - MTUs * - Egress interface * - The router's MAC address on which routed packets are expected * - MAC addresses used as source macs of routed packets */ int rtl930x_l3_setup(struct rtl838x_switch_priv *priv) { int i; // Setup MTU with id 0 for default interface for (i = 0; i < MAX_INTF_MTUS; i++) priv->intf_mtu_count[i] = priv->intf_mtus[i] = 0; priv->intf_mtu_count[0] = 0; // Needs to stay forever priv->intf_mtus[0] = DEFAULT_MTU; sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(0)); sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(0)); priv->intf_mtus[1] = DEFAULT_MTU; sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(0)); sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(0)); sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(1)); sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(1)); sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(1)); sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(1)); // Clear all source port MACs for (i = 0; i < MAX_SMACS; i++) rtl930x_set_l3_egress_mac(L3_EGRESS_DMACS + i, 0ULL); // Configure the default L3 hash algorithm sw_w32_mask(BIT(2), 0, RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 0 = 0 sw_w32_mask(0, BIT(3), RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 1 = 1 pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n", sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL)); sw_w32_mask(0, 1, RTL930X_L3_IPUC_ROUTE_CTRL); sw_w32_mask(0, 1, RTL930X_L3_IP6UC_ROUTE_CTRL); sw_w32_mask(0, 1, RTL930X_L3_IPMC_ROUTE_CTRL); sw_w32_mask(0, 1, RTL930X_L3_IP6MC_ROUTE_CTRL); sw_w32(0x00002001, RTL930X_L3_IPUC_ROUTE_CTRL); sw_w32(0x00014581, RTL930X_L3_IP6UC_ROUTE_CTRL); sw_w32(0x00000501, RTL930X_L3_IPMC_ROUTE_CTRL); sw_w32(0x00012881, RTL930X_L3_IP6MC_ROUTE_CTRL); pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n", sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL)); // Trap non-ip traffic to the CPU-port (e.g. ARP so we stay reachable) sw_w32_mask(0x3 << 8, 0x1 << 8, RTL930X_L3_IP_ROUTE_CTRL); pr_info("L3_IP_ROUTE_CTRL %08x\n", sw_r32(RTL930X_L3_IP_ROUTE_CTRL)); // PORT_ISO_RESTRICT_ROUTE_CTRL ? // Do not use prefix route 0 because of HW limitations set_bit(0, priv->route_use_bm); return 0; } static u32 rtl930x_packet_cntr_read(int counter) { u32 v; // Read LOG table (3) via register RTL9300_TBL_0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3); pr_debug("In %s, id %d\n", __func__, counter); rtl_table_read(r, counter / 2); pr_debug("Registers: %08x %08x\n", sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1))); // The table has a size of 2 registers if (counter % 2) v = sw_r32(rtl_table_data(r, 0)); else v = sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); return v; } static void rtl930x_packet_cntr_clear(int counter) { // Access LOG table (3) via register RTL9300_TBL_0 struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3); pr_info("In %s, id %d\n", __func__, counter); // The table has a size of 2 registers if (counter % 2) sw_w32(0, rtl_table_data(r, 0)); else sw_w32(0, rtl_table_data(r, 1)); rtl_table_write(r, counter / 2); rtl_table_release(r); } void rtl930x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0x3, mode, RTL930X_VLAN_PORT_PB_VLAN + (port << 2)); else sw_w32_mask(0x3 << 14, mode << 14 ,RTL930X_VLAN_PORT_PB_VLAN + (port << 2)); } void rtl930x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0xfff << 2, pvid << 2, RTL930X_VLAN_PORT_PB_VLAN + (port << 2)); else sw_w32_mask(0xfff << 16, pvid << 16, RTL930X_VLAN_PORT_PB_VLAN + (port << 2)); } static int rtl930x_set_ageing_time(unsigned long msec) { int t = sw_r32(RTL930X_L2_AGE_CTRL); t &= 0x1FFFFF; t = (t * 7) / 10; pr_debug("L2 AGING time: %d sec\n", t); t = (msec / 100 + 6) / 7; t = t > 0x1FFFFF ? 