/******************************************************************************/
/*                                                                            */
/* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 - 2005 Broadcom  */
/* Corporation.                                                               */
/* All rights reserved.                                                       */
/*                                                                            */
/* This program is free software; you can redistribute it and/or modify       */
/* it under the terms of the GNU General Public License as published by       */
/* the Free Software Foundation, located in the file LICENSE.                 */
/*                                                                            */
/* History:                                                                   */
/******************************************************************************/


#include "mm.h"
#include "typedefs.h"
#include "osl.h"
#include "bcmdefs.h"
#include "bcmdevs.h"
#include "sbutils.h"
#include "bcmrobo.h"
#include "proto/ethernet.h"

/******************************************************************************/
/* Local functions. */
/******************************************************************************/

LM_STATUS LM_Abort(PLM_DEVICE_BLOCK pDevice);
LM_STATUS LM_QueueRxPackets(PLM_DEVICE_BLOCK pDevice);

static LM_STATUS LM_InitBcm540xPhy(PLM_DEVICE_BLOCK pDevice);
static LM_VOID LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice);

LM_VOID LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice);
LM_VOID LM_ServiceTxInterrupt(PLM_DEVICE_BLOCK pDevice);

static LM_STATUS LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice);
static LM_UINT32 GetPhyAdFlowCntrlSettings(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_SetFlowControl(PLM_DEVICE_BLOCK pDevice,
    LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd);
#ifdef INCLUDE_TBI_SUPPORT
STATIC LM_STATUS LM_SetupFiberPhy(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_InitBcm800xPhy(PLM_DEVICE_BLOCK pDevice);
#endif
STATIC LM_STATUS LM_SetupCopperPhy(PLM_DEVICE_BLOCK pDevice);
STATIC LM_VOID LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice);
STATIC LM_STATUS LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice);
STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid(LM_UINT16 Svid, LM_UINT16 Ssid);
LM_VOID LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2);
STATIC LM_STATUS LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
           LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize);
STATIC LM_STATUS LM_DisableChip(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_ResetChip(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_DisableFW(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
    PT3_SND_BD pSendBd);
STATIC LM_VOID LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice,
    LM_RESET_TYPE Mode);
STATIC LM_VOID LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice,
    LM_RESET_TYPE Mode);
STATIC LM_VOID LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice,
    LM_RESET_TYPE Mode);
STATIC void LM_GetPhyId(LM_DEVICE_BLOCK *pDevice);

/******************************************************************************/
/* External functions. */
/******************************************************************************/

LM_STATUS LM_LoadRlsFirmware(PLM_DEVICE_BLOCK pDevice);
#ifdef INCLUDE_TCP_SEG_SUPPORT
LM_STATUS LM_LoadStkOffLdFirmware(PLM_DEVICE_BLOCK pDevice);
LM_UINT32 LM_GetStkOffLdFirmwareSize(PLM_DEVICE_BLOCK pDevice);
#endif

LM_UINT32
LM_RegRd(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
{
#ifdef PCIX_TARGET_WORKAROUND
    if (pDevice->Flags & UNDI_FIX_FLAG)
    {
        return (LM_RegRdInd(pDevice, Register));
    }
    else
#endif
    {
        return (REG_RD_OFFSET(pDevice, Register));
    }
}

/* Mainly used to flush posted write before delaying */
LM_VOID
LM_RegRdBack(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
{
    LM_UINT32 dummy;

#ifdef PCIX_TARGET_WORKAROUND
    if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG)
    {
        return;
    }
    else
#endif
    {
        if (pDevice->Flags & REG_RD_BACK_FLAG)
            return;

        dummy = REG_RD_OFFSET(pDevice, Register);
    }
}

LM_VOID
LM_RegWr(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32,
    LM_UINT32 ReadBack)
{
#ifdef PCIX_TARGET_WORKAROUND
    if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG)
    {
        LM_RegWrInd(pDevice, Register, Value32);
    }
    else
#endif
    {
        LM_UINT32 dummy;

        REG_WR_OFFSET(pDevice, Register, Value32);
        if (ReadBack && (pDevice->Flags & REG_RD_BACK_FLAG))
        {
            dummy = REG_RD_OFFSET(pDevice, Register);
        }
    }
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_UINT32
LM_RegRdInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Register) {
    LM_UINT32 Value32;

    MM_ACQUIRE_UNDI_LOCK(pDevice);
    MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
    MM_ReadConfig32(pDevice, T3_PCI_REG_DATA_REG, &Value32);
    MM_RELEASE_UNDI_LOCK(pDevice);

    return MM_SWAP_LE32(Value32);
} /* LM_RegRdInd */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_VOID
LM_RegWrInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Register,
LM_UINT32 Value32) {

    MM_ACQUIRE_UNDI_LOCK(pDevice);
    MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
    MM_WriteConfig32(pDevice, T3_PCI_REG_DATA_REG, MM_SWAP_LE32(Value32));
    MM_RELEASE_UNDI_LOCK(pDevice);
} /* LM_RegWrInd */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_UINT32
LM_MemRdInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 MemAddr) {
    LM_UINT32 Value32;

    MM_ACQUIRE_UNDI_LOCK(pDevice);
    MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
    MM_ReadConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
    MM_RELEASE_UNDI_LOCK(pDevice);

    return MM_SWAP_LE32(Value32);
} /* LM_MemRdInd */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_VOID
LM_MemWrInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 MemAddr,
LM_UINT32 Value32) {
    MM_ACQUIRE_UNDI_LOCK(pDevice);
    MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
    MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, MM_SWAP_LE32(Value32));
    MM_RELEASE_UNDI_LOCK(pDevice);
} /* LM_MemWrInd */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_QueueRxPackets(
PLM_DEVICE_BLOCK pDevice) {
    LM_STATUS Lmstatus;
    PLM_PACKET pPacket;
    PT3_RCV_BD pRcvBd = 0;
    LM_UINT32 StdBdAdded = 0;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    LM_UINT32 JumboBdAdded = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
    LM_UINT32 ConIdx, Idx;
    LM_UINT32 Diff = 0;

    Lmstatus = LM_STATUS_SUCCESS;

    if (pDevice->Flags & RX_BD_LIMIT_64_FLAG)
    {
        ConIdx = pDevice->pStatusBlkVirt->RcvStdConIdx;
        Diff = (pDevice->RxStdProdIdx - ConIdx) &
            T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
        if (Diff >= 56)
        {
            if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container))
            {
                pDevice->QueueAgain = TRUE;
            }
            return LM_STATUS_SUCCESS;
        }
    }

    pDevice->QueueAgain = FALSE;

    pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
    while(pPacket) {
        switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
            case T3_JUMBO_RCV_PROD_RING:        /* Jumbo Receive Ring. */
                /* Initialize the buffer descriptor. */
                Idx = pDevice->RxJumboProdIdx;
                pRcvBd = &pDevice->pRxJumboBdVirt[Idx];

                pPacket->u.Rx.RcvRingProdIdx = Idx;
                pDevice->RxJumboRing[Idx] = pPacket;
                /* Update the producer index. */
                pDevice->RxJumboProdIdx = (Idx + 1) & 
                    T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;

                JumboBdAdded++;
                break;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

            case T3_STD_RCV_PROD_RING:      /* Standard Receive Ring. */
                /* Initialize the buffer descriptor. */
                Idx = pDevice->RxStdProdIdx;
                pRcvBd = &pDevice->pRxStdBdVirt[Idx];

                pPacket->u.Rx.RcvRingProdIdx = Idx;
                pDevice->RxStdRing[Idx] = pPacket;
                /* Update the producer index. */
                pDevice->RxStdProdIdx = (Idx + 1) & 
                    T3_STD_RCV_RCB_ENTRY_COUNT_MASK;

                StdBdAdded++;
                break;

            case T3_UNKNOWN_RCV_PROD_RING:
            default:
                Lmstatus = LM_STATUS_FAILURE;
                break;
        } /* switch */

        /* Bail out if there is any error. */
        if(Lmstatus != LM_STATUS_SUCCESS)
        {
            break;
        }

        /* Initialize the receive buffer pointer */
        MM_MapRxDma(pDevice, pPacket, &pRcvBd->HostAddr);

        /* The opaque field may point to an offset from a fix addr. */
        pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR(pPacket) - 
            MM_UINT_PTR(pDevice->pPacketDescBase));

        if ((pDevice->Flags & RX_BD_LIMIT_64_FLAG) &&
            ((Diff + StdBdAdded) >= 63))
        {
            if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container))
            {
                pDevice->QueueAgain = TRUE;
            }
            break;
        }
        pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
    } /* while */

    MM_WMB();
    /* Update the procedure index. */
    if(StdBdAdded)
    {
        MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low,
            pDevice->RxStdProdIdx);
        if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
        {
            MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low);
        }
    }
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    if(JumboBdAdded)
    {
        MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low,
            pDevice->RxJumboProdIdx);
        if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
        {
            MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low);
        }
    }
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    return Lmstatus;
} /* LM_QueueRxPackets */




#define EEPROM_CMD_TIMEOUT  100000
#define NVRAM_CMD_TIMEOUT   100000


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS LM_NVRAM_AcquireLock( PLM_DEVICE_BLOCK pDevice )
{
    LM_UINT         i;
    LM_UINT32 value32;
    LM_STATUS  status;

    status = LM_STATUS_SUCCESS;

    /* BCM4785: Avoid all access to NVRAM & EEPROM. */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return status;

    /* Request access to the flash interface. */
    REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_SET1 );

    /*
     * The worst case wait time for Nvram arbitration
     * using serial eprom is about 45 msec on a 5704
     * with the other channel loading boot code.
     */
    for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ )
    {
        value32 = REG_RD( pDevice, Nvram.SwArb );
        if( value32 & SW_ARB_GNT1 )
        {
            break;
        }
        MM_Wait(20);
    }


    return status;
} /* LM_NVRAM_AcquireLock */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS LM_NVRAM_ReleaseLock( PLM_DEVICE_BLOCK pDevice )
{
    /* BCM4785: Avoid all access to NVRAM & EEPROM. */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return LM_STATUS_SUCCESS;

    /* Relinquish nvram interface. */
    REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 );
    REG_RD_BACK( pDevice, Nvram.SwArb );

    return LM_STATUS_SUCCESS;
} /* LM_NVRAM_ReleaseLock */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd )
{
    LM_UINT32       i;
    LM_UINT32 value32;
    LM_STATUS  status;

    status = LM_STATUS_SUCCESS;

    REG_WR( pDevice, Grc.EepromAddr, cmd );

    for( i = 0; i < EEPROM_CMD_TIMEOUT; i++ )
    {
        value32 = REG_RD( pDevice, Grc.EepromAddr );
        if( value32 & SEEPROM_ADDR_COMPLETE )
        {
            break;
        }
        MM_Wait(20);
    }

    if( i == EEPROM_CMD_TIMEOUT )
    {
        B57_ERR(("EEPROM command (0x%x) timed out!\n", cmd));
        status = LM_STATUS_FAILURE;
    }

    return status;
} /* LM_EEPROM_ExecuteCommand */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd )
{
    LM_UINT32       i;
    LM_UINT32 value32;
    LM_STATUS  status;

    status = LM_STATUS_SUCCESS;

    REG_WR( pDevice, Nvram.Cmd, cmd );
    REG_RD_BACK( pDevice, Nvram.Cmd );
    MM_Wait(10);

    /* Wait for the command to complete. */
    for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ )
    {
        value32 = REG_RD( pDevice, Nvram.Cmd );
        if( value32 & NVRAM_CMD_DONE )
        {
            break;
        }
        MM_Wait(1);
    }

    if( i == NVRAM_CMD_TIMEOUT )
    {
        B57_ERR(("NVRAM command (0x%x) timed out!\n", cmd));
        status = LM_STATUS_FAILURE;
    }

    return status;
} /* LM_NVRAM_ExecuteCommand */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
                                                 LM_UINT32 * data )
{
    LM_UINT32 value32;
    LM_UINT32 Addr;
    LM_UINT32 Dev;
    LM_STATUS status;

    Dev  = offset / pDevice->flashinfo.chipsize;
    Addr = offset % pDevice->flashinfo.chipsize;
    
    value32 = REG_RD( pDevice, Grc.EepromAddr );
    value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK  |
                 SEEPROM_ADDR_RW_MASK);
    value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) |
               SEEPROM_ADDR_START | SEEPROM_ADDR_READ;

    status = LM_EEPROM_ExecuteCommand( pDevice, value32 );
    if( status == LM_STATUS_SUCCESS )
    {
        value32 = REG_RD( pDevice, Grc.EepromData );

        /* The endianess of the eeprom and flash interface is different */
        *data = MM_SWAP_LE32( value32 );
    }

    return status;
} /* LM_EEPROM_Read_UINT32 */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
                                                LM_UINT32 * data )
{
    LM_UINT32 physaddr;
    LM_UINT32 ctrlreg;
    LM_UINT32 value32;
    LM_STATUS status;

    if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL &&
        pDevice->flashinfo.buffered == TRUE )
    {
        /*
         * One supported flash part has 9 address bits to address a
         * particular page and another 9 address bits to address a
         * particular byte within that page.
         */
        LM_UINT32 pagenmbr;

        pagenmbr = offset / pDevice->flashinfo.pagesize;
        pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS;

        physaddr = pagenmbr + (offset % pDevice->flashinfo.pagesize);
    }
    else
    {
        physaddr = offset;
    }

    REG_WR( pDevice, Nvram.Addr, physaddr );

    ctrlreg = NVRAM_CMD_DONE | NVRAM_CMD_DO_IT |
              NVRAM_CMD_LAST | NVRAM_CMD_FIRST | NVRAM_CMD_RD;

    status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
    if( status == LM_STATUS_SUCCESS )
    {
        value32 = REG_RD( pDevice, Nvram.ReadData );
    
        /*
         * Data is swapped so that the byte stream is the same
         * in big and little endian systems.  Caller will do
         * additional swapping depending on how it wants to
         * look at the data.
         */
        *data = MM_SWAP_BE32( value32 );
    }

    return status;
} /* LM_NVRAM_Read_UINT32 */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_VOID
LM_EEPROM_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
    LM_UINT32 cursize;
    LM_UINT32 value32;
    LM_STATUS  status;

    /*
     * Initialize the chipsize to the largest EEPROM size we support.
     * This will intentionally restrict our sizing operations to the
     * first EEPROM chip.
     */
    pDevice->flashinfo.chipsize = ATMEL_AT24C512_CHIP_SIZE;

    value32 = 0;

    /* If anything fails, use the smallest chip as the default chip size. */
    cursize = ATMEL_AT24C64_CHIP_SIZE;

    status = LM_NvramRead(pDevice, 0, &value32);
    if( status != LM_STATUS_SUCCESS )
    {
        goto done;
    }

    value32 = MM_SWAP_BE32(value32);
    if( value32 != 0x669955aa )
    {
        goto done;
    }

    /*
     * Size the chip by reading offsets at increasing powers of two.
     * When we encounter our validation signature, we know the addressing
     * has wrapped around, and thus have our chip size.
     */
    while( cursize < ATMEL_AT24C64_CHIP_SIZE )
    {
        status = LM_NvramRead(pDevice, cursize, &value32);
        if( status != LM_STATUS_SUCCESS )
        {
            cursize = ATMEL_AT24C64_CHIP_SIZE;
            break;
        }

        value32 = MM_SWAP_BE32(value32);
        if( value32 == 0x669955aa )
        {
            break;
        }
        cursize <<= 1;
    }

done:

    *size = cursize;
    pDevice->flashinfo.pagesize = cursize;


} /* LM_EEPROM_ReadSize */

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_Atmel_Buffered_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
    LM_UINT32 config3;
    LM_UINT32 value32;
    LM_STATUS status;

    /* Temporarily replace the read command with a "read ID" command. */
    config3 = REG_RD( pDevice, Nvram.Config3 );
    value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK);
    value32 |= NVRAM_READ_COMMAND(0x57);
    REG_WR( pDevice, Nvram.Config3, value32 );

    REG_WR( pDevice, Nvram.Addr, 0x0 );

    status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32);

    /* Restore the original read command. */
    REG_WR( pDevice, Nvram.Config3, config3 );
    if( status == LM_STATUS_SUCCESS )
    {
        switch( value32 & 0x3c )
      {
            case 0x0c:
                *size = (1 * (1<<20))/8;
                break;
            case 0x14:
                *size = (2 * (1<<20))/8;
                break;
            case 0x1c:
                *size = (4 * (1<<20))/8;
                break;
            case 0x24:
                *size = (8 * (1<<20))/8;
                break;
        }
    }

    return status;
} /* LM_FLASH_Atmel_Buffered_ReadSize */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_ST_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
    LM_STATUS status;
    LM_UINT32       i;
    LM_UINT32 ctrlreg;
    LM_UINT32 value32;
    LM_UINT32 config1;

    /* We need to get the size through pass-thru mode. */
    config1 = REG_RD( pDevice, Nvram.Config1 );
    value32 = config1 | FLASH_PASS_THRU_MODE;
    REG_WR( pDevice, Nvram.Config1, value32 );

    /* Issue the "read ID" command. */
    REG_WR( pDevice, Nvram.WriteData, 0x9f );

    ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_FIRST | NVRAM_CMD_WR;
    status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
    if( status == LM_STATUS_FAILURE )
    {
        goto done;
    }

    /* Read in the "read ID" response. */
    ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;

    /* Discard the first three bytes. */
    for( i = 0; i < 2; i++ )
    {
        status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
        if( status == LM_STATUS_FAILURE )
        {
            goto done;
        }

        value32 = REG_RD(pDevice, Nvram.ReadData);
    }

    ctrlreg |= NVRAM_CMD_LAST;

    status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
    if( status == LM_STATUS_SUCCESS )
    {
        value32 = REG_RD(pDevice, Nvram.ReadData) & 0xff;
        switch( value32 )
        {
            case 0x11:
                *size = (1 * (1<<20)) / 8;
                break;
            case 0x12:
                *size = (2 * (1<<20)) / 8;
                break;
            case 0x13:
                *size = (4 * (1<<20)) / 8;
                break;
            case 0x14:
                *size = (8 * (1<<20)) / 8;
                break;
        }
    }

done:

    /* Restore the previous flash mode. */
    REG_WR( pDevice, Nvram.Config1, config1 );

    return status;
} /* LM_FLASH_ST_ReadSize */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_Saifun_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
    LM_UINT32 config3;
    LM_UINT32 value32;
    LM_STATUS status;

    /* Temporarily replace the read command with a "read ID" command. */
    config3 = REG_RD( pDevice, Nvram.Config3 );
    value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK);
    value32 |= NVRAM_READ_COMMAND(0xab);
    REG_WR( pDevice, Nvram.Config3, value32 );

    REG_WR( pDevice, Nvram.Addr, 0x0 );

    status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32);

    /* Restore the original read command. */
    REG_WR( pDevice, Nvram.Config3, config3 );

    if( status == LM_STATUS_SUCCESS )
    {
        switch( value32 & 0xff )
        {
            case 0x05:
                *size = (512 * (1<<10)/8);
                break;
            case 0x10:
                *size = (1 * (1<<20)/8);
                break;
            case 0x11:
                *size = (2 * (1<<20)/8);
                break;
        }
    }

    return status;
} /* LM_FLASH_Saifun_ReadSize */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
    LM_UINT32 value32;
    LM_STATUS status;

    status = LM_NVRAM_AcquireLock( pDevice );
    if( status == LM_STATUS_FAILURE )
    {
        return status;
    }

    if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
    {
        if( (pDevice->Flags &  PROTECTED_NVRAM_FLAG) == 0)
        { 
            value32  = REG_RD( pDevice, Nvram.NvmAccess );
            value32 |= NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE;
            REG_WR( pDevice, Nvram.NvmAccess, value32 );
        }
    }

    switch( pDevice->flashinfo.jedecnum )
    {
        case JEDEC_ST:
            status = LM_FLASH_ST_ReadSize( pDevice, size );
            break;
        case JEDEC_ATMEL:
            if( pDevice->flashinfo.buffered == TRUE )
            {
                status = LM_FLASH_Atmel_Buffered_ReadSize( pDevice, size );
            }
            else
            {
                status = LM_STATUS_FAILURE;
            }
            break;
        case JEDEC_SAIFUN:
            status = LM_FLASH_Saifun_ReadSize( pDevice, size );
            break;
        case JEDEC_SST:
        default:
            status = LM_STATUS_FAILURE;
    }

    if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
    {
       if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
       { 
            value32  = REG_RD( pDevice, Nvram.NvmAccess );
            value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
            REG_WR( pDevice, Nvram.NvmAccess, value32 );
        }
    }

    LM_NVRAM_ReleaseLock( pDevice );

    return status;
} /* LM_FLASH_ReadSize */

STATIC LM_VOID LM_NVRAM_Detect_570X( PLM_DEVICE_BLOCK pDevice )
{
    LM_UINT32 value32;

    value32 = REG_RD(pDevice, Nvram.Config1);

    if( (value32 & FLASH_INTERFACE_ENABLE) == 0 )
    {
        pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
    }
    else
    {
        /*
         * 5705 and older products do not have bits 24 and 25 defined.
         * If we've gotten here, then we can guarantee the flash is
         * an Atmel AT45DB011DB.
         */
        pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
        pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
        pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
        pDevice->flashinfo.buffered = TRUE;
    }
} /* LM_NVRAM_Detect_570X */

STATIC LM_VOID LM_NVRAM_Detect_5750( PLM_DEVICE_BLOCK pDevice )
{
    LM_UINT32 value32;

    value32 = REG_RD(pDevice, Nvram.Config1);

    if( (value32 & FLASH_INTERFACE_ENABLE) == 0 )
    {
        pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
        return;
    }

    pDevice->flashinfo.romtype = ROM_TYPE_FLASH;

    switch( value32 & FLASH_PART_5750_TYPEMASK )
    {
        case FLASH_VENDOR_ATMEL_FLASH_BUFFERED:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
             pDevice->flashinfo.buffered = TRUE;
             break;
        case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.pagesize = ATMEL_AT25F512_PAGE_SIZE;
             pDevice->flashinfo.buffered = FALSE;
             break;
        case FLASH_VENDOR_ST:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.pagesize = ST_M45PEX0_PAGE_SIZE;
             pDevice->flashinfo.buffered = TRUE;
             break;
        case FLASH_VENDOR_SAIFUN:
             pDevice->flashinfo.jedecnum = JEDEC_SAIFUN;
             pDevice->flashinfo.pagesize = SAIFUN_SA25F0XX_PAGE_SIZE;
             pDevice->flashinfo.buffered = FALSE;
             break;
        case FLASH_VENDOR_SST_SMALL:
        case FLASH_VENDOR_SST_LARGE:
             pDevice->flashinfo.jedecnum = JEDEC_SST;
             pDevice->flashinfo.pagesize = SST_25VF0X0_PAGE_SIZE;
             pDevice->flashinfo.buffered = FALSE;
             break;
        default:
             B57_ERR(("bcm57xx : Unknown NVRAM type.\n"));
             pDevice->flashinfo.jedecnum = 0;
             pDevice->flashinfo.romtype  = 0;
             pDevice->flashinfo.buffered = FALSE;
             pDevice->flashinfo.pagesize = 0;
    }
} /* LM_NVRAM_Detect_5750 */

STATIC LM_VOID LM_NVRAM_Detect_5752( PLM_DEVICE_BLOCK pDevice )
{
    LM_BOOL   supported;
    LM_UINT32 value32;

    supported = FALSE;

    value32 = REG_RD(pDevice, Nvram.Config1);

    if(value32 & BIT_27)
        pDevice->Flags |= PROTECTED_NVRAM_FLAG;

    switch( value32 & FLASH_PART_5752_TYPEMASK )
    {
        case FLASH_PART_5752_EEPROM_ATMEL_64K:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.romtype  = ROM_TYPE_EEPROM;
             pDevice->flashinfo.buffered = FALSE;
             pDevice->flashinfo.chipsize = (64 * (1<<10)/8);
             supported = TRUE;
             break;

        case FLASH_PART_5752_EEPROM_ATMEL_376K:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.romtype  = ROM_TYPE_EEPROM;
             pDevice->flashinfo.buffered = FALSE;
             pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ATMEL_AT45DB041:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8;
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ATMEL_AT25F512:
             pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = FALSE;
             pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ST_M25P10A:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8;
             supported = TRUE;
             break;
        case FLASH_PART_5752_FLASH_ST_M25P05A:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ST_M45PE10:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8;
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ST_M45PE20:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (2 * (1<<20)) / 8;
             supported = TRUE;
             break;

        case FLASH_PART_5752_FLASH_ST_M45PE40:
             pDevice->flashinfo.jedecnum = JEDEC_ST;
             pDevice->flashinfo.romtype  = ROM_TYPE_FLASH;
             pDevice->flashinfo.buffered = TRUE;
             pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8;
             supported = TRUE;
             break;
        default:
             B57_ERR(("bcm57xx : Unknown NVRAM type.\n"));
    }

    if( pDevice->flashinfo.romtype == ROM_TYPE_FLASH )
    {
        switch( value32 & FLASH_PART_5752_PAGEMASK )
        {
            case FLASH_PART_5752_PAGE_SIZE_256B:
                pDevice->flashinfo.pagesize = 256;
                break;
            case FLASH_PART_5752_PAGE_SIZE_512B:
                pDevice->flashinfo.pagesize = 512;
                break;
            case FLASH_PART_5752_PAGE_SIZE_1K:
                pDevice->flashinfo.pagesize = 1024;
                break;
            case FLASH_PART_5752_PAGE_SIZE_2K:
                pDevice->flashinfo.pagesize = 2048;
                break;
            case FLASH_PART_5752_PAGE_SIZE_4K:
                pDevice->flashinfo.pagesize = 4096;
                break;
            case FLASH_PART_5752_PAGE_SIZE_264B:
                pDevice->flashinfo.pagesize = 264;
                break;
            default:
                B57_ERR(("bcm57xx : Unknown NVRAM page size.\n"));
                supported = FALSE;
        }
    }

   if( supported != TRUE )
    {
        B57_ERR(("Flash type unsupported!!!\n"));
        pDevice->flashinfo.jedecnum = 0;
        pDevice->flashinfo.romtype  = 0;
        pDevice->flashinfo.buffered = FALSE;
        pDevice->flashinfo.pagesize = 0;
    }


} /* LM_NVRAM_Detect_5752 */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_VOID LM_NVRAM_Init( PLM_DEVICE_BLOCK pDevice )
{
    LM_UINT32 Value32;

    /* BCM4785: Avoid all access to NVRAM & EEPROM. */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return;

    pDevice->NvramSize = 0;

    /* Intialize clock period and state machine. */
    Value32 = SEEPROM_ADDR_CLK_PERD(SEEPROM_CLOCK_PERIOD) |
              SEEPROM_ADDR_FSM_RESET;
    REG_WR(pDevice, Grc.EepromAddr, Value32);
    REG_RD_BACK(pDevice, Grc.EepromAddr);

    MM_Wait(100);

    /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
    Value32 = REG_RD(pDevice, Grc.LocalCtrl);
    REG_WR(pDevice, Grc.LocalCtrl, Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);

    switch( T3_ASIC_REV(pDevice->ChipRevId) )
    {
        case T3_ASIC_REV_5700:
        case T3_ASIC_REV_5701:
             pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
             break;
        case T3_ASIC_REV_5752:
             LM_NVRAM_Detect_5752(pDevice);
             break;
        case T3_ASIC_REV_5714_A0:
        case T3_ASIC_REV_5780:
        case T3_ASIC_REV_5714:
        case T3_ASIC_REV_5750:
             LM_NVRAM_Detect_5750(pDevice);
             break;
        default:
             LM_NVRAM_Detect_570X(pDevice);
    }

    /* Set the 5701 compatibility mode if we are using EEPROM. */
    if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
        T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 &&
        pDevice->flashinfo.romtype == ROM_TYPE_EEPROM        )
    {
        Value32 = REG_RD(pDevice, Nvram.Config1);

        if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
           if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
           { 
                REG_WR(pDevice, Nvram.NvmAccess,
                   REG_RD(pDevice, Nvram.NvmAccess) | ACCESS_EN);
           }
        }

        /* Use the new interface to read EEPROM. */
        Value32 &= ~FLASH_COMPAT_BYPASS;

        REG_WR(pDevice, Nvram.Config1, Value32);

        if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
            if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
            { 
                REG_WR(pDevice, Nvram.NvmAccess,
                       REG_RD(pDevice, Nvram.NvmAccess) & ~ACCESS_EN);
            }
        }
    }

    if( !(T3_ASIC_5752(pDevice->ChipRevId)) )
    {
        if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
        {
            /* The only EEPROM we support is an ATMEL */
            pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
            pDevice->flashinfo.pagesize = 0;
            pDevice->flashinfo.buffered = FALSE;

            LM_EEPROM_ReadSize( pDevice, &pDevice->flashinfo.chipsize );
        }
        else
        {
            LM_FLASH_ReadSize( pDevice, &pDevice->flashinfo.chipsize );
            pDevice->Flags |= FLASH_DETECTED_FLAG;
        }
    }

    pDevice->NvramSize  = pDevice->flashinfo.chipsize;

    B57_INFO(("*nvram:size=0x%x jnum=0x%x page=0x%x buff=0x%x \n",
              pDevice->NvramSize, pDevice->flashinfo.jedecnum,
              pDevice->flashinfo.pagesize, pDevice->flashinfo.buffered));

} /* LM_NVRAM_Init */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_NvramRead( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, LM_UINT32 * data )
{
    LM_UINT32 value32;
    LM_STATUS status;

    /* BCM4785: Avoid all access to NVRAM & EEPROM. */
    if (pDevice->Flags & SB_CORE_FLAG) {
	    *data = 0xffffffff;
	    return LM_STATUS_FAILURE;
    }

    if( offset >= pDevice->flashinfo.chipsize )
    {
        return LM_STATUS_FAILURE;
    }

    if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 )
    {
        status = LM_EEPROM_Read_UINT32( pDevice, offset, data );
    }
    else
    {
        status = LM_NVRAM_AcquireLock( pDevice );
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }

       if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
       {
            if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
            { 
                value32  = REG_RD( pDevice, Nvram.NvmAccess );
                value32 |= NVRAM_ACCESS_ENABLE;
                REG_WR( pDevice, Nvram.NvmAccess, value32 );
            }
        }

        status = LM_NVRAM_Read_UINT32(pDevice, offset, data);

       if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
       {
            if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
            { 
               value32  = REG_RD( pDevice, Nvram.NvmAccess );
               value32 &= ~NVRAM_ACCESS_ENABLE;
               REG_WR( pDevice, Nvram.NvmAccess, value32 );
            }
       }

