// SPDX-License-Identifier: GPL-2.0-only #include #include "rtl83xx.h" #define RTL839X_VLAN_PORT_TAG_STS_UNTAG 0x0 #define RTL839X_VLAN_PORT_TAG_STS_TAGGED 0x1 #define RTL839X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2 #define RTL839X_VLAN_PORT_TAG_STS_CTRL_BASE 0x6828 /* port 0-52 */ #define RTL839X_VLAN_PORT_TAG_STS_CTRL(port) \ RTL839X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(7,6) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(5,4) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(3,3) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(2,2) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(1,1) #define RTL839X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(0,0) extern struct mutex smi_lock; extern struct rtl83xx_soc_info soc_info; /* Definition of the RTL839X-specific template field IDs as used in the PIE */ enum template_field_id { TEMPLATE_FIELD_SPMMASK = 0, TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15 TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-31 TEMPLATE_FIELD_SPM2 = 3, // Source portmask ports 32-47 TEMPLATE_FIELD_SPM3 = 4, // Source portmask ports 48-56 TEMPLATE_FIELD_DMAC0 = 5, // Destination MAC [15:0] TEMPLATE_FIELD_DMAC1 = 6, // Destination MAC [31:16] TEMPLATE_FIELD_DMAC2 = 7, // Destination MAC [47:32] TEMPLATE_FIELD_SMAC0 = 8, // Source MAC [15:0] TEMPLATE_FIELD_SMAC1 = 9, // Source MAC [31:16] TEMPLATE_FIELD_SMAC2 = 10, // Source MAC [47:32] TEMPLATE_FIELD_ETHERTYPE = 11, // Ethernet frame type field // Field-ID 12 is not used TEMPLATE_FIELD_OTAG = 13, TEMPLATE_FIELD_ITAG = 14, TEMPLATE_FIELD_SIP0 = 15, TEMPLATE_FIELD_SIP1 = 16, TEMPLATE_FIELD_DIP0 = 17, TEMPLATE_FIELD_DIP1 = 18, TEMPLATE_FIELD_IP_TOS_PROTO = 19, TEMPLATE_FIELD_IP_FLAG = 20, TEMPLATE_FIELD_L4_SPORT = 21, TEMPLATE_FIELD_L4_DPORT = 22, TEMPLATE_FIELD_L34_HEADER = 23, TEMPLATE_FIELD_ICMP_IGMP = 24, TEMPLATE_FIELD_VID_RANG0 = 25, TEMPLATE_FIELD_VID_RANG1 = 26, TEMPLATE_FIELD_L4_PORT_RANG = 27, TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 28, TEMPLATE_FIELD_FIELD_SELECTOR_0 = 29, TEMPLATE_FIELD_FIELD_SELECTOR_1 = 30, TEMPLATE_FIELD_FIELD_SELECTOR_2 = 31, TEMPLATE_FIELD_FIELD_SELECTOR_3 = 32, TEMPLATE_FIELD_FIELD_SELECTOR_4 = 33, TEMPLATE_FIELD_FIELD_SELECTOR_5 = 34, TEMPLATE_FIELD_SIP2 = 35, TEMPLATE_FIELD_SIP3 = 36, TEMPLATE_FIELD_SIP4 = 37, TEMPLATE_FIELD_SIP5 = 38, TEMPLATE_FIELD_SIP6 = 39, TEMPLATE_FIELD_SIP7 = 40, TEMPLATE_FIELD_OLABEL = 41, TEMPLATE_FIELD_ILABEL = 42, TEMPLATE_FIELD_OILABEL = 43, TEMPLATE_FIELD_DPMMASK = 44, TEMPLATE_FIELD_DPM0 = 45, TEMPLATE_FIELD_DPM1 = 46, TEMPLATE_FIELD_DPM2 = 47, TEMPLATE_FIELD_DPM3 = 48, TEMPLATE_FIELD_L2DPM0 = 49, TEMPLATE_FIELD_L2DPM1 = 50, TEMPLATE_FIELD_L2DPM2 = 51, TEMPLATE_FIELD_L2DPM3 = 52, TEMPLATE_FIELD_IVLAN = 53, TEMPLATE_FIELD_OVLAN = 54, TEMPLATE_FIELD_FWD_VID = 55, TEMPLATE_FIELD_DIP2 = 56, TEMPLATE_FIELD_DIP3 = 57, TEMPLATE_FIELD_DIP4 = 58, TEMPLATE_FIELD_DIP5 = 59, TEMPLATE_FIELD_DIP6 = 60, TEMPLATE_FIELD_DIP7 = 61, }; // Number of fixed templates predefined in the SoC #define N_FIXED_TEMPLATES 5 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] = { { TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2, TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, { TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1 }, { TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2, TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5, TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO }, { TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2, TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5, TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3 }, }; void rtl839x_print_matrix(void) { volatile u64 *ptr9; int i; ptr9 = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0); for (i = 0; i < 52; i += 4) pr_debug("> %16llx %16llx %16llx %16llx\n", ptr9[i + 0], ptr9[i + 1], ptr9[i + 2], ptr9[i + 3]); pr_debug("CPU_PORT> %16llx\n", ptr9[52]); } static inline int rtl839x_port_iso_ctrl(int p) { return RTL839X_PORT_ISO_CTRL(p); } static inline void rtl839x_exec_tbl0_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16)); } static inline void rtl839x_exec_tbl1_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16)); } inline void rtl839x_exec_tbl2_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_2); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_2) & (1 << 9)); } static inline int rtl839x_tbl_access_data_0(int i) { return RTL839X_TBL_ACCESS_DATA_0(i); } static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info) { u32 u, v, w; // Read VLAN table (0) via register 0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0); rtl_table_read(r, vlan); u = sw_r32(rtl_table_data(r, 0)); v = sw_r32(rtl_table_data(r, 1)); w = sw_r32(rtl_table_data(r, 2)); rtl_table_release(r); info->tagged_ports = u; info->tagged_ports = (info->tagged_ports << 21) | ((v >> 11) & 0x1fffff); info->profile_id = w >> 30 | ((v & 1) << 2); info->hash_mc_fid = !!(w & BIT(2)); info->hash_uc_fid = !!(w & BIT(3)); info->fid = (v >> 3) & 0xff; // Read UNTAG table (0) via table register 1 r = rtl_table_get(RTL8390_TBL_1, 0); rtl_table_read(r, vlan); u = sw_r32(rtl_table_data(r, 0)); v = sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); info->untagged_ports = u; info->untagged_ports = (info->untagged_ports << 21) | ((v >> 11) & 0x1fffff); } static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info) { u32 u, v, w; // Access VLAN table (0) via register 0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0); u = info->tagged_ports >> 21; v = info->tagged_ports << 11; v |= ((u32)info->fid) << 3; v |= info->hash_uc_fid ? BIT(2) : 0; v |= info->hash_mc_fid ? BIT(1) : 0; v |= (info->profile_id & 0x4) ? 