// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include "rtl83xx.h" extern struct rtl83xx_soc_info soc_info; extern const struct rtl838x_reg rtl838x_reg; extern const struct rtl838x_reg rtl839x_reg; extern const struct rtl838x_reg rtl930x_reg; extern const struct rtl838x_reg rtl931x_reg; extern const struct dsa_switch_ops rtl83xx_switch_ops; extern const struct dsa_switch_ops rtl930x_switch_ops; DEFINE_MUTEX(smi_lock); int rtl83xx_port_get_stp_state(struct rtl838x_switch_priv *priv, int port) { u32 msti = 0; u32 port_state[4]; int index, bit; int pos = port; int n = priv->port_width << 1; /* Ports above or equal CPU port can never be configured */ if (port >= priv->cpu_port) return -1; mutex_lock(&priv->reg_mutex); /* For the RTL839x and following, the bits are left-aligned in the 64/128 bit field */ if (priv->family_id == RTL8390_FAMILY_ID) pos += 12; if (priv->family_id == RTL9300_FAMILY_ID) pos += 3; if (priv->family_id == RTL9310_FAMILY_ID) pos += 8; index = n - (pos >> 4) - 1; bit = (pos << 1) % 32; priv->r->stp_get(priv, msti, port_state); mutex_unlock(&priv->reg_mutex); return (port_state[index] >> bit) & 3; } static struct table_reg rtl838x_tbl_regs[] = { TBL_DESC(0x6900, 0x6908, 3, 15, 13, 1), // RTL8380_TBL_L2 TBL_DESC(0x6914, 0x6918, 18, 14, 12, 1), // RTL8380_TBL_0 TBL_DESC(0xA4C8, 0xA4CC, 6, 14, 12, 1), // RTL8380_TBL_1 TBL_DESC(0x1180, 0x1184, 3, 16, 14, 0), // RTL8390_TBL_L2 TBL_DESC(0x1190, 0x1194, 17, 15, 12, 0), // RTL8390_TBL_0 TBL_DESC(0x6B80, 0x6B84, 4, 14, 12, 0), // RTL8390_TBL_1 TBL_DESC(0x611C, 0x6120, 9, 8, 6, 0), // RTL8390_TBL_2 TBL_DESC(0xB320, 0xB334, 3, 18, 16, 0), // RTL9300_TBL_L2 TBL_DESC(0xB340, 0xB344, 19, 16, 12, 0), // RTL9300_TBL_0 TBL_DESC(0xB3A0, 0xB3A4, 20, 16, 13, 0), // RTL9300_TBL_1 TBL_DESC(0xCE04, 0xCE08, 6, 14, 12, 0), // RTL9300_TBL_2 TBL_DESC(0xD600, 0xD604, 30, 7, 6, 0), // RTL9300_TBL_HSB TBL_DESC(0x7880, 0x7884, 22, 9, 8, 0), // RTL9300_TBL_HSA TBL_DESC(0x8500, 0x8508, 8, 19, 15, 0), // RTL9310_TBL_0 TBL_DESC(0x40C0, 0x40C4, 22, 16, 14, 0), // RTL9310_TBL_1 TBL_DESC(0x8528, 0x852C, 6, 18, 14, 0), // RTL9310_TBL_2 TBL_DESC(0x0200, 0x0204, 9, 15, 12, 0), // RTL9310_TBL_3 TBL_DESC(0x20dc, 0x20e0, 29, 7, 6, 0), // RTL9310_TBL_4 TBL_DESC(0x7e1c, 0x7e20, 53, 8, 6, 0), // RTL9310_TBL_5 }; void rtl_table_init(void) { int i; for (i = 0; i < RTL_TBL_END; i++) mutex_init(&rtl838x_tbl_regs[i].lock); } /* * Request access to table t in table access register r * Returns a handle to a lock for that table */ struct table_reg *rtl_table_get(rtl838x_tbl_reg_t r, int t) { if (r >= RTL_TBL_END) return NULL; if (t >= BIT(rtl838x_tbl_regs[r].c_bit-rtl838x_tbl_regs[r].t_bit)) return NULL; mutex_lock(&rtl838x_tbl_regs[r].lock); rtl838x_tbl_regs[r].tbl = t; return &rtl838x_tbl_regs[r]; } /* * Release a table r, unlock the corresponding lock */ void rtl_table_release(struct table_reg *r) { if (!r) return; // pr_info("Unlocking %08x\n", (u32)r); mutex_unlock(&r->lock); // pr_info("Unlock done\n"); } /* * Reads table index idx into the data registers of the table */ void rtl_table_read(struct table_reg *r, int idx) { u32 cmd = r->rmode ? BIT(r->c_bit) : 0; cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1)); sw_w32(cmd, r->addr); do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1)); } /* * Writes the content of the table data registers into the table at index idx */ void rtl_table_write(struct table_reg *r, int idx) { u32 cmd = r->rmode ? 0 : BIT(r->c_bit); cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1)); sw_w32(cmd, r->addr); do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1)); } /* * Returns the address of the ith data register of table register r * the address is relative to the beginning of the Switch-IO block at 0xbb000000 */ inline u16 rtl_table_data(struct table_reg *r, int i) { if (i >= r->max_data) i = r->max_data - 1; return r->data + i * 4; } inline u32 rtl_table_data_r(struct table_reg *r, int i) { return sw_r32(rtl_table_data(r, i)); } inline void rtl_table_data_w(struct table_reg *r, u32 v, int i) { sw_w32(v, rtl_table_data(r, i)); } /* Port register accessor functions for the RTL838x and RTL930X SoCs */ void rtl838x_mask_port_reg(u64 clear, u64 set, int reg) { sw_w32_mask((u32)clear, (u32)set, reg); } void rtl838x_set_port_reg(u64 set, int reg) { sw_w32((u32)set, reg); } u64 rtl838x_get_port_reg(int reg) { return ((u64) sw_r32(reg)); } /* Port register accessor functions for the RTL839x and RTL931X SoCs */ void rtl839x_mask_port_reg_be(u64 clear, u64 set, int reg) { sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg); sw_w32_mask((u32)(clear & 0xffffffff), (u32)(set & 0xffffffff), reg + 4); } u64 rtl839x_get_port_reg_be(int reg) { u64 v = sw_r32(reg); v <<= 32; v |= sw_r32(reg + 4); return v; } void rtl839x_set_port_reg_be(u64 set, int reg) { sw_w32(set >> 32, reg); sw_w32(set & 0xffffffff, reg + 4); } void rtl839x_mask_port_reg_le(u64 clear, u64 set, int