        LM_NVRAM_ReleaseLock( pDevice );
    }

    return status;
} /* LM_NvramRead */



#ifdef ETHTOOL_SEEPROM

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_ReadBlock(PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
                   LM_UINT8 *data, LM_UINT32 size)
{
    LM_STATUS status;
    LM_UINT32 value32;
    LM_UINT32 bytecnt;
    LM_UINT8 * srcptr;

    status = LM_STATUS_SUCCESS;

    while( size > 0 )
    {
        /* Make sure the read is word aligned. */
        value32 = offset & 0x3;
        if( value32 )
        {
            bytecnt = sizeof(LM_UINT32) - value32;
            offset -= value32;
            srcptr  = (LM_UINT8 *)(&value32) + value32;
        }
        else
        {
            bytecnt = sizeof(LM_UINT32);
            srcptr  = (LM_UINT8 *)(&value32);
        }

        if( bytecnt > size )
        {
            bytecnt = size;
        }

        if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
            T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 )
        {
            status = LM_NVRAM_Read_UINT32( pDevice, offset, &value32 );
        }
        else
        {
            status = LM_EEPROM_Read_UINT32( pDevice, offset, &value32 );
        }

        if( status != LM_STATUS_SUCCESS )
        {
            break;
        }

        memcpy( data, srcptr, bytecnt );

        offset += sizeof(LM_UINT32);
        data   += bytecnt;
        size   -= bytecnt;
    }

    return status;
} /* LM_NVRAM_ReadBlock */

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_WriteBlock( PLM_DEVICE_BLOCK   pDevice, LM_UINT32 offset,
                      LM_UINT8         *    data, LM_UINT32   size )
{
    LM_UINT8  * dstptr;
    LM_UINT32  value32;
    LM_UINT32  bytecnt;
    LM_UINT32 subword1;
    LM_UINT32 subword2;
    LM_UINT32 Addr;
    LM_UINT32 Dev;
    LM_STATUS status;

    if( offset > pDevice->flashinfo.chipsize )
    {
        return LM_STATUS_FAILURE;
    }

    status = LM_STATUS_SUCCESS;

    if( size == 0 )
    {
        return status;
    }

    if( offset & 0x3 )
    {
        /*
         * If our initial offset does not fall on a word boundary, we
         * have to do a read / modify / write to preserve the
         * preceding bits we are not interested in.
         */
        status = LM_EEPROM_Read_UINT32(pDevice, offset & ~0x3, &subword1);
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }
    }

    if( (offset + size) & 0x3 )
    {
        /*
         * Likewise, if our ending offset does not fall on a word
         * boundary, we have to do a read / modify / write to
         * preserve the trailing bits we are not interested in.
         */
        status = LM_EEPROM_Read_UINT32( pDevice, (offset + size) & ~0x3,
                                        &subword2 );
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }
    }

    /* Enable EEPROM write. */
    if( pDevice->Flags & EEPROM_WP_FLAG )
    {
        REG_WR( pDevice, Grc.LocalCtrl,
                pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1 );
        REG_RD_BACK( pDevice, Grc.LocalCtrl );
        MM_Wait(40);

        value32 = REG_RD( pDevice, Grc.LocalCtrl );
        if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 )
        {
            return LM_STATUS_FAILURE;
        }
    }

    while( size > 0 )
    {
        value32 = offset & 0x3;
        if( value32 )
        {
            /*
             * We have to read / modify / write the data to
             * preserve the flash contents preceding the offset.
             */
            offset &= ~0x3;
    
            dstptr  = ((LM_UINT8 *)(&value32)) + value32;
            bytecnt = sizeof(LM_UINT32) - value32;
            value32 = subword1;
        }
        else if( size < sizeof(LM_UINT32) )
        {
            dstptr  = (LM_UINT8 *)(&value32);
            bytecnt = size;
            value32 = subword2;
        }
        else
        {
            dstptr  = (LM_UINT8 *)(&value32);
            bytecnt = sizeof(LM_UINT32);
        }

        if( size < bytecnt )
        {
            bytecnt = size;
        }
    
        memcpy( dstptr, (void *)data, bytecnt );

        data += bytecnt;
        size -= bytecnt;

        /*
         * Swap the data so that the byte stream will be
         * written the same in little and big endian systems.
         */
        value32 = MM_SWAP_LE32(value32);

        /* Set the write value to the eeprom */    
        REG_WR( pDevice, Grc.EepromData, value32 );  

        Dev  = offset / pDevice->flashinfo.chipsize;
        Addr = offset % pDevice->flashinfo.chipsize;

        value32 = REG_RD( pDevice, Grc.EepromAddr );
        value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK |
                     SEEPROM_ADDR_RW_MASK);
        value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) |
                   SEEPROM_ADDR_START | SEEPROM_ADDR_WRITE;

        status = LM_EEPROM_ExecuteCommand( pDevice, value32 );
        if( status != LM_STATUS_SUCCESS )
        {
            break;
        }

        offset += sizeof(LM_UINT32);
    }

    /* Write-protect EEPROM. */
    if( pDevice->Flags & EEPROM_WP_FLAG )
    {
        REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl        |
                                       GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                                       GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
        REG_RD_BACK(pDevice, Grc.LocalCtrl);
        MM_Wait(40);
    }

    return status;
} /* LM_EEPROM_WriteBlock */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_WriteBlockUnBuffered( PLM_DEVICE_BLOCK   pDevice, LM_UINT32 offset,
                               LM_UINT8         *    data, LM_UINT32   size )
{
    LM_UINT          i;
    LM_STATUS   status;
    LM_UINT32   tgtoff;
    LM_UINT32  value32;
    LM_UINT32  ctrlreg;
    LM_UINT32 pagesize;
    LM_UINT32 pagemask;
    LM_UINT32 physaddr;

    /* Cache the pagesize. */
    pagesize = pDevice->flashinfo.pagesize;

    if( pDevice->flashinfo.jedecnum == JEDEC_SAIFUN )
    {
        /* Config2 = 0x500d8 */
        /* Config3 = 0x3840253 */
        /* Write1 = 0xaf000400 */

        /* Configure the erase command to be "page erase". */
        /* Configure the status command to be "read status register". */
        value32 = REG_RD( pDevice, Nvram.Config2 );
        value32 &= ~(NVRAM_STATUS_COMMAND( NVRAM_COMMAND_MASK ) |
                     NVRAM_ERASE_COMMAND( NVRAM_COMMAND_MASK ));
        value32 |= NVRAM_STATUS_COMMAND( SAIFUN_SA25F0XX_READ_STATUS_CMD ) |
                   NVRAM_ERASE_COMMAND( SAIFUN_SA25F0XX_PAGE_ERASE_CMD );
        REG_WR( pDevice, Nvram.Config2, value32 );

        /* Configure the write command to be "page write". */
        value32 = REG_RD( pDevice, Nvram.Config3 );
        value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
        value32 |=  NVRAM_WRITE_UNBUFFERED_COMMAND( SAIFUN_SA25F0XX_PAGE_WRITE_CMD );
        REG_WR( pDevice, Nvram.Config3, value32 );

        /* Make sure the "write enable" command is correct. */
        value32  = REG_RD( pDevice, Nvram.Write1 );
        value32 &= ~NVRAM_WRITE1_WRENA_CMD( NVRAM_COMMAND_MASK );
        value32 |=  NVRAM_WRITE1_WRENA_CMD( SAIFUN_SA25F0XX_WRENA_CMD );
        REG_WR( pDevice, Nvram.Write1, value32 );

        pagemask = SAIFUN_SA25F0XX_PAGE_MASK;
    }
    else
    {
        /* Unsupported flash type */
        return LM_STATUS_FAILURE;
    }

    if( size == 0 )
    {
        status = LM_STATUS_SUCCESS;
        goto done;
    }

    while( size > 0 )
    {
        /* Align the offset to a page boundary. */
        physaddr = offset & ~pagemask;

        status = LM_NVRAM_ReadBlock( pDevice, physaddr,
                                     pDevice->flashbuffer,
                                     pagesize );
        if( status == LM_STATUS_FAILURE )
        {
            break;
        }

        /* Calculate the target index. */
        tgtoff = offset & pagemask;

        /* Copy the new data into the save buffer. */
        for( i = tgtoff; i < pagesize && size > 0; i++ )
        {
            pDevice->flashbuffer[i] = *data++;
            size--;
        }

        /* Move the offset to the next page. */
        offset = offset + (pagesize - tgtoff);

        /*
         * The LM_NVRAM_ReadBlock() function releases
         * the access enable bit.  Reacquire it.
         */
         if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
              REG_WR(pDevice, Nvram.NvmAccess, NVRAM_ACCESS_ENABLE);
             

        /*
         * Before we can erase the flash page, we need
         * to issue a special "write enable" command.
         */
        ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;

        status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
        if( status == LM_STATUS_FAILURE )
        {
            break;
        }

        /* Erase the target page */
        REG_WR(pDevice, Nvram.Addr, physaddr);

        ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR   |
                  NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;

        status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
        if( status == LM_STATUS_FAILURE )
        {
            break;
        }

        /* Issue another write enable to start the write. */
        ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;

        status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
        if( status == LM_STATUS_FAILURE )
        {
            break;
        }

        /* Copy the data into our NIC's buffers. */
        for( i = 0; i < pagesize; i+= 4 )
        {
            value32 = *((LM_UINT32 *)(&pDevice->flashbuffer[i]));
            value32 = MM_SWAP_BE32( value32 );

            /* Write the location we wish to write to. */
            REG_WR( pDevice, Nvram.Addr, physaddr );

            /* Write the data we wish to write. */
            REG_WR( pDevice, Nvram.WriteData, value32 );

            ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR;

            if( i == 0 )
            {
                ctrlreg |= NVRAM_CMD_FIRST;
            }
            else if( i == (pagesize - 4) )
            {
                ctrlreg |= NVRAM_CMD_LAST;
            }

            status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
            if( status == LM_STATUS_FAILURE )
            {
                size = 0;
                break;
            }

            physaddr += sizeof(LM_UINT32);
        }
    }

    /* Paranoia.  Turn off the "write enable" flag. */
    ctrlreg = NVRAM_CMD_WRITE_DISABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;

    status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );

done:

    return status;
} /* LM_NVRAM_WriteBlockUnBuffered */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_WriteBlockBuffered( PLM_DEVICE_BLOCK   pDevice, LM_UINT32 offset,
                             LM_UINT8         *    data, LM_UINT32   size )
{
    LM_STATUS   status;
    LM_UINT32  value32;
    LM_UINT32  bytecnt;
    LM_UINT32  ctrlreg;
    LM_UINT32  pageoff;
    LM_UINT32 physaddr;
    LM_UINT32 subword1;
    LM_UINT32 subword2;
    LM_UINT8 * dstptr;

    if(T3_ASIC_5752(pDevice->ChipRevId) && 
       (pDevice->flashinfo.jedecnum == JEDEC_ST ||
        pDevice->flashinfo.jedecnum == JEDEC_ATMEL ))
    {
	/* Do nothing as the 5752 does will take care of it */
    }
    else if( pDevice->flashinfo.jedecnum == JEDEC_ST )
    {
        /*
         * Program our chip to look at bit0 of the NVRAM's status
         * register when polling the write or erase operation status.
         */
        value32  = REG_RD(pDevice, Nvram.Config1);
        value32 &= ~FLASH_STATUS_BITS_MASK;
        REG_WR( pDevice, Nvram.Config1, value32 );

        /* Program the "read status" and "page erase" commands. */
        value32 = NVRAM_STATUS_COMMAND( ST_M45PEX0_READ_STATUS_CMD ) |
                  NVRAM_ERASE_COMMAND( ST_M45PEX0_PAGE_ERASE_CMD );
        REG_WR( pDevice, Nvram.Config2, value32 );

        /* Set the write command to be "page program". */
        value32  = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */
        value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
        value32 |=  NVRAM_WRITE_UNBUFFERED_COMMAND( ST_M45PEX0_PAGE_PRGM_CMD );
        REG_WR( pDevice, Nvram.Config3, value32 );

        /* Set the "write enable" and "write disable" commands. */
        value32 = NVRAM_WRITE1_WRENA_CMD( ST_M45PEX0_WRENA_CMD ) |
                  NVRAM_WRITE1_WRDIS_CMD( ST_M45PEX0_WRDIS_CMD );
        REG_WR( pDevice, Nvram.Write1, value32 );
    }
    else if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL )
    {
        if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
        {
            #if 0
            Config1 = 0x2008200
            Config2 = 0x9f0081
            Config3 = 0xa184a053
            Write1  = 0xaf000400
            #endif
        }
        else if( pDevice->flashinfo.buffered == TRUE )
        {
            /*
             * Program our chip to look at bit7 of the NVRAM's status
             * register when polling the write operation status.
             */
            value32  = REG_RD(pDevice, Nvram.Config1);
            value32 |= FLASH_STATUS_BITS_MASK;
            REG_WR( pDevice, Nvram.Config1, value32 );

            /* Set the write command to be "page program". */
            value32  = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */
            value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
            value32 |=  NVRAM_WRITE_UNBUFFERED_COMMAND( ATMEL_AT45DB0X1B_BUFFER_WRITE_CMD );
            REG_WR( pDevice, Nvram.Config3, value32 );
        /* Config1 = 0x2008273 */
        /* Config2 = 0x00570081 */
        /* Config3 = 0x68848353 */
        }
        else
        {
            /* NVRAM type unsupported. */
            return LM_STATUS_FAILURE;
        }
    }
    else
    {
        /* NVRAM type unsupported. */
        return LM_STATUS_FAILURE;
    }

    status = LM_STATUS_SUCCESS;

    if( offset & 0x3 )
    {
        /*
         * If our initial offset does not fall on a word boundary, we
         * have to do a read / modify / write to preserve the
         * preceding bits we are not interested in.
         */
        status = LM_NVRAM_ReadBlock( pDevice, offset & ~0x3,
                                     (LM_UINT8 *)&subword1,
                                     sizeof(subword1) );
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }
    }

    if( (offset + size) & 0x3 )
    {
        /*
         * Likewise, if our ending offset does not fall on a word
         * boundary, we have to do a read / modify / write to
         * preserve the trailing bits we are not interested in.
         */
        status = LM_NVRAM_ReadBlock( pDevice, (offset + size) & ~0x3,
                                     (LM_UINT8 *)&subword2,
                                     sizeof(subword2) );
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }
    }

    ctrlreg = NVRAM_CMD_FIRST;

    while( size > 0 )
    {
        value32 = offset & 0x3;
        if( value32 )
        {
            /*
             * We have to read / modify / write the data to
             * preserve the flash contents preceding the offset.
             */
            offset &= ~0x3;
    
            dstptr  = ((LM_UINT8 *)(&value32)) + value32;
            bytecnt = sizeof(LM_UINT32) - value32;
            value32 = subword1;
        }
        else if( size < sizeof(LM_UINT32) )
        {
            dstptr  = (LM_UINT8 *)(&value32);
            bytecnt = size;
            value32 = subword2;
        }
        else
        {
            dstptr  = (LM_UINT8 *)(&value32);
            bytecnt = sizeof(LM_UINT32);
        }

        if( size < bytecnt )
        {
            bytecnt = size;
        }
    
        memcpy( dstptr, (void *)data, bytecnt );

        data += bytecnt;
        size -= bytecnt;

        /*
         * Swap the data so that the byte stream will be
         * written the same in little and big endian systems.
         */
        value32 = MM_SWAP_BE32(value32);

        /* Set the desired write data value to the flash. */
        REG_WR(pDevice, Nvram.WriteData, value32);

        pageoff = offset % pDevice->flashinfo.pagesize;

        /* Set the target address. */
        if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL &&
            pDevice->flashinfo.romtype  == ROM_TYPE_FLASH )
        {
            /*
             * If we're dealing with the special ATMEL part, we need to
             * convert the submitted offset before it can be considered
             * a physical address.
             */
            LM_UINT32 pagenmbr;

            pagenmbr = offset / pDevice->flashinfo.pagesize;
            pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS;

            physaddr = pagenmbr + pageoff;
        }
        else
        {
            physaddr = offset;
        }

        REG_WR(pDevice, Nvram.Addr, physaddr);

        ctrlreg |= (NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR);

        if( pageoff == 0 )
        {
            /* Set CMD_FIRST when we are at the beginning of a page. */
            ctrlreg |= NVRAM_CMD_FIRST;
        }
        else if( pageoff == (pDevice->flashinfo.pagesize - 4) )
        {
            /*
             * Enable the write to the current page
             * before moving on to the next one.
             */
            ctrlreg |= NVRAM_CMD_LAST;
        }

        if( size == 0 )
        {
            ctrlreg |= NVRAM_CMD_LAST;
        }

        if( pDevice->flashinfo.jedecnum == JEDEC_ST &&
            ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750)  ||
             (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714)) &&
             (ctrlreg & NVRAM_CMD_FIRST) )
        {
            LM_UINT32 wrencmd;

            REG_WR(pDevice, Nvram.Write1, ST_M45PEX0_WRENA_CMD);

            /* We need to issue a special "write enable" command first. */
            wrencmd = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;

            status = LM_NVRAM_ExecuteCommand( pDevice, wrencmd );
            if( status == LM_STATUS_FAILURE )
            {
                return status;
            }
        }

        if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
        {
            /* We always do complete word writes to eeprom. */
            ctrlreg |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
        }

        status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
        if( status == LM_STATUS_FAILURE )
        {
            break;
        }

        offset += sizeof(LM_UINT32);
        ctrlreg = 0;
    }

    return status;
} /* LM_NVRAM_WriteBlockBuffered */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS LM_NVRAM_WriteBlock( PLM_DEVICE_BLOCK   pDevice, LM_UINT32 offset,
                               LM_UINT8         *    data, LM_UINT32   size )
{
    LM_UINT32 value32;
    LM_STATUS status;

    if( offset > pDevice->flashinfo.chipsize ||
       (offset + size) > pDevice->flashinfo.chipsize )
    {
        return LM_STATUS_FAILURE;
    }

    if( size == 0 )
    {
        return LM_STATUS_SUCCESS;
    }

    if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 )
    {
        status = LM_EEPROM_WriteBlock( pDevice, offset, data, size );
    }
    else
    {
        status = LM_NVRAM_AcquireLock( pDevice ); 
        if( status == LM_STATUS_FAILURE )
        {
            return status;
        }

        if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
            if( (pDevice->Flags &  PROTECTED_NVRAM_FLAG) == 0)
            { 
                value32 = REG_RD( pDevice, Nvram.NvmAccess );
                value32 |= (NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
                REG_WR( pDevice, Nvram.NvmAccess, value32 );
            }
        }

        /* Enable EEPROM write. */
        if( pDevice->Flags & EEPROM_WP_FLAG )
        {
            REG_WR(pDevice, Grc.LocalCtrl,
                   pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1);
            REG_RD_BACK(pDevice, Grc.LocalCtrl);
            MM_Wait(40);

            value32 = REG_RD(pDevice, Grc.LocalCtrl);
            if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 )
            {
                status = LM_STATUS_FAILURE;
                goto error;
            }
        }

        value32  = REG_RD(pDevice, Grc.Mode);
        value32 |= GRC_MODE_NVRAM_WRITE_ENABLE;
        REG_WR(pDevice, Grc.Mode, value32);

        if( pDevice->flashinfo.buffered == TRUE ||
            pDevice->flashinfo.romtype  == ROM_TYPE_EEPROM )
        {
            status = LM_NVRAM_WriteBlockBuffered(pDevice, offset, data, size);
        }
        else
        {
            status = LM_NVRAM_WriteBlockUnBuffered(pDevice, offset, data, size);
        }

        value32  = REG_RD(pDevice, Grc.Mode);
        value32 &= ~GRC_MODE_NVRAM_WRITE_ENABLE;
        REG_WR(pDevice, Grc.Mode, value32);

        if( pDevice->Flags & EEPROM_WP_FLAG )
        {
            REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl        |
                                           GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                                           GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
            REG_RD_BACK(pDevice, Grc.LocalCtrl);
            MM_Wait(40);
        }

error:

        if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)) 
        {
            if( (pDevice->Flags &  PROTECTED_NVRAM_FLAG) == 0)
            { 
                value32 = REG_RD(pDevice, Nvram.NvmAccess);
                value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
                REG_WR(pDevice, Nvram.NvmAccess, value32);
            }
        }

        LM_NVRAM_ReleaseLock( pDevice );
    }

    return status;
} /* LM_NVRAM_WriteBlock */


LM_STATUS LM_NvramWriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
                              LM_UINT32 * data, LM_UINT32 size )
{
    /* BCM4785: Avoid all access to NVRAM & EEPROM. */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return LM_STATUS_FAILURE;

    return LM_NVRAM_WriteBlock( pDevice, offset, (LM_UINT8 *)data, size * 4 );
}

#endif /* ETHTOOL_SEEPROM */


static int
bcm_ether_atoe(char *p, struct ether_addr *ea)
{
	int i = 0;

	for (;;) {
		ea->octet[i++] = (char) simple_strtoul(p, &p, 16);
		if (!*p++ || i == 6)
			break;
	}

	return (i == 6);
}

/******************************************************************************/
/* Description:                                                               */
/*    This routine initializes default parameters and reads the PCI           */
/*    configurations.                                                         */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_GetAdapterInfo(
PLM_DEVICE_BLOCK pDevice)
{
    PLM_ADAPTER_INFO pAdapterInfo;
    LM_UINT32 Value32, LedCfg, Ver;
    LM_STATUS Status;
    LM_UINT32 EeSigFound;
    LM_UINT32 EePhyTypeSerdes = 0;
    LM_UINT32 EePhyId = 0;

    /* Get Device Id and Vendor Id */
    Status = MM_ReadConfig32(pDevice, PCI_VENDOR_ID_REG, &Value32);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }
    pDevice->PciVendorId = (LM_UINT16) Value32;
    pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);

    Status = MM_ReadConfig32(pDevice, PCI_REV_ID_REG, &Value32);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }
    pDevice->PciRevId = (LM_UINT8) Value32;

    /* Get chip revision id. */
    Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
    pDevice->ChipRevId = Value32 >> 16;

    /* determine if it is PCIE system */
    if( (Value32 = MM_FindCapability(pDevice, T3_PCIE_CAPABILITY_ID)) != 0)
    {
        pDevice->Flags |= PCI_EXPRESS_FLAG;
    }

    /* Get subsystem vendor. */
    Status = MM_ReadConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }
    pDevice->SubsystemVendorId = (LM_UINT16) Value32;

    /* Get PCI subsystem id. */
    pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);

   /* Read bond id for baxter A0 since it has same rev id as hamilton A0*/

    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714_A0) {
        MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 | MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS);

        Value32 = LM_RegRdInd(pDevice, 0x6804);
        Value32 &= GRC_MISC_BD_ID_MASK;

        if((Value32 == 0)||(Value32 == 0x8000)) {
            pDevice->ChipRevId = T3_CHIP_ID_5752_A0;
        }else{
            pDevice->ChipRevId = T3_CHIP_ID_5714_A0;
        }

       Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
       MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 & ~ MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS);
    }


    /* Get the cache line size. */
    MM_ReadConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
    pDevice->CacheLineSize = (LM_UINT8) Value32;
    pDevice->SavedCacheLineReg = Value32;

    if(pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
        pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
        pDevice->ChipRevId != T3_CHIP_ID_5704_A0)
    {
        pDevice->Flags &= ~UNDI_FIX_FLAG;
    }
#ifndef PCIX_TARGET_WORKAROUND
    pDevice->Flags &= ~UNDI_FIX_FLAG;
#endif
    /* Map the memory base to system address space. */
    if (!(pDevice->Flags & UNDI_FIX_FLAG))
    {
        Status = MM_MapMemBase(pDevice);
        if(Status != LM_STATUS_SUCCESS)
        {
            return Status;
        }
        /* Initialize the memory view pointer. */
        pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
    }

    if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) ||
        (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX))
    {
        pDevice->Flags |= TX_4G_WORKAROUND_FLAG;
    }
    if ( (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
	 (pDevice->Flags == PCI_EXPRESS_FLAG))
    {
        pDevice->Flags |= REG_RD_BACK_FLAG;
    }

    if(pDevice->ChipRevId==T3_CHIP_ID_5750_A0)
	return LM_STATUS_UNKNOWN_ADAPTER;

#ifdef PCIX_TARGET_WORKAROUND
    MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
    if((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)
    {
        if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
        {
            pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
        }
    }
    if (pDevice->Flags & UNDI_FIX_FLAG)
    {
        pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
    }
#endif
    /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
    /* management register may be clobbered which may cause the */
    /* BCM5700 to go into D3 state.  While in this state, we will */
    /* need to restore the device to D0 state. */
    MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
    Value32 |= T3_PM_PME_ASSERTED;
    Value32 &= ~T3_PM_POWER_STATE_MASK;
    Value32 |= T3_PM_POWER_STATE_D0;
    MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);

    /* read the current PCI command word */
    MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);

    /* Make sure bus-mastering is enabled. */
    Value32 |= PCI_BUSMASTER_ENABLE;

#ifdef PCIX_TARGET_WORKAROUND
    /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
        are enabled */
    if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG) {
        Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE | 
                    PCI_PARITY_ERROR_ENABLE);
    }
    if (pDevice->Flags & UNDI_FIX_FLAG)
    {
        Value32 &= ~PCI_MEM_SPACE_ENABLE;
    }

#endif

    if (pDevice->Flags & ENABLE_MWI_FLAG)
    {
        Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
    }
    else {
        Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
    }

    /* save the value we are going to write into the PCI command word */	
    pDevice->PciCommandStatusWords = Value32;	

    Status = MM_WriteConfig32(pDevice, PCI_COMMAND_REG, Value32);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }

    /* Setup the mode registers. */
    pDevice->MiscHostCtrl = 
        MISC_HOST_CTRL_MASK_PCI_INT | 
        MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP | 
#ifdef BIG_ENDIAN_HOST
        MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |  
#endif /* BIG_ENDIAN_HOST */
        MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
        MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
	/* write to PCI misc host ctr first in order to enable indirect accesses */
    MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);

    /* Set power state to D0. */
    LM_SetPowerState(pDevice, LM_POWER_STATE_D0);

    /* Preserve HOST_STACK_UP bit in case ASF firmware is running */
    Value32 = REG_RD(pDevice, Grc.Mode) & GRC_MODE_HOST_STACK_UP;
#ifdef BIG_ENDIAN_HOST
    Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | 
              GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
#else
    Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
    REG_WR(pDevice, Grc.Mode, Value32);

    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
    {
        REG_WR(pDevice, Grc.LocalCtrl, GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
            GRC_MISC_LOCAL_CTRL_GPIO_OE1);
        REG_RD_BACK(pDevice, Grc.LocalCtrl);
    }
    MM_Wait(40);

    /* Enable memory arbiter*/
   if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
    {
        Value32 = REG_RD(pDevice,MemArbiter.Mode);
        REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32);
    }
    else
    {
        REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
    }


    LM_SwitchClocks(pDevice);

    REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);

    /* Check to see if PXE ran and did not shutdown properly */
    if ((REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE) ||
        !(REG_RD(pDevice, PciCfg.MiscHostCtrl) & MISC_HOST_CTRL_MASK_PCI_INT))
    {
        LM_DisableInterrupt(pDevice);
        /* assume ASF is enabled */
        pDevice->AsfFlags = ASF_ENABLED;
        if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
            pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
        }
        LM_ShutdownChip(pDevice, LM_SHUTDOWN_RESET);
        pDevice->AsfFlags = 0;
    }
#ifdef PCIX_TARGET_WORKAROUND
    MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
    if (!(pDevice->Flags & ENABLE_PCIX_FIX_FLAG) &&
        ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0))
    {
        if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
            pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
            pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
            pDevice->ChipRevId == T3_CHIP_ID_5701_B5)
        {
            MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300]), 0);
            MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]), 0);
            MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]),
                0xffffffff);
            if (MM_MEMREADL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
            {
                pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
            }
        }
    }
#endif

    LM_NVRAM_Init(pDevice);

    Status = LM_STATUS_FAILURE;

    /* BCM4785: Use the MAC address stored in the main flash. */
    if (pDevice->Flags & SB_CORE_FLAG) {
	    bcm_ether_atoe(getvar(NULL, "et0macaddr"), (struct ether_addr *)pDevice->NodeAddress);
	    Status = LM_STATUS_SUCCESS;
    } else {
	    /* Get the node address.  First try to get in from the shared memory. */
	    /* If the signature is not present, then get it from the NVRAM. */
	    Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
	    if((Value32 >> 16) == 0x484b)
	    {
		    int i;

		    pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
		    pDevice->NodeAddress[1] = (LM_UINT8) Value32;

		    Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_LOW_MAILBOX);

		    pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
		    pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
		    pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
		    pDevice->NodeAddress[5] = (LM_UINT8) Value32;

		    /* Check for null MAC address which can happen with older boot code */
		    for (i = 0; i < 6; i++)
		    {
			    if (pDevice->NodeAddress[i] != 0)
			    {
				    Status = LM_STATUS_SUCCESS;
				    break;
			    }
		    }
	    }
    }

    if (Status != LM_STATUS_SUCCESS)
    {
        int MacOffset;

        MacOffset = 0x7c;
        if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
	    (T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) )
        {
            if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID)
            {
                MacOffset = 0xcc;
            }
            /* the boot code is not running */
            if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS)
            {
                REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET);
            }
            else
            {
                LM_NVRAM_ReleaseLock(pDevice);
            }
        }

        Status = LM_NvramRead(pDevice, MacOffset, &Value32);
        if(Status == LM_STATUS_SUCCESS)
        {
            LM_UINT8 *c = (LM_UINT8 *) &Value32;

            pDevice->NodeAddress[0] = c[2];
            pDevice->NodeAddress[1] = c[3];

            Status = LM_NvramRead(pDevice, MacOffset + 4, &Value32);

            c = (LM_UINT8 *) &Value32;
            pDevice->NodeAddress[2] = c[0];
            pDevice->NodeAddress[3] = c[1];
            pDevice->NodeAddress[4] = c[2];
            pDevice->NodeAddress[5] = c[3];
        }
    }

    if(Status != LM_STATUS_SUCCESS)
    {
        Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].High);
        pDevice->NodeAddress[0] = (Value32 >> 8) & 0xff;
        pDevice->NodeAddress[1] = Value32 & 0xff;
        Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].Low);
        pDevice->NodeAddress[2] = (Value32 >> 24) & 0xff;
        pDevice->NodeAddress[3] = (Value32 >> 16) & 0xff;
        pDevice->NodeAddress[4] = (Value32 >> 8) & 0xff;
        pDevice->NodeAddress[5] = Value32 & 0xff;
        B57_ERR(("WARNING: Cannot get MAC addr from NVRAM, using %2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n",
	         pDevice->NodeAddress[0], pDevice->NodeAddress[1],
	         pDevice->NodeAddress[2], pDevice->NodeAddress[3],
	         pDevice->NodeAddress[4], pDevice->NodeAddress[5]));
    }

    memcpy(pDevice->PermanentNodeAddress, pDevice->NodeAddress, 6);

    /* Initialize the default values. */
    pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
    pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
    pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
    pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
    pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
    pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
    pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
    pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
    pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
    pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
    pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
    pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
    pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
    pDevice->DisableAutoNeg = FALSE;
    pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
    pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;

    pDevice->PhyFlags = 0;

    if (!(pDevice->Flags & PCI_EXPRESS_FLAG))
        pDevice->Flags |= DELAY_PCI_GRANT_FLAG;

    pDevice->RequestedLineSpeed = LM_LINE_SPEED_AUTO;
    pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
    pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
    pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
#ifdef INCLUDE_TBI_SUPPORT
    pDevice->TbiFlags = 0;
    pDevice->IgnoreTbiLinkChange = FALSE;
#endif
#ifdef INCLUDE_TCP_SEG_SUPPORT
    pDevice->LargeSendMaxSize = T3_TCP_SEG_MAX_OFFLOAD_SIZE;
    pDevice->LargeSendMinNumSeg = T3_TCP_SEG_MIN_NUM_SEG;
#endif

