From 13d8b1a32a3a78167526e10a64ad945cfa8879f3 Mon Sep 17 00:00:00 2001 From: Imre Kaloz Date: Sun, 13 Jul 2008 15:16:54 +0000 Subject: add ocf kernel patch SVN-Revision: 11803 --- package/kernel/modules/crypto.mk | 23 + target/linux/generic-2.6/config-2.6.26 | 7 + .../patches-2.6.26/970-ocf_20080704.patch | 19465 +++++++++++++++++++ 3 files changed, 19495 insertions(+) create mode 100644 target/linux/generic-2.6/patches-2.6.26/970-ocf_20080704.patch diff --git a/package/kernel/modules/crypto.mk b/package/kernel/modules/crypto.mk index f8425e809f..f52de1d5f2 100644 --- a/package/kernel/modules/crypto.mk +++ b/package/kernel/modules/crypto.mk @@ -226,6 +226,29 @@ endef $(eval $(call KernelPackage,crypto-misc)) +define KernelPackage/crypto-ocf + SUBMENU:=$(CRYPTO_MENU) + TITLE:=OCF modules + DEPENDS:=+kmod-crypto-core + KCONFIG:= \ + CONFIG_OCF_OCF \ + CONFIG_OCF_CRYPTODEV \ + CONFIG_OCF_CRYPTOSOFT \ + CONFIG_OCF_FIPS=y \ + CONFIG_OCF_RANDOMHARVEST=y + FILES:= \ + $(LINUX_DIR)/crypto/ocf/ocf.$(LINUX_KMOD_SUFFIX) \ + $(LINUX_DIR)/crypto/ocf/cryptodev.$(LINUX_KMOD_SUFFIX) \ + $(LINUX_DIR)/crypto/ocf/cryptosoft.$(LINUX_KMOD_SUFFIX) + AUTOLOAD:=$(call AutoLoad,09, \ + ocf \ + cryptodev \ + cryptosoft \ + ) +endef + +$(eval $(call KernelPackage,crypto-ocf)) + define KernelPackage/crypto-null SUBMENU:=$(CRYPTO_MENU) diff --git a/target/linux/generic-2.6/config-2.6.26 b/target/linux/generic-2.6/config-2.6.26 index f00893e7e7..61809491b5 100644 --- a/target/linux/generic-2.6/config-2.6.26 +++ b/target/linux/generic-2.6/config-2.6.26 @@ -1018,6 +1018,13 @@ CONFIG_NORTEL_HERMES=m # CONFIG_NTFS_DEBUG is not set # CONFIG_NTFS_FS is not set # CONFIG_NTFS_RW is not set +# CONFIG_OCF_BENCH is not set +# CONFIG_OCF_IXP4XX is not set +# CONFIG_OCF_HIFN is not set +# CONFIG_OCF_HIFNHIPP is not set +# CONFIG_OCF_SAFE is not set +# CONFIG_OCF_TALITOS is not set +# CONFIG_OCF_OCFNULL is not set # CONFIG_OCFS2_FS is not set # CONFIG_OSF_PARTITION is not set CONFIG_PACKET=y diff --git a/target/linux/generic-2.6/patches-2.6.26/970-ocf_20080704.patch b/target/linux/generic-2.6/patches-2.6.26/970-ocf_20080704.patch new file mode 100644 index 0000000000..a227284c63 --- /dev/null +++ b/target/linux/generic-2.6/patches-2.6.26/970-ocf_20080704.patch @@ -0,0 +1,19465 @@ +--- a/crypto/Kconfig ++++ b/crypto/Kconfig +@@ -678,3 +678,6 @@ + source "drivers/crypto/Kconfig" + + endif # if CRYPTO ++ ++source "crypto/ocf/Kconfig" ++ +--- a/crypto/Makefile ++++ b/crypto/Makefile +@@ -72,6 +72,8 @@ + obj-$(CONFIG_CRYPTO_PRNG) += prng.o + obj-$(CONFIG_CRYPTO_TEST) += tcrypt.o + ++obj-$(CONFIG_OCF_OCF) += ocf/ ++ + # + # generic algorithms and the async_tx api + # +--- a/drivers/char/random.c ++++ b/drivers/char/random.c +@@ -129,6 +129,9 @@ + * unsigned int value); + * void add_interrupt_randomness(int irq); + * ++ * void random_input_words(__u32 *buf, size_t wordcount, int ent_count) ++ * int random_input_wait(void); ++ * + * add_input_randomness() uses the input layer interrupt timing, as well as + * the event type information from the hardware. + * +@@ -140,6 +143,13 @@ + * a better measure, since the timing of the disk interrupts are more + * unpredictable. + * ++ * random_input_words() just provides a raw block of entropy to the input ++ * pool, such as from a hardware entropy generator. ++ * ++ * random_input_wait() suspends the caller until such time as the ++ * entropy pool falls below the write threshold, and returns a count of how ++ * much entropy (in bits) is needed to sustain the pool. ++ * + * All of these routines try to estimate how many bits of randomness a + * particular randomness source. They do this by keeping track of the + * first and second order deltas of the event timings. +@@ -666,6 +676,61 @@ + } + #endif + ++/* ++ * random_input_words - add bulk entropy to pool ++ * ++ * @buf: buffer to add ++ * @wordcount: number of __u32 words to add ++ * @ent_count: total amount of entropy (in bits) to credit ++ * ++ * this provides bulk input of entropy to the input pool ++ * ++ */ ++void random_input_words(__u32 *buf, size_t wordcount, int ent_count) ++{ ++ mix_pool_bytes(&input_pool, buf, wordcount); ++ ++ credit_entropy_bits(&input_pool, ent_count); ++ ++ DEBUG_ENT("crediting %d bits => %d\n", ++ ent_count, input_pool.entropy_count); ++ /* ++ * Wake up waiting processes if we have enough ++ * entropy. ++ */ ++ if (input_pool.entropy_count >= random_read_wakeup_thresh) ++ wake_up_interruptible(&random_read_wait); ++} ++EXPORT_SYMBOL(random_input_words); ++ ++/* ++ * random_input_wait - wait until random needs entropy ++ * ++ * this function sleeps until the /dev/random subsystem actually ++ * needs more entropy, and then return the amount of entropy ++ * that it would be nice to have added to the system. ++ */ ++int random_input_wait(void) ++{ ++ int count; ++ ++ wait_event_interruptible(random_write_wait, ++ input_pool.entropy_count < random_write_wakeup_thresh); ++ ++ count = random_write_wakeup_thresh - input_pool.entropy_count; ++ ++ /* likely we got woken up due to a signal */ ++ if (count <= 0) count = random_read_wakeup_thresh; ++ ++ DEBUG_ENT("requesting %d bits from input_wait()er %d<%d\n", ++ count, ++ input_pool.entropy_count, random_write_wakeup_thresh); ++ ++ return count; ++} ++EXPORT_SYMBOL(random_input_wait); ++ ++ + #define EXTRACT_SIZE 10 + + /********************************************************************* +--- a/fs/fcntl.c ++++ b/fs/fcntl.c +@@ -191,6 +191,7 @@ + ret = dupfd(file, 0, 0); + return ret; + } ++EXPORT_SYMBOL(sys_dup); + + #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | FASYNC | O_DIRECT | O_NOATIME) + +--- a/include/linux/miscdevice.h ++++ b/include/linux/miscdevice.h +@@ -12,6 +12,7 @@ + #define APOLLO_MOUSE_MINOR 7 + #define PC110PAD_MINOR 9 + /*#define ADB_MOUSE_MINOR 10 FIXME OBSOLETE */ ++#define CRYPTODEV_MINOR 70 /* /dev/crypto */ + #define WATCHDOG_MINOR 130 /* Watchdog timer */ + #define TEMP_MINOR 131 /* Temperature Sensor */ + #define RTC_MINOR 135 +--- a/include/linux/random.h ++++ b/include/linux/random.h +@@ -8,6 +8,7 @@ + #define _LINUX_RANDOM_H + + #include ++#include /* for __u32 in user space */ + + /* ioctl()'s for the random number generator */ + +@@ -32,6 +33,30 @@ + /* Clear the entropy pool and associated counters. (Superuser only.) */ + #define RNDCLEARPOOL _IO( 'R', 0x06 ) + ++#ifdef CONFIG_FIPS_RNG ++ ++/* Size of seed value - equal to AES blocksize */ ++#define AES_BLOCK_SIZE_BYTES 16 ++#define SEED_SIZE_BYTES AES_BLOCK_SIZE_BYTES ++/* Size of AES key */ ++#define KEY_SIZE_BYTES 16 ++ ++/* ioctl() structure used by FIPS 140-2 Tests */ ++struct rand_fips_test { ++ unsigned char key[KEY_SIZE_BYTES]; /* Input */ ++ unsigned char datetime[SEED_SIZE_BYTES]; /* Input */ ++ unsigned char seed[SEED_SIZE_BYTES]; /* Input */ ++ unsigned char result[SEED_SIZE_BYTES]; /* Output */ ++}; ++ ++/* FIPS 140-2 RNG Variable Seed Test. (Superuser only.) */ ++#define RNDFIPSVST _IOWR('R', 0x10, struct rand_fips_test) ++ ++/* FIPS 140-2 RNG Monte Carlo Test. (Superuser only.) */ ++#define RNDFIPSMCT _IOWR('R', 0x11, struct rand_fips_test) ++ ++#endif /* #ifdef CONFIG_FIPS_RNG */ ++ + struct rand_pool_info { + int entropy_count; + int buf_size; +@@ -48,6 +73,10 @@ + unsigned int value); + extern void add_interrupt_randomness(int irq); + ++extern void random_input_words(__u32 *buf, size_t wordcount, int ent_count); ++extern int random_input_wait(void); ++#define HAS_RANDOM_INPUT_WAIT 1 ++ + extern void get_random_bytes(void *buf, int nbytes); + void generate_random_uuid(unsigned char uuid_out[16]); + +--- /dev/null ++++ b/crypto/ocf/hifn/Makefile +@@ -0,0 +1,13 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++obj-$(CONFIG_OCF_HIFN) += hifn7751.o ++obj-$(CONFIG_OCF_HIFNHIPP) += hifnHIPP.o ++ ++obj ?= . ++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/ ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/safe/Makefile +@@ -0,0 +1,12 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++obj-$(CONFIG_OCF_SAFE) += safe.o ++ ++obj ?= . ++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/ ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/Makefile +@@ -0,0 +1,120 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++OCF_OBJS = crypto.o criov.o ++ ++ifdef CONFIG_OCF_RANDOMHARVEST ++ OCF_OBJS += random.o ++endif ++ ++ifdef CONFIG_OCF_FIPS ++ OCF_OBJS += rndtest.o ++endif ++ ++# Add in autoconf.h to get #defines for CONFIG_xxx ++AUTOCONF_H=$(ROOTDIR)/modules/autoconf.h ++ifeq ($(AUTOCONF_H), $(wildcard $(AUTOCONF_H))) ++ EXTRA_CFLAGS += -include $(AUTOCONF_H) ++ export EXTRA_CFLAGS ++endif ++ ++ifndef obj ++ obj ?= . ++ _obj = subdir ++ mod-subdirs := safe hifn ixp4xx talitos ocfnull ++ export-objs += crypto.o criov.o random.o ++ list-multi += ocf.o ++ _slash := ++else ++ _obj = obj ++ _slash := / ++endif ++ ++EXTRA_CFLAGS += -I$(obj)/. ++ ++obj-$(CONFIG_OCF_OCF) += ocf.o ++obj-$(CONFIG_OCF_CRYPTODEV) += cryptodev.o ++obj-$(CONFIG_OCF_CRYPTOSOFT) += cryptosoft.o ++obj-$(CONFIG_OCF_BENCH) += ocf-bench.o ++ ++$(_obj)-$(CONFIG_OCF_SAFE) += safe$(_slash) ++$(_obj)-$(CONFIG_OCF_HIFN) += hifn$(_slash) ++$(_obj)-$(CONFIG_OCF_IXP4XX) += ixp4xx$(_slash) ++$(_obj)-$(CONFIG_OCF_TALITOS) += talitos$(_slash) ++$(_obj)-$(CONFIG_OCF_PASEMI) += pasemi$(_slash) ++$(_obj)-$(CONFIG_OCF_OCFNULL) += ocfnull$(_slash) ++ ++ocf-objs := $(OCF_OBJS) ++ ++$(list-multi) dummy1: $(ocf-objs) ++ $(LD) -r -o $@ $(ocf-objs) ++ ++.PHONY: ++clean: ++ rm -f *.o *.ko .*.o.flags .*.ko.cmd .*.o.cmd .*.mod.o.cmd *.mod.c ++ rm -f */*.o */*.ko */.*.o.cmd */.*.ko.cmd */.*.mod.o.cmd */*.mod.c */.*.o.flags ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ ++# ++# release gen targets ++# ++ ++.PHONY: patch ++patch: ++ REL=`date +%Y%m%d`; \ ++ patch=ocf-linux-$$REL.patch; \ ++ patch24=ocf-linux-24-$$REL.patch; \ ++ patch26=ocf-linux-26-$$REL.patch; \ ++ ( \ ++ find . -name Makefile; \ ++ find . -name Config.in; \ ++ find . -name Kconfig; \ ++ find . -name README; \ ++ find . -name '*.[ch]' | grep -v '.mod.c'; \ ++ ) | while read t; do \ ++ diff -Nau /dev/null $$t | sed 's?^+++ \./?+++ linux/crypto/ocf/?'; \ ++ done > $$patch; \ ++ cat patches/linux-2.4.35-ocf.patch $$patch > $$patch24; \ ++ cat patches/linux-2.6.25-ocf.patch $$patch > $$patch26 ++ ++.PHONY: tarball ++tarball: ++ REL=`date +%Y%m%d`; RELDIR=/tmp/ocf-linux-$$REL; \ ++ CURDIR=`pwd`; \ ++ rm -rf /tmp/ocf-linux-$$REL*; \ ++ mkdir -p $$RELDIR/tools; \ ++ cp README* $$RELDIR; \ ++ cp patches/openss*.patch $$RELDIR; \ ++ cp patches/crypto-tools.patch $$RELDIR; \ ++ cp tools/[!C]* $$RELDIR/tools; \ ++ cd ..; \ ++ tar cvf $$RELDIR/ocf-linux.tar \ ++ --exclude=CVS \ ++ --exclude=.* \ ++ --exclude=*.o \ ++ --exclude=*.ko \ ++ --exclude=*.mod.* \ ++ --exclude=README* \ ++ --exclude=ocf-*.patch \ ++ --exclude=ocf/patches/openss*.patch \ ++ --exclude=ocf/patches/crypto-tools.patch \ ++ --exclude=ocf/tools \ ++ ocf; \ ++ gzip -9 $$RELDIR/ocf-linux.tar; \ ++ cd /tmp; \ ++ tar cvf ocf-linux-$$REL.tar ocf-linux-$$REL; \ ++ gzip -9 ocf-linux-$$REL.tar; \ ++ cd $$CURDIR/../../user; \ ++ rm -rf /tmp/crypto-tools-$$REL*; \ ++ tar cvf /tmp/crypto-tools-$$REL.tar \ ++ --exclude=CVS \ ++ --exclude=.* \ ++ --exclude=*.o \ ++ --exclude=cryptotest \ ++ --exclude=cryptokeytest \ ++ crypto-tools; \ ++ gzip -9 /tmp/crypto-tools-$$REL.tar ++ +--- /dev/null ++++ b/crypto/ocf/talitos/Makefile +@@ -0,0 +1,12 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++obj-$(CONFIG_OCF_TALITOS) += talitos.o ++ ++obj ?= . ++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/ ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/ixp4xx/Makefile +@@ -0,0 +1,104 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++# ++# You will need to point this at your Intel ixp425 includes, this portion ++# of the Makefile only really works under SGLinux with the appropriate libs ++# installed. They can be downloaded from http://www.snapgear.org/ ++# ++ifeq ($(CONFIG_CPU_IXP46X),y) ++IXPLATFORM = ixp46X ++else ++ifeq ($(CONFIG_CPU_IXP43X),y) ++IXPLATFORM = ixp43X ++else ++IXPLATFORM = ixp42X ++endif ++endif ++ ++ifdef CONFIG_IXP400_LIB_2_4 ++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.4/ixp400_xscale_sw ++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.4/ixp_osal ++endif ++ifdef CONFIG_IXP400_LIB_2_1 ++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.1/ixp400_xscale_sw ++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.1/ixp_osal ++endif ++ifdef CONFIG_IXP400_LIB_2_0 ++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.0/ixp400_xscale_sw ++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.0/ixp_osal ++endif ++ifdef IX_XSCALE_SW ++ifdef CONFIG_IXP400_LIB_2_4 ++IXP_CFLAGS = \ ++ -I$(ROOTDIR)/. \ ++ -I$(IX_XSCALE_SW)/src/include \ ++ -I$(OSAL_DIR)/common/include/ \ ++ -I$(OSAL_DIR)/common/include/modules/ \ ++ -I$(OSAL_DIR)/common/include/modules/ddk/ \ ++ -I$(OSAL_DIR)/common/include/modules/bufferMgt/ \ ++ -I$(OSAL_DIR)/common/include/modules/ioMem/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/core/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/modules/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/modules/ddk/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/modules/bufferMgt/ \ ++ -I$(OSAL_DIR)/common/os/linux/include/modules/ioMem/ \ ++ -I$(OSAL_DIR)/platforms/$(IXPLATFORM)/include/ \ ++ -I$(OSAL_DIR)/platforms/$(IXPLATFORM)/os/linux/include/ \ ++ -DENABLE_IOMEM -DENABLE_BUFFERMGT -DENABLE_DDK \ ++ -DUSE_IXP4XX_CRYPTO ++else ++IXP_CFLAGS = \ ++ -I$(ROOTDIR)/. \ ++ -I$(IX_XSCALE_SW)/src/include \ ++ -I$(OSAL_DIR)/ \ ++ -I$(OSAL_DIR)/os/linux/include/ \ ++ -I$(OSAL_DIR)/os/linux/include/modules/ \ ++ -I$(OSAL_DIR)/os/linux/include/modules/ioMem/ \ ++ -I$(OSAL_DIR)/os/linux/include/modules/bufferMgt/ \ ++ -I$(OSAL_DIR)/os/linux/include/core/ \ ++ -I$(OSAL_DIR)/os/linux/include/platforms/ \ ++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ \ ++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ixp425 \ ++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ixp465 \ ++ -I$(OSAL_DIR)/os/linux/include/core/ \ ++ -I$(OSAL_DIR)/include/ \ ++ -I$(OSAL_DIR)/include/modules/ \ ++ -I$(OSAL_DIR)/include/modules/bufferMgt/ \ ++ -I$(OSAL_DIR)/include/modules/ioMem/ \ ++ -I$(OSAL_DIR)/include/platforms/ \ ++ -I$(OSAL_DIR)/include/platforms/ixp400/ \ ++ -DUSE_IXP4XX_CRYPTO ++endif ++endif ++ifdef CONFIG_IXP400_LIB_1_4 ++IXP_CFLAGS = \ ++ -I$(ROOTDIR)/. \ ++ -I$(ROOTDIR)/modules/ixp425/ixp400-1.4/ixp400_xscale_sw/src/include \ ++ -I$(ROOTDIR)/modules/ixp425/ixp400-1.4/ixp400_xscale_sw/src/linux \ ++ -DUSE_IXP4XX_CRYPTO ++endif ++ifndef IXPDIR ++IXPDIR = ixp-version-is-not-supported ++endif ++ ++ifeq ($(CONFIG_CPU_IXP46X),y) ++IXP_CFLAGS += -D__ixp46X ++else ++ifeq ($(CONFIG_CPU_IXP43X),y) ++IXP_CFLAGS += -D__ixp43X ++else ++IXP_CFLAGS += -D__ixp42X ++endif ++endif ++ ++obj-$(CONFIG_OCF_IXP4XX) += ixp4xx.o ++ ++obj ?= . ++EXTRA_CFLAGS += $(IXP_CFLAGS) -I$(obj)/.. -I$(obj)/. ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/ocfnull/Makefile +@@ -0,0 +1,12 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++obj-$(CONFIG_OCF_OCFNULL) += ocfnull.o ++ ++obj ?= . ++EXTRA_CFLAGS += -I$(obj)/.. ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/pasemi/Makefile +@@ -0,0 +1,12 @@ ++# for SGlinux builds ++-include $(ROOTDIR)/modules/.config ++ ++obj-$(CONFIG_OCF_PASEMI) += pasemi.o ++ ++obj ?= . ++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/ ++ ++ifdef TOPDIR ++-include $(TOPDIR)/Rules.make ++endif ++ +--- /dev/null ++++ b/crypto/ocf/Config.in +@@ -0,0 +1,32 @@ ++############################################################################# ++ ++mainmenu_option next_comment ++comment 'OCF Configuration' ++tristate 'OCF (Open Cryptograhic Framework)' CONFIG_OCF_OCF ++dep_mbool ' enable fips RNG checks (fips check on RNG data before use)' \ ++ CONFIG_OCF_FIPS $CONFIG_OCF_OCF ++dep_mbool ' enable harvesting entropy for /dev/random' \ ++ CONFIG_OCF_RANDOMHARVEST $CONFIG_OCF_OCF ++dep_tristate ' cryptodev (user space support)' \ ++ CONFIG_OCF_CRYPTODEV $CONFIG_OCF_OCF ++dep_tristate ' cryptosoft (software crypto engine)' \ ++ CONFIG_OCF_CRYPTOSOFT $CONFIG_OCF_OCF ++dep_tristate ' safenet (HW crypto engine)' \ ++ CONFIG_OCF_SAFE $CONFIG_OCF_OCF ++dep_tristate ' IXP4xx (HW crypto engine)' \ ++ CONFIG_OCF_IXP4XX $CONFIG_OCF_OCF ++dep_mbool ' Enable IXP4xx HW to perform SHA1 and MD5 hashing (very slow)' \ ++ CONFIG_OCF_IXP4XX_SHA1_MD5 $CONFIG_OCF_IXP4XX ++dep_tristate ' hifn (HW crypto engine)' \ ++ CONFIG_OCF_HIFN $CONFIG_OCF_OCF ++dep_tristate ' talitos (HW crypto engine)' \ ++ CONFIG_OCF_TALITOS $CONFIG_OCF_OCF ++dep_tristate ' pasemi (HW crypto engine)' \ ++ CONFIG_OCF_PASEMI $CONFIG_OCF_OCF ++dep_tristate ' ocfnull (does no crypto)' \ ++ CONFIG_OCF_OCFNULL $CONFIG_OCF_OCF ++dep_tristate ' ocf-bench (HW crypto in-kernel benchmark)' \ ++ CONFIG_OCF_BENCH $CONFIG_OCF_OCF ++endmenu ++ ++############################################################################# +--- /dev/null ++++ b/crypto/ocf/Kconfig +@@ -0,0 +1,95 @@ ++menu "OCF Configuration" ++ ++config OCF_OCF ++ tristate "OCF (Open Cryptograhic Framework)" ++ help ++ A linux port of the OpenBSD/FreeBSD crypto framework. ++ ++config OCF_RANDOMHARVEST ++ bool "crypto random --- harvest entropy for /dev/random" ++ depends on OCF_OCF ++ help ++ Includes code to harvest random numbers from devices that support it. ++ ++config OCF_FIPS ++ bool "enable fips RNG checks" ++ depends on OCF_OCF && OCF_RANDOMHARVEST ++ help ++ Run all RNG provided data through a fips check before ++ adding it /dev/random's entropy pool. ++ ++config OCF_CRYPTODEV ++ tristate "cryptodev (user space support)" ++ depends on OCF_OCF ++ help ++ The user space API to access crypto hardware. ++ ++config OCF_CRYPTOSOFT ++ tristate "cryptosoft (software crypto engine)" ++ depends on OCF_OCF ++ help ++ A software driver for the OCF framework that uses ++ the kernel CryptoAPI. ++ ++config OCF_SAFE ++ tristate "safenet (HW crypto engine)" ++ depends on OCF_OCF ++ help ++ A driver for a number of the safenet Excel crypto accelerators. ++ Currently tested and working on the 1141 and 1741. ++ ++config OCF_IXP4XX ++ tristate "IXP4xx (HW crypto engine)" ++ depends on OCF_OCF ++ help ++ XScale IXP4xx crypto accelerator driver. Requires the ++ Intel Access library. ++ ++config OCF_IXP4XX_SHA1_MD5 ++ bool "IXP4xx SHA1 and MD5 Hashing" ++ depends on OCF_IXP4XX ++ help ++ Allows the IXP4xx crypto accelerator to perform SHA1 and MD5 hashing. ++ Note: this is MUCH slower than using cryptosoft (software crypto engine). ++ ++config OCF_HIFN ++ tristate "hifn (HW crypto engine)" ++ depends on OCF_OCF ++ help ++ OCF driver for various HIFN based crypto accelerators. ++ (7951, 7955, 7956, 7751, 7811) ++ ++config OCF_HIFNHIPP ++ tristate "Hifn HIPP (HW packet crypto engine)" ++ depends on OCF_OCF ++ help ++ OCF driver for various HIFN (HIPP) based crypto accelerators ++ (7855) ++ ++config OCF_TALITOS ++ tristate "talitos (HW crypto engine)" ++ depends on OCF_OCF ++ help ++ OCF driver for Freescale's security engine (SEC/talitos). ++ ++config OCF_PASEMI ++ tristate "pasemi (HW crypto engine)" ++ depends on OCF_OCF && PPC_PASEMI ++ help ++ OCF driver for for PA Semi PWRficient DMA Engine ++ ++config OCF_OCFNULL ++ tristate "ocfnull (fake crypto engine)" ++ depends on OCF_OCF ++ help ++ OCF driver for measuring ipsec overheads (does no crypto) ++ ++config OCF_BENCH ++ tristate "ocf-bench (HW crypto in-kernel benchmark)" ++ depends on OCF_OCF ++ help ++ A very simple encryption test for the in-kernel interface ++ of OCF. Also includes code to benchmark the IXP Access library ++ for comparison. ++ ++endmenu +--- /dev/null ++++ b/crypto/ocf/README +@@ -0,0 +1,166 @@ ++README - ocf-linux-20071215 ++--------------------------- ++ ++This README provides instructions for getting ocf-linux compiled and ++operating in a generic linux environment. For other information you ++might like to visit the home page for this project: ++ ++ http://ocf-linux.sourceforge.net/ ++ ++Adding OCF to linux ++------------------- ++ ++ Not much in this file for now, just some notes. I usually build ++ the ocf support as modules but it can be built into the