reg) { sw_w32_mask((u32)clear, (u32)set, reg); sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg + 4); } void rtl839x_set_port_reg_le(u64 set, int reg) { sw_w32(set, reg); sw_w32(set >> 32, reg + 4); } u64 rtl839x_get_port_reg_le(int reg) { u64 v = sw_r32(reg + 4); v <<= 32; v |= sw_r32(reg); return v; } int read_phy(u32 port, u32 page, u32 reg, u32 *val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_read_phy(port, page, reg, val); case RTL8390_FAMILY_ID: return rtl839x_read_phy(port, page, reg, val); case RTL9300_FAMILY_ID: return rtl930x_read_phy(port, page, reg, val); case RTL9310_FAMILY_ID: return rtl931x_read_phy(port, page, reg, val); } return -1; } int write_phy(u32 port, u32 page, u32 reg, u32 val) { switch (soc_info.family) { case RTL8380_FAMILY_ID: return rtl838x_write_phy(port, page, reg, val); case RTL8390_FAMILY_ID: return rtl839x_write_phy(port, page, reg, val); case RTL9300_FAMILY_ID: return rtl930x_write_phy(port, page, reg, val); case RTL9310_FAMILY_ID: return rtl931x_write_phy(port, page, reg, val); } return -1; } static int __init rtl83xx_mdio_probe(struct rtl838x_switch_priv *priv) { struct device *dev = priv->dev; struct device_node *dn, *mii_np = dev->of_node; struct mii_bus *bus; int ret; u32 pn; pr_debug("In %s\n", __func__); mii_np = of_find_compatible_node(NULL, NULL, "realtek,rtl838x-mdio"); if (mii_np) { pr_debug("Found compatible MDIO node!\n"); } else { dev_err(priv->dev, "no %s child node found", "mdio-bus"); return -ENODEV; } priv->mii_bus = of_mdio_find_bus(mii_np); if (!priv->mii_bus) { pr_debug("Deferring probe of mdio bus\n"); return -EPROBE_DEFER; } if (!of_device_is_available(mii_np)) ret = -ENODEV; bus = devm_mdiobus_alloc(priv->ds->dev); if (!bus) return -ENOMEM; bus->name = "rtl838x slave mii"; /* * Since the NIC driver is loaded first, we can use the mdio rw functions * assigned there. */ bus->read = priv->mii_bus->read; bus->write = priv->mii_bus->write; snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", bus->name, dev->id); bus->parent = dev; priv->ds->slave_mii_bus = bus; priv->ds->slave_mii_bus->priv = priv; ret = mdiobus_register(priv->ds->slave_mii_bus); if (ret && mii_np) { of_node_put(dn); return ret; } dn = mii_np; for_each_node_by_name(dn, "ethernet-phy") { if (of_property_read_u32(dn, "reg", &pn)) continue; // Check for the integrated SerDes of the RTL8380M first if (of_property_read_bool(dn, "phy-is-integrated") && priv->id == 0x8380 && pn >= 24) { pr_debug("----> FĂ“UND A SERDES\n"); priv->ports[pn].phy = PHY_RTL838X_SDS; continue; } if (of_property_read_bool(dn, "phy-is-integrated") && !of_property_read_bool(dn, "sfp")) { priv->ports[pn].phy = PHY_RTL8218B_INT; continue; } if (!of_property_read_bool(dn, "phy-is-integrated") && of_property_read_bool(dn, "sfp")) { priv->ports[pn].phy = PHY_RTL8214FC; continue; } if (!of_property_read_bool(dn, "phy-is-integrated") && !of_property_read_bool(dn, "sfp")) { priv->ports[pn].phy = PHY_RTL8218B_EXT; continue; } } // TODO: Do this needs to come from the .dts if (priv->family_id == RTL9300_FAMILY_ID) { priv->ports[24].is2G5 = true; priv->ports[25].is2G5 = true; } /* Disable MAC polling the PHY so that we can start configuration */ priv->r->set_port_reg_le(0ULL, priv->r->smi_poll_ctrl); /* Enable PHY control via SoC */ if (priv->family_id == RTL8380_FAMILY_ID) { /* Enable SerDes NWAY and PHY control via SoC */ sw_w32_mask(BIT(7), BIT(15), RTL838X_SMI_GLB_CTRL); } else if (priv->family_id == RTL8390_FAMILY_ID) { /* Disable PHY polling via SoC */ sw_w32_mask(BIT(7), 0, RTL839X_SMI_GLB_CTRL); } /* Power on fibre ports and reset them if necessary */ if (priv->ports[24].phy == PHY_RTL838X_SDS) { pr_debug("Powering on fibre ports & reset\n"); rtl8380_sds_power(24, 1); rtl8380_sds_power(26, 1); } pr_debug("%s done\n", __func__); return 0; } static int __init rtl83xx_get_l2aging(struct rtl838x_switch_priv *priv) { int t = sw_r32(priv->r->l2_ctrl_1); t &= priv->family_id == RTL8380_FAMILY_ID ? 0x7fffff : 0x1FFFFF; if (priv->family_id == RTL8380_FAMILY_ID) t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */ else t = (t * 3) / 5; pr_debug("L2 AGING time: %d sec\n", t); pr_debug("Dynamic aging for ports: %x\n", sw_r32(priv->r->l2_port_aging_out)); return t; } /* Caller must hold priv->reg_mutex */ int rtl83xx_lag_add(struct dsa_switch *ds, int group, int port) { struct rtl838x_switch_priv *priv = ds->priv; int i; pr_info("%s: Adding port %d to LA-group %d\n", __func__, port, group); if (group >= priv->n_lags) { pr_err("Link Agrregation group too large.\n"); return -EINVAL; } if (port >= priv->cpu_port) { pr_err("Invalid port number.