    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705))
    {
        pDevice->PhyFlags |= PHY_RESET_ON_LINKDOWN;
        pDevice->PhyFlags |= PHY_CHECK_TAPS_AFTER_RESET;
    }
    if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5703_AX) ||
        (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX))
    {
        pDevice->PhyFlags |= PHY_ADC_FIX;
    }
    if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
    {
        pDevice->PhyFlags |= PHY_5704_A0_FIX;
    }
    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        pDevice->PhyFlags |= PHY_5705_5750_FIX;
    }
    /* Ethernet@Wirespeed is supported on 5701,5702,5703,5704,5705a0,5705a1 */
    if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
        !((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
        (pDevice->ChipRevId != T3_CHIP_ID_5705_A0) &&
        (pDevice->ChipRevId != T3_CHIP_ID_5705_A1)))
    {
        pDevice->PhyFlags |= PHY_ETHERNET_WIRESPEED;
    }

    switch (T3_ASIC_REV(pDevice->ChipRevId))
    {
    case T3_ASIC_REV_5704:
        pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
        pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
        break;
    default:
        pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
        pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
        break;
    }

    pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
    pDevice->QueueRxPackets = TRUE;

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT

    if(T3_ASIC_IS_JUMBO_CAPABLE(pDevice->ChipRevId)){
        if( ! T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
            pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
	pDevice->Flags |= JUMBO_CAPABLE_FLAG;
    }

#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    pDevice->BondId = REG_RD(pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;

    if(((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) &&
        ((pDevice->BondId == 0x10000) || (pDevice->BondId == 0x18000))) ||
        ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) &&
        ((pDevice->BondId == 0x14000) || (pDevice->BondId == 0x1c000))))
    {
        return LM_STATUS_UNKNOWN_ADAPTER;
    }
    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
    {
        if ((pDevice->BondId == 0x8000) || (pDevice->BondId == 0x4000))
        {
            pDevice->PhyFlags |= PHY_NO_GIGABIT;
        }
    }
    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
    {
        if ((pDevice->BondId == GRC_MISC_BD_ID_5788) ||
            (pDevice->BondId == GRC_MISC_BD_ID_5788M))
        {
            pDevice->Flags |= BCM5788_FLAG;
        }

        if ((pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901)) ||
            (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901A2)) ||
            (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5705F)))
        {
            pDevice->PhyFlags |= PHY_NO_GIGABIT;
        }
    }

    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750)
    {
        if ( (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5751F))||
		(pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5753F)))
	{
            pDevice->PhyFlags |= PHY_NO_GIGABIT;
        }
    }

    /* CIOBE multisplit has a bug */

    /* Get Eeprom info. */
    Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR);
    if (Value32 == T3_NIC_DATA_SIG)
    {
        EeSigFound = TRUE;
        Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR);

         /* For now the 5753 cannot drive gpio2 or ASF will blow */
        if(Value32 & T3_NIC_GPIO2_NOT_AVAILABLE)
        {
       	    pDevice->Flags |= GPIO2_DONOT_OUTPUT;
        }

        if (Value32 & T3_NIC_MINI_PCI)
        {
            pDevice->Flags |= MINI_PCI_FLAG;
        }
        /* Determine PHY type. */
        switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK)
        {
            case T3_NIC_CFG_PHY_TYPE_COPPER:
                EePhyTypeSerdes = FALSE;
                break;

            case T3_NIC_CFG_PHY_TYPE_FIBER:
                EePhyTypeSerdes = TRUE;
                break;

            default:
                EePhyTypeSerdes = FALSE;
                break;
        }

        if ( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
            LedCfg = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2);
            LedCfg = LedCfg & (T3_NIC_CFG_LED_MODE_MASK |
                T3_SHASTA_EXT_LED_MODE_MASK);
        }
        else
        {
            /* Determine PHY led mode. for legacy devices */
            LedCfg = Value32 & T3_NIC_CFG_LED_MODE_MASK;
        }

        switch (LedCfg)
        {
            default:
            case T3_NIC_CFG_LED_PHY_MODE_1:
                pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
                break;

            case T3_NIC_CFG_LED_PHY_MODE_2:
                pDevice->LedCtrl = LED_CTRL_PHY_MODE_2;
                break;

            case T3_NIC_CFG_LED_MAC_MODE:
                pDevice->LedCtrl = LED_CTRL_MAC_MODE;
                break;

	    case T3_SHASTA_EXT_LED_SHARED_TRAFFIC_LINK_MODE:
                pDevice->LedCtrl = LED_CTRL_SHARED_TRAFFIC_LINK;
                if ((pDevice->ChipRevId != T3_CHIP_ID_5750_A0) &&
                    (pDevice->ChipRevId != T3_CHIP_ID_5750_A1))
                {
                    pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 |
                        LED_CTRL_PHY_MODE_2;
		}
                break;

	    case T3_SHASTA_EXT_LED_MAC_MODE:
                pDevice->LedCtrl = LED_CTRL_SHASTA_MAC_MODE;
                break;

            case T3_SHASTA_EXT_LED_WIRELESS_COMBO_MODE:
                pDevice->LedCtrl = LED_CTRL_WIRELESS_COMBO;
                if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0)
                {
                    pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 |
                        LED_CTRL_PHY_MODE_2;
                }
                break;

        }

        if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
            T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)) &&
            (pDevice->SubsystemVendorId == T3_SVID_DELL))
        {
            pDevice->LedCtrl = LED_CTRL_PHY_MODE_2;
        }

        if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
            (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) ||
            (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) )
        {
            /* Enable EEPROM write protection. */
            if(Value32 & T3_NIC_EEPROM_WP)
            {
                pDevice->Flags |= EEPROM_WP_FLAG;
            }
        }
        pDevice->AsfFlags = 0;
#ifdef BCM_ASF
        if (Value32 & T3_NIC_CFG_ENABLE_ASF)
        {
            pDevice->AsfFlags |= ASF_ENABLED;
            if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
            {
                pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
	    }
        }
#endif
        if (Value32 & T3_NIC_FIBER_WOL_CAPABLE)
        {
            pDevice->Flags |= FIBER_WOL_CAPABLE_FLAG;
        }
        if (Value32 & T3_NIC_WOL_LIMIT_10)
        {
            pDevice->Flags |= WOL_LIMIT_10MBPS_FLAG;
        }

        /* Get the PHY Id. */
        Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_PHY_ID_ADDR);
        if (Value32)
        {
            EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
                PHY_ID1_OUI_MASK) << 10;

            Value32 = Value32 & T3_NIC_PHY_ID2_MASK;

            EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
              (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
        }
        else
        {
            EePhyId = 0;
            if (!EePhyTypeSerdes && !(pDevice->AsfFlags & ASF_ENABLED))
            {
                /* reset PHY if boot code couldn't read the PHY ID */
                LM_ResetPhy(pDevice);
            }
        }

        Ver = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_VER);
        Ver >>= T3_NIC_DATA_VER_SHIFT;

	Value32 = 0;
        if((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
           (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701) &&
           (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5703) &&
           (Ver > 0) && (Ver < 0x100)){

	   Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2);

           if (Value32 & T3_NIC_CFG_CAPACITIVE_COUPLING)
           {
               pDevice->PhyFlags |= PHY_CAPACITIVE_COUPLING;
           }

           if (Value32 & T3_NIC_CFG_PRESERVE_PREEMPHASIS)
           {
               pDevice->TbiFlags |= TBI_DO_PREEMPHASIS;
           }

        }

    }
    else
    {
        EeSigFound = FALSE;
    }

    /* Set the PHY address. */
    pDevice->PhyAddr = PHY_DEVICE_ID;

    /* Disable auto polling. */
    pDevice->MiMode = 0xc0000;
    REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
    REG_RD_BACK(pDevice, MacCtrl.MiMode);
    MM_Wait(80);

    if (pDevice->AsfFlags & ASF_ENABLED)
    {
        /* Reading PHY registers will contend with ASF */
        pDevice->PhyId = 0;
    }
    else
    {
        /* Get the PHY id. */
        LM_GetPhyId(pDevice);
    }

    /* Set the EnableTbi flag to false if we have a copper PHY. */
    switch(pDevice->PhyId & PHY_ID_MASK)
    {
        case PHY_BCM5400_PHY_ID:
        case PHY_BCM5401_PHY_ID:
        case PHY_BCM5411_PHY_ID:
        case PHY_BCM5461_PHY_ID:
        case PHY_BCM5701_PHY_ID:
        case PHY_BCM5703_PHY_ID:
        case PHY_BCM5704_PHY_ID:
        case PHY_BCM5705_PHY_ID:
        case PHY_BCM5750_PHY_ID:
           break;
        case PHY_BCM5714_PHY_ID:
        case PHY_BCM5780_PHY_ID:
           if(EePhyTypeSerdes == TRUE)
           {
               pDevice->PhyFlags |= PHY_IS_FIBER;  
           }
           break;
        case PHY_BCM5752_PHY_ID:
           break;

        case PHY_BCM8002_PHY_ID:
            pDevice->TbiFlags |= ENABLE_TBI_FLAG;
            break;

        default:

            if (EeSigFound)
            {
                pDevice->PhyId = EePhyId;
                
                if (EePhyTypeSerdes && ((pDevice->PhyId == PHY_BCM5780_PHY_ID)) )
                {
                    pDevice->PhyFlags |= PHY_IS_FIBER;
                }
                else if (EePhyTypeSerdes)
                {
                    pDevice->TbiFlags |= ENABLE_TBI_FLAG;
                }
            }
            else if ((pAdapterInfo = LM_GetAdapterInfoBySsid(
                pDevice->SubsystemVendorId,
                pDevice->SubsystemId)))
            {
                pDevice->PhyId = pAdapterInfo->PhyId;
                if (pAdapterInfo->Serdes)
                {
                    pDevice->TbiFlags |= ENABLE_TBI_FLAG;
                }
            }
            else
	    {
                if (UNKNOWN_PHY_ID(pDevice->PhyId))
                {
                    LM_ResetPhy(pDevice);
                    LM_GetPhyId(pDevice);
                }
            }
            break;
    }

    if(UNKNOWN_PHY_ID(pDevice->PhyId) && 
        !(pDevice->TbiFlags & ENABLE_TBI_FLAG))
    {
      if (pDevice->Flags & ROBO_SWITCH_FLAG) {
      	B57_ERR(("PHY ID unknown, assume it is a copper PHY.\n"));
      } else {
	pDevice->TbiFlags |= ENABLE_TBI_FLAG;
	B57_ERR(("PHY ID unknown, assume it is SerDes\n"));
      }
    }

    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
    {
        if((pDevice->SavedCacheLineReg & 0xff00) < 0x4000)
        {
            pDevice->SavedCacheLineReg &= 0xffff00ff;
            pDevice->SavedCacheLineReg |= 0x4000;
        }
    }

    pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
        LM_ACCEPT_UNICAST;

    pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
        LM_TASK_OFFLOAD_TX_UDP_CHECKSUM | LM_TASK_OFFLOAD_RX_TCP_CHECKSUM |
        LM_TASK_OFFLOAD_RX_UDP_CHECKSUM;

    if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0)
    {
       	pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
            LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
    }

#ifdef INCLUDE_TCP_SEG_SUPPORT
    pDevice->TaskOffloadCap |= LM_TASK_OFFLOAD_TCP_SEGMENTATION;

    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
        (pDevice->ChipRevId == T3_CHIP_ID_5705_A0))
    {
        pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION;
    }
#endif

#ifdef BCM_ASF
    if (pDevice->AsfFlags & ASF_ENABLED)
    {
        if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
       	    pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION;
	}
    }
#endif

    /* Change driver parameters. */
    Status = MM_GetConfig(pDevice);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }

    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        pDevice->Flags &= ~NIC_SEND_BD_FLAG;
    }

    /* Save the current phy link status. */
    if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
        !(pDevice->AsfFlags & ASF_ENABLED))
    {
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);

        /* If we don't have link reset the PHY. */
        if(!(Value32 & PHY_STATUS_LINK_PASS) ||
            (pDevice->PhyFlags & PHY_RESET_ON_INIT))
        {

            LM_ResetPhy(pDevice);

            if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS)
            {
                Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
                    PHY_AN_AD_ALL_SPEEDS;
                Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
                LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);

                if(!(pDevice->PhyFlags & PHY_NO_GIGABIT))
			Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS ;
		else
			Value32 =0;

#ifdef INCLUDE_5701_AX_FIX
                if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
                    pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
                {
                    Value32 |= BCM540X_CONFIG_AS_MASTER |
                        BCM540X_ENABLE_CONFIG_AS_MASTER;
                }
#endif
                LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);

                LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
                    PHY_CTRL_RESTART_AUTO_NEG);
            }

        }
        LM_SetEthWireSpeed(pDevice);

        LM_ReadPhy(pDevice, PHY_AN_AD_REG, &pDevice->advertising);
        LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG,
            &pDevice->advertising1000);

    }
    /* Currently 5401 phy only */
    LM_PhyTapPowerMgmt(pDevice);

#ifdef INCLUDE_TBI_SUPPORT
    if(pDevice->TbiFlags & ENABLE_TBI_FLAG)
    {
        if (!(pDevice->Flags & FIBER_WOL_CAPABLE_FLAG))
        {
            pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
        }
        pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
        if (pDevice->TbiFlags & TBI_PURE_POLLING_FLAG)
        {
            pDevice->IgnoreTbiLinkChange = TRUE;
        }
    }
    else
    {
        pDevice->TbiFlags = 0;
    }

#endif /* INCLUDE_TBI_SUPPORT */

    /* UseTaggedStatus is only valid for 5701 and later. */
    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
        ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
        ((pDevice->BondId == GRC_MISC_BD_ID_5788) ||
        (pDevice->BondId == GRC_MISC_BD_ID_5788M))))
    {
        pDevice->Flags &= ~USE_TAGGED_STATUS_FLAG;
        pDevice->CoalesceMode = 0;
    }
    else
    {
        pDevice->CoalesceMode = HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
            HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
    }

    /* Set the status block size. */
    if(T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
        T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_BX)
    {
        pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
    }

    /* Check the DURING_INT coalescing ticks parameters. */
    if (pDevice->Flags & USE_TAGGED_STATUS_FLAG)
    {
        if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->RxCoalescingTicksDuringInt =
                DEFAULT_RX_COALESCING_TICKS_DURING_INT;
        }

        if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->TxCoalescingTicksDuringInt =
                DEFAULT_TX_COALESCING_TICKS_DURING_INT;
        }

        if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->RxMaxCoalescedFramesDuringInt =
                DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
        }

        if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->TxMaxCoalescedFramesDuringInt =
                DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
        }
    }
    else
    {
        if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->RxCoalescingTicksDuringInt = 0;
        }

        if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->TxCoalescingTicksDuringInt = 0;
        }

        if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->RxMaxCoalescedFramesDuringInt = 0;
        }

        if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
        {
            pDevice->TxMaxCoalescedFramesDuringInt = 0;
        }
    }

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    if(pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */))
    {
        pDevice->RxJumboDescCnt = 0;
        if(pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC)
        {
            pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
        }
    }
    else if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
    {
        pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
        pDevice->RxJumboDescCnt = 0;
    }
    else
    {
        pDevice->RxJumboBufferSize = (pDevice->RxMtu + 8 /* CRC + VLAN */ +
            COMMON_CACHE_LINE_SIZE-1) & ~COMMON_CACHE_LINE_MASK;

        if(pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE)
        {
            pDevice->RxJumboBufferSize = DEFAULT_JUMBO_RCV_BUFFER_SIZE;
            pDevice->RxMtu = pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */;
        }
        pDevice->TxMtu = pDevice->RxMtu;
    }
#else
    pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    pDevice->RxPacketDescCnt = 
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
        pDevice->RxJumboDescCnt +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
        pDevice->RxStdDescCnt;

    if(pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC)
    {
        pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
    }

    if(pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE)
    {
        pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
    }

    /* Configure the proper ways to get link change interrupt. */
    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO)
    {
        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
        {
            pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
        }
        else
        {
            pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
        }
    }
    else if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        /* Auto-polling does not work on 5700_AX and 5700_BX. */
        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
        {
            pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
        }
    }

    /* Determine the method to get link change status. */
    if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO)
    {
        /* The link status bit in the status block does not work on 5700_AX */
        /* and 5700_BX chips. */
        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
        {
            pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
        }
        else
        {
            pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
        }
    }

    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
    {
        pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
    }

    if (!EeSigFound)
    {
        pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
    }

    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
    {
        /* bug? 5701 in LINK10 mode does not seem to work when */
        /* PhyIntMode is LINK_READY. */
        if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
#ifdef INCLUDE_TBI_SUPPORT
            !(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
#endif
            pDevice->LedCtrl == LED_CTRL_PHY_MODE_2)
        {
            pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
            pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
        }
        if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
        {
            pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
        }
    }

#ifdef BCM_WOL
    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
        pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
        pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
        pDevice->ChipRevId == T3_CHIP_ID_5701_B2)
    {
        pDevice->WolSpeed = WOL_SPEED_10MB;
    }
    else
    {
        if (pDevice->Flags & WOL_LIMIT_10MBPS_FLAG)
        {
            pDevice->WolSpeed = WOL_SPEED_10MB;
        }
	else
        {
            pDevice->WolSpeed = WOL_SPEED_100MB;
        }
    }
#endif

    pDevice->PciState = REG_RD(pDevice, PciCfg.PciState);

    pDevice->DmaReadFifoSize = 0;
    if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
        (pDevice->ChipRevId != T3_CHIP_ID_5705_A0)) ||
        T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId) )
    {
#ifdef INCLUDE_TCP_SEG_SUPPORT
        if ((pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION) &&
            ((pDevice->ChipRevId == T3_CHIP_ID_5705_A1) ||
            (pDevice->ChipRevId == T3_CHIP_ID_5705_A2)))
        {
            pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_SIZE_128;
        }
        else
#endif
        {
            if (!(pDevice->PciState & T3_PCI_STATE_HIGH_BUS_SPEED) &&
                !(pDevice->Flags & BCM5788_FLAG) &&
                !(pDevice->Flags & PCI_EXPRESS_FLAG))
            {
                pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST;
                if (pDevice->ChipRevId == T3_CHIP_ID_5705_A1)
                {
                    pDevice->Flags |= RX_BD_LIMIT_64_FLAG;
                }
                pDevice->Flags |= DMA_WR_MODE_RX_ACCELERATE_FLAG;
            }
	    else if (pDevice->Flags & PCI_EXPRESS_FLAG)
            {
                pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST;
            }
        }
    }

    pDevice->Flags &= ~T3_HAS_TWO_CPUS;
    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 ||
        T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
    {
        pDevice->Flags |= T3_HAS_TWO_CPUS;
    }

    return LM_STATUS_SUCCESS;
} /* LM_GetAdapterInfo */

STATIC PLM_ADAPTER_INFO
LM_GetAdapterInfoBySsid(
    LM_UINT16 Svid,
    LM_UINT16 Ssid)
{
    static LM_ADAPTER_INFO AdapterArr[] =
    {
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6, PHY_BCM5401_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5, PHY_BCM5701_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6, PHY_BCM8002_PHY_ID, 1},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1 },
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1, PHY_BCM5701_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8, PHY_BCM5701_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10, PHY_BCM5701_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12, PHY_BCM5701_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1, PHY_BCM5703_PHY_ID, 0},
        { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2, PHY_BCM5703_PHY_ID, 0},

        { T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0 },
        { T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0 },
        { T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1 },
        { T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0 },
        { T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0 },

        { T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0 },
        { T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0 },
        { T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0 },
        { T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0 },

        { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0 },
        { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID, 0 },
        { T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1 },
        { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0 },
        { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID, 0 },

        { 0x1014, 0x0281, 0, 1 },
    };
    LM_UINT32 j;

    for(j = 0; j < sizeof(AdapterArr)/sizeof(LM_ADAPTER_INFO); j++)
    {
        if(AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid)
        {
            return &AdapterArr[j];
        }
    }

    return NULL;
}



/******************************************************************************/
/* Description:                                                               */
/*    This routine sets up receive/transmit buffer descriptions queues.       */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_InitializeAdapter(
PLM_DEVICE_BLOCK pDevice)
{
    LM_PHYSICAL_ADDRESS MemPhy;
    PLM_UINT8 pMemVirt;
    PLM_PACKET pPacket;
    LM_STATUS Status;
    LM_UINT32 Size;
    LM_UINT32 Value32, j;
    LM_UINT32 DmaWrCmd, DmaRdCmd, DmaWrBdry, DmaRdBdry;

    MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
    j = 0;
    while (((Value32 & 0x3ff) != (pDevice->PciCommandStatusWords & 0x3ff)) &&
        (j < 1000))
    {
        /* On PCIE devices, there are some rare cases where the device */
        /* is in the process of link-training at this point */
        MM_Wait(200);
        MM_WriteConfig32(pDevice, PCI_COMMAND_REG, pDevice->PciCommandStatusWords);
        MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
        j++;
    }
    MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
    /* Set power state to D0. */
    LM_SetPowerState(pDevice, LM_POWER_STATE_D0);

    /* Intialize the queues. */
    QQ_InitQueue(&pDevice->RxPacketReceivedQ.Container, 
        MAX_RX_PACKET_DESC_COUNT);
    QQ_InitQueue(&pDevice->RxPacketFreeQ.Container,
        MAX_RX_PACKET_DESC_COUNT);

    QQ_InitQueue(&pDevice->TxPacketFreeQ.Container,MAX_TX_PACKET_DESC_COUNT);
    QQ_InitQueue(&pDevice->TxPacketXmittedQ.Container,MAX_TX_PACKET_DESC_COUNT);

    if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
    {
        pDevice->RcvRetRcbEntryCount = 512;
        pDevice->RcvRetRcbEntryCountMask = 511;
    }
    else
    {
        pDevice->RcvRetRcbEntryCount = T3_RCV_RETURN_RCB_ENTRY_COUNT;
        pDevice->RcvRetRcbEntryCountMask = T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
    }

    /* Allocate shared memory for: status block, the buffers for receive */
    /* rings -- standard, mini, jumbo, and return rings. */
    Size = T3_STATUS_BLOCK_SIZE + sizeof(T3_STATS_BLOCK) +
        T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
        T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
        (pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD));

    /* Memory for host based Send BD. */
    if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
    {
        Size += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
    }

    /* Allocate the memory block. */
    Status = MM_AllocateSharedMemory(pDevice, Size, (PLM_VOID) &pMemVirt, &MemPhy, FALSE);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }

    DmaWrCmd = DMA_CTRL_WRITE_CMD;
    DmaRdCmd = DMA_CTRL_READ_CMD;
    DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_DISABLE;
    DmaRdBdry = DMA_CTRL_READ_BOUNDARY_DISABLE;
#ifdef BCM_DISCONNECT_AT_CACHELINE
    /* This code is intended for PPC64 and other similar architectures */
    /* Only the following chips support this */
    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
        (pDevice->Flags & PCI_EXPRESS_FLAG))
    {
        switch(pDevice->CacheLineSize * 4)
        {
            case 16:
            case 32:
            case 64:
            case 128:
                if (!(pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) &&
                    !(pDevice->Flags & PCI_EXPRESS_FLAG))
                {
                    /* PCI-X */
                    /* use 384 which is a multiple of 16,32,64,128 */
                    DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_384_PCIX;
                    break;
                }
                else if (pDevice->Flags & PCI_EXPRESS_FLAG)
                {
                    /* PCI Express */
                    /* use 128 which is a multiple of 16,32,64,128 */
                    DmaWrCmd = DMA_CTRL_WRITE_BOUNDARY_128_PCIE;
                    break;
                }
                /* fall through */
            case 256:
                /* use 256 which is a multiple of 16,32,64,128,256 */
                if ((pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) &&
                    !(pDevice->Flags & PCI_EXPRESS_FLAG))
                {
                    /* PCI */
                    DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256;
                }
                else if (!(pDevice->Flags & PCI_EXPRESS_FLAG))
                {
                    /* PCI-X */
                    DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256_PCIX;
                }
                break;
        }
    }
#endif
    pDevice->DmaReadWriteCtrl = DmaWrCmd | DmaRdCmd | DmaWrBdry | DmaRdBdry;
    /* Program DMA Read/Write */
    if (pDevice->Flags & PCI_EXPRESS_FLAG)
    {
	
	/* !=0 is 256 max or greater payload size so set water mark accordingly*/
        Value32 = (REG_RD(pDevice, PciCfg.DeviceCtrl) & MAX_PAYLOAD_SIZE_MASK);
	if (Value32)
	{
		pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_PCIE_H20MARK_256;
	}else
	{
		pDevice->DmaReadWriteCtrl |=  DMA_CTRL_WRITE_PCIE_H20MARK_128;
	}

    }
    else if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS)
    {
        if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
        {
            pDevice->DmaReadWriteCtrl |= 0x003f0000;
        }
        else
        {
            pDevice->DmaReadWriteCtrl |= 0x003f000f;    
        }
    }
    else /* pci-x */
    {
        if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
        {
		pDevice->DmaReadWriteCtrl |= 0x009f0000;
        }
       
	if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
        {
		pDevice->DmaReadWriteCtrl |= 0x009C0000;
        }
       
        if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
	    T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 )
        {
            Value32 = REG_RD(pDevice, PciCfg.ClockCtrl) & 0x1f;
            if ((Value32 == 0x6) || (Value32 == 0x7))
            {
                pDevice->Flags |= ONE_DMA_AT_ONCE_FLAG;
            }
        }
        else if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
        {
            pDevice->DmaReadWriteCtrl &= ~DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
            if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780)
                pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | DMA_CTRL_WRITE_ONE_DMA_AT_ONCE);
            else 
                pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | BIT_15);
            /* bit 15 is the current  CQ 13140 Fix */
        }
        else
        {
            pDevice->DmaReadWriteCtrl |= 0x001b000f;    
        }
    }
    if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704))
    {
        pDevice->DmaReadWriteCtrl &= 0xfffffff0;
    }

    if (pDevice->Flags & ONE_DMA_AT_ONCE_FLAG)
    {
        pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
    }

    REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);

    LM_SwitchClocks(pDevice);

    if (LM_DmaTest(pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS)
    {
        return LM_STATUS_FAILURE;
    }

    /* Status block. */
    pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
    pDevice->StatusBlkPhy = MemPhy;
    pMemVirt += T3_STATUS_BLOCK_SIZE;
    LM_INC_PHYSICAL_ADDRESS(&MemPhy, T3_STATUS_BLOCK_SIZE);

    /* Statistics block. */
    pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
    pDevice->StatsBlkPhy = MemPhy;
    pMemVirt += sizeof(T3_STATS_BLOCK);
    LM_INC_PHYSICAL_ADDRESS(&MemPhy, sizeof(T3_STATS_BLOCK));

    /* Receive standard BD buffer. */
    pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
    pDevice->RxStdBdPhy = MemPhy;

    pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
    LM_INC_PHYSICAL_ADDRESS(&MemPhy, 
        T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    /* Receive jumbo BD buffer. */
    pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
    pDevice->RxJumboBdPhy = MemPhy;

    pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
    LM_INC_PHYSICAL_ADDRESS(&MemPhy, 
        T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    /* Receive return BD buffer. */
    pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
    pDevice->RcvRetBdPhy = MemPhy;

    pMemVirt += pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD);
    LM_INC_PHYSICAL_ADDRESS(&MemPhy, 
        pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD));

    /* Set up Send BD. */
    if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
    {
        pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
        pDevice->SendBdPhy = MemPhy;

        pMemVirt += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
        LM_INC_PHYSICAL_ADDRESS(&MemPhy, 
            sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT);
    }
#ifdef BCM_NIC_SEND_BD
    else
    {
        pDevice->pSendBdVirt = (PT3_SND_BD)
            pDevice->pMemView->uIntMem.First32k.BufferDesc;
        pDevice->SendBdPhy.High = 0;
        pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
    }
#endif

    /* Allocate memory for packet descriptors. */
    Size = (pDevice->RxPacketDescCnt + 
        pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
    Status = MM_AllocateMemory(pDevice, Size, (PLM_VOID *) &pPacket);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }
    pDevice->pPacketDescBase = (PLM_VOID) pPacket;

    /* Create transmit packet descriptors from the memory block and add them */
    /* to the TxPacketFreeQ for each send ring. */
    for(j = 0; j < pDevice->TxPacketDescCnt; j++)
    {
        /* Ring index. */
        pPacket->Flags = 0;

        /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
        QQ_PushTail(&pDevice->TxPacketFreeQ.Container, pPacket);

        /* Get the pointer to the next descriptor.  MM_PACKET_DESC_SIZE */
        /* is the total size of the packet descriptor including the */
        /* os-specific extensions in the UM_PACKET structure. */
        pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
    } /* for(j.. */

    /* Create receive packet descriptors from the memory block and add them */
    /* to the RxPacketFreeQ.  Create the Standard packet descriptors. */
    for(j = 0; j < pDevice->RxStdDescCnt; j++)
    {
        /* Receive producer ring. */
        pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;

        /* Receive buffer size. */
        if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) &&
            (pDevice->RxJumboBufferSize) )
        {
            pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
        }else{
            pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
        }

        /* Add the descriptor to RxPacketFreeQ. */
        QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);

        /* Get the pointer to the next descriptor.  MM_PACKET_DESC_SIZE */
        /* is the total size of the packet descriptor including the */
        /* os-specific extensions in the UM_PACKET structure. */
        pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
    } /* for */


#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    /* Create the Jumbo packet descriptors. */
    for(j = 0; j < pDevice->RxJumboDescCnt; j++)
    {
        /* Receive producer ring. */
        pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;

        /* Receive buffer size. */
        pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;

        /* Add the descriptor to RxPacketFreeQ. */
        QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);

        /* Get the pointer to the next descriptor.  MM_PACKET_DESC_SIZE */
        /* is the total size of the packet descriptor including the */
        /* os-specific extensions in the UM_PACKET structure. */
        pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
    } /* for */
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    /* Initialize the rest of the packet descriptors. */
    Status = MM_InitializeUmPackets(pDevice);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    } /* if */

    /* Default receive mask. */
    pDevice->ReceiveMask &= LM_KEEP_VLAN_TAG;
    pDevice->ReceiveMask |= LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
        LM_ACCEPT_UNICAST;

    /* Make sure we are in the first 32k memory window or NicSendBd. */
    REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);

    /* Initialize the hardware. */
    Status = LM_ResetAdapter(pDevice);
    if(Status != LM_STATUS_SUCCESS)
    {
        return Status;
    }