kernel as ++ well. To use it: ++ ++ * mknod /dev/crypto c 10 70 ++ ++ * to add OCF to your kernel source, you have two options. Apply ++ the kernel specific patch: ++ ++ cd linux-2.4*; gunzip < ocf-linux-24-XXXXXXXX.patch.gz | patch -p1 ++ cd linux-2.6*; gunzip < ocf-linux-26-XXXXXXXX.patch.gz | patch -p1 ++ ++ if you do one of the above, then you can proceed to the next step, ++ or you can do the above process by hand with using the patches against ++ linux-2.4.35 and 2.6.23 to include the ocf code under crypto/ocf. ++ Here's how to add it: ++ ++ for 2.4.35 (and later) ++ ++ cd linux-2.4.35/crypto ++ tar xvzf ocf-linux.tar.gz ++ cd .. ++ patch -p1 < crypto/ocf/patches/linux-2.4.35-ocf.patch ++ ++ for 2.6.23 (and later) ++ ++ cd linux-2.6.23/crypto ++ tar xvzf ocf-linux.tar.gz ++ cd .. ++ patch -p1 < crypto/ocf/patches/linux-2.6.23-ocf.patch ++ ++ It should be easy to take this patch and apply it to other more ++ recent versions of the kernels. The same patches should also work ++ relatively easily on kernels as old as 2.6.11 and 2.4.18. ++ ++ * under 2.4 if you are on a non-x86 platform, you may need to: ++ ++ cp linux-2.X.x/include/asm-i386/kmap_types.h linux-2.X.x/include/asm-YYY ++ ++ so that you can build the kernel crypto support needed for the cryptosoft ++ driver. ++ ++ * For simplicity you should enable all the crypto support in your kernel ++ except for the test driver. Likewise for the OCF options. Do not ++ enable OCF crypto drivers for HW that you do not have (for example ++ ixp4xx will not compile on non-Xscale systems). ++ ++ * make sure that cryptodev.h (from ocf-linux.tar.gz) is installed as ++ crypto/cryptodev.h in an include directory that is used for building ++ applications for your platform. For example on a host system that ++ might be: ++ ++ /usr/include/crypto/cryptodev.h ++ ++ * patch your openssl-0.9.8g code with the openssl-0.9.8g.patch. ++ (NOTE: there is no longer a need to patch ssh). The patch is against: ++ openssl-0_9_8e ++ ++ If you need a patch for an older version of openssl, you should look ++ to older OCF releases. This patch is unlikely to work on older ++ openssl versions. ++ ++ openssl-0.9.8g.patch ++ - enables --with-cryptodev for non BSD systems ++ - adds -cpu option to openssl speed for calculating CPU load ++ under linux ++ - fixes null pointer in openssl speed multi thread output. ++ - fixes test keys to work with linux crypto's more stringent ++ key checking. ++ - adds MD5/SHA acceleration (Ronen Shitrit), only enabled ++ with the --with-cryptodev-digests option ++ - fixes bug in engine code caching. ++ ++ * build crypto-tools-XXXXXXXX.tar.gz if you want to try some of the BSD ++ tools for testing OCF (ie., cryptotest). ++ ++How to load the OCF drivers ++--------------------------- ++ ++ First insert the base modules: ++ ++ insmod ocf ++ insmod cryptodev ++ ++ You can then install the software OCF driver with: ++ ++ insmod cryptosoft ++ ++ and one or more of the OCF HW drivers with: ++ ++ insmod safe ++ insmod hifn7751 ++ insmod ixp4xx ++ ... ++ ++ all the drivers take a debug option to enable verbose debug so that ++ you can see what is going on. For debug you load them as: ++ ++ insmod ocf crypto_debug=1 ++ insmod cryptodev cryptodev_debug=1 ++ insmod cryptosoft swcr_debug=1 ++ ++ You may load more than one OCF crypto driver but then there is no guarantee ++ as to which will be used. ++ ++ You can also enable debug at run time on 2.6 systems with the following: ++ ++ echo 1 > /sys/module/ocf/parameters/crypto_debug ++ echo 1 > /sys/module/cryptodev/parameters/cryptodev_debug ++ echo 1 > /sys/module/cryptosoft/parameters/swcr_debug ++ echo 1 > /sys/module/hifn7751/parameters/hifn_debug ++ echo 1 > /sys/module/safe/parameters/safe_debug ++ echo 1 > /sys/module/ixp4xx/parameters/ixp_debug ++ ... ++ ++Testing the OCF support ++----------------------- ++ ++ run "cryptotest", it should do a short test for a couple of ++ des packets. If it does everything is working. ++ ++ If this works, then ssh will use the driver when invoked as: ++ ++ ssh -c 3des username@host ++ ++ to see for sure that it is operating, enable debug as defined above. ++ ++ To get a better idea of performance run: ++ ++ cryptotest 100 4096 ++ ++ There are more options to cryptotest, see the help. ++ ++ It is also possible to use openssl to test the speed of the crypto ++ drivers. ++ ++ openssl speed -evp des -engine cryptodev -elapsed ++ openssl speed -evp des3 -engine cryptodev -elapsed ++ openssl speed -evp aes128 -engine cryptodev -elapsed ++ ++ and multiple threads (10) with: ++ ++ openssl speed -evp des -engine cryptodev -elapsed -multi 10 ++ openssl speed -evp des3 -engine cryptodev -elapsed -multi 10 ++ openssl speed -evp aes128 -engine cryptodev -elapsed -multi 10 ++ ++ for public key testing you can try: ++ ++ cryptokeytest ++ openssl speed -engine cryptodev rsa -elapsed ++ openssl speed -engine cryptodev dsa -elapsed ++ ++David McCullough ++david_mccullough@securecomputing.com +--- /dev/null ++++ b/crypto/ocf/hifn/hifn7751reg.h +@@ -0,0 +1,540 @@ ++/* $FreeBSD: src/sys/dev/hifn/hifn7751reg.h,v 1.7 2007/03/21 03:42:49 sam Exp $ */ ++/* $OpenBSD: hifn7751reg.h,v 1.35 2002/04/08 17:49:42 jason Exp $ */ ++ ++/*- ++ * Invertex AEON / Hifn 7751 driver ++ * Copyright (c) 1999 Invertex Inc. All rights reserved. ++ * Copyright (c) 1999 Theo de Raadt ++ * Copyright (c) 2000-2001 Network Security Technologies, Inc. ++ * http://www.netsec.net ++ * ++ * Please send any comments, feedback, bug-fixes, or feature requests to ++ * software@invertex.com. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored in part by the Defense Advanced Research Projects ++ * Agency (DARPA) and Air Force Research Laboratory, Air Force ++ * Materiel Command, USAF, under agreement number F30602-01-2-0537. ++ * ++ */ ++#ifndef __HIFN_H__ ++#define __HIFN_H__ ++ ++/* ++ * Some PCI configuration space offset defines. The names were made ++ * identical to the names used by the Linux kernel. ++ */ ++#define HIFN_BAR0 PCIR_BAR(0) /* PUC register map */ ++#define HIFN_BAR1 PCIR_BAR(1) /* DMA register map */ ++#define HIFN_TRDY_TIMEOUT 0x40 ++#define HIFN_RETRY_TIMEOUT 0x41 ++ ++/* ++ * PCI vendor and device identifiers ++ * (the names are preserved from their OpenBSD source). ++ */ ++#define PCI_VENDOR_HIFN 0x13a3 /* Hifn */ ++#define PCI_PRODUCT_HIFN_7751 0x0005 /* 7751 */ ++#define PCI_PRODUCT_HIFN_6500 0x0006 /* 6500 */ ++#define PCI_PRODUCT_HIFN_7811 0x0007 /* 7811 */ ++#define PCI_PRODUCT_HIFN_7855 0x001f /* 7855 */ ++#define PCI_PRODUCT_HIFN_7951 0x0012 /* 7951 */ ++#define PCI_PRODUCT_HIFN_7955 0x0020 /* 7954/7955 */ ++#define PCI_PRODUCT_HIFN_7956 0x001d /* 7956 */ ++ ++#define PCI_VENDOR_INVERTEX 0x14e1 /* Invertex */ ++#define PCI_PRODUCT_INVERTEX_AEON 0x0005 /* AEON */ ++ ++#define PCI_VENDOR_NETSEC 0x1660 /* NetSec */ ++#define PCI_PRODUCT_NETSEC_7751 0x7751 /* 7751 */ ++ ++/* ++ * The values below should multiple of 4 -- and be large enough to handle ++ * any command the driver implements. ++ * ++ * MAX_COMMAND = base command + mac command + encrypt command + ++ * mac-key + rc4-key ++ * MAX_RESULT = base result + mac result + mac + encrypt result ++ * ++ * ++ */ ++#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) ++#define HIFN_MAX_RESULT (8 + 4 + 20 + 4) ++ ++/* ++ * hifn_desc_t ++ * ++ * Holds an individual descriptor for any of the rings. ++ */ ++typedef struct hifn_desc { ++ volatile u_int32_t l; /* length and status bits */ ++ volatile u_int32_t p; ++} hifn_desc_t; ++ ++/* ++ * Masks for the "length" field of struct hifn_desc. ++ */ ++#define HIFN_D_LENGTH 0x0000ffff /* length bit mask */ ++#define HIFN_D_MASKDONEIRQ 0x02000000 /* mask the done interrupt */ ++#define HIFN_D_DESTOVER 0x04000000 /* destination overflow */ ++#define HIFN_D_OVER 0x08000000 /* overflow */ ++#define HIFN_D_LAST 0x20000000 /* last descriptor in chain */ ++#define HIFN_D_JUMP 0x40000000 /* jump descriptor */ ++#define HIFN_D_VALID 0x80000000 /* valid bit */ ++ ++ ++/* ++ * Processing Unit Registers (offset from BASEREG0) ++ */ ++#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ ++#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ ++#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ ++#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ ++#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ ++#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ ++#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ ++#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ ++#define HIFN_0_PUCTRL2 0x28 /* Processing Unit Control (2nd map) */ ++#define HIFN_0_MUTE1 0x80 ++#define HIFN_0_MUTE2 0x90 ++#define HIFN_0_SPACESIZE 0x100 /* Register space size */ ++ ++/* Processing Unit Control Register (HIFN_0_PUCTRL) */ ++#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ ++#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ ++#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ ++#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ ++#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ ++ ++/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ ++#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ ++#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ ++#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ ++#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ ++#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ ++#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ ++#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ ++#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ ++#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ ++#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ ++ ++/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ ++#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ ++#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ ++#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ ++#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ ++#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ ++#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ ++#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ ++#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ ++#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ ++#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ ++#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ ++#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ ++#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ ++#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ ++#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ ++#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ ++#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ ++#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ ++#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ ++#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ ++#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ ++#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ ++#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ ++ ++/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ ++#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ ++#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ ++#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ ++#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ ++#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ ++#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ ++#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ ++#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ ++#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ ++#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ ++ ++/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ ++#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ ++#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ ++#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ ++#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ ++#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ ++#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ ++#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ ++#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ ++#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ ++#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ ++#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ ++#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ ++#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ ++#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ ++#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ ++#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ ++#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ ++ ++/* FIFO Status Register (HIFN_0_FIFOSTAT) */ ++#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ ++#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ ++ ++/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ ++#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as this value */ ++ ++/* ++ * DMA Interface Registers (offset from BASEREG1) ++ */ ++#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ ++#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ ++#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ ++#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ ++#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ ++#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ ++#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ ++#define HIFN_1_PLL 0x4c /* 7955/7956: PLL config */ ++#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ ++#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ ++#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ ++#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ ++#define HIFN_1_DMA_CNFG2 0x6c /* 7955/7956: dma config #2 */ ++#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ ++#define HIFN_1_REVID 0x98 /* Revision ID */ ++ ++#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ ++#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ ++#define HIFN_1_PUB_OPLEN 0x304 /* 7951-compat Public Operand Length */ ++#define HIFN_1_PUB_OP 0x308 /* 7951-compat Public Operand */ ++#define HIFN_1_PUB_STATUS 0x30c /* 7951-compat Public Status */ ++#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ ++#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ ++#define HIFN_1_RNG_DATA 0x318 /* RNG data */ ++#define HIFN_1_PUB_MODE 0x320 /* PK mode */ ++#define HIFN_1_PUB_FIFO_OPLEN 0x380 /* first element of oplen fifo */ ++#define HIFN_1_PUB_FIFO_OP 0x384 /* first element of op fifo */ ++#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ ++#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ ++ ++/* DMA Status and Control Register (HIFN_1_DMA_CSR) */ ++#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ ++#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ ++#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ ++#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ ++#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ ++#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ ++#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ ++#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ ++#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ ++#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ ++#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ ++#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ ++#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ ++#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ ++#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ ++#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ ++#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ ++#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ ++#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ ++#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ ++#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ ++#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ ++#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ ++#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ ++#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ ++#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ ++#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ ++#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ ++#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ ++#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ ++#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ ++#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ ++#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ ++#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ ++#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ ++#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ ++#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ ++#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ ++ ++/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ ++#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ ++#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ ++#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ ++#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ ++#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ ++#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ ++#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ ++#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ ++#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ ++#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ ++#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ ++#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ ++#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ ++#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ ++#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ ++#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ ++#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ ++#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ ++#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ ++#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ ++#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ ++#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ ++ ++/* DMA Configuration Register (HIFN_1_DMA_CNFG) */ ++#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ ++#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ ++#define HIFN_DMACNFG_UNLOCK 0x00000800 ++#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ ++#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ ++#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ ++#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ ++#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ ++ ++/* DMA Configuration Register (HIFN_1_DMA_CNFG2) */ ++#define HIFN_DMACNFG2_PKSWAP32 (1 << 19) /* swap the OPLEN/OP reg */ ++#define HIFN_DMACNFG2_PKSWAP8 (1 << 18) /* swap the bits of OPLEN/OP */ ++#define HIFN_DMACNFG2_BAR0_SWAP32 (1<<17) /* swap the bytes of BAR0 */ ++#define HIFN_DMACNFG2_BAR1_SWAP8 (1<<16) /* swap the bits of BAR0 */ ++#define HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT 12 ++#define HIFN_DMACNFG2_INIT_READ_BURST_SHIFT 8 ++#define HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT 4 ++#define HIFN_DMACNFG2_TGT_READ_BURST_SHIFT 0 ++ ++/* 7811 RNG Enable Register (HIFN_1_7811_RNGENA) */ ++#define HIFN_7811_RNGENA_ENA 0x00000001 /* enable RNG */ ++ ++/* 7811 RNG Config Register (HIFN_1_7811_RNGCFG) */ ++#define HIFN_7811_RNGCFG_PRE1 0x00000f00 /* first prescalar */ ++#define HIFN_7811_RNGCFG_OPRE 0x00000080 /* output prescalar */ ++#define HIFN_7811_RNGCFG_DEFL 0x00000f80 /* 2 words/ 1/100 sec */ ++ ++/* 7811 RNG Status Register (HIFN_1_7811_RNGSTS) */ ++#define HIFN_7811_RNGSTS_RDY 0x00004000 /* two numbers in FIFO */ ++#define HIFN_7811_RNGSTS_UFL 0x00001000 /* rng underflow */ ++ ++/* 7811 MIPS Reset Register (HIFN_1_7811_MIPSRST) */ ++#define HIFN_MIPSRST_BAR2SIZE 0xffff0000 /* sdram size */ ++#define HIFN_MIPSRST_GPRAMINIT 0x00008000 /* gpram can be accessed */ ++#define HIFN_MIPSRST_CRAMINIT 0x00004000 /* ctxram can be accessed */ ++#define HIFN_MIPSRST_LED2 0x00000400 /* external LED2 */ ++#define HIFN_MIPSRST_LED1 0x00000200 /* external LED1 */ ++#define HIFN_MIPSRST_LED0 0x00000100 /* external LED0 */ ++#define HIFN_MIPSRST_MIPSDIS 0x00000004 /* disable MIPS */ ++#define HIFN_MIPSRST_MIPSRST 0x00000002 /* warm reset MIPS */ ++#define HIFN_MIPSRST_MIPSCOLD 0x00000001 /* cold reset MIPS */ ++ ++/* Public key reset register (HIFN_1_PUB_RESET) */ ++#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ ++ ++/* Public operation register (HIFN_1_PUB_OP) */ ++#define HIFN_PUBOP_AOFFSET 0x0000003e /* A offset */ ++#define HIFN_PUBOP_BOFFSET 0x00000fc0 /* B offset */ ++#define HIFN_PUBOP_MOFFSET 0x0003f000 /* M offset */ ++#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ ++#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ ++#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ ++#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ ++#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ ++#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ ++#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ ++#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ ++#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ ++#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ ++#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ ++#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ ++#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular Red */ ++#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular Exp */ ++ ++/* Public operand length register (HIFN_1_PUB_OPLEN) */ ++#define HIFN_PUBOPLEN_MODLEN 0x0000007f ++#define HIFN_PUBOPLEN_EXPLEN 0x0003ff80 ++#define HIFN_PUBOPLEN_REDLEN 0x003c0000 ++ ++/* Public status register (HIFN_1_PUB_STATUS) */ ++#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ ++#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ ++#define HIFN_PUBSTS_FIFO_EMPTY 0x00000100 /* fifo empty */ ++#define HIFN_PUBSTS_FIFO_FULL 0x00000200 /* fifo full */ ++#define HIFN_PUBSTS_FIFO_OVFL 0x00000400 /* fifo overflow */ ++#define HIFN_PUBSTS_FIFO_WRITE 0x000f0000 /* fifo write */ ++#define HIFN_PUBSTS_FIFO_READ 0x0f000000 /* fifo read */ ++ ++/* Public interrupt enable register (HIFN_1_PUB_IEN) */ ++#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ ++ ++/* Random number generator config register (HIFN_1_RNG_CONFIG) */ ++#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ ++ ++/* ++ * Register offsets in register set 1 ++ */ ++ ++#define HIFN_UNLOCK_SECRET1 0xf4 ++#define HIFN_UNLOCK_SECRET2 0xfc ++ ++/* ++ * PLL config register ++ * ++ * This register is present only on 7954/7955/7956 parts. It must be ++ * programmed according to the bus interface method used by the h/w. ++ * Note that the parts require a stable clock. Since the PCI clock ++ * may vary the reference clock must usually be used. To avoid ++ * overclocking the core logic, setup must be done carefully, refer ++ * to the driver for details. The exact multiplier required varies ++ * by part and system configuration; refer to the Hifn documentation. ++ */ ++#define HIFN_PLL_REF_SEL 0x00000001 /* REF/HBI clk selection */ ++#define HIFN_PLL_BP 0x00000002 /* bypass (used during setup) */ ++/* bit 2 reserved */ ++#define HIFN_PLL_PK_CLK_SEL 0x00000008 /* public key clk select */ ++#define HIFN_PLL_PE_CLK_SEL 0x00000010 /* packet engine clk select */ ++/* bits 5-9 reserved */ ++#define HIFN_PLL_MBSET 0x00000400 /* must be set to 1 */ ++#define HIFN_PLL_ND 0x00003800 /* Fpll_ref multiplier select */ ++#define HIFN_PLL_ND_SHIFT 11 ++#define HIFN_PLL_ND_2 0x00000000 /* 2x */ ++#define HIFN_PLL_ND_4 0x00000800 /* 4x */ ++#define HIFN_PLL_ND_6 0x00001000 /* 6x */ ++#define HIFN_PLL_ND_8 0x00001800 /* 8x */ ++#define HIFN_PLL_ND_10 0x00002000 /* 10x */ ++#define HIFN_PLL_ND_12 0x00002800 /* 12x */ ++/* bits 14-15 reserved */ ++#define HIFN_PLL_IS 0x00010000 /* charge pump current select */ ++/* bits 17-31 reserved */ ++ ++/* ++ * Board configuration specifies only these bits. ++ */ ++#define HIFN_PLL_CONFIG (HIFN_PLL_IS|HIFN_PLL_ND|HIFN_PLL_REF_SEL) ++ ++/* ++ * Public Key Engine Mode Register ++ */ ++#define HIFN_PKMODE_HOSTINVERT (1 << 0) /* HOST INVERT */ ++#define HIFN_PKMODE_ENHANCED (1 << 1) /* Enable enhanced mode */ ++ ++ ++/********************************************************************* ++ * Structs for board commands ++ * ++ *********************************************************************/ ++ ++/* ++ * Structure to help build up the command data structure. ++ */ ++typedef struct hifn_base_command { ++ volatile u_int16_t masks; ++ volatile u_int16_t session_num; ++ volatile u_int16_t total_source_count; ++ volatile u_int16_t total_dest_count; ++} hifn_base_command_t; ++ ++#define HIFN_BASE_CMD_MAC 0x0400 ++#define HIFN_BASE_CMD_CRYPT 0x0800 ++#define HIFN_BASE_CMD_DECODE 0x2000 ++#define HIFN_BASE_CMD_SRCLEN_M 0xc000 ++#define HIFN_BASE_CMD_SRCLEN_S 14 ++#define HIFN_BASE_CMD_DSTLEN_M 0x3000 ++#define HIFN_BASE_CMD_DSTLEN_S 12 ++#define HIFN_BASE_CMD_LENMASK_HI 0x30000 ++#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff ++ ++/* ++ * Structure to help build up the command data structure. ++ */ ++typedef struct hifn_crypt_command { ++ volatile u_int16_t masks; ++ volatile u_int16_t header_skip; ++ volatile u_int16_t source_count; ++ volatile u_int16_t reserved; ++} hifn_crypt_command_t; ++ ++#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ ++#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ ++#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ ++#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ ++#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ ++#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ ++#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ ++#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ ++#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ ++#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ ++#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ ++#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ ++#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ ++ ++#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 ++#define HIFN_CRYPT_CMD_SRCLEN_S 14 ++ ++#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ ++#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ ++#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ ++#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ ++ ++/* ++ * Structure to help build up the command data structure. ++ */ ++typedef struct hifn_mac_command { ++ volatile u_int16_t masks; ++ volatile u_int16_t header_skip; ++ volatile u_int16_t source_count; ++ volatile u_int16_t reserved; ++} hifn_mac_command_t; ++ ++#define HIFN_MAC_CMD_ALG_MASK 0x0001 ++#define HIFN_MAC_CMD_ALG_SHA1 0x0000 ++#define HIFN_MAC_CMD_ALG_MD5 0x0001 ++#define HIFN_MAC_CMD_MODE_MASK 0x000c ++#define HIFN_MAC_CMD_MODE_HMAC 0x0000 ++#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 ++#define HIFN_MAC_CMD_MODE_HASH 0x0008 ++#define HIFN_MAC_CMD_MODE_FULL 0x0004 ++#define HIFN_MAC_CMD_TRUNC 0x0010 ++#define HIFN_MAC_CMD_RESULT 0x0020 ++#define HIFN_MAC_CMD_APPEND 0x0040 ++#define HIFN_MAC_CMD_SRCLEN_M 0xc000 ++#define HIFN_MAC_CMD_SRCLEN_S 14 ++ ++/* ++ * MAC POS IPsec initiates authentication after encryption on encodes ++ * and before decryption on decodes. ++ */ ++#define HIFN_MAC_CMD_POS_IPSEC 0x0200 ++#define HIFN_MAC_CMD_NEW_KEY 0x0800 ++ ++/* ++ * The poll frequency and poll scalar defines are unshifted values used ++ * to set fields in the DMA Configuration Register. ++ */ ++#ifndef HIFN_POLL_FREQUENCY ++#define HIFN_POLL_FREQUENCY 0x1 ++#endif ++ ++#ifndef HIFN_POLL_SCALAR ++#define HIFN_POLL_SCALAR 0x0 ++#endif ++ ++#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ ++#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ ++#endif /* __HIFN_H__ */ +--- /dev/null ++++ b/crypto/ocf/hifn/hifn7751var.h +@@ -0,0 +1,369 @@ ++/* $FreeBSD: src/sys/dev/hifn/hifn7751var.h,v 1.9 2007/03/21 03:42:49 sam Exp $ */ ++/* $OpenBSD: hifn7751var.h,v 1.42 2002/04/08 17:49:42 jason Exp $ */ ++ ++/*- ++ * Invertex AEON / Hifn 7751 driver ++ * Copyright (c) 1999 Invertex Inc. All rights reserved. ++ * Copyright (c) 1999 Theo de Raadt ++ * Copyright (c) 2000-2001 Network Security Technologies, Inc. ++ * http://www.netsec.net ++ * ++ * Please send any comments, feedback, bug-fixes, or feature requests to ++ * software@invertex.com. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored in part by the Defense Advanced Research Projects ++ * Agency (DARPA) and Air Force Research Laboratory, Air Force ++ * Materiel Command, USAF, under agreement number F30602-01-2-0537. ++ * ++ */ ++ ++#ifndef __HIFN7751VAR_H__ ++#define __HIFN7751VAR_H__ ++ ++#ifdef __KERNEL__ ++ ++/* ++ * Some configurable values for the driver. By default command+result ++ * descriptor rings are the same size. The src+dst descriptor rings ++ * are sized at 3.5x the number of potential commands. Slower parts ++ * (e.g. 7951) tend to run out of src descriptors; faster parts (7811) ++ * src+cmd/result descriptors. It's not clear that increasing the size ++ * of the descriptor rings helps performance significantly as other ++ * factors tend to come into play (e.g. copying misaligned packets). ++ */ ++#define HIFN_D_CMD_RSIZE 24 /* command descriptors */ ++#define HIFN_D_SRC_RSIZE ((HIFN_D_CMD_RSIZE * 7) / 2) /* source descriptors */ ++#define HIFN_D_RES_RSIZE HIFN_D_CMD_RSIZE /* result descriptors */ ++#define HIFN_D_DST_RSIZE HIFN_D_SRC_RSIZE /* destination descriptors */ ++ ++/* ++ * Length values for cryptography ++ */ ++#define HIFN_DES_KEY_LENGTH 8 ++#define HIFN_3DES_KEY_LENGTH 24 ++#define HIFN_MAX_CRYPT_KEY_LENGTH HIFN_3DES_KEY_LENGTH ++#define HIFN_IV_LENGTH 8 ++#define HIFN_AES_IV_LENGTH 16 ++#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH ++ ++/* ++ * Length values for authentication ++ */ ++#define HIFN_MAC_KEY_LENGTH 64 ++#define HIFN_MD5_LENGTH 16 ++#define HIFN_SHA1_LENGTH 20 ++#define HIFN_MAC_TRUNC_LENGTH 12 ++ ++#define MAX_SCATTER 64 ++ ++/* ++ * Data structure to hold all 4 rings and any other ring related data. ++ */ ++struct hifn_dma { ++ /* ++ * Descriptor rings. We add +1 to the size to accomidate the ++ * jump descriptor. ++ */ ++ struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1]; ++ struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1]; ++ struct hifn_desc dstr[HIFN_D_DST_RSIZE+1]; ++ struct hifn_desc resr[HIFN_D_RES_RSIZE+1]; ++ ++ struct hifn_command *hifn_commands[HIFN_D_RES_RSIZE]; ++ ++ u_char command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; ++ u_char result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; ++ u_int32_t slop[HIFN_D_CMD_RSIZE]; ++ ++ u_int64_t test_src, test_dst; ++ ++ /* ++ * Our current positions for insertion and removal from the desriptor ++ * rings. ++ */ ++ int cmdi, srci, dsti, resi; ++ volatile int cmdu, srcu, dstu, resu; ++ int cmdk, srck, dstk, resk; ++}; ++ ++struct hifn_session { ++ int hs_used; ++ int hs_mlen; ++ u_int8_t hs_iv[HIFN_MAX_IV_LENGTH]; ++}; ++ ++#define HIFN_RING_SYNC(sc, r, i, f) \ ++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */ ++ ++#define HIFN_CMDR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), cmdr, (i), (f)) ++#define HIFN_RESR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), resr, (i), (f)) ++#define HIFN_SRCR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), srcr, (i), (f)) ++#define HIFN_DSTR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), dstr, (i), (f)) ++ ++#define HIFN_CMD_SYNC(sc, i, f) \ ++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */ ++ ++#define HIFN_RES_SYNC(sc, i, f) \ ++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */ ++ ++typedef int bus_size_t; ++ ++/* ++ * Holds data specific to a single HIFN board. ++ */ ++struct hifn_softc { ++ softc_device_decl sc_dev; ++ ++ struct pci_dev *sc_pcidev; /* PCI device pointer */ ++ spinlock_t sc_mtx; /* per-instance lock */ ++ ++ int sc_num; /* for multiple devs */ ++ ++ ocf_iomem_t sc_bar0; ++ bus_size_t sc_bar0_lastreg;/* bar0 last reg written */ ++ ocf_iomem_t sc_bar1; ++ bus_size_t sc_bar1_lastreg;/* bar1 last reg written */ ++ ++ int sc_irq; ++ ++ u_int32_t sc_dmaier; ++ u_int32_t sc_drammodel; /* 1=dram, 0=sram */ ++ u_int32_t sc_pllconfig; /* 7954/7955/7956 PLL config */ ++ ++ struct hifn_dma *sc_dma; ++ dma_addr_t sc_dma_physaddr;/* physical address of sc_dma */ ++ ++ int sc_dmansegs; ++ int32_t sc_cid; ++ int sc_maxses; ++ int sc_nsessions; ++ struct hifn_session *sc_sessions; ++ int sc_ramsize; ++ int sc_flags; ++#define HIFN_HAS_RNG 0x1 /* includes random number generator */ ++#define HIFN_HAS_PUBLIC 0x2 /* includes public key support */ ++#define HIFN_HAS_AES 0x4 /* includes AES support */ ++#define HIFN_IS_7811 0x8 /* Hifn 7811 part */ ++#define HIFN_IS_7956 0x10 /* Hifn 7956/7955 don't have SDRAM */ ++ ++ struct timer_list sc_tickto; /* for managing DMA */ ++ ++ int sc_rngfirst; ++ int sc_rnghz; /* RNG polling frequency */ ++ ++ int sc_c_busy; /* command ring busy */ ++ int sc_s_busy; /* source data ring busy */ ++ int sc_d_busy; /* destination data ring busy */ ++ int sc_r_busy; /* result ring busy */ ++ int sc_active; /* for initial countdown */ ++ int sc_needwakeup; /* ops q'd wating on resources */ ++ int sc_curbatch; /* # ops submitted w/o int */ ++ int sc_suspended; ++#ifdef HIFN_VULCANDEV ++ struct cdev *sc_pkdev; ++#endif ++}; ++ ++#define HIFN_LOCK(_sc) spin_lock_irqsave(&(_sc)->sc_mtx, l_flags) ++#define HIFN_UNLOCK(_sc) spin_unlock_irqrestore(&(_sc)->sc_mtx, l_flags) ++ ++/* ++ * hifn_command_t ++ * ++ * This is the control structure used to pass commands to hifn_encrypt(). ++ * ++ * flags ++ * ----- ++ * Flags is the bitwise "or" values for command configuration. A single ++ * encrypt direction needs to be set: ++ * ++ * HIFN_ENCODE or HIFN_DECODE ++ * ++ * To use cryptography, a single crypto algorithm must be included: ++ * ++ * HIFN_CRYPT_3DES or HIFN_CRYPT_DES ++ * ++ * To use authentication is used, a single MAC algorithm must be included: ++ * ++ * HIFN_MAC_MD5 or HIFN_MAC_SHA1 ++ * ++ * By default MD5 uses a 16 byte hash and SHA-1 uses a 20 byte hash. ++ * If the value below is set, hash values are truncated or assumed ++ * truncated to 12 bytes: ++ * ++ * HIFN_MAC_TRUNC ++ * ++ * Keys for encryption and authentication can be sent as part of a command, ++ * or the last key value used with a particular session can be retrieved ++ * and used again if either of these flags are not specified. ++ * ++ * HIFN_CRYPT_NEW_KEY, HIFN_MAC_NEW_KEY ++ * ++ * session_num ++ * ----------- ++ * A number between 0 and 2048 (for DRAM models) or a number between ++ * 0 and 768 (for SRAM models). Those who don't want to use session ++ * numbers should leave value at zero and send a new crypt key and/or ++ * new MAC key on every command. If you use session numbers and ++ * don't send a key with a command, the last key sent for that same ++ * session number will be used. ++ * ++ * Warning: Using session numbers and multiboard at the same time ++ * is currently broken. ++ * ++ * mbuf ++ * ---- ++ * Either fill in the mbuf pointer and npa=0 or ++ * fill packp[] and packl[] and set npa to > 0 ++ * ++ * mac_header_skip ++ * --------------- ++ * The number of bytes of the source_buf that are skipped over before ++ * authentication begins. This must be a number between 0 and 2^16-1 ++ * and can be used by IPsec implementers to skip over IP headers. ++ * *** Value ignored if authentication not used *** ++ * ++ * crypt_header_skip ++ * ----------------- ++ * The number of bytes of the source_buf that are skipped over before ++ * the cryptographic operation begins. This must be a number between 0 ++ * and 2^16-1. For IPsec, this number will always be 8 bytes larger ++ * than the auth_header_skip (to skip over the ESP header). ++ * *** Value ignored if cryptography not used *** ++ * ++ */ ++struct hifn_operand { ++ union { ++ struct sk_buff *skb; ++ struct uio *io; ++ unsigned char *buf; ++ } u; ++ void *map; ++ bus_size_t mapsize; ++ int nsegs; ++ struct { ++ dma_addr_t ds_addr; ++ int ds_len; ++ } segs[MAX_SCATTER]; ++}; ++ ++struct hifn_command { ++ u_int16_t session_num; ++ u_int16_t base_masks, cry_masks, mac_masks; ++ u_int8_t iv[HIFN_MAX_IV_LENGTH], *ck, mac[HIFN_MAC_KEY_LENGTH]; ++ int cklen; ++ int sloplen, slopidx; ++ ++ struct hifn_operand src; ++ struct hifn_operand dst; ++ ++ struct hifn_softc *softc; ++ struct cryptop *crp; ++ struct cryptodesc *enccrd, *maccrd; ++}; ++ ++#define src_skb src.u.skb ++#define src_io src.u.io ++#define src_map src.map ++#define src_mapsize src.mapsize ++#define src_segs src.segs ++#define src_nsegs src.nsegs ++#define src_buf src.u.buf ++ ++#define dst_skb dst.u.skb ++#define dst_io dst.u.io ++#define dst_map dst.map ++#define dst_mapsize dst.mapsize ++#define dst_segs dst.segs ++#define dst_nsegs dst.nsegs ++#define dst_buf dst.u.buf ++ ++/* ++ * Return values for hifn_crypto() ++ */ ++#define HIFN_CRYPTO_SUCCESS 0 ++#define HIFN_CRYPTO_BAD_INPUT (-1) ++#define HIFN_CRYPTO_RINGS_FULL (-2) ++ ++/************************************************************************** ++ * ++ * Function: hifn_crypto ++ * ++ * Purpose: Called by external drivers to begin an encryption on the ++ * HIFN board. ++ * ++ * Blocking/Non-blocking Issues ++ * ============================ ++ * The driver cannot block in hifn_crypto (no calls to tsleep) currently. ++ * hifn_crypto() returns HIFN_CRYPTO_RINGS_FULL if there is not enough ++ * room in any of the rings for the request to proceed. ++ * ++ * Return Values ++ * ============= ++ * 0 for success, negative values on error ++ * ++ * Defines for negative error codes are: ++ * ++ * HIFN_CRYPTO_BAD_INPUT : The passed in command had invalid settings. ++ * HIFN_CRYPTO_RINGS_FULL : All DMA rings were full and non-blocking ++ * behaviour was requested. ++ * ++ *************************************************************************/ ++ ++/* ++ * Convert back and forth from 'sid' to 'card' and 'session' ++ */ ++#define HIFN_CARD(sid) (((sid) & 0xf0000000) >> 28) ++#define HIFN_SESSION(sid) ((sid) & 0x000007ff) ++#define HIFN_SID(crd,ses) (((crd) << 28) | ((ses) & 0x7ff)) ++ ++#endif /* _KERNEL */ ++ ++struct hifn_stats { ++ u_int64_t hst_ibytes; ++ u_int64_t hst_obytes; ++ u_int32_t hst_ipackets; ++ u_int32_t hst_opackets; ++ u_int32_t hst_invalid; ++ u_int32_t hst_nomem; /* malloc or one of hst_nomem_* */ ++ u_int32_t hst_abort; ++ u_int32_t hst_noirq; /* IRQ for no reason */ ++ u_int32_t hst_totbatch; /* ops submitted w/o interrupt */ ++ u_int32_t hst_maxbatch; /* max ops submitted together */ ++ u_int32_t hst_unaligned; /* unaligned src caused copy */ ++ /* ++ * The following divides hst_nomem into more specific buckets. ++ */ ++ u_int32_t hst_nomem_map; /* bus_dmamap_create failed */ ++ u_int32_t hst_nomem_load; /* bus_dmamap_load_* failed */ ++ u_int32_t hst_nomem_mbuf; /* MGET* failed */ ++ u_int32_t hst_nomem_mcl; /* MCLGET* failed */ ++ u_int32_t hst_nomem_cr; /* out of command/result descriptor */ ++ u_int32_t hst_nomem_sd; /* out of src/dst descriptors */ ++}; ++ ++#endif /* __HIFN7751VAR_H__ */ +--- /dev/null ++++ b/crypto/ocf/hifn/hifn7751.c +@@ -0,0 +1,2970 @@ ++/* $OpenBSD: hifn7751.c,v 1.120 2002/05/17 00:33:34 deraadt Exp $ */ ++ ++/*- ++ * Invertex AEON / Hifn 7751 driver ++ * Copyright (c) 1999 Invertex Inc. All rights reserved. ++ * Copyright (c) 1999 Theo de Raadt ++ * Copyright (c) 2000-2001 Network Security Technologies, Inc. ++ * http://www.netsec.net ++ * Copyright (c) 2003 Hifn Inc. ++ * ++ * This driver is based on a previous driver by Invertex, for which they ++ * requested: Please send any comments, feedback, bug-fixes, or feature ++ * requests to software@invertex.com. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored in part by the Defense Advanced Research Projects ++ * Agency (DARPA) and Air Force Research Laboratory, Air Force ++ * Materiel Command, USAF, under agreement number F30602-01-2-0537. ++ * ++ * ++__FBSDID("$FreeBSD: src/sys/dev/hifn/hifn7751.c,v 1.40 2007/03/21 03:42:49 sam Exp $"); ++ */ ++ ++/* ++ * Driver for various Hifn encryption processors. ++ */ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#include ++#include ++ ++#if 1 ++#define DPRINTF(a...) if (hifn_debug) { \ ++ printk("%s: ", sc ? \ ++ device_get_nameunit(sc->sc_dev) : "hifn"); \ ++ printk(a); \ ++ } else ++#else ++#define DPRINTF(a...) ++#endif ++ ++static inline int ++pci_get_revid(struct pci_dev *dev) ++{ ++ u8 rid = 0; ++ pci_read_config_byte(dev, PCI_REVISION_ID, &rid); ++ return rid; ++} ++ ++static struct hifn_stats hifnstats; ++ ++#define debug hifn_debug ++int hifn_debug = 0; ++module_param(hifn_debug, int, 0644); ++MODULE_PARM_DESC(hifn_debug, "Enable debug"); ++ ++int hifn_maxbatch = 1; ++module_param(hifn_maxbatch, int, 0644); ++MODULE_PARM_DESC(hifn_maxbatch, "max ops to batch w/o interrupt"); ++ ++#ifdef MODULE_PARM ++char *hifn_pllconfig = NULL; ++MODULE_PARM(hifn_pllconfig, "s"); ++#else ++char hifn_pllconfig[32]; /* This setting is RO after loading */ ++module_param_string(hifn_pllconfig, hifn_pllconfig, 32, 0444); ++#endif ++MODULE_PARM_DESC(hifn_pllconfig, "PLL config, ie., pci66, ext33, ..."); ++ ++#ifdef HIFN_VULCANDEV ++#include ++#include ++ ++static struct cdevsw vulcanpk_cdevsw; /* forward declaration */ ++#endif ++ ++/* ++ * Prototypes and count for the pci_device structure ++ */ ++static int hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent); ++static void hifn_remove(struct pci_dev *dev); ++ ++static int hifn_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int hifn_freesession(device_t, u_int64_t); ++static int hifn_process(device_t, struct cryptop *, int); ++ ++static device_method_t hifn_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, hifn_newsession), ++ DEVMETHOD(cryptodev_freesession,hifn_freesession), ++ DEVMETHOD(cryptodev_process, hifn_process), ++}; ++ ++static void hifn_reset_board(struct hifn_softc *, int); ++static void hifn_reset_puc(struct hifn_softc *); ++static void hifn_puc_wait(struct hifn_softc *); ++static int hifn_enable_crypto(struct hifn_softc *); ++static void hifn_set_retry(struct hifn_softc *sc); ++static void hifn_init_dma(struct hifn_softc *); ++static void hifn_init_pci_registers(struct hifn_softc *); ++static int hifn_sramsize(struct hifn_softc *); ++static int hifn_dramsize(struct hifn_softc *); ++static int hifn_ramtype(struct hifn_softc *); ++static void hifn_sessions(struct hifn_softc *); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++static irqreturn_t hifn_intr(int irq, void *arg); ++#else ++static irqreturn_t hifn_intr(int irq, void *arg, struct pt_regs *regs); ++#endif ++static u_int hifn_write_command(struct hifn_command *, u_int8_t *); ++static u_int32_t hifn_next_signature(u_int32_t a, u_int cnt); ++static void hifn_callback(struct hifn_softc *, struct hifn_command *, u_int8_t *); ++static int hifn_crypto(struct hifn_softc *, struct hifn_command *, struct cryptop *, int); ++static int hifn_readramaddr(struct hifn_softc *, int, u_int8_t *); ++static int hifn_writeramaddr(struct hifn_softc *, int, u_int8_t *); ++static int hifn_dmamap_load_src(struct hifn_softc *, struct hifn_command *); ++static int hifn_dmamap_load_dst(struct hifn_softc *, struct hifn_command *); ++static int hifn_init_pubrng(struct hifn_softc *); ++static void hifn_tick(unsigned long arg); ++static void hifn_abort(struct hifn_softc *); ++static void hifn_alloc_slot(struct hifn_softc *, int *, int *, int *, int *); ++ ++static void hifn_write_reg_0(struct hifn_softc *, bus_size_t, u_int32_t); ++static void hifn_write_reg_1(struct hifn_softc *, bus_size_t, u_int32_t); ++ ++#ifdef CONFIG_OCF_RANDOMHARVEST ++static int hifn_read_random(void *arg, u_int32_t *buf, int len); ++#endif ++ ++#define HIFN_MAX_CHIPS 8 ++static struct hifn_softc *hifn_chip_idx[HIFN_MAX_CHIPS]; ++ ++static __inline u_int32_t ++READ_REG_0(struct hifn_softc *sc, bus_size_t reg) ++{ ++ u_int32_t v = readl(sc->sc_bar0 + reg); ++ sc->sc_bar0_lastreg = (bus_size_t) -1; ++ return (v); ++} ++#define WRITE_REG_0(sc, reg, val) hifn_write_reg_0(sc, reg, val) ++ ++static __inline u_int32_t ++READ_REG_1(struct hifn_softc *sc, bus_size_t reg) ++{ ++ u_int32_t v = readl(sc->sc_bar1 + reg); ++ sc->sc_bar1_lastreg = (bus_size_t) -1; ++ return (v); ++} ++#define WRITE_REG_1(sc, reg, val) hifn_write_reg_1(sc, reg, val) ++ ++/* ++ * map in a given buffer (great on some arches :-) ++ */ ++ ++static int ++pci_map_uio(struct hifn_softc *sc, struct hifn_operand *buf, struct uio *uio) ++{ ++ struct iovec *iov = uio->uio_iov; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ buf->mapsize = 0; ++ for (buf->nsegs = 0; buf->nsegs < uio->uio_iovcnt; ) { ++ buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev, ++ iov->iov_base, iov->iov_len, ++ PCI_DMA_BIDIRECTIONAL); ++ buf->segs[buf->nsegs].ds_len = iov->iov_len; ++ buf->mapsize += iov->iov_len; ++ iov++; ++ buf->nsegs++; ++ } ++ /* identify this buffer by the first segment */ ++ buf->map = (void *) buf->segs[0].ds_addr; ++ return(0); ++} ++ ++/* ++ * map in a given sk_buff ++ */ ++ ++static int ++pci_map_skb(struct hifn_softc *sc,struct hifn_operand *buf,struct sk_buff *skb) ++{ ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ buf->mapsize = 0; ++ ++ buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev, ++ skb->data, skb_headlen(skb), PCI_DMA_BIDIRECTIONAL); ++ buf->segs[0].ds_len = skb_headlen(skb); ++ buf->mapsize += buf->segs[0].ds_len; ++ ++ buf->nsegs = 1; ++ ++ for (i = 0; i < skb_shinfo(skb)->nr_frags; ) { ++ buf->segs[buf->nsegs].ds_len = skb_shinfo(skb)->frags[i].size; ++ buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev, ++ page_address(skb_shinfo(skb)->frags[i].page) + ++ skb_shinfo(skb)->frags[i].page_offset, ++ buf->segs[buf->nsegs].ds_len, PCI_DMA_BIDIRECTIONAL); ++ buf->mapsize += buf->segs[buf->nsegs].ds_len; ++ buf->nsegs++; ++ } ++ ++ /* identify this buffer by the first segment */ ++ buf->map = (void *) buf->segs[0].ds_addr; ++ return(0); ++} ++ ++/* ++ * map in a given contiguous buffer ++ */ ++ ++static int ++pci_map_buf(struct hifn_softc *sc,struct hifn_operand *buf, void *b, int len) ++{ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ buf->mapsize = 0; ++ buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev, ++ b, len, PCI_DMA_BIDIRECTIONAL); ++ buf->segs[0].ds_len = len; ++ buf->mapsize += buf->segs[0].ds_len; ++ buf->nsegs = 1; ++ ++ /* identify this buffer by the first segment */ ++ buf->map = (void *) buf->segs[0].ds_addr; ++ return(0); ++} ++ ++#if 0 /* not needed at this time */ ++static void ++pci_sync_iov(struct hifn_softc *sc, struct hifn_operand *buf) ++{ ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ for (i = 0; i < buf->nsegs; i++) ++ pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr, ++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL); ++} ++#endif ++ ++static void ++pci_unmap_buf(struct hifn_softc *sc, struct hifn_operand *buf) ++{ ++ int i; ++ DPRINTF("%s()\n", __FUNCTION__); ++ for (i = 0; i < buf->nsegs; i++) { ++ pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr, ++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL); ++ buf->segs[i].ds_addr = 0; ++ buf->segs[i].ds_len = 0; ++ } ++ buf->nsegs = 0; ++ buf->mapsize = 0; ++ buf->map = 0; ++} ++ ++static const char* ++hifn_partname(struct hifn_softc *sc) ++{ ++ /* XXX sprintf numbers when not decoded */ ++ switch (pci_get_vendor(sc->sc_pcidev)) { ++ case PCI_VENDOR_HIFN: ++ switch (pci_get_device(sc->sc_pcidev)) { ++ case PCI_PRODUCT_HIFN_6500: return "Hifn 6500"; ++ case PCI_PRODUCT_HIFN_7751: return "Hifn 7751"; ++ case PCI_PRODUCT_HIFN_7811: return "Hifn 7811"; ++ case PCI_PRODUCT_HIFN_7951: return "Hifn 7951"; ++ case PCI_PRODUCT_HIFN_7955: return "Hifn 7955"; ++ case PCI_PRODUCT_HIFN_7956: return "Hifn 7956"; ++ } ++ return "Hifn unknown-part"; ++ case PCI_VENDOR_INVERTEX: ++ switch (pci_get_device(sc->sc_pcidev)) { ++ case PCI_PRODUCT_INVERTEX_AEON: return "Invertex AEON"; ++ } ++ return "Invertex unknown-part"; ++ case PCI_VENDOR_NETSEC: ++ switch (pci_get_device(sc->sc_pcidev)) { ++ case PCI_PRODUCT_NETSEC_7751: return "NetSec 7751"; ++ } ++ return "NetSec unknown-part"; ++ } ++ return "Unknown-vendor unknown-part"; ++} ++ ++static u_int ++checkmaxmin(struct pci_dev *dev, const char *what, u_int v, u_int min, u_int max) ++{ ++ struct hifn_softc *sc = pci_get_drvdata(dev); ++ if (v > max) { ++ device_printf(sc->sc_dev, "Warning, %s %u out of range, " ++ "using max %u\n", what, v, max); ++ v = max; ++ } else if (v < min) { ++ device_printf(sc->sc_dev, "Warning, %s %u out of range, " ++ "using min %u\n", what, v, min); ++ v = min; ++ } ++ return v; ++} ++ ++/* ++ * Select PLL configuration for 795x parts. This is complicated in ++ * that we cannot determine the optimal parameters without user input. ++ * The reference clock is derived from an external clock through a ++ * multiplier. The external clock is either the host bus (i.e. PCI) ++ * or an external clock generator. When using the PCI bus we assume ++ * the clock is either 33 or 66 MHz; for an external source we cannot ++ * tell the speed. ++ * ++ * PLL configuration is done with a string: "pci" for PCI bus, or "ext" ++ * for an external source, followed by the frequency. We calculate ++ * the appropriate multiplier and PLL register contents accordingly. ++ * When no configuration is given we default to "pci66" since that ++ * always will allow the card to work. If a card is using the PCI ++ * bus clock and in a 33MHz slot then it will be operating at half ++ * speed until the correct information is provided. ++ * ++ * We use a default setting of "ext66" because according to Mike Ham ++ * of HiFn, almost every board in existence has an external crystal ++ * populated at 66Mhz. Using PCI can be a problem on modern motherboards, ++ * because PCI33 can have clocks from 0 to 33Mhz, and some have ++ * non-PCI-compliant spread-spectrum clocks, which can confuse the pll. ++ */ ++static void ++hifn_getpllconfig(struct pci_dev *dev, u_int *pll) ++{ ++ const char *pllspec = hifn_pllconfig; ++ u_int freq, mul, fl, fh; ++ u_int32_t pllconfig; ++ char *nxt; ++ ++ if (pllspec == NULL) ++ pllspec = "ext66"; ++ fl = 33, fh = 66; ++ pllconfig = 0; ++ if (strncmp(pllspec, "ext", 3) == 0) { ++ pllspec += 3; ++ pllconfig |= HIFN_PLL_REF_SEL; ++ switch (pci_get_device(dev)) { ++ case PCI_PRODUCT_HIFN_7955: ++ case PCI_PRODUCT_HIFN_7956: ++ fl = 20, fh = 100; ++ break; ++#ifdef notyet ++ case PCI_PRODUCT_HIFN_7954: ++ fl = 20, fh = 66; ++ break; ++#endif ++ } ++ } else if (strncmp(pllspec, "pci", 3) == 0) ++ pllspec += 3; ++ freq = strtoul(pllspec, &nxt, 10); ++ if (nxt == pllspec) ++ freq = 66; ++ else ++ freq = checkmaxmin(dev, "frequency", freq, fl, fh); ++ /* ++ * Calculate multiplier. We target a Fck of 266 MHz, ++ * allowing only even values, possibly rounded down. ++ * Multipliers > 8 must set the charge pump current. ++ */ ++ mul = checkmaxmin(dev, "PLL divisor", (266 / freq) &~ 1, 2, 12); ++ pllconfig |= (mul / 2 - 1) << HIFN_PLL_ND_SHIFT; ++ if (mul > 8) ++ pllconfig |= HIFN_PLL_IS; ++ *pll = pllconfig; ++} ++ ++/* ++ * Attach an interface that successfully probed. ++ */ ++static int ++hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent) ++{ ++ struct hifn_softc *sc = NULL; ++ char rbase; ++ u_int16_t ena, rev; ++ int rseg, rc; ++ unsigned long mem_start, mem_len; ++ static int num_chips = 0; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (pci_enable_device(dev) < 0) ++ return(-ENODEV); ++ ++ if (pci_set_mwi(dev)) ++ return(-ENODEV); ++ ++ if (!dev->irq) { ++ printk("hifn: found device with no IRQ assigned. check BIOS settings!"); ++ pci_disable_device(dev); ++ return(-ENODEV); ++ } ++ ++ sc = (struct hifn_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); ++ if (!sc) ++ return(-ENOMEM); ++ memset(sc, 0, sizeof(*sc)); ++ ++ softc_device_init(sc, "hifn", num_chips, hifn_methods); ++ ++ sc->sc_pcidev = dev; ++ sc->sc_irq = -1; ++ sc->sc_cid = -1; ++ sc->sc_num = num_chips++; ++ if (sc->sc_num < HIFN_MAX_CHIPS) ++ hifn_chip_idx[sc->sc_num] = sc; ++ ++ pci_set_drvdata(sc->sc_pcidev, sc); ++ ++ spin_lock_init(&sc->sc_mtx); ++ ++ /* XXX handle power management */ ++ ++ /* ++ * The 7951 and 795x have a random number generator and ++ * public key support; note this. ++ */ ++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN && ++ (pci_get_device(dev) == PCI_PRODUCT_HIFN_7951 || ++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 || ++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7956)) ++ sc->sc_flags = HIFN_HAS_RNG | HIFN_HAS_PUBLIC; ++ /* ++ * The 7811 has a random number generator and ++ * we also note it's identity 'cuz of some quirks. ++ */ ++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN && ++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7811) ++ sc->sc_flags |= HIFN_IS_7811 | HIFN_HAS_RNG; ++ ++ /* ++ * The 795x parts support AES. ++ */ ++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN && ++ (pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 || ++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7956)) { ++ sc->sc_flags |= HIFN_IS_7956 | HIFN_HAS_AES; ++ /* ++ * Select PLL configuration. This depends on the ++ * bus and board design and must be manually configured ++ * if the default setting is unacceptable. ++ */ ++ hifn_getpllconfig(dev, &sc->sc_pllconfig); ++ } ++ ++ /* ++ * Setup PCI resources. Note that we record the bus ++ * tag and handle for each register mapping, this is ++ * used by the READ_REG_0, WRITE_REG_0, READ_REG_1, ++ * and WRITE_REG_1 macros throughout the driver. ++ */ ++ mem_start = pci_resource_start(sc->sc_pcidev, 0); ++ mem_len = pci_resource_len(sc->sc_pcidev, 0); ++ sc->sc_bar0 = (ocf_iomem_t) ioremap(mem_start, mem_len); ++ if (!sc->sc_bar0) { ++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", 0); ++ goto fail; ++ } ++ sc->sc_bar0_lastreg = (bus_size_t) -1; ++ ++ mem_start = pci_resource_start(sc->sc_pcidev, 1); ++ mem_len = pci_resource_len(sc->sc_pcidev, 1); ++ sc->sc_bar1 = (ocf_iomem_t) ioremap(mem_start, mem_len); ++ if (!sc->sc_bar1) { ++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", 1); ++ goto fail; ++ } ++ sc->sc_bar1_lastreg = (bus_size_t) -1; ++ ++ /* fix up the bus size */ ++ if (pci_set_dma_mask(dev, DMA_32BIT_MASK)) { ++ device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n"); ++ goto fail; ++ } ++ if (pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK)) { ++ device_printf(sc->sc_dev, ++ "No usable consistent DMA configuration, aborting.\n"); ++ goto fail; ++ } ++ ++ hifn_set_retry(sc); ++ ++ /* ++ * Setup the area where the Hifn DMA's descriptors ++ * and associated data structures. ++ */ ++ sc->sc_dma = (struct hifn_dma *) pci_alloc_consistent(dev, ++ sizeof(*sc->sc_dma), ++ &sc->sc_dma_physaddr); ++ if (!sc->sc_dma) { ++ device_printf(sc->sc_dev, "cannot alloc sc_dma\n"); ++ goto fail; ++ } ++ bzero(sc->sc_dma, sizeof(*sc->sc_dma)); ++ ++ /* ++ * Reset the board and do the ``secret handshake'' ++ * to enable the crypto support. Then complete the ++ * initialization procedure by setting up the interrupt ++ * and hooking in to the system crypto support so we'll ++ * get used for system services like the crypto device, ++ * IPsec, RNG device, etc. ++ */ ++ hifn_reset_board(sc, 0); ++ ++ if (hifn_enable_crypto(sc) != 0) { ++ device_printf(sc->sc_dev, "crypto enabling failed\n"); ++ goto fail; ++ } ++ hifn_reset_puc(sc); ++ ++ hifn_init_dma(sc); ++ hifn_init_pci_registers(sc); ++ ++ pci_set_master(sc->sc_pcidev); ++ ++ /* XXX can't dynamically determine ram type for 795x; force dram */ ++ if (sc->sc_flags & HIFN_IS_7956) ++ sc->sc_drammodel = 1; ++ else if (hifn_ramtype(sc)) ++ goto fail; ++ ++ if (sc->sc_drammodel == 0) ++ hifn_sramsize(sc); ++ else ++ hifn_dramsize(sc); ++ ++ /* ++ * Workaround for NetSec 7751 rev A: half ram size because two ++ * of the address lines were left floating ++ */ ++ if (pci_get_vendor(dev) == PCI_VENDOR_NETSEC && ++ pci_get_device(dev) == PCI_PRODUCT_NETSEC_7751 && ++ pci_get_revid(dev) == 0x61) /*XXX???*/ ++ sc->sc_ramsize >>= 1; ++ ++ /* ++ * Arrange the interrupt line. ++ */ ++ rc = request_irq(dev->irq, hifn_intr, IRQF_SHARED, "hifn", sc); ++ if (rc) { ++ device_printf(sc->sc_dev, "could not map interrupt: %d\n", rc); ++ goto fail; ++ } ++ sc->sc_irq = dev->irq; ++ ++ hifn_sessions(sc); ++ ++ /* ++ * NB: Keep only the low 16 bits; this masks the chip id ++ * from the 7951. ++ */ ++ rev = READ_REG_1(sc, HIFN_1_REVID) & 0xffff; ++ ++ rseg = sc->sc_ramsize / 1024; ++ rbase = 'K'; ++ if (sc->sc_ramsize >= (1024 * 1024)) { ++ rbase = 'M'; ++ rseg /= 1024; ++ } ++ device_printf(sc->sc_dev, "%s, rev %u, %d%cB %cram", ++ hifn_partname(sc), rev, ++ rseg, rbase, sc->sc_drammodel ? 'd' : 's'); ++ if (sc->sc_flags & HIFN_IS_7956) ++ printf(", pll=0x%x<%s clk, %ux mult>", ++ sc->sc_pllconfig, ++ sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci", ++ 2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11)); ++ printf("\n"); ++ ++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE); ++ if (sc->sc_cid < 0) { ++ device_printf(sc->sc_dev, "could not get crypto driver id\n"); ++ goto fail; ++ } ++ ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ++ READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID); ++ ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA; ++ ++ switch (ena) { ++ case HIFN_PUSTAT_ENA_2: ++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0); ++ if (sc->sc_flags & HIFN_HAS_AES) ++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); ++ /*FALLTHROUGH*/ ++ case HIFN_PUSTAT_ENA_1: ++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); ++ break; ++ } ++ ++ if (sc->sc_flags & (HIFN_HAS_PUBLIC | HIFN_HAS_RNG)) ++ hifn_init_pubrng(sc); ++ ++ init_timer(&sc->sc_tickto); ++ sc->sc_tickto.function = hifn_tick; ++ sc->sc_tickto.data = (unsigned long) sc->sc_num; ++ mod_timer(&sc->sc_tickto, jiffies + HZ); ++ ++ return (0); ++ ++fail: ++ if (sc->sc_cid >= 0) ++ crypto_unregister_all(sc->sc_cid); ++ if (sc->sc_irq != -1) ++ free_irq(sc->sc_irq, sc); ++ if (sc->sc_dma) { ++ /* Turn off DMA polling */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ ++ pci_free_consistent(sc->sc_pcidev, ++ sizeof(*sc->sc_dma), ++ sc->sc_dma, sc->sc_dma_physaddr); ++ } ++ kfree(sc); ++ return (-ENXIO); ++} ++ ++/* ++ * Detach an interface that successfully probed. ++ */ ++static void ++hifn_remove(struct pci_dev *dev) ++{ ++ struct hifn_softc *sc = pci_get_drvdata(dev); ++ unsigned long l_flags; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ KASSERT(sc != NULL, ("hifn_detach: null software carrier!")); ++ ++ /* disable interrupts */ ++ HIFN_LOCK(sc); ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, 0); ++ HIFN_UNLOCK(sc); ++ ++ /*XXX other resources */ ++ del_timer_sync(&sc->sc_tickto); ++ ++ /* Turn off DMA polling */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ ++ crypto_unregister_all(sc->sc_cid); ++ ++ free_irq(sc->sc_irq, sc); ++ ++ pci_free_consistent(sc->sc_pcidev, sizeof(*sc->sc_dma), ++ sc->sc_dma, sc->sc_dma_physaddr); ++} ++ ++ ++static int ++hifn_init_pubrng(struct hifn_softc *sc) ++{ ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if ((sc->sc_flags & HIFN_IS_7811) == 0) { ++ /* Reset 7951 public key/rng engine */ ++ WRITE_REG_1(sc, HIFN_1_PUB_RESET, ++ READ_REG_1(sc, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET); ++ ++ for (i = 0; i < 100; i++) { ++ DELAY(1000); ++ if ((READ_REG_1(sc, HIFN_1_PUB_RESET) & ++ HIFN_PUBRST_RESET) == 0) ++ break; ++ } ++ ++ if (i == 100) { ++ device_printf(sc->sc_dev, "public key init failed\n"); ++ return (1); ++ } ++ } ++ ++ /* Enable the rng, if available */ ++#ifdef CONFIG_OCF_RANDOMHARVEST ++ if (sc->sc_flags & HIFN_HAS_RNG) { ++ if (sc->sc_flags & HIFN_IS_7811) { ++ u_int32_t r; ++ r = READ_REG_1(sc, HIFN_1_7811_RNGENA); ++ if (r & HIFN_7811_RNGENA_ENA) { ++ r &= ~HIFN_7811_RNGENA_ENA; ++ WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r); ++ } ++ WRITE_REG_1(sc, HIFN_1_7811_RNGCFG, ++ HIFN_7811_RNGCFG_DEFL); ++ r |= HIFN_7811_RNGENA_ENA; ++ WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r); ++ } else ++ WRITE_REG_1(sc, HIFN_1_RNG_CONFIG, ++ READ_REG_1(sc, HIFN_1_RNG_CONFIG) | ++ HIFN_RNGCFG_ENA); ++ ++ sc->sc_rngfirst = 1; ++ crypto_rregister(sc->sc_cid, hifn_read_random, sc); ++ } ++#endif ++ ++ /* Enable public key engine, if available */ ++ if (sc->sc_flags & HIFN_HAS_PUBLIC) { ++ WRITE_REG_1(sc, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); ++ sc->sc_dmaier |= HIFN_DMAIER_PUBDONE; ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier); ++#ifdef HIFN_VULCANDEV ++ sc->sc_pkdev = make_dev(&vulcanpk_cdevsw, 0, ++ UID_ROOT, GID_WHEEL, 0666, ++ "vulcanpk"); ++ sc->sc_pkdev->si_drv1 = sc; ++#endif ++ } ++ ++ return (0); ++} ++ ++#ifdef CONFIG_OCF_RANDOMHARVEST ++static int ++hifn_read_random(void *arg, u_int32_t *buf, int len) ++{ ++ struct hifn_softc *sc = (struct hifn_softc *) arg; ++ u_int32_t sts; ++ int i, rc = 0; ++ ++ if (len <= 0) ++ return rc; ++ ++ if (sc->sc_flags & HIFN_IS_7811) { ++ /* ONLY VALID ON 7811!!!! */ ++ for (i = 0; i < 5; i++) { ++ sts = READ_REG_1(sc, HIFN_1_7811_RNGSTS); ++ if (sts & HIFN_7811_RNGSTS_UFL) { ++ device_printf(sc->sc_dev, ++ "RNG underflow: disabling\n"); ++ /* DAVIDM perhaps return -1 */ ++ break; ++ } ++ if ((sts & HIFN_7811_RNGSTS_RDY) == 0) ++ break; ++ ++ /* ++ * There are at least two words in the RNG FIFO ++ * at this point. ++ */ ++ if (rc < len) ++ buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT); ++ if (rc < len) ++ buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT); ++ } ++ } else ++ buf[rc++] = READ_REG_1(sc, HIFN_1_RNG_DATA); ++ ++ /* NB: discard first data read */ ++ if (sc->sc_rngfirst) { ++ sc->sc_rngfirst = 0; ++ rc = 0; ++ } ++ ++ return(rc); ++} ++#endif /* CONFIG_OCF_RANDOMHARVEST */ ++ ++static void ++hifn_puc_wait(struct hifn_softc *sc) ++{ ++ int i; ++ int reg = HIFN_0_PUCTRL; ++ ++ if (sc->sc_flags & HIFN_IS_7956) { ++ reg = HIFN_0_PUCTRL2; ++ } ++ ++ for (i = 5000; i > 0; i--) { ++ DELAY(1); ++ if (!