\n"); return -EINVAL; } for (i = 0; i < priv->n_lags; i++) { if (priv->lags_port_members[i] & BIT_ULL(i)) break; } if (i != priv->n_lags) { pr_err("%s: Port already member of LAG: %d\n", __func__, i); return -ENOSPC; } priv->r->mask_port_reg_be(0, BIT_ULL(port), priv->r->trk_mbr_ctr(group)); priv->lags_port_members[group] |= BIT_ULL(port); pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]); return 0; } /* Caller must hold priv->reg_mutex */ int rtl83xx_lag_del(struct dsa_switch *ds, int group, int port) { struct rtl838x_switch_priv *priv = ds->priv; pr_info("%s: Removing port %d from LA-group %d\n", __func__, port, group); if (group >= priv->n_lags) { pr_err("Link Agrregation group too large.\n"); return -EINVAL; } if (port >= priv->cpu_port) { pr_err("Invalid port number.\n"); return -EINVAL; } if (!(priv->lags_port_members[group] & BIT_ULL(port))) { pr_err("%s: Port not member of LAG: %d\n", __func__, group ); return -ENOSPC; } priv->r->mask_port_reg_be(BIT_ULL(port), 0, priv->r->trk_mbr_ctr(group)); priv->lags_port_members[group] &= ~BIT_ULL(port); pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]); return 0; } /* * Allocate a 64 bit octet counter located in the LOG HW table */ static int rtl83xx_octet_cntr_alloc(struct rtl838x_switch_priv *priv) { int idx; mutex_lock(&priv->reg_mutex); idx = find_first_zero_bit(priv->octet_cntr_use_bm, MAX_COUNTERS); if (idx >= priv->n_counters) { mutex_unlock(&priv->reg_mutex); return -1; } set_bit(idx, priv->octet_cntr_use_bm); mutex_unlock(&priv->reg_mutex); return idx; } /* * Allocate a 32-bit packet counter * 2 32-bit packet counters share the location of a 64-bit octet counter * Initially there are no free packet counters and 2 new ones need to be freed * by allocating the corresponding octet counter */ int rtl83xx_packet_cntr_alloc(struct rtl838x_switch_priv *priv) { int idx, j; mutex_lock(&priv->reg_mutex); /* Because initially no packet counters are free, the logic is reversed: * a 0-bit means the counter is already allocated (for octets) */ idx = find_first_bit(priv->packet_cntr_use_bm, MAX_COUNTERS * 2); if (idx >= priv->n_counters * 2) { j = find_first_zero_bit(priv->octet_cntr_use_bm, MAX_COUNTERS); if (j >= priv->n_counters) { mutex_unlock(&priv->reg_mutex); return -1; } set_bit(j, priv->octet_cntr_use_bm); idx = j * 2; set_bit(j * 2 + 1, priv->packet_cntr_use_bm); } else { clear_bit(idx, priv->packet_cntr_use_bm); } mutex_unlock(&priv->reg_mutex); return idx; } /* * Add an L2 nexthop entry for the L3 routing system / PIE forwarding in the SoC * Use VID and MAC in rtl838x_l2_entry to identify either a free slot in the L2 hash table * or mark an existing entry as a nexthop by setting it's nexthop bit * Called from the L3 layer * The index in the L2 hash table is filled into nh->l2_id; */ int rtl83xx_l2_nexthop_add(struct rtl838x_switch_priv *priv, struct rtl83xx_nexthop *nh) { struct rtl838x_l2_entry e; u64 seed = priv->r->l2_hash_seed(nh->mac, nh->rvid); u32 key = priv->r->l2_hash_key(priv, seed); int i, idx = -1; u64 entry; pr_debug("%s searching for %08llx vid %d with key %d, seed: %016llx\n", __func__, nh->mac, nh->rvid, key, seed); e.type = L2_UNICAST; u64_to_ether_addr(nh->mac, &e.mac[0]); e.port = nh->port; // Loop over all entries in the hash-bucket and over the second block on 93xx SoCs for (i = 0; i < priv->l2_bucket_size; i++) { entry = priv->r->read_l2_entry_using_hash(key, i, &e); if (!e.valid || ((entry & 0x0fffffffffffffffULL) == seed)) { idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1 : ((key << 2) | i) & 0xffff; break; } } if (idx < 0) { pr_err("%s: No more L2 forwarding entries available\n", __func__); return -1; } // Found an existing (e->valid is true) or empty entry, make it a nexthop entry nh->l2_id = idx; if (e.valid) { nh->port = e.port; nh->vid = e.vid; // Save VID nh->rvid = e.rvid; nh->dev_id = e.stack_dev; // If the entry is already a valid next hop entry, don't change it if (e.next_hop) return 0; } else { e.valid = true; e.is_static = true; e.rvid = nh->rvid; e.is_ip_mc = false; e.is_ipv6_mc = false; e.block_da = false; e.block_sa = false; e.suspended = false; e.age = 0; // With port-ignore e.port = priv->port_ignore; u64_to_ether_addr(nh->mac, &e.mac[0]); } e.next_hop = true; e.nh_route_id = nh->id; // NH route ID takes place of VID e.nh_vlan_target = false; priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e); return 0; } /* * Removes a Layer 2 next hop entry in the forwarding database * If it was static, the entire entry is removed, otherwise the nexthop bit is cleared * and we wait until the entry ages out */ int rtl83xx_l2_nexthop_rm(struct rtl838x_switch_priv *priv, struct rtl83xx_nexthop *nh) { struct rtl838x_l2_entry e; u32 key = nh->l2_id >> 2; int i = nh->l2_id & 0x3; u64 entry = entry = priv->r->read_l2_entry_using_hash(key, i, &e); pr_debug("%s: id %d, key %d, index %d\n", __func__, nh->l2_id, key, i); if (!e.valid) { dev_err(priv->dev, "unknown nexthop, id %x\n", nh->l2_id); return -1; } if (e.is_static) e.valid = false; e.next_hop = false; e.vid = nh->vid; // Restore VID e.rvid = nh->rvid; priv->r->write_l2_entry_using_hash(key, i, &e); return 0; } static int rtl83xx_handle_changeupper(struct rtl838x_switch_priv *priv, struct