// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org> */ #include <ctype.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "lkc.h" #define DEBUG_EXPR 0 static struct expr *expr_eliminate_yn(struct expr *e); struct expr *expr_alloc_symbol(struct symbol *sym) { struct expr *e = xcalloc(1, sizeof(*e)); e->type = E_SYMBOL; e->left.sym = sym; return e; } struct expr *expr_alloc_one(enum expr_type type, struct expr *ce) { struct expr *e = xcalloc(1, sizeof(*e)); e->type = type; e->left.expr = ce; return e; } struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2) { struct expr *e = xcalloc(1, sizeof(*e)); e->type = type; e->left.expr = e1; e->right.expr = e2; return e; } struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2) { struct expr *e = xcalloc(1, sizeof(*e)); e->type = type; e->left.sym = s1; e->right.sym = s2; return e; } struct expr *expr_alloc_and(struct expr *e1, struct expr *e2) { if (!e1) return e2; return e2 ? expr_alloc_two(E_AND, e1, e2) : e1; } struct expr *expr_alloc_or(struct expr *e1, struct expr *e2) { if (!e1) return e2; return e2 ? expr_alloc_two(E_OR, e1, e2) : e1; } struct expr *expr_copy(const struct expr *org) { struct expr *e; if (!org) return NULL; e = xmalloc(sizeof(*org)); memcpy(e, org, sizeof(*org)); switch (org->type) { case E_SYMBOL: e->left = org->left; break; case E_NOT: e->left.expr = expr_copy(org->left.expr); break; case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: e->left.sym = org->left.sym; e->right.sym = org->right.sym; break; case E_AND: case E_OR: case E_LIST: e->left.expr = expr_copy(org->left.expr); e->right.expr = expr_copy(org->right.expr); break; default: fprintf(stderr, "can't copy type %d\n", e->type); free(e); e = NULL; break; } return e; } void expr_free(struct expr *e) { if (!e) return; switch (e->type) { case E_SYMBOL: break; case E_NOT: expr_free(e->left.expr); break; case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: break; case E_OR: case E_AND: expr_free(e->left.expr); expr_free(e->right.expr); break; default: fprintf(stderr, "how to free type %d?\n", e->type); break; } free(e); } static int trans_count; #define e1 (*ep1) #define e2 (*ep2) /* * expr_eliminate_eq() helper. * * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared * against all other leaves. Two equal leaves are both replaced with either 'y' * or 'n' as appropriate for 'type', to be eliminated later. */ static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2) { /* Recurse down to leaves */ if (e1->type == type) { __expr_eliminate_eq(type, &e1->left.expr, &e2); __expr_eliminate_eq(type, &e1->right.expr, &e2); return; } if (e2->type == type) { __expr_eliminate_eq(type, &e1, &e2->left.expr); __expr_eliminate_eq(type, &e1, &e2->right.expr); return; } /* e1 and e2 are leaves. Compare them. */ if (e1->type == E_SYMBOL && e2->type == E_SYMBOL && e1->left.sym == e2->left.sym && (e1->left.sym == &symbol_yes || e1->left.sym == &symbol_no)) return; if (!expr_eq(e1, e2)) return; /* e1 and e2 are equal leaves. Prepare them for elimination. */ trans_count++; expr_free(e1); expr_free(e2); switch (type) { case E_OR: e1 = expr_alloc_symbol(&symbol_no); e2 = expr_alloc_symbol(&symbol_no); break; case E_AND: e1 = expr_alloc_symbol(&symbol_yes); e2 = expr_alloc_symbol(&symbol_yes); break; default: ; } } /* * Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both. * Example reductions: * * ep1: A && B -> ep1: y * ep2: A && B && C -> ep2: C * * ep1: A || B -> ep1: n * ep2: A || B || C -> ep2: C * * ep1: A && (B && FOO) -> ep1: FOO * ep2: (BAR && B) && A -> ep2: BAR * * ep1: A && (B || C) -> ep1: y * ep2: (C || B) && A -> ep2: y * * Comparisons are done between all operands at the same "level" of && or ||. * For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the * following operands will be compared: * * - 'e1', 'e2 || e3', and 'e4 || e5', against each other * - e2 against e3 * - e4 against e5 * * Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and * '(e1 && e2) && e3' are both a single level. * * See __expr_eliminate_eq() as well. */ void expr_eliminate_eq(struct expr **ep1, struct expr **ep2) { if (!e1 || !e2) return; switch (e1->type) { case E_OR: case E_AND: __expr_eliminate_eq(e1->type, ep1, ep2); default: ; } if (e1->type != e2->type) switch (e2->type) { case E_OR: case E_AND: __expr_eliminate_eq(e2->type, ep1, ep2); default: ; } e1 = expr_eliminate_yn(e1); e2 = expr_eliminate_yn(e2); } #undef e1 #undef e2 /* * Returns true if 'e1' and 'e2' are equal, after minor simplification. Two * &&/|| expressions are considered equal if every operand in one expression * equals some operand in the other (operands do not need to appear in the same * order), recursively. */ int expr_eq(struct expr *e1, struct expr *e2) { int res, old_count; /* * A NULL expr is taken to be yes, but there's also a different way to * represent yes. expr_is_yes() checks for either representation. */ if (!e1 || !e2) return expr_is_yes(e1) && expr_is_yes(e2); if (e1->type != e2->type) return 0; switch (e1->type) { case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym; case E_SYMBOL: return e1->left.sym == e2->left.sym; case E_NOT: return expr_eq(e1->left.expr, e2->left.expr); case E_AND: case E_OR: e1 = expr_copy(e1); e2 = expr_copy(e2); old_count = trans_count; expr_eliminate_eq(&e1, &e2); res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL && e1->left.sym == e2->left.sym); expr_free(e1); expr_free(e2); trans_count = old_count; return res; case E_LIST: case E_RANGE: case E_NONE: /* panic */; } if (DEBUG_EXPR) { expr_fprint(e1, stdout); printf(" = "); expr_fprint(e2, stdout); printf(" ?\n"); } return 0; } /* * Recursively performs the following simplifications in-place (as well as the * corresponding simplifications with swapped operands): * * expr && n -> n * expr && y -> expr * expr || n -> expr * expr || y -> y * * Returns the optimized expression. */ static struct expr *expr_eliminate_yn(struct expr *e) { struct expr *tmp; if (e) switch (e->type) { case E_AND: e->left.expr = expr_eliminate_yn(e->left.expr); e->right.expr = expr_eliminate_yn(e->right.expr); if (e->left.expr->type == E_SYMBOL) { if (e->left.expr->left.sym == &symbol_no) { expr_free(e->left.expr); expr_free(e->right.expr); e->type = E_SYMBOL; e->left.sym = &symbol_no; e->right.expr = NULL; return e; } else if (e->left.expr->left.sym == &symbol_yes) { free(e->left.expr); tmp = e->right.expr; *e = *(e->right.expr); free(tmp); return e; } } if (e->right.expr->type == E_SYMBOL) { if (e->right.expr->left.sym == &symbol_no) { expr_free(e->left.expr); expr_free(e->right.expr); e->type = E_SYMBOL; e->left.sym = &symbol_no; e->right.expr = NULL; return e; } else if (e->right.expr->left.sym == &symbol_yes) { free(e->right.expr); tmp = e->left.expr; *e = *(e->left.expr); free(tmp); return e; } } break; case E_OR: e->left.expr = expr_eliminate_yn(e->left.expr); e->right.expr = expr_eliminate_yn(e->right.expr); if (e->left.expr->type == E_SYMBOL) { if (e->left.expr->left.sym == &symbol_no) { free(e->left.expr); tmp = e->right.expr; *e = *(e->right.expr); free(tmp); return e; } else if (e->left.expr->left.sym == &symbol_yes) { expr_free(e->left.expr); expr_free(e->right.expr); e->type = E_SYMBOL; e->left.sym = &symbol_yes; e->right.expr = NULL; return e; } } if (e->right.expr->type == E_SYMBOL) { if (e->right.expr->left.sym == &symbol_no) { free(e->right.expr); tmp = e->left.expr; *e = *(e->left.expr); free(tmp); return e; } else if (e->right.expr->left.sym == &symbol_yes) { expr_free(e->left.expr); expr_free(e->right.expr); e->type = E_SYMBOL; e->left.sym = &symbol_yes; e->right.expr = NULL; return e; } } break; default: ; } return e; } /* * bool FOO!