(READ_REG_0(sc, reg) & HIFN_PUCTRL_RESET)) ++ break; ++ } ++ if (!i) ++ device_printf(sc->sc_dev, "proc unit did not reset(0x%x)\n", ++ READ_REG_0(sc, HIFN_0_PUCTRL)); ++} ++ ++/* ++ * Reset the processing unit. ++ */ ++static void ++hifn_reset_puc(struct hifn_softc *sc) ++{ ++ /* Reset processing unit */ ++ int reg = HIFN_0_PUCTRL; ++ ++ if (sc->sc_flags & HIFN_IS_7956) { ++ reg = HIFN_0_PUCTRL2; ++ } ++ WRITE_REG_0(sc, reg, HIFN_PUCTRL_DMAENA); ++ ++ hifn_puc_wait(sc); ++} ++ ++/* ++ * Set the Retry and TRDY registers; note that we set them to ++ * zero because the 7811 locks up when forced to retry (section ++ * 3.6 of "Specification Update SU-0014-04". Not clear if we ++ * should do this for all Hifn parts, but it doesn't seem to hurt. ++ */ ++static void ++hifn_set_retry(struct hifn_softc *sc) ++{ ++ DPRINTF("%s()\n", __FUNCTION__); ++ /* NB: RETRY only responds to 8-bit reads/writes */ ++ pci_write_config_byte(sc->sc_pcidev, HIFN_RETRY_TIMEOUT, 0); ++ pci_write_config_dword(sc->sc_pcidev, HIFN_TRDY_TIMEOUT, 0); ++} ++ ++/* ++ * Resets the board. Values in the regesters are left as is ++ * from the reset (i.e. initial values are assigned elsewhere). ++ */ ++static void ++hifn_reset_board(struct hifn_softc *sc, int full) ++{ ++ u_int32_t reg; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ /* ++ * Set polling in the DMA configuration register to zero. 0x7 avoids ++ * resetting the board and zeros out the other fields. ++ */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ ++ /* ++ * Now that polling has been disabled, we have to wait 1 ms ++ * before resetting the board. ++ */ ++ DELAY(1000); ++ ++ /* Reset the DMA unit */ ++ if (full) { ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); ++ DELAY(1000); ++ } else { ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, ++ HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET); ++ hifn_reset_puc(sc); ++ } ++ ++ KASSERT(sc->sc_dma != NULL, ("hifn_reset_board: null DMA tag!")); ++ bzero(sc->sc_dma, sizeof(*sc->sc_dma)); ++ ++ /* Bring dma unit out of reset */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ ++ hifn_puc_wait(sc); ++ hifn_set_retry(sc); ++ ++ if (sc->sc_flags & HIFN_IS_7811) { ++ for (reg = 0; reg < 1000; reg++) { ++ if (READ_REG_1(sc, HIFN_1_7811_MIPSRST) & ++ HIFN_MIPSRST_CRAMINIT) ++ break; ++ DELAY(1000); ++ } ++ if (reg == 1000) ++ device_printf(sc->sc_dev, ": cram init timeout\n"); ++ } else { ++ /* set up DMA configuration register #2 */ ++ /* turn off all PK and BAR0 swaps */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG2, ++ (3 << HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT)| ++ (3 << HIFN_DMACNFG2_INIT_READ_BURST_SHIFT)| ++ (2 << HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT)| ++ (2 << HIFN_DMACNFG2_TGT_READ_BURST_SHIFT)); ++ } ++} ++ ++static u_int32_t ++hifn_next_signature(u_int32_t a, u_int cnt) ++{ ++ int i; ++ u_int32_t v; ++ ++ for (i = 0; i < cnt; i++) { ++ ++ /* get the parity */ ++ v = a & 0x80080125; ++ v ^= v >> 16; ++ v ^= v >> 8; ++ v ^= v >> 4; ++ v ^= v >> 2; ++ v ^= v >> 1; ++ ++ a = (v & 1) ^ (a << 1); ++ } ++ ++ return a; ++} ++ ++ ++/* ++ * Checks to see if crypto is already enabled. If crypto isn't enable, ++ * "hifn_enable_crypto" is called to enable it. The check is important, ++ * as enabling crypto twice will lock the board. ++ */ ++static int ++hifn_enable_crypto(struct hifn_softc *sc) ++{ ++ u_int32_t dmacfg, ramcfg, encl, addr, i; ++ char offtbl[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, ++ 0x00, 0x00, 0x00, 0x00 }; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG); ++ dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG); ++ ++ /* ++ * The RAM config register's encrypt level bit needs to be set before ++ * every read performed on the encryption level register. ++ */ ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID); ++ ++ encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA; ++ ++ /* ++ * Make sure we don't re-unlock. Two unlocks kills chip until the ++ * next reboot. ++ */ ++ if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) { ++#ifdef HIFN_DEBUG ++ if (hifn_debug) ++ device_printf(sc->sc_dev, ++ "Strong crypto already enabled!\n"); ++#endif ++ goto report; ++ } ++ ++ if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) { ++#ifdef HIFN_DEBUG ++ if (hifn_debug) ++ device_printf(sc->sc_dev, ++ "Unknown encryption level 0x%x\n", encl); ++#endif ++ return 1; ++ } ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK | ++ HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ DELAY(1000); ++ addr = READ_REG_1(sc, HIFN_UNLOCK_SECRET1); ++ DELAY(1000); ++ WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, 0); ++ DELAY(1000); ++ ++ for (i = 0; i <= 12; i++) { ++ addr = hifn_next_signature(addr, offtbl[i] + 0x101); ++ WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, addr); ++ ++ DELAY(1000); ++ } ++ ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID); ++ encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA; ++ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2) ++ device_printf(sc->sc_dev, "Engine is permanently " ++ "locked until next system reset!\n"); ++ else ++ device_printf(sc->sc_dev, "Engine enabled " ++ "successfully!\n"); ++ } ++#endif ++ ++report: ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg); ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg); ++ ++ switch (encl) { ++ case HIFN_PUSTAT_ENA_1: ++ case HIFN_PUSTAT_ENA_2: ++ break; ++ case HIFN_PUSTAT_ENA_0: ++ default: ++ device_printf(sc->sc_dev, "disabled\n"); ++ break; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Give initial values to the registers listed in the "Register Space" ++ * section of the HIFN Software Development reference manual. ++ */ ++static void ++hifn_init_pci_registers(struct hifn_softc *sc) ++{ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* write fixed values needed by the Initialization registers */ ++ WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); ++ WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); ++ WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); ++ ++ /* write all 4 ring address registers */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CRAR, sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, cmdr[0])); ++ WRITE_REG_1(sc, HIFN_1_DMA_SRAR, sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, srcr[0])); ++ WRITE_REG_1(sc, HIFN_1_DMA_DRAR, sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, dstr[0])); ++ WRITE_REG_1(sc, HIFN_1_DMA_RRAR, sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, resr[0])); ++ ++ DELAY(2000); ++ ++ /* write status register */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, ++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | ++ HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | ++ HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | ++ HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | ++ HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | ++ HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | ++ HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | ++ HIFN_DMACSR_S_WAIT | ++ HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | ++ HIFN_DMACSR_C_WAIT | ++ HIFN_DMACSR_ENGINE | ++ ((sc->sc_flags & HIFN_HAS_PUBLIC) ? ++ HIFN_DMACSR_PUBDONE : 0) | ++ ((sc->sc_flags & HIFN_IS_7811) ? ++ HIFN_DMACSR_ILLW | HIFN_DMACSR_ILLR : 0)); ++ ++ sc->sc_d_busy = sc->sc_r_busy = sc->sc_s_busy = sc->sc_c_busy = 0; ++ sc->sc_dmaier |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | ++ HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | ++ HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | ++ ((sc->sc_flags & HIFN_IS_7811) ? ++ HIFN_DMAIER_ILLW | HIFN_DMAIER_ILLR : 0); ++ sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT; ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier); ++ ++ ++ if (sc->sc_flags & HIFN_IS_7956) { ++ u_int32_t pll; ++ ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING | ++ HIFN_PUCNFG_TCALLPHASES | ++ HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32); ++ ++ /* turn off the clocks and insure bypass is set */ ++ pll = READ_REG_1(sc, HIFN_1_PLL); ++ pll = (pll &~ (HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL)) ++ | HIFN_PLL_BP | HIFN_PLL_MBSET; ++ WRITE_REG_1(sc, HIFN_1_PLL, pll); ++ DELAY(10*1000); /* 10ms */ ++ ++ /* change configuration */ ++ pll = (pll &~ HIFN_PLL_CONFIG) | sc->sc_pllconfig; ++ WRITE_REG_1(sc, HIFN_1_PLL, pll); ++ DELAY(10*1000); /* 10ms */ ++ ++ /* disable bypass */ ++ pll &= ~HIFN_PLL_BP; ++ WRITE_REG_1(sc, HIFN_1_PLL, pll); ++ /* enable clocks with new configuration */ ++ pll |= HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL; ++ WRITE_REG_1(sc, HIFN_1_PLL, pll); ++ } else { ++ WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING | ++ HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | ++ HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | ++ (sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM)); ++ } ++ ++ WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | ++ ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | ++ ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); ++} ++ ++/* ++ * The maximum number of sessions supported by the card ++ * is dependent on the amount of context ram, which ++ * encryption algorithms are enabled, and how compression ++ * is configured. This should be configured before this ++ * routine is called. ++ */ ++static void ++hifn_sessions(struct hifn_softc *sc) ++{ ++ u_int32_t pucnfg; ++ int ctxsize; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG); ++ ++ if (pucnfg & HIFN_PUCNFG_COMPSING) { ++ if (pucnfg & HIFN_PUCNFG_ENCCNFG) ++ ctxsize = 128; ++ else ++ ctxsize = 512; ++ /* ++ * 7955/7956 has internal context memory of 32K ++ */ ++ if (sc->sc_flags & HIFN_IS_7956) ++ sc->sc_maxses = 32768 / ctxsize; ++ else ++ sc->sc_maxses = 1 + ++ ((sc->sc_ramsize - 32768) / ctxsize); ++ } else ++ sc->sc_maxses = sc->sc_ramsize / 16384; ++ ++ if (sc->sc_maxses > 2048) ++ sc->sc_maxses = 2048; ++} ++ ++/* ++ * Determine ram type (sram or dram). Board should be just out of a reset ++ * state when this is called. ++ */ ++static int ++hifn_ramtype(struct hifn_softc *sc) ++{ ++ u_int8_t data[8], dataexpect[8]; ++ int i; ++ ++ for (i = 0; i < sizeof(data); i++) ++ data[i] = dataexpect[i] = 0x55; ++ if (hifn_writeramaddr(sc, 0, data)) ++ return (-1); ++ if (hifn_readramaddr(sc, 0, data)) ++ return (-1); ++ if (bcmp(data, dataexpect, sizeof(data)) != 0) { ++ sc->sc_drammodel = 1; ++ return (0); ++ } ++ ++ for (i = 0; i < sizeof(data); i++) ++ data[i] = dataexpect[i] = 0xaa; ++ if (hifn_writeramaddr(sc, 0, data)) ++ return (-1); ++ if (hifn_readramaddr(sc, 0, data)) ++ return (-1); ++ if (bcmp(data, dataexpect, sizeof(data)) != 0) { ++ sc->sc_drammodel = 1; ++ return (0); ++ } ++ ++ return (0); ++} ++ ++#define HIFN_SRAM_MAX (32 << 20) ++#define HIFN_SRAM_STEP_SIZE 16384 ++#define HIFN_SRAM_GRANULARITY (HIFN_SRAM_MAX / HIFN_SRAM_STEP_SIZE) ++ ++static int ++hifn_sramsize(struct hifn_softc *sc) ++{ ++ u_int32_t a; ++ u_int8_t data[8]; ++ u_int8_t dataexpect[sizeof(data)]; ++ int32_t i; ++ ++ for (i = 0; i < sizeof(data); i++) ++ data[i] = dataexpect[i] = i ^ 0x5a; ++ ++ for (i = HIFN_SRAM_GRANULARITY - 1; i >= 0; i--) { ++ a = i * HIFN_SRAM_STEP_SIZE; ++ bcopy(&i, data, sizeof(i)); ++ hifn_writeramaddr(sc, a, data); ++ } ++ ++ for (i = 0; i < HIFN_SRAM_GRANULARITY; i++) { ++ a = i * HIFN_SRAM_STEP_SIZE; ++ bcopy(&i, dataexpect, sizeof(i)); ++ if (hifn_readramaddr(sc, a, data) < 0) ++ return (0); ++ if (bcmp(data, dataexpect, sizeof(data)) != 0) ++ return (0); ++ sc->sc_ramsize = a + HIFN_SRAM_STEP_SIZE; ++ } ++ ++ return (0); ++} ++ ++/* ++ * XXX For dram boards, one should really try all of the ++ * HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG ++ * is already set up correctly. ++ */ ++static int ++hifn_dramsize(struct hifn_softc *sc) ++{ ++ u_int32_t cnfg; ++ ++ if (sc->sc_flags & HIFN_IS_7956) { ++ /* ++ * 7955/7956 have a fixed internal ram of only 32K. ++ */ ++ sc->sc_ramsize = 32768; ++ } else { ++ cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) & ++ HIFN_PUCNFG_DRAMMASK; ++ sc->sc_ramsize = 1 << ((cnfg >> 13) + 18); ++ } ++ return (0); ++} ++ ++static void ++hifn_alloc_slot(struct hifn_softc *sc, int *cmdp, int *srcp, int *dstp, int *resp) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (dma->cmdi == HIFN_D_CMD_RSIZE) { ++ dma->cmdi = 0; ++ dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ } ++ *cmdp = dma->cmdi++; ++ dma->cmdk = dma->cmdi; ++ ++ if (dma->srci == HIFN_D_SRC_RSIZE) { ++ dma->srci = 0; ++ dma->srcr[HIFN_D_SRC_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->srcr[HIFN_D_SRC_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ } ++ *srcp = dma->srci++; ++ dma->srck = dma->srci; ++ ++ if (dma->dsti == HIFN_D_DST_RSIZE) { ++ dma->dsti = 0; ++ dma->dstr[HIFN_D_DST_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->dstr[HIFN_D_DST_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_DSTR_SYNC(sc, HIFN_D_DST_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ } ++ *dstp = dma->dsti++; ++ dma->dstk = dma->dsti; ++ ++ if (dma->resi == HIFN_D_RES_RSIZE) { ++ dma->resi = 0; ++ dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ } ++ *resp = dma->resi++; ++ dma->resk = dma->resi; ++} ++ ++static int ++hifn_writeramaddr(struct hifn_softc *sc, int addr, u_int8_t *data) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ hifn_base_command_t wc; ++ const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ; ++ int r, cmdi, resi, srci, dsti; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ wc.masks = htole16(3 << 13); ++ wc.session_num = htole16(addr >> 14); ++ wc.total_source_count = htole16(8); ++ wc.total_dest_count = htole16(addr & 0x3fff); ++ ++ hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi); ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, ++ HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | ++ HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA); ++ ++ /* build write command */ ++ bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND); ++ *(hifn_base_command_t *)dma->command_bufs[cmdi] = wc; ++ bcopy(data, &dma->test_src, sizeof(dma->test_src)); ++ ++ dma->srcr[srci].p = htole32(sc->sc_dma_physaddr ++ + offsetof(struct hifn_dma, test_src)); ++ dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr ++ + offsetof(struct hifn_dma, test_dst)); ++ ++ dma->cmdr[cmdi].l = htole32(16 | masks); ++ dma->srcr[srci].l = htole32(8 | masks); ++ dma->dstr[dsti].l = htole32(4 | masks); ++ dma->resr[resi].l = htole32(4 | masks); ++ ++ for (r = 10000; r >= 0; r--) { ++ DELAY(10); ++ if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0) ++ break; ++ } ++ if (r == 0) { ++ device_printf(sc->sc_dev, "writeramaddr -- " ++ "result[%d](addr %d) still valid\n", resi, addr); ++ r = -1; ++ return (-1); ++ } else ++ r = 0; ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, ++ HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS | ++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS); ++ ++ return (r); ++} ++ ++static int ++hifn_readramaddr(struct hifn_softc *sc, int addr, u_int8_t *data) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ hifn_base_command_t rc; ++ const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ; ++ int r, cmdi, srci, dsti, resi; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ rc.masks = htole16(2 << 13); ++ rc.session_num = htole16(addr >> 14); ++ rc.total_source_count = htole16(addr & 0x3fff); ++ rc.total_dest_count = htole16(8); ++ ++ hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi); ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, ++ HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | ++ HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA); ++ ++ bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND); ++ *(hifn_base_command_t *)dma->command_bufs[cmdi] = rc; ++ ++ dma->srcr[srci].p = htole32(sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, test_src)); ++ dma->test_src = 0; ++ dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, test_dst)); ++ dma->test_dst = 0; ++ dma->cmdr[cmdi].l = htole32(8 | masks); ++ dma->srcr[srci].l = htole32(8 | masks); ++ dma->dstr[dsti].l = htole32(8 | masks); ++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT | masks); ++ ++ for (r = 10000; r >= 0; r--) { ++ DELAY(10); ++ if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0) ++ break; ++ } ++ if (r == 0) { ++ device_printf(sc->sc_dev, "readramaddr -- " ++ "result[%d](addr %d) still valid\n", resi, addr); ++ r = -1; ++ } else { ++ r = 0; ++ bcopy(&dma->test_dst, data, sizeof(dma->test_dst)); ++ } ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, ++ HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS | ++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS); ++ ++ return (r); ++} ++ ++/* ++ * Initialize the descriptor rings. ++ */ ++static void ++hifn_init_dma(struct hifn_softc *sc) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ hifn_set_retry(sc); ++ ++ /* initialize static pointer values */ ++ for (i = 0; i < HIFN_D_CMD_RSIZE; i++) ++ dma->cmdr[i].p = htole32(sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, command_bufs[i][0])); ++ for (i = 0; i < HIFN_D_RES_RSIZE; i++) ++ dma->resr[i].p = htole32(sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, result_bufs[i][0])); ++ ++ dma->cmdr[HIFN_D_CMD_RSIZE].p = ++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, cmdr[0])); ++ dma->srcr[HIFN_D_SRC_RSIZE].p = ++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, srcr[0])); ++ dma->dstr[HIFN_D_DST_RSIZE].p = ++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, dstr[0])); ++ dma->resr[HIFN_D_RES_RSIZE].p = ++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, resr[0])); ++ ++ dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; ++ dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; ++ dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; ++} ++ ++/* ++ * Writes out the raw command buffer space. Returns the ++ * command buffer size. ++ */ ++static u_int ++hifn_write_command(struct hifn_command *cmd, u_int8_t *buf) ++{ ++ struct hifn_softc *sc = NULL; ++ u_int8_t *buf_pos; ++ hifn_base_command_t *base_cmd; ++ hifn_mac_command_t *mac_cmd; ++ hifn_crypt_command_t *cry_cmd; ++ int using_mac, using_crypt, len, ivlen; ++ u_int32_t