    /* We are done with initialization. */
    pDevice->InitDone = TRUE;

    return LM_STATUS_SUCCESS;
} /* LM_InitializeAdapter */


LM_STATUS
LM_DisableChip(PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 data;

    pDevice->RxMode &= ~RX_MODE_ENABLE;
    REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
    if(!(REG_RD(pDevice, MacCtrl.RxMode) & RX_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, RcvBdIn.Mode);
    data &= ~RCV_BD_IN_MODE_ENABLE;
    REG_WR(pDevice, RcvBdIn.Mode,data);
    if(!(REG_RD(pDevice, RcvBdIn.Mode) & RCV_BD_IN_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, RcvListPlmt.Mode);
    data &= ~RCV_LIST_PLMT_MODE_ENABLE;
    REG_WR(pDevice, RcvListPlmt.Mode,data);
    if(!(REG_RD(pDevice, RcvListPlmt.Mode) & RCV_LIST_PLMT_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        data = REG_RD(pDevice, RcvListSel.Mode);
        data &= ~RCV_LIST_SEL_MODE_ENABLE;
        REG_WR(pDevice, RcvListSel.Mode,data);
        if(!(REG_RD(pDevice, RcvListSel.Mode) & RCV_LIST_SEL_MODE_ENABLE))
        {
            MM_Wait(20);
        }
    }
    data = REG_RD(pDevice, RcvDataBdIn.Mode);
    data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
    REG_WR(pDevice, RcvDataBdIn.Mode,data);
    if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_BD_IN_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, RcvDataComp.Mode);
    data &= ~RCV_DATA_COMP_MODE_ENABLE;
    REG_WR(pDevice, RcvDataComp.Mode,data);
    if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_COMP_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, RcvBdComp.Mode);
    data &= ~RCV_BD_COMP_MODE_ENABLE;
    REG_WR(pDevice, RcvBdComp.Mode,data);
    if(!(REG_RD(pDevice, RcvBdComp.Mode) & RCV_BD_COMP_MODE_ENABLE))
    {
        MM_Wait(20);
    }     
    data = REG_RD(pDevice, SndBdSel.Mode);
    data &= ~SND_BD_SEL_MODE_ENABLE;
    REG_WR(pDevice, SndBdSel.Mode, data);
    if(!(REG_RD(pDevice, SndBdSel.Mode) & SND_BD_SEL_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, SndBdIn.Mode);
    data &= ~SND_BD_IN_MODE_ENABLE;
    REG_WR(pDevice, SndBdIn.Mode, data);
    if(!(REG_RD(pDevice, SndBdIn.Mode) & SND_BD_IN_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, SndDataIn.Mode);
    data &= ~T3_SND_DATA_IN_MODE_ENABLE;
    REG_WR(pDevice, SndDataIn.Mode,data);
    if(!(REG_RD(pDevice, SndDataIn.Mode) & T3_SND_DATA_IN_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, DmaRead.Mode);
    data &= ~DMA_READ_MODE_ENABLE;
    REG_WR(pDevice, DmaRead.Mode, data);
    if(!(REG_RD(pDevice, DmaRead.Mode) & DMA_READ_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, SndDataComp.Mode);
    data &= ~SND_DATA_COMP_MODE_ENABLE;
    REG_WR(pDevice, SndDataComp.Mode, data);
    if(!(REG_RD(pDevice, SndDataComp.Mode) & SND_DATA_COMP_MODE_ENABLE))
    {
        MM_Wait(20);
    }

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        data = REG_RD(pDevice,DmaComp.Mode);
        data &= ~DMA_COMP_MODE_ENABLE;
        REG_WR(pDevice, DmaComp.Mode, data);
        if(!(REG_RD(pDevice, DmaComp.Mode) & DMA_COMP_MODE_ENABLE))
        {
            MM_Wait(20);
        }
    }
    data = REG_RD(pDevice, SndBdComp.Mode);
    data &= ~SND_BD_COMP_MODE_ENABLE;
    REG_WR(pDevice, SndBdComp.Mode, data);
    if(!(REG_RD(pDevice, SndBdComp.Mode) & SND_BD_COMP_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    /* Clear TDE bit */
    pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    pDevice->TxMode &= ~TX_MODE_ENABLE;
    REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
    if(!(REG_RD(pDevice, MacCtrl.TxMode) & TX_MODE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, HostCoalesce.Mode);
    data &= ~HOST_COALESCE_ENABLE;
    REG_WR(pDevice, HostCoalesce.Mode, data);
    if(!(REG_RD(pDevice, SndBdIn.Mode) & HOST_COALESCE_ENABLE))
    {
        MM_Wait(20);
    }
    data = REG_RD(pDevice, DmaWrite.Mode);
    data &= ~DMA_WRITE_MODE_ENABLE;
    REG_WR(pDevice, DmaWrite.Mode,data);
    if(!(REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE))
    {
        MM_Wait(20);
    }

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        data = REG_RD(pDevice, MbufClusterFree.Mode);
        data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
        REG_WR(pDevice, MbufClusterFree.Mode,data);
        if(!(REG_RD(pDevice, MbufClusterFree.Mode) & MBUF_CLUSTER_FREE_MODE_ENABLE))
        {
            MM_Wait(20);
        }
    }
    /* Reset all FTQs */
    REG_WR(pDevice, Ftq.Reset, 0xffffffff);
    REG_WR(pDevice, Ftq.Reset, 0x0);

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        data = REG_RD(pDevice, BufMgr.Mode);
        data &= ~BUFMGR_MODE_ENABLE;
        REG_WR(pDevice, BufMgr.Mode,data);
        if(!(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE))
        {
            MM_Wait(20);
        }
        data = REG_RD(pDevice, MemArbiter.Mode);
        data &= ~T3_MEM_ARBITER_MODE_ENABLE;
        REG_WR(pDevice, MemArbiter.Mode, data);
        if(!(REG_RD(pDevice, MemArbiter.Mode) & T3_MEM_ARBITER_MODE_ENABLE)) 
        {
            MM_Wait(20);
        }       
    }
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_DisableFW(PLM_DEVICE_BLOCK pDevice)
{
#ifdef BCM_ASF
    int j;
    LM_UINT32 Value32;

    if (pDevice->AsfFlags & ASF_ENABLED)
    {
        MEM_WR_OFFSET(pDevice, T3_CMD_MAILBOX, T3_CMD_NICDRV_PAUSE_FW);
        Value32 = REG_RD(pDevice, Grc.RxCpuEvent);
        REG_WR(pDevice, Grc.RxCpuEvent, Value32 | BIT_14);
        for (j = 0; j < 100; j++)
        {
            Value32 = REG_RD(pDevice, Grc.RxCpuEvent);
            if (!(Value32 & BIT_14))
            {
                break;
            }
            MM_Wait(1);
        }
    }
#endif
    return LM_STATUS_SUCCESS;
}

/******************************************************************************/
/* Description:                                                               */
/*    This function reinitializes the adapter.                                */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_ResetAdapter(
PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;
    LM_UINT32 j, k;
    int reset_count = 0;

    /* Disable interrupt. */
    LM_DisableInterrupt(pDevice);

restart_reset:
    LM_DisableFW(pDevice);

    /* May get a spurious interrupt */
    pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;

    LM_WritePreResetSignatures(pDevice, LM_INIT_RESET);
    /* Disable transmit and receive DMA engines.  Abort all pending requests. */
    if(pDevice->InitDone)
    {
        LM_Abort(pDevice);
    }

    pDevice->ShuttingDown = FALSE;

    LM_ResetChip(pDevice);

    LM_WriteLegacySignatures(pDevice, LM_INIT_RESET);

    /* Bug: Athlon fix for B3 silicon only.  This bit does not do anything */
    /* in other chip revisions except 5750 */
    if ((pDevice->Flags & DELAY_PCI_GRANT_FLAG) && 
        !(pDevice->Flags & PCI_EXPRESS_FLAG))
    {
        REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | BIT_31);
    }

    if(pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
    {
        if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
        {
            Value32 = REG_RD(pDevice, PciCfg.PciState);
            Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
            REG_WR(pDevice, PciCfg.PciState, Value32);
        }
    }
    if (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_BX)
    {
        /* New bits defined in register 0x64 to enable some h/w fixes */
        /* These new bits are 'write-only' */
        Value32 = REG_RD(pDevice, PciCfg.MsiData);
        REG_WR(pDevice, PciCfg.MsiData, Value32 | BIT_26 | BIT_28 | BIT_29);
    }

    /* Enable TaggedStatus mode. */
    if (pDevice->Flags & USE_TAGGED_STATUS_FLAG)
    {
        pDevice->MiscHostCtrl |= MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
    }

    /* Restore PCI configuration registers. */
    MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
        pDevice->SavedCacheLineReg);
    MM_WriteConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, 
        (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);

    /* Initialize the statistis Block */
    pDevice->pStatusBlkVirt->Status = 0;
    pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
    pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
    pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;

    for(j = 0; j < 16; j++)
    {
       pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
       pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
    }

    for(k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT ;k++)
    {
       pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
       pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
       pDevice->pRxStdBdVirt[k].Flags = RCV_BD_FLAG_END;
       if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)  &&
          (pDevice->RxJumboBufferSize) )
          pDevice->pRxStdBdVirt[k].Len = pDevice->RxJumboBufferSize;
       else
           pDevice->pRxStdBdVirt[k].Len = MAX_STD_RCV_BUFFER_SIZE;
    }       

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    /* Receive jumbo BD buffer. */
    for(k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++)
    {
        pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
        pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
        pDevice->pRxJumboBdVirt[k].Flags = RCV_BD_FLAG_END |
            RCV_BD_FLAG_JUMBO_RING;
        pDevice->pRxJumboBdVirt[k].Len = (LM_UINT16) pDevice->RxJumboBufferSize;
    }
#endif

    REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);    

    /* GRC mode control register. */
    Value32 = 
#ifdef BIG_ENDIAN_HOST
        GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | 
        GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
        GRC_MODE_BYTE_SWAP_DATA |
        GRC_MODE_WORD_SWAP_DATA |
#else
        GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
        GRC_MODE_BYTE_SWAP_DATA |
        GRC_MODE_WORD_SWAP_DATA |
#endif
        GRC_MODE_INT_ON_MAC_ATTN |
        GRC_MODE_HOST_STACK_UP;

    /* Configure send BD mode. */
    if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
    {
        Value32 |= GRC_MODE_HOST_SEND_BDS;
    }
#ifdef BCM_NIC_SEND_BD
    else
    {
        Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
    }
#endif

    /* Configure pseudo checksum mode. */
    if (pDevice->Flags & NO_TX_PSEUDO_HDR_CSUM_FLAG)
    {
        Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
    }

    if (pDevice->Flags & NO_RX_PSEUDO_HDR_CSUM_FLAG)
    {
        Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
    }

    pDevice->GrcMode = Value32;
    REG_WR(pDevice, Grc.Mode, Value32);

    /* Setup the timer prescalar register. */
    Value32 = REG_RD(pDevice, Grc.MiscCfg) & ~0xff;
    /* Clock is always 66Mhz. */
    REG_WR(pDevice, Grc.MiscCfg, Value32 | (65 << 1));

    /* Set up the MBUF pool base address and size. */
    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
    {
#ifdef INCLUDE_TCP_SEG_SUPPORT
        if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION)
        {
            Value32 = LM_GetStkOffLdFirmwareSize(pDevice);
            Value32 = (Value32 + 0x7f) & ~0x7f;
            pDevice->MbufBase = T3_NIC_BCM5705_MBUF_POOL_ADDR + Value32;
            pDevice->MbufSize = T3_NIC_BCM5705_MBUF_POOL_SIZE - Value32 - 0xa00;
            REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
            REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
        }
#endif
    }
    else if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
   {
        REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
        REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);

        /* Set up the DMA descriptor pool base address and size. */
        REG_WR(pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
        REG_WR(pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
    
    }

    /* Configure MBUF and Threshold watermarks */
    /* Configure the DMA read MBUF low water mark. */
    if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE)
    {
        if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
        {
            REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
                T3_DEF_DMA_MBUF_LOW_WMARK_5705);
            REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
                T3_DEF_RX_MAC_MBUF_LOW_WMARK_5705);
            REG_WR(pDevice, BufMgr.MbufHighWaterMark,
                T3_DEF_MBUF_HIGH_WMARK_5705);
        }
        else
        {
            REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
                T3_DEF_DMA_MBUF_LOW_WMARK);
            REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
                T3_DEF_RX_MAC_MBUF_LOW_WMARK);
            REG_WR(pDevice, BufMgr.MbufHighWaterMark,
                T3_DEF_MBUF_HIGH_WMARK);
        }
    }else if( T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){

        REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,0);
        REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,0x4b);
        REG_WR(pDevice, BufMgr.MbufHighWaterMark,0x96);
    }
    else
    {
        REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
            T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
        REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
            T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
        REG_WR(pDevice, BufMgr.MbufHighWaterMark,
            T3_DEF_MBUF_HIGH_WMARK_JUMBO);
    }

    REG_WR(pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
    REG_WR(pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);

    /* Enable buffer manager. */
    REG_WR(pDevice, BufMgr.Mode, BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);

    for(j = 0 ;j < 2000; j++)
    {
        if(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
            break;
        MM_Wait(10);
    }

    if(j >= 2000)
    {
        return LM_STATUS_FAILURE;
    }

/* GRC reset will reset FTQ */

    /* Receive BD Ring replenish threshold. */
    REG_WR(pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt/8);

    /* Initialize the Standard Receive RCB. */
    REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High, 
        pDevice->RxStdBdPhy.High);
    REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low, 
        pDevice->RxStdBdPhy.Low);
    REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
        (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);

    if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
            512 << 16);
    }
    else
    {
        REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
            MAX_STD_RCV_BUFFER_SIZE << 16);

        /* Initialize the Jumbo Receive RCB. */
        REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
            T3_RCB_FLAG_RING_DISABLED);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
        REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High, 
            pDevice->RxJumboBdPhy.High);
        REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low, 
            pDevice->RxJumboBdPhy.Low);
        REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
        REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
            (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);

        REG_WR(pDevice, RcvBdIn.JumboRcvThreshold, pDevice->RxJumboDescCnt/8);

#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

        /* Initialize the Mini Receive RCB. */
        REG_WR(pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
            T3_RCB_FLAG_RING_DISABLED);

        /* Disable all the unused rings. */
        for(j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
            MEM_WR(pDevice, SendRcb[j].u.MaxLen_Flags,
                T3_RCB_FLAG_RING_DISABLED);
        } /* for */

    }

    /* Initialize the indices. */
    pDevice->SendProdIdx = 0;
    pDevice->SendConIdx = 0;

    MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, 0); 
    MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low); 
    MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
    MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low); 

    /* Set up host or NIC based send RCB. */
    if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
    {
        MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, 
            pDevice->SendBdPhy.High);
        MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, 
            pDevice->SendBdPhy.Low);

        /* Setup the RCB. */
        MEM_WR(pDevice, SendRcb[0].u.MaxLen_Flags,
            T3_SEND_RCB_ENTRY_COUNT << 16);

        if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
        {
            /* Set up the NIC ring address in the RCB. */
            MEM_WR(pDevice, SendRcb[0].NicRingAddr,T3_NIC_SND_BUFFER_DESC_ADDR);
        }
        for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
        {
            pDevice->pSendBdVirt[k].HostAddr.High = 0;
            pDevice->pSendBdVirt[k].HostAddr.Low = 0;
        }
    }
#ifdef BCM_NIC_SEND_BD
    else
    {
        MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, 0);
        MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, 0);
        MEM_WR(pDevice, SendRcb[0].NicRingAddr,
            pDevice->SendBdPhy.Low);

        for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
        {
            MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.High), 0);
            MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.Low), 0);
            MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].u1.Len_Flags), 0);
            pDevice->ShadowSendBd[k].HostAddr.High = 0;
            pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
        }
    }
#endif
    MM_ATOMIC_SET(&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT-1);

    /* Configure the receive return rings. */
    for(j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++)
    {
        MEM_WR(pDevice, RcvRetRcb[j].u.MaxLen_Flags, T3_RCB_FLAG_RING_DISABLED);
    }

    pDevice->RcvRetConIdx = 0;

    MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.High, 
        pDevice->RcvRetBdPhy.High);
    MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.Low,
        pDevice->RcvRetBdPhy.Low);

    MEM_WR(pDevice, RcvRetRcb[0].NicRingAddr, 0);

    /* Setup the RCB. */
    MEM_WR(pDevice, RcvRetRcb[0].u.MaxLen_Flags,
        pDevice->RcvRetRcbEntryCount << 16);

    /* Reinitialize RX ring producer index */
    MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, 0);
    MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low);
    MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
    MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low);
    MB_REG_WR(pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
    MB_REG_RD(pDevice, Mailbox.RcvMiniProdIdx.Low);

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    pDevice->RxJumboProdIdx = 0;
    pDevice->RxJumboQueuedCnt = 0;
#endif

    /* Reinitialize our copy of the indices. */
    pDevice->RxStdProdIdx = 0;
    pDevice->RxStdQueuedCnt = 0;

#if T3_JUMBO_RCV_ENTRY_COUNT
    pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_ENTRY_COUNT */

    /* Configure the MAC address. */
    LM_SetMacAddress(pDevice, pDevice->NodeAddress);

    /* Initialize the transmit random backoff seed. */
    Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] + 
        pDevice->NodeAddress[2] + pDevice->NodeAddress[3] + 
        pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) & 
        MAC_TX_BACKOFF_SEED_MASK;
    REG_WR(pDevice, MacCtrl.TxBackoffSeed, Value32);

    /* Receive MTU.  Frames larger than the MTU is marked as oversized. */
    REG_WR(pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8);   /* CRC + VLAN. */

    /* Configure Time slot/IPG per 802.3 */
    REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);

    /*
     * Configure Receive Rules so that packets don't match 
     * Programmble rule will be queued to Return Ring 1 
     */
    REG_WR(pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);

    /* 
     * Configure to have 16 Classes of Services (COS) and one
     * queue per class.  Bad frames are queued to RRR#1.
     * And frames don't match rules are also queued to COS#1.
     */
    REG_WR(pDevice, RcvListPlmt.Config, 0x181);

    /* Enable Receive Placement Statistics */
    if ((pDevice->DmaReadFifoSize == DMA_READ_MODE_FIFO_LONG_BURST) &&
        (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION))
    {
        Value32 = REG_RD(pDevice, RcvListPlmt.StatsEnableMask);
        Value32 &= ~T3_DISABLE_LONG_BURST_READ_DYN_FIX;
        REG_WR(pDevice, RcvListPlmt.StatsEnableMask, Value32);
    }
    else
    {
        REG_WR(pDevice, RcvListPlmt.StatsEnableMask,0xffffff);
    }
    REG_WR(pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);

    /* Enable Send Data Initator Statistics */
    REG_WR(pDevice, SndDataIn.StatsEnableMask,0xffffff);
    REG_WR(pDevice, SndDataIn.StatsCtrl,
        T3_SND_DATA_IN_STATS_CTRL_ENABLE | \
        T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);

    /* Disable the host coalescing state machine before configuring it's */
    /* parameters. */
    REG_WR(pDevice, HostCoalesce.Mode, 0); 
    for(j = 0; j < 2000; j++)
    {
        Value32 = REG_RD(pDevice, HostCoalesce.Mode);
        if(!(Value32 & HOST_COALESCE_ENABLE))
        {
            break;
        }
        MM_Wait(10);
    }

    /* Host coalescing configurations. */
    REG_WR(pDevice, HostCoalesce.RxCoalescingTicks, pDevice->RxCoalescingTicks);
    REG_WR(pDevice, HostCoalesce.TxCoalescingTicks, pDevice->TxCoalescingTicks);
    REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFrames,
        pDevice->RxMaxCoalescedFrames);
    REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFrames,
        pDevice->TxMaxCoalescedFrames);

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        REG_WR(pDevice, HostCoalesce.RxCoalescedTickDuringInt,
            pDevice->RxCoalescingTicksDuringInt);
        REG_WR(pDevice, HostCoalesce.TxCoalescedTickDuringInt,
            pDevice->TxCoalescingTicksDuringInt);
    }
    REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
        pDevice->RxMaxCoalescedFramesDuringInt);
    REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
        pDevice->TxMaxCoalescedFramesDuringInt);

    /* Initialize the address of the status block.  The NIC will DMA */
    /* the status block to this memory which resides on the host. */
    REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.High, 
        pDevice->StatusBlkPhy.High);
    REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.Low,
        pDevice->StatusBlkPhy.Low);

    /* Initialize the address of the statistics block.  The NIC will DMA */
    /* the statistics to this block of memory. */
    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.High, 
            pDevice->StatsBlkPhy.High);
        REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.Low,
            pDevice->StatsBlkPhy.Low);

        REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks,
            pDevice->StatsCoalescingTicks);

        REG_WR(pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
        REG_WR(pDevice, HostCoalesce.StatusBlkNicAddr,0xb00);
    }

    /* Enable Host Coalesing state machine */
    REG_WR(pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
        pDevice->CoalesceMode);

    /* Enable the Receive BD Completion state machine. */
    REG_WR(pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
        RCV_BD_COMP_MODE_ATTN_ENABLE);

    /* Enable the Receive List Placement state machine. */
    REG_WR(pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        /* Enable the Receive List Selector state machine. */
        REG_WR(pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
            RCV_LIST_SEL_MODE_ATTN_ENABLE);
    }

    /* Reset the Rx MAC State Machine.
     *
     * The Rx MAC State Machine must be reset when using fiber to prevent the
     * first packet being lost. This is needed primarily so that the loopback
     * test (which currently only sends one packet) doesn't fail.
     *
     * Also note that the Rx MAC State Machine (0x468) should be reset _before_
     * writting to the MAC Mode register (0x400). Failures have been seen on
     * 5780/5714's using fiber where they stopped receiving packets in a simple
     * ping test when the Rx MAC State Machine was reset _after_ the MAC Mode
     * register was set.
     */

    if ((pDevice->TbiFlags & ENABLE_TBI_FLAG) ||
        (pDevice->PhyFlags & PHY_IS_FIBER))
    {
        REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_RESET);
        REG_RD_BACK(pDevice, MacCtrl.RxMode);
        MM_Wait(10);
        REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
        REG_RD_BACK(pDevice, MacCtrl.RxMode);
    }

    /* Clear the statistics block. */
    for(j = 0x0300; j < 0x0b00; j = j + 4)
    {
        MEM_WR_OFFSET(pDevice, j, 0);
    }

    /* Set Mac Mode */
    if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
    {
        pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
    }
    else if(pDevice->PhyFlags & PHY_IS_FIBER)
    {
         pDevice->MacMode = MAC_MODE_PORT_MODE_GMII;
    }
    else
    {
        pDevice->MacMode = 0;
    }

    /* Enable transmit DMA, clear statistics. */
    pDevice->MacMode |=  MAC_MODE_ENABLE_TX_STATISTICS |
        MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
        MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
        MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);

    /* GRC miscellaneous local control register. */
    pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
        GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;

    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
    {
        pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
            GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
    }
    else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) &&
        !(pDevice->Flags & EEPROM_WP_FLAG))
    {
        /* Make sure we're on Vmain */
        /* The other port may cause us to be on Vaux */
        pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
            GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2;
    }

    RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
    MM_Wait(40);

    /* Reset RX counters. */
    for(j = 0; j < sizeof(LM_RX_COUNTERS); j++)
    {
        ((PLM_UINT8) &pDevice->RxCounters)[j] = 0;
    }

    /* Reset TX counters. */
    for(j = 0; j < sizeof(LM_TX_COUNTERS); j++)
    {
        ((PLM_UINT8) &pDevice->TxCounters)[j] = 0;
    }

    MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 0);
    MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
    pDevice->LastTag = 0;

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        /* Enable the DMA Completion state machine. */
        REG_WR(pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
    }

    /* Enable the DMA Write state machine. */
    Value32 = DMA_WRITE_MODE_ENABLE |
        DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
        DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
        DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
        DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
        DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
        DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
        DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
        DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;

    if (pDevice->Flags & DMA_WR_MODE_RX_ACCELERATE_FLAG)
    {
        Value32 |= DMA_WRITE_MODE_RECEIVE_ACCELERATE;
    }

    if (pDevice->Flags & HOST_COALESCING_BUG_FIX)
    {
        Value32 |= (1 << 29);
    }

    REG_WR(pDevice, DmaWrite.Mode, Value32);

    if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
    {
        if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
        {
            Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities);
            Value32 &= ~PCIX_CMD_MAX_BURST_MASK;
            Value32 |= PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL;
            REG_WR(pDevice, PciCfg.PciXCapabilities, Value32);
        }
        else if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
        {
            Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities);
            Value32 &= ~(PCIX_CMD_MAX_SPLIT_MASK | PCIX_CMD_MAX_BURST_MASK);
            Value32 |= ((PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL) &
                PCIX_CMD_MAX_BURST_MASK);
            if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG)
            {
                Value32 |= (pDevice->SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
                   & PCIX_CMD_MAX_SPLIT_MASK;
            }
            REG_WR(pDevice, PciCfg.PciXCapabilities, Value32);
        }
    }

    /* Enable the Read DMA state machine. */
    Value32 = DMA_READ_MODE_ENABLE |
        DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
        DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
        DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
        DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
        DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
        DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
        DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
        DMA_READ_MODE_LONG_READ_ATTN_ENABLE;

    if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG)
    {
        Value32 |= DMA_READ_MODE_MULTI_SPLIT_ENABLE;
    }

    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        Value32 |= pDevice->DmaReadFifoSize;
    }
#ifdef INCLUDE_TCP_SEG_SUPPORT
    if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
    {
        Value32 |= BIT_27;
    }
#endif


    REG_WR(pDevice, DmaRead.Mode, Value32);

    /* Enable the Receive Data Completion state machine. */
    REG_WR(pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
        RCV_DATA_COMP_MODE_ATTN_ENABLE);

    if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        /* Enable the Mbuf Cluster Free state machine. */
        REG_WR(pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
    }

    /* Enable the Send Data Completion state machine. */
    REG_WR(pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);

    /* Enable the Send BD Completion state machine. */
    REG_WR(pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
        SND_BD_COMP_MODE_ATTN_ENABLE);

    /* Enable the Receive BD Initiator state machine. */
    REG_WR(pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
        RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);

    /* Enable the Receive Data and Receive BD Initiator state machine. */
    REG_WR(pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
        RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);

    /* Enable the Send Data Initiator state machine. */
    REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);

#ifdef INCLUDE_TCP_SEG_SUPPORT
    if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
    {
        REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE | 0x8);
    }
#endif

    /* Enable the Send BD Initiator state machine. */
    REG_WR(pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
        SND_BD_IN_MODE_ATTN_ENABLE);

    /* Enable the Send BD Selector state machine. */
    REG_WR(pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
        SND_BD_SEL_MODE_ATTN_ENABLE);

#ifdef INCLUDE_5701_AX_FIX
    if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0)
    {
        LM_LoadRlsFirmware(pDevice);
    }
#endif

    /* Queue Rx packet buffers. */
    if(pDevice->QueueRxPackets)
    {
        LM_QueueRxPackets(pDevice);
    }

    if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0)
    {
        Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8);
        j = 0;
        while ((Value32 != MAX_STD_RCV_BUFFER_SIZE) && (j < 10))
        {
            MM_Wait(20);
            Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8);
            j++;
        }
        if (j >= 10)
        {
            reset_count++;
            LM_Abort(pDevice);
            if (reset_count > 5)
                return LM_STATUS_FAILURE;
            goto restart_reset;
        }
    }

    /* Enable the transmitter. */
    pDevice->TxMode = TX_MODE_ENABLE;
    REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
    
    /* Enable the receiver. */
    pDevice->RxMode = (pDevice->RxMode & RX_MODE_KEEP_VLAN_TAG) |
        RX_MODE_ENABLE;
    REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);

#ifdef BCM_WOL
    if (pDevice->RestoreOnWakeUp)
    {
        pDevice->RestoreOnWakeUp = FALSE;
        pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
        pDevice->RequestedLineSpeed = pDevice->WakeUpRequestedLineSpeed;
        pDevice->RequestedDuplexMode = pDevice->WakeUpRequestedDuplexMode;
    }
#endif

    /* Disable auto polling. */
    pDevice->MiMode = 0xc0000;
    REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);

    REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
    
    /* Activate Link to enable MAC state machine */
    REG_WR(pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);

    if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
    {
        if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1)
        {
            REG_WR(pDevice, MacCtrl.SerdesCfg, 0x616000);
        }
        if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
        {

            if(!(pDevice->TbiFlags & TBI_DO_PREEMPHASIS))
            {
                /* Set SerDes drive transmission level to 1.2V */
                Value32 = REG_RD(pDevice, MacCtrl.SerdesCfg) & 0xfffff000;
                REG_WR(pDevice, MacCtrl.SerdesCfg, Value32 | 0x880);
            }
        }
    }

    REG_WR(pDevice, MacCtrl.LowWaterMarkMaxRxFrame, 2);

    if(pDevice->PhyFlags & PHY_IS_FIBER)
    {
        Value32 = REG_RD_OFFSET(pDevice, 0x5b0);
        REG_WR_OFFSET(pDevice, 0x5b0, Value32 | BIT_10 );
      
	 pDevice->GrcLocalCtrl |= BIT_4 ; 
        pDevice->GrcLocalCtrl &= ~BIT_5 ; 

        REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
        Value32 = REG_RD(pDevice, Grc.LocalCtrl);
        MM_Wait(40);
    }

    if (!pDevice->InitDone)
    {
      if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) {
	pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
      } else {
	pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
      }
    }

    if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
        ( ((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5401_PHY_ID)&&
	 ((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5411_PHY_ID) ))
    {
        /* 5401/5411 PHY needs a delay of about 1 second after PHY reset */
        /* Without the delay, it has problem linking at forced 10 half */
        /* So skip the reset... */
        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780)
            for(j =0; j<0x5000; j++)
                MM_Wait(1);

        LM_ResetPhy(pDevice);
    }

    /* Setup the phy chip. */
    LM_SetupPhy(pDevice);

    if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG)){
        /* Clear CRC stats */
        LM_ReadPhy(pDevice, 0x1e, &Value32);
        LM_WritePhy(pDevice, 0x1e, Value32 | 0x8000);
        LM_ReadPhy(pDevice, 0x14, &Value32);
    }

    /* Set up the receive mask. */
    LM_SetReceiveMask(pDevice, pDevice->ReceiveMask);

#ifdef INCLUDE_TCP_SEG_SUPPORT
    if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION)
    {
        if (LM_LoadStkOffLdFirmware(pDevice) == LM_STATUS_FAILURE)
        {
            return LM_STATUS_FAILURE;
        }
    }
#endif
    LM_WritePostResetSignatures(pDevice, LM_INIT_RESET);

    return LM_STATUS_SUCCESS;
} /* LM_ResetAdapter */


/******************************************************************************/
/* Description:                                                               */
/*    This routine disables the adapter from generating interrupts.           */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_DisableInterrupt(
    PLM_DEVICE_BLOCK pDevice)
{
    REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl | 
        MISC_HOST_CTRL_MASK_PCI_INT);
    MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 1);
    if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
    {
        MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
    }

    return LM_STATUS_SUCCESS;
}



/******************************************************************************/
/* Description:                                                               */
/*    This routine enables the adapter to generate interrupts.                */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_EnableInterrupt(
    PLM_DEVICE_BLOCK pDevice)
{
    MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, pDevice->LastTag << 24);
    if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
    {
        MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
    }

    REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
        ~MISC_HOST_CTRL_MASK_PCI_INT);

    REG_WR(pDevice, HostCoalesce.Mode, pDevice->CoalesceMode |
        HOST_COALESCE_ENABLE | HOST_COALESCE_NOW);

    return LM_STATUS_SUCCESS;
}



/******************************************************************************/
/* Description:                                                               */
/*    This routine puts a packet on the wire if there is a transmit DMA       */
/*    descriptor available; otherwise the packet is queued for later          */
/*    transmission.  If the second argue is NULL, this routine will put       */
/*    the queued packet on the wire if possible.                              */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_SendPacket(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
    LM_UINT32 FragCount;
    PT3_SND_BD pSendBd, pTmpSendBd;
#ifdef BCM_NIC_SEND_BD
    PT3_SND_BD pShadowSendBd;
    T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
#endif
    LM_UINT32 StartIdx, Idx;

    while (1)
    {
        /* Initalize the send buffer descriptors. */
        StartIdx = Idx = pDevice->SendProdIdx;

#ifdef BCM_NIC_SEND_BD
        if (pDevice->Flags & NIC_SEND_BD_FLAG)
        {
            pTmpSendBd = pSendBd = &NicSendBdArr[0];
        }
        else
#endif
        {
            pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
        }

        /* Next producer index. */
        for(FragCount = 0; ; )
        {
            LM_UINT32 Value32, Len;

            /* Initialize the pointer to the send buffer fragment. */
            MM_MapTxDma(pDevice, pPacket, &pSendBd->HostAddr, &Len, FragCount);

            pSendBd->u2.VlanTag = pPacket->VlanTag;

            /* Setup the control flags and send buffer size. */
            Value32 = (Len << 16) | pPacket->Flags;