=n => FOO */ struct expr *expr_trans_bool(struct expr *e) { if (!e) return NULL; switch (e->type) { case E_AND: case E_OR: case E_NOT: e->left.expr = expr_trans_bool(e->left.expr); e->right.expr = expr_trans_bool(e->right.expr); break; case E_UNEQUAL: // FOO!=n -> FOO if (e->left.sym->type == S_TRISTATE) { if (e->right.sym == &symbol_no) { e->type = E_SYMBOL; e->right.sym = NULL; } } break; default: ; } return e; } /* * e1 || e2 -> ? */ static struct expr *expr_join_or(struct expr *e1, struct expr *e2) { struct expr *tmp; struct symbol *sym1, *sym2; if (expr_eq(e1, e2)) return expr_copy(e1); if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) return NULL; if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) return NULL; if (e1->type == E_NOT) { tmp = e1->left.expr; if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) return NULL; sym1 = tmp->left.sym; } else sym1 = e1->left.sym; if (e2->type == E_NOT) { if (e2->left.expr->type != E_SYMBOL) return NULL; sym2 = e2->left.expr->left.sym; } else sym2 = e2->left.sym; if (sym1 != sym2) return NULL; if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) return NULL; if (sym1->type == S_TRISTATE) { if (e1->type == E_EQUAL && e2->type == E_EQUAL && ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) { // (a='y') || (a='m') -> (a!='n') return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no); } if (e1->type == E_EQUAL && e2->type == E_EQUAL && ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) { // (a='y') || (a='n') -> (a!='m') return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod); } if (e1->type == E_EQUAL && e2->type == E_EQUAL && ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) { // (a='m') || (a='n') -> (a!='y') return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes); } } if (sym1->type == S_BOOLEAN && sym1 == sym2) { if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) || (e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL)) return expr_alloc_symbol(&symbol_yes); } if (DEBUG_EXPR) { printf("optimize ("); expr_fprint(e1, stdout); printf(") || ("); expr_fprint(e2, stdout); printf(")?\n"); } return NULL; } static struct expr *expr_join_and(struct expr *e1, struct expr *e2) { struct expr *tmp; struct symbol *sym1, *sym2; if (expr_eq(e1, e2)) return expr_copy(e1); if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) return NULL; if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) return NULL; if (e1->type == E_NOT) { tmp = e1->left.expr; if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) return NULL; sym1 = tmp->left.sym; } else sym1 = e1->left.sym; if (e2->type == E_NOT) { if (e2->left.expr->type != E_SYMBOL) return NULL; sym2 = e2->left.expr->left.sym; } else sym2 = e2->left.sym; if (sym1 != sym2) return NULL; if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) return NULL; if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) || (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes)) // (a) && (a='y') -> (a='y') return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) || (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no)) // (a) && (a!='n') -> (a) return expr_alloc_symbol(sym1); if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) || (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod)) // (a) && (a!