dlen, slen; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ buf_pos = buf; ++ using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC; ++ using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT; ++ ++ base_cmd = (hifn_base_command_t *)buf_pos; ++ base_cmd->masks = htole16(cmd->base_masks); ++ slen = cmd->src_mapsize; ++ if (cmd->sloplen) ++ dlen = cmd->dst_mapsize - cmd->sloplen + sizeof(u_int32_t); ++ else ++ dlen = cmd->dst_mapsize; ++ base_cmd->total_source_count = htole16(slen & HIFN_BASE_CMD_LENMASK_LO); ++ base_cmd->total_dest_count = htole16(dlen & HIFN_BASE_CMD_LENMASK_LO); ++ dlen >>= 16; ++ slen >>= 16; ++ base_cmd->session_num = htole16( ++ ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | ++ ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); ++ buf_pos += sizeof(hifn_base_command_t); ++ ++ if (using_mac) { ++ mac_cmd = (hifn_mac_command_t *)buf_pos; ++ dlen = cmd->maccrd->crd_len; ++ mac_cmd->source_count = htole16(dlen & 0xffff); ++ dlen >>= 16; ++ mac_cmd->masks = htole16(cmd->mac_masks | ++ ((dlen << HIFN_MAC_CMD_SRCLEN_S) & HIFN_MAC_CMD_SRCLEN_M)); ++ mac_cmd->header_skip = htole16(cmd->maccrd->crd_skip); ++ mac_cmd->reserved = 0; ++ buf_pos += sizeof(hifn_mac_command_t); ++ } ++ ++ if (using_crypt) { ++ cry_cmd = (hifn_crypt_command_t *)buf_pos; ++ dlen = cmd->enccrd->crd_len; ++ cry_cmd->source_count = htole16(dlen & 0xffff); ++ dlen >>= 16; ++ cry_cmd->masks = htole16(cmd->cry_masks | ++ ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M)); ++ cry_cmd->header_skip = htole16(cmd->enccrd->crd_skip); ++ cry_cmd->reserved = 0; ++ buf_pos += sizeof(hifn_crypt_command_t); ++ } ++ ++ if (using_mac && cmd->mac_masks & HIFN_MAC_CMD_NEW_KEY) { ++ bcopy(cmd->mac, buf_pos, HIFN_MAC_KEY_LENGTH); ++ buf_pos += HIFN_MAC_KEY_LENGTH; ++ } ++ ++ if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_KEY) { ++ switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) { ++ case HIFN_CRYPT_CMD_ALG_3DES: ++ bcopy(cmd->ck, buf_pos, HIFN_3DES_KEY_LENGTH); ++ buf_pos += HIFN_3DES_KEY_LENGTH; ++ break; ++ case HIFN_CRYPT_CMD_ALG_DES: ++ bcopy(cmd->ck, buf_pos, HIFN_DES_KEY_LENGTH); ++ buf_pos += HIFN_DES_KEY_LENGTH; ++ break; ++ case HIFN_CRYPT_CMD_ALG_RC4: ++ len = 256; ++ do { ++ int clen; ++ ++ clen = MIN(cmd->cklen, len); ++ bcopy(cmd->ck, buf_pos, clen); ++ len -= clen; ++ buf_pos += clen; ++ } while (len > 0); ++ bzero(buf_pos, 4); ++ buf_pos += 4; ++ break; ++ case HIFN_CRYPT_CMD_ALG_AES: ++ /* ++ * AES keys are variable 128, 192 and ++ * 256 bits (16, 24 and 32 bytes). ++ */ ++ bcopy(cmd->ck, buf_pos, cmd->cklen); ++ buf_pos += cmd->cklen; ++ break; ++ } ++ } ++ ++ if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_IV) { ++ switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) { ++ case HIFN_CRYPT_CMD_ALG_AES: ++ ivlen = HIFN_AES_IV_LENGTH; ++ break; ++ default: ++ ivlen = HIFN_IV_LENGTH; ++ break; ++ } ++ bcopy(cmd->iv, buf_pos, ivlen); ++ buf_pos += ivlen; ++ } ++ ++ if ((cmd->base_masks & (HIFN_BASE_CMD_MAC|HIFN_BASE_CMD_CRYPT)) == 0) { ++ bzero(buf_pos, 8); ++ buf_pos += 8; ++ } ++ ++ return (buf_pos - buf); ++} ++ ++static int ++hifn_dmamap_aligned(struct hifn_operand *op) ++{ ++ struct hifn_softc *sc = NULL; ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ for (i = 0; i < op->nsegs; i++) { ++ if (op->segs[i].ds_addr & 3) ++ return (0); ++ if ((i != (op->nsegs - 1)) && (op->segs[i].ds_len & 3)) ++ return (0); ++ } ++ return (1); ++} ++ ++static __inline int ++hifn_dmamap_dstwrap(struct hifn_softc *sc, int idx) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ ++ if (++idx == HIFN_D_DST_RSIZE) { ++ dma->dstr[idx].l = htole32(HIFN_D_VALID | HIFN_D_JUMP | ++ HIFN_D_MASKDONEIRQ); ++ HIFN_DSTR_SYNC(sc, idx, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ idx = 0; ++ } ++ return (idx); ++} ++ ++static int ++hifn_dmamap_load_dst(struct hifn_softc *sc, struct hifn_command *cmd) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ struct hifn_operand *dst = &cmd->dst; ++ u_int32_t p, l; ++ int idx, used = 0, i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ idx = dma->dsti; ++ for (i = 0; i < dst->nsegs - 1; i++) { ++ dma->dstr[idx].p = htole32(dst->segs[i].ds_addr); ++ dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ | dst->segs[i].ds_len); ++ wmb(); ++ dma->dstr[idx].l |= htole32(HIFN_D_VALID); ++ HIFN_DSTR_SYNC(sc, idx, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ used++; ++ ++ idx = hifn_dmamap_dstwrap(sc, idx); ++ } ++ ++ if (cmd->sloplen == 0) { ++ p = dst->segs[i].ds_addr; ++ l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST | ++ dst->segs[i].ds_len; ++ } else { ++ p = sc->sc_dma_physaddr + ++ offsetof(struct hifn_dma, slop[cmd->slopidx]); ++ l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST | ++ sizeof(u_int32_t); ++ ++ if ((dst->segs[i].ds_len - cmd->sloplen) != 0) { ++ dma->dstr[idx].p = htole32(dst->segs[i].ds_addr); ++ dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ | ++ (dst->segs[i].ds_len - cmd->sloplen)); ++ wmb(); ++ dma->dstr[idx].l |= htole32(HIFN_D_VALID); ++ HIFN_DSTR_SYNC(sc, idx, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ used++; ++ ++ idx = hifn_dmamap_dstwrap(sc, idx); ++ } ++ } ++ dma->dstr[idx].p = htole32(p); ++ dma->dstr[idx].l = htole32(l); ++ wmb(); ++ dma->dstr[idx].l |= htole32(HIFN_D_VALID); ++ HIFN_DSTR_SYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ used++; ++ ++ idx = hifn_dmamap_dstwrap(sc, idx); ++ ++ dma->dsti = idx; ++ dma->dstu += used; ++ return (idx); ++} ++ ++static __inline int ++hifn_dmamap_srcwrap(struct hifn_softc *sc, int idx) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ ++ if (++idx == HIFN_D_SRC_RSIZE) { ++ dma->srcr[idx].l = htole32(HIFN_D_VALID | ++ HIFN_D_JUMP | HIFN_D_MASKDONEIRQ); ++ HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ idx = 0; ++ } ++ return (idx); ++} ++ ++static int ++hifn_dmamap_load_src(struct hifn_softc *sc, struct hifn_command *cmd) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ struct hifn_operand *src = &cmd->src; ++ int idx, i; ++ u_int32_t last = 0; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ idx = dma->srci; ++ for (i = 0; i < src->nsegs; i++) { ++ if (i == src->nsegs - 1) ++ last = HIFN_D_LAST; ++ ++ dma->srcr[idx].p = htole32(src->segs[i].ds_addr); ++ dma->srcr[idx].l = htole32(src->segs[i].ds_len | ++ HIFN_D_MASKDONEIRQ | last); ++ wmb(); ++ dma->srcr[idx].l |= htole32(HIFN_D_VALID); ++ HIFN_SRCR_SYNC(sc, idx, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ ++ idx = hifn_dmamap_srcwrap(sc, idx); ++ } ++ dma->srci = idx; ++ dma->srcu += src->nsegs; ++ return (idx); ++} ++ ++ ++static int ++hifn_crypto( ++ struct hifn_softc *sc, ++ struct hifn_command *cmd, ++ struct cryptop *crp, ++ int hint) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ u_int32_t cmdlen, csr; ++ int cmdi, resi, err = 0; ++ unsigned long l_flags; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* ++ * need 1 cmd, and 1 res ++ * ++ * NB: check this first since it's easy. ++ */ ++ HIFN_LOCK(sc); ++ if ((dma->cmdu + 1) > HIFN_D_CMD_RSIZE || ++ (dma->resu + 1) > HIFN_D_RES_RSIZE) { ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ device_printf(sc->sc_dev, ++ "cmd/result exhaustion, cmdu %u resu %u\n", ++ dma->cmdu, dma->resu); ++ } ++#endif ++ hifnstats.hst_nomem_cr++; ++ sc->sc_needwakeup |= CRYPTO_SYMQ; ++ HIFN_UNLOCK(sc); ++ return (ERESTART); ++ } ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ if (pci_map_skb(sc, &cmd->src, cmd->src_skb)) { ++ hifnstats.hst_nomem_load++; ++ err = ENOMEM; ++ goto err_srcmap1; ++ } ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ if (pci_map_uio(sc, &cmd->src, cmd->src_io)) { ++ hifnstats.hst_nomem_load++; ++ err = ENOMEM; ++ goto err_srcmap1; ++ } ++ } else { ++ if (pci_map_buf(sc, &cmd->src, cmd->src_buf, crp->crp_ilen)) { ++ hifnstats.hst_nomem_load++; ++ err = ENOMEM; ++ goto err_srcmap1; ++ } ++ } ++ ++ if (hifn_dmamap_aligned(&cmd->src)) { ++ cmd->sloplen = cmd->src_mapsize & 3; ++ cmd->dst = cmd->src; ++ } else { ++ if (crp->crp_flags & CRYPTO_F_IOV) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto err_srcmap; ++ } else if (crp->crp_flags & CRYPTO_F_SKBUF) { ++#ifdef NOTYET ++ int totlen, len; ++ struct mbuf *m, *m0, *mlast; ++ ++ KASSERT(cmd->dst_m == cmd->src_m, ++ ("hifn_crypto: dst_m initialized improperly")); ++ hifnstats.hst_unaligned++; ++ /* ++ * Source is not aligned on a longword boundary. ++ * Copy the data to insure alignment. If we fail ++ * to allocate mbufs or clusters while doing this ++ * we return ERESTART so the operation is requeued ++ * at the crypto later, but only if there are ++ * ops already posted to the hardware; otherwise we ++ * have no guarantee that we'll be re-entered. ++ */ ++ totlen = cmd->src_mapsize; ++ if (cmd->src_m->m_flags & M_PKTHDR) { ++ len = MHLEN; ++ MGETHDR(m0, M_DONTWAIT, MT_DATA); ++ if (m0 && !m_dup_pkthdr(m0, cmd->src_m, M_DONTWAIT)) { ++ m_free(m0); ++ m0 = NULL; ++ } ++ } else { ++ len = MLEN; ++ MGET(m0, M_DONTWAIT, MT_DATA); ++ } ++ if (m0 == NULL) { ++ hifnstats.hst_nomem_mbuf++; ++ err = dma->cmdu ? ERESTART : ENOMEM; ++ goto err_srcmap; ++ } ++ if (totlen >= MINCLSIZE) { ++ MCLGET(m0, M_DONTWAIT); ++ if ((m0->m_flags & M_EXT) == 0) { ++ hifnstats.hst_nomem_mcl++; ++ err = dma->cmdu ? ERESTART : ENOMEM; ++ m_freem(m0); ++ goto err_srcmap; ++ } ++ len = MCLBYTES; ++ } ++ totlen -= len; ++ m0->m_pkthdr.len = m0->m_len = len; ++ mlast = m0; ++ ++ while (totlen > 0) { ++ MGET(m, M_DONTWAIT, MT_DATA); ++ if (m == NULL) { ++ hifnstats.hst_nomem_mbuf++; ++ err = dma->cmdu ? ERESTART : ENOMEM; ++ m_freem(m0); ++ goto err_srcmap; ++ } ++ len = MLEN; ++ if (totlen >= MINCLSIZE) { ++ MCLGET(m, M_DONTWAIT); ++ if ((m->m_flags & M_EXT) == 0) { ++ hifnstats.hst_nomem_mcl++; ++ err = dma->cmdu ? ERESTART : ENOMEM; ++ mlast->m_next = m; ++ m_freem(m0); ++ goto err_srcmap; ++ } ++ len = MCLBYTES; ++ } ++ ++ m->m_len = len; ++ m0->m_pkthdr.len += len; ++ totlen -= len; ++ ++ mlast->m_next = m; ++ mlast = m; ++ } ++ cmd->dst_m = m0; ++#else ++ device_printf(sc->sc_dev, ++ "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n", ++ __FILE__, __LINE__); ++ err = EINVAL; ++ goto err_srcmap; ++#endif ++ } else { ++ device_printf(sc->sc_dev, ++ "%s,%d: unaligned contig buffers not implemented\n", ++ __FILE__, __LINE__); ++ err = EINVAL; ++ goto err_srcmap; ++ } ++ } ++ ++ if (cmd->dst_map == NULL) { ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ if (pci_map_skb(sc, &cmd->dst, cmd->dst_skb)) { ++ hifnstats.hst_nomem_map++; ++ err = ENOMEM; ++ goto err_dstmap1; ++ } ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ if (pci_map_uio(sc, &cmd->dst, cmd->dst_io)) { ++ hifnstats.hst_nomem_load++; ++ err = ENOMEM; ++ goto err_dstmap1; ++ } ++ } else { ++ if (pci_map_buf(sc, &cmd->dst, cmd->dst_buf, crp->crp_ilen)) { ++ hifnstats.hst_nomem_load++; ++ err = ENOMEM; ++ goto err_dstmap1; ++ } ++ } ++ } ++ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ device_printf(sc->sc_dev, ++ "Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n", ++ READ_REG_1(sc, HIFN_1_DMA_CSR), ++ READ_REG_1(sc, HIFN_1_DMA_IER), ++ dma->cmdu, dma->srcu, dma->dstu, dma->resu, ++ cmd->src_nsegs, cmd->dst_nsegs); ++ } ++#endif ++ ++#if 0 ++ if (cmd->src_map == cmd->dst_map) { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); ++ } else { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_PREWRITE); ++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map, ++ BUS_DMASYNC_PREREAD); ++ } ++#endif ++ ++ /* ++ * need N src, and N dst ++ */ ++ if ((dma->srcu + cmd->src_nsegs) > HIFN_D_SRC_RSIZE || ++ (dma->dstu + cmd->dst_nsegs + 1) > HIFN_D_DST_RSIZE) { ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ device_printf(sc->sc_dev, ++ "src/dst exhaustion, srcu %u+%u dstu %u+%u\n", ++ dma->srcu, cmd->src_nsegs, ++ dma->dstu, cmd->dst_nsegs); ++ } ++#endif ++ hifnstats.hst_nomem_sd++; ++ err = ERESTART; ++ goto err_dstmap; ++ } ++ ++ if (dma->cmdi == HIFN_D_CMD_RSIZE) { ++ dma->cmdi = 0; ++ dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ } ++ cmdi = dma->cmdi++; ++ cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]); ++ HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE); ++ ++ /* .p for command/result already set */ ++ dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_LAST | ++ HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->cmdr[cmdi].l |= htole32(HIFN_D_VALID); ++ HIFN_CMDR_SYNC(sc, cmdi, ++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ++ dma->cmdu++; ++ ++ /* ++ * We don't worry about missing an interrupt (which a "command wait" ++ * interrupt salvages us from), unless there is more than one command ++ * in the queue. ++ */ ++ if (dma->cmdu > 1) { ++ sc->sc_dmaier |= HIFN_DMAIER_C_WAIT; ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier); ++ } ++ ++ hifnstats.hst_ipackets++; ++ hifnstats.hst_ibytes += cmd->src_mapsize; ++ ++ hifn_dmamap_load_src(sc, cmd); ++ ++ /* ++ * Unlike other descriptors, we don't mask done interrupt from ++ * result descriptor. ++ */ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) ++ device_printf(sc->sc_dev, "load res\n"); ++#endif ++ if (dma->resi == HIFN_D_RES_RSIZE) { ++ dma->resi = 0; ++ dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID); ++ HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ } ++ resi = dma->resi++; ++ KASSERT(dma->hifn_commands[resi] == NULL, ++ ("hifn_crypto: command slot %u busy", resi)); ++ dma->hifn_commands[resi] = cmd; ++ HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD); ++ if ((hint & CRYPTO_HINT_MORE) && sc->sc_curbatch < hifn_maxbatch) { ++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT | ++ HIFN_D_LAST | HIFN_D_MASKDONEIRQ); ++ wmb(); ++ dma->resr[resi].l |= htole32(HIFN_D_VALID); ++ sc->sc_curbatch++; ++ if (sc->sc_curbatch > hifnstats.hst_maxbatch) ++ hifnstats.hst_maxbatch = sc->sc_curbatch; ++ hifnstats.hst_totbatch++; ++ } else { ++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT | HIFN_D_LAST); ++ wmb(); ++ dma->resr[resi].l |= htole32(HIFN_D_VALID); ++ sc->sc_curbatch = 0; ++ } ++ HIFN_RESR_SYNC(sc, resi, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ dma->resu++; ++ ++ if (cmd->sloplen) ++ cmd->slopidx = resi; ++ ++ hifn_dmamap_load_dst(sc, cmd); ++ ++ csr = 0; ++ if (sc->sc_c_busy == 0) { ++ csr |= HIFN_DMACSR_C_CTRL_ENA; ++ sc->sc_c_busy = 1; ++ } ++ if (sc->sc_s_busy == 0) { ++ csr |= HIFN_DMACSR_S_CTRL_ENA; ++ sc->sc_s_busy = 1; ++ } ++ if (sc->sc_r_busy == 0) { ++ csr |= HIFN_DMACSR_R_CTRL_ENA; ++ sc->sc_r_busy = 1; ++ } ++ if (sc->sc_d_busy == 0) { ++ csr |= HIFN_DMACSR_D_CTRL_ENA; ++ sc->sc_d_busy = 1; ++ } ++ if (csr) ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, csr); ++ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ device_printf(sc->sc_dev, "command: stat %8x ier %8x\n", ++ READ_REG_1(sc, HIFN_1_DMA_CSR), ++ READ_REG_1(sc, HIFN_1_DMA_IER)); ++ } ++#endif ++ ++ sc->sc_active = 5; ++ HIFN_UNLOCK(sc); ++ KASSERT(err == 0, ("hifn_crypto: success with error %u", err)); ++ return (err); /* success */ ++ ++err_dstmap: ++ if (cmd->src_map != cmd->dst_map) ++ pci_unmap_buf(sc, &cmd->dst); ++err_dstmap1: ++err_srcmap: ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ if (cmd->src_skb != cmd->dst_skb) ++#ifdef NOTYET ++ m_freem(cmd->dst_m); ++#else ++ device_printf(sc->sc_dev, ++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n", ++ __FILE__, __LINE__); ++#endif ++ } ++ pci_unmap_buf(sc, &cmd->src); ++err_srcmap1: ++ HIFN_UNLOCK(sc); ++ return (err); ++} ++ ++static void ++hifn_tick(unsigned long arg) ++{ ++ struct hifn_softc *sc; ++ unsigned long l_flags; ++ ++ if (arg >= HIFN_MAX_CHIPS) ++ return; ++ sc = hifn_chip_idx[arg]; ++ if (!sc) ++ return; ++ ++ HIFN_LOCK(sc); ++ if (sc->sc_active == 0) { ++ struct hifn_dma *dma = sc->sc_dma; ++ u_int32_t r = 0; ++ ++ if (dma->cmdu == 0 && sc->sc_c_busy) { ++ sc->sc_c_busy = 0; ++ r |= HIFN_DMACSR_C_CTRL_DIS; ++ } ++ if (dma->srcu == 0 && sc->sc_s_busy) { ++ sc->sc_s_busy = 0; ++ r |= HIFN_DMACSR_S_CTRL_DIS; ++ } ++ if (dma->dstu == 0 && sc->sc_d_busy) { ++ sc->sc_d_busy = 0; ++ r |= HIFN_DMACSR_D_CTRL_DIS; ++ } ++ if (dma->resu == 0 && sc->sc_r_busy) { ++ sc->sc_r_busy = 0; ++ r |= HIFN_DMACSR_R_CTRL_DIS; ++ } ++ if (r) ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, r); ++ } else ++ sc->sc_active--; ++ HIFN_UNLOCK(sc); ++ mod_timer(&sc->sc_tickto, jiffies + HZ); ++} ++ ++static irqreturn_t ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++hifn_intr(int irq, void *arg) ++#else ++hifn_intr(int irq, void *arg, struct pt_regs *regs) ++#endif ++{ ++ struct hifn_softc *sc = arg; ++ struct hifn_dma *dma; ++ u_int32_t dmacsr, restart; ++ int i, u; ++ unsigned long l_flags; ++ ++ dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR); ++ ++ /* Nothing in the DMA unit interrupted */ ++ if ((dmacsr & sc->sc_dmaier) == 0) ++ return IRQ_NONE; ++ ++ HIFN_LOCK(sc); ++ ++ dma = sc->sc_dma; ++ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) { ++ device_printf(sc->sc_dev, ++ "irq: stat %08x ien %08x damier %08x i %d/%d/%d/%d k %d/%d/%d/%d u %d/%d/%d/%d\n", ++ dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER), sc->sc_dmaier, ++ dma->cmdi, dma->srci, dma->dsti, dma->resi, ++ dma->cmdk, dma->srck, dma->dstk, dma->resk, ++ dma->cmdu, dma->srcu, dma->dstu, dma->resu); ++ } ++#endif ++ ++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, dmacsr & sc->sc_dmaier); ++ ++ if ((sc->sc_flags & HIFN_HAS_PUBLIC) && ++ (dmacsr & HIFN_DMACSR_PUBDONE)) ++ WRITE_REG_1(sc, HIFN_1_PUB_STATUS, ++ READ_REG_1(sc, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); ++ ++ restart = dmacsr & (HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_OVER); ++ if (restart) ++ device_printf(sc->sc_dev, "overrun %x\n", dmacsr); ++ ++ if (sc->sc_flags & HIFN_IS_7811) { ++ if (dmacsr & HIFN_DMACSR_ILLR) ++ device_printf(sc->sc_dev, "illegal read\n"); ++ if (dmacsr & HIFN_DMACSR_ILLW) ++ device_printf(sc->sc_dev, "illegal write\n"); ++ } ++ ++ restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | ++ HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); ++ if (restart) { ++ device_printf(sc->sc_dev, "abort, resetting.\n"); ++ hifnstats.hst_abort++; ++ hifn_abort(sc); ++ HIFN_UNLOCK(sc); ++ return IRQ_HANDLED; ++ } ++ ++ if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { ++ /* ++ * If no slots to process and we receive a "waiting on ++ * command" interrupt, we disable the "waiting on command" ++ * (by clearing it). ++ */ ++ sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT; ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier); ++ } ++ ++ /* clear the rings */ ++ i = dma->resk; u = dma->resu; ++ while (u != 0) { ++ HIFN_RESR_SYNC(sc, i, ++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ++ if (dma->resr[i].l & htole32(HIFN_D_VALID)) { ++ HIFN_RESR_SYNC(sc, i, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ break; ++ } ++ ++ if (i != HIFN_D_RES_RSIZE) { ++ struct hifn_command *cmd; ++ u_int8_t *macbuf = NULL; ++ ++ HIFN_RES_SYNC(sc, i, BUS_DMASYNC_POSTREAD); ++ cmd = dma->hifn_commands[i]; ++ KASSERT(cmd != NULL, ++ ("hifn_intr: null command slot %u", i)); ++ dma->hifn_commands[i] = NULL; ++ ++ if (cmd->base_masks & HIFN_BASE_CMD_MAC) { ++ macbuf = dma->result_bufs[i]; ++ macbuf += 12; ++ } ++ ++ hifn_callback(sc, cmd, macbuf); ++ hifnstats.hst_opackets++; ++ u--; ++ } ++ ++ if (++i == (HIFN_D_RES_RSIZE + 1)) ++ i = 0; ++ } ++ dma->resk = i; dma->resu = u; ++ ++ i = dma->srck; u = dma->srcu; ++ while (u != 0) { ++ if (i == HIFN_D_SRC_RSIZE) ++ i = 0; ++ HIFN_SRCR_SYNC(sc, i, ++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ++ if (dma->srcr[i].l & htole32(HIFN_D_VALID)) { ++ HIFN_SRCR_SYNC(sc, i, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ break; ++ } ++ i++, u--; ++ } ++ dma->srck = i; dma->srcu = u; ++ ++ i = dma->cmdk; u = dma->cmdu; ++ while (u != 0) { ++ HIFN_CMDR_SYNC(sc, i, ++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ++ if (dma->cmdr[i].l & htole32(HIFN_D_VALID)) { ++ HIFN_CMDR_SYNC(sc, i, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++ break; ++ } ++ if (i != HIFN_D_CMD_RSIZE) { ++ u--; ++ HIFN_CMD_SYNC(sc, i, BUS_DMASYNC_POSTWRITE); ++ } ++ if (++i == (HIFN_D_CMD_RSIZE + 1)) ++ i = 0; ++ } ++ dma->cmdk = i; dma->cmdu = u; ++ ++ HIFN_UNLOCK(sc); ++ ++ if (sc->sc_needwakeup) { /* XXX check high watermark */ ++ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); ++#ifdef HIFN_DEBUG ++ if (hifn_debug) ++ device_printf(sc->sc_dev, ++ "wakeup crypto (%x) u %d/%d/%d/%d\n", ++ sc->sc_needwakeup, ++ dma->cmdu, dma->srcu, dma->dstu, dma->resu); ++#endif ++ sc->sc_needwakeup &= ~wakeup; ++ crypto_unblock(sc->sc_cid, wakeup); ++ } ++ ++ return IRQ_HANDLED; ++} ++ ++/* ++ * Allocate a new 'session' and return an encoded session id. 