0x1FFFFF : t; sw_w32_mask(0x1FFFFF, t, RTL930X_L2_AGE_CTRL); pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL930X_L2_PORT_AGE_CTRL)); return 0; } static void rtl930x_set_igr_filter(int port, enum igr_filter state) { sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1), RTL930X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2))); } static void rtl930x_set_egr_filter(int port, enum egr_filter state) { sw_w32_mask(0x1 << (port % 0x1D), state << (port % 0x1D), RTL930X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2))); } void rtl930x_set_distribution_algorithm(int group, int algoidx, u32 algomsk) { u32 l3shift = 0; u32 newmask = 0; /* TODO: for now we set algoidx to 0 */ algoidx = 0; if (algomsk & TRUNK_DISTRIBUTION_ALGO_SIP_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SIP_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_DIP_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DIP_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT; } if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) { l3shift = 4; newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT; } if (l3shift == 4) { if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SMAC_BIT; if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DMAC_BIT; } else { if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L2_SMAC_BIT; if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT) newmask |= TRUNK_DISTRIBUTION_ALGO_L2_DMAC_BIT; } sw_w32(newmask << l3shift, RTL930X_TRK_HASH_CTRL + (algoidx << 2)); } static void rtl930x_led_init(struct rtl838x_switch_priv *priv) { int i, pos; u32 v, pm = 0, set; u32 setlen; const __be32 *led_set; char set_name[9]; struct device_node *node; pr_info("%s called\n", __func__); node = of_find_compatible_node(NULL, NULL, "realtek,rtl9300-leds"); if (!node) { pr_info("%s No compatible LED node found\n", __func__); return; } for (i= 0; i < priv->cpu_port; i++) { pos = (i << 1) % 32; sw_w32_mask(0x3 << pos, 0, RTL930X_LED_PORT_FIB_SET_SEL_CTRL(i)); sw_w32_mask(0x3 << pos, 0, RTL930X_LED_PORT_COPR_SET_SEL_CTRL(i)); if (!priv->ports[i].phy) continue; v = 0x1; if (priv->ports[i].is10G) v = 0x3; if (priv->ports[i].phy_is_integrated) v = 0x1; sw_w32_mask(0x3 << pos, v << pos, RTL930X_LED_PORT_NUM_CTRL(i)); pm |= BIT(i); set = priv->ports[i].led_set; sw_w32_mask(0, set << pos, RTL930X_LED_PORT_COPR_SET_SEL_CTRL(i)); sw_w32_mask(0, set << pos, RTL930X_LED_PORT_FIB_SET_SEL_CTRL(i)); } for (i = 0; i < 4; i++) { sprintf(set_name, "led_set%d", i); led_set = of_get_property(node, set_name, &setlen); if (!led_set || setlen != 16) break; v = be32_to_cpup(led_set) << 16 | be32_to_cpup(led_set + 1); sw_w32(v, RTL930X_LED_SET0_0_CTRL - 4 - i * 8); v = be32_to_cpup(led_set + 2) << 16 | be32_to_cpup(led_set + 3); sw_w32(v, RTL930X_LED_SET0_0_CTRL - i * 8); } // Set LED mode to serial (0x1) sw_w32_mask(0x3, 0x1, RTL930X_LED_GLB_CTRL); // Set port type masks sw_w32(pm, RTL930X_LED_PORT_COPR_MASK_CTRL); sw_w32(pm, RTL930X_LED_PORT_FIB_MASK_CTRL); sw_w32(pm, RTL930X_LED_PORT_COMBO_MASK_CTRL); for (i = 0; i < 24; i++) pr_info("%s %08x: %08x\n",__func__, 0xbb00cc00 + i * 4, sw_r32(0xcc00 + i * 4)); } const struct rtl838x_reg rtl930x_reg = { .mask_port_reg_be = rtl838x_mask_port_reg, .set_port_reg_be = rtl838x_set_port_reg, .get_port_reg_be = rtl838x_get_port_reg, .mask_port_reg_le = rtl838x_mask_port_reg, .set_port_reg_le = rtl838x_set_port_reg, .get_port_reg_le = rtl838x_get_port_reg, .stat_port_rst = RTL930X_STAT_PORT_RST, .stat_rst = RTL930X_STAT_RST, .stat_port_std_mib = RTL930X_STAT_PORT_MIB_CNTR, .traffic_enable = rtl930x_traffic_enable, .traffic_disable = rtl930x_traffic_disable, .traffic_get = rtl930x_traffic_get, .traffic_set = rtl930x_traffic_set, .l2_ctrl_0 = RTL930X_L2_CTRL, .l2_ctrl_1 = RTL930X_L2_AGE_CTRL, .l2_port_aging_out = RTL930X_L2_PORT_AGE_CTRL, .set_ageing_time = rtl930x_set_ageing_time, .smi_poll_ctrl = RTL930X_SMI_POLL_CTRL, // TODO: Difference to RTL9300_SMI_PRVTE_POLLING_CTRL .l2_tbl_flush_ctrl = RTL930X_L2_TBL_FLUSH_CTRL, .exec_tbl0_cmd = rtl930x_exec_tbl0_cmd, .exec_tbl1_cmd = rtl930x_exec_tbl1_cmd, .tbl_access_data_0 = rtl930x_tbl_access_data_0, .isr_glb_src = RTL930X_ISR_GLB, .isr_port_link_sts_chg = RTL930X_ISR_PORT_LINK_STS_CHG, .imr_port_link_sts_chg = RTL930X_IMR_PORT_LINK_STS_CHG, .imr_glb = RTL930X_IMR_GLB, .vlan_tables_read = rtl930x_vlan_tables_read, .vlan_set_tagged = rtl930x_vlan_set_tagged, .vlan_set_untagged = rtl930x_vlan_set_untagged, .vlan_profile_dump = rtl930x_vlan_profile_dump, .vlan_profile_setup = rtl930x_vlan_profile_setup, .vlan_fwd_on_inner = rtl930x_vlan_fwd_on_inner, .set_vlan_igr_filter = rtl930x_set_igr_filter, .set_vlan_egr_filter = rtl930x_set_egr_filter, .stp_get = rtl930x_stp_get, .stp_set = rtl930x_stp_set, .mac_force_mode_ctrl = rtl930x_mac_force_mode_ctrl, .mac_port_ctrl = rtl930x_mac_port_ctrl, .l2_port_new_salrn = rtl930x_l2_port_new_salrn, .l2_port_new_sa_fwd = rtl930x_l2_port_new_sa_fwd, .mir_ctrl = RTL930X_MIR_CTRL, .mir_dpm = RTL930X_MIR_DPM_CTRL, .mir_spm = RTL930X_MIR_SPM_CTRL, .mac_link_sts = RTL930X_MAC_LINK_STS, .mac_link_dup_sts = RTL930X_MAC_LINK_DUP_STS, .mac_link_spd_sts = rtl930x_mac_link_spd_sts, .mac_rx_pause_sts = RTL930X_MAC_RX_PAUSE_STS, .mac_tx_pause_sts = RTL930X_MAC_TX_PAUSE_STS, .read_l2_entry_using_hash = rtl930x_read_l2_entry_using_hash, .write_l2_entry_using_hash = rtl930x_write_l2_entry_using_hash, .read_cam = rtl930x_read_cam, .write_cam = rtl930x_write_cam, .vlan_port_tag_sts_ctrl = RTL930X_VLAN_PORT_TAG_STS_CTRL, .vlan_port_pvidmode_set = rtl930x_vlan_port_pvidmode_set, .vlan_port_pvid_set = rtl930x_vlan_port_pvid_set, .trk_mbr_ctr = rtl930x_trk_mbr_ctr, .rma_bpdu_fld_pmask = RTL930X_RMA_BPDU_FLD_PMSK, .init_eee = rtl930x_init_eee, .port_eee_set = rtl930x_port_eee_set, .eee_port_ability = rtl930x_eee_port_ability, .l2_hash_seed = rtl930x_l2_hash_seed, .l2_hash_key = rtl930x_l2_hash_key, .read_mcast_pmask = rtl930x_read_mcast_pmask, .write_mcast_pmask = rtl930x_write_mcast_pmask, .pie_init = rtl930x_pie_init, .pie_rule_write = rtl930x_pie_rule_write, .pie_rule_add = rtl930x_pie_rule_add, .pie_rule_rm = rtl930x_pie_rule_rm, .l2_learning_setup = rtl930x_l2_learning_setup, .packet_cntr_read = rtl930x_packet_cntr_read, .packet_cntr_clear = rtl930x_packet_cntr_clear, .route_read = rtl930x_route_read, .route_write = rtl930x_route_write, .host_route_write = rtl930x_host_route_write, .l3_setup = rtl930x_l3_setup, .set_l3_nexthop = rtl930x_set_l3_nexthop, .get_l3_nexthop = rtl930x_get_l3_nexthop, .get_l3_egress_mac = rtl930x_get_l3_egress_mac, .set_l3_egress_mac = rtl930x_set_l3_egress_mac, .find_l3_slot = rtl930x_find_l3_slot, .route_lookup_hw = rtl930x_route_lookup_hw, .get_l3_router_mac = rtl930x_get_l3_router_mac, .set_l3_router_mac = rtl930x_set_l3_router_mac, .set_l3_egress_intf = rtl930x_set_l3_egress_intf, .set_distribution_algorithm = rtl930x_set_distribution_algorithm, .led_init = rtl930x_led_init, };