#ifdef INCLUDE_TCP_SEG_SUPPORT
            if (Value32 & (SND_BD_FLAG_CPU_PRE_DMA | SND_BD_FLAG_CPU_POST_DMA))
            {
                if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))  
                {
                    pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize;
                }
		else if (FragCount == 0)
                {
                    pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize;
                }
                else
                {
                    pSendBd->u2.s2.Reserved = 0;
                    Value32 &= 0xffff0fff;
                }
            }
#endif
            Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
                
            FragCount++;
            if (FragCount >= pPacket->u.Tx.FragCount)
            {
                pSendBd->u1.Len_Flags = Value32 | SND_BD_FLAG_END;
                break;
            }
            else
            {
                pSendBd->u1.Len_Flags = Value32;
            }

            pSendBd++;
            if ((Idx == 0) &&
                !(pDevice->Flags & NIC_SEND_BD_FLAG))
            {
                pSendBd = &pDevice->pSendBdVirt[0];
            }

            pDevice->SendRing[Idx] = 0;

        } /* for */
        if (pDevice->Flags & TX_4G_WORKAROUND_FLAG)
        {
            if (LM_Test4GBoundary(pDevice, pPacket, pTmpSendBd) ==
                LM_STATUS_SUCCESS)
            {
                if (MM_CoalesceTxBuffer(pDevice, pPacket) != LM_STATUS_SUCCESS)
                {
                    QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket);
                    return LM_STATUS_FAILURE;
                }
                continue;
            }
        }
        break;
    }
    /* Put the packet descriptor in the ActiveQ. */
    pDevice->SendRing[StartIdx] = pPacket;

#ifdef BCM_NIC_SEND_BD
    if (pDevice->Flags & NIC_SEND_BD_FLAG)
    {
        pSendBd = &pDevice->pSendBdVirt[StartIdx];
        pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];

        while (StartIdx != Idx)
        {
            LM_UINT32 Value32;

            if ((Value32 = pTmpSendBd->HostAddr.High) !=
                pShadowSendBd->HostAddr.High)
            {
                MM_MEMWRITEL(&(pSendBd->HostAddr.High), Value32);
                pShadowSendBd->HostAddr.High = Value32;
            }

            MM_MEMWRITEL(&(pSendBd->HostAddr.Low), pTmpSendBd->HostAddr.Low);

            if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
                pShadowSendBd->u1.Len_Flags)
            {
                MM_MEMWRITEL(&(pSendBd->u1.Len_Flags), Value32);
                pShadowSendBd->u1.Len_Flags = Value32;
            }

            if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG)
            {
                MM_MEMWRITEL(&(pSendBd->u2.VlanTag), pTmpSendBd->u2.VlanTag);
            }

            StartIdx = (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
            if (StartIdx == 0)
            {
                pSendBd = &pDevice->pSendBdVirt[0];
                pShadowSendBd = &pDevice->ShadowSendBd[0];
            }
            else
            {
                pSendBd++;
                pShadowSendBd++;
            }
            pTmpSendBd++;
        }
        MM_WMB();
        MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);

        if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
        {
            MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
        }
        if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
        {
            MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low);
        }
         else
        {
            MM_MMIOWB();
        }	
    }
    else
#endif
    {
        MM_WMB();
        MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);

        if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
        {
            MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
        }
        if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
        {
            MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low);
        }
        else
        {
            MM_MMIOWB();
        }	
    }

    /* Update the SendBdLeft count. */
    MM_ATOMIC_SUB(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);

    /* Update the producer index. */
    pDevice->SendProdIdx = Idx;

    return LM_STATUS_SUCCESS;
}

STATIC LM_STATUS
LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
    PT3_SND_BD pSendBd)
{
    int FragCount;
    LM_UINT32 Idx, Base, Len;

    Idx = pDevice->SendProdIdx;
    for(FragCount = 0; ; )
    {
        Len = pSendBd->u1.Len_Flags >> 16;
        if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
            ((Base + 8 + Len) < Base))
        {
            return LM_STATUS_SUCCESS;
        }
        FragCount++;
        if (FragCount >= pPacket->u.Tx.FragCount)
        {
            break;
        }
        pSendBd++;
        if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
        {
            Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
            if (Idx == 0)
            {
                pSendBd = &pDevice->pSendBdVirt[0];
            }
        }
    }
    return LM_STATUS_FAILURE;
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_UINT32
ComputeCrc32(LM_UINT8 *pBuffer, LM_UINT32 BufferSize)
{
    LM_UINT32 Reg;
    LM_UINT32 Tmp;
    int j, k;

    Reg = 0xffffffff;

    for(j = 0; j < BufferSize; j++)
    {
        Reg ^= pBuffer[j];

        for(k = 0; k < 8; k++)
        {
            Tmp = Reg & 0x01;

            Reg >>= 1;

            if(Tmp)
            {
                Reg ^= 0xedb88320;
            }
        }
    }

    return ~Reg;
} /* ComputeCrc32 */



/******************************************************************************/
/* Description:                                                               */
/*    This routine sets the receive control register according to ReceiveMask */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_SetReceiveMask(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
{
    LM_UINT32 ReceiveMask;
    LM_UINT32 RxMode;
    LM_UINT32 j, k;

    ReceiveMask = Mask;

    RxMode = pDevice->RxMode;

    if(Mask & LM_ACCEPT_UNICAST)
    {
        Mask &= ~LM_ACCEPT_UNICAST;
    }

    if(Mask & LM_ACCEPT_MULTICAST)
    {
        Mask &= ~LM_ACCEPT_MULTICAST;
    }

    if(Mask & LM_ACCEPT_ALL_MULTICAST)
    {
        Mask &= ~LM_ACCEPT_ALL_MULTICAST;
    }

    if(Mask & LM_ACCEPT_BROADCAST)
    {
        Mask &= ~LM_ACCEPT_BROADCAST;
    }

    RxMode &= ~RX_MODE_KEEP_VLAN_TAG;
    if (Mask & LM_KEEP_VLAN_TAG)
    {
        RxMode |= RX_MODE_KEEP_VLAN_TAG;
        Mask &= ~LM_KEEP_VLAN_TAG;
    }

    RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
    if(Mask & LM_PROMISCUOUS_MODE)
    {
        RxMode |= RX_MODE_PROMISCUOUS_MODE;
        Mask &= ~LM_PROMISCUOUS_MODE;
    }

    RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
    if(Mask & LM_ACCEPT_ERROR_PACKET)
    {
        RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
        Mask &= ~LM_ACCEPT_ERROR_PACKET;
    }

    /* Make sure all the bits are valid before committing changes. */
    if(Mask)
    {
        return LM_STATUS_FAILURE;
    }

    /* Commit the new filter. */
    pDevice->ReceiveMask = ReceiveMask;

    pDevice->RxMode = RxMode;

    if (pDevice->PowerLevel != LM_POWER_STATE_D0)
    {
        return LM_STATUS_SUCCESS;
    }

    REG_WR(pDevice, MacCtrl.RxMode, RxMode);

    /* Set up the MC hash table. */
    if(ReceiveMask & LM_ACCEPT_ALL_MULTICAST)
    {
        for(k = 0; k < 4; k++)
        {
            REG_WR(pDevice, MacCtrl.HashReg[k], 0xffffffff);
        }
    }
    else if(ReceiveMask & LM_ACCEPT_MULTICAST)
    {
        for(k = 0; k < 4; k++)
        {
            REG_WR(pDevice, MacCtrl.HashReg[k], pDevice->MulticastHash[k]);
        }
    }
    else
    {
        /* Reject all multicast frames. */
        for(j = 0; j < 4; j++)
        {
            REG_WR(pDevice, MacCtrl.HashReg[j], 0);
        }
    }

    /* By default, Tigon3 will accept broadcast frames.  We need to setup */
    if(ReceiveMask & LM_ACCEPT_BROADCAST)
    {
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
            REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
            REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
            REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
            REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
    }
    else
    {
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule, 
            REJECT_BROADCAST_RULE1_RULE);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value, 
            REJECT_BROADCAST_RULE1_VALUE);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule, 
            REJECT_BROADCAST_RULE2_RULE);
        REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value, 
            REJECT_BROADCAST_RULE2_VALUE);
    }

    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
    {
        k = 16;
    }
    else if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        k = 16;
    }
    else
    {
        k = 8;
    }
#ifdef BCM_ASF
    if (pDevice->AsfFlags & ASF_ENABLED)
    {
        k -= 4;
    }
#endif

    /* disable the rest of the rules. */
    for(j = RCV_LAST_RULE_IDX; j < k; j++)
    {
        REG_WR(pDevice, MacCtrl.RcvRules[j].Rule, 0);
        REG_WR(pDevice, MacCtrl.RcvRules[j].Value, 0);
    }

    return LM_STATUS_SUCCESS;
} /* LM_SetReceiveMask */



/******************************************************************************/
/* Description:                                                               */
/*    Disable the interrupt and put the transmitter and receiver engines in   */
/*    an idle state.  Also aborts all pending send requests and receive       */
/*    buffers.                                                                */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_Abort(
PLM_DEVICE_BLOCK pDevice)
{
    PLM_PACKET pPacket;
    LM_UINT Idx;

    LM_DisableInterrupt(pDevice);

    LM_DisableChip(pDevice);

    /*
     * If we do not have a status block pointer, then
     * the device hasn't really been opened.  Do not
     * attempt to clean up packets.
     */
    if (pDevice->pStatusBlkVirt == NULL)
        return LM_STATUS_SUCCESS;

    /* Abort packets that have already queued to go out. */
    Idx = pDevice->SendConIdx; 
    for ( ; ; )
    {
        if ((pPacket = pDevice->SendRing[Idx]))
        {
            pDevice->SendRing[Idx] = 0;
            pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
            pDevice->TxCounters.TxPacketAbortedCnt++;

            MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);
            Idx = (Idx + pPacket->u.Tx.FragCount) & 
                T3_SEND_RCB_ENTRY_COUNT_MASK;

            QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);
	}
        else
	{
            break;
	}
    }

    /* Cleanup the receive return rings. */
#ifdef BCM_NAPI_RXPOLL
    LM_ServiceRxPoll(pDevice, T3_RCV_RETURN_RCB_ENTRY_COUNT);
#else
    LM_ServiceRxInterrupt(pDevice);
#endif

    /* Indicate packets to the protocol. */
    MM_IndicateTxPackets(pDevice);

#ifdef BCM_NAPI_RXPOLL

    /* Move the receive packet descriptors in the ReceivedQ to the */
    /* free queue. */
    for(; ;)
    {
        pPacket = (PLM_PACKET) QQ_PopHead(
            &pDevice->RxPacketReceivedQ.Container);
        if(pPacket == NULL)
        {
            break;
        }
        MM_UnmapRxDma(pDevice, pPacket);
        QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
    }
#else
    /* Indicate received packets to the protocols. */
    MM_IndicateRxPackets(pDevice);
#endif

    /* Clean up the Std Receive Producer ring. */
    /* Don't always trust the consumer idx in the status block in case of  */
    /* hw failure */
    Idx = 0;

    while(Idx < T3_STD_RCV_RCB_ENTRY_COUNT)
    {
        if ((pPacket = pDevice->RxStdRing[Idx]))
        {
            MM_UnmapRxDma(pDevice, pPacket);
            QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
            pDevice->RxStdRing[Idx] = 0;
        }

        Idx++;
    } /* while */

    /* Reinitialize our copy of the indices. */
    pDevice->RxStdProdIdx = 0;

#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
    /* Clean up the Jumbo Receive Producer ring. */
    Idx = 0;

    while(Idx < T3_JUMBO_RCV_RCB_ENTRY_COUNT)
    {
        if ((pPacket = pDevice->RxJumboRing[Idx]))
        {
            MM_UnmapRxDma(pDevice, pPacket);
            QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
            pDevice->RxJumboRing[Idx] = 0;
        }
        Idx++;
    } /* while */

    /* Reinitialize our copy of the indices. */
    pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */

    /* Initialize the statistis Block */
    pDevice->pStatusBlkVirt->Status = 0;
    pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
    pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
    pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;

    return LM_STATUS_SUCCESS;
} /* LM_Abort */



/******************************************************************************/
/* Description:                                                               */
/*    Disable the interrupt and put the transmitter and receiver engines in   */
/*    an idle state.  Aborts all pending send requests and receive buffers.   */
/*    Also free all the receive buffers.                                      */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_DoHalt(LM_DEVICE_BLOCK *pDevice)
{
    PLM_PACKET pPacket;
    LM_UINT32 EntryCnt;

    LM_DisableFW(pDevice);

    LM_WritePreResetSignatures(pDevice, LM_SHUTDOWN_RESET);
    LM_Abort(pDevice);

    if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID)
	    LM_WritePhy(pDevice, BCM546X_1c_SHADOW_REG,
	                (BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN));

    /* Get the number of entries in the queue. */
    EntryCnt = QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container);

    /* Make sure all the packets have been accounted for. */
    for(EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++)
    {
        pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
        if (pPacket == 0)
            break;

        MM_FreeRxBuffer(pDevice, pPacket);

        QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
    }

    LM_ResetChip(pDevice);
    LM_WriteLegacySignatures(pDevice, LM_SHUTDOWN_RESET);

    /* Restore PCI configuration registers. */
    MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
        pDevice->SavedCacheLineReg);
    LM_RegWrInd(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, 
        (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);

    /* Reprogram the MAC address. */
    LM_SetMacAddress(pDevice, pDevice->NodeAddress);

    return LM_STATUS_SUCCESS;
} /* LM_DoHalt */


LM_STATUS
LM_Halt(LM_DEVICE_BLOCK *pDevice)
{
    LM_STATUS status;

    status = LM_DoHalt(pDevice);
    LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);
    return status;
}


STATIC LM_VOID
LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
    MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,T3_MAGIC_NUM_FIRMWARE_INIT_DONE);
#ifdef BCM_ASF
    if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE)
    {
        if (Mode == LM_INIT_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START);
        }
	else if (Mode == LM_SHUTDOWN_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD);
        }
	else if (Mode == LM_SUSPEND_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND);
        }
    }
#endif
}

STATIC LM_VOID
LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
#ifdef BCM_ASF
    if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE)
    {
        if (Mode == LM_INIT_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX,
                T3_DRV_STATE_START_DONE);
        }
	else if (Mode == LM_SHUTDOWN_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX,
                T3_DRV_STATE_UNLOAD_DONE);
        }
    }
#endif
}

STATIC LM_VOID
LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
#ifdef BCM_ASF
    if (pDevice->AsfFlags & ASF_ENABLED)
    {
        if (Mode == LM_INIT_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START);
        }
	else if (Mode == LM_SHUTDOWN_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD);
        }
	else if (Mode == LM_SUSPEND_RESET)
        {
            MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND);
        }
    }
#endif
}

STATIC LM_STATUS
LM_ResetChip(PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;
    LM_UINT32 j, tmp1 = 0, tmp2 = 0;

    /* Wait for access to the nvram interface before resetting.  This is */
    if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
        T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
    {
        /* Request access to the flash interface. */
        LM_NVRAM_AcquireLock(pDevice);
    }

    Value32 = GRC_MISC_CFG_CORE_CLOCK_RESET;
    if (pDevice->Flags & PCI_EXPRESS_FLAG)
    {
        if (REG_RD_OFFSET(pDevice, 0x7e2c) == 0x60)    /* PCIE 1.0 system */
        {
            REG_WR_OFFSET(pDevice, 0x7e2c, 0x20);
	}
        if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0)
        {
            /* This bit prevents PCIE link training during GRC reset */
            REG_WR(pDevice, Grc.MiscCfg, BIT_29);    /* Write bit 29 first */
            Value32 |= BIT_29;       /* and keep bit 29 set during GRC reset */
        }
    }
    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        Value32 |= GRC_MISC_GPHY_KEEP_POWER_DURING_RESET;
    }

    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
    {
        /* Save the MSI ENABLE bit (may need to save the message as well) */
        tmp1 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
    }

    /* Global reset. */
    RAW_REG_WR(pDevice, Grc.MiscCfg, Value32);
    MM_Wait(120);

    MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);

    MM_Wait(120);

    /* make sure we re-enable indirect accesses */
    MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG,
        pDevice->MiscHostCtrl);

    /* Set MAX PCI retry to zero. */
    Value32 = T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
    if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
    {
        if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
        {
            Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
        }
    }
    MM_WriteConfig32(pDevice, T3_PCI_STATE_REG, Value32);

    /* Restore PCI command register. */
    MM_WriteConfig32(pDevice, PCI_COMMAND_REG,
        pDevice->PciCommandStatusWords);

    /* Disable PCI-X relaxed ordering bit. */
    MM_ReadConfig32(pDevice, PCIX_CAP_REG, &Value32);
    Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
    MM_WriteConfig32(pDevice, PCIX_CAP_REG, Value32);

     /* Enable memory arbiter */
    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
    {
        Value32 = REG_RD(pDevice,MemArbiter.Mode);
        REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32);
    }
    else
    {
        REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
    }

    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
    {
        /* restore the MSI ENABLE bit (may need to restore the message also) */
        tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
        tmp2 |= (tmp1 & (1 << 16));
        LM_RegWr( pDevice, T3_PCI_MSI_ENABLE, tmp2, TRUE );
        tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
    }


    if (pDevice->ChipRevId == T3_CHIP_ID_5750_A3)
    {
        /* Because of chip bug on A3, we need to kill the CPU */
        LM_DisableFW(pDevice);
        REG_WR_OFFSET(pDevice, 0x5000, 0x400);
    }

    /*
     * BCM4785: In order to avoid repercussions from using potentially
     * defective internal ROM, stop the Rx RISC CPU, which is not
     * required.
     */
    if (pDevice->Flags & SB_CORE_FLAG) {
	    LM_DisableFW(pDevice);
	    LM_HaltCpu(pDevice, T3_RX_CPU_ID);
    }

#ifdef BIG_ENDIAN_HOST
    /* Reconfigure the mode register. */
    Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | 
              GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
              GRC_MODE_BYTE_SWAP_DATA |
              GRC_MODE_WORD_SWAP_DATA;
#else
    /* Reconfigure the mode register. */
    Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
    REG_WR(pDevice, Grc.Mode, Value32);

    if ((pDevice->Flags & MINI_PCI_FLAG) &&
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705))
    {
        pDevice->ClockCtrl |= T3_PCI_CLKRUN_OUTPUT_EN;
        if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0)
        {
            pDevice->ClockCtrl |= T3_PCI_FORCE_CLKRUN;
        }
        REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl);
    }

    if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
    {
        pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
    }
    else if(pDevice->PhyFlags & PHY_IS_FIBER)
    {
         pDevice->MacMode = MAC_MODE_PORT_MODE_GMII;
    }
    else
    {
        pDevice->MacMode = 0;
    }

    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    REG_RD_BACK(pDevice, MacCtrl.Mode);
    MM_Wait(40);

    /* BCM4785: Don't use any firmware, so don't wait */
    if (!pDevice->Flags & SB_CORE_FLAG) {
	    /* Wait for the firmware to finish initialization. */
	    for(j = 0; j < 100000; j++) {
		    MM_Wait(10);

		    if (j < 100)
			    continue;

		    Value32 = MEM_RD_OFFSET(pDevice, T3_FIRMWARE_MAILBOX);
		    if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE) {
			    break;
		    }
	    }
	    if ((j >= 0x100000) && (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) {
		    /* if the boot code is not running */
		    if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS) {
			    LM_DEVICE_BLOCK *pDevice2;

			    REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET);
			    pDevice2 = MM_FindPeerDev(pDevice);
			    if (pDevice2 && !pDevice2->InitDone)
				    REG_WR(pDevice2, Nvram.Cmd, NVRAM_CMD_RESET);
		    } else {
			    LM_NVRAM_ReleaseLock(pDevice);
		    }
	    }
    }

    if ((pDevice->Flags & PCI_EXPRESS_FLAG) && 
	(pDevice->ChipRevId != T3_CHIP_ID_5750_A0))
    {
        /* Enable PCIE bug fix */
        Value32 = REG_RD_OFFSET(pDevice, 0x7c00);
        REG_WR_OFFSET(pDevice, 0x7c00, Value32 | BIT_25 | BIT_29);
    }

#ifdef BCM_ASF
    pDevice->AsfFlags = 0;
    Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR);

    if (Value32 == T3_NIC_DATA_SIG)
    {
        Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
        if (Value32 & T3_NIC_CFG_ENABLE_ASF)
        {
            pDevice->AsfFlags = ASF_ENABLED;
            if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
            {
                pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
	    }
        }
    }
#endif

    return LM_STATUS_SUCCESS;
}


LM_STATUS
LM_ShutdownChip(PLM_DEVICE_BLOCK pDevice, LM_RESET_TYPE Mode)
{
    LM_DisableFW(pDevice);
    LM_WritePreResetSignatures(pDevice, Mode);
    if (pDevice->InitDone)
    {
        LM_Abort(pDevice);
    }
    else
    {
        LM_DisableChip(pDevice);
    }
    LM_ResetChip(pDevice);
    LM_WriteLegacySignatures(pDevice, Mode);
    LM_WritePostResetSignatures(pDevice, Mode);
    return LM_STATUS_SUCCESS;
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
void
LM_ServiceTxInterrupt(
PLM_DEVICE_BLOCK pDevice) {
    PLM_PACKET pPacket;
    LM_UINT32 HwConIdx;
    LM_UINT32 SwConIdx;

    HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;

    /* Get our copy of the consumer index.  The buffer descriptors */
    /* that are in between the consumer indices are freed. */
    SwConIdx = pDevice->SendConIdx;

    /* Move the packets from the TxPacketActiveQ that are sent out to */
    /* the TxPacketXmittedQ.  Packets that are sent use the */
    /* descriptors that are between SwConIdx and HwConIdx. */
    while(SwConIdx != HwConIdx)
    {
        pPacket = pDevice->SendRing[SwConIdx];
        pDevice->SendRing[SwConIdx] = 0;

        /* Set the return status. */
        pPacket->PacketStatus = LM_STATUS_SUCCESS;

        /* Put the packet in the TxPacketXmittedQ for indication later. */
        QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);

        /* Move to the next packet's BD. */
        SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) & 
            T3_SEND_RCB_ENTRY_COUNT_MASK;

        /* Update the number of unused BDs. */
        MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);

        /* Get the new updated HwConIdx. */
        HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
    } /* while */

    /* Save the new SwConIdx. */
    pDevice->SendConIdx = SwConIdx;

} /* LM_ServiceTxInterrupt */


#ifdef BCM_NAPI_RXPOLL
/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
int
LM_ServiceRxPoll(PLM_DEVICE_BLOCK pDevice, int limit)
{
    PLM_PACKET pPacket=NULL;
    PT3_RCV_BD pRcvBd;
    LM_UINT32 HwRcvRetProdIdx;
    LM_UINT32 SwRcvRetConIdx;
    int received = 0;

    /* Loop thru the receive return rings for received packets. */
    HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;

    SwRcvRetConIdx = pDevice->RcvRetConIdx;
    MM_RMB();
    while (SwRcvRetConIdx != HwRcvRetProdIdx) 
    {
        pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];

        /* Get the received packet descriptor. */
        pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
            MM_UINT_PTR(pRcvBd->Opaque));

        switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
        case T3_JUMBO_RCV_PROD_RING:        /* Jumbo Receive Ring. */
            pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
	    break;
#endif
        case T3_STD_RCV_PROD_RING:      /* Standard Receive Ring. */
            pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
	    break;
        }

        /* Check the error flag. */
        if(pRcvBd->ErrorFlag &&
            pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
        {
            pPacket->PacketStatus = LM_STATUS_FAILURE;

            pDevice->RxCounters.RxPacketErrCnt++;

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC)
            {
                pDevice->RxCounters.RxErrCrcCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT)
            {
                pDevice->RxCounters.RxErrCollCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT)
            {
                pDevice->RxCounters.RxErrLinkLostCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR)
            {
                pDevice->RxCounters.RxErrPhyDecodeCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
            {
                pDevice->RxCounters.RxErrOddNibbleCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT)
            {
                pDevice->RxCounters.RxErrMacAbortCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64)
            {
                pDevice->RxCounters.RxErrShortPacketCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES)
            {
                pDevice->RxCounters.RxErrNoResourceCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD)
            {
                pDevice->RxCounters.RxErrLargePacketCnt++;
            }
        }
        else
        {
            pPacket->PacketStatus = LM_STATUS_SUCCESS;
            pPacket->PacketSize = pRcvBd->Len - 4;

            pPacket->Flags = pRcvBd->Flags;
            if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG)
            {
                pPacket->VlanTag = pRcvBd->VlanTag;
            }

            pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
        }

        /* Put the packet descriptor containing the received packet */
        /* buffer in the RxPacketReceivedQ for indication later. */
        QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket);

        /* Go to the next buffer descriptor. */
        SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
            pDevice->RcvRetRcbEntryCountMask;

        if (++received >= limit)
        {
            break;
        }
    } /* while */

    pDevice->RcvRetConIdx = SwRcvRetConIdx;

    /* Update the receive return ring consumer index. */
    MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
    if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
    {
        MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low);
    }
    else
    {
        MM_MMIOWB();
    }
    return received;
} /* LM_ServiceRxPoll */
#endif /* BCM_NAPI_RXPOLL */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
void
LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice)
{
#ifndef BCM_NAPI_RXPOLL
    PLM_PACKET pPacket;
    PT3_RCV_BD pRcvBd;
#endif
    LM_UINT32 HwRcvRetProdIdx;
    LM_UINT32 SwRcvRetConIdx;

    /* Loop thru the receive return rings for received packets. */
    HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;

    SwRcvRetConIdx = pDevice->RcvRetConIdx;
#ifdef BCM_NAPI_RXPOLL
    if (!pDevice->RxPoll)
    {
        if (SwRcvRetConIdx != HwRcvRetProdIdx)
        {
            if (MM_ScheduleRxPoll(pDevice) == LM_STATUS_SUCCESS)
            {
                pDevice->RxPoll = TRUE;
                REG_WR(pDevice, Grc.Mode,
                    pDevice->GrcMode | GRC_MODE_NO_INTERRUPT_ON_RECEIVE);
            }
        }
    }
#else
    MM_RMB();
    while(SwRcvRetConIdx != HwRcvRetProdIdx)
    {
        pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];

        /* Get the received packet descriptor. */
        pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
            MM_UINT_PTR(pRcvBd->Opaque));

        switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
        case T3_JUMBO_RCV_PROD_RING:        /* Jumbo Receive Ring. */
            pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
	    break;
#endif
        case T3_STD_RCV_PROD_RING:      /* Standard Receive Ring. */
            pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
	    break;
        }

        /* Check the error flag. */
        if(pRcvBd->ErrorFlag &&
            pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
        {
            pPacket->PacketStatus = LM_STATUS_FAILURE;

            pDevice->RxCounters.RxPacketErrCnt++;

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC)
            {
                pDevice->RxCounters.RxErrCrcCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT)
            {
                pDevice->RxCounters.RxErrCollCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT)
            {
                pDevice->RxCounters.RxErrLinkLostCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR)
            {
                pDevice->RxCounters.RxErrPhyDecodeCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
            {
                pDevice->RxCounters.RxErrOddNibbleCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT)
            {
                pDevice->RxCounters.RxErrMacAbortCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64)
            {
                pDevice->RxCounters.RxErrShortPacketCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES)
            {
                pDevice->RxCounters.RxErrNoResourceCnt++;
            }

            if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD)
            {
                pDevice->RxCounters.RxErrLargePacketCnt++;
            }
        }
        else
        {
            pPacket->PacketStatus = LM_STATUS_SUCCESS;
            pPacket->PacketSize = pRcvBd->Len - 4;

            pPacket->Flags = pRcvBd->Flags;
            if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG)
            {
                pPacket->VlanTag = pRcvBd->VlanTag;
            }

            pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
        }

        /* Put the packet descriptor containing the received packet */
        /* buffer in the RxPacketReceivedQ for indication later. */
        QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket);

        /* Go to the next buffer descriptor. */
        SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
            pDevice->RcvRetRcbEntryCountMask;

    } /* while */

    pDevice->RcvRetConIdx = SwRcvRetConIdx;

    /* Update the receive return ring consumer index. */
    MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
    if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
    {
        MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low);
    }
    else
    {
        MM_MMIOWB();
    }

#endif
} /* LM_ServiceRxInterrupt */



/******************************************************************************/
/* Description:                                                               */
/*    This is the interrupt event handler routine. It acknowledges all        */
/*    pending interrupts and process all pending events.                      */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_SUCCESS                                                       */
/******************************************************************************/
LM_STATUS
LM_ServiceInterrupts(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;
    int ServicePhyInt = FALSE;

    /* Setup the phy chip whenever the link status changes. */
    if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG)
    {
        Value32 = REG_RD(pDevice, MacCtrl.Status);
        if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
        {
            if (Value32 & MAC_STATUS_MI_INTERRUPT)
            {
                ServicePhyInt = TRUE;
            }
        }
        else if(Value32 & MAC_STATUS_LINK_STATE_CHANGED)
        {
            ServicePhyInt = TRUE;
        }
    }
    else
    {
        if(pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_LINK_CHANGED_STATUS)
        {
            pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
                (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
            ServicePhyInt = TRUE;
        }
    }
#ifdef INCLUDE_TBI_SUPPORT
    if (pDevice->IgnoreTbiLinkChange == TRUE)
    {
        ServicePhyInt = FALSE;
    }
#endif
    if (ServicePhyInt == TRUE)
    {
        MM_ACQUIRE_PHY_LOCK_IN_IRQ(pDevice);
        LM_SetupPhy(pDevice);
        MM_RELEASE_PHY_LOCK_IN_IRQ(pDevice);
    }

    /* Service receive and transmit interrupts. */
    LM_ServiceRxInterrupt(pDevice);
    LM_ServiceTxInterrupt(pDevice);
        
#ifndef BCM_NAPI_RXPOLL
    /* No spinlock for this queue since this routine is serialized. */
    if(!QQ_Empty(&pDevice->RxPacketReceivedQ.Container))
    {
        /* Indicate receive packets. */
        MM_IndicateRxPackets(pDevice);
    }
#endif

    /* No spinlock for this queue since this routine is serialized. */
    if(!QQ_Empty(&pDevice->TxPacketXmittedQ.Container))
    {
        MM_IndicateTxPackets(pDevice);
    }

    return LM_STATUS_SUCCESS;
} /* LM_ServiceInterrupts */


/******************************************************************************/
/* Description:  Add a Multicast address. Note that MC addresses, once added, */
/*               cannot be individually deleted. All addresses must be        */
/*               cleared.                                                     */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_MulticastAdd(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress)
{

    LM_UINT32 RegIndex;
    LM_UINT32 Bitpos;
    LM_UINT32 Crc32;

    Crc32 = ComputeCrc32(pMcAddress, ETHERNET_ADDRESS_SIZE);

    /* The most significant 7 bits of the CRC32 (no inversion), */
    /* are used to index into one of the possible 128 bit positions. */
    Bitpos = ~Crc32 & 0x7f;

    /* Hash register index. */
    RegIndex = (Bitpos & 0x60) >> 5;

    /* Bit to turn on within a hash register. */
    Bitpos &= 0x1f;

    /* Enable the multicast bit. */
    pDevice->MulticastHash[RegIndex] |= (1 << Bitpos);