'sidp' ++ * contains our registration id, and should contain an encoded session ++ * id on successful allocation. ++ */ ++static int ++hifn_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) ++{ ++ struct hifn_softc *sc = device_get_softc(dev); ++ struct cryptoini *c; ++ int mac = 0, cry = 0, sesn; ++ struct hifn_session *ses = NULL; ++ unsigned long l_flags; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ KASSERT(sc != NULL, ("hifn_newsession: null softc")); ++ if (sidp == NULL || cri == NULL || sc == NULL) { ++ DPRINTF("%s,%d: %s - EINVAL\n", __FILE__, __LINE__, __FUNCTION__); ++ return (EINVAL); ++ } ++ ++ HIFN_LOCK(sc); ++ if (sc->sc_sessions == NULL) { ++ ses = sc->sc_sessions = (struct hifn_session *)kmalloc(sizeof(*ses), ++ SLAB_ATOMIC); ++ if (ses == NULL) { ++ HIFN_UNLOCK(sc); ++ return (ENOMEM); ++ } ++ sesn = 0; ++ sc->sc_nsessions = 1; ++ } else { ++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { ++ if (!sc->sc_sessions[sesn].hs_used) { ++ ses = &sc->sc_sessions[sesn]; ++ break; ++ } ++ } ++ ++ if (ses == NULL) { ++ sesn = sc->sc_nsessions; ++ ses = (struct hifn_session *)kmalloc((sesn + 1) * sizeof(*ses), ++ SLAB_ATOMIC); ++ if (ses == NULL) { ++ HIFN_UNLOCK(sc); ++ return (ENOMEM); ++ } ++ bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses)); ++ bzero(sc->sc_sessions, sesn * sizeof(*ses)); ++ kfree(sc->sc_sessions); ++ sc->sc_sessions = ses; ++ ses = &sc->sc_sessions[sesn]; ++ sc->sc_nsessions++; ++ } ++ } ++ HIFN_UNLOCK(sc); ++ ++ bzero(ses, sizeof(*ses)); ++ ses->hs_used = 1; ++ ++ for (c = cri; c != NULL; c = c->cri_next) { ++ switch (c->cri_alg) { ++ case CRYPTO_MD5: ++ case CRYPTO_SHA1: ++ case CRYPTO_MD5_HMAC: ++ case CRYPTO_SHA1_HMAC: ++ if (mac) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ mac = 1; ++ ses->hs_mlen = c->cri_mlen; ++ if (ses->hs_mlen == 0) { ++ switch (c->cri_alg) { ++ case CRYPTO_MD5: ++ case CRYPTO_MD5_HMAC: ++ ses->hs_mlen = 16; ++ break; ++ case CRYPTO_SHA1: ++ case CRYPTO_SHA1_HMAC: ++ ses->hs_mlen = 20; ++ break; ++ } ++ } ++ break; ++ case CRYPTO_DES_CBC: ++ case CRYPTO_3DES_CBC: ++ case CRYPTO_AES_CBC: ++ /* XXX this may read fewer, does it matter? */ ++ read_random(ses->hs_iv, ++ c->cri_alg == CRYPTO_AES_CBC ? ++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH); ++ /*FALLTHROUGH*/ ++ case CRYPTO_ARC4: ++ if (cry) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ cry = 1; ++ break; ++ default: ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ } ++ if (mac == 0 && cry == 0) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ ++ *sidp = HIFN_SID(device_get_unit(sc->sc_dev), sesn); ++ ++ return (0); ++} ++ ++/* ++ * Deallocate a session. ++ * XXX this routine should run a zero'd mac/encrypt key into context ram. ++ * XXX to blow away any keys already stored there. ++ */ ++static int ++hifn_freesession(device_t dev, u_int64_t tid) ++{ ++ struct hifn_softc *sc = device_get_softc(dev); ++ int session, error; ++ u_int32_t sid = CRYPTO_SESID2LID(tid); ++ unsigned long l_flags; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ KASSERT(sc != NULL, ("hifn_freesession: null softc")); ++ if (sc == NULL) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ ++ HIFN_LOCK(sc); ++ session = HIFN_SESSION(sid); ++ if (session < sc->sc_nsessions) { ++ bzero(&sc->sc_sessions[session], sizeof(struct hifn_session)); ++ error = 0; ++ } else { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ error = EINVAL; ++ } ++ HIFN_UNLOCK(sc); ++ ++ return (error); ++} ++ ++static int ++hifn_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ struct hifn_softc *sc = device_get_softc(dev); ++ struct hifn_command *cmd = NULL; ++ int session, err, ivlen; ++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (crp == NULL || crp->crp_callback == NULL) { ++ hifnstats.hst_invalid++; ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ return (EINVAL); ++ } ++ session = HIFN_SESSION(crp->crp_sid); ++ ++ if (sc == NULL || session >= sc->sc_nsessions) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto errout; ++ } ++ ++ cmd = kmalloc(sizeof(struct hifn_command), SLAB_ATOMIC); ++ if (cmd == NULL) { ++ hifnstats.hst_nomem++; ++ err = ENOMEM; ++ goto errout; ++ } ++ memset(cmd, 0, sizeof(*cmd)); ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ cmd->src_skb = (struct sk_buff *)crp->crp_buf; ++ cmd->dst_skb = (struct sk_buff *)crp->crp_buf; ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ cmd->src_io = (struct uio *)crp->crp_buf; ++ cmd->dst_io = (struct uio *)crp->crp_buf; ++ } else { ++ cmd->src_buf = crp->crp_buf; ++ cmd->dst_buf = crp->crp_buf; ++ } ++ ++ crd1 = crp->crp_desc; ++ if (crd1 == NULL) { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto errout; ++ } ++ crd2 = crd1->crd_next; ++ ++ if (crd2 == NULL) { ++ if (crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1 || ++ crd1->crd_alg == CRYPTO_MD5) { ++ maccrd = crd1; ++ enccrd = NULL; ++ } else if (crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC || ++ crd1->crd_alg == CRYPTO_ARC4) { ++ if ((crd1->crd_flags & CRD_F_ENCRYPT) == 0) ++ cmd->base_masks |= HIFN_BASE_CMD_DECODE; ++ maccrd = NULL; ++ enccrd = crd1; ++ } else { ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto errout; ++ } ++ } else { ++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_MD5 || ++ crd1->crd_alg == CRYPTO_SHA1) && ++ (crd2->crd_alg == CRYPTO_DES_CBC || ++ crd2->crd_alg == CRYPTO_3DES_CBC || ++ crd2->crd_alg == CRYPTO_AES_CBC || ++ crd2->crd_alg == CRYPTO_ARC4) && ++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { ++ cmd->base_masks = HIFN_BASE_CMD_DECODE; ++ maccrd = crd1; ++ enccrd = crd2; ++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_ARC4 || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC) && ++ (crd2->crd_alg == CRYPTO_MD5_HMAC || ++ crd2->crd_alg == CRYPTO_SHA1_HMAC || ++ crd2->crd_alg == CRYPTO_MD5 || ++ crd2->crd_alg == CRYPTO_SHA1) && ++ (crd1->crd_flags & CRD_F_ENCRYPT)) { ++ enccrd = crd1; ++ maccrd = crd2; ++ } else { ++ /* ++ * We cannot order the 7751 as requested ++ */ ++ DPRINTF("%s,%d: %s %d,%d,%d - EINVAL\n",__FILE__,__LINE__,__FUNCTION__, crd1->crd_alg, crd2->crd_alg, crd1->crd_flags & CRD_F_ENCRYPT); ++ err = EINVAL; ++ goto errout; ++ } ++ } ++ ++ if (enccrd) { ++ cmd->enccrd = enccrd; ++ cmd->base_masks |= HIFN_BASE_CMD_CRYPT; ++ switch (enccrd->crd_alg) { ++ case CRYPTO_ARC4: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_RC4; ++ break; ++ case CRYPTO_DES_CBC: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_DES | ++ HIFN_CRYPT_CMD_MODE_CBC | ++ HIFN_CRYPT_CMD_NEW_IV; ++ break; ++ case CRYPTO_3DES_CBC: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_3DES | ++ HIFN_CRYPT_CMD_MODE_CBC | ++ HIFN_CRYPT_CMD_NEW_IV; ++ break; ++ case CRYPTO_AES_CBC: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_AES | ++ HIFN_CRYPT_CMD_MODE_CBC | ++ HIFN_CRYPT_CMD_NEW_IV; ++ break; ++ default: ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto errout; ++ } ++ if (enccrd->crd_alg != CRYPTO_ARC4) { ++ ivlen = ((enccrd->crd_alg == CRYPTO_AES_CBC) ? ++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH); ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) { ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ bcopy(enccrd->crd_iv, cmd->iv, ivlen); ++ else ++ bcopy(sc->sc_sessions[session].hs_iv, ++ cmd->iv, ivlen); ++ ++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) ++ == 0) { ++ crypto_copyback(crp->crp_flags, ++ crp->crp_buf, enccrd->crd_inject, ++ ivlen, cmd->iv); ++ } ++ } else { ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ bcopy(enccrd->crd_iv, cmd->iv, ivlen); ++ else { ++ crypto_copydata(crp->crp_flags, ++ crp->crp_buf, enccrd->crd_inject, ++ ivlen, cmd->iv); ++ } ++ } ++ } ++ ++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) ++ cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY; ++ cmd->ck = enccrd->crd_key; ++ cmd->cklen = enccrd->crd_klen >> 3; ++ cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY; ++ ++ /* ++ * Need to specify the size for the AES key in the masks. ++ */ ++ if ((cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) == ++ HIFN_CRYPT_CMD_ALG_AES) { ++ switch (cmd->cklen) { ++ case 16: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_128; ++ break; ++ case 24: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_192; ++ break; ++ case 32: ++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_256; ++ break; ++ default: ++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__); ++ err = EINVAL; ++ goto errout; ++ } ++ } ++ } ++ ++ if (maccrd) { ++ cmd->maccrd = maccrd; ++ cmd->base_masks |= HIFN_BASE_CMD_MAC; ++ ++ switch (maccrd->crd_alg) { ++ case CRYPTO_MD5: ++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 | ++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH | ++ HIFN_MAC_CMD_POS_IPSEC; ++ break; ++ case CRYPTO_MD5_HMAC: ++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 | ++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC | ++ HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC; ++ break; ++ case CRYPTO_SHA1: ++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 | ++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH | ++ HIFN_MAC_CMD_POS_IPSEC; ++ break; ++ case CRYPTO_SHA1_HMAC: ++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 | ++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC | ++ HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC; ++ break; ++ } ++ ++ if (maccrd->crd_alg == CRYPTO_SHA1_HMAC || ++ maccrd->crd_alg == CRYPTO_MD5_HMAC) { ++ cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY; ++ bcopy(maccrd->crd_key, cmd->mac, maccrd->crd_klen >> 3); ++ bzero(cmd->mac + (maccrd->crd_klen >> 3), ++ HIFN_MAC_KEY_LENGTH - (maccrd->crd_klen >> 3)); ++ } ++ } ++ ++ cmd->crp = crp; ++ cmd->session_num = session; ++ cmd->softc = sc; ++ ++ err = hifn_crypto(sc, cmd, crp, hint); ++ if (!err) { ++ return 0; ++ } else if (err == ERESTART) { ++ /* ++ * There weren't enough resources to dispatch the request ++ * to the part. Notify the caller so they'll requeue this ++ * request and resubmit it again soon. ++ */ ++#ifdef HIFN_DEBUG ++ if (hifn_debug) ++ device_printf(sc->sc_dev, "requeue request\n"); ++#endif ++ kfree(cmd); ++ sc->sc_needwakeup |= CRYPTO_SYMQ; ++ return (err); ++ } ++ ++errout: ++ if (cmd != NULL) ++ kfree(cmd); ++ if (err == EINVAL) ++ hifnstats.hst_invalid++; ++ else ++ hifnstats.hst_nomem++; ++ crp->crp_etype = err; ++ crypto_done(crp); ++ return (err); ++} ++ ++static void ++hifn_abort(struct hifn_softc *sc) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ struct hifn_command *cmd; ++ struct cryptop *crp; ++ int i, u; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ i = dma->resk; u = dma->resu; ++ while (u != 0) { ++ cmd = dma->hifn_commands[i]; ++ KASSERT(cmd != NULL, ("hifn_abort: null command slot %u", i)); ++ dma->hifn_commands[i] = NULL; ++ crp = cmd->crp; ++ ++ if ((dma->resr[i].l & htole32(HIFN_D_VALID)) == 0) { ++ /* Salvage what we can. */ ++ u_int8_t *macbuf; ++ ++ if (cmd->base_masks & HIFN_BASE_CMD_MAC) { ++ macbuf = dma->result_bufs[i]; ++ macbuf += 12; ++ } else ++ macbuf = NULL; ++ hifnstats.hst_opackets++; ++ hifn_callback(sc, cmd, macbuf); ++ } else { ++#if 0 ++ if (cmd->src_map == cmd->dst_map) { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); ++ } else { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_POSTWRITE); ++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map, ++ BUS_DMASYNC_POSTREAD); ++ } ++#endif ++ ++ if (cmd->src_skb != cmd->dst_skb) { ++#ifdef NOTYET ++ m_freem(cmd->src_m); ++ crp->crp_buf = (caddr_t)cmd->dst_m; ++#else ++ device_printf(sc->sc_dev, ++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n", ++ __FILE__, __LINE__); ++#endif ++ } ++ ++ /* non-shared buffers cannot be restarted */ ++ if (cmd->src_map != cmd->dst_map) { ++ /* ++ * XXX should be EAGAIN, delayed until ++ * after the reset. ++ */ ++ crp->crp_etype = ENOMEM; ++ pci_unmap_buf(sc, &cmd->dst); ++ } else ++ crp->crp_etype = ENOMEM; ++ ++ pci_unmap_buf(sc, &cmd->src); ++ ++ kfree(cmd); ++ if (crp->crp_etype != EAGAIN) ++ crypto_done(crp); ++ } ++ ++ if (++i == HIFN_D_RES_RSIZE) ++ i = 0; ++ u--; ++ } ++ dma->resk = i; dma->resu = u; ++ ++ hifn_reset_board(sc, 1); ++ hifn_init_dma(sc); ++ hifn_init_pci_registers(sc); ++} ++ ++static void ++hifn_callback(struct hifn_softc *sc, struct hifn_command *cmd, u_int8_t *macbuf) ++{ ++ struct hifn_dma *dma = sc->sc_dma; ++ struct cryptop *crp = cmd->crp; ++ struct cryptodesc *crd; ++ int i, u, ivlen; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++#if 0 ++ if (cmd->src_map == cmd->dst_map) { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); ++ } else { ++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map, ++ BUS_DMASYNC_POSTWRITE); ++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map, ++ BUS_DMASYNC_POSTREAD); ++ } ++#endif ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ if (cmd->src_skb != cmd->dst_skb) { ++#ifdef NOTYET ++ crp->crp_buf = (caddr_t)cmd->dst_m; ++ totlen = cmd->src_mapsize; ++ for (m = cmd->dst_m; m != NULL; m = m->m_next) { ++ if (totlen < m->m_len) { ++ m->m_len = totlen; ++ totlen = 0; ++ } else ++ totlen -= m->m_len; ++ } ++ cmd->dst_m->m_pkthdr.len = cmd->src_m->m_pkthdr.len; ++ m_freem(cmd->src_m); ++#else ++ device_printf(sc->sc_dev, ++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n", ++ __FILE__, __LINE__); ++#endif ++ } ++ } ++ ++ if (cmd->sloplen != 0) { ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ cmd->src_mapsize - cmd->sloplen, cmd->sloplen, ++ (caddr_t)&dma->slop[cmd->slopidx]); ++ } ++ ++ i = dma->dstk; u = dma->dstu; ++ while (u != 0) { ++ if (i == HIFN_D_DST_RSIZE) ++ i = 0; ++#if 0 ++ bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, ++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ++#endif ++ if (dma->dstr[i].l & htole32(HIFN_D_VALID)) { ++#if 0 ++ bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, ++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ++#endif ++ break; ++ } ++ i++, u--; ++ } ++ dma->dstk = i; dma->dstu = u; ++ ++ hifnstats.hst_obytes += cmd->dst_mapsize; ++ ++ if ((cmd->base_masks & (HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE)) == ++ HIFN_BASE_CMD_CRYPT) { ++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { ++ if (crd->crd_alg != CRYPTO_DES_CBC && ++ crd->crd_alg != CRYPTO_3DES_CBC && ++ crd->crd_alg != CRYPTO_AES_CBC) ++ continue; ++ ivlen = ((crd->crd_alg == CRYPTO_AES_CBC) ? ++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH); ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ crd->crd_skip + crd->crd_len - ivlen, ivlen, ++ cmd->softc->sc_sessions[cmd->session_num].hs_iv); ++ break; ++ } ++ } ++ ++ if (macbuf != NULL) { ++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { ++ int len; ++ ++ if (crd->crd_alg != CRYPTO_MD5 && ++ crd->crd_alg != CRYPTO_SHA1 && ++ crd->crd_alg != CRYPTO_MD5_HMAC && ++ crd->crd_alg != CRYPTO_SHA1_HMAC) { ++ continue; ++ } ++ len = cmd->softc->sc_sessions[cmd->session_num].hs_mlen; ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, len, macbuf); ++ break; ++ } ++ } ++ ++ if (cmd->src_map != cmd->dst_map) ++ pci_unmap_buf(sc, &cmd->dst); ++ pci_unmap_buf(sc, &cmd->src); ++ kfree(cmd); ++ crypto_done(crp); ++} ++ ++/* ++ * 7811 PB3 rev/2 parts lock-up on burst writes to Group 0 ++ * and Group 1 registers; avoid conditions that could create ++ * burst writes by doing a read in between the writes. ++ * ++ * NB: The read we interpose is always to the same register; ++ * we do this because reading from an arbitrary (e.g. last) ++ * register may not always work. ++ */ ++static void ++hifn_write_reg_0(struct hifn_softc *sc, bus_size_t reg, u_int32_t val) ++{ ++ if (sc->sc_flags & HIFN_IS_7811) { ++ if (sc->sc_bar0_lastreg == reg - 4) ++ readl(sc->sc_bar0 + HIFN_0_PUCNFG); ++ sc->sc_bar0_lastreg = reg; ++ } ++ writel(val, sc->sc_bar0 + reg); ++} ++ ++static void ++hifn_write_reg_1(struct hifn_softc *sc, bus_size_t reg, u_int32_t val) ++{ ++ if (sc->sc_flags & HIFN_IS_7811) { ++ if (sc->sc_bar1_lastreg == reg - 4) ++ readl(sc->sc_bar1 + HIFN_1_REVID); ++ sc->sc_bar1_lastreg = reg; ++ } ++ writel(val, sc->sc_bar1 + reg); ++} ++ ++ ++static struct pci_device_id hifn_pci_tbl[] = { ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7951, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7955, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7956, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_NETSEC, PCI_PRODUCT_NETSEC_7751, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_INVERTEX, PCI_PRODUCT_INVERTEX_AEON, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7811, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ /* ++ * Other vendors share this PCI ID as well, such as ++ * http://www.powercrypt.com, and obviously they also ++ * use the same key. ++ */ ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7751, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { 0, 0, 0, 0, 0, 0, } ++}; ++MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); ++ ++static struct pci_driver hifn_driver = { ++ .name = "hifn", ++ .id_table = hifn_pci_tbl, ++ .probe = hifn_probe, ++ .remove = hifn_remove, ++ /* add PM stuff here one day */ ++}; ++ ++static int __init hifn_init (void) ++{ ++ struct hifn_softc *sc = NULL; ++ int rc; ++ ++ DPRINTF("%s(%p)\n", __FUNCTION__, hifn_init); ++ ++ rc = pci_register_driver(&hifn_driver); ++ pci_register_driver_compat(&hifn_driver, rc); ++ ++ return rc; ++} ++ ++static void __exit hifn_exit (void) ++{ ++ pci_unregister_driver(&hifn_driver); ++} ++ ++module_init(hifn_init); ++module_exit(hifn_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("OCF driver for hifn PCI crypto devices"); +--- /dev/null ++++ b/crypto/ocf/hifn/hifnHIPP.c +@@ -0,0 +1,420 @@ ++/*- ++ * Driver for Hifn HIPP-I/II chipset ++ * Copyright (c) 2006 Michael Richardson ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored by Hifn Inc. ++ * ++ */ ++ ++/* ++ * Driver for various Hifn encryption processors. ++ */ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include "hifnHIPPreg.h" ++#include "hifnHIPPvar.h" ++ ++#if 1 ++#define DPRINTF(a...) if (hipp_debug) { \ ++ printk("%s: ", sc ? \ ++ device_get_nameunit(sc->sc_dev) : "hifn"); \ ++ printk(a); \ ++ } else ++#else ++#define DPRINTF(a...) ++#endif ++ ++typedef int bus_size_t; ++ ++static inline int ++pci_get_revid(struct pci_dev *dev) ++{ ++ u8 rid = 0; ++ pci_read_config_byte(dev, PCI_REVISION_ID, &rid); ++ return rid; ++} ++ ++#define debug hipp_debug ++int hipp_debug = 0; ++module_param(hipp_debug, int, 0644); ++MODULE_PARM_DESC(hipp_debug, "Enable debug"); ++ ++int hipp_maxbatch = 1; ++module_param(hipp_maxbatch, int, 0644); ++MODULE_PARM_DESC(hipp_maxbatch, "max ops to batch w/o interrupt"); ++ ++static int hipp_probe(struct pci_dev *dev, const struct pci_device_id *ent); ++static void hipp_remove(struct pci_dev *dev); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++static irqreturn_t hipp_intr(int irq, void *arg); ++#else ++static irqreturn_t hipp_intr(int irq, void *arg, struct pt_regs *regs); ++#endif ++ ++static int hipp_num_chips = 0; ++static struct hipp_softc *hipp_chip_idx[HIPP_MAX_CHIPS]; ++ ++static int hipp_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int hipp_freesession(device_t, u_int64_t); ++static int hipp_process(device_t, struct cryptop *, int); ++ ++static device_method_t hipp_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, hipp_newsession), ++ DEVMETHOD(cryptodev_freesession,hipp_freesession), ++ DEVMETHOD(cryptodev_process, hipp_process), ++}; ++ ++static __inline