='m') -> (a='y') return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); if (sym1->type == S_TRISTATE) { if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) { // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' sym2 = e1->right.sym; if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2) : expr_alloc_symbol(&symbol_no); } if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) { // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' sym2 = e2->right.sym; if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2) : expr_alloc_symbol(&symbol_no); } if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) // (a!='y') && (a!='n') -> (a='m') return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod); if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) // (a!='y') && (a!='m') -> (a='n') return expr_alloc_comp(E_EQUAL, sym1, &symbol_no); if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) // (a!='m') && (a!='n') -> (a='m') return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) || (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) || (e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) || (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes)) return NULL; } if (DEBUG_EXPR) { printf("optimize ("); expr_fprint(e1, stdout); printf(") && ("); expr_fprint(e2, stdout); printf(")?\n"); } return NULL; } /* * expr_eliminate_dups() helper. * * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared * against all other leaves to look for simplifications. */ static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2) { #define e1 (*ep1) #define e2 (*ep2) struct expr *tmp; /* Recurse down to leaves */ if (e1->type == type) { expr_eliminate_dups1(type, &e1->left.expr, &e2); expr_eliminate_dups1(type, &e1->right.expr, &e2); return; } if (e2->type == type) { expr_eliminate_dups1(type, &e1, &e2->left.expr); expr_eliminate_dups1(type, &e1, &e2->right.expr); return; } /* e1 and e2 are leaves. Compare and process them. */ if (e1 == e2) return; switch (e1->type) { case E_OR: case E_AND: expr_eliminate_dups1(e1->type, &e1, &e1); default: ; } switch (type) { case E_OR: tmp = expr_join_or(e1, e2); if (tmp) { expr_free(e1); expr_free(e2); e1 = expr_alloc_symbol(&symbol_no); e2 = tmp; trans_count++; } break; case E_AND: tmp = expr_join_and(e1, e2); if (tmp) { expr_free(e1); expr_free(e2); e1 = expr_alloc_symbol(&symbol_yes); e2 = tmp; trans_count++; } break; default: ; } #undef e1 #undef e2 } /* * Rewrites 'e' in-place to remove ("join") duplicate and other redundant * operands. * * Example simplifications: * * A || B || A -> A || B * A && B && A=y -> A=y && B * * Returns the deduplicated expression. */ struct expr *expr_eliminate_dups(struct expr *e) { int oldcount; if (!e) return e; oldcount = trans_count; while (1) { trans_count = 0; switch (e->type) { case E_OR: case E_AND: expr_eliminate_dups1(e->type, &e, &e); default: ; } if (!trans_count) /* No simplifications done in this pass. We're done */ break; e = expr_eliminate_yn(e); } trans_count = oldcount; return e; } /* * Performs various simplifications involving logical operators and * comparisons. * * Allocates and returns a new expression. */ struct expr *expr_transform(struct expr *e) { struct expr *tmp; if (!e) return NULL; switch (e->type) { case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: case E_SYMBOL: case E_LIST: break; default: e->left.expr = expr_transform(e->left.expr); e->right.expr = expr_transform(e->right.expr); } switch (e->type) { case E_EQUAL: if (e->left.sym->type != S_BOOLEAN) break; if (e->right.sym == &symbol_no) { e->type = E_NOT; e->left.expr = expr_alloc_symbol(e->left.sym); e->right.sym = NULL; break; } if (e->right.sym == &symbol_mod) { printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name); e->type = E_SYMBOL; e->left.sym = &symbol_no; e->right.sym = NULL; break; } if (e->right.sym == &symbol_yes) { e->type = E_SYMBOL; e->right.sym = NULL; break; } break; case E_UNEQUAL: if (e->left.sym->type != S_BOOLEAN) break; if (e->right.sym == &symbol_no) { e->type = E_SYMBOL; e->right.sym = NULL; break; } if (e->right.sym == &symbol_mod) { printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name); e->type = E_SYMBOL; e->left.sym = &symbol_yes; e->right.sym = NULL; break; } if (e->right.sym == &symbol_yes) { e->type = E_NOT; e->left.expr = expr_alloc_symbol(e->left.sym); e->right.sym = NULL; break; } break; case E_NOT: switch (e->left.expr->type) { case E_NOT: // !!a -> a tmp = e->left.expr->left.expr; free(e->left.expr); free(e); e = tmp; e = expr_transform(e); break; case E_EQUAL: case E_UNEQUAL: // !a='x' -> a!