1 : 0; w = ((u32)(info->profile_id & 3)) << 30; sw_w32(u, rtl_table_data(r, 0)); sw_w32(v, rtl_table_data(r, 1)); sw_w32(w, rtl_table_data(r, 2)); rtl_table_write(r, vlan); rtl_table_release(r); } static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask) { u32 u, v; // Access UNTAG table (0) via table register 1 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 0); u = portmask >> 21; v = portmask << 11; sw_w32(u, rtl_table_data(r, 0)); sw_w32(v, rtl_table_data(r, 1)); rtl_table_write(r, vlan); rtl_table_release(r); } /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer */ static void rtl839x_vlan_fwd_on_inner(int port, bool is_set) { if (is_set) rtl839x_mask_port_reg_be(BIT_ULL(port), 0ULL, RTL839X_VLAN_PORT_FWD); else rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD); } /* * Hash seed is vid (actually rvid) concatenated with the MAC address */ static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid) { u64 v = vid; v <<= 48; v |= mac; return v; } /* * Applies the same hash algorithm as the one used currently by the ASIC to the seed * and returns a key into the L2 hash table */ static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed) { u32 h1, h2, h; if (sw_r32(priv->r->l2_ctrl_0) & 1) { h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f) ^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f) ^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f)); h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f) ^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f) ^ (seed & 0x3f)); h = (h1 << 6) | h2; } else { h = (seed >> 60) ^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f)) ^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff) ^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff); } return h; } static inline int rtl839x_mac_force_mode_ctrl(int p) { return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2); } static inline int rtl839x_mac_port_ctrl(int p) { return RTL839X_MAC_PORT_CTRL(p); } static inline int rtl839x_l2_port_new_salrn(int p) { return RTL839X_L2_PORT_NEW_SALRN(p); } static inline int rtl839x_l2_port_new_sa_fwd(int p) { return RTL839X_L2_PORT_NEW_SA_FWD(p); } static inline int rtl839x_mac_link_spd_sts(int p) { return RTL839X_MAC_LINK_SPD_STS(p); } static inline int rtl839x_trk_mbr_ctr(int group) { return RTL839X_TRK_MBR_CTR + (group << 3); } static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e) { /* Table contains different entry types, we need to identify the right one: * Check for MC entries, first */ e->is_ip_mc = !!(r[2] & BIT(31)); e->is_ipv6_mc = !!(r[2] & BIT(30)); e->type = L2_INVALID; if (!e->is_ip_mc && !e->is_ipv6_mc) { e->mac[0] = (r[0] >> 12); e->mac[1] = (r[0] >> 4); e->mac[2] = ((r[1] >> 28) | (r[0] << 4)); e->mac[3] = (r[1] >> 20); e->mac[4] = (r[1] >> 12); e->mac[5] = (r[1] >> 4); e->vid = (r[2] >> 4) & 0xfff; e->rvid = (r[0] >> 20) & 0xfff; /* Is it a unicast entry? check multicast bit */ if (!(e->mac[0] & 1)) { e->is_static = !!((r[2] >> 18) & 1); e->port = (r[2] >> 24) & 0x3f; e->block_da = !!(r[2] & (1 << 19)); e->block_sa = !!(r[2] & (1 << 20)); e->suspended = !!(r[2] & (1 << 17)); e->next_hop = !!(r[2] & (1 << 16)); if (e->next_hop) { pr_debug("Found next hop entry, need to read data\n"); e->nh_vlan_target = !!(r[2] & BIT(15)); e->nh_route_id = (r[2] >> 4) & 0x1ff; e->vid = e->rvid; } e->age = (r[2] >> 21) & 3; e->valid = true; if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */ e->valid = false; else e->type = L2_UNICAST; } else { e->valid = true; e->type = L2_MULTICAST; e->mc_portmask_index = (r[2] >> 6) & 0xfff; e->vid = e->rvid; } } else { // IPv4 and IPv6 multicast e->vid = e->rvid = (r[0] << 20) & 0xfff; e->mc_gip = r[1]; e->mc_portmask_index = (r[2] >> 6) & 0xfff; } if (e->is_ip_mc) { e->valid = true; e->type = IP4_MULTICAST; } if (e->is_ipv6_mc) { e->valid = true; e->type = IP6_MULTICAST; } // pr_info("%s: vid %d, rvid: %d\n", __func__, e->vid, e->rvid); } /* * Fills the 3 SoC table registers r[] with the information in the rtl838x_l2_entry */ static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e) { if (!e->valid) { r[0] = r[1] = r[2] = 0; return; } r[2] = e->is_ip_mc ? BIT(31) : 0; r[2] |= e->is_ipv6_mc ? BIT(30) : 0; if (!e->is_ip_mc && !e->is_ipv6_mc) { r[0] = ((u32)e->mac[0]) << 12; r[0] |= ((u32)e->mac[1]) << 4; r[0] |= ((u32)e->mac[2]) >> 4; r[1] = ((u32)e->mac[2]) << 28; r[1] |= ((u32)e->mac[3]) << 20; r[1] |= ((u32)e->mac[4]) << 12; r[1] |= ((u32)e->mac[5]) << 4; if (!(e->mac[0] & 1)) { // Not multicast r[2] |= e->is_static ? BIT(18) : 0; r[0] |= ((u32)e->rvid) << 20; r[2] |= e->port << 24; r[2] |= e->block_da ? BIT(19) : 0; r[2] |= e->block_sa ? BIT(20) : 0; r[2] |= e->suspended ? BIT(17) : 0; r[2] |= ((u32)e->age) << 21; if (e->next_hop) { r[2] |= BIT(16); r[2] |= e->nh_vlan_target ? BIT(15) : 0; r[2] |= (e->nh_route_id & 0x7ff) << 4; } else { r[2] |= e->vid << 4; } pr_debug("Write L2 NH: %08x %08x %08x\n", r[0], r[1], r[2]); } else { // L2 Multicast r[0] |= ((u32)e->rvid) << 20; r[2] |= ((u32)e->mc_portmask_index) << 6; } } else { // IPv4 or IPv6 MC entry r[0] = ((u32)e->rvid) << 20; r[1] = e->mc_gip; r[2] |= ((u32)e->mc_portmask_index) << 6; } } /* * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table * hash is the id of the bucket and pos is the position of the entry in that bucket * The data read from the SoC is filled into rtl838x_l2_entry */ static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0); u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl839x_fill_l2_entry(r, e); if (!e->valid) return 0; return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid); } static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0); int i; u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket rtl839x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1 int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl839x_fill_l2_entry(r, e); if (!e->valid) return 0; pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]); // Return MAC with concatenated VID ac concatenated ID return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid); } static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1 int i; rtl839x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl839x_read_mcast_pmask(int idx) { u64 portmask; // Read MC_PMSK (2) via register RTL8390_TBL_L2 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2); rtl_table_read(q, idx); portmask = sw_r32(rtl_table_data(q, 0)); portmask <<= 32; portmask |= sw_r32(rtl_table_data(q, 1)); portmask >>= 11; // LSB is bit 11 in data registers rtl_table_release(q); return portmask; } static