// SPDX-License-Identifier: GPL-2.0 /* * Driver for MikroTik RouterBoot hard config. * * Copyright (C) 2020 Thibaut VARĂˆNE * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This driver exposes the data encoded in the "hard_config" flash segment of * MikroTik RouterBOARDs devices. It presents the data in a sysfs folder * named "hard_config". The WLAN calibration data is available on demand via * the 'wlan_data' sysfs file in that folder. * * This driver permanently allocates a chunk of RAM as large as the hard_config * MTD partition, although it is technically possible to operate entirely from * the MTD device without using a local buffer (except when requesting WLAN * calibration data), at the cost of a performance penalty. * * Some constant defines extracted from routerboot.{c,h} by Gabor Juhos * */ #include #include #include #include #include #include #include #include #include #include #include #include "routerboot.h" #define RB_HARDCONFIG_VER "0.01" #define RB_HC_PR_PFX "[rb_hardconfig] " /* ID values for hardware settings */ #define RB_ID_FLASH_INFO 0x03 #define RB_ID_MAC_ADDRESS_PACK 0x04 #define RB_ID_BOARD_PRODUCT_CODE 0x05 #define RB_ID_BIOS_VERSION 0x06 #define RB_ID_SDRAM_TIMINGS 0x08 #define RB_ID_DEVICE_TIMINGS 0x09 #define RB_ID_SOFTWARE_ID 0x0A #define RB_ID_SERIAL_NUMBER 0x0B #define RB_ID_MEMORY_SIZE 0x0D #define RB_ID_MAC_ADDRESS_COUNT 0x0E #define RB_ID_HW_OPTIONS 0x15 #define RB_ID_WLAN_DATA 0x16 #define RB_ID_BOARD_IDENTIFIER 0x17 #define RB_ID_PRODUCT_NAME 0x21 #define RB_ID_DEFCONF 0x26 /* Bit definitions for hardware options */ #define RB_HW_OPT_NO_UART BIT(0) #define RB_HW_OPT_HAS_VOLTAGE BIT(1) #define RB_HW_OPT_HAS_USB BIT(2) #define RB_HW_OPT_HAS_ATTINY BIT(3) #define RB_HW_OPT_NO_NAND BIT(14) #define RB_HW_OPT_HAS_LCD BIT(15) #define RB_HW_OPT_HAS_POE_OUT BIT(16) #define RB_HW_OPT_HAS_uSD BIT(17) #define RB_HW_OPT_HAS_SIM BIT(18) #define RB_HW_OPT_HAS_SFP BIT(20) #define RB_HW_OPT_HAS_WIFI BIT(21) #define RB_HW_OPT_HAS_TS_FOR_ADC BIT(22) #define RB_HW_OPT_HAS_PLC BIT(29) static struct kobject *hc_kobj; static u8 *hc_buf; // ro buffer after init(): no locking required static size_t hc_buflen; /* Array of known hw_options bits with human-friendly parsing */ static struct hc_hwopt { const u32 bit; const char *str; } const hc_hwopts[] = { { .bit = RB_HW_OPT_NO_UART, .str = "no UART\t\t", }, { .bit = RB_HW_OPT_HAS_VOLTAGE, .str = "has Vreg\t", }, { .bit = RB_HW_OPT_HAS_USB, .str = "has usb\t\t", }, { .bit = RB_HW_OPT_HAS_ATTINY, .str = "has ATtiny\t", }, { .bit = RB_HW_OPT_NO_NAND, .str = "no NAND\t\t", }, { .bit = RB_HW_OPT_HAS_LCD, .str = "has LCD\t\t", }, { .bit = RB_HW_OPT_HAS_POE_OUT, .str = "has POE out\t", }, { .bit = RB_HW_OPT_HAS_uSD, .str = "has MicroSD\t", }, { .bit = RB_HW_OPT_HAS_SIM, .str = "has SIM\t\t", }, { .bit = RB_HW_OPT_HAS_SFP, .str = "has SFP\t\t", }, { .bit = RB_HW_OPT_HAS_WIFI, .str = "has WiFi\t", }, { .bit = RB_HW_OPT_HAS_TS_FOR_ADC, .str = "has TS ADC\t", }, { .bit = RB_HW_OPT_HAS_PLC, .str = "has PLC\t\t", }, }; static ssize_t hc_tag_show_string(const u8 *pld, u16 pld_len, char *buf) { return snprintf(buf, pld_len+1, "%s\n", pld); } static ssize_t hc_tag_show_u32(const u8 *pld, u16 pld_len, char *buf) { char *out = buf; u32 data; // cpu-endian /* Caller ensures pld_len > 0 */ if (pld_len % sizeof(data)) return -EINVAL; data = *(u32 *)pld; do { out += sprintf(out, "0x%08x\n", data); data++; } while ((pld_len -= sizeof(data))); return out - buf; } /* * The MAC is stored network-endian on all devices, in 2 32-bit segments: * . Kernel print has us covered. */ static ssize_t hc_tag_show_mac(const u8 *pld, u16 pld_len, char *buf) { if (8 != pld_len) return -EINVAL; return sprintf(buf, "%pM\n", pld); } /* * Print HW options in a human readable way: * The raw number and in decoded form */ static ssize_t hc_tag_show_hwoptions(const u8 *pld, u16 pld_len, char *buf) { char *out = buf; u32 data; // cpu-endian int i; if (sizeof(data) != pld_len) return -EINVAL; data = *(u32 *)pld; out += sprintf(out, "raw\t\t: 0x%08x\n\n", data); for (i = 0; i < ARRAY_SIZE(hc_hwopts); i++) out += sprintf(out, "%s: %s\n", hc_hwopts[i].str, (data & hc_hwopts[i].bit) ? "true" : "false"); return out - buf; } static ssize_t hc_wlan_data_bin_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count); static struct hc_wlan_attr { struct bin_attribute battr; u16 pld_ofs; u16 pld_len; } hc_wlandata_battr = { .battr = __BIN_ATTR(wlan_data, S_IRUSR, hc_wlan_data_bin_read, NULL, 0), }; static ssize_t hc_attr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf); /* Array of known tags to publish in sysfs */ static struct hc_attr { const u16 tag_id; ssize_t (* const tshow)(const u8 *pld, u16 pld_len, char *buf); struct kobj_attribute kattr; u16 pld_ofs; u16 pld_len; } hc_attrs[] = { { .tag_id = RB_ID_FLASH_INFO, .tshow = hc_tag_show_u32, .kattr = __ATTR(flash_info, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_MAC_ADDRESS_PACK, .tshow = hc_tag_show_mac, .kattr = __ATTR(mac_base, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_BOARD_PRODUCT_CODE, .tshow = hc_tag_show_string, .kattr = __ATTR(board_product_code, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_BIOS_VERSION, .tshow = hc_tag_show_string, .kattr = __ATTR(booter_version, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_SERIAL_NUMBER, .tshow = hc_tag_show_string, .kattr = __ATTR(board_serial, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_MEMORY_SIZE, .tshow = hc_tag_show_u32, .kattr = __ATTR(mem_size, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_MAC_ADDRESS_COUNT, .tshow = hc_tag_show_u32, .kattr = __ATTR(mac_count, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_HW_OPTIONS, .tshow = hc_tag_show_hwoptions, .kattr = __ATTR(hw_options, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_WLAN_DATA, .tshow = NULL, }, { .tag_id = RB_ID_BOARD_IDENTIFIER, .tshow = hc_tag_show_string, .kattr = __ATTR(board_identifier, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_PRODUCT_NAME, .tshow = hc_tag_show_string, .kattr = __ATTR(product_name, S_IRUSR, hc_attr_show, NULL), }, { .tag_id = RB_ID_DEFCONF, .tshow = hc_tag_show_string, .kattr = __ATTR(defconf, S_IRUSR, hc_attr_show, NULL), } }; /* * If the RB_ID_WLAN_DATA payload starts with RB_MAGIC_ERD, then past * that magic number the payload itself contains a routerboot tag node * locating the LZO-compressed calibration data at id 0x1. */ static int hc_wlan_data_unpack_erd(const u8 *inbuf, size_t inlen, void *outbuf, size_t *outlen) { u16 lzo_ofs, lzo_len; int ret; /* Find embedded tag */ ret = routerboot_tag_find(inbuf, inlen, 0x1, // always id 1 &lzo_ofs, &lzo_len); if (ret) { pr_debug(RB_HC_PR_PFX "ERD data not found\n"); goto fail; } if (lzo_len > inlen) { pr_debug(RB_HC_PR_PFX "Invalid ERD data length\n"); ret = -EINVAL; goto fail; } ret = lzo1x_decompress_safe(inbuf+lzo_ofs, lzo_len, outbuf, outlen); if (ret) pr_debug(RB_HC_PR_PFX "LZO decompression error (%d)\n", ret); fail: return ret; } static int hc_wlan_data_unpack(const size_t tofs, size_t tlen, void *outbuf, size_t *outlen) { const u8 *lbuf; u32 magic; int ret; /* Caller ensure tlen > 0. tofs is aligned */ if ((tofs + tlen) > hc_buflen) return -EIO; lbuf = hc_buf + tofs; magic = *(u32 *)lbuf; ret = -ENODATA; switch (magic) { case RB_MAGIC_ERD: /* Skip magic */ lbuf += sizeof(magic); tlen -= sizeof(magic); ret = hc_wlan_data_unpack_erd(lbuf, tlen, outbuf, outlen); break; default: /* * If the RB_ID_WLAN_DATA payload doesn't start with a * magic number, the payload itself is the raw RLE-encoded * calibration data. */ ret = routerboot_rle_decode(lbuf, tlen, outbuf, outlen); if (ret) pr_debug(RB_HC_PR_PFX "RLE decoding error (%d)\n", ret); break; } return ret; } static ssize_t hc_attr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hc_attr *hc_attr; const u8 *pld; u16 pld_len; hc_attr = container_of(attr, typeof(*hc_attr), kattr); if (!hc_attr->pld_len) return -ENOENT; pld = hc_buf + hc_attr->pld_ofs; pld_len = hc_attr->pld_len; return hc_attr->tshow(pld, pld_len, buf); } /* * This function will allocate and free memory every time it is called. This * is not the fastest way to do this, but since the data is rarely read (mainly * at boot time to load wlan caldata), this makes it possible to save memory for * the system. */ static ssize_t hc_wlan_data_bin_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct hc_wlan_attr *hc_wattr; size_t outlen; void *outbuf; int ret; hc_wattr = container_of(attr, typeof(*hc_wattr), battr); if (!hc_wattr->pld_len) return -ENOENT; outlen = RB_ART_SIZE; /* Don't bother unpacking if the source is already too large */ if (hc_wattr->pld_len > outlen) return -EFBIG; outbuf = kmalloc(outlen, GFP_KERNEL); if (!outbuf) return -ENOMEM; ret = hc_wlan_data_unpack(hc_wattr->pld_ofs, hc_wattr->pld_len, outbuf, &outlen); if (ret) { kfree(outbuf); return ret; } if (off >= outlen) { kfree(outbuf); return 0; } if (off + count > outlen) count = outlen - off; memcpy(buf, outbuf + off, count); kfree(outbuf); return count; } int __init rb_hardconfig_init(struct kobject *rb_kobj) { struct mtd_info *mtd; size_t bytes_read, buflen; const u8 *buf; int i, ret; u32 magic; // TODO allow override mtd = get_mtd_device_nm(RB_MTD_HARD_CONFIG); if (IS_ERR(mtd)) return -ENODEV; hc_buflen = mtd->size; hc_buf = kmalloc(hc_buflen, GFP_KERNEL); if (!hc_buf) return -ENOMEM; ret = mtd_read(mtd, 0, hc_buflen, &bytes_read, hc_buf); if (bytes_read != hc_buflen) { ret = -EIO; goto fail; } /* Check we have what we expect */ magic = *(const u32 *)hc_buf; if (RB_MAGIC_HARD != magic) { ret = -EINVAL; goto fail; } /* Skip magic */ buf = hc_buf + sizeof(magic); buflen = hc_buflen - sizeof(magic); /* Populate sysfs */ ret = -ENOMEM; hc_kobj = kobject_create_and_add(RB_MTD_HARD_CONFIG, rb_kobj); if (!hc_kobj) goto fail; /* Locate and publish all known tags */ for (i = 0; i < ARRAY_SIZE(hc_attrs); i++) { ret = routerboot_tag_find(buf, buflen, hc_attrs[i].tag_id, &hc_attrs[i].pld_ofs, &hc_attrs[i].pld_len); if (ret) { hc_attrs[i].pld_ofs = hc_attrs[i].pld_len = 0; continue; } /* Account for skipped magic */ hc_attrs[i].pld_ofs += sizeof(magic); /* Special case RB_ID_WLAN_DATA to prep and create the binary attribute */ if ((RB_ID_WLAN_DATA == hc_attrs[i].tag_id) && hc_attrs[i].pld_len) { hc_wlandata_battr.pld_ofs = hc_attrs[i].pld_ofs; hc_wlandata_battr.pld_len = hc_attrs[i].pld_len; ret = sysfs_create_bin_file(hc_kobj, &hc_wlandata_battr.battr); if (ret) pr_err(RB_HC_PR_PFX "Could not create %s sysfs entry (%d)\n", hc_wlandata_battr.battr.attr.name, ret); } /* All other tags are published via standard attributes */ else { ret = sysfs_create_file(hc_kobj, &hc_attrs[i].kattr.attr); if (ret) pr_err(RB_HC_PR_PFX "Could not create %s sysfs entry (%d)\n", hc_attrs[i].kattr.attr.name, ret); } } pr_info("MikroTik RouterBOARD hardware configuration sysfs driver v" RB_HARDCONFIG_VER "\n"); return 0; fail: kfree(hc_buf); return ret; } void __exit rb_hardconfig_exit(void) { kobject_put(hc_kobj); kfree(hc_buf); }