    LM_SetReceiveMask(pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);

    return LM_STATUS_SUCCESS;
}


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_MulticastDel(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress)
{
    return LM_STATUS_FAILURE;
} /* LM_MulticastDel */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_MulticastClear(LM_DEVICE_BLOCK *pDevice)
{
    int i;

    for (i = 0; i < 4; i++)
    {
        pDevice->MulticastHash[i] = 0;
    }
    LM_SetReceiveMask(pDevice, pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);

    return LM_STATUS_SUCCESS;
} /* LM_MulticastClear */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_SetMacAddress(
    PLM_DEVICE_BLOCK pDevice,
    PLM_UINT8 pMacAddress)
{
    LM_UINT32 j;

    for(j = 0; j < 4; j++)
    {
        REG_WR(pDevice, MacCtrl.MacAddr[j].High,
            (pMacAddress[0] << 8) | pMacAddress[1]);
        REG_WR(pDevice, MacCtrl.MacAddr[j].Low,
            (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
            (pMacAddress[4] << 8) | pMacAddress[5]);
    }

    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) 
    {
        for (j = 0; j < 12; j++)
        {
            REG_WR(pDevice, MacCtrl.MacAddrExt[j].High,
                (pMacAddress[0] << 8) | pMacAddress[1]);
            REG_WR(pDevice, MacCtrl.MacAddrExt[j].Low,
                (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
                (pMacAddress[4] << 8) | pMacAddress[5]);
        }
    }
    return LM_STATUS_SUCCESS;
}

LM_VOID
LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice)
{
    /* Turn off tap power management. */
    if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
    {
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);
        LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
        LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804);
        LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
        LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204);
        LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
        LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132);
        LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
        LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232);
        LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
        LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20);

        MM_Wait(40);
    }
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_LINK_ACTIVE                                                   */
/*    LM_STATUS_LINK_DOWN                                                     */
/******************************************************************************/
static LM_STATUS
LM_InitBcm540xPhy(
PLM_DEVICE_BLOCK pDevice)
{
    LM_LINE_SPEED CurrentLineSpeed;
    LM_DUPLEX_MODE CurrentDuplexMode;
    LM_STATUS CurrentLinkStatus;
    LM_UINT32 Value32;
    LM_UINT32 j;
    robo_info_t *robo;

    LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x02);

    if ((pDevice->PhyFlags & PHY_RESET_ON_LINKDOWN) &&
        (pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE))
    {
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        if(!(Value32 & PHY_STATUS_LINK_PASS))
        {
            LM_ResetPhy(pDevice);
        }
    }
    if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
    {
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);

        if(!pDevice->InitDone)
        {
            Value32 = 0;
        }

        if(!(Value32 & PHY_STATUS_LINK_PASS))
        {
            LM_PhyTapPowerMgmt(pDevice);

            LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
            for(j = 0; j < 1000; j++)
            {
                MM_Wait(10);

                LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
                if(Value32 & PHY_STATUS_LINK_PASS)
                {
                    MM_Wait(40);
                    break;
                }
            }

            if((pDevice->PhyId & PHY_ID_REV_MASK) == PHY_BCM5401_B0_REV)
            {
                if(!(Value32 & PHY_STATUS_LINK_PASS) &&
                    (pDevice->OldLineSpeed == LM_LINE_SPEED_1000MBPS))
                {
                    LM_ResetPhy(pDevice);
                }
            }
        }
    }
    else if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
        pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
    {
        LM_WritePhy(pDevice, 0x15, 0x0a75);
        LM_WritePhy(pDevice, 0x1c, 0x8c68);
        LM_WritePhy(pDevice, 0x1c, 0x8d68);
        LM_WritePhy(pDevice, 0x1c, 0x8c68);
    }

    /* Acknowledge interrupts. */
    LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);
    LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);

    /* Configure the interrupt mask. */
    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
    {
        LM_WritePhy(pDevice, BCM540X_INT_MASK_REG, ~BCM540X_INT_LINK_CHANGE);
    }

    /* Configure PHY led mode. */
    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
        (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700))
    {
        if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_1)
        {
            LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 
                BCM540X_EXT_CTRL_LINK3_LED_MODE);
        }
        else
        {
            LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 0);
        }
    }
    else if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID)
    {
        /*
        ** Set up the 'link' LED for the 4785+5461 combo, 
        ** using the INTR/ENERGYDET pin (on the BCM4785 bringup board).
        */
        LM_WritePhy( pDevice, 
	             BCM546X_1c_SHADOW_REG,
	             (BCM546X_1c_SPR_CTRL_2 | BCM546X_1c_WR_EN | BCM546X_1c_SP2_NRG_DET) );

        /*
        ** Set up the LINK LED mode for the 4785+5461 combo, 
        ** using the 5461 SLAVE/ANEN  pin (on the BCM4785 bringup board) as 
        ** active low link status (phy ready) feedback to the 4785
        */
        LM_WritePhy( pDevice, 
	             BCM546X_1c_SHADOW_REG,
	             (BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN | BCM546X_1c_SP1_LINK_LED) );
    }

    if (pDevice->PhyFlags & PHY_CAPACITIVE_COUPLING)
    {
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4007);
        LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &Value32);
        if (!(Value32 & BIT_10))
        {
            /* set the bit and re-link */
            LM_WritePhy(pDevice, BCM5401_AUX_CTRL, Value32 | BIT_10);
            return LM_STATUS_LINK_SETTING_MISMATCH;
        }
    }

    CurrentLinkStatus = LM_STATUS_LINK_DOWN;

    if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) {
      B57_INFO(("Force to active link of 1000 MBPS and full duplex mod.\n"));
      CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;

      /* Set the line speed based on the robo switch type */
      robo = ((PUM_DEVICE_BLOCK)pDevice)->robo;
      if (robo->devid == DEVID5325)
      {
          CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
      }
      else
      {
          CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
      }
      CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
      
      /* Save line settings. */
      pDevice->LineSpeed = CurrentLineSpeed;
      pDevice->DuplexMode = CurrentDuplexMode;
    } else {
      
    /* Get current link and duplex mode. */
    for(j = 0; j < 100; j++)
    {
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);

        if(Value32 & PHY_STATUS_LINK_PASS)
        {
            break;
        }
        MM_Wait(40);
    }

    if(Value32 & PHY_STATUS_LINK_PASS)
    {

        /* Determine the current line and duplex settings. */
        LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
        for(j = 0; j < 2000; j++)
        {
            MM_Wait(10);

            LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
            if(Value32)
            {
                break;
            }
        }

        switch(Value32 & BCM540X_AUX_SPEED_MASK)
        {
            case BCM540X_AUX_10BASET_HD:
                CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
                break;

            case BCM540X_AUX_10BASET_FD:
                CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
                break;

            case BCM540X_AUX_100BASETX_HD:
                CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
                break;

            case BCM540X_AUX_100BASETX_FD:
                CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
                break;

            case BCM540X_AUX_100BASET_HD:
                CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
                break;

            case BCM540X_AUX_100BASET_FD:
                CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
                CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
                break;

            default:

                CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
                CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
                break;
        }

        /* Make sure we are in auto-neg mode. */
        for (j = 0; j < 200; j++)
        {
            LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
            if(Value32 && Value32 != 0x7fff)
            {
                break;
            }

            if(Value32 == 0 &&
                pDevice->RequestedLineSpeed == LM_LINE_SPEED_10MBPS &&
                pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_HALF)
            {
                break;
            }

            MM_Wait(10);
        }

        /* Use the current line settings for "auto" mode. */
        if(pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
        {
            if(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)
            {
                CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;

                /* We may be exiting low power mode and the link is in */
                /* 10mb.  In this case, we need to restart autoneg. */

                if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS)
                {
                    CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
                }
            }
            else
            {
                CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
            }
        }
        else
        {
            /* Force line settings. */
            /* Use the current setting if it matches the user's requested */
            /* setting. */
            LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
            if((pDevice->LineSpeed == CurrentLineSpeed) &&
                (pDevice->DuplexMode == CurrentDuplexMode))
            {
                if ((pDevice->DisableAutoNeg &&
                    !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
                    (!pDevice->DisableAutoNeg &&
                    (Value32 & PHY_CTRL_AUTO_NEG_ENABLE)))
                {
                    CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
                }
                else
                {
                    CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
                } 
            }
            else
            {
                CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
            } 
        }

        /* Save line settings. */
        pDevice->LineSpeed = CurrentLineSpeed;
        pDevice->DuplexMode = CurrentDuplexMode;
    }
}

    return CurrentLinkStatus;
} /* LM_InitBcm540xPhy */

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_SetFlowControl(
    PLM_DEVICE_BLOCK pDevice,
    LM_UINT32 LocalPhyAd,
    LM_UINT32 RemotePhyAd)
{
    LM_FLOW_CONTROL FlowCap;

    /* Resolve flow control. */
    FlowCap = LM_FLOW_CONTROL_NONE;

    /* See Table 28B-3 of 802.3ab-1999 spec. */
    if(pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE)
    {
	if(pDevice->PhyFlags & PHY_IS_FIBER){
		LocalPhyAd &= ~(PHY_AN_AD_ASYM_PAUSE |
				 PHY_AN_AD_PAUSE_CAPABLE);
                RemotePhyAd &= ~(PHY_AN_AD_ASYM_PAUSE |
				PHY_AN_AD_PAUSE_CAPABLE);

                if (LocalPhyAd & PHY_AN_AD_1000XPAUSE)
                     LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
                if (LocalPhyAd & PHY_AN_AD_1000XPSE_ASYM)
                     LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
                if (RemotePhyAd & PHY_AN_AD_1000XPAUSE)
                     RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
                if (RemotePhyAd & PHY_AN_AD_1000XPSE_ASYM)
                     RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
	}

        if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE)
        {
            if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
            {
                if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
                {
                    FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
                        LM_FLOW_CONTROL_RECEIVE_PAUSE;
                }
                else if(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)
                {
                    FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
                }
            }
            else
            {
                if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
                {
                    FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
                        LM_FLOW_CONTROL_RECEIVE_PAUSE;
                }
            }
        }
        else if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
        {
            if((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
                (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE))
            {
                FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
            }
        }
    }
    else
    {
        FlowCap = pDevice->FlowControlCap;
    }

    pDevice->FlowControl = LM_FLOW_CONTROL_NONE;

    /* Enable/disable rx PAUSE. */
    pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
    if(FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
        (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
        pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE))
    {
        pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
        pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;

    }
    REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);

    /* Enable/disable tx PAUSE. */
    pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
    if(FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
        (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
        pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))
    {
        pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
        pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;

    }
    REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);

    return LM_STATUS_SUCCESS;
}


#ifdef INCLUDE_TBI_SUPPORT
/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_InitBcm800xPhy(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;
    LM_UINT32 j;


    Value32 = REG_RD(pDevice, MacCtrl.Status);

    /* Reset the SERDES during init and when we have link. */
    if(!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED)
    {
        /* Set PLL lock range. */
        LM_WritePhy(pDevice, 0x16, 0x8007);

        /* Software reset. */
        LM_WritePhy(pDevice, 0x00, 0x8000);

        /* Wait for reset to complete. */
        for(j = 0; j < 500; j++)
        {
            MM_Wait(10);
        }

        /* Config mode; seletct PMA/Ch 1 regs. */
        LM_WritePhy(pDevice, 0x10, 0x8411);

        /* Enable auto-lock and comdet, select txclk for tx. */
        LM_WritePhy(pDevice, 0x11, 0x0a10);

        LM_WritePhy(pDevice, 0x18, 0x00a0);
        LM_WritePhy(pDevice, 0x16, 0x41ff);

        /* Assert and deassert POR. */
        LM_WritePhy(pDevice, 0x13, 0x0400);
        MM_Wait(40);
        LM_WritePhy(pDevice, 0x13, 0x0000);

        LM_WritePhy(pDevice, 0x11, 0x0a50);
        MM_Wait(40);
        LM_WritePhy(pDevice, 0x11, 0x0a10);

        /* Delay for signal to stabilize. */
        for(j = 0; j < 15000; j++)
        {
            MM_Wait(10);
        }

        /* Deselect the channel register so we can read the PHY id later. */
        LM_WritePhy(pDevice, 0x10, 0x8011);
    }

    return LM_STATUS_SUCCESS;
}



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
STATIC LM_STATUS
LM_SetupFiberPhy(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_STATUS CurrentLinkStatus;
    AUTONEG_STATUS AnStatus = 0;
    LM_UINT32 Value32;
    LM_UINT32 Cnt;
    LM_UINT32 j, k;
    LM_UINT32 MacStatus, RemotePhyAd, LocalPhyAd;
    LM_FLOW_CONTROL PreviousFlowControl = pDevice->FlowControl;


    if (pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE)
    {
        pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
        MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);
        return LM_STATUS_SUCCESS;
    }


    if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) &&
        (pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE) && pDevice->InitDone)
    {
        MacStatus = REG_RD(pDevice, MacCtrl.Status);
        if ((MacStatus & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED |
            MAC_STATUS_CFG_CHANGED | MAC_STATUS_RECEIVING_CFG))
            == (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED))
        {
      
            REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
                MAC_STATUS_CFG_CHANGED);
            return LM_STATUS_SUCCESS;
        }
    }
    pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);

    /* Initialize the send_config register. */
    REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);

    pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    MM_Wait(10);

    /* Initialize the BCM8002 SERDES PHY. */
    switch(pDevice->PhyId & PHY_ID_MASK)
    {
        case PHY_BCM8002_PHY_ID:
            LM_InitBcm800xPhy(pDevice);
            break;

        default:
            break;
    }

    /* Enable link change interrupt. */
    REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);

    /* Default to link down. */
    CurrentLinkStatus = LM_STATUS_LINK_DOWN;

    /* Get the link status. */
    MacStatus = REG_RD(pDevice, MacCtrl.Status);

    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
    {
        LM_UINT32 SgDigCtrl, SgDigStatus;
        LM_UINT32 SerdesCfg = 0;
        LM_UINT32 ExpectedSgDigCtrl = 0;
        LM_UINT32 WorkAround = 0;
        LM_UINT32 PortA = 1;

        if ((pDevice->ChipRevId != T3_CHIP_ID_5704_A0) &&
            (pDevice->ChipRevId != T3_CHIP_ID_5704_A1))
        {
            WorkAround = 1;
            if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID)
            {
                PortA = 0;
            }

            if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
            {
                /* Save voltage reg bits & bits 14:0 */
                SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) &
                              (BIT_23 | BIT_22 | BIT_21 | BIT_20 | 0x7fff );

            }
            else
            { 
                /* preserve the voltage regulator bits */
                SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) &
                                   (BIT_23 | BIT_22 | BIT_21 | BIT_20);
            }
        }
        SgDigCtrl = REG_RD(pDevice, MacCtrl.SgDigControl);
        if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ||
            (pDevice->DisableAutoNeg == FALSE))
        {
        
            ExpectedSgDigCtrl = 0x81388400;
            LocalPhyAd = GetPhyAdFlowCntrlSettings(pDevice);
            if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE)
            {
                ExpectedSgDigCtrl |= BIT_11;
            }
            if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
            {
                ExpectedSgDigCtrl |= BIT_12;
            }
            if (SgDigCtrl != ExpectedSgDigCtrl)
            {
                if (WorkAround)
                {
                    if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
                    {
                         REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011000 | SerdesCfg);                   
                    }
                    else
                    {
                        REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011880 | SerdesCfg);
                    }
                }
                REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl |
                    BIT_30);
                REG_RD_BACK(pDevice, MacCtrl.SgDigControl);
		MM_Wait(5);
                REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl);
                pDevice->AutoNegJustInited = TRUE;
            }
            /* If autoneg is off, you only get SD when link is up */
            else if(MacStatus & (MAC_STATUS_PCS_SYNCED |
                MAC_STATUS_SIGNAL_DETECTED))
            {
                SgDigStatus = REG_RD(pDevice, MacCtrl.SgDigStatus);
                if ((SgDigStatus & BIT_1) &&
                    (MacStatus & MAC_STATUS_PCS_SYNCED))
                {
                    /* autoneg. completed */
                    RemotePhyAd = 0;
                    if(SgDigStatus & BIT_19)
                    {
                        RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
                    }

                    if(SgDigStatus & BIT_20)
                    {
                        RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
                    }

                    LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
                    CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
                    pDevice->AutoNegJustInited = FALSE;
                }
                else if (!(SgDigStatus & BIT_1))
                {
                    if (pDevice->AutoNegJustInited == TRUE)
                    {
                        /* we may be checking too soon, so check again */
                        /* at the next poll interval */
                        pDevice->AutoNegJustInited = FALSE;
                    }
                    else
                    {
                        /* autoneg. failed */
                        if (WorkAround)
                        {
                            if (PortA)
                            {
                                if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
                                {
                                    REG_WR(pDevice, MacCtrl.SerdesCfg,
                                        0xc010000 | (SerdesCfg & ~0x00001000));
                                }
                                else
                                {
                                    REG_WR(pDevice, MacCtrl.SerdesCfg,
                                        0xc010880 | SerdesCfg);
                                }
                            }
                            else
                            {
                                if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
                                {
                                    REG_WR(pDevice, MacCtrl.SerdesCfg,
                                        0x4010000 | (SerdesCfg & ~0x00001000));
                                }
                                else
                                {
                                    REG_WR(pDevice, MacCtrl.SerdesCfg,
                                        0x4010880 | SerdesCfg);
                                }
                            }
                        }
                        /* turn off autoneg. to allow traffic to pass */
                        REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400);
                        REG_RD_BACK(pDevice, MacCtrl.SgDigControl);
                        MM_Wait(40);
                        MacStatus = REG_RD(pDevice, MacCtrl.Status);
                        if ((MacStatus & MAC_STATUS_PCS_SYNCED) && !(MacStatus & MAC_STATUS_RECEIVING_CFG)) 
                        {
                            LM_SetFlowControl(pDevice, 0, 0);
                            CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
                        }
                    }
                }
            }
        }
        else
        {
            if (SgDigCtrl & BIT_31) {
                if (WorkAround)
                {
                    if (PortA)
                    {

                       if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
                       {
                           REG_WR(pDevice, MacCtrl.SerdesCfg,
                                  0xc010000 | (SerdesCfg & ~0x00001000));
                       }
                       else
                       {
                            REG_WR(pDevice, MacCtrl.SerdesCfg,
                                 0xc010880 | SerdesCfg);
                       }
                    }
                    else
                    {
                       if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
                       {
                           REG_WR(pDevice, MacCtrl.SerdesCfg,
                                0x4010000 | (SerdesCfg & ~0x00001000));
                       }
                       else
                       {
                           REG_WR(pDevice, MacCtrl.SerdesCfg,
                               0x4010880 | SerdesCfg);
                       }
                    }
                }
                REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400);
            }
            if(MacStatus & MAC_STATUS_PCS_SYNCED)
            {
                LM_SetFlowControl(pDevice, 0, 0);
                CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
            }
        }
    }
    else if(MacStatus & MAC_STATUS_PCS_SYNCED)
    {
        if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ||
            (pDevice->DisableAutoNeg == FALSE))
        {
            /* auto-negotiation mode. */
            /* Initialize the autoneg default capaiblities. */
            AutonegInit(&pDevice->AnInfo);

            /* Set the context pointer to point to the main device structure. */
            pDevice->AnInfo.pContext = pDevice;

            /* Setup flow control advertisement register. */
            Value32 = GetPhyAdFlowCntrlSettings(pDevice);
            if(Value32 & PHY_AN_AD_PAUSE_CAPABLE)
            {
                pDevice->AnInfo.mr_adv_sym_pause = 1;
            }
            else
            {
                pDevice->AnInfo.mr_adv_sym_pause = 0;
            }

            if(Value32 & PHY_AN_AD_ASYM_PAUSE)
            {
                pDevice->AnInfo.mr_adv_asym_pause = 1;
            }
            else
            {
                pDevice->AnInfo.mr_adv_asym_pause = 0;
            }

            /* Try to autoneg up to six times. */
            if (pDevice->IgnoreTbiLinkChange)
            {
                Cnt = 1;
            }
            else
            {
                Cnt = 6;
            }
            for (j = 0; j < Cnt; j++)
            {
                REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);

                Value32 = pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
                REG_WR(pDevice, MacCtrl.Mode, Value32);
                REG_RD_BACK(pDevice, MacCtrl.Mode);
                MM_Wait(20);

                REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
                    MAC_MODE_SEND_CONFIGS);
                REG_RD_BACK(pDevice, MacCtrl.Mode);

                MM_Wait(20);

                pDevice->AnInfo.State = AN_STATE_UNKNOWN;
                pDevice->AnInfo.CurrentTime_us = 0;

                REG_WR(pDevice, Grc.Timer, 0);
                for(k = 0; (pDevice->AnInfo.CurrentTime_us < 75000) &&
                    (k < 75000); k++)
                {
                    AnStatus = Autoneg8023z(&pDevice->AnInfo);

                    if((AnStatus == AUTONEG_STATUS_DONE) || 
                        (AnStatus == AUTONEG_STATUS_FAILED))
                    {
                        break;
                    }

                    pDevice->AnInfo.CurrentTime_us = REG_RD(pDevice, Grc.Timer);
                
                }
                if((AnStatus == AUTONEG_STATUS_DONE) || 
                    (AnStatus == AUTONEG_STATUS_FAILED))
                {
                    break;
                }
                if (j >= 1)
                {
                    if (!(REG_RD(pDevice, MacCtrl.Status) &
                        MAC_STATUS_PCS_SYNCED)) {
                        break;
                    }
                }
            }

            /* Stop sending configs. */
            MM_AnTxIdle(&pDevice->AnInfo);

            /* Resolve flow control settings. */
            if((AnStatus == AUTONEG_STATUS_DONE) &&
                pDevice->AnInfo.mr_an_complete && pDevice->AnInfo.mr_link_ok &&
                pDevice->AnInfo.mr_lp_adv_full_duplex)
                {
                LM_UINT32 RemotePhyAd;
                LM_UINT32 LocalPhyAd;

                LocalPhyAd = 0;
                if(pDevice->AnInfo.mr_adv_sym_pause)
                {
                    LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
                }

                if(pDevice->AnInfo.mr_adv_asym_pause)
                {
                    LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
                }

                RemotePhyAd = 0;
                if(pDevice->AnInfo.mr_lp_adv_sym_pause)
                {
                    RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
                }

                if(pDevice->AnInfo.mr_lp_adv_asym_pause)
                {
                    RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
                }

                LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);

                CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
            }
            else
            {
                LM_SetFlowControl(pDevice, 0, 0);
            }
            for (j = 0; j < 30; j++)
            {
                MM_Wait(20);
                REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
                    MAC_STATUS_CFG_CHANGED);
                REG_RD_BACK(pDevice, MacCtrl.Status);
                MM_Wait(20);
                if ((REG_RD(pDevice, MacCtrl.Status) &
                    (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
                    break;
            }
            if (pDevice->TbiFlags & TBI_POLLING_FLAGS)
            {
                Value32 = REG_RD(pDevice, MacCtrl.Status);
                if (Value32 & MAC_STATUS_RECEIVING_CFG)
                {
                    pDevice->IgnoreTbiLinkChange = TRUE;
                }
                else if (pDevice->TbiFlags & TBI_POLLING_INTR_FLAG)
                {
                    pDevice->IgnoreTbiLinkChange = FALSE;
                }
            }
            Value32 = REG_RD(pDevice, MacCtrl.Status);
            if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
                 (Value32 & MAC_STATUS_PCS_SYNCED) &&
                 ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0))
            {
                CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
            }
        }
        else
        {
            /* We are forcing line speed. */
            pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
            LM_SetFlowControl(pDevice, 0, 0);

            CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
            REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
                MAC_MODE_SEND_CONFIGS);
        }
    }
    /* Set the link polarity bit. */
    pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);

    pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
            (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
    
    for (j = 0; j < 100; j++)
    {
        REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
            MAC_STATUS_CFG_CHANGED);
        REG_RD_BACK(pDevice, MacCtrl.Status);
        MM_Wait(5);
        if ((REG_RD(pDevice, MacCtrl.Status) &
            (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
            break;
    }

    Value32 = REG_RD(pDevice, MacCtrl.Status);
    if((Value32 & MAC_STATUS_PCS_SYNCED) == 0)
    {
        CurrentLinkStatus = LM_STATUS_LINK_DOWN;
        if (pDevice->DisableAutoNeg == FALSE)
        {
            REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
                MAC_MODE_SEND_CONFIGS);
            REG_RD_BACK(pDevice, MacCtrl.Mode);
            MM_Wait(1);
            REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
        }
    }

    /* Initialize the current link status. */
    if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
    {
        pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
        pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
        REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl |
            LED_CTRL_OVERRIDE_LINK_LED |
            LED_CTRL_1000MBPS_LED_ON);
    }
    else
    {
        pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
        pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
        REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl |
            LED_CTRL_OVERRIDE_LINK_LED |
            LED_CTRL_OVERRIDE_TRAFFIC_LED);
    }

    /* Indicate link status. */
    if ((pDevice->LinkStatus != CurrentLinkStatus) ||
        ((CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
        (PreviousFlowControl != pDevice->FlowControl)))
    {
        pDevice->LinkStatus = CurrentLinkStatus;
        MM_IndicateStatus(pDevice, CurrentLinkStatus);
    }

    return LM_STATUS_SUCCESS;
}
#endif /* INCLUDE_TBI_SUPPORT */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_SetupCopperPhy(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_STATUS CurrentLinkStatus;
    LM_UINT32 Value32;

    /* Assume there is not link first. */
    CurrentLinkStatus = LM_STATUS_LINK_DOWN;

    /* Disable phy link change attention. */
    REG_WR(pDevice, MacCtrl.MacEvent, 0);

    /* Clear link change attention. */
    REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
        MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION |
        MAC_STATUS_LINK_STATE_CHANGED);

    /* Disable auto-polling for the moment. */
    pDevice->MiMode = 0xc0000;
    REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
    REG_RD_BACK(pDevice, MacCtrl.MiMode);
    MM_Wait(40);

    /* Determine the requested line speed and duplex. */
    pDevice->OldLineSpeed = pDevice->LineSpeed;
    /* Set line and duplex only if we don't have a Robo switch */
    if (!(pDevice->Flags & ROBO_SWITCH_FLAG)) {
      pDevice->LineSpeed = pDevice->RequestedLineSpeed;
      pDevice->DuplexMode = pDevice->RequestedDuplexMode;
    }

    /* Set the phy to loopback mode. */
    if ((pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE) ||
        (pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE))
    {
        LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
        if(!(Value32 & PHY_CTRL_LOOPBACK_MODE) &&
            (pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE))
        {
            /* Disable link change and PHY interrupts. */
            REG_WR(pDevice, MacCtrl.MacEvent, 0);

            /* Clear link change attention. */
            REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
                MAC_STATUS_CFG_CHANGED);

            LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140);
            MM_Wait(40);

            pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
            if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
                T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 ||
                T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
                T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705 ||
                (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 &&
                (pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5411_PHY_ID))
            {
                pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
            }

            /* Prevent the interrupt handling from being called. */
            pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
                    (pDevice->pStatusBlkVirt->Status &
                    ~STATUS_BLOCK_LINK_CHANGED_STATUS);

            /* GMII interface. */
            pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
            pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
            REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
            REG_RD_BACK(pDevice, MacCtrl.Mode);
            MM_Wait(40);

            /* Configure PHY led mode. */
            if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
                (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700))
            {
                LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 
                    BCM540X_EXT_CTRL_LINK3_LED_MODE);
                MM_Wait(40);
            }

            if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
            {
                int j = 0;

                while (REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE)
                {
                    MM_Wait(40);
                    j++;
                    if (j > 20)
                        break;
                }

                Value32 = DMA_WRITE_MODE_ENABLE |
                    DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
                    DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
                    DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
                    DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
                    DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
                    DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
                    DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
                    DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
                REG_WR(pDevice, DmaWrite.Mode, Value32);
            }
        }

        pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
        MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);

        return LM_STATUS_SUCCESS;
    }

    /* For Robo switch read PHY_CTRL_REG value as zero */
	if (pDevice->Flags & ROBO_SWITCH_FLAG)
		Value32 = 0;
	else
		LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);

    if(Value32 & PHY_CTRL_LOOPBACK_MODE)
    {
        CurrentLinkStatus = LM_STATUS_LINK_DOWN;

        /* Re-enable link change interrupt.  This was disabled when we */
        /* enter loopback mode. */
        if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
        {
            REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT);
        }
        else
        {
            REG_WR(pDevice, MacCtrl.MacEvent, 
                MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
        }
    }
    else
    {
        /* Initialize the phy chip. */
        CurrentLinkStatus = LM_InitBcm540xPhy(pDevice);
    }

    if(CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH)
    {
        CurrentLinkStatus = LM_STATUS_LINK_DOWN;
    }
    
    /* Setup flow control. */
    pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
    if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
    {
        LM_FLOW_CONTROL FlowCap;     /* Flow control capability. */

        FlowCap = LM_FLOW_CONTROL_NONE;

        if(pDevice->DuplexMode == LM_DUPLEX_MODE_FULL)
        {
	  if(pDevice->DisableAutoNeg == FALSE ||
	     pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
            {
                LM_UINT32 ExpectedPhyAd;
                LM_UINT32 LocalPhyAd;
                LM_UINT32 RemotePhyAd;

                LM_ReadPhy(pDevice, PHY_AN_AD_REG, &LocalPhyAd);
                pDevice->advertising = LocalPhyAd;
                LocalPhyAd &= (PHY_AN_AD_ASYM_PAUSE | PHY_AN_AD_PAUSE_CAPABLE);

                ExpectedPhyAd = GetPhyAdFlowCntrlSettings(pDevice);

                if(LocalPhyAd != ExpectedPhyAd)
                {
                    CurrentLinkStatus = LM_STATUS_LINK_DOWN;
                }
                else
                {
                    LM_ReadPhy(pDevice, PHY_LINK_PARTNER_ABILITY_REG,
                        &RemotePhyAd);

                    LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
                }
            }
            else
            {
                pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
                LM_SetFlowControl(pDevice, 0, 0);
            }
        }
    }

    if(CurrentLinkStatus == LM_STATUS_LINK_DOWN)
    {
        LM_ForceAutoNeg(pDevice);

        /* If we force line speed, we make get link right away. */
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
        if(Value32 & PHY_STATUS_LINK_PASS)
        {
            CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
        }
    }

    /* GMII interface. */
    pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
    if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
    {
        if(pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
            pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
        {
            pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
        }
        else
        {
            pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
        }
    }
    else {
        pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
    }

    /* In order for the 5750 core in BCM4785 chip to work properly
     * in RGMII mode, the Led Control Register must be set up.
     */
    if (pDevice->Flags & RGMII_MODE_FLAG)
    {	
	    LM_UINT32	LedCtrl_Reg; 

	    LedCtrl_Reg = REG_RD(pDevice, MacCtrl.LedCtrl);
	    LedCtrl_Reg &= ~(LED_CTRL_1000MBPS_LED_ON | LED_CTRL_100MBPS_LED_ON);

	    if(pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
		    LedCtrl_Reg |= LED_CTRL_OVERRIDE_LINK_LED;
	    else if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS)
		    LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_100MBPS_LED_ON);
	    else /* LM_LINE_SPEED_1000MBPS */
		    LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_1000MBPS_LED_ON);

	    REG_WR(pDevice, MacCtrl.LedCtrl, LedCtrl_Reg);

	    MM_Wait(40);
    }

    /* Set the MAC to operate in the appropriate duplex mode. */
    pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
    if(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)
    {
        pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
    }

    /* Set the link polarity bit. */
    pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
    if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
    {
        if((pDevice->LedCtrl == LED_CTRL_PHY_MODE_2) ||
             (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
             pDevice->LineSpeed == LM_LINE_SPEED_10MBPS))
        {
            pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
        }
    }
    else
    {
        if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
        {
            pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
        }
    }