void rtl839x_write_mcast_pmask(int idx, u64 portmask) { // Access MC_PMSK (2) via register RTL8380_TBL_L2 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2); portmask <<= 11; // LSB is bit 11 in data registers sw_w32((u32)(portmask >> 32), rtl_table_data(q, 0)); sw_w32((u32)((portmask & 0xfffff800)), rtl_table_data(q, 1)); rtl_table_write(q, idx); rtl_table_release(q); } static void rtl839x_vlan_profile_setup(int profile) { u32 p[2]; u32 pmask_id = UNKNOWN_MC_PMASK; p[0] = pmask_id; // Use portmaks 0xfff for unknown IPv6 MC flooding // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for IP/L2-MC traffic flooding p[1] = 1 | pmask_id << 1 | pmask_id << 13; sw_w32(p[0], RTL839X_VLAN_PROFILE(profile)); sw_w32(p[1], RTL839X_VLAN_PROFILE(profile) + 4); rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff); } u64 rtl839x_traffic_get(int source) { return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_set(int source, u64 dest_matrix) { rtl839x_set_port_reg_be(dest_matrix, rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_enable(int source, int dest) { rtl839x_mask_port_reg_be(0, BIT_ULL(dest), rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_disable(int source, int dest) { rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source)); } static void rtl839x_l2_learning_setup(void) { /* Set portmask for broadcast (offset bit 12) and unknown unicast (offset 0) * address flooding to the reserved entry in the portmask table used * also for multicast flooding */ sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL839X_L2_FLD_PMSK); // Limit learning to maximum: 32k entries, after that just flood (bits 0-1) sw_w32((0x7fff << 2) | 0, RTL839X_L2_LRN_CONSTRT); // Do not trap ARP packets to CPU_PORT sw_w32(0, RTL839X_SPCL_TRAP_ARP_CTRL); } static void rtl839x_enable_learning(int port, bool enable) { // Limit learning to maximum: 32k entries sw_w32_mask(0x7fff << 2, enable ? (0x7fff << 2) : 0, RTL839X_L2_PORT_LRN_CONSTRT + (port << 2)); } static void rtl839x_enable_flood(int port, bool enable) { /* * 0: Forward * 1: Disable * 2: to CPU * 3: Copy to CPU */ sw_w32_mask(0x3, enable ? 0 : 1, RTL839X_L2_PORT_LRN_CONSTRT + (port << 2)); } static void rtl839x_enable_mcast_flood(int port, bool enable) { } static void rtl839x_enable_bcast_flood(int port, bool enable) { } static void rtl839x_set_static_move_action(int port, bool forward) { int shift = MV_ACT_PORT_SHIFT(port); u32 val = forward ? MV_ACT_FORWARD : MV_ACT_DROP; sw_w32_mask(MV_ACT_MASK << shift, val << shift, RTL839X_L2_PORT_STATIC_MV_ACT(port)); } irqreturn_t rtl839x_switch_irq(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; u32 status = sw_r32(RTL839X_ISR_GLB_SRC); u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG); u64 link; int i; /* Clear status */ rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG); pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports); for (i = 0; i < RTL839X_CPU_PORT; i++) { if (ports & BIT_ULL(i)) { link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS); if (link & BIT_ULL(i)) dsa_port_phylink_mac_change(ds, i, true); else dsa_port_phylink_mac_change(ds, i, false); } } return IRQ_HANDLED; } // TODO: unused int rtl8390_sds_power(int mac, int val) { u32 offset = (mac == 48) ? 0x0 : 0x100; u32 mode = val ? 0 : 1; pr_debug("In %s: mac %d, set %d\n", __func__, mac, val); if ((mac != 48) && (mac != 49)) { pr_err("%s: not an SFP port: %d\n", __func__, mac); return -1; } // Set bit 1003. 1000 starts at 7c sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset); return 0; } static int rtl839x_smi_wait_op(int timeout) { int ret = 0; u32 val; ret = readx_poll_timeout(sw_r32, RTL839X_PHYREG_ACCESS_CTRL, val, !(val & 0x1), 20, timeout); if (ret) pr_err("%s: timeout\n", __func__); return ret; } int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val) { u32 v; int err = 0; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; // Take bug on RTL839x Rev <= C into account if (port >= RTL839X_CPU_PORT) return -EIO; mutex_lock(&smi_lock); sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL); v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); sw_w32(0x1ff, RTL839X_PHYREG_CTRL); v |= 1; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); err = rtl839x_smi_wait_op(100000); if (err) goto errout; *val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff; errout: mutex_unlock(&smi_lock); return err; } int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val) { u32 v; int err = 0; val &= 0xffff; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; // Take bug on RTL839x Rev <= C into account if (port >= RTL839X_CPU_PORT) return -EIO; mutex_lock(&smi_lock); // Set PHY to access rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL); sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL); v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); sw_w32(0x1ff, RTL839X_PHYREG_CTRL); v |= BIT(3) | 1; /* Write operation and execute */ sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); err = rtl839x_smi_wait_op(100000); if (err) goto errout; if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2) err = -EIO; errout: mutex_unlock(&smi_lock); return err; } /* * Read an mmd register of the PHY */ int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { int err = 0; u32 v; // Take bug on RTL839x Rev <= C into account if (port >= RTL839X_CPU_PORT) return -EIO; mutex_lock(&smi_lock); // Set PHY to access sw_w32_mask(0xffff << 16, port << 16, RTL839X_PHYREG_DATA_CTRL); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL); v = BIT(2) | BIT(0); // MMD-access | EXEC sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); err = rtl839x_smi_wait_op(100000); if (err) goto errout; // There is no error-checking via BIT 1 of v, as it does not seem to be set correctly *val = (sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err); errout: mutex_unlock(&smi_lock); return err; } /* * Write to an mmd register of the PHY */ int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val) { int err = 0; u32 v; // Take bug on RTL839x Rev <= C into account if (port >= RTL839X_CPU_PORT) return -EIO; mutex_lock(&smi_lock); // Set PHY to access rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL); // Set data to write sw_w32_mask(0xffff << 16, val << 16, RTL839X_PHYREG_DATA_CTRL); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL); v = BIT(3) | BIT(2) | BIT(0); // WRITE | MMD-access | EXEC sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); err = rtl839x_smi_wait_op(100000); if (err) goto errout; pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err); errout: mutex_unlock(&smi_lock); return err; } void rtl8390_get_version(struct rtl838x_switch_priv *priv) { u32 info, model; sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO); info = sw_r32(RTL839X_CHIP_INFO); model = sw_r32(RTL839X_MODEL_NAME_INFO); priv->version = RTL8390_VERSION_A + ((model & 0x3f) >> 1); pr_info("RTL839X Chip-Info: %x, version %c\n", info, priv->version); } void rtl839x_vlan_profile_dump(int profile) { u32 p[2]; if (profile < 0 || profile > 7) return; p[0] = sw_r32(RTL839X_VLAN_PROFILE(profile)); p[1] = sw_r32(RTL839X_VLAN_PROFILE(profile) + 4); pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \ UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d", profile, p[1] & 1, (p[1] >> 1) & 0xfff, (p[1] >> 13) & 0xfff, (p[0]) & 0xfff); pr_info("VLAN profile %d: raw %08x, %08x\n", profile, p[0], p[1]); } static void rtl839x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 16 /* Execute cmd */ | 0 << 15 /* Read */ | 5 << 12 /* Table type 0b101 */ | (msti & 0xfff); priv->r->exec_tbl0_cmd(cmd); for (i = 0; i < 4; i++) port_state[i] = sw_r32(priv->r->tbl_access_data_0(i)); } static void rtl839x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 16 /* Execute cmd */ | 1 << 15 /* Write */ | 5 << 12 /* Table type 0b101 */ | (msti & 0xfff); for (i = 0; i < 4; i++) sw_w32(port_state[i], priv->r->tbl_access_data_0(i)); priv->r->exec_tbl0_cmd(cmd); } /* * Enables or disables the EEE/EEEP capability of a port */ void rtl839x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable) { u32 v; // This works only for Ethernet ports, and on the RTL839X, ports above 47 are SFP if (port >= 48) return; enable = true; pr_debug("In %s: setting port %d to %d\n", __func__, port, enable); v = enable ? 0xf : 0x0; // Set EEE for 100, 500, 1000MBit and 10GBit sw_w32_mask(0xf << 8, v << 8, rtl839x_mac_force_mode_ctrl(port)); // Set TX/RX EEE state v = enable ? 0x3 : 0x0; sw_w32(v, RTL839X_EEE_CTRL(port)); priv->ports[port].eee_enabled = enable; } /* * Get EEE own capabilities and negotiation result */ int rtl839x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port) { u64 link, a; if (port >= 48) return 0; link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS); if (!(link & BIT_ULL(port))) return 0; if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(8)) e->advertised |= ADVERTISED_100baseT_Full; if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(10)) e->advertised |= ADVERTISED_1000baseT_Full; a = rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY); pr_info("Link partner: %016llx\n", a); if (rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY) & BIT_ULL(port)) { e->lp_advertised = ADVERTISED_100baseT_Full; e->lp_advertised |= ADVERTISED_1000baseT_Full; return 1; } return 0; } static void rtl839x_init_eee(struct rtl838x_switch_priv *priv, bool enable) { int i; pr_info("Setting up EEE, state: %d\n", enable); // Set wake timer for TX and pause timer both to 0x21 sw_w32_mask(0xff << 20| 0xff, 0x21 << 20| 0x21, RTL839X_EEE_TX_TIMER_GELITE_CTRL); // Set pause wake timer for GIGA-EEE to 0x11 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_GIGA_CTRL); // Set pause wake timer for 10GBit ports to 0x11 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_10G_CTRL); // Setup EEE on all ports for (i = 0; i < priv->cpu_port; i++) { if (priv->ports[i].phy) rtl839x_port_eee_set(priv, i, enable); } priv->eee_enabled = enable; } static void rtl839x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index) { int block = index / PIE_BLOCK_SIZE; sw_w32_mask(0, BIT(block), RTL839X_ACL_BLK_LOOKUP_CTRL); } /* * Delete a range of Packet Inspection Engine rules */ static int rtl839x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to) { u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0); pr_debug("%s: from %d to %d\n", __func__, index_from, index_to); mutex_lock(&priv->reg_mutex); // Write from-to and execute bit into control register sw_w32(v, RTL839X_ACL_CLR_CTRL); // Wait until command has completed do { } while (sw_r32(RTL839X_ACL_CLR_CTRL) & BIT(0)); mutex_unlock(&priv->reg_mutex); return 0; } /* * Reads the intermediate representation of the templated match-fields of the * PIE rule in the pie_rule structure and fills in the raw data fields in the * raw register space r[]. * The register space configuration size is identical for the RTL8380/90 and RTL9300, * however the RTL9310 has 2 more registers / fields and the physical field-ids are different * on all SoCs * On the RTL8390 the template mask registers are not word-aligned! */ static void rtl839x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[]) { int i; enum template_field_id field_type; u16 data, data_m; for (i = 0; i < N_FIXED_FIELDS; i++) { field_type = t[i]; data = data_m = 0; switch (field_type) { case TEMPLATE_FIELD_SPM0: data = pr->spm; data_m = pr->spm_m; break; case TEMPLATE_FIELD_SPM1: data = pr->spm >> 16; data_m = pr->spm_m >> 16; break; case TEMPLATE_FIELD_SPM2: data = pr->spm >> 32; data_m = pr->spm_m >> 32; break; case TEMPLATE_FIELD_SPM3: data = pr->spm >> 48; data_m = pr->spm_m >> 48; break; case TEMPLATE_FIELD_OTAG: data = pr->otag; data_m = pr->otag_m; break; case TEMPLATE_FIELD_SMAC0: data = pr->smac[4]; data = (data << 8) | pr->smac[5]; data_m = pr->smac_m[4]; data_m = (data_m << 8) | pr->smac_m[5]; break; case TEMPLATE_FIELD_SMAC1: data = pr->smac[2]; data = (data << 8) | pr->smac[3]; data_m = pr->smac_m[2]; data_m = (data_m << 8) | pr->smac_m[3]; break; case TEMPLATE_FIELD_SMAC2: data = pr->smac[0]; data = (data << 8) | pr->smac[1]; data_m = pr->smac_m[0]; data_m = (data_m << 8) | pr->smac_m[1]; break; case TEMPLATE_FIELD_DMAC0: data = pr->dmac[4]; data = (data << 8) | pr->dmac[5]; data_m = pr->dmac_m[4]; data_m = (data_m << 8) | pr->dmac_m[5]; break; case TEMPLATE_FIELD_DMAC1: data = pr->dmac[2]; data = (data << 8) | pr->dmac[3]; data_m = pr->dmac_m[2]; data_m = (data_m << 8) | pr->dmac_m[3]; break; case TEMPLATE_FIELD_DMAC2: data = pr->dmac[0]; data = (data << 8) | pr->dmac[1]; data_m = pr->dmac_m[0]; data_m = (data_m << 8) | pr->dmac_m[1]; break; case TEMPLATE_FIELD_ETHERTYPE: data = pr->ethertype; data_m = pr->ethertype_m; break; case TEMPLATE_FIELD_ITAG: data = pr->itag; data_m = pr->itag_m; break; case TEMPLATE_FIELD_SIP0: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[7]; data_m = pr->sip6_m.s6_addr16[7]; } else { data = pr->sip; data_m = pr->sip_m; } break; case TEMPLATE_FIELD_SIP1: if (pr->is_ipv6) { data = pr->sip6.s6_addr16[6]; data_m = pr->sip6_m.s6_addr16[6]; } else { data = pr->sip >> 16; data_m = pr->sip_m >> 16; } break; case TEMPLATE_FIELD_SIP2: case TEMPLATE_FIELD_SIP3: case TEMPLATE_FIELD_SIP4: case TEMPLATE_FIELD_SIP5: case TEMPLATE_FIELD_SIP6: case TEMPLATE_FIELD_SIP7: data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)]; break; case TEMPLATE_FIELD_DIP0: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[7]; data_m = pr->dip6_m.s6_addr16[7]; } else { data = pr->dip; data_m = pr->dip_m; } break; case TEMPLATE_FIELD_DIP1: if (pr->is_ipv6) { data = pr->dip6.s6_addr16[6]; data_m = pr->dip6_m.s6_addr16[6]; } else { data = pr->dip >> 16; data_m = pr->dip_m >> 16; } break; case TEMPLATE_FIELD_DIP2: case TEMPLATE_FIELD_DIP3: case TEMPLATE_FIELD_DIP4: case TEMPLATE_FIELD_DIP5: case TEMPLATE_FIELD_DIP6: case TEMPLATE_FIELD_DIP7: data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)]; break; case TEMPLATE_FIELD_IP_TOS_PROTO: data = pr->tos_proto; data_m = pr->tos_proto_m; break; case TEMPLATE_FIELD_L4_SPORT: data = pr->sport; data_m = pr->sport_m; break; case TEMPLATE_FIELD_L4_DPORT: data = pr->dport; data_m = pr->dport_m; break; case TEMPLATE_FIELD_ICMP_IGMP: data = pr->icmp_igmp; data_m = pr->icmp_igmp_m; break; default: pr_info("%s: unknown field %d\n", __func__, field_type); } // On the RTL8390, the mask fields are not word aligned! if (!(i % 2)) { r[5 - i / 2] = data; r[12 - i / 2] |= ((u32)data_m << 8); } else { r[5 - i / 2] |= ((u32)data) << 16; r[12 - i / 2] |= ((u32)data_m) << 24; r[11 - i / 2] |= ((u32)data_m) >> 8; } } } /* * Creates the intermediate representation of the templated match-fields of the * PIE rule in the pie_rule structure by reading the raw data fields in the * raw register space r[]. * The register space configuration size is identical for the RTL8380/90 and RTL9300, * however the RTL9310 has 2 more registers / fields and the physical field-ids * On the RTL8390 the template mask registers are not word-aligned! */ void rtl839x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[]) { int i; enum template_field_id field_type; u16 data, data_m; for (i = 0; i < N_FIXED_FIELDS; i++) { field_type = t[i]; if (!(i % 2)) { data = r[5 - i / 2]; data_m = r[12 - i / 2]; } else { data = r[5 - i / 2] >> 16; data_m = r[12 - i / 2] >> 16; } switch (field_type) { case TEMPLATE_FIELD_SPM0: pr->spm = (pr->spn << 16) | data; pr->spm_m = (pr->spn << 16) | data_m; break; case TEMPLATE_FIELD_SPM1: pr->spm = data; pr->spm_m = data_m; break; case TEMPLATE_FIELD_OTAG: pr->otag = data; pr->otag_m = data_m; break; case TEMPLATE_FIELD_SMAC0: pr->smac[4] = data >> 8; pr->smac[5] = data; pr->smac_m[4] = data >> 8; pr->smac_m[5] = data; break; case TEMPLATE_FIELD_SMAC1: pr->smac[2] = data >> 8; pr->smac[3] = data; pr->smac_m[2] = data >> 8; pr->smac_m[3] = data; break; case TEMPLATE_FIELD_SMAC2: pr->smac[0] = data >> 8; pr->smac[1] = data; pr->smac_m[0] = data >> 8; pr->smac_m[1] = data; break; case TEMPLATE_FIELD_DMAC0: pr->dmac[4] = data >> 8; pr->dmac[5] = data; pr->dmac_m[4] = data >> 8; pr->dmac_m[5] = data; break; case TEMPLATE_FIELD_DMAC1: pr->dmac[2] = data >> 8; pr->dmac[3] = data; pr->dmac_m[2] = data >> 8; pr->dmac_m[3] = data; break; case TEMPLATE_FIELD_DMAC2: pr->dmac[0] = data >> 8; pr->dmac[1] = data; pr->dmac_m[0] = data >> 8; pr->dmac_m[1] = data; break; case TEMPLATE_FIELD_ETHERTYPE: pr->ethertype = data; pr->ethertype_m = data_m; break; case TEMPLATE_FIELD_ITAG: pr->itag = data; pr->itag_m = data_m; break; case TEMPLATE_FIELD_SIP0: pr->sip = data; pr->sip_m = data_m; break; case TEMPLATE_FIELD_SIP1: pr->sip = (pr->sip << 16) | data; pr->sip_m = (pr->sip << 16) | data_m; break; case TEMPLATE_FIELD_SIP2: pr->is_ipv6 = true; // Make use of limitiations on the position of the match values ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2], r[4 - i / 2], r[3 - i / 2]); ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2], r[4 - i / 2], r[3 - i / 2]); case TEMPLATE_FIELD_SIP3: case TEMPLATE_FIELD_SIP4: case TEMPLATE_FIELD_SIP5: case TEMPLATE_FIELD_SIP6: case TEMPLATE_FIELD_SIP7: break; case TEMPLATE_FIELD_DIP0: pr->dip = data; pr->dip_m = data_m; break; case TEMPLATE_FIELD_DIP1: pr->dip = (pr->dip << 16) | data; pr->dip_m = (pr->dip << 16) | data_m; break; case TEMPLATE_FIELD_DIP2: pr->is_ipv6 = true; ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2], r[4 - i / 2], r[3 - i / 2]); ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2], r[4 - i / 2], r[3 - i / 2]); case TEMPLATE_FIELD_DIP3: case TEMPLATE_FIELD_DIP4: case TEMPLATE_FIELD_DIP5: case TEMPLATE_FIELD_DIP6: case TEMPLATE_FIELD_DIP7: break; case TEMPLATE_FIELD_IP_TOS_PROTO: pr->tos_proto = data; pr->tos_proto_m = data_m; break; case TEMPLATE_FIELD_L4_SPORT: pr->sport = data; pr->sport_m = data_m; break; case TEMPLATE_FIELD_L4_DPORT: pr->dport = data; pr->dport_m = data_m; break; case TEMPLATE_FIELD_ICMP_IGMP: pr->icmp_igmp = data; pr->icmp_igmp_m = data_m; break; default: pr_info("%s: unknown field %d\n", __func__, field_type); } } } static void rtl839x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr) { pr->spmmask_fix = (r[6] >> 30) & 0x3; pr->spn = (r[6] >> 24) & 0x3f; pr->mgnt_vlan = (r[6] >> 23) & 1; pr->dmac_hit_sw = (r[6] >> 22) & 1; pr->not_first_frag = (r[6] >> 21) & 1; pr->frame_type_l4 = (r[6] >> 18) & 7; pr->frame_type = (r[6] >> 16) & 3; pr->otag_fmt = (r[6] >> 15) & 1; pr->itag_fmt = (r[6] >> 14) & 1; pr->otag_exist = (r[6] >> 13) & 1; pr->itag_exist = (r[6] >> 12) & 1; pr->frame_type_l2 = (r[6] >> 10) & 3; pr->tid = (r[6] >> 8) & 3; pr->spmmask_fix_m = (r[12] >> 6) & 0x3; pr->spn_m = r[12] & 0x3f; pr->mgnt_vlan_m = (r[13] >> 31) & 1; pr->dmac_hit_sw_m = (r[13] >> 30) & 1; pr->not_first_frag_m = (r[13] >> 29) & 1; pr->frame_type_l4_m = (r[13] >> 26) & 7; pr->frame_type_m = (r[13] >> 24) & 3; pr->otag_fmt_m = (r[13] >> 23) & 1; pr->itag_fmt_m = (r[13] >> 22) & 1; pr->otag_exist_m = (r[13] >> 21) & 1; pr->itag_exist_m = (r[13] >> 20) & 1; pr->frame_type_l2_m = (r[13] >> 18) & 3; pr->tid_m = (r[13] >> 16) & 3; pr->valid = r[13] & BIT(15); pr->cond_not = r[13] & BIT(14); pr->cond_and1 = r[13] & BIT(13); pr->cond_and2 = r[13] & BIT(12); } static void rtl839x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr) { r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 30; r[6] |= ((u32) (pr->spn & 0x3f)) << 24; r[6] |= pr->mgnt_vlan ? BIT(23) : 0; r[6] |= pr->dmac_hit_sw ? BIT(22) : 0; r[6] |= pr->not_first_frag ? BIT(21) : 0; r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18; r[6] |= ((u32) (pr->frame_type & 0x3)) << 16; r[6] |= pr->otag_fmt ? BIT(15) : 0; r[6] |= pr->itag_fmt ? BIT(14) : 0; r[6] |= pr->otag_exist ? BIT(13) : 0; r[6] |= pr->itag_exist ? BIT(12) : 0; r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10; r[6] |= ((u32) (pr->tid & 0x3)) << 8; r[12] |= ((u32) (pr->spmmask_fix_m & 0x3)) << 6; r[12] |= (u32) (pr->spn_m & 0x3f); r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0; r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0; r[13] |= pr->not_first_frag_m ? BIT(29) : 0; r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26; r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24; r[13] |= pr->otag_fmt_m ? BIT(23) : 0; r[13] |= pr->itag_fmt_m ? BIT(22) : 0; r[13] |= pr->otag_exist_m ? BIT(21) : 0; r[13] |= pr->itag_exist_m ? BIT(20) : 0; r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18; r[13] |= ((u32) (pr->tid_m & 0x3)) << 16; r[13] |= pr->valid ? BIT(15) : 0; r[13] |= pr->cond_not ? BIT(14) : 0; r[13] |= pr->cond_and1 ? BIT(13) : 0; r[13] |= pr->cond_and2 ? BIT(12) : 0; } static void rtl839x_write_pie_action(u32 r[], struct pie_rule *pr) { if (pr->drop) { r[13] |= 0x9; // Set ACT_MASK_FWD & FWD_ACT = DROP r[13] |= BIT(3); } else { r[13] |= pr->fwd_sel ? BIT(3) : 0; r[13] |= pr->fwd_act; } r[13] |= pr->bypass_sel ? BIT(11) : 0; r[13] |= pr->mpls_sel ? BIT(10) : 0; r[13] |= pr->nopri_sel ? BIT(9) : 0; r[13] |= pr->ovid_sel ? BIT(8) : 0; r[13] |= pr->ivid_sel ? BIT(7) : 0; r[13] |= pr->meter_sel ? BIT(6) : 0; r[13] |= pr->mir_sel ? BIT(5) : 0; r[13] |= pr->log_sel ? BIT(4) : 0; r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 18; r[14] |= pr->log_octets ? BIT(17) : 0; r[14] |= ((u32)(pr->log_data & 0x7ff)) << 4; r[14] |= (pr->mir_data & 0x3) << 3; r[14] |= ((u32)(pr->meter_data >> 7)) & 0x7; r[15] |= (u32)(pr->meter_data) << 26; r[15] |= ((u32)(pr->ivid_act) << 23) & 0x3; r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff; r[15] |= ((u32)(pr->ovid_act) << 6) & 0x3; r[15] |= ((u32)(pr->ovid_data) >> 4) & 0xff; r[16] |= ((u32)(pr->ovid_data) & 0xf) << 28; r[16] |= ((u32)(pr->nopri_data) & 0x7) << 20; r[16] |= ((u32)(pr->mpls_act) & 0x7) << 20; r[16] |= ((u32)(pr->mpls_lib_idx) & 0x7) << 20; r[16] |= pr->bypass_all ? BIT(9) : 0; r[16] |= pr->bypass_igr_stp ? BIT(8) : 0; r[16] |= pr->bypass_ibc_sc ? BIT(7) : 0; } static void rtl839x_read_pie_action(u32 r[], struct pie_rule *pr) { if (r[13] & BIT(3)) { // ACT_MASK_FWD set, is it a drop? if ((r[14] & 0x7) == 1) { pr->drop = true; } else { pr->fwd_sel = true; pr->fwd_act = r[14] & 0x7; } } pr->bypass_sel = r[13] & BIT(11); pr->mpls_sel = r[13] & BIT(10); pr->nopri_sel = r[13] & BIT(9); pr->ovid_sel = r[13] & BIT(8); pr->ivid_sel = r[13] & BIT(7); pr->meter_sel = r[13] & BIT(6); pr->mir_sel = r[13] & BIT(5); pr->log_sel = r[13] & BIT(4); // TODO: Read in data fields pr->bypass_all = r[16] & BIT(9); pr->bypass_igr_stp = r[16] & BIT(8); pr->bypass_ibc_sc = r[16] & BIT(7); } void rtl839x_pie_rule_dump_raw(u32 r[]) { pr_info("Raw IACL table entry:\n"); pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]); pr_info("Fixed : %06x\n", r[6] >> 8); pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8), (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8), (r[11] << 24) | (r[12] >> 8)); pr_info("R[13]: %08x\n", r[13]); pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff); pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf); pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]); } void rtl839x_pie_rule_dump(struct pie_rule *pr) { pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n", pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel, pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel); if (pr->fwd_sel) pr_info("FWD: %08x\n", pr->fwd_data); pr_info("TID: %x, %x\n", pr->tid, pr->tid_m); } static int rtl839x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr) { // Read IACL table (2) via register 0 struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 2); u32 r[17]; int i; int block = idx / PIE_BLOCK_SIZE; u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block)); memset(pr, 0, sizeof(*pr)); rtl_table_read(q, idx); for (i = 0; i < 17; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl839x_read_pie_fixed_fields(r, pr); if (!pr->valid) return 0; pr_debug("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid); rtl839x_pie_rule_dump_raw(r); rtl839x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]); rtl839x_read_pie_action(r, pr); return 0; } static int rtl839x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr) { // Access IACL table (2) via register 0 struct table_reg *q = rtl_table_get(RTL8390_TBL_0, 2); u32 r[17]; int i; int block = idx / PIE_BLOCK_SIZE; u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block)); pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select); for (i = 0; i < 17; i++) r[i] = 0; if (!pr->valid) { rtl_table_write(q, idx); rtl_table_release(q); return 0; } rtl839x_write_pie_fixed_fields(r, pr); pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7); rtl839x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]); rtl839x_write_pie_action(r, pr); // rtl839x_pie_rule_dump_raw(r); for (i = 0; i < 17; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); return 0; } static bool rtl839x_pie_templ_has(int t, enum template_field_id field_type) { int i; enum template_field_id ft; for (i = 0; i < N_FIXED_FIELDS; i++) { ft = fixed_templates[t][i]; if (field_type == ft) return true; } return false; } static int rtl839x_pie_verify_template(struct rtl838x_switch_priv *priv, struct pie_rule *pr, int t, int block) { int i; if (!pr->is_ipv6 && pr->sip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP0)) return -1; if (!pr->is_ipv6 && pr->dip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP0)) return -1; if (pr->is_ipv6) { if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1] || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3]) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP2)) return -1; if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1] || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3]) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP2)) return -1; } if (ether_addr_to_u64(pr->smac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0)) return -1; if (ether_addr_to_u64(pr->dmac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0)) return -1; // TODO: Check more i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE); if (i >= PIE_BLOCK_SIZE) return -1; return i + PIE_BLOCK_SIZE * block; } static int rtl839x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx, block, j, t; int min_block = 0; int max_block = priv->n_pie_blocks / 2; if (pr->is_egress) { min_block = max_block; max_block = priv->n_pie_blocks; } mutex_lock(&priv->pie_mutex); for (block = min_block; block < max_block; block++) { for (j = 0; j < 2; j++) { t = (sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7; idx = rtl839x_pie_verify_template(priv, pr, t, block); if (idx >= 0) break; } if (j < 2) break; } if (block >= priv->n_pie_blocks) { mutex_unlock(&priv->pie_mutex); return -EOPNOTSUPP; } set_bit(idx, priv->pie_use_bm); pr->valid = true; pr->tid = j; // Mapped to template number pr->tid_m = 0x3; pr->id = idx; rtl839x_pie_lookup_enable(priv, idx); rtl839x_pie_rule_write(priv, idx, pr); mutex_unlock(&priv->pie_mutex); return 0; } static void rtl839x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr) { int idx = pr->id; rtl839x_pie_rule_del(priv, idx, idx); clear_bit(idx, priv->pie_use_bm); } static void rtl839x_pie_init(struct rtl838x_switch_priv *priv) { int i; u32 template_selectors; mutex_init(&priv->pie_mutex); // Power on all PIE blocks for (i = 0; i < priv->n_pie_blocks; i++) sw_w32_mask(0, BIT(i), RTL839X_PS_ACL_PWR_CTRL); // Set ingress and egress ACL blocks to 50/50: first Egress block is 9 sw_w32_mask(0x1f, 9, RTL839X_ACL_CTRL); // Writes 9 to cutline field // Include IPG in metering sw_w32(1, RTL839X_METER_GLB_CTRL); // Delete all present rules rtl839x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1); // Enable predefined templates 0, 1 for blocks 0-2 template_selectors = 0 | (1 << 3); for (i = 0; i < 3; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for blocks 3-5 template_selectors = 2 | (3 << 3); for (i = 3; i < 6; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 1, 4 for blocks 6-8 template_selectors = 2 | (3 << 3); for (i = 6; i < 9; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 0, 1 for blocks 9-11 template_selectors = 0 | (1 << 3); for (i = 9; i < 12; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 2, 3 for blocks 12-14 template_selectors = 2 | (3 << 3); for (i = 12; i < 15; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); // Enable predefined templates 1, 4 for blocks 15-17 template_selectors = 2 | (3 << 3); for (i = 15; i < 18; i++) sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i)); } static u32 rtl839x_packet_cntr_read(int counter) { u32 v; // Read LOG table (4) via register RTL8390_TBL_0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4); pr_debug("In %s, id %d\n", __func__, counter); rtl_table_read(r, counter / 2); // The table has a size of 2 registers if (counter % 2) v = sw_r32(rtl_table_data(r, 0)); else v = sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); return v; } static void rtl839x_packet_cntr_clear(int counter) { // Access LOG table (4) via register RTL8390_TBL_0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4); pr_debug("In %s, id %d\n", __func__, counter); // The table has a size of 2 registers if (counter % 2) sw_w32(0, rtl_table_data(r, 0)); else sw_w32(0, rtl_table_data(r, 1)); rtl_table_write(r, counter / 2); rtl_table_release(r); } static void rtl839x_route_read(int idx, struct rtl83xx_route *rt) { u64 v; // Read ROUTING table (2) via register RTL8390_TBL_1 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2); pr_debug("In %s\n", __func__); rtl_table_read(r, idx); // The table has a size of 2 registers v = sw_r32(rtl_table_data(r, 0)); v <<= 32; v |= sw_r32(rtl_table_data(r, 1)); rt->switch_mac_id = (v >> 12) & 0xf; rt->nh.gw = v >> 16; rtl_table_release(r); } static void rtl839x_route_write(int idx, struct rtl83xx_route *rt) { u32 v; // Read ROUTING table (2) via register RTL8390_TBL_1 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2); pr_debug("In %s\n", __func__); sw_w32(rt->nh.gw >> 16, rtl_table_data(r, 0)); v = rt->nh.gw << 16; v |= rt->switch_mac_id << 12; sw_w32(v, rtl_table_data(r, 1)); rtl_table_write(r, idx); rtl_table_release(r); } /* * Configure the switch's own MAC addresses used when routing packets */ static void rtl839x_setup_port_macs(struct rtl838x_switch_priv *priv) { int i; struct net_device *dev; u64 mac; pr_debug("%s: got port %08x\n", __func__, (u32)priv->ports[priv->cpu_port].dp); dev = priv->ports[priv->cpu_port].dp->slave; mac = ether_addr_to_u64(dev->dev_addr); for (i = 0; i < 15; i++) { mac++; // BUG: VRRP for testing sw_w32(mac >> 32, RTL839X_ROUTING_SA_CTRL + i * 8); sw_w32(mac, RTL839X_ROUTING_SA_CTRL + i * 8 + 4); } } int rtl839x_l3_setup(struct rtl838x_switch_priv *priv) { rtl839x_setup_port_macs(priv); return 0; } void