From 1ecb38eabd90efe93957d0a822a167560c39308a Mon Sep 17 00:00:00 2001 From: Xiangsheng Hou Date: Wed, 20 Mar 2019 16:19:51 +0800 Subject: [PATCH 6/6] spi: spi-mem: MediaTek: Add SPI NAND Flash interface driver for MediaTek MT7622 Change-Id: I3e78406bb9b46b0049d3988a5c71c7069e4f809c Signed-off-by: Xiangsheng Hou --- drivers/spi/Kconfig | 9 + drivers/spi/Makefile | 1 + drivers/spi/spi-mtk-snfi.c | 1183 ++++++++++++++++++++++++++++++++++++ 3 files changed, 1193 insertions(+) create mode 100644 drivers/spi/spi-mtk-snfi.c --- a/drivers/spi/Makefile +++ b/drivers/spi/Makefile @@ -67,6 +67,7 @@ obj-$(CONFIG_SPI_MPC512x_PSC) += spi-mp obj-$(CONFIG_SPI_MPC52xx_PSC) += spi-mpc52xx-psc.o obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52xx.o obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o +obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o obj-$(CONFIG_SPI_MXIC) += spi-mxic.o --- a/drivers/spi/Kconfig +++ b/drivers/spi/Kconfig @@ -495,6 +495,15 @@ config SPI_MT65XX say Y or M here.If you are not sure, say N. SPI drivers for Mediatek MT65XX and MT81XX series ARM SoCs. +config SPI_MTK_SNFI + tristate "MediaTek SPI NAND interface" + select MTD_SPI_NAND + help + This selects the SPI NAND FLASH interface(SNFI), + which could be found on MediaTek Soc. + Say Y or M here.If you are not sure, say N. + Note Parallel Nand and SPI NAND is alternative on MediaTek SoCs. + config SPI_MT7621 tristate "MediaTek MT7621 SPI Controller" depends on RALINK || COMPILE_TEST --- /dev/null +++ b/drivers/spi/spi-mtk-snfi.c @@ -0,0 +1,1200 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Driver for MediaTek SPI Nand interface + * + * Copyright (C) 2018 MediaTek Inc. + * Authors: Xiangsheng Hou + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* NAND controller register definition */ +/* NFI control */ +#define NFI_CNFG 0x00 +#define CNFG_DMA BIT(0) +#define CNFG_READ_EN BIT(1) +#define CNFG_DMA_BURST_EN BIT(2) +#define CNFG_BYTE_RW BIT(6) +#define CNFG_HW_ECC_EN BIT(8) +#define CNFG_AUTO_FMT_EN BIT(9) +#define CNFG_OP_PROGRAM (3UL << 12) +#define CNFG_OP_CUST (6UL << 12) +#define NFI_PAGEFMT 0x04 +#define PAGEFMT_512 0 +#define PAGEFMT_2K 1 +#define PAGEFMT_4K 2 +#define PAGEFMT_FDM_SHIFT 8 +#define PAGEFMT_FDM_ECC_SHIFT 12 +#define NFI_CON 0x08 +#define CON_FIFO_FLUSH BIT(0) +#define CON_NFI_RST BIT(1) +#define CON_BRD BIT(8) +#define CON_BWR BIT(9) +#define CON_SEC_SHIFT 12 +#define NFI_INTR_EN 0x10 +#define INTR_AHB_DONE_EN BIT(6) +#define NFI_INTR_STA 0x14 +#define NFI_CMD 0x20 +#define NFI_STA 0x60 +#define STA_EMP_PAGE BIT(12) +#define NAND_FSM_MASK (0x1f << 24) +#define NFI_FSM_MASK (0xf << 16) +#define NFI_ADDRCNTR 0x70 +#define CNTR_MASK GENMASK(16, 12) +#define ADDRCNTR_SEC_SHIFT 12 +#define ADDRCNTR_SEC(val) \ + (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) +#define NFI_STRADDR 0x80 +#define NFI_BYTELEN 0x84 +#define NFI_CSEL 0x90 +#define NFI_FDML(x) (0xa0 + (x) * sizeof(u32) * 2) +#define NFI_FDMM(x) (0xa4 + (x) * sizeof(u32) * 2) +#define NFI_MASTER_STA 0x224 +#define MASTER_STA_MASK 0x0fff +/* NFI_SPI control */ +#define SNFI_MAC_OUTL 0x504 +#define SNFI_MAC_INL 0x508 +#define SNFI_RD_CTL2 0x510 +#define RD_CMD_MASK 0x00ff +#define RD_DUMMY_SHIFT 8 +#define SNFI_RD_CTL3 0x514 +#define RD_ADDR_MASK 0xffff +#define SNFI_MISC_CTL 0x538 +#define RD_MODE_X2 BIT(16) +#define RD_MODE_X4 (2UL << 16) +#define RD_QDUAL_IO (4UL << 16) +#define RD_MODE_MASK (7UL << 16) +#define RD_CUSTOM_EN BIT(6) +#define WR_CUSTOM_EN BIT(7) +#define WR_X4_EN BIT(20) +#define SW_RST BIT(28) +#define SNFI_MISC_CTL2 0x53c +#define WR_LEN_SHIFT 16 +#define SNFI_PG_CTL1 0x524 +#define WR_LOAD_CMD_SHIFT 8 +#define SNFI_PG_CTL2 0x528 +#define WR_LOAD_ADDR_MASK 0xffff +#define SNFI_MAC_CTL 0x500 +#define MAC_WIP BIT(0) +#define