    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);

    /* Enable auto polling. */
    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
        REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
    }
    /* if using MAC led mode and not using auto polling, need to configure */
    /* mi status register */
    else if ((pDevice->LedCtrl &
            (LED_CTRL_PHY_MODE_1 | LED_CTRL_PHY_MODE_2)) == 0)
    {
        if (CurrentLinkStatus != LM_STATUS_LINK_ACTIVE)
        {
            REG_WR(pDevice, MacCtrl.MiStatus, 0);
        }
        else if (pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
        {
            REG_WR(pDevice, MacCtrl.MiStatus,
                MI_STATUS_ENABLE_LINK_STATUS_ATTN | MI_STATUS_10MBPS);
        }
        else
        {
            REG_WR(pDevice, MacCtrl.MiStatus,
                MI_STATUS_ENABLE_LINK_STATUS_ATTN);
        }
    }

    /* Enable phy link change attention. */
    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
    {
        REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT);
    }
    else
    {
        REG_WR(pDevice, MacCtrl.MacEvent, 
            MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
    }
    if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
        (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
        (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
        (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
          (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
         !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)))
    {
        MM_Wait(120);
        REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
            MAC_STATUS_CFG_CHANGED);
        MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,
            T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
    }

    /* Indicate link status. */
    if (pDevice->LinkStatus != CurrentLinkStatus) {
        pDevice->LinkStatus = CurrentLinkStatus;
        MM_IndicateStatus(pDevice, CurrentLinkStatus);
    }

    return LM_STATUS_SUCCESS;
} /* LM_SetupCopperPhy */


void
LM_5714_FamForceFiber(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Creg, new_bmcr;
    LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);

    new_bmcr = Creg & ~PHY_CTRL_AUTO_NEG_ENABLE; 
 
    if ( pDevice->RequestedDuplexMode == 0 ||
        pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_FULL){

        new_bmcr |= PHY_CTRL_FULL_DUPLEX_MODE;
    }

    if(Creg == new_bmcr)
        return;

    new_bmcr |= PHY_CTRL_SPEED_SELECT_1000MBPS; /* Reserve bit */

    /* Force a linkdown */
    LM_WritePhy(pDevice, PHY_AN_AD_REG, 0);
    LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr | 
                         PHY_CTRL_RESTART_AUTO_NEG |
                         PHY_CTRL_AUTO_NEG_ENABLE  |
                         PHY_CTRL_SPEED_SELECT_1000MBPS);
    MM_Wait(10);

    /* Force it */
    LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr);
    MM_Wait(10);

    return;

}/* LM_5714_FamForceFiber */


void
LM_5714_FamGoFiberAutoNeg(
	PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 adv,Creg,new;

    LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);
    LM_ReadPhy(pDevice,PHY_AN_AD_REG, &adv);

    new = adv & ~(  PHY_AN_AD_1000XFULL | 
                    PHY_AN_AD_1000XHALF |
                    PHY_AN_AD_1000XPAUSE |
                    PHY_AN_AD_1000XPSE_ASYM |
                    0x1f);

    new |= PHY_AN_AD_1000XPAUSE;

    new |=  PHY_AN_AD_1000XFULL; 
    new |=  PHY_AN_AD_1000XHALF;

    if ((new != adv) || !(Creg & PHY_CTRL_AUTO_NEG_ENABLE)){
        LM_WritePhy(pDevice, PHY_AN_AD_REG, new);
        MM_Wait(5);
        pDevice->AutoNegJustInited=1;
        LM_WritePhy(pDevice, PHY_CTRL_REG, (Creg | 
            PHY_CTRL_RESTART_AUTO_NEG | 
            PHY_CTRL_SPEED_SELECT_1000MBPS |
            PHY_CTRL_AUTO_NEG_ENABLE) );
    }

    return;
} /* 5714_FamGoFiberAutoNeg */
 

void
LM_5714_FamDoFiberLoopback(PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;
    
    LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);

    if( !(Value32 & PHY_CTRL_LOOPBACK_MODE) )
    {
        LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140);

        /* Prevent the interrupt handling from being called. */
        pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
                 (pDevice->pStatusBlkVirt->Status &
                 ~STATUS_BLOCK_LINK_CHANGED_STATUS);
    }
  
    pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
    MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);
  
    return; 

}/* 5714_FamDoFiberLoopBack */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/

LM_STATUS
LM_SetupNewFiberPhy(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_STATUS LmStatus = LM_STATUS_SUCCESS;
    LM_UINT32 Creg,Sreg,rsav;

    rsav = pDevice->LinkStatus;

    pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; 
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    MM_Wait(40);

     /* Disable phy link change attention. */
    REG_WR(pDevice, MacCtrl.MacEvent, 0);

    /* Clear link change attention. */
    REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
        MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION |
        MAC_STATUS_LINK_STATE_CHANGED);
       

    if( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) &&  
        ( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ){

        /* do nothing */
    }else if ( pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE){

        LM_5714_FamDoFiberLoopback(pDevice);
        goto fiberloopbackreturn;

    } else if( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) { 

        LM_5714_FamGoFiberAutoNeg(pDevice);


    }else {

        LM_5714_FamForceFiber(pDevice);
    }
    LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg);
    LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg);

    if(Sreg & PHY_STATUS_LINK_PASS){

        pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
        pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;

        LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);

        if(Creg & PHY_CTRL_FULL_DUPLEX_MODE) {
            pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
        }else{
            pDevice->DuplexMode = LM_DUPLEX_MODE_HALF;
            pDevice->MacMode |= MAC_MODE_HALF_DUPLEX; 
            REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
        }

        if(Creg & PHY_CTRL_AUTO_NEG_ENABLE){
            LM_UINT32 ours,partner;

            LM_ReadPhy(pDevice,PHY_AN_AD_REG, &ours);
            LM_ReadPhy(pDevice,PHY_LINK_PARTNER_ABILITY_REG, &partner);
            LM_SetFlowControl(pDevice, ours, partner);
        }

    }else{	
        pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
        pDevice->LineSpeed = 0;
    }

    if(rsav != pDevice->LinkStatus)
        MM_IndicateStatus(pDevice, pDevice->LinkStatus);

fiberloopbackreturn:
    pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    MM_Wait(40);
    /* Enable link change interrupt. */
    REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);

    return LmStatus;
} /* Setup New phy */

void
LM_5714_FamFiberCheckLink(
    PLM_DEVICE_BLOCK pDevice)
{

    if(pDevice->AutoNegJustInited){
        pDevice->AutoNegJustInited=0;
        return;
    }

    if ((pDevice->LinkStatus != LM_STATUS_LINK_ACTIVE) &&
        (pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) &&
	!(pDevice->PhyFlags &  PHY_FIBER_FALLBACK)){
        LM_UINT32 bmcr;

        LM_ReadPhy(pDevice, PHY_CTRL_REG, &bmcr);
        if (bmcr & PHY_CTRL_AUTO_NEG_ENABLE) {
            LM_UINT32 phy1, phy2;

            LM_WritePhy(pDevice, 0x1c, 0x7c00);
            LM_ReadPhy(pDevice, 0x1c, &phy1);

            LM_WritePhy(pDevice, 0x17, 0x0f01);
            LM_ReadPhy(pDevice, 0x15, &phy2);
            LM_ReadPhy(pDevice, 0x15, &phy2);

            if ((phy1 & 0x10) && !(phy2 & 0x20)) {

                /* We have signal detect and not receiving
                 * configs.
                 */

                pDevice->PhyFlags |= PHY_FIBER_FALLBACK;
		LM_5714_FamForceFiber(pDevice);
            }
        }
    }
    else if ( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) &&
              (pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)) {
            LM_UINT32 phy2;

            LM_WritePhy(pDevice, 0x17, 0x0f01);
            LM_ReadPhy(pDevice, 0x15, &phy2);
            if (phy2 & 0x20) {
                /* Receiving configs. */

                pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK;
                LM_5714_FamGoFiberAutoNeg(pDevice);
        }
    }

} /* LM_5714_FamFiberCheckLink */


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_SetupPhy(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_STATUS LmStatus;
    LM_UINT32 Value32;

    if(pDevice->PhyFlags & PHY_IS_FIBER)
    {
       LmStatus = LM_SetupNewFiberPhy(pDevice);
    }else 
#ifdef INCLUDE_TBI_SUPPORT
    if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
    {
        LmStatus = LM_SetupFiberPhy(pDevice);
    }
    else
#endif /* INCLUDE_TBI_SUPPORT */
    {
        LmStatus = LM_SetupCopperPhy(pDevice);
    }
    if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
    {
        if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
        {
            Value32 = REG_RD(pDevice, PciCfg.PciState);
            REG_WR(pDevice, PciCfg.PciState,
                Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
        }
    }
    if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
        (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF))
    {
        REG_WR(pDevice, MacCtrl.TxLengths, 0x26ff);
    }
    else
    {
        REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);
    }
    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        if (pDevice->LinkStatus == LM_STATUS_LINK_DOWN)
        {
            REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks, 0);
        }
        else
        {
            REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks,
                pDevice->StatsCoalescingTicks);
        }
    }

    return LmStatus;
}


/* test data pattern */
static LM_UINT32 pattern[4][6] = {
    /* For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
    For 5705   , each DFE TAP has 19-bits (low word 15, hi word 4)
    For simplicity, we check only 19-bits, so we don't have to
    distinguish which chip it is.
    the LO word contains 15 bits, make sure pattern data is < 0x7fff
    the HI word contains  6 bits, make sure pattern data is < 0x003f */
    {0x00005555, 0x00000005, /* ch0, TAP 0, LO/HI pattern */
    0x00002aaa, 0x0000000a,  /* ch0, TAP 1, LO/HI pattern */
    0x00003456, 0x00000003}, /* ch0, TAP 2, LO/HI pattern */

    {0x00002aaa, 0x0000000a, /* ch1, TAP 0, LO/HI pattern */
    0x00003333, 0x00000003,  /* ch1, TAP 1, LO/HI pattern */
    0x0000789a, 0x00000005}, /* ch1, TAP 2, LO/HI pattern */

    {0x00005a5a, 0x00000005, /* ch2, TAP 0, LO/HI pattern */
    0x00002a6a, 0x0000000a,  /* ch2, TAP 1, LO/HI pattern */
    0x00001bcd, 0x00000003}, /* ch2, TAP 2, LO/HI pattern */

    {0x00002a5a, 0x0000000a, /* ch3, TAP 0, LO/HI pattern */
    0x000033c3, 0x00000003,  /* ch3, TAP 1, LO/HI pattern */
    0x00002ef1, 0x00000005}, /* ch3, TAP 2, LO/HI pattern */
};

/********************************************************/
/* Routine to wait for PHY Macro Command to complete    */
/*                                                      */
/* If PHY's Macro operation keeps stay busy, nothing we */
/* can do anyway.  The timeout is there so we won't     */
/* stay in this routine indefinitly.                    */
/********************************************************/
static LM_UINT32 LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice);

static LM_UINT32
LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice)
{
    LM_UINT32 timeout;
    LM_UINT32 val32;

    timeout = 100;
    while (timeout--)
    {
        /* make sure the MACRO operation is complete */
        LM_ReadPhy(pDevice, 0x16, &val32);
        if ((val32 & 0x1000) == 0) break;
    }

    return( timeout > 0 );
}

/********************************************************/
/* This routine resets the PHY on following chips:      */
/*      5703, 04, CIOB-E and 5705                       */
/*                                                      */
/* This routine will issue PHY_RESET and check if       */
/* the reset is sucessful.  If not, another PHY RESET   */
/* will be issued, until max "retry" reaches            */
/*                                                      */
/* Input:                                               */
/*      pDevice - device's context                      */
/*      retry   - number of retries                     */
/*      reset   - TRUE=will cause a PHY reset initially */
/*                FALSE = will not issue a PHY reset    */
/*                        unless TAP lockup detected    */
/*                                                      */
/* Output:                                              */
/*      TRUE    - PHY Reset is done sucessfully         */
/*      FALSE   - PHY Reset had failed, after "retry"   */
/*                has reached                           */
/*                                                      */
/* Dependencies:                                        */
/*      void LM_wait_macro_done()                       */
/*      LM_UINT32 pattern[]                                  */
/*                                                      */
/* Usage:                                               */
/*      a. Before calling this routine, caller must     */
/*         determine if the chip is a 5702/03/04 or     */
/*         CIOB-E, and only call this routine if the    */
/*         is one of these.                             */
/*         or its derivatives.                          */
/*      b. Instead of using MII register write to reset */
/*         the PHY, call this routine instead           */
/*      c. Upon return from this routine, check return  */
/*         value (TRUE/FALSE) to determine if PHY reset */
/*         is successful of not and "optionally" take   */
/*         appropriate action (such as: event log)      */
/*      d. Regardless of the return TRUE or FALSE,      */
/*         proceed with PHY setup as you normally would */
/*         after a PHY_RESET.                           */
/*      e. It is recommended that the caller will give  */
/*         10 "retry", however, caller can change to a  */
/*         different number, depending on you code.     */
/*                                                      */
/********************************************************/
LM_STATUS LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset);

LM_STATUS
LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset)
{
    LM_UINT32 val32, save9;
    LM_UINT32 dataLo, dataHi;
    int i, channel;
    int      reset_success = LM_STATUS_FAILURE;
    int      force_reset;

    /* to actually do a PHY_RESET or not is dictated by the caller */
    force_reset = reset;

    while (retry-- && (reset_success != LM_STATUS_SUCCESS))
    {
        if (force_reset)
        {
            /* issue a phy reset, and wait for reset to complete */
            LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
            for(i = 0; i < 100; i++)
            {
                MM_Wait(10);

                LM_ReadPhy(pDevice, PHY_CTRL_REG, &val32);
                if(val32 && !(val32 & PHY_CTRL_PHY_RESET))
                {
                    MM_Wait(20);
                    break;
                }
            }

            /* no more phy reset unless lockup detected */
            force_reset = FALSE;
        }

        /* assuming reset is successful first */
        reset_success = LM_STATUS_SUCCESS;

        /* now go check the DFE TAPs to see if locked up, but
           first, we need to set up PHY so we can read DFE TAPs */

        /* Disable Transmitter and Interrupt, while we play with
           the PHY registers, so the link partner won't see any
           strange data and the Driver won't see any interrupts. */
        LM_ReadPhy(pDevice, 0x10, &val32);
        LM_WritePhy(pDevice, 0x10, val32 | 0x3000);

        /* Setup Full-Duplex, 1000 mbps */
        LM_WritePhy(pDevice, 0x0, 0x0140);

        /* Set to Master mode */
        LM_ReadPhy(pDevice, 0x9, &save9);
        LM_WritePhy(pDevice, 0x9, 0x1800);

        /* Enable SM_DSP_CLOCK & 6dB */
        LM_WritePhy(pDevice, 0x18, 0x0c00);

        /* blocks the PHY control access */
        LM_WritePhy(pDevice, 0x17, 0x8005);
        LM_WritePhy(pDevice, 0x15, 0x0800);

        /* check TAPs for all 4 channels, as soon
           as we see a lockup we'll stop checking */
        for (channel=0; (channel<4) && (reset_success == LM_STATUS_SUCCESS);
            channel++)
        {
            /* select channel and set TAP index to 0 */
            LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);
            /* freeze filter again just to be safe */
            LM_WritePhy(pDevice, 0x16, 0x0002);

            /* write fixed pattern to the RAM, 3 TAPs for
               each channel, each TAP have 2 WORDs (LO/HI) */
            for (i=0; i<6; i++)
                LM_WritePhy(pDevice, 0x15, pattern[channel][i]);

            /* Activate PHY's Macro operation to write DFE TAP from RAM,
               and wait for Macro to complete */
            LM_WritePhy(pDevice, 0x16, 0x0202);
            if (!LM_wait_macro_done(pDevice))
            {
                reset_success = LM_STATUS_FAILURE;
                force_reset = TRUE;
                break;
            }

            /* --- done with write phase, now begin read phase --- */

            /* select channel and set TAP index to 0 */
            LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);

            /* Active PHY's Macro operation to load DFE TAP to RAM,
               and wait for Macro to complete */
            LM_WritePhy(pDevice, 0x16, 0x0082);
            if (!LM_wait_macro_done(pDevice))
            {
                reset_success = LM_STATUS_FAILURE;
                force_reset = TRUE;
                break;
            }

            /* enable "pre-fetch" */
            LM_WritePhy(pDevice, 0x16, 0x0802);
            if (!LM_wait_macro_done(pDevice))
            {
                reset_success = LM_STATUS_FAILURE;
                force_reset = TRUE;
                break;
            }

            /* read back the TAP values.
               3 TAPs for each channel, each TAP have 2 WORDs (LO/HI) */
            for (i=0; i<6; i+=2)
            {
                /* read Lo/Hi then wait for 'done' is faster */
                LM_ReadPhy(pDevice, 0x15, &dataLo);
                LM_ReadPhy(pDevice, 0x15, &dataHi);
                if (!LM_wait_macro_done(pDevice))
                {
                    reset_success = LM_STATUS_FAILURE;
                    force_reset = TRUE;
                    break;
                }

                /* For 5703/04, each DFE TAP has 21-bits (low word 15,
                 * hi word 6) For 5705, each DFE TAP pas 19-bits (low word 15,
                 * hi word 4) For simplicity, we check only 19-bits, so we
                 * don't have to distinguish which chip it is. */
                dataLo &= 0x7fff;
                dataHi &= 0x000f;
            
                /* check if what we wrote is what we read back */
                if ( (dataLo != pattern[channel][i]) || (dataHi != pattern[channel][i+1]) )
                {
                    /* if failed, then the PHY is locked up,
                       we need to do PHY reset again */
                    reset_success = LM_STATUS_FAILURE;
                    force_reset = TRUE;
                    /* 04/25/2003. sb. do these writes before issueing a reset. */
                    /* these steps will reduce the chance of back-to-back
                     * phy lockup after reset */
                    LM_WritePhy(pDevice, 0x17, 0x000B);
                    LM_WritePhy(pDevice, 0x15, 0x4001);
                    LM_WritePhy(pDevice, 0x15, 0x4005);
                    break;
                }
            } /* for i */
        } /* for channel */
    } /* while */

    /* restore dfe coeff back to zeros */
    for (channel=0; channel<4 ; channel++)
    {
        LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);
        LM_WritePhy(pDevice, 0x16, 0x0002);
        for (i=0; i<6; i++)
            LM_WritePhy(pDevice, 0x15, 0x0000);
        LM_WritePhy(pDevice, 0x16, 0x0202);
        if (!LM_wait_macro_done(pDevice))
        {
            reset_success = LM_STATUS_FAILURE;
            break;
        }
    }

    /* remove block phy control */
    LM_WritePhy(pDevice, 0x17, 0x8005);
    LM_WritePhy(pDevice, 0x15, 0x0000);

    /* unfreeze DFE TAP filter for all channels */
    LM_WritePhy(pDevice, 0x17, 0x8200);
    LM_WritePhy(pDevice, 0x16, 0x0000);

    /* Restore PHY back to operating state */
    LM_WritePhy(pDevice, 0x18, 0x0400);

    /* Restore register 9 */
    LM_WritePhy(pDevice, 0x9, save9);

    /* enable transmitter and interrupt */
    LM_ReadPhy(pDevice, 0x10, &val32);
    LM_WritePhy(pDevice, 0x10, (val32 & ~0x3000));

    return reset_success;
}

LM_VOID
LM_ResetPhy(LM_DEVICE_BLOCK *pDevice)
{
    int j;
    LM_UINT32 miireg;

    if (pDevice->PhyFlags & PHY_CHECK_TAPS_AFTER_RESET)
    {
        LM_ResetPhy_5703_4_5(pDevice, 5, 1);
    }
    else
    {
        int wait_val = 100;
        LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);

	if( pDevice->PhyFlags & PHY_IS_FIBER )
            wait_val = 5000;

        for(j = 0; j < wait_val; j++)
        {
            MM_Wait(10);

            LM_ReadPhy(pDevice, PHY_CTRL_REG, &miireg);
            if(miireg && !(miireg & PHY_CTRL_PHY_RESET))
            {
                MM_Wait(20);
                break;
            }
        }

        LM_PhyTapPowerMgmt(pDevice);
    }
    if ( (pDevice->PhyFlags & PHY_ADC_FIX) && 
         !( pDevice->PhyFlags & PHY_IS_FIBER) )
    {
        LM_WritePhy(pDevice, 0x18, 0x0c00);
        LM_WritePhy(pDevice, 0x17, 0x201f);
        LM_WritePhy(pDevice, 0x15, 0x2aaa);
        LM_WritePhy(pDevice, 0x17, 0x000a);
        LM_WritePhy(pDevice, 0x15, 0x0323);
        LM_WritePhy(pDevice, 0x18, 0x0400);
    }
    if ( (pDevice->PhyFlags & PHY_5705_5750_FIX) &&
         !( pDevice->PhyFlags & PHY_IS_FIBER) )
    {
        LM_WritePhy(pDevice, 0x18, 0x0c00);
        LM_WritePhy(pDevice, 0x17, 0x000a);
        LM_WritePhy(pDevice, 0x15, 0x310b);
        LM_WritePhy(pDevice, 0x17, 0x201f);
        LM_WritePhy(pDevice, 0x15, 0x9506);
        LM_WritePhy(pDevice, 0x17, 0x401f);
        LM_WritePhy(pDevice, 0x15, 0x14e2);
        LM_WritePhy(pDevice, 0x18, 0x0400);
    }
    if ( (pDevice->PhyFlags & PHY_5704_A0_FIX) &&
         !( pDevice->PhyFlags & PHY_IS_FIBER) )
    {
        LM_WritePhy(pDevice, 0x1c, 0x8d68);
        LM_WritePhy(pDevice, 0x1c, 0x8d68);
    }
    if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
    {
       LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg);
       miireg |= 1;         /* set tx elastic fifo */
       LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg);

       LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);
    }
    else if (pDevice->Flags & JUMBO_CAPABLE_FLAG) 
    {
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
        LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &miireg);
        miireg |= 0x4000;    /* set rx extended packet length */
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, miireg);

        LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg);
        miireg |= 1;         /* set tx elastic fifo */
        LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg);

    }

    LM_SetEthWireSpeed(pDevice);
    pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK;
}

STATIC LM_VOID
LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice)
{
    LM_UINT32 Value32;

    if( pDevice->PhyFlags & PHY_IS_FIBER) 
        return;

    /* Enable Ethernet@WireSpeed. */
    if (pDevice->PhyFlags & PHY_ETHERNET_WIRESPEED)
    {
        LM_WritePhy(pDevice, 0x18, 0x7007);
        LM_ReadPhy(pDevice, 0x18, &Value32);
        LM_WritePhy(pDevice, 0x18, Value32 | BIT_15 | BIT_4);
    }
}

STATIC LM_STATUS
LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice)
{
    LM_UINT32 miireg;

    LM_ReadPhy(pDevice, PHY_AN_AD_REG, &miireg);
    pDevice->advertising = miireg;
    if ((miireg & PHY_AN_AD_ALL_SPEEDS) != PHY_AN_AD_ALL_SPEEDS)
    {
        return LM_STATUS_FAILURE;
    }

    LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG, &miireg);
    pDevice->advertising1000 = miireg;

    if (!(pDevice->PhyFlags & PHY_NO_GIGABIT))
    {
        if ((miireg & BCM540X_AN_AD_ALL_1G_SPEEDS) !=
            BCM540X_AN_AD_ALL_1G_SPEEDS)
        {
            return LM_STATUS_FAILURE;
        }
    }else{
        
        if(miireg)
        {
            return LM_STATUS_FAILURE;
        }
    }
    return LM_STATUS_SUCCESS;
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_VOID
LM_ReadPhy(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 PhyReg,
PLM_UINT32 pData32) {
    LM_UINT32 Value32;
    LM_UINT32 j;

    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
            ~MI_MODE_AUTO_POLLING_ENABLE);
        REG_RD_BACK(pDevice, MacCtrl.MiMode);
        MM_Wait(40);
    }

    Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
        ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
        MI_COM_CMD_READ | MI_COM_START;

    REG_WR(pDevice, MacCtrl.MiCom, Value32);
    
    for(j = 0; j < 200; j++)
    {
        MM_Wait(1);

        Value32 = REG_RD(pDevice, MacCtrl.MiCom);

        if(!(Value32 & MI_COM_BUSY))
        {
            MM_Wait(5);
            Value32 = REG_RD(pDevice, MacCtrl.MiCom);
            Value32 &= MI_COM_PHY_DATA_MASK;
            break;
        }
    }

    if(Value32 & MI_COM_BUSY)
    {
        Value32 = 0;
    }

    *pData32 = Value32;

    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
        REG_RD_BACK(pDevice, MacCtrl.MiMode);
        MM_Wait(40);
    }
} /* LM_ReadPhy */



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_VOID
LM_WritePhy(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 PhyReg,
LM_UINT32 Data32) {
    LM_UINT32 Value32;
    LM_UINT32 j;

    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
            ~MI_MODE_AUTO_POLLING_ENABLE);
        REG_RD_BACK(pDevice, MacCtrl.MiMode);
        MM_Wait(40);
    }

    Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
        ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
        (Data32 & MI_COM_PHY_DATA_MASK) | MI_COM_CMD_WRITE | MI_COM_START;

    REG_WR(pDevice, MacCtrl.MiCom, Value32);
    
    for(j = 0; j < 200; j++)
    {
        MM_Wait(1);

        Value32 = REG_RD(pDevice, MacCtrl.MiCom);

        if(!(Value32 & MI_COM_BUSY))
        {
            MM_Wait(5);
            break;
        }
    }

    if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
    {
        REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
        REG_RD_BACK(pDevice, MacCtrl.MiMode);
        MM_Wait(40);
    }
} /* LM_WritePhy */

/* MII read/write functions to export to the robo support code */
LM_UINT16
robo_miird(void *h, int phyadd, int regoff)
{
	PLM_DEVICE_BLOCK pdev = h;
	LM_UINT32 savephyaddr, val32;

	savephyaddr = pdev->PhyAddr;
	pdev->PhyAddr = phyadd;

	LM_ReadPhy(pdev, regoff, &val32);

	pdev->PhyAddr = savephyaddr;

	return ((LM_UINT16)(val32 & 0xffff));
}

void
robo_miiwr(void *h, int phyadd, int regoff, LM_UINT16 value)
{
	PLM_DEVICE_BLOCK pdev = h;
	LM_UINT32 val32, savephyaddr;

	savephyaddr = pdev->PhyAddr;
	pdev->PhyAddr = phyadd;

	val32 = (LM_UINT32)value;
	LM_WritePhy(pdev, regoff, val32);

	pdev->PhyAddr = savephyaddr;
}

STATIC void
LM_GetPhyId(LM_DEVICE_BLOCK *pDevice)
{
    LM_UINT32 Value32;

    LM_ReadPhy(pDevice, PHY_ID1_REG, &Value32);
    pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;

    LM_ReadPhy(pDevice, PHY_ID2_REG, &Value32);
    pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
        (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);

}

LM_STATUS
LM_EnableMacLoopBack(PLM_DEVICE_BLOCK pDevice)
{
    pDevice->LoopBackMode = LM_MAC_LOOP_BACK_MODE;
    pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
    pDevice->MacMode |= (MAC_MODE_PORT_INTERNAL_LOOPBACK |
        MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_GMII);
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    MM_Wait(40);    
    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_DisableMacLoopBack(PLM_DEVICE_BLOCK pDevice)
{
    pDevice->LoopBackMode = 0;
    
    pDevice->MacMode &= ~(MAC_MODE_PORT_INTERNAL_LOOPBACK |
            MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_MASK);
    REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
    MM_Wait(40); 
    if(pDevice->PhyFlags & PHY_IS_FIBER)
        LM_ResetPhy(pDevice);

    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_EnablePhyLoopBack(PLM_DEVICE_BLOCK pDevice)
{
    pDevice->LoopBackMode = LM_PHY_LOOP_BACK_MODE;
    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_DisablePhyLoopBack(PLM_DEVICE_BLOCK pDevice)
{
    pDevice->LoopBackMode = 0;
    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_EnableExtLoopBack(PLM_DEVICE_BLOCK pDevice, LM_LINE_SPEED LineSpeed)
{
    pDevice->LoopBackMode = LM_EXT_LOOP_BACK_MODE;

    pDevice->SavedDisableAutoNeg = pDevice->DisableAutoNeg;
    pDevice->SavedRequestedLineSpeed = pDevice->RequestedLineSpeed;
    pDevice->SavedRequestedDuplexMode = pDevice->RequestedDuplexMode;

    pDevice->DisableAutoNeg = TRUE;
    pDevice->RequestedLineSpeed = LineSpeed;
    pDevice->RequestedDuplexMode = LM_DUPLEX_MODE_FULL;
    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

LM_STATUS
LM_DisableExtLoopBack(PLM_DEVICE_BLOCK pDevice)
{
    pDevice->LoopBackMode = 0;

    pDevice->DisableAutoNeg = pDevice->SavedDisableAutoNeg;
    pDevice->RequestedLineSpeed = pDevice->SavedRequestedLineSpeed;
    pDevice->RequestedDuplexMode = pDevice->SavedRequestedDuplexMode;

    LM_SetupPhy(pDevice);
    return LM_STATUS_SUCCESS;
}

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS
LM_SetPowerState(
PLM_DEVICE_BLOCK pDevice,
LM_POWER_STATE PowerLevel)
{
#ifdef BCM_WOL
    LM_UINT32 PmeSupport;
    PLM_DEVICE_BLOCK pDevice2 = 0;
    int j; 
#endif
    LM_UINT32 Value32;
    LM_UINT32 PmCtrl;

    /* make sureindirect accesses are enabled*/
    MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);

    /* Clear the PME_ASSERT bit and the power state bits.  Also enable */
    /* the PME bit. */
    MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);

    PmCtrl |= T3_PM_PME_ASSERTED;
    PmCtrl &= ~T3_PM_POWER_STATE_MASK;

    /* Set the appropriate power state. */
    if(PowerLevel == LM_POWER_STATE_D0)
    {
        /* Bring the card out of low power mode. */
        PmCtrl |= T3_PM_POWER_STATE_D0;
        MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);

        Value32 = REG_RD(pDevice, Grc.LocalCtrl);

	if(T3_ASIC_5752(pDevice->ChipRevId)){
            Value32 |= (GRC_MISC_LOCAL_CTRL_GPIO_OE3 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT3 | 
        		GRC_MISC_LOCAL_CTRL_GPIO_OE0 | 
                        GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
        }
        else
        {
            Value32 &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 | 
                        GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
                        GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
        }

        RAW_REG_WR(pDevice, Grc.LocalCtrl, Value32); 

        MM_Wait(40);    /* Required delay is about 20us. */

        pDevice->PowerLevel = PowerLevel;
        return LM_STATUS_SUCCESS;
    }
#ifdef BCM_WOL
    else if(PowerLevel == LM_POWER_STATE_D1)
    {
        PmCtrl |= T3_PM_POWER_STATE_D1;
    }
    else if(PowerLevel == LM_POWER_STATE_D2)
    {
        PmCtrl |= T3_PM_POWER_STATE_D2;
    }
    else if(PowerLevel == LM_POWER_STATE_D3)
    {
        PmCtrl |= T3_PM_POWER_STATE_D3;
    }
    else
    {
        return LM_STATUS_FAILURE;
    }
    PmCtrl |= T3_PM_PME_ENABLE;