='x' tmp = e->left.expr; free(e); e = tmp; e->type = e->type == E_EQUAL ? E_UNEQUAL : E_EQUAL; break; case E_LEQ: case E_GEQ: // !a<='x' -> a>'x' tmp = e->left.expr; free(e); e = tmp; e->type = e->type == E_LEQ ? E_GTH : E_LTH; break; case E_LTH: case E_GTH: // !a<'x' -> a>='x' tmp = e->left.expr; free(e); e = tmp; e->type = e->type == E_LTH ? E_GEQ : E_LEQ; break; case E_OR: // !(a || b) -> !a && !b tmp = e->left.expr; e->type = E_AND; e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr); tmp->type = E_NOT; tmp->right.expr = NULL; e = expr_transform(e); break; case E_AND: // !(a && b) -> !a || !b tmp = e->left.expr; e->type = E_OR; e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr); tmp->type = E_NOT; tmp->right.expr = NULL; e = expr_transform(e); break; case E_SYMBOL: if (e->left.expr->left.sym == &symbol_yes) { // !'y' -> 'n' tmp = e->left.expr; free(e); e = tmp; e->type = E_SYMBOL; e->left.sym = &symbol_no; break; } if (e->left.expr->left.sym == &symbol_mod) { // !'m' -> 'm' tmp = e->left.expr; free(e); e = tmp; e->type = E_SYMBOL; e->left.sym = &symbol_mod; break; } if (e->left.expr->left.sym == &symbol_no) { // !'n' -> 'y' tmp = e->left.expr; free(e); e = tmp; e->type = E_SYMBOL; e->left.sym = &symbol_yes; break; } break; default: ; } break; default: ; } return e; } int expr_contains_symbol(struct expr *dep, struct symbol *sym) { if (!dep) return 0; switch (dep->type) { case E_AND: case E_OR: return expr_contains_symbol(dep->left.expr, sym) || expr_contains_symbol(dep->right.expr, sym); case E_SYMBOL: return dep->left.sym == sym; case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: return dep->left.sym == sym || dep->right.sym == sym; case E_NOT: return expr_contains_symbol(dep->left.expr, sym); default: ; } return 0; } bool expr_depends_symbol(struct expr *dep, struct symbol *sym) { if (!dep) return false; switch (dep->type) { case E_AND: return expr_depends_symbol(dep->left.expr, sym) || expr_depends_symbol(dep->right.expr, sym); case E_SYMBOL: return dep->left.sym == sym; case E_EQUAL: if (dep->left.sym == sym) { if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod) return true; } break; case E_UNEQUAL: if (dep->left.sym == sym) { if (dep->right.sym == &symbol_no) return true; } break; default: ; } return false; } /* * Inserts explicit comparisons of type 'type' to symbol 'sym' into the * expression 'e'. * * Examples transformations for type == E_UNEQUAL, sym == &symbol_no: * * A -> A!=n * !A -> A=n * A && B -> !(A=n || B=n) * A || B -> !(A=n && B=n) * A && (B || C) -> !(A=n || (B=n && C=n)) * * Allocates and returns a new expression. */ struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym) { struct expr *e1, *e2; if (!e) { e = expr_alloc_symbol(sym); if (type == E_UNEQUAL) e = expr_alloc_one(E_NOT, e); return e; } switch (e->type) { case E_AND: e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym); e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym); if (sym == &symbol_yes) e = expr_alloc_two(E_AND, e1, e2); if (sym == &symbol_no) e = expr_alloc_two(E_OR, e1, e2); if (type == E_UNEQUAL) e = expr_alloc_one(E_NOT, e); return e; case E_OR: e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym); e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym); if (sym == &symbol_yes) e = expr_alloc_two(E_OR, e1, e2); if (sym == &symbol_no) e = expr_alloc_two(E_AND, e1, e2); if (type == E_UNEQUAL) e = expr_alloc_one(E_NOT, e); return e; case E_NOT: return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym); case E_UNEQUAL: case E_LTH: case E_LEQ: case E_GTH: case E_GEQ: case E_EQUAL: if (type == E_EQUAL) { if (sym == &symbol_yes) return expr_copy(e); if (sym == &symbol_mod) return expr_alloc_symbol(&symbol_no); if (sym == &symbol_no) return expr_alloc_one(E_NOT, expr_copy(e)); } else { if (sym == &symbol_yes) return expr_alloc_one(E_NOT, expr_copy(e)); if (sym == &symbol_mod) return expr_alloc_symbol(&symbol_yes); if (sym == &symbol_no) return expr_copy(e); } break; case E_SYMBOL: return expr_alloc_comp(type, e->left.sym, sym); case E_LIST: case E_RANGE: case E_NONE: /* panic */; } return NULL; } enum string_value_kind { k_string, k_signed, k_unsigned, }; union string_value { unsigned long long u; signed long long s; }; static enum string_value_kind expr_parse_string(const char *str, enum symbol_type type, union string_value *val) { char *tail; enum string_value_kind kind; errno = 0; switch (type) { case S_BOOLEAN: case S_TRISTATE: val->s = !strcmp(str, "n") ? 0 : !strcmp(str, "m") ? 1 : !strcmp(str, "y") ? 2 : -1; return k_signed; case S_INT: val->s = strtoll(str, &tail, 10); kind = k_signed; break; case S_HEX: val->u = strtoull(str, &tail, 16); kind = k_unsigned; break; default: val->s = strtoll(str, &tail, 0); kind = k_signed; break; } return !errno && !*tail && tail > str && isxdigit(tail[-1]) ? kind : k_string; } tristate expr_calc_value(struct expr *e) { tristate val1, val2; const char *str1, *str2; enum string_value_kind k1 = k_string, k2 = k_string; union string_value lval = {}, rval = {}; int res; if (!e) return yes; switch (e->type) { case E_SYMBOL: sym_calc_value(e->left.sym); return e->left.sym->curr.tri; case E_AND: val1 = expr_calc_value(e->left.expr); val2 = expr_calc_value(e->right.expr); return EXPR_AND(val1, val2); case E_OR: val1 = expr_calc_value(e->left.expr); val2 = expr_calc_value(e->right.expr); return EXPR_OR(val1, val2); case E_NOT: val1 = expr_calc_value(e->left.expr); return EXPR_NOT(val1); case E_EQUAL: case E_GEQ: case E_GTH: case E_LEQ: case E_LTH: case E_UNEQUAL: break; default: printf("expr_calc_value: %d?\n", e->type); return no; } sym_calc_value(e->left.sym); sym_calc_value(e->right.sym); str1 = sym_get_string_value(e->left.sym); str2 = sym_get_string_value(e->right.sym); if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) { k1 = expr_parse_string(str1, e->left.sym->type, &lval); k2 = expr_parse_string(str2, e->right.sym->type, &rval); } if (k1 == k_string || k2 == k_string) res = strcmp(str1, str2); else if (k1 == k_unsigned || k2 == k_unsigned) res = (lval.u > rval.u) - (lval.u < rval.u); else /* if (k1 == k_signed && k2 == k_signed) */ res = (lval.s > rval.s) - (lval.s < rval.s); switch(e->type) { case E_EQUAL: return res ? no : yes; case E_GEQ: return res >= 0 ? yes : no; case E_GTH: return res > 0 ? yes : no; case E_LEQ: return res <= 0 ? yes : no; case E_LTH: return res < 0 ? yes : no; case E_UNEQUAL: return res ? yes : no; default: printf("expr_calc_value: relation %d?