u_int32_t ++READ_REG(struct hipp_softc *sc, unsigned int barno, bus_size_t reg) ++{ ++ u_int32_t v = readl(sc->sc_bar[barno] + reg); ++ //sc->sc_bar0_lastreg = (bus_size_t) -1; ++ return (v); ++} ++static __inline void ++WRITE_REG(struct hipp_softc *sc, unsigned int barno, bus_size_t reg, u_int32_t val) ++{ ++ writel(val, sc->sc_bar[barno] + reg); ++} ++ ++#define READ_REG_0(sc, reg) READ_REG(sc, 0, reg) ++#define WRITE_REG_0(sc, reg, val) WRITE_REG(sc,0, reg, val) ++#define READ_REG_1(sc, reg) READ_REG(sc, 1, reg) ++#define WRITE_REG_1(sc, reg, val) WRITE_REG(sc,1, reg, val) ++ ++static int ++hipp_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) ++{ ++ return EINVAL; ++} ++ ++static int ++hipp_freesession(device_t dev, u_int64_t tid) ++{ ++ return EINVAL; ++} ++ ++static int ++hipp_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ return EINVAL; ++} ++ ++static const char* ++hipp_partname(struct hipp_softc *sc, char buf[128], size_t blen) ++{ ++ char *n = NULL; ++ ++ switch (pci_get_vendor(sc->sc_pcidev)) { ++ case PCI_VENDOR_HIFN: ++ switch (pci_get_device(sc->sc_pcidev)) { ++ case PCI_PRODUCT_HIFN_7855: n = "Hifn 7855"; ++ case PCI_PRODUCT_HIFN_8155: n = "Hifn 8155"; ++ case PCI_PRODUCT_HIFN_6500: n = "Hifn 6500"; ++ } ++ } ++ ++ if(n==NULL) { ++ snprintf(buf, blen, "VID=%02x,PID=%02x", ++ pci_get_vendor(sc->sc_pcidev), ++ pci_get_device(sc->sc_pcidev)); ++ } else { ++ buf[0]='\0'; ++ strncat(buf, n, blen); ++ } ++ return buf; ++} ++ ++struct hipp_fs_entry { ++ struct attribute attr; ++ /* other stuff */ ++}; ++ ++ ++static ssize_t ++cryptoid_show(struct device *dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct hipp_softc *sc; ++ ++ sc = pci_get_drvdata(to_pci_dev (dev)); ++ return sprintf (buf, "%d\n", sc->sc_cid); ++} ++ ++struct device_attribute hipp_dev_cryptoid = __ATTR_RO(cryptoid); ++ ++/* ++ * Attach an interface that successfully probed. ++ */ ++static int ++hipp_probe(struct pci_dev *dev, const struct pci_device_id *ent) ++{ ++ struct hipp_softc *sc = NULL; ++ int i; ++ //char rbase; ++ //u_int16_t ena; ++ int rev; ++ //int rseg; ++ int rc; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (pci_enable_device(dev) < 0) ++ return(-ENODEV); ++ ++ if (pci_set_mwi(dev)) ++ return(-ENODEV); ++ ++ if (!dev->irq) { ++ printk("hifn: found device with no IRQ assigned. check BIOS settings!"); ++ pci_disable_device(dev); ++ return(-ENODEV); ++ } ++ ++ sc = (struct hipp_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); ++ if (!sc) ++ return(-ENOMEM); ++ memset(sc, 0, sizeof(*sc)); ++ ++ softc_device_init(sc, "hifn-hipp", hipp_num_chips, hipp_methods); ++ ++ sc->sc_pcidev = dev; ++ sc->sc_irq = -1; ++ sc->sc_cid = -1; ++ sc->sc_num = hipp_num_chips++; ++ ++ if (sc->sc_num < HIPP_MAX_CHIPS) ++ hipp_chip_idx[sc->sc_num] = sc; ++ ++ pci_set_drvdata(sc->sc_pcidev, sc); ++ ++ spin_lock_init(&sc->sc_mtx); ++ ++ /* ++ * Setup PCI resources. ++ * The READ_REG_0, WRITE_REG_0, READ_REG_1, ++ * and WRITE_REG_1 macros throughout the driver are used ++ * to permit better debugging. ++ */ ++ for(i=0; i<4; i++) { ++ unsigned long mem_start, mem_len; ++ mem_start = pci_resource_start(sc->sc_pcidev, i); ++ mem_len = pci_resource_len(sc->sc_pcidev, i); ++ sc->sc_barphy[i] = (caddr_t)mem_start; ++ sc->sc_bar[i] = (ocf_iomem_t) ioremap(mem_start, mem_len); ++ if (!sc->sc_bar[i]) { ++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", i); ++ goto fail; ++ } ++ } ++ ++ //hipp_reset_board(sc, 0); ++ pci_set_master(sc->sc_pcidev); ++ ++ /* ++ * Arrange the interrupt line. ++ */ ++ rc = request_irq(dev->irq, hipp_intr, IRQF_SHARED, "hifn", sc); ++ if (rc) { ++ device_printf(sc->sc_dev, "could not map interrupt: %d\n", rc); ++ goto fail; ++ } ++ sc->sc_irq = dev->irq; ++ ++ rev = READ_REG_1(sc, HIPP_1_REVID) & 0xffff; ++ ++ { ++ char b[32]; ++ device_printf(sc->sc_dev, "%s, rev %u", ++ hipp_partname(sc, b, sizeof(b)), rev); ++ } ++ ++#if 0 ++ if (sc->sc_flags & HIFN_IS_7956) ++ printf(", pll=0x%x<%s clk, %ux mult>", ++ sc->sc_pllconfig, ++ sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci", ++ 2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11)); ++#endif ++ printf("\n"); ++ ++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE); ++ if (sc->sc_cid < 0) { ++ device_printf(sc->sc_dev, "could not get crypto driver id\n"); ++ goto fail; ++ } ++ ++#if 0 /* cannot work with a non-GPL module */ ++ /* make a sysfs entry to let the world know what entry we got */ ++ sysfs_create_file(&sc->sc_pcidev->dev.kobj, &hipp_dev_cryptoid.attr); ++#endif ++ ++#if 0 ++ init_timer(&sc->sc_tickto); ++ sc->sc_tickto.function = hifn_tick; ++ sc->sc_tickto.data = (unsigned long) sc->sc_num; ++ mod_timer(&sc->sc_tickto, jiffies + HZ); ++#endif ++ ++#if 0 /* no code here yet ?? */ ++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); ++#endif ++ ++ return (0); ++ ++fail: ++ if (sc->sc_cid >= 0) ++ crypto_unregister_all(sc->sc_cid); ++ if (sc->sc_irq != -1) ++ free_irq(sc->sc_irq, sc); ++ ++#if 0 ++ if (sc->sc_dma) { ++ /* Turn off DMA polling */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++ ++ pci_free_consistent(sc->sc_pcidev, ++ sizeof(*sc->sc_dma), ++ sc->sc_dma, sc->sc_dma_physaddr); ++ } ++#endif ++ kfree(sc); ++ return (-ENXIO); ++} ++ ++/* ++ * Detach an interface that successfully probed. ++ */ ++static void ++hipp_remove(struct pci_dev *dev) ++{ ++ struct hipp_softc *sc = pci_get_drvdata(dev); ++ unsigned long l_flags; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* disable interrupts */ ++ HIPP_LOCK(sc); ++ ++#if 0 ++ WRITE_REG_1(sc, HIFN_1_DMA_IER, 0); ++ HIFN_UNLOCK(sc); ++ ++ /*XXX other resources */ ++ del_timer_sync(&sc->sc_tickto); ++ ++ /* Turn off DMA polling */ ++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | ++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); ++#endif ++ ++ crypto_unregister_all(sc->sc_cid); ++ ++ free_irq(sc->sc_irq, sc); ++ ++#if 0 ++ pci_free_consistent(sc->sc_pcidev, sizeof(*sc->sc_dma), ++ sc->sc_dma, sc->sc_dma_physaddr); ++#endif ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++static irqreturn_t hipp_intr(int irq, void *arg) ++#else ++static irqreturn_t hipp_intr(int irq, void *arg, struct pt_regs *regs) ++#endif ++{ ++ struct hipp_softc *sc = arg; ++ ++ sc = sc; /* shut up compiler */ ++ ++ return IRQ_HANDLED; ++} ++ ++static struct pci_device_id hipp_pci_tbl[] = { ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7855, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_8155, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++}; ++MODULE_DEVICE_TABLE(pci, hipp_pci_tbl); ++ ++static struct pci_driver hipp_driver = { ++ .name = "hipp", ++ .id_table = hipp_pci_tbl, ++ .probe = hipp_probe, ++ .remove = hipp_remove, ++ /* add PM stuff here one day */ ++}; ++ ++static int __init hipp_init (void) ++{ ++ struct hipp_softc *sc = NULL; ++ int rc; ++ ++ DPRINTF("%s(%p)\n", __FUNCTION__, hipp_init); ++ ++ rc = pci_register_driver(&hipp_driver); ++ pci_register_driver_compat(&hipp_driver, rc); ++ ++ return rc; ++} ++ ++static void __exit hipp_exit (void) ++{ ++ pci_unregister_driver(&hipp_driver); ++} ++ ++module_init(hipp_init); ++module_exit(hipp_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("Michael Richardson "); ++MODULE_DESCRIPTION("OCF driver for hifn HIPP-I/II PCI crypto devices"); +--- /dev/null ++++ b/crypto/ocf/hifn/hifnHIPPreg.h +@@ -0,0 +1,46 @@ ++/*- ++ * Hifn HIPP-I/HIPP-II (7855/8155) driver. ++ * Copyright (c) 2006 Michael Richardson ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored by Hifn inc. ++ * ++ */ ++ ++#ifndef __HIFNHIPP_H__ ++#define __HIFNHIPP_H__ ++ ++/* ++ * PCI vendor and device identifiers ++ */ ++#define PCI_VENDOR_HIFN 0x13a3 /* Hifn */ ++#define PCI_PRODUCT_HIFN_6500 0x0006 /* 6500 */ ++#define PCI_PRODUCT_HIFN_7855 0x001f /* 7855 */ ++#define PCI_PRODUCT_HIFN_8155 0x999 /* XXX 8155 */ ++ ++#define HIPP_1_REVID 0x01 /* BOGUS */ ++ ++#endif /* __HIPP_H__ */ +--- /dev/null ++++ b/crypto/ocf/hifn/hifnHIPPvar.h +@@ -0,0 +1,93 @@ ++/* ++ * Hifn HIPP-I/HIPP-II (7855/8155) driver. ++ * Copyright (c) 2006 Michael Richardson * ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored by Hifn inc. ++ * ++ */ ++ ++#ifndef __HIFNHIPPVAR_H__ ++#define __HIFNHIPPVAR_H__ ++ ++#define HIPP_MAX_CHIPS 8 ++ ++/* ++ * Holds data specific to a single Hifn HIPP-I board. ++ */ ++struct hipp_softc { ++ softc_device_decl sc_dev; ++ ++ struct pci_dev *sc_pcidev; /* device backpointer */ ++ ocf_iomem_t sc_bar[5]; ++ caddr_t sc_barphy[5]; /* physical address */ ++ int sc_num; /* for multiple devs */ ++ spinlock_t sc_mtx; /* per-instance lock */ ++ int32_t sc_cid; ++ int sc_irq; ++ ++#if 0 ++ ++ u_int32_t sc_dmaier; ++ u_int32_t sc_drammodel; /* 1=dram, 0=sram */ ++ u_int32_t sc_pllconfig; /* 7954/7955/7956 PLL config */ ++ ++ struct hifn_dma *sc_dma; ++ dma_addr_t sc_dma_physaddr;/* physical address of sc_dma */ ++ ++ int sc_dmansegs; ++ int sc_maxses; ++ int sc_nsessions; ++ struct hifn_session *sc_sessions; ++ int sc_ramsize; ++ int sc_flags; ++#define HIFN_HAS_RNG 0x1 /* includes random number generator */ ++#define HIFN_HAS_PUBLIC 0x2 /* includes public key support */ ++#define HIFN_HAS_AES 0x4 /* includes AES support */ ++#define HIFN_IS_7811 0x8 /* Hifn 7811 part */ ++#define HIFN_IS_7956 0x10 /* Hifn 7956/7955 don't have SDRAM */ ++ ++ struct timer_list sc_tickto; /* for managing DMA */ ++ ++ int sc_rngfirst; ++ int sc_rnghz; /* RNG polling frequency */ ++ ++ int sc_c_busy; /* command ring busy */ ++ int sc_s_busy; /* source data ring busy */ ++ int sc_d_busy; /* destination data ring busy */ ++ int sc_r_busy; /* result ring busy */ ++ int sc_active; /* for initial countdown */ ++ int sc_needwakeup; /* ops q'd wating on resources */ ++ int sc_curbatch; /* # ops submitted w/o int */ ++ int sc_suspended; ++ struct miscdevice sc_miscdev; ++#endif ++}; ++ ++#define HIPP_LOCK(_sc) spin_lock_irqsave(&(_sc)->sc_mtx, l_flags) ++#define HIPP_UNLOCK(_sc) spin_unlock_irqrestore(&(_sc)->sc_mtx, l_flags) ++ ++#endif /* __HIFNHIPPVAR_H__ */ +--- /dev/null ++++ b/crypto/ocf/safe/md5.c +@@ -0,0 +1,308 @@ ++/* $KAME: md5.c,v 1.5 2000/11/08 06:13:08 itojun Exp $ */ ++/* ++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. Neither the name of the project nor the names of its contributors ++ * may be used to endorse or promote products derived from this software ++ * without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++ ++#if 0 ++#include ++__FBSDID("$FreeBSD: src/sys/crypto/md5.c,v 1.9 2004/01/27 19:49:19 des Exp $"); ++ ++#include ++#include ++#include ++#include ++#include ++#endif ++ ++#define SHIFT(X, s) (((X) << (s)) | ((X) >> (32 - (s)))) ++ ++#define F(X, Y, Z) (((X) & (Y)) | ((~X) & (Z))) ++#define G(X, Y, Z) (((X) & (Z)) | ((Y) & (~Z))) ++#define H(X, Y, Z) ((X) ^ (Y) ^ (Z)) ++#define I(X, Y, Z) ((Y) ^ ((X) | (~Z))) ++ ++#define ROUND1(a, b, c, d, k, s, i) { \ ++ (a) = (a) + F((b), (c), (d)) + X[(k)] + T[(i)]; \ ++ (a) = SHIFT((a), (s)); \ ++ (a) = (b) + (a); \ ++} ++ ++#define ROUND2(a, b, c, d, k, s, i) { \ ++ (a) = (a) + G((b), (c), (d)) + X[(k)] + T[(i)]; \ ++ (a) = SHIFT((a), (s)); \ ++ (a) = (b) + (a); \ ++} ++ ++#define ROUND3(a, b, c, d, k, s, i) { \ ++ (a) = (a) + H((b), (c), (d)) + X[(k)] + T[(i)]; \ ++ (a) = SHIFT((a), (s)); \ ++ (a) = (b) + (a); \ ++} ++ ++#define ROUND4(a, b, c, d, k, s, i) { \ ++ (a) = (a) + I((b), (c), (d)) + X[(k)] + T[(i)]; \ ++ (a) = SHIFT((a), (s)); \ ++ (a) = (b) + (a); \ ++} ++ ++#define Sa 7 ++#define Sb 12 ++#define Sc 17 ++#define Sd 22 ++ ++#define Se 5 ++#define Sf 9 ++#define Sg 14 ++#define Sh 20 ++ ++#define Si 4 ++#define Sj 11 ++#define Sk 16 ++#define Sl 23 ++ ++#define Sm 6 ++#define Sn 10 ++#define So 15 ++#define Sp 21 ++ ++#define MD5_A0 0x67452301 ++#define MD5_B0 0xefcdab89 ++#define MD5_C0 0x98badcfe ++#define MD5_D0 0x10325476 ++ ++/* Integer part of 4294967296 times abs(sin(i)), where i is in radians. */ ++static const u_int32_t T[65] = { ++ 0, ++ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, ++ 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, ++ 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, ++ 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, ++ ++ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, ++ 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, ++ 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, ++ 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, ++ ++ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, ++ 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, ++ 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, ++ 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, ++ ++ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, ++ 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, ++ 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, ++ 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391, ++}; ++ ++static const u_int8_t md5_paddat[MD5_BUFLEN] = { ++ 0x80, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ 0, 0, 0, 0, 0, 0, 0, 0, ++}; ++ ++static void md5_calc(u_int8_t *, md5_ctxt *); ++ ++void md5_init(ctxt) ++ md5_ctxt *ctxt; ++{ ++ ctxt->md5_n = 0; ++ ctxt->md5_i = 0; ++ ctxt->md5_sta = MD5_A0; ++ ctxt->md5_stb = MD5_B0; ++ ctxt->md5_stc = MD5_C0; ++ ctxt->md5_std = MD5_D0; ++ bzero(ctxt->md5_buf, sizeof(ctxt->md5_buf)); ++} ++ ++void md5_loop(ctxt, input, len) ++ md5_ctxt *ctxt; ++ u_int8_t *input; ++ u_int len; /* number of bytes */ ++{ ++ u_int gap, i; ++ ++ ctxt->md5_n += len * 8; /* byte to bit */ ++ gap = MD5_BUFLEN - ctxt->md5_i; ++ ++ if (len >= gap) { ++ bcopy((void *)input, (void *)(ctxt->md5_buf + ctxt->md5_i), ++ gap); ++ md5_calc(ctxt->md5_buf, ctxt); ++ ++ for (i = gap; i + MD5_BUFLEN <= len; i += MD5_BUFLEN) { ++ md5_calc((u_int8_t *)(input + i), ctxt); ++ } ++ ++ ctxt->md5_i = len - i; ++ bcopy((void *)(input + i), (void *)ctxt->md5_buf, ctxt->md5_i); ++ } else { ++ bcopy((void *)input, (void *)(ctxt->md5_buf + ctxt->md5_i), ++ len); ++ ctxt->md5_i += len; ++ } ++} ++ ++void md5_pad(ctxt) ++ md5_ctxt *ctxt; ++{ ++ u_int gap; ++ ++ /* Don't count up padding. Keep md5_n. */ ++ gap = MD5_BUFLEN - ctxt->md5_i; ++ if (gap > 8) { ++ bcopy(md5_paddat, ++ (void *)(ctxt->md5_buf + ctxt->md5_i), ++ gap - sizeof(ctxt->md5_n)); ++ } else { ++ /* including gap == 8 */ ++ bcopy(md5_paddat, (void *)(ctxt->md5_buf + ctxt->md5_i), ++ gap); ++ md5_calc(ctxt->md5_buf, ctxt); ++ bcopy((md5_paddat + gap), ++ (void *)ctxt->md5_buf, ++ MD5_BUFLEN - sizeof(ctxt->md5_n)); ++ } ++ ++ /* 8 byte word */ ++#if BYTE_ORDER == LITTLE_ENDIAN ++ bcopy(&ctxt->md5_n8[0], &ctxt->md5_buf[56], 8); ++#endif ++#if BYTE_ORDER == BIG_ENDIAN ++ ctxt->md5_buf[56] = ctxt->md5_n8[7]; ++ ctxt->md5_buf[57] = ctxt->md5_n8[6]; ++ ctxt->md5_buf[58] = ctxt->md5_n8[5]; ++ ctxt->md5_buf[59] = ctxt->md5_n8[4]; ++ ctxt->md5_buf[60] = ctxt->md5_n8[3]; ++ ctxt->md5_buf[61] = ctxt->md5_n8[2]; ++ ctxt->md5_buf[62] = ctxt->md5_n8[1]; ++ ctxt->md5_buf[63] = ctxt->md5_n8[0]; ++#endif ++ ++ md5_calc(ctxt->md5_buf, ctxt); ++} ++ ++void md5_result(digest, ctxt) ++ u_int8_t *digest; ++ md5_ctxt *ctxt; ++{ ++ /* 4 byte words */ ++#if BYTE_ORDER == LITTLE_ENDIAN ++ bcopy(&ctxt->md5_st8[0], digest, 16); ++#endif ++#if BYTE_ORDER == BIG_ENDIAN ++ digest[ 0] = ctxt->md5_st8[ 3]; digest[ 1] = ctxt->md5_st8[ 2]; ++ digest[ 2] = ctxt->md5_st8[ 1]; digest[ 3] = ctxt->md5_st8[ 0]; ++ digest[ 4] = ctxt->md5_st8[ 7]; digest[ 5] = ctxt->md5_st8[ 6]; ++ digest[ 6] = ctxt->md5_st8[ 5]; digest[ 7] = ctxt->md5_st8[ 4]; ++ digest[ 8] = ctxt->md5_st8[11]; digest[ 9] = ctxt->md5_st8[10]; ++ digest[10] = ctxt->md5_st8[ 9]; digest[11] = ctxt->md5_st8[ 8]; ++ digest[12] = ctxt->md5_st8[15]; digest[13] = ctxt->md5_st8[14]; ++ digest[14] = ctxt->md5_st8[13]; digest[15] = ctxt->md5_st8[12]; ++#endif ++} ++ ++static void md5_calc(b64, ctxt) ++ u_int8_t *b64; ++ md5_ctxt *ctxt; ++{ ++ u_int32_t A = ctxt->md5_sta; ++ u_int32_t B = ctxt->md5_stb; ++ u_int32_t C = ctxt->md5_stc; ++ u_int32_t D = ctxt->md5_std; ++#if BYTE_ORDER == LITTLE_ENDIAN ++ u_int32_t *X = (u_int32_t *)b64; ++#endif ++#if BYTE_ORDER == BIG_ENDIAN ++ /* 4 byte words */ ++ /* what a brute force but fast! */ ++ u_int32_t X[16]; ++ u_int8_t *y = (u_int8_t *)X; ++ y[ 0] = b64[ 3]; y[ 1] = b64[ 2]; y[ 2] = b64[ 1]; y[ 3] = b64[ 0]; ++ y[ 4] = b64[ 7]; y[ 5] = b64[ 6]; y[ 6] = b64[ 5]; y[ 7] = b64[ 4]; ++ y[ 8] = b64[11]; y[ 9] = b64[10]; y[10] = b64[ 9]; y[11] = b64[ 8]; ++ y[12] = b64[15]; y[13] = b64[14]; y[14] = b64[13]; y[15] = b64[12]; ++ y[16] = b64[19]; y[17] = b64[18]; y[18] = b64[17]; y[19] = b64[16]; ++ y[20] = b64[23]; y[21] = b64[22]; y[22] = b64[21]; y[23] = b64[20]; ++ y[24] = b64[27]; y[25] = b64[26]; y[26] = b64[25]; y[27] = b64[24]; ++ y[28] = b64[31]; y[29] = b64[30]; y[30] = b64[29]; y[31] = b64[28]; ++ y[32] = b64[35]; y[33] = b64[34]; y[34] = b64[33]; y[35] = b64[32]; ++ y[36] = b64[39]; y[37] = b64[38]; y[38] = b64[37]; y[39] = b64[36]; ++ y[40] = b64[43]; y[41] = b64[42]; y[42] = b64[41]; y[43] = b64[40]; ++ y[44] = b64[47]; y[45] = b64[46]; y[46] = b64[45]; y[47] = b64[44]; ++ y[48] = b64[51]; y[49] = b64[50]; y[50] = b64[49]; y[51] = b64[48]; ++ y[52] = b64[55]; y[53] = b64[54]; y[54] = b64[53]; y[55] = b64[52]; ++ y[56] = b64[59]; y[57] = b64[58]; y[58] = b64[57]; y[59] = b64[56]; ++ y[60] = b64[63]; y[61] = b64[62]; y[62] = b64[61]; y[63] = b64[60]; ++#endif ++ ++ ROUND1(A, B, C, D, 0, Sa, 1); ROUND1(D, A, B, C, 1, Sb, 2); ++ ROUND1(C, D, A, B, 2, Sc, 3); ROUND1(B, C, D, A, 3, Sd, 4); ++ ROUND1(A, B, C, D, 4, Sa, 5); ROUND1(D, A, B, C, 5, Sb, 6); ++ ROUND1(C, D, A, B, 6, Sc, 7); ROUND1(B, C, D, A, 7, Sd, 8); ++ ROUND1(A, B, C, D, 8, Sa, 9); ROUND1(D, A, B, C, 9, Sb, 10); ++ ROUND1(C, D, A, B, 10, Sc, 11); ROUND1(B, C, D, A, 11, Sd, 12); ++ ROUND1(A, B, C, D, 12, Sa, 13); ROUND1(D, A, B, C, 13, Sb, 14); ++ ROUND1(C, D, A, B, 14, Sc, 15); ROUND1(B, C, D, A, 15, Sd, 16); ++ ++ ROUND2(A, B, C, D, 1, Se, 17); ROUND2(D, A, B, C, 6, Sf, 18); ++ ROUND2(C, D, A, B, 11, Sg, 19); ROUND2(B, C, D, A, 0, Sh, 20); ++ ROUND2(A, B, C, D, 5, Se, 21); ROUND2(D, A, B, C, 10, Sf, 22); ++ ROUND2(C, D, A, B, 15, Sg, 23); ROUND2(B, C, D, A, 4, Sh, 24); ++ ROUND2(A, B, C, D, 9, Se, 25); ROUND2(D, A, B, C, 14, Sf, 26); ++ ROUND2(C, D, A, B, 3, Sg, 27); ROUND2(B, C, D, A, 8, Sh, 28); ++ ROUND2(A, B, C, D, 13, Se, 29); ROUND2(D, A, B, C, 2, Sf, 30); ++ ROUND2(C, D, A, B, 7, Sg, 31); ROUND2(B, C, D, A, 12, Sh, 32); ++ ++ ROUND3(A, B, C, D, 5, Si, 33); ROUND3(D, A, B, C, 8, Sj, 34); ++ ROUND3(C, D, A, B, 11, Sk, 35); ROUND3(B, C, D, A, 14, Sl, 36); ++ ROUND3(A, B, C, D, 1, Si, 37); ROUND3(D, A, B, C, 4, Sj, 38); ++ ROUND3(C, D, A, B, 7, Sk, 39); ROUND3(B, C, D, A, 10, Sl, 40); ++ ROUND3(A, B, C, D, 13, Si, 41); ROUND3(D, A, B, C, 0, Sj, 42); ++ ROUND3(C, D, A, B, 3, Sk, 43); ROUND3(B, C, D, A, 6, Sl, 44); ++ ROUND3(A, B, C, D, 9, Si, 45); ROUND3(D, A, B, C, 12, Sj, 46); ++ ROUND3(C, D, A, B, 15, Sk, 47); ROUND3(B, C, D, A, 2, Sl, 48); ++ ++ ROUND4(A, B, C, D, 0, Sm, 49); ROUND4(D, A, B, C, 7, Sn, 50); ++ ROUND4(C, D, A, B, 14, So, 51); ROUND4(B, C, D, A, 5, Sp, 52); ++ ROUND4(A, B, C, D, 12, Sm, 53); ROUND4(D, A, B, C, 3, Sn, 54); ++ ROUND4(C, D, A, B, 10, So, 55); ROUND4(B, C, D, A, 1, Sp, 56); ++ ROUND4(A, B, C, D, 8, Sm, 57); ROUND4(D, A, B, C, 15, Sn, 58); ++ ROUND4(C, D, A, B, 6, So, 59); ROUND4(B, C, D, A, 13, Sp, 60); ++ ROUND4(A, B, C, D, 4, Sm, 61); ROUND4(D, A, B, C, 11, Sn, 62); ++ ROUND4(C, D, A, B, 2, So, 63); ROUND4(B, C, D, A, 9, Sp, 64); ++ ++ ctxt->md5_sta += A; ++ ctxt->md5_stb += B; ++ ctxt->md5_stc += C; ++ ctxt->md5_std += D; ++} +--- /dev/null ++++ b/crypto/ocf/safe/md5.h +@@ -0,0 +1,76 @@ ++/* $FreeBSD: src/sys/crypto/md5.h,v 1.4 2002/03/20 05:13:50 alfred Exp $ */ ++/* $KAME: md5.h,v 1.4 2000/03/27 04:36:22 sumikawa Exp $ */ ++ ++/* ++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. Neither the name of the project nor the names of its contributors ++ * may be used to endorse or promote products derived from this software ++ * without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++ ++#ifndef _NETINET6_MD5_H_ ++#define _NETINET6_MD5_H_ ++ ++#define MD5_BUFLEN 64 ++ ++typedef struct { ++ union { ++ u_int32_t md5_state32[4]; ++