    /* Mask out all interrupts so LM_SetupPhy won't be called while we are */
    /* setting new line speed. */
    Value32 = REG_RD(pDevice, PciCfg.MiscHostCtrl);
    REG_WR(pDevice, PciCfg.MiscHostCtrl, Value32 | MISC_HOST_CTRL_MASK_PCI_INT);

    if(!pDevice->RestoreOnWakeUp)
    {
        pDevice->RestoreOnWakeUp = TRUE;
        pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
        pDevice->WakeUpRequestedLineSpeed = pDevice->RequestedLineSpeed;
        pDevice->WakeUpRequestedDuplexMode = pDevice->RequestedDuplexMode;
    }

    /* Force auto-negotiation to 10 line speed. */
    pDevice->DisableAutoNeg = FALSE;

    if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG))
    {
        pDevice->RequestedLineSpeed = LM_LINE_SPEED_10MBPS;
        LM_SetupPhy(pDevice);
    }

    /* Put the driver in the initial state, and go through the power down */
    /* sequence. */
    LM_DoHalt(pDevice);

    if (!(pDevice->AsfFlags & ASF_ENABLED))
    {
        for(j = 0; j < 20000; j++)
        {
            MM_Wait(10);

            Value32 = MEM_RD_OFFSET(pDevice, T3_ASF_FW_STATUS_MAILBOX);
            if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE)
            {
                break;
            }
        }
    }

    MEM_WR_OFFSET(pDevice, DRV_WOL_MAILBOX, DRV_WOL_SIGNATURE |
        DRV_DOWN_STATE_SHUTDOWN | 0x2 | DRV_WOL_SET_MAGIC_PKT);

    MM_ReadConfig32(pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);

    if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)
    {

        /* Enable WOL. */
        if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG))
        {
            LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x5a);
            MM_Wait(40);
        }

        if (! T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
        {
            /* Let boot code deal with LED mode on shasta */
            REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
        }

        if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
        {
            Value32 = MAC_MODE_PORT_MODE_TBI;
        }
        else
        {
            Value32 = MAC_MODE_PORT_MODE_MII;
            if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
            {
                if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_2 ||
                    pDevice->WolSpeed == WOL_SPEED_10MB)
                {
                    Value32 |= MAC_MODE_LINK_POLARITY;
                }
            }
            else
            {
                Value32 |= MAC_MODE_LINK_POLARITY;
            }
        }
        REG_WR(pDevice, MacCtrl.Mode, Value32);
        REG_RD_BACK(pDevice, MacCtrl.Mode);
        MM_Wait(40); MM_Wait(40); MM_Wait(40);

        /* Always enable magic packet wake-up if we have vaux. */
        if((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) && 
            (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET))
        {
            Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
        }

#ifdef BCM_ASF
        if (pDevice->AsfFlags & ASF_ENABLED)
        {
            Value32 &= ~MAC_MODE_ACPI_POWER_ON_ENABLE;
        }
#endif
        REG_WR(pDevice, MacCtrl.Mode, Value32);

        /* Enable the receiver. */
        REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
    }
    else if (!(pDevice->AsfFlags & ASF_ENABLED))
    {
        if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
        {
            REG_WR(pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
                LED_CTRL_OVERRIDE_TRAFFIC_LED);
        }
        else
        {
            LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG,
                BCM540X_EXT_CTRL_FORCE_LED_OFF);
            LM_WritePhy(pDevice, 0x18, 0x01b2);
            if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
                (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) &&
                !T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) ) 
            {
                LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOWER_POWER_MODE);
            }
        }
    }

    /* Disable tx/rx clocks, and select an alternate clock. */
    if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){
        /* Do nothing */
    }
    else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
        ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) &&
        (pDevice->WolSpeed == WOL_SPEED_10MB)))
    {
        Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
            T3_PCI_SELECT_ALTERNATE_CLOCK |
            T3_PCI_POWER_DOWN_PCI_PLL133;

        REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
    }
    /* ASF on 5750 will not run properly on slow core clock */
    else if( !(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId)  && 
                (pDevice->AsfFlags & ASF_ENABLED) ))   
    { 
        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
        {
            Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
                T3_PCI_SELECT_ALTERNATE_CLOCK;
        }
        else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
        {
            Value32 = T3_PCI_625_CORE_CLOCK;
        }
        else
        {
            Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
        }
        RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);

        MM_Wait(40);

        if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
            T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
        {
            Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
                T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK;
        }
        else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
        {
            Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_625_CORE_CLOCK;
        }
        else if(!T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
        {
            Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK;
        }

        RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);

        if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
        {
            MM_Wait(40);

            if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
                T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
            {
                Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
                    T3_PCI_44MHZ_CORE_CLOCK;
            }
            else
            {
                Value32 = T3_PCI_44MHZ_CORE_CLOCK;
            }

            RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
        }
    }

    MM_Wait(40);

    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
    {
        pDevice2 = MM_FindPeerDev(pDevice);
    }
    if (!(pDevice->Flags & EEPROM_WP_FLAG))
    {
        LM_SwitchVaux(pDevice, pDevice2);
    }

    LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);

    if((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_AX) ||
        (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_BX)) {

        Value32= REG_RD_OFFSET(pDevice, 0x7d00);
        REG_WR_OFFSET(pDevice, 0x7d00,Value32 & ~(BIT_16 | BIT_4 | BIT_2 | BIT_1 | BIT_0)); 

        if(!(pDevice->AsfFlags & ASF_ENABLED)) 
            LM_HaltCpu(pDevice, T3_RX_CPU_ID);
        
    }

    /* Put the the hardware in low power mode. */
    if (!(pDevice->Flags & DISABLE_D3HOT_FLAG))
    {
        MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
        MM_Wait(200); /* Wait 200us for state transition */
    }

    pDevice->PowerLevel = PowerLevel;

#else
    LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);
#endif /* BCM_WOL */

    return LM_STATUS_SUCCESS;
} /* LM_SetPowerState */


LM_VOID
LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2)
{
    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
        return;

    pDevice->GrcLocalCtrl &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                               GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                               GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
                               GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                               GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
                               GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);

    /* Switch adapter to auxilliary power if WOL enabled */
    if ((pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) ||
        (pDevice->AsfFlags & ASF_ENABLED) ||
        (pDevice2 && ((pDevice2->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) ||
        (pDevice2->AsfFlags & ASF_ENABLED))))
    {
        if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
            T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
        {
            /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
            RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE2 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
            MM_Wait(40);
        }
        else
        {
            if (pDevice2 && pDevice2->InitDone)
            {
                return;
            }

            /* On NICs GPIOs are used for vaux.
               The transition of GPIO0 from 0-1 causes vaux
               to power up. Transition of GPIO1 from 1-0 turns vaux off.
               GPIO2 transition from 1-0 enables a non-glitch vaux
               transition from one state to another. 
               On certain designs we should not output GPIO2.
            */
            if(pDevice->Flags & GPIO2_DONOT_OUTPUT)
            {
                /* GPIO0 = 0, GPIO1 = 1. */
                RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                    GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                    GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                    GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);

                MM_Wait(40);

                /* GPIO0 = 1, GPIO1 = 1. */
                RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                    GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                    GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                    GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                    GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);

                MM_Wait(40);
            }
            else
            {

                /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
                RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE2 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);

                MM_Wait(40);
    
                /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
                RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE2 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
                MM_Wait(40);

                /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
                RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                GRC_MISC_LOCAL_CTRL_GPIO_OE0 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OE2 | 
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
                MM_Wait(40);
            } /* GPIO2 OK */
        }        /* Not 5700||5701 */
    }                /* WOL disabled */
    else 	
    {
        if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
            (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
        {
            if (pDevice2 && pDevice2->InitDone)
            {
                return;
            }

            /* GPIO1 = 1 */
            RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                       GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                         GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
            MM_Wait(40);

            /* GPIO1 = 0 */
            RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                            GRC_MISC_LOCAL_CTRL_GPIO_OE1);
            MM_Wait(40);

            /* GPIO1 = 1 */
            RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
                GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
                GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
            MM_Wait(40);
        }
    }
}


/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
static LM_UINT32
GetPhyAdFlowCntrlSettings(
    PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 Value32;

    Value32 = 0;

    /* Auto negotiation flow control only when autonegotiation is enabled. */
    if(pDevice->DisableAutoNeg == FALSE ||
        pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
    {
        if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) &&
            (pDevice->PhyFlags & PHY_IS_FIBER)) {

            /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
            if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
                ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) &&
                (pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)))
            {
                Value32 |=PHY_AN_AD_1000XPAUSE; 
            }
            else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
            {
                Value32 |= PHY_AN_AD_1000XPSE_ASYM;
            }
            else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
            {
                Value32 |= (PHY_AN_AD_1000XPSE_ASYM |  PHY_AN_AD_1000XPAUSE);
            }

        }else{

            /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
            if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
                ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) &&
                (pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)))
            {
                Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
            }
            else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
            {
                Value32 |= PHY_AN_AD_ASYM_PAUSE;
            }
            else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
            {
                Value32 |= PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
            }
        }
    }

    return Value32;
}



/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/*    LM_STATUS_FAILURE                                                       */
/*    LM_STATUS_SUCCESS                                                       */
/*                                                                            */
/******************************************************************************/
static LM_STATUS
LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice) 
{
    LM_LINE_SPEED LineSpeed;
    LM_DUPLEX_MODE DuplexMode;
    LM_UINT32 NewPhyCtrl;
    LM_UINT32 Value32, PhyReg18;
    LM_UINT32 Cnt;

    /* Get the interface type, line speed, and duplex mode. */
    LineSpeed = pDevice->RequestedLineSpeed;
    DuplexMode = pDevice->RequestedDuplexMode;

    /* Exit ext. loop back, in case it was in ext. loopback mode */
    /* Set Extended packet length bit on chips that support jumbo frames */
    if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
    {
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);

        LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32);
        Value32 |= 1;         /* set tx elastic fifo */
        LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32);

    }
    else
    {
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
        LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18);
        PhyReg18 &= ~0x8000;       /* clear external loop back */

        if (pDevice->Flags & JUMBO_CAPABLE_FLAG)
        {
            PhyReg18 |= 0x4000;    /* set extended packet length */
            LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32);
            Value32 |= 1;         /* set tx elastic fifo */
            LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32);
        }
        LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18);
    }

#ifdef BCM_WOL
    if (pDevice->RestoreOnWakeUp)
    {
        LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
        pDevice->advertising1000 = 0;
        Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
        if (pDevice->WolSpeed == WOL_SPEED_100MB)
        {
            Value32 |= PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
        }
        Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
        Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
        LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
        pDevice->advertising = Value32;
    }
    /* Setup the auto-negotiation advertisement register. */
    else if(LineSpeed == LM_LINE_SPEED_UNKNOWN)
#else
    /* Setup the auto-negotiation advertisement register. */
    if(LineSpeed == LM_LINE_SPEED_UNKNOWN)
#endif
    {
        /* Setup the 10/100 Mbps auto-negotiation advertisement register. */
        Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | PHY_AN_AD_ALL_SPEEDS;
        Value32 |= GetPhyAdFlowCntrlSettings(pDevice);

        LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
        pDevice->advertising = Value32;

        /* Advertise 1000Mbps */
        if (!(pDevice->PhyFlags & PHY_NO_GIGABIT))
        {
            Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS;

#ifdef INCLUDE_5701_AX_FIX
            /* slave mode.  This will force the PHY to operate in */
            /* master mode. */
            if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
                pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
            {
                Value32 |= BCM540X_CONFIG_AS_MASTER |
                    BCM540X_ENABLE_CONFIG_AS_MASTER;
            }
#endif

            LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
            pDevice->advertising1000 = Value32;
        }
	else
	{
            LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
            pDevice->advertising1000 = 0;
	}
    }
    else
    {
        if ((pDevice->PhyFlags & PHY_NO_GIGABIT) &&
            (LineSpeed == LM_LINE_SPEED_1000MBPS))
        {
            LineSpeed = LM_LINE_SPEED_100MBPS;
        }
        if(LineSpeed == LM_LINE_SPEED_1000MBPS)
        {
            Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
            Value32 |= GetPhyAdFlowCntrlSettings(pDevice);

            LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
            pDevice->advertising = Value32;

            if(DuplexMode != LM_DUPLEX_MODE_FULL)
            {
                Value32 = BCM540X_AN_AD_1000BASET_HALF;
            }
            else
            {
                Value32 = BCM540X_AN_AD_1000BASET_FULL;
            }

#ifdef INCLUDE_5701_AX_FIX
            if ((pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE) ||
                (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
                pDevice->ChipRevId == T3_CHIP_ID_5701_B0))
#else
            if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE)
#endif
            {
                Value32 |= BCM540X_CONFIG_AS_MASTER |
                    BCM540X_ENABLE_CONFIG_AS_MASTER;
            }
            LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
            pDevice->advertising1000 = Value32;
            if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE)
            {
                if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
                {
                    LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x8c20);
                }
                else
                {
                    LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
                    LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18);
                    PhyReg18 |= 0x8000;    /* set loop back */
                    LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18);
                }
            }
        }
        else if(LineSpeed == LM_LINE_SPEED_100MBPS)
        {
            LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
            pDevice->advertising1000 = 0;

            if(DuplexMode != LM_DUPLEX_MODE_FULL)
            {
                Value32 = PHY_AN_AD_100BASETX_HALF;
            }
            else
            {
                Value32 = PHY_AN_AD_100BASETX_FULL;
            }

            Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
            Value32 |= GetPhyAdFlowCntrlSettings(pDevice);

            LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
            pDevice->advertising = Value32;
        }
        else if(LineSpeed == LM_LINE_SPEED_10MBPS)
        {
            LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
            pDevice->advertising1000 = 0;

            if(DuplexMode != LM_DUPLEX_MODE_FULL)
            {
                Value32 = PHY_AN_AD_10BASET_HALF;
            }
            else
            {
                Value32 = PHY_AN_AD_10BASET_FULL;
            }

            Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
            Value32 |= GetPhyAdFlowCntrlSettings(pDevice);

            LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
            pDevice->advertising = Value32;
        }
    }

    /* Force line speed if auto-negotiation is disabled. */
    if(pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN)
    {
        /* This code path is executed only when there is link. */
        pDevice->LineSpeed = LineSpeed;
        pDevice->DuplexMode = DuplexMode;

        /* Force line seepd. */
        NewPhyCtrl = 0;
        switch(LineSpeed)
        {
            case LM_LINE_SPEED_10MBPS:
                NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
                break;
            case LM_LINE_SPEED_100MBPS:
                NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
                break;
            case LM_LINE_SPEED_1000MBPS:
                NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
                break;
            default:
                NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
                break;
        }

        if(DuplexMode == LM_DUPLEX_MODE_FULL)
        {
            NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
        }

        /* Don't do anything if the PHY_CTRL is already what we wanted. */
        LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
        if(Value32 != NewPhyCtrl)
        {
            /* Temporary bring the link down before forcing line speed. */
            LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOOPBACK_MODE);
            
            /* Wait for link to go down. */
            for(Cnt = 0; Cnt < 1500; Cnt++)
            {
                MM_Wait(10);

                LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
                LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);

                if(!(Value32 & PHY_STATUS_LINK_PASS))
                {
                    MM_Wait(40);
                    break;
                }
            }

            LM_WritePhy(pDevice, PHY_CTRL_REG, NewPhyCtrl);
            MM_Wait(40);
        }
    }
    else
    {
        LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
            PHY_CTRL_RESTART_AUTO_NEG);
    }

    return LM_STATUS_SUCCESS;
} /* LM_ForceAutoNegBcm540xPhy */

/******************************************************************************/
/* Description:                                                               */
/*                                                                            */
/* Return:                                                                    */
/******************************************************************************/
LM_STATUS LM_LoadFirmware(PLM_DEVICE_BLOCK pDevice,
                          PT3_FWIMG_INFO pFwImg,
                          LM_UINT32 LoadCpu,
                          LM_UINT32 StartCpu)
{
    LM_UINT32 i;
    LM_UINT32 address;
    LM_VOID (*Wr_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register,LM_UINT32 Value32);
    LM_UINT32 (*Rd_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register);
    LM_UINT32 len;
    LM_UINT32 base_addr;

    /* BCM4785: Avoid all use of firmware. */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return LM_STATUS_FAILURE;

#ifdef INCLUDE_TCP_SEG_SUPPORT
    if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
      {
	Wr_fn = LM_MemWrInd;
	Rd_fn = LM_MemRdInd;
	len = LM_GetStkOffLdFirmwareSize(pDevice);
	base_addr = T3_NIC_BCM5705_MBUF_POOL_ADDR;
      }
    else
#endif
      {
	Wr_fn = LM_RegWrInd;
	Rd_fn = LM_RegRdInd;
	len = T3_RX_CPU_SPAD_SIZE;
	base_addr = T3_RX_CPU_SPAD_ADDR;
      }

    if (LoadCpu & T3_RX_CPU_ID)
    {
        if (LM_HaltCpu(pDevice,T3_RX_CPU_ID) != LM_STATUS_SUCCESS)
        {
            return LM_STATUS_FAILURE;
        }

        /* First of all clear scrach pad memory */
        for (i = 0; i < len; i+=4)
        { 
	    Wr_fn(pDevice,base_addr+i,0);
        }

        /* Copy code first */
        address = base_addr + (pFwImg->Text.Offset & 0xffff);
        for (i = 0; i <= pFwImg->Text.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
        }

        address = base_addr + (pFwImg->ROnlyData.Offset & 0xffff);
        for (i = 0; i <= pFwImg->ROnlyData.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
        }

        address = base_addr + (pFwImg->Data.Offset & 0xffff);
        for (i= 0; i <= pFwImg->Data.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
        }
    }

    if ((LoadCpu & T3_TX_CPU_ID) &&
        (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705))
    {
        if (LM_HaltCpu(pDevice,T3_TX_CPU_ID) != LM_STATUS_SUCCESS)
        {
            return LM_STATUS_FAILURE;
        }

        /* First of all clear scrach pad memory */
        for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i+=4)
        { 
            Wr_fn(pDevice,T3_TX_CPU_SPAD_ADDR+i,0);
        }

        /* Copy code first */
        address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
        for (i= 0; i <= pFwImg->Text.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
        }

        address = T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
        for (i= 0; i <= pFwImg->ROnlyData.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
        }

        address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
        for (i= 0; i <= pFwImg->Data.Length; i+=4)
        {
            Wr_fn(pDevice,address+i,
                        ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
        }
    }

    if (StartCpu & T3_RX_CPU_ID)
    {
        /* Start Rx CPU */
        REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
        REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
        for (i = 0 ; i < 5; i++)
        {
          if (pFwImg->StartAddress == REG_RD(pDevice,rxCpu.reg.PC))
             break;

          REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
          REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
          REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
          REG_RD_BACK(pDevice,rxCpu.reg.PC);
          MM_Wait(1000);
        }

        REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
        REG_WR(pDevice,rxCpu.reg.mode, 0);
    }

    if ((StartCpu & T3_TX_CPU_ID) &&
        (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705))
    {
        /* Start Tx CPU */
        REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
        REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
        for (i = 0 ; i < 5; i++)
        {
          if (pFwImg->StartAddress == REG_RD(pDevice,txCpu.reg.PC))
             break;

          REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
          REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);
          REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
          REG_RD_BACK(pDevice,txCpu.reg.PC);
          MM_Wait(1000);
        }
        
        REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
        REG_WR(pDevice,txCpu.reg.mode, 0);
    }
    
    return LM_STATUS_SUCCESS;
}

LM_STATUS LM_HaltCpu(PLM_DEVICE_BLOCK pDevice,LM_UINT32 cpu_number)
{
    LM_UINT32 i;
    LM_STATUS status;

    status = LM_STATUS_SUCCESS;

    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) &&
        !(cpu_number & T3_RX_CPU_ID))
    {
        return status;
    }

    if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
        (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
    {
        status = LM_NVRAM_AcquireLock(pDevice);
    }

    if (cpu_number & T3_RX_CPU_ID)
    {
        for (i = 0 ; i < 10000; i++)
        {
            REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
            REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);

            if (REG_RD(pDevice,rxCpu.reg.mode) & CPU_MODE_HALT)
              break;
        }

        REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
        REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
        REG_RD_BACK(pDevice,rxCpu.reg.mode);
        MM_Wait(10);

        if (i == 10000)
            status = LM_STATUS_FAILURE;
    }
    
    /*
     * BCM4785: There is only an Rx CPU for the 5750 derivative in
     * the 4785.  Don't go any further in this code in order to
     * avoid access to the NVRAM arbitration register.
     */
    if (pDevice->Flags & SB_CORE_FLAG)
	    return status;

    if ((pDevice->Flags & T3_HAS_TWO_CPUS) &&
        (cpu_number & T3_TX_CPU_ID))
    {
        for (i = 0 ; i < 10000; i++)
        {
            REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
            REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);

            if (REG_RD(pDevice,txCpu.reg.mode) & CPU_MODE_HALT)
               break;
        }

        if (i == 10000)
            status = LM_STATUS_FAILURE;
    }

    if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
        (T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
    {
        if (status != LM_STATUS_SUCCESS)
        {
            /*
             * Some part of this operation failed.
             * Just undo our own actions.
             */
            LM_NVRAM_ReleaseLock(pDevice);
        }
        else if (!(pDevice->Flags & T3_HAS_TWO_CPUS) ||
                 cpu_number == (T3_TX_CPU_ID | T3_RX_CPU_ID))
        {
            /*
             * Release our NVRAM arbitration grant along
             * with the firmware's arbitration request bit.
             */
            REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0);
            REG_RD_BACK(pDevice, Nvram.SwArb);
        }
        else
        {
            LM_NVRAM_ReleaseLock(pDevice);

            if (LM_NVRAM_AcquireLock(pDevice) == LM_STATUS_SUCCESS)
            {
                /* All is well. Release the arbitration and continue. */
                LM_NVRAM_ReleaseLock(pDevice);
            }
            else
            {
                /*
                 * We've timed out while attempting to get the
                 * NVRAM arbitration.  Assume the cause is that
                 * the NVRAM has requested arbitration after we
                 * acquired arbitration the first time, but before
                 * the CPU was actually halted.
                 */

                /*
                 * Release our NVRAM arbitration grant along
                 * with the firmware's arbitration request bit.
                 */
                REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0);
                REG_RD_BACK(pDevice, Nvram.SwArb);
            }
        }
    }

    return status;
}


LM_STATUS
LM_BlinkLED(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
{
	int j;
	int ret = LM_STATUS_SUCCESS;

	if(BlinkDurationSec == 0)
	{
		BlinkDurationSec = 1;
        }
	if(BlinkDurationSec > 120)
        {
	        BlinkDurationSec = 120;
	}

	for(j = 0; j < BlinkDurationSec * 2; j++)
	{
		if(j % 2)
		{
			// Turn on the LEDs.
			REG_WR(pDevice, MacCtrl.LedCtrl,
				LED_CTRL_OVERRIDE_LINK_LED |
				LED_CTRL_1000MBPS_LED_ON |
				LED_CTRL_100MBPS_LED_ON |
				LED_CTRL_10MBPS_LED_ON |
				LED_CTRL_OVERRIDE_TRAFFIC_LED |
				LED_CTRL_BLINK_TRAFFIC_LED |
				LED_CTRL_TRAFFIC_LED);
		}
		else
		{
			// Turn off the LEDs.
			REG_WR(pDevice, MacCtrl.LedCtrl,
				LED_CTRL_OVERRIDE_LINK_LED |
				LED_CTRL_OVERRIDE_TRAFFIC_LED);
		}
                if (MM_Sleep(pDevice, 500) != LM_STATUS_SUCCESS)/* 0.5 second */
                {
                    ret = LM_STATUS_FAILURE;
                    break;
                }
	}
	REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
	return ret;
}

LM_STATUS
LM_SwitchClocks(PLM_DEVICE_BLOCK pDevice)
{
    LM_UINT32 ClockCtrl;

    if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
	return LM_STATUS_SUCCESS;

    ClockCtrl = REG_RD(pDevice, PciCfg.ClockCtrl);
    pDevice->ClockCtrl = ClockCtrl & (T3_PCI_FORCE_CLKRUN |
        T3_PCI_CLKRUN_OUTPUT_EN | 0x1f);
    if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        if (ClockCtrl & T3_PCI_625_CORE_CLOCK)
        {
            /* clear ALT clock first */
            RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
                T3_PCI_625_CORE_CLOCK);
            MM_Wait(40);  /* required delay is 27usec */
        }
    }
    else
    {
        if (ClockCtrl & T3_PCI_44MHZ_CORE_CLOCK)
        {
            RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
                T3_PCI_44MHZ_CORE_CLOCK | T3_PCI_SELECT_ALTERNATE_CLOCK);
            MM_Wait(40);  /* required delay is 27usec */
            RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
                T3_PCI_SELECT_ALTERNATE_CLOCK);
            MM_Wait(40);  /* required delay is 27usec */
        }
    }

    RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl);
    MM_Wait(40);  /* required delay is 27usec */
    return LM_STATUS_SUCCESS;
}

int t3_do_dma(PLM_DEVICE_BLOCK pDevice, 
                   LM_PHYSICAL_ADDRESS host_addr_phy, int length,
                   int dma_read)
{
    T3_DMA_DESC dma_desc;
    int i;
    LM_UINT32 dma_desc_addr;
    LM_UINT32 value32;

    REG_WR(pDevice, BufMgr.Mode, 0);
    REG_WR(pDevice, Ftq.Reset, 0);

    dma_desc.host_addr.High = host_addr_phy.High;
    dma_desc.host_addr.Low = host_addr_phy.Low;
    dma_desc.nic_mbuf = 0x2100;
    dma_desc.len = length;
    dma_desc.flags = 0x00000005; /* Generate Rx-CPU event */

    if (dma_read)
    {
        dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
            T3_QID_DMA_HIGH_PRI_READ;
        REG_WR(pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
    }
    else
    {
        dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
            T3_QID_DMA_HIGH_PRI_WRITE;
        REG_WR(pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
    }

    dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;

    /* Writing this DMA descriptor to DMA memory */
    for (i = 0; i < sizeof(T3_DMA_DESC); i += 4)
    {
        value32 = *((PLM_UINT32) (((PLM_UINT8) &dma_desc) + i));
        MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, dma_desc_addr+i);
        MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG,
            MM_SWAP_LE32(value32));
    }
    MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);

    if (dma_read)
        REG_WR(pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue, dma_desc_addr);
    else
        REG_WR(pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue, dma_desc_addr);

    for (i = 0; i < 40; i++)
    {
        if (dma_read)
            value32 = REG_RD(pDevice, Ftq.RcvBdCompFtqFifoEnqueueDequeue);
        else
            value32 = REG_RD(pDevice, Ftq.RcvDataCompFtqFifoEnqueueDequeue);

        if ((value32 & 0xffff) == dma_desc_addr)
            break;

        MM_Wait(10);
    }

    return LM_STATUS_SUCCESS;
}

STATIC LM_STATUS
LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
           LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
{
    int j;
    LM_UINT32 *ptr;
    int dma_success = 0;
    LM_STATUS ret = LM_STATUS_FAILURE;

    if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
        T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
    {
        return LM_STATUS_SUCCESS;
    }
    while (!dma_success)
    {
        /* Fill data with incremental patterns */
        ptr = (LM_UINT32 *)pBufferVirt;
        for (j = 0; j < BufferSize/4; j++)
            *ptr++ = j;

        if (t3_do_dma(pDevice,BufferPhy,BufferSize, 1) == LM_STATUS_FAILURE)
        {
            goto LM_DmaTestDone;
        }

        MM_Wait(40);
        ptr = (LM_UINT32 *)pBufferVirt;
        /* Fill data with zero */
        for (j = 0; j < BufferSize/4; j++)
            *ptr++ = 0;

        if (t3_do_dma(pDevice,BufferPhy,BufferSize, 0) == LM_STATUS_FAILURE)
        {
            goto LM_DmaTestDone;
        }

        MM_Wait(40);
        /* Check for data */
        ptr = (LM_UINT32 *)pBufferVirt;
        for (j = 0; j < BufferSize/4; j++)
        {
            if (*ptr++ != j)
            {
                if ((pDevice->DmaReadWriteCtrl & DMA_CTRL_WRITE_BOUNDARY_MASK)
                    != DMA_CTRL_WRITE_BOUNDARY_16)
                {
                    pDevice->DmaReadWriteCtrl = (pDevice->DmaReadWriteCtrl &
                         ~DMA_CTRL_WRITE_BOUNDARY_MASK) |
                          DMA_CTRL_WRITE_BOUNDARY_16;
                    REG_WR(pDevice, PciCfg.DmaReadWriteCtrl,
                           pDevice->DmaReadWriteCtrl);
                    break;
                 }
                 else
                 {
                     goto LM_DmaTestDone;
                 }
            }
        }
        if (j == (BufferSize/4))
            dma_success = 1;
    }
    ret = LM_STATUS_SUCCESS;
LM_DmaTestDone:
    memset(pBufferVirt, 0, BufferSize);
    return ret;
}

void
LM_Add32To64Counter(LM_UINT32 Counter32, T3_64BIT_REGISTER *Counter64)
{
    Counter64->Low += Counter32;
    if (Counter64->Low < Counter32)
    {
        Counter64->High++;
    }
}

LM_STATUS
LM_GetStats(PLM_DEVICE_BLOCK pDevice)
{
    PT3_STATS_BLOCK pStats = (PT3_STATS_BLOCK) pDevice->pStatsBlkVirt;

    if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
    {
        return LM_STATUS_FAILURE;
    }

    if (pStats == 0)
    {
        return LM_STATUS_FAILURE;
    }
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutOctets),
        &pStats->ifHCOutOctets);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsCollisions),
        &pStats->etherStatsCollisions);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXonSent),
        &pStats->outXonSent);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXoffSent),
        &pStats->outXoffSent);
    LM_Add32To64Counter(REG_RD(pDevice,
	MacCtrl.dot3StatsInternalMacTransmitErrors),
        &pStats->dot3StatsInternalMacTransmitErrors);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsSingleCollisionFrames),
        &pStats->dot3StatsSingleCollisionFrames);
    LM_Add32To64Counter(REG_RD(pDevice,
	MacCtrl.dot3StatsMultipleCollisionFrames),
        &pStats->dot3StatsMultipleCollisionFrames);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsDeferredTransmissions),
        &pStats->dot3StatsDeferredTransmissions);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsExcessiveCollisions),
        &pStats->dot3StatsExcessiveCollisions);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsLateCollisions),
        &pStats->dot3StatsLateCollisions);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutUcastPkts),
        &pStats->ifHCOutUcastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutMulticastPkts),
        &pStats->ifHCOutMulticastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutBroadcastPkts),
        &pStats->ifHCOutBroadcastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInOctets),
        &pStats->ifHCInOctets);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsFragments),
        &pStats->etherStatsFragments);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInUcastPkts),
        &pStats->ifHCInUcastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInMulticastPkts),
        &pStats->ifHCInMulticastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInBroadcastPkts),
        &pStats->ifHCInBroadcastPkts);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFCSErrors),
        &pStats->dot3StatsFCSErrors);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsAlignmentErrors),
        &pStats->dot3StatsAlignmentErrors);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xonPauseFramesReceived),
        &pStats->xonPauseFramesReceived);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffPauseFramesReceived),
        &pStats->xoffPauseFramesReceived);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.macControlFramesReceived),
        &pStats->macControlFramesReceived);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffStateEntered),
        &pStats->xoffStateEntered);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFramesTooLong),
        &pStats->dot3StatsFramesTooLong);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsJabbers),
        &pStats->etherStatsJabbers);
    LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsUndersizePkts),
        &pStats->etherStatsUndersizePkts);

    return LM_STATUS_SUCCESS;
}