\n", e->type); return no; } } static int expr_compare_type(enum expr_type t1, enum expr_type t2) { if (t1 == t2) return 0; switch (t1) { case E_LEQ: case E_LTH: case E_GEQ: case E_GTH: if (t2 == E_EQUAL || t2 == E_UNEQUAL) return 1; case E_EQUAL: case E_UNEQUAL: if (t2 == E_NOT) return 1; case E_NOT: if (t2 == E_AND) return 1; case E_AND: if (t2 == E_OR) return 1; case E_OR: if (t2 == E_LIST) return 1; case E_LIST: if (t2 == 0) return 1; default: return -1; } printf("[%dgt%d?]", t1, t2); return 0; } void expr_print(struct expr *e, void (*fn)(void *, struct symbol *, const char *), void *data, int prevtoken) { if (!e) { fn(data, NULL, "y"); return; } if (expr_compare_type(prevtoken, e->type) > 0) fn(data, NULL, "("); switch (e->type) { case E_SYMBOL: if (e->left.sym->name) fn(data, e->left.sym, e->left.sym->name); else fn(data, NULL, "<choice>"); break; case E_NOT: fn(data, NULL, "!"); expr_print(e->left.expr, fn, data, E_NOT); break; case E_EQUAL: if (e->left.sym->name) fn(data, e->left.sym, e->left.sym->name); else fn(data, NULL, "<choice>"); fn(data, NULL, "="); fn(data, e->right.sym, e->right.sym->name); break; case E_LEQ: case E_LTH: if (e->left.sym->name) fn(data, e->left.sym, e->left.sym->name); else fn(data, NULL, "<choice>"); fn(data, NULL, e->type == E_LEQ ? "<=" : "<"); fn(data, e->right.sym, e->right.sym->name); break; case E_GEQ: case E_GTH: if (e->left.sym->name) fn(data, e->left.sym, e->left.sym->name); else fn(data, NULL, "<choice>"); fn(data, NULL, e->type == E_GEQ ? ">=" : ">"); fn(data, e->right.sym, e->right.sym->name); break; case E_UNEQUAL: if (e->left.sym->name) fn(data, e->left.sym, e->left.sym->name); else fn(data, NULL, "<choice>"); fn(data, NULL, "!="); fn(data, e->right.sym, e->right.sym->name); break; case E_OR: expr_print(e->left.expr, fn, data, E_OR); fn(data, NULL, " || "); expr_print(e->right.expr, fn, data, E_OR); break; case E_AND: expr_print(e->left.expr, fn, data, E_AND); fn(data, NULL, " && "); expr_print(e->right.expr, fn, data, E_AND); break; case E_LIST: fn(data, e->right.sym, e->right.sym->name); if (e->left.expr) { fn(data, NULL, " ^ "); expr_print(e->left.expr, fn, data, E_LIST); } break; case E_RANGE: fn(data, NULL, "["); fn(data, e->left.sym, e->left.sym->name); fn(data, NULL, " "); fn(data, e->right.sym, e->right.sym->name); fn(data, NULL, "]"); break; default: { char buf[32]; sprintf(buf, "<unknown type %d>", e->type); fn(data, NULL, buf); break; } } if (expr_compare_type(prevtoken, e->type) > 0) fn(data, NULL, ")"); } static void expr_print_file_helper(void *data, struct symbol *sym, const char *str) { xfwrite(str, strlen(str), 1, data); } void expr_fprint(struct expr *e, FILE *out) { expr_print(e, expr_print_file_helper, out, E_NONE); } static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str) { struct gstr *gs = (struct gstr*)data; const char *sym_str = NULL; if (sym) sym_str = sym_get_string_value(sym); if (gs->max_width) { unsigned extra_length = strlen(str); const char *last_cr = strrchr(gs->s, '\n'); unsigned last_line_length; if (sym_str) extra_length += 4 + strlen(sym_str); if (!last_cr) last_cr = gs->s; last_line_length = strlen(gs->s) - (last_cr - gs->s); if ((last_line_length + extra_length) > gs->max_width) str_append(gs, "\\\n"); } str_append(gs, str); if (sym && sym->type != S_UNKNOWN) str_printf(gs, " [=%s]", sym_str); } void expr_gstr_print(struct expr *e, struct gstr *gs) { expr_print(e, expr_print_gstr_helper, gs, E_NONE); } /* * Transform the top level "||" tokens into newlines and prepend each * line with a minus. This makes expressions much easier to read. * Suitable for reverse dependency expressions. */ static void expr_print_revdep(struct expr *e, void (*fn)(void *, struct symbol *, const char *), void *data, tristate pr_type, const char **title) { if (e->type == E_OR) { expr_print_revdep(e->left.expr, fn, data, pr_type, title); expr_print_revdep(e->right.expr, fn, data, pr_type, title); } else if (expr_calc_value(e) == pr_type) { if (*title) { fn(data, NULL, *title); *title = NULL; } fn(data, NULL, " - "); expr_print(e, fn, data, E_NONE); fn(data, NULL, "\n"); } } void expr_gstr_print_revdep(struct expr *e, struct gstr *gs, tristate pr_type, const char *title) { expr_print_revdep(e, expr_print_gstr_helper, gs, pr_type, &title); }