rtl839x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner) { sw_w32(FIELD_PREP(RTL839X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK, keep_outer ? RTL839X_VLAN_PORT_TAG_STS_TAGGED : RTL839X_VLAN_PORT_TAG_STS_UNTAG) | FIELD_PREP(RTL839X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK, keep_inner ? RTL839X_VLAN_PORT_TAG_STS_TAGGED : RTL839X_VLAN_PORT_TAG_STS_UNTAG), RTL839X_VLAN_PORT_TAG_STS_CTRL(port)); } void rtl839x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0x3, mode, RTL839X_VLAN_PORT_PB_VLAN + (port << 2)); else sw_w32_mask(0x3 << 14, mode << 14, RTL839X_VLAN_PORT_PB_VLAN + (port << 2)); } void rtl839x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid) { if (type == PBVLAN_TYPE_INNER) sw_w32_mask(0xfff << 2, pvid << 2, RTL839X_VLAN_PORT_PB_VLAN + (port << 2)); else sw_w32_mask(0xfff << 16, pvid << 16, RTL839X_VLAN_PORT_PB_VLAN + (port << 2)); } static int rtl839x_set_ageing_time(unsigned long msec) { int t = sw_r32(RTL839X_L2_CTRL_1); t &= 0x1FFFFF; t = t * 3 / 5; /* Aging time in seconds. 0: L2 aging disabled */ pr_debug("L2 AGING time: %d sec\n", t); t = (msec * 5 + 2000) / 3000; t = t > 0x1FFFFF ? 0x1FFFFF : t; sw_w32_mask(0x1FFFFF, t, RTL839X_L2_CTRL_1); pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL839X_L2_PORT_AGING_OUT)); return 0; } static void rtl839x_set_igr_filter(int port, enum igr_filter state) { sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1), RTL839X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2))); } static void rtl839x_set_egr_filter(int port, enum egr_filter state) { sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20), RTL839X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2))); } void rtl839x_set_distribution_algorithm(int group, int algoidx, u32 algomsk) { sw_w32_mask(3 << ((group & 0xf) << 1), algoidx << ((group & 0xf) << 1), RTL839X_TRK_HASH_IDX_CTRL + ((group >> 4) << 2)); sw_w32(algomsk, RTL839X_TRK_HASH_CTRL + (algoidx << 2)); } void rtl839x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action) { switch(type) { case BPDU: sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1), RTL839X_RMA_BPDU_CTRL + ((port >> 4) << 2)); break; case PTP: sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1), RTL839X_RMA_PTP_CTRL + ((port >> 4) << 2)); break; case LLTP: sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1), RTL839X_RMA_LLTP_CTRL + ((port >> 4) << 2)); break; default: break; } } const struct rtl838x_reg rtl839x_reg = { .mask_port_reg_be = rtl839x_mask_port_reg_be, .set_port_reg_be = rtl839x_set_port_reg_be, .get_port_reg_be = rtl839x_get_port_reg_be, .mask_port_reg_le = rtl839x_mask_port_reg_le, .set_port_reg_le = rtl839x_set_port_reg_le, .get_port_reg_le = rtl839x_get_port_reg_le, .stat_port_rst = RTL839X_STAT_PORT_RST, .stat_rst = RTL839X_STAT_RST, .stat_port_std_mib = RTL839X_STAT_PORT_STD_MIB, .traffic_enable = rtl839x_traffic_enable, .traffic_disable = rtl839x_traffic_disable, .traffic_get = rtl839x_traffic_get, .traffic_set = rtl839x_traffic_set, .port_iso_ctrl = rtl839x_port_iso_ctrl, .l2_ctrl_0 = RTL839X_L2_CTRL_0, .l2_ctrl_1 = RTL839X_L2_CTRL_1, .l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT, .set_ageing_time = rtl839x_set_ageing_time, .smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL, .l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL, .exec_tbl0_cmd = rtl839x_exec_tbl0_cmd, .exec_tbl1_cmd = rtl839x_exec_tbl1_cmd, .tbl_access_data_0 = rtl839x_tbl_access_data_0, .isr_glb_src = RTL839X_ISR_GLB_SRC, .isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG, .imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG, .imr_glb = RTL839X_IMR_GLB, .vlan_tables_read = rtl839x_vlan_tables_read, .vlan_set_tagged = rtl839x_vlan_set_tagged, .vlan_set_untagged = rtl839x_vlan_set_untagged, .vlan_profile_dump = rtl839x_vlan_profile_dump, .vlan_profile_setup = rtl839x_vlan_profile_setup, .vlan_fwd_on_inner = rtl839x_vlan_fwd_on_inner, .vlan_port_keep_tag_set = rtl839x_vlan_port_keep_tag_set, .vlan_port_pvidmode_set = rtl839x_vlan_port_pvidmode_set, .vlan_port_pvid_set = rtl839x_vlan_port_pvid_set, .set_vlan_igr_filter = rtl839x_set_igr_filter, .set_vlan_egr_filter = rtl839x_set_egr_filter, .enable_learning = rtl839x_enable_learning, .enable_flood = rtl839x_enable_flood, .enable_mcast_flood = rtl839x_enable_mcast_flood, .enable_bcast_flood = rtl839x_enable_bcast_flood, .set_static_move_action = rtl839x_set_static_move_action, .stp_get = rtl839x_stp_get, .stp_set = rtl839x_stp_set, .mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl, .mac_port_ctrl = rtl839x_mac_port_ctrl, .l2_port_new_salrn = rtl839x_l2_port_new_salrn, .l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd, .mir_ctrl = RTL839X_MIR_CTRL, .mir_dpm = RTL839X_MIR_DPM_CTRL, .mir_spm = RTL839X_MIR_SPM_CTRL, .mac_link_sts = RTL839X_MAC_LINK_STS, .mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS, .mac_link_spd_sts = rtl839x_mac_link_spd_sts, .mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS, .mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS, .read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash, .write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash, .read_cam = rtl839x_read_cam, .write_cam = rtl839x_write_cam, .trk_mbr_ctr = rtl839x_trk_mbr_ctr, .rma_bpdu_fld_pmask = RTL839X_RMA_BPDU_FLD_PMSK, .spcl_trap_eapol_ctrl = RTL839X_SPCL_TRAP_EAPOL_CTRL, .init_eee = rtl839x_init_eee, .port_eee_set = rtl839x_port_eee_set, .eee_port_ability = rtl839x_eee_port_ability, .l2_hash_seed = rtl839x_l2_hash_seed, .l2_hash_key = rtl839x_l2_hash_key, .read_mcast_pmask = rtl839x_read_mcast_pmask, .write_mcast_pmask = rtl839x_write_mcast_pmask, .pie_init = rtl839x_pie_init, .pie_rule_read = rtl839x_pie_rule_read, .pie_rule_write = rtl839x_pie_rule_write, .pie_rule_add = rtl839x_pie_rule_add, .pie_rule_rm = rtl839x_pie_rule_rm, .l2_learning_setup = rtl839x_l2_learning_setup, .packet_cntr_read = rtl839x_packet_cntr_read, .packet_cntr_clear = rtl839x_packet_cntr_clear, .route_read = rtl839x_route_read, .route_write = rtl839x_route_write, .l3_setup = rtl839x_l3_setup, .set_distribution_algorithm = rtl839x_set_distribution_algorithm, .set_receive_management_action = rtl839x_set_receive_management_action, };