net_device *ndev, struct netdev_notifier_changeupper_info *info) { struct net_device *upper = info->upper_dev; int i, j, err; if (!netif_is_lag_master(upper)) return 0; mutex_lock(&priv->reg_mutex); for (i = 0; i < priv->n_lags; i++) { if ((!priv->lag_devs[i]) || (priv->lag_devs[i] == upper)) break; } for (j = 0; j < priv->cpu_port; j++) { if (priv->ports[j].dp->slave == ndev) break; } if (j >= priv->cpu_port) { err = -EINVAL; goto out; } if (info->linking) { if (!priv->lag_devs[i]) priv->lag_devs[i] = upper; err = rtl83xx_lag_add(priv->ds, i, priv->ports[j].dp->index); if (err) { err = -EINVAL; goto out; } } else { if (!priv->lag_devs[i]) err = -EINVAL; err = rtl83xx_lag_del(priv->ds, i, priv->ports[j].dp->index); if (err) { err = -EINVAL; goto out; } if (!priv->lags_port_members[i]) priv->lag_devs[i] = NULL; } out: mutex_unlock(&priv->reg_mutex); return 0; } /* * Is the lower network device a DSA slave network device of our RTL930X-switch? * Unfortunately we cannot just follow dev->dsa_prt as this is only set for the * DSA master device. */ int rtl83xx_port_is_under(const struct net_device * dev, struct rtl838x_switch_priv *priv) { int i; // TODO: On 5.12: // if(!dsa_slave_dev_check(dev)) { // netdev_info(dev, "%s: not a DSA device.\n", __func__); // return -EINVAL; // } for (i = 0; i < priv->cpu_port; i++) { if (!priv->ports[i].dp) continue; if (priv->ports[i].dp->slave == dev) return i; } return -EINVAL; } static int rtl83xx_netdevice_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct rtl838x_switch_priv *priv; int err; pr_debug("In: %s, event: %lu\n", __func__, event); if ((event != NETDEV_CHANGEUPPER) && (event != NETDEV_CHANGELOWERSTATE)) return NOTIFY_DONE; priv = container_of(this, struct rtl838x_switch_priv, nb); switch (event) { case NETDEV_CHANGEUPPER: err = rtl83xx_handle_changeupper(priv, ndev, ptr); break; } if (err) return err; return NOTIFY_DONE; } const static struct rhashtable_params route_ht_params = { .key_len = sizeof(u32), .key_offset = offsetof(struct rtl83xx_route, gw_ip), .head_offset = offsetof(struct rtl83xx_route, linkage), }; /* * Updates an L3 next hop entry in the ROUTING table */ static int rtl83xx_l3_nexthop_update(struct rtl838x_switch_priv *priv, __be32 ip_addr, u64 mac) { struct rtl83xx_route *r; struct rhlist_head *tmp, *list; rcu_read_lock(); list = rhltable_lookup(&priv->routes, &ip_addr, route_ht_params); if (!list) { rcu_read_unlock(); return -ENOENT; } rhl_for_each_entry_rcu(r, tmp, list, linkage) { pr_info("%s: Setting up fwding: ip %pI4, GW mac %016llx\n", __func__, &ip_addr, mac); // Reads the ROUTING table entry associated with the route priv->r->route_read(r->id, r); pr_info("Route with id %d to %pI4 / %d\n", r->id, &r->dst_ip, r->prefix_len); r->nh.mac = r->nh.gw = mac; r->nh.port = priv->port_ignore; r->nh.id = r->id; // Do we need to explicitly add a DMAC entry with the route's nh index? if (priv->r->set_l3_egress_mac) priv->r->set_l3_egress_mac(r->id, mac); // Update ROUTING table: map gateway-mac and switch-mac id to route id rtl83xx_l2_nexthop_add(priv, &r->nh); r->attr.valid = true; r->attr.action = ROUTE_ACT_FORWARD; r->attr.type = 0; r->attr.hit = false; // Reset route-used indicator // Add PIE entry with dst_ip and prefix_len r->pr.dip = r->dst_ip; r->pr.dip_m = inet_make_mask(r->prefix_len); if (r->is_host_route) { int slot = priv->r->find_l3_slot(r, false); pr_info("%s: Got slot for route: %d\n", __func__, slot); priv->r->host_route_write(slot, r); } else { priv->r->route_write(r->id, r); r->pr.fwd_sel = true; r->pr.fwd_data = r->nh.l2_id; r->pr.fwd_act = PIE_ACT_ROUTE_UC; } if (priv->r->set_l3_nexthop) priv->r->set_l3_nexthop(r->nh.id, r->nh.l2_id, r->nh.if_id); if (r->pr.id < 0) { r->pr.packet_cntr = rtl83xx_packet_cntr_alloc(priv); if (r->pr.packet_cntr >= 0) { pr_info("Using packet counter %d\n", r->pr.packet_cntr); r->pr.log_sel = true; r->pr.log_data = r->pr.packet_cntr; } priv->r->pie_rule_add(priv, &r->pr); } else { int pkts = priv->r->packet_cntr_read(r->pr.packet_cntr); pr_info("%s: total packets: %d\n", __func__, pkts); priv->r->pie_rule_write(priv, r->pr.id, &r->pr); } } rcu_read_unlock(); return 0; } static int rtl83xx_port_ipv4_resolve(struct rtl838x_switch_priv *priv, struct net_device *dev, __be32 ip_addr) { struct neighbour *n = neigh_lookup(&arp_tbl, &ip_addr, dev); int err = 0; u64 mac; if (!n) { n = neigh_create(&arp_tbl, &ip_addr, dev); if (IS_ERR(n)) return PTR_ERR(n); } /* If the neigh is already resolved, then go ahead and * install the entry, otherwise start the ARP process to * resolve the neigh. */ if (n->nud_state & NUD_VALID) { mac = ether_addr_to_u64(n->ha); pr_info("%s: resolved mac: %016llx\n", __func__, mac); rtl83xx_l3_nexthop_update(priv, ip_addr, mac); } else { pr_info("%s: need to wait\n", __func__); neigh_event_send(n, NULL); } neigh_release(n); return err; } struct rtl83xx_walk_data { struct rtl838x_switch_priv *priv; int port; }; static int rtl83xx_port_lower_walk(struct net_device *lower, struct netdev_nested_priv *_priv) { struct rtl83xx_walk_data *data = (struct rtl83xx_walk_data *)_priv->data; struct rtl838x_switch_priv *priv = data->priv; int ret = 0; int index; index = rtl83xx_port_is_under(lower, priv); data->port = index; if (index >= 0) { pr_debug("Found DSA-port, index %d\n", index); ret = 1; } return ret; } int rtl83xx_port_dev_lower_find(struct net_device *dev, struct rtl838x_switch_priv *priv) { struct rtl83xx_walk_data data; struct netdev_nested_priv _priv; data.priv = priv; data.port = 0; _priv.data = (void *)&data; netdev_walk_all_lower_dev(dev, rtl83xx_port_lower_walk, &_priv); return data.port; } static struct rtl83xx_route *rtl83xx_route_alloc(struct rtl838x_switch_priv *priv, u32 ip) { struct rtl83xx_route *r; int idx = 0, err; mutex_lock(&priv->reg_mutex); idx = find_first_zero_bit(priv->route_use_bm, MAX_ROUTES); pr_debug("%s id: %d, ip %pI4\n", __func__, idx, &ip); r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) { mutex_unlock(&priv->reg_mutex); return r; } r->id = idx; r->gw_ip = ip; r->pr.id = -1; // We still need to allocate a rule in HW r->is_host_route = false; err = rhltable_insert(&priv->routes, &r->linkage, route_ht_params); if (err) { pr_err("Could not insert new rule\n"); mutex_unlock(&priv->reg_mutex); goto out_free; } set_bit(idx, priv->route_use_bm); mutex_unlock(&priv->reg_mutex); return r; out_free: kfree(r); return NULL; } static struct rtl83xx_route *rtl83xx_host_route_alloc(struct rtl838x_switch_priv *priv, u32 ip) { struct rtl83xx_route *r; int idx = 0, err; mutex_lock(&priv->reg_mutex); idx = find_first_zero_bit(priv->host_route_use_bm, MAX_HOST_ROUTES); pr_debug("%s id: %d, ip %pI4\n", __func__, idx, &ip); r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) { mutex_unlock(&priv->reg_mutex); return r; } /* We require a unique route ID irrespective of whether it is a prefix or host * route (on RTL93xx) as we use this ID to associate a DMAC and next-hop entry */ r->id = idx + MAX_ROUTES; r->gw_ip = ip; r->pr.id = -1; // We still need to allocate a rule in HW r->is_host_route = true; err = rhltable_insert(&priv->routes, &r->linkage, route_ht_params); if (err) { pr_err("Could not insert new rule\n"); mutex_unlock(&priv->reg_mutex); goto out_free; } set_bit(idx, priv->host_route_use_bm); mutex_unlock(&priv->reg_mutex); return r; out_free: kfree(r); return NULL; } static void rtl83xx_route_rm(struct rtl838x_switch_priv *priv, struct rtl83xx_route *r) { int id; if (rhltable_remove(&priv->routes, &r->linkage, route_ht_params)) dev_warn(priv->dev, "Could not remove route\n"); if (r->is_host_route) { id = priv->r->find_l3_slot(r, false); pr_debug("%s: Got id for host route: %d\n", __func__, id); r->attr.valid = false; priv->r->host_route_write(id, r); clear_bit(r->id - MAX_ROUTES, priv->host_route_use_bm); } else { // If there is a HW representation of the route, delete it if (priv->r->route_lookup_hw) { id = priv->r->route_lookup_hw(r); pr_info("%s: Got id for prefix route: %d\n", __func__, id); r->attr.valid = false; priv->r->route_write(id, r); } clear_bit(r->id, priv->route_use_bm); } kfree(r); } static int rtl83xx_fib4_del(struct rtl838x_switch_priv *priv, struct fib_entry_notifier_info *info) { struct fib_nh *nh = fib_info_nh(info->fi, 0); struct rtl83xx_route *r; struct rhlist_head *tmp, *list; pr_debug("In %s, ip %pI4, len %d\n", __func__, &info->dst, info->dst_len); rcu_read_lock(); list = rhltable_lookup(&priv->routes, &nh->fib_nh_gw4, route_ht_params); if (!list) { rcu_read_unlock(); pr_err("%s: no such gateway: %pI4\n", __func__, &nh->fib_nh_gw4); return -ENOENT; } rhl_for_each_entry_rcu(r, tmp, list, linkage) { if (r->dst_ip == info->dst && r->prefix_len == info->dst_len) { pr_info("%s: found a route with id %d, nh-id %d\n", __func__, r->id, r->nh.id); break; } } rcu_read_unlock(); rtl83xx_l2_nexthop_rm(priv, &r->nh); pr_debug("%s: Releasing packet counter %d\n", __func__, r->pr.packet_cntr); set_bit(r->pr.packet_cntr, priv->packet_cntr_use_bm); priv->r->pie_rule_rm(priv, &r->pr); rtl83xx_route_rm(priv, r); nh->fib_nh_flags &= ~RTNH_F_OFFLOAD; return 0; } /* * On the RTL93xx, an L3 termination endpoint MAC address on which the router waits * for packets to be routed needs to be allocated. */ static int rtl83xx_alloc_router_mac(struct rtl838x_switch_priv *priv, u64 mac) { int i, free_mac = -1; struct rtl93xx_rt_mac m; mutex_lock(&priv->reg_mutex); for (i = 0; i < MAX_ROUTER_MACS; i++) { priv->r->get_l3_router_mac(i, &m); if (free_mac < 0 && !m.valid) { free_mac = i; continue; } if (m.valid && m.mac == mac) { free_mac = i; break; } } if (free_mac < 0) { pr_err("No free router MACs, cannot offload\n"); mutex_unlock(&priv->reg_mutex); return -1; } m.valid = true; m.mac = mac; m.p_type = 0; // An individual port, not a trunk port m.p_id = 0x3f; // Listen on any port m.p_id_mask = 0; m.vid = 0; // Listen on any VLAN... m.vid_mask = 0; // ... so mask needs to be 0 m.mac_mask = 0xffffffffffffULL; // We want an exact match of the interface MAC m.action = L3_FORWARD; // Route the packet priv->r->set_l3_router_mac(free_mac, &m); mutex_unlock(&priv->reg_mutex); return 0; } static int rtl83xx_alloc_egress_intf(struct rtl838x_switch_priv *priv, u64 mac, int vlan) { int i, free_mac = -1; struct rtl838x_l3_intf intf; u64 m; mutex_lock(&priv->reg_mutex); for (i = 0; i < MAX_SMACS; i++) { m = priv->r->get_l3_egress_mac(L3_EGRESS_DMACS + i); if (free_mac < 0 && !m) { free_mac = i; continue; } if (m == mac) { mutex_unlock(&priv->reg_mutex); return i; } } if (free_mac < 0) { pr_err("No free egress interface, cannot offload\n"); return -1; } // Set up default egress interface 1 intf.vid = vlan; intf.smac_idx = free_mac; intf.ip4_mtu_id = 1; intf.ip6_mtu_id = 1; intf.ttl_scope = 1; // TTL intf.hl_scope = 1; // Hop Limit intf.ip4_icmp_redirect = intf.ip6_icmp_redirect = 2; // FORWARD intf.ip4_pbr_icmp_redirect = intf.ip6_pbr_icmp_redirect = 2; // FORWARD; priv->r->set_l3_egress_intf(free_mac, &intf); priv->r->set_l3_egress_mac(L3_EGRESS_DMACS + free_mac, mac); mutex_unlock(&priv->reg_mutex); return free_mac; } static int rtl83xx_fib4_add(struct rtl838x_switch_priv *priv, struct fib_entry_notifier_info *info) { struct fib_nh *nh = fib_info_nh(info->fi, 0); struct net_device *dev = fib_info_nh(info->fi, 0)->fib_nh_dev; int port; struct rtl83xx_route *r; bool to_localhost; int vlan = is_vlan_dev(dev) ? vlan_dev_vlan_id(dev) : 0; pr_debug("In %s, ip %pI4, len %d\n", __func__, &info->dst, info->dst_len); if (!info->dst) { pr_info("Not offloading default route for now\n"); return 0; } pr_debug("GW: %pI4, interface name %s, mac %016llx, vlan %d\n", &nh->fib_nh_gw4, dev->name, ether_addr_to_u64(dev->dev_addr), vlan ); port = rtl83xx_port_dev_lower_find(dev, priv); if (port < 0) return -1; // For now we only work with routes that have a gateway and are not ourself // if ((!nh->fib_nh_gw4) && (info->dst_len != 32)) // return 0; if ((info->dst & 0xff) == 0xff) return 0; // Do not offload routes to 192.168.100.x if ((info->dst & 0xffffff00) == 0xc0a86400) return 0; // Do not offload routes to 127.x.x.x if ((info->dst & 0xff000000) == 0x7f000000) return 0; // Allocate route or host-route (entry if hardware supports this) if (info->dst_len == 32 && priv->r->host_route_write) r = rtl83xx_host_route_alloc(priv, nh->fib_nh_gw4); else r = rtl83xx_route_alloc(priv, nh->fib_nh_gw4); if (!r) { pr_err("%s: No more free route entries\n", __func__); return -1; } r->dst_ip = info->dst; r->prefix_len = info->dst_len; r->nh.rvid = vlan; to_localhost = !nh->fib_nh_gw4; if (priv->r->set_l3_router_mac) { u64 mac = ether_addr_to_u64(dev->dev_addr); pr_debug("Local route and router mac %016llx\n", mac); if (rtl83xx_alloc_router_mac(priv, mac)) goto out_free_rt; // vid = 0: Do not care about VID r->nh.if_id = rtl83xx_alloc_egress_intf(priv, mac, vlan); if (r->nh.if_id < 0) goto out_free_rmac; if (to_localhost) { int slot; r->nh.mac = mac; r->nh.port = priv->port_ignore; r->attr.valid = true; r->attr.action = ROUTE_ACT_TRAP2CPU; r->attr.type = 0; slot = priv->r->find_l3_slot(r, false); pr_debug("%s: Got slot for route: %d\n", __func__, slot); priv->r->host_route_write(slot, r); } } // We need to resolve the mac address of the GW if (!to_localhost) rtl83xx_port_ipv4_resolve(priv, dev, nh->fib_nh_gw4); nh->fib_nh_flags |= RTNH_F_OFFLOAD; return 0; out_free_rmac: out_free_rt: return 0; } static int rtl83xx_fib6_add(struct rtl838x_switch_priv *priv, struct fib6_entry_notifier_info *info) { pr_debug("In %s\n", __func__); // nh->fib_nh_flags |= RTNH_F_OFFLOAD; return 0; } struct net_event_work { struct work_struct work; struct rtl838x_switch_priv *priv; u64 mac; u32 gw_addr; }; static void rtl83xx_net_event_work_do(struct work_struct *work) { struct net_event_work *net_work = container_of(work, struct net_event_work, work); struct rtl838x_switch_priv *priv = net_work->priv; rtl83xx_l3_nexthop_update(priv, net_work->gw_addr, net_work->mac); } static int rtl83xx_netevent_event(struct notifier_block *this, unsigned long event, void *ptr) { struct rtl838x_switch_priv *priv; struct net_device *dev; struct neighbour *n = ptr; int err, port; struct net_event_work *net_work; priv = container_of(this, struct rtl838x_switch_priv, ne_nb); net_work = kzalloc(sizeof(*net_work), GFP_ATOMIC); if (!net_work) return NOTIFY_BAD; INIT_WORK(&net_work->work, rtl83xx_net_event_work_do); net_work->priv = priv; switch (event) { case NETEVENT_NEIGH_UPDATE: if (n->tbl != &arp_tbl) return NOTIFY_DONE; dev = n->dev; port = rtl83xx_port_dev_lower_find(dev, priv); if (port < 0 || !(n->nud_state & NUD_VALID)) { pr_debug("%s: Neigbour invalid, not updating\n", __func__); kfree(net_work); return NOTIFY_DONE; } net_work->mac = ether_addr_to_u64(n->ha); net_work->gw_addr = *(__be32 *) n->primary_key; pr_debug("%s: updating neighbour on port %d, mac %016llx\n", __func__, port, net_work->mac); schedule_work(&net_work->work); if (err) netdev_warn(dev, "failed to handle neigh update (err %d)\n", err); break; } return NOTIFY_DONE; } struct rtl83xx_fib_event_work { struct work_struct work; union { struct fib_entry_notifier_info fen_info; struct fib6_entry_notifier_info fen6_info; struct fib_rule_notifier_info fr_info; }; struct rtl838x_switch_priv *priv; bool is_fib6; unsigned long event; }; static void rtl83xx_fib_event_work_do(struct work_struct *work) { struct rtl83xx_fib_event_work *fib_work = container_of(work, struct rtl83xx_fib_event_work, work); struct rtl838x_switch_priv *priv = fib_work->priv; struct fib_rule *rule; int err; /* Protect internal structures from changes */ rtnl_lock(); pr_debug("%s: doing work, event %ld\n", __func__, fib_work->event); switch (fib_work->event) { case FIB_EVENT_ENTRY_ADD: case FIB_EVENT_ENTRY_REPLACE: case FIB_EVENT_ENTRY_APPEND: if (fib_work->is_fib6) { err = rtl83xx_fib6_add(priv, &fib_work->fen6_info); } else { err = rtl83xx_fib4_add(priv, &fib_work->fen_info); fib_info_put(fib_work->fen_info.fi); } if (err) pr_err("%s: FIB4 failed\n", __func__); break; case FIB_EVENT_ENTRY_DEL: rtl83xx_fib4_del(priv, &fib_work->fen_info); fib_info_put(fib_work->fen_info.fi); break; case FIB_EVENT_RULE_ADD: case FIB_EVENT_RULE_DEL: rule = fib_work->fr_info.rule; if (!fib4_rule_default(rule)) pr_err("%s: FIB4 default rule failed\n", __func__); fib_rule_put(rule); break; } rtnl_unlock(); kfree(fib_work); } /* Called with rcu_read_lock() */ static int rtl83xx_fib_event(struct notifier_block *this, unsigned long event, void *ptr) { struct fib_notifier_info *info = ptr; struct rtl838x_switch_priv *priv; struct rtl83xx_fib_event_work *fib_work; if ((info->family != AF_INET && info->family != AF_INET6 && info->family != RTNL_FAMILY_IPMR && info->family != RTNL_FAMILY_IP6MR)) return NOTIFY_DONE; priv = container_of(this, struct rtl838x_switch_priv, fib_nb); fib_work = kzalloc(sizeof(*fib_work), GFP_ATOMIC); if (!fib_work) return NOTIFY_BAD; INIT_WORK(&fib_work->work, rtl83xx_fib_event_work_do); fib_work->priv = priv; fib_work->event = event; fib_work->is_fib6 = false; switch (event) { case FIB_EVENT_ENTRY_ADD: case FIB_EVENT_ENTRY_REPLACE: case FIB_EVENT_ENTRY_APPEND: case FIB_EVENT_ENTRY_DEL: pr_debug("%s: FIB_ENTRY ADD/DELL, event %ld\n", __func__, event); if (info->family == AF_INET) { struct fib_entry_notifier_info *fen_info = ptr; if (fen_info->fi->fib_nh_is_v6) { NL_SET_ERR_MSG_MOD(info->extack, "IPv6 gateway with IPv4 route is not supported"); kfree(fib_work); return notifier_from_errno(-EINVAL); } memcpy(&fib_work->fen_info, ptr, sizeof(fib_work->fen_info)); /* Take referece on fib_info to prevent it from being * freed while work is queued. Release it afterwards. */ fib_info_hold(fib_work->fen_info.fi); } else if (info->family == AF_INET6) { struct fib6_entry_notifier_info *fen6_info = ptr; pr_warn("%s: FIB_RULE ADD/DELL for IPv6 not supported\n", __func__); kfree(fib_work); return notifier_from_errno(-EINVAL); } break; case FIB_EVENT_RULE_ADD: case FIB_EVENT_RULE_DEL: pr_debug("%s: FIB_RULE ADD/DELL, event: %ld\n", __func__, event); memcpy(&fib_work->fr_info, ptr, sizeof(fib_work->fr_info)); fib_rule_get(fib_work->fr_info.rule); break; } schedule_work(&fib_work->work); return NOTIFY_DONE; } static int __init rtl83xx_sw_probe(struct platform_device *pdev) { int err = 0, i; struct rtl838x_switch_priv *priv; struct device *dev = &pdev->dev; u64 bpdu_mask; pr_debug("Probing RTL838X switch device\n"); if (!pdev->dev.of_node) { dev_err(dev, "No DT found\n"); return -EINVAL; } // Initialize access to RTL switch tables rtl_table_init(); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = dev; priv->ds->priv = priv; priv->ds->ops = &rtl83xx_switch_ops; priv->dev = dev; mutex_init(&priv->reg_mutex); priv->family_id = soc_info.family; priv->id = soc_info.id; switch(soc_info.family) { case RTL8380_FAMILY_ID: priv->ds->ops = &rtl83xx_switch_ops; priv->cpu_port = RTL838X_CPU_PORT; priv->port_mask = 0x1f; priv->port_width = 1; priv->irq_mask = 0x0FFFFFFF; priv->r = &rtl838x_reg; priv->ds->num_ports = 29; priv->fib_entries = 8192; rtl8380_get_version(priv); priv->n_lags = 8; priv->l2_bucket_size = 4; priv->n_pie_blocks = 12; priv->port_ignore = 0x1f; priv->n_counters = 128; break; case RTL8390_FAMILY_ID: priv->ds->ops = &rtl83xx_switch_ops; priv->cpu_port = RTL839X_CPU_PORT; priv->port_mask = 0x3f; priv->port_width = 2; priv->irq_mask = 0xFFFFFFFFFFFFFULL; priv->r = &rtl839x_reg; priv->ds->num_ports = 53; priv->fib_entries = 16384; rtl8390_get_version(priv); priv->n_lags = 16; priv->l2_bucket_size = 4; priv->n_pie_blocks = 18; priv->port_ignore = 0x3f; priv->n_counters = 1024; break; case RTL9300_FAMILY_ID: priv->ds->ops = &rtl930x_switch_ops; priv->cpu_port = RTL930X_CPU_PORT; priv->port_mask = 0x1f; priv->port_width = 1; priv->irq_mask = 0x0FFFFFFF; priv->r = &rtl930x_reg; priv->ds->num_ports = 29; priv->fib_entries = 16384; priv->version = RTL8390_VERSION_A; priv->n_lags = 16; sw_w32(1, RTL930X_ST_CTRL); priv->l2_bucket_size = 8; priv->n_pie_blocks = 16; priv->port_ignore = 0x3f; priv->n_counters = 2048; break; case RTL9310_FAMILY_ID: priv->ds->ops = &rtl930x_switch_ops; priv->cpu_port = RTL931X_CPU_PORT; priv->port_mask = 0x3f; priv->port_width = 2; priv->irq_mask = 0xFFFFFFFFFFFFFULL; priv->r = &rtl931x_reg; priv->ds->num_ports = 57; priv->fib_entries = 16384; priv->version = RTL8390_VERSION_A; priv->n_lags = 16; priv->l2_bucket_size = 8; break; } pr_debug("Chip version %c\n", priv->version); err = rtl83xx_mdio_probe(priv); if (err) { /* Probing fails the 1st time because of missing ethernet driver * initialization. Use this to disable traffic in case the bootloader left if on */ return err; } err = dsa_register_switch(priv->ds); if (err) { dev_err(dev, "Error registering switch: %d\n", err); return err; } /* * dsa_to_port returns dsa_port from the port list in * dsa_switch_tree, the tree is built when the switch * is registered by dsa_register_switch */ for (i = 0; i <= priv->cpu_port; i++) priv->ports[i].dp = dsa_to_port(priv->ds, i); /* Enable link and media change interrupts. Are the SERDES masks needed? */ sw_w32_mask(0, 3, priv->r->isr_glb_src); priv->r->set_port_reg_le(priv->irq_mask, priv->r->isr_port_link_sts_chg); priv->r->set_port_reg_le(priv->irq_mask, priv->r->imr_port_link_sts_chg); priv->link_state_irq = platform_get_irq(pdev, 0); pr_info("LINK state irq: %d\n", priv->link_state_irq); switch (priv->family_id) { case RTL8380_FAMILY_ID: err = request_irq(priv->link_state_irq, rtl838x_switch_irq, IRQF_SHARED, "rtl838x-link-state", priv->ds); break; case RTL8390_FAMILY_ID: err = request_irq(priv->link_state_irq, rtl839x_switch_irq, IRQF_SHARED, "rtl839x-link-state", priv->ds); break; case RTL9300_FAMILY_ID: err = request_irq(priv->link_state_irq, rtl930x_switch_irq, IRQF_SHARED, "rtl930x-link-state", priv->ds); break; case RTL9310_FAMILY_ID: err = request_irq(priv->link_state_irq, rtl931x_switch_irq, IRQF_SHARED, "rtl931x-link-state", priv->ds); break; } if (err) { dev_err(dev, "Error setting up switch interrupt.\n"); /* Need to free allocated switch here */ } /* Enable interrupts for switch, on RTL931x, the IRQ is always on globally */ if (soc_info.family != RTL9310_FAMILY_ID) sw_w32(0x1, priv->r->imr_glb); rtl83xx_get_l2aging(priv); rtl83xx_setup_qos(priv); priv->r->l3_setup(priv); /* Clear all destination ports for mirror groups */ for (i = 0; i < 4; i++) priv->mirror_group_ports[i] = -1; /* * Register netdevice event callback to catch changes in link aggregation groups */ priv->nb.notifier_call = rtl83xx_netdevice_event; if (register_netdevice_notifier(&priv->nb)) { priv->nb.notifier_call = NULL; dev_err(dev, "Failed to register LAG netdev notifier\n"); goto err_register_nb; } // Initialize hash table for L3 routing rhltable_init(&priv->routes, &route_ht_params); /* * Register netevent notifier callback to catch notifications about neighboring * changes to update nexthop entries for L3 routing. */ priv->ne_nb.notifier_call = rtl83xx_netevent_event; if (register_netevent_notifier(&priv->ne_nb)) { priv->ne_nb.notifier_call = NULL; dev_err(dev, "Failed to register netevent notifier\n"); goto err_register_ne_nb; } priv->fib_nb.notifier_call = rtl83xx_fib_event; /* * Register Forwarding Information Base notifier to offload routes where * where possible * Only FIBs pointing to our own netdevs are programmed into * the device, so no need to pass a callback. */ err = register_fib_notifier(&init_net, &priv->fib_nb, NULL, NULL); if (err) goto err_register_fib_nb; // TODO: put this into l2_setup() // Flood BPDUs to all ports including cpu-port if (soc_info.family != RTL9300_FAMILY_ID) { bpdu_mask = soc_info.family == RTL8380_FAMILY_ID ? 0x1FFFFFFF : 0x1FFFFFFFFFFFFF; priv->r->set_port_reg_be(bpdu_mask, priv->r->rma_bpdu_fld_pmask); // TRAP 802.1X frames (EAPOL) to the CPU-Port, bypass STP and VLANs sw_w32(7, priv->r->spcl_trap_eapol_ctrl); rtl838x_dbgfs_init(priv); } return 0; err_register_fib_nb: unregister_netevent_notifier(&priv->ne_nb); err_register_ne_nb: unregister_netdevice_notifier(&priv->nb); err_register_nb: return err; } static int rtl83xx_sw_remove(struct platform_device *pdev) { // TODO: pr_debug("Removing platform driver for rtl83xx-sw\n"); return 0; } static const struct of_device_id rtl83xx_switch_of_ids[] = { { .compatible = "realtek,rtl83xx-switch"}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rtl83xx_switch_of_ids); static struct platform_driver rtl83xx_switch_driver = { .probe = rtl83xx_sw_probe, .remove = rtl83xx_sw_remove, .driver = { .name = "rtl83xx-switch", .pm = NULL, .of_match_table = rtl83xx_switch_of_ids, }, }; module_platform_driver(rtl83xx_switch_driver); MODULE_AUTHOR("B. Koblitz"); MODULE_DESCRIPTION("RTL83XX SoC Switch Driver"); MODULE_LICENSE("GPL");