MAC_WIP_READY BIT(1) +#define MAC_TRIG BIT(2) +#define MAC_EN BIT(3) +#define MAC_SIO_SEL BIT(4) +#define SNFI_STA_CTL1 0x550 +#define SPI_STATE_IDLE 0xf +#define SNFI_CNFG 0x55c +#define SNFI_MODE_EN BIT(0) +#define SNFI_GPRAM_DATA 0x800 +#define SNFI_GPRAM_MAX_LEN 16 + +/* Dummy command trigger NFI to spi mode */ +#define NAND_CMD_DUMMYREAD 0x00 +#define NAND_CMD_DUMMYPROG 0x80 + +#define MTK_TIMEOUT 500000 +#define MTK_RESET_TIMEOUT 1000000 +#define MTK_SNFC_MIN_SPARE 16 +#define KB(x) ((x) * 1024UL) + +/* + * supported spare size of each IP. + * order should be the same with the spare size bitfiled defination of + * register NFI_PAGEFMT. + */ +static const u8 spare_size_mt7622[] = { + 16, 26, 27, 28 +}; + +struct mtk_snfi_caps { + const u8 *spare_size; + u8 num_spare_size; + u32 nand_sec_size; + u8 nand_fdm_size; + u8 nand_fdm_ecc_size; + u8 ecc_parity_bits; + u8 pageformat_spare_shift; + u8 bad_mark_swap; +}; + +struct mtk_snfi_bad_mark_ctl { + void (*bm_swap)(struct spi_mem *mem, u8 *buf, int raw); + u32 sec; + u32 pos; +}; + +struct mtk_snfi_nand_chip { + struct mtk_snfi_bad_mark_ctl bad_mark; + u32 spare_per_sector; +}; + +struct mtk_snfi_clk { + struct clk *nfi_clk; + struct clk *spi_clk; +}; + +struct mtk_snfi { + const struct mtk_snfi_caps *caps; + struct mtk_snfi_nand_chip snfi_nand; + struct mtk_snfi_clk clk; + struct mtk_ecc_config ecc_cfg; + struct mtk_ecc *ecc; + struct completion done; + struct device *dev; + + void __iomem *regs; + + u8 *buffer; +}; + +static inline u8 *oob_ptr(struct spi_mem *mem, int i) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u8 *poi; + + /* map the sector's FDM data to free oob: + * the beginning of the oob area stores the FDM data of bad mark + */ + + if (i < snfi_nand->bad_mark.sec) + poi = spinand->oobbuf + (i + 1) * snfi->caps->nand_fdm_size; + else if (i == snfi_nand->bad_mark.sec) + poi = spinand->oobbuf; + else + poi = spinand->oobbuf + i * snfi->caps->nand_fdm_size; + + return poi; +} + +static inline int mtk_data_len(struct spi_mem *mem) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + + return snfi->caps->nand_sec_size + snfi_nand->spare_per_sector; +} + +static inline u8 *mtk_oob_ptr(struct spi_mem *mem, + const u8 *p, int i) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + + return (u8 *)p + i * mtk_data_len(mem) + snfi->caps->nand_sec_size; +} + +static void mtk_snfi_bad_mark_swap(struct spi_mem *mem, + u8 *buf, int raw) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 bad_pos = snfi_nand->bad_mark.pos; + + if (raw) + bad_pos += snfi_nand->bad_mark.sec * mtk_data_len(mem); + else + bad_pos += snfi_nand->bad_mark.sec * snfi->caps->nand_sec_size; + + swap(spinand->oobbuf[0], buf[bad_pos]); +} + +static void mtk_snfi_set_bad_mark_ctl(struct mtk_snfi_bad_mark_ctl *bm_ctl, + struct spi_mem *mem) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + + bm_ctl->bm_swap = mtk_snfi_bad_mark_swap; + bm_ctl->sec = mtd->writesize / mtk_data_len(mem); + bm_ctl->pos = mtd->writesize % mtk_data_len(mem); +} + +static void mtk_snfi_mac_enable(struct mtk_snfi *snfi) +{ + u32 mac; + + mac = readl(snfi->regs + SNFI_MAC_CTL); + mac &= ~MAC_SIO_SEL; + mac |= MAC_EN; + + writel(mac, snfi->regs + SNFI_MAC_CTL); +} + +static int mtk_snfi_mac_trigger(struct mtk_snfi *snfi) +{ + u32 mac, reg; + int ret = 0; + + mac = readl(snfi->regs + SNFI_MAC_CTL); + mac |= MAC_TRIG; + writel(mac, snfi->regs + SNFI_MAC_CTL); + + ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg, + reg & MAC_WIP_READY, 10, + MTK_TIMEOUT); + if (ret < 0) { + dev_err(snfi->dev, "polling wip ready for read timeout\n"); + return -EIO; + } + + ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg, + !(reg & MAC_WIP), 10, + MTK_TIMEOUT); + if (ret < 0) { + dev_err(snfi->dev, "polling flash update timeout\n"); + return -EIO; + } + + return ret; +} + +static void mtk_snfi_mac_leave(struct mtk_snfi *snfi) +{ + u32 mac; + + mac = readl(snfi->regs + SNFI_MAC_CTL); + mac &= ~(MAC_TRIG | MAC_EN | MAC_SIO_SEL); + writel(mac, snfi->regs + SNFI_MAC_CTL); +} + +static int mtk_snfi_mac_op(struct mtk_snfi *snfi) +{ + int ret = 0; + + mtk_snfi_mac_enable(snfi); + + ret = mtk_snfi_mac_trigger(snfi); + if (ret) + return ret; + + mtk_snfi_mac_leave(snfi); + + return ret; +} + +static irqreturn_t mtk_snfi_irq(int irq, void *id) +{ + struct mtk_snfi *snfi = id; + u16 sta, ien; + + sta = readw(snfi->regs + NFI_INTR_STA); + ien = readw(snfi->regs + NFI_INTR_EN); + + if (!(sta & ien)) + return IRQ_NONE; + + writew(~sta & ien, snfi->regs + NFI_INTR_EN); + complete(&snfi->done); + + return IRQ_HANDLED; +} + +static int mtk_snfi_enable_clk(struct device *dev, struct mtk_snfi_clk *clk) +{ + int ret; + + ret = clk_prepare_enable(clk->nfi_clk); + if (ret) { + dev_err(dev, "failed to enable nfi clk\n"); + return ret; + } + + ret = clk_prepare_enable(clk->spi_clk); + if (ret) { + dev_err(dev, "failed to enable spi clk\n"); + clk_disable_unprepare(clk->nfi_clk); + return ret; + } + + return 0; +} + +static void mtk_snfi_disable_clk(struct mtk_snfi_clk *clk) +{ + clk_disable_unprepare(clk->nfi_clk); + clk_disable_unprepare(clk->spi_clk); +} + +static int mtk_snfi_reset(struct mtk_snfi *snfi) +{ + u32 val; + int ret; + + /* SW reset controller */ + val = readl(snfi->regs + SNFI_MISC_CTL) | SW_RST; + writel(val, snfi->regs + SNFI_MISC_CTL); + + ret = readw_poll_timeout(snfi->regs + SNFI_STA_CTL1, val, + !(val & SPI_STATE_IDLE), 50, + MTK_RESET_TIMEOUT); + if (ret) { + dev_warn(snfi->dev, "spi state active in reset [0x%x] = 0x%x\n", + SNFI_STA_CTL1, val); + return ret; + } + + val = readl(snfi->regs + SNFI_MISC_CTL); + val &= ~SW_RST; + writel(val, snfi->regs + SNFI_MISC_CTL); + + /* reset all registers and force the NFI master to terminate */ + writew(CON_FIFO_FLUSH | CON_NFI_RST, snfi->regs + NFI_CON); + ret = readw_poll_timeout(snfi->regs + NFI_STA, val, + !(val & (NFI_FSM_MASK | NAND_FSM_MASK)), 50, + MTK_RESET_TIMEOUT); + if (ret) { + dev_warn(snfi->dev, "nfi active in reset [0x%x] = 0x%x\n", + NFI_STA, val); + return ret; + } + + return 0; +} + +static int mtk_snfi_set_spare_per_sector(struct spinand_device *spinand, + const struct mtk_snfi_caps *caps, + u32 *sps) +{ + struct mtd_info *mtd = spinand_to_mtd(spinand); + const u8 *spare = caps->spare_size; + u32 sectors, i, closest_spare = 0; + + sectors = mtd->writesize / caps->nand_sec_size; + *sps = mtd->oobsize / sectors; + + if (*sps < MTK_SNFC_MIN_SPARE) + return -EINVAL; + + for (i = 0; i < caps->num_spare_size; i++) { + if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { + closest_spare = i; + if (*sps == spare[i]) + break; + } + } + + *sps = spare[closest_spare]; + + return 0; +} + +static void mtk_snfi_read_fdm_data(struct spi_mem *mem, + u32 sectors) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + const struct mtk_snfi_caps *caps = snfi->caps; + u32 vall, valm; + int i, j; + u8 *oobptr; + + for (i = 0; i < sectors; i++) { + oobptr = oob_ptr(mem, i); + vall = readl(snfi->regs + NFI_FDML(i)); + valm = readl(snfi->regs + NFI_FDMM(i)); + + for (j = 0; j < caps->nand_fdm_size; j++) + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); + } +} + +static void mtk_snfi_write_fdm_data(struct spi_mem *mem, + u32 sectors) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + const struct mtk_snfi_caps *caps = snfi->caps; + u32 vall, valm; + int i, j; + u8 *oobptr; + + for (i = 0; i < sectors; i++) { + oobptr = oob_ptr(mem, i); + vall = 0; + valm = 0; + for (j = 0; j < 8; j++) { + if (j < 4) + vall |= (j < caps->nand_fdm_size ? oobptr[j] : + 0xff) << (j * 8); + else + valm |= (j < caps->nand_fdm_size ? oobptr[j] : + 0xff) << ((j - 4) * 8); + } + writel(vall, snfi->regs + NFI_FDML(i)); + writel(valm, snfi->regs + NFI_FDMM(i)); + } +} + +static int mtk_snfi_update_ecc_stats(struct spi_mem *mem, + u8 *buf, u32 sectors) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtk_ecc_stats stats; + int rc, i; + + rc = readl(snfi->regs + NFI_STA) & STA_EMP_PAGE; + if (rc) { + memset(buf, 0xff, sectors * snfi->caps->nand_sec_size); + for (i = 0; i < sectors; i++) + memset(spinand->oobbuf, 0xff, + snfi->caps->nand_fdm_size); + return 0; + } + + mtk_ecc_get_stats(snfi->ecc, &stats, sectors); + mtd->ecc_stats.corrected += stats.corrected; + mtd->ecc_stats.failed += stats.failed; + + return 0; +} + +static int mtk_snfi_hw_runtime_config(struct spi_mem *mem) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct nand_device *nand = mtd_to_nanddev(mtd); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + const struct mtk_snfi_caps *caps = snfi->caps; + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 fmt, spare, i = 0; + int ret; + + ret = mtk_snfi_set_spare_per_sector(spinand, caps, &spare); + if (ret) + return ret; + + /* calculate usable oob bytes for ecc parity data */ + snfi_nand->spare_per_sector = spare; + spare -= caps->nand_fdm_size; + + nand->memorg.oobsize = snfi_nand->spare_per_sector + * (mtd->writesize / caps->nand_sec_size); + mtd->oobsize = nanddev_per_page_oobsize(nand); + + snfi->ecc_cfg.strength = (spare << 3) / caps->ecc_parity_bits; + mtk_ecc_adjust_strength(snfi->ecc, &snfi->ecc_cfg.strength); + + switch (mtd->writesize) { + case 512: + fmt = PAGEFMT_512; + break; + case KB(2): + fmt = PAGEFMT_2K; + break; + case KB(4): + fmt = PAGEFMT_4K; + break; + default: + dev_err(snfi->dev, "invalid page len: %d\n", mtd->writesize); + return -EINVAL; + } + + /* Setup PageFormat */ + while (caps->spare_size[i] != snfi_nand->spare_per_sector) { + i++; + if (i == (caps->num_spare_size - 1)) { + dev_err(snfi->dev, "invalid spare size %d\n", + snfi_nand->spare_per_sector); + return -EINVAL; + } + } + + fmt |= i << caps->pageformat_spare_shift; + fmt |= caps->nand_fdm_size << PAGEFMT_FDM_SHIFT; + fmt |= caps->nand_fdm_ecc_size << PAGEFMT_FDM_ECC_SHIFT; + writel(fmt, snfi->regs + NFI_PAGEFMT); + + snfi->ecc_cfg.len = caps->nand_sec_size + caps->nand_fdm_ecc_size; + + mtk_snfi_set_bad_mark_ctl(&snfi_nand->bad_mark, mem); + + return 0; +} + +static int mtk_snfi_read_from_cache(struct spi_mem *mem, + const struct spi_mem_op *op, int oob_on) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + u32 sectors = mtd->writesize / snfi->caps->nand_sec_size; + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 reg, len, col_addr = 0; + int dummy_cycle, ret; + dma_addr_t dma_addr; + + len = sectors * (snfi->caps->nand_sec_size + + snfi_nand->spare_per_sector); + + dma_addr = dma_map_single(snfi->dev, snfi->buffer, + len, DMA_FROM_DEVICE); + ret = dma_mapping_error(snfi->dev, dma_addr); + if (ret) { + dev_err(snfi->dev, "dma mapping error\n"); + return -EINVAL; + } + + /* set Read cache command and dummy cycle */ + dummy_cycle = (op->dummy.nbytes << 3) >> (ffs(op->dummy.buswidth) - 1); + reg = ((op->cmd.opcode & RD_CMD_MASK) | + (dummy_cycle << RD_DUMMY_SHIFT)); + writel(reg, snfi->regs + SNFI_RD_CTL2); + + writel((col_addr & RD_ADDR_MASK), snfi->regs + SNFI_RD_CTL3); + + reg = readl(snfi->regs + SNFI_MISC_CTL); + reg |= RD_CUSTOM_EN; + reg &= ~(RD_MODE_MASK | WR_X4_EN); + + /* set data and addr buswidth */ + if (op->data.buswidth == 4) + reg |= RD_MODE_X4; + else if (op->data.buswidth == 2) + reg |= RD_MODE_X2; + + if (op->addr.buswidth == 4 || op->addr.buswidth == 2) + reg |= RD_QDUAL_IO; + writel(reg, snfi->regs + SNFI_MISC_CTL); + + writel(len, snfi->regs + SNFI_MISC_CTL2); + writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON); + reg = readw(snfi->regs + NFI_CNFG); + reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA | CNFG_OP_CUST; + + if (!oob_on) { + reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; + writew(reg, snfi->regs + NFI_CNFG); + + snfi->ecc_cfg.mode = ECC_NFI_MODE; + snfi->ecc_cfg.sectors = sectors; + snfi->ecc_cfg.op = ECC_DECODE; + ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg); + if (ret) { + dev_err(snfi->dev, "ecc enable failed\n"); + /* clear NFI_CNFG */ + reg &= ~(CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + writew(reg, snfi->regs + NFI_CNFG); + goto out; + } + } else { + writew(reg, snfi->regs + NFI_CNFG); + } + + writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR); + readw(snfi->regs + NFI_INTR_STA); + writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN); + + init_completion(&snfi->done); + + /* set dummy command to trigger NFI enter SPI mode */ + writew(NAND_CMD_DUMMYREAD, snfi->regs + NFI_CMD); + reg = readl(snfi->regs + NFI_CON) | CON_BRD; + writew(reg, snfi->regs + NFI_CON); + + ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(snfi->dev, "read ahb done timeout\n"); + writew(0, snfi->regs + NFI_INTR_EN); + ret = -ETIMEDOUT; + goto out; + } + + ret = readl_poll_timeout_atomic(snfi->regs + NFI_BYTELEN, reg, + ADDRCNTR_SEC(reg) >= sectors, 10, + MTK_TIMEOUT); + if (ret < 0) { + dev_err(snfi->dev, "polling read byte len timeout\n"); + ret = -EIO; + } else { + if (!oob_on) { + ret = mtk_ecc_wait_done(snfi->ecc, ECC_DECODE); + if (ret) { + dev_warn(snfi->dev, "wait ecc done timeout\n"); + } else { + mtk_snfi_update_ecc_stats(mem, snfi->buffer, + sectors); + mtk_snfi_read_fdm_data(mem, sectors); + } + } + } + + if (oob_on) + goto out; + + mtk_ecc_disable(snfi->ecc); +out: + dma_unmap_single(snfi->dev, dma_addr, len, DMA_FROM_DEVICE); + writel(0, snfi->regs + NFI_CON); + writel(0, snfi->regs + NFI_CNFG); + reg = readl(snfi->regs + SNFI_MISC_CTL); + reg &= ~RD_CUSTOM_EN; + writel(reg, snfi->regs + SNFI_MISC_CTL); + + return ret; +} + +static int mtk_snfi_write_to_cache(struct spi_mem *mem, + const struct spi_mem_op *op, + int oob_on) +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + u32 sectors = mtd->writesize / snfi->caps->nand_sec_size; + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 reg, len, col_addr = 0; + dma_addr_t dma_addr; + int ret; + + len = sectors * (snfi->caps->nand_sec_size + + snfi_nand->spare_per_sector); + + dma_addr = dma_map_single(snfi->dev, snfi->buffer, len, + DMA_TO_DEVICE); + ret = dma_mapping_error(snfi->dev, dma_addr); + if (ret) { + dev_err(snfi->dev, "dma mapping error\n"); + return -EINVAL; + } + + /* set program load cmd and address */ + reg = (op->cmd.opcode << WR_LOAD_CMD_SHIFT); + writel(reg, snfi->regs + SNFI_PG_CTL1); + writel(col_addr & WR_LOAD_ADDR_MASK, snfi->regs + SNFI_PG_CTL2); + + reg = readl(snfi->regs + SNFI_MISC_CTL); + reg |= WR_CUSTOM_EN; + reg &= ~(RD_MODE_MASK | WR_X4_EN); + + if (op->data.buswidth == 4) + reg |= WR_X4_EN; + writel(reg, snfi->regs + SNFI_MISC_CTL); + + writel(len << WR_LEN_SHIFT, snfi->regs + SNFI_MISC_CTL2); + writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON); + + reg = readw(snfi->regs + NFI_CNFG); + reg &= ~(CNFG_READ_EN | CNFG_BYTE_RW); + reg |= CNFG_DMA | CNFG_DMA_BURST_EN | CNFG_OP_PROGRAM; + + if (!oob_on) { + reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; + writew(reg, snfi->regs + NFI_CNFG); + + snfi->ecc_cfg.mode = ECC_NFI_MODE; + snfi->ecc_cfg.op = ECC_ENCODE; + ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg); + if (ret) { + dev_err(snfi->dev, "ecc enable failed\n"); + /* clear NFI_CNFG */ + reg &= ~(CNFG_DMA_BURST_EN | CNFG_DMA | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + writew(reg, snfi->regs + NFI_CNFG); + dma_unmap_single(snfi->dev, dma_addr, len, + DMA_FROM_DEVICE); + goto out; + } + /* write OOB into the FDM registers (OOB area in MTK NAND) */ + mtk_snfi_write_fdm_data(mem, sectors); + } else { + writew(reg, snfi->regs + NFI_CNFG); + } + writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR); + readw(snfi->regs + NFI_INTR_STA); + writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN); + + init_completion(&snfi->done); + + /* set dummy command to trigger NFI enter SPI mode */ + writew(NAND_CMD_DUMMYPROG, snfi->regs + NFI_CMD); + reg = readl(snfi->regs + NFI_CON) | CON_BWR; + writew(reg, snfi->regs + NFI_CON); + + ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(snfi->dev, "custom program done timeout\n"); + writew(0, snfi->regs + NFI_INTR_EN); + ret = -ETIMEDOUT; + goto ecc_disable; + } + + ret = readl_poll_timeout_atomic(snfi->regs + NFI_ADDRCNTR, reg, + ADDRCNTR_SEC(reg) >= sectors, + 10, MTK_TIMEOUT); + if (ret) + dev_err(snfi->dev, "hwecc write timeout\n"); + +ecc_disable: + mtk_ecc_disable(snfi->ecc); + +out: + dma_unmap_single(snfi->dev, dma_addr, len, DMA_TO_DEVICE); + writel(0, snfi->regs + NFI_CON); + writel(0, snfi->regs + NFI_CNFG); + reg = readl(snfi->regs + SNFI_MISC_CTL); + reg &= ~WR_CUSTOM_EN; + writel(reg, snfi->regs + SNFI_MISC_CTL); + + return ret; +} + +static int mtk_snfi_read(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 col_addr = op->addr.val; + int i, ret, sectors, oob_on = false; + + if (col_addr == mtd->writesize) + oob_on = true; + + ret = mtk_snfi_read_from_cache(mem, op, oob_on); + if (ret) { + dev_warn(snfi->dev, "read from cache fail\n"); + return ret; + } + + sectors = mtd->writesize / snfi->caps->nand_sec_size; + for (i = 0; i < sectors; i++) { + if (oob_on) + memcpy(oob_ptr(mem, i), + mtk_oob_ptr(mem, snfi->buffer, i), + snfi->caps->nand_fdm_size); + + if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap) + snfi_nand->bad_mark.bm_swap(mem, snfi->buffer, + oob_on); + } + + if (!oob_on) + memcpy(spinand->databuf, snfi->buffer, mtd->writesize); + + return ret; +} + +static int mtk_snfi_write(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; + u32 ret, i, sectors, col_addr = op->addr.val; + int oob_on = false; + + if (col_addr == mtd->writesize) + oob_on = true; + + sectors = mtd->writesize / snfi->caps->nand_sec_size; + memset(snfi->buffer, 0xff, mtd->writesize + mtd->oobsize); + + if (!oob_on) + memcpy(snfi->buffer, spinand->databuf, mtd->writesize); + + for (i = 0; i < sectors; i++) { + if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap) + snfi_nand->bad_mark.bm_swap(mem, snfi->buffer, oob_on); + + if (oob_on) + memcpy(mtk_oob_ptr(mem, snfi->buffer, i), + oob_ptr(mem, i), + snfi->caps->nand_fdm_size); + } + + ret = mtk_snfi_write_to_cache(mem, op, oob_on); + if (ret) + dev_warn(snfi->dev, "write to cache fail\n"); + + return ret; +} + +static int mtk_snfi_command_exec(struct mtk_snfi *snfi, + const u8 *txbuf, u8 *rxbuf, + const u32 txlen, const u32 rxlen) +{ + u32 tmp, i, j, reg, m; + u8 *p_tmp = (u8 *)(&tmp); + int ret = 0; + + /* Moving tx data to NFI_SPI GPRAM */ + for (i = 0, m = 0; i < txlen; ) { + for (j = 0, tmp = 0; i < txlen && j < 4; i++, j++) + p_tmp[j] = txbuf[i]; + + writel(tmp, snfi->regs + SNFI_GPRAM_DATA + m); + m += 4; + } + + writel(txlen, snfi->regs + SNFI_MAC_OUTL); + writel(rxlen, snfi->regs + SNFI_MAC_INL); + ret = mtk_snfi_mac_op(snfi); + if (ret) + return ret; + + /* For NULL input data, this loop will be skipped */ + if (rxlen) + for (i = 0, m = 0; i < rxlen; ) { + reg = readl(snfi->regs + + SNFI_GPRAM_DATA + m); + for (j = 0; i < rxlen && j < 4; i++, j++, rxbuf++) { + if (m == 0 && i == 0) + j = i + txlen; + *rxbuf = (reg >> (j * 8)) & 0xFF; + } + m += 4; + } + + return ret; +} + +/* + * mtk_snfi_exec_op - to process command/data to send to the + * SPI NAND by mtk controller + */ +static int mtk_snfi_exec_op(struct spi_mem *mem, + const struct spi_mem_op *op) + +{ + struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); + struct spinand_device *spinand = spi_mem_get_drvdata(mem); + struct mtd_info *mtd = spinand_to_mtd(spinand); + struct nand_device *nand = mtd_to_nanddev(mtd); + const struct spi_mem_op *read_cache; + const struct spi_mem_op *write_cache; + const struct spi_mem_op *update_cache; + u32 tmpbufsize, txlen = 0, rxlen = 0; + u8 *txbuf, *rxbuf = NULL, *buf; + int i, ret = 0; + + ret = mtk_snfi_reset(snfi); + if (ret) { + dev_warn(snfi->dev, "reset spi memory controller fail\n"); + return ret; + } + + /*if bbt initial, framework have detect nand information */ + if (nand->bbt.cache) { + read_cache = spinand->op_templates.read_cache; + write_cache = spinand->op_templates.write_cache; + update_cache = spinand->op_templates.update_cache; + + ret = mtk_snfi_hw_runtime_config(mem); + if (ret) + return ret; + + /* For Read/Write with cache, Erase use framework flow */ + if (op->cmd.opcode == read_cache->cmd.opcode) { + ret = mtk_snfi_read(mem, op); + if (ret) + dev_warn(snfi->dev, "snfi read fail\n"); + + return ret; + } else if ((op->cmd.opcode == write_cache->cmd.opcode) + || (op->cmd.opcode == update_cache->cmd.opcode)) { + ret = mtk_snfi_write(mem, op); + if (ret) + dev_warn(snfi->dev, "snfi write fail\n"); + + return ret; + } + } + + tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + + op->dummy.nbytes + op->data.nbytes; + + txbuf = kzalloc(tmpbufsize, GFP_KERNEL); + if (!txbuf) + return -ENOMEM; + + txbuf[txlen++] = op->cmd.opcode; + + if (op->addr.nbytes) + for (i = 0; i < op->addr.nbytes; i++) + txbuf[txlen++] = op->addr.val >> + (8 * (op->addr.nbytes - i - 1)); + + txlen += op->dummy.nbytes; + + if (op->data.dir == SPI_MEM_DATA_OUT) + for (i = 0; i < op->data.nbytes; i++) { + buf = (u8 *)op->data.buf.out; + txbuf[txlen++] = buf[i]; + } + + if (op->data.dir == SPI_MEM_DATA_IN) { + rxbuf = (u8 *)op->data.buf.in; + rxlen += op->data.nbytes; + } + + ret = mtk_snfi_command_exec(snfi, txbuf, rxbuf, txlen, rxlen); + kfree(txbuf); + + return ret; +} + +static int mtk_snfi_init(struct mtk_snfi *snfi) +{ + int ret; + + /* Reset the state machine and data FIFO */ + ret = mtk_snfi_reset(snfi); + if (ret) { + dev_warn(snfi->dev, "MTK reset controller fail\n"); + return ret; + } + + snfi->buffer = devm_kzalloc(snfi->dev, 4096 + 256, GFP_KERNEL); + if (!snfi->buffer) + return -ENOMEM; + + /* Clear interrupt, read clear. */ + readw(snfi->regs + NFI_INTR_STA); + writew(0, snfi->regs + NFI_INTR_EN); + + writel(0, snfi->regs + NFI_CON); + writel(0, snfi->regs + NFI_CNFG); + + /* Change to NFI_SPI mode. */ + writel(SNFI_MODE_EN, snfi->regs + SNFI_CNFG); + + return 0; +} + +static int mtk_snfi_check_buswidth(u8 width) +{ + switch (width) { + case 1: + case 2: + case 4: + return 0; + + default: + break; + } + + return -ENOTSUPP; +} + +static bool mtk_snfi_supports_op(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + int ret = 0; + + /* For MTK Spi Nand controller, cmd buswidth just support 1 bit*/ + if (op->cmd.buswidth != 1) + ret = -ENOTSUPP; + + if (op->addr.nbytes) + ret |= mtk_snfi_check_buswidth(op->addr.buswidth); + + if (op->dummy.nbytes) + ret |= mtk_snfi_check_buswidth(op->dummy.buswidth); + + if (op->data.nbytes) + ret |= mtk_snfi_check_buswidth(op->data.buswidth); + + if (ret) + return false; + + return true; +} + +static const struct spi_controller_mem_ops mtk_snfi_ops = { + .supports_op = mtk_snfi_supports_op, + .exec_op = mtk_snfi_exec_op, +}; + +static const struct mtk_snfi_caps snfi_mt7622 = { + .spare_size = spare_size_mt7622, + .num_spare_size = 4, + .nand_sec_size = 512, + .nand_fdm_size = 8, + .nand_fdm_ecc_size = 1, + .ecc_parity_bits = 13, + .pageformat_spare_shift = 4, + .bad_mark_swap = 0, +}; + +static const struct mtk_snfi_caps snfi_mt7629 = { + .spare_size = spare_size_mt7622, + .num_spare_size = 4, + .nand_sec_size = 512, + .nand_fdm_size = 8, + .nand_fdm_ecc_size = 1, + .ecc_parity_bits = 13, + .pageformat_spare_shift = 4, + .bad_mark_swap = 1, +}; + +static const struct of_device_id mtk_snfi_id_table[] = { + { .compatible = "mediatek,mt7622-snfi", .data = &snfi_mt7622, }, + { .compatible = "mediatek,mt7629-snfi", .data = &snfi_mt7629, }, + { /* sentinel */ } +}; + +static int mtk_snfi_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct spi_controller *ctlr; + struct mtk_snfi *snfi; + struct resource *res; + int ret = 0, irq; + + ctlr = spi_alloc_master(&pdev->dev, sizeof(*snfi)); + if (!ctlr) + return -ENOMEM; + + snfi = spi_controller_get_devdata(ctlr); + snfi->caps = of_device_get_match_data(dev); + snfi->dev = dev; + + snfi->ecc = of_mtk_ecc_get(np); + if (IS_ERR_OR_NULL(snfi->ecc)) + goto err_put_master; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + snfi->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(snfi->regs)) { + ret = PTR_ERR(snfi->regs); + goto release_ecc; + } + + /* find the clocks */ + snfi->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); + if (IS_ERR(snfi->clk.nfi_clk)) { + dev_err(dev, "no nfi clk\n"); + ret = PTR_ERR(snfi->clk.nfi_clk); + goto release_ecc; + } + + snfi->clk.spi_clk = devm_clk_get(dev, "spi_clk"); + if (IS_ERR(snfi->clk.spi_clk)) { + dev_err(dev, "no spi clk\n"); + ret = PTR_ERR(snfi->clk.spi_clk); + goto release_ecc; + } + + ret = mtk_snfi_enable_clk(dev, &snfi->clk); + if (ret) + goto release_ecc; + + /* find the irq */ + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no snfi irq resource\n"); + ret = -EINVAL; + goto clk_disable; + } + + ret = devm_request_irq(dev, irq, mtk_snfi_irq, 0, "mtk-snfi", snfi); + if (ret) { + dev_err(dev, "failed to request snfi irq\n"); + goto clk_disable; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set dma mask\n"); + goto clk_disable; + } + + ctlr->dev.of_node = np; + ctlr->mem_ops = &mtk_snfi_ops; + + platform_set_drvdata(pdev, snfi); + ret = mtk_snfi_init(snfi); + if (ret) { + dev_err(dev, "failed to init snfi\n"); + goto clk_disable; + } + + ret = devm_spi_register_master(dev, ctlr); + if (ret) + goto clk_disable; + + return 0; + +clk_disable: + mtk_snfi_disable_clk(&snfi->clk); + +release_ecc: + mtk_ecc_release(snfi->ecc); + +err_put_master: + spi_master_put(ctlr); + + dev_err(dev, "MediaTek SPI NAND interface probe failed %d\n", ret); + return ret; +} + +static int mtk_snfi_remove(struct platform_device *pdev) +{ + struct mtk_snfi *snfi = platform_get_drvdata(pdev); + + mtk_snfi_disable_clk(&snfi->clk); + + return 0; +} + +static int mtk_snfi_suspend(struct platform_device *pdev, pm_message_t state) +{ + struct mtk_snfi *snfi = platform_get_drvdata(pdev); + + mtk_snfi_disable_clk(&snfi->clk); + + return 0; +} + +static int mtk_snfi_resume(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtk_snfi *snfi = dev_get_drvdata(dev); + int ret; + + ret = mtk_snfi_enable_clk(dev, &snfi->clk); + if (ret) + return ret; + + ret = mtk_snfi_init(snfi); + if (ret) + dev_err(dev, "failed to init snfi controller\n"); + + return ret; +} + +static struct platform_driver mtk_snfi_driver = { + .driver = { + .name = "mtk-snfi", + .of_match_table = mtk_snfi_id_table, + }, + .probe = mtk_snfi_probe, + .remove = mtk_snfi_remove, + .suspend = mtk_snfi_suspend, + .resume = mtk_snfi_resume, +}; + +module_platform_driver(mtk_snfi_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Xiangsheng Hou "); +MODULE_DESCRIPTION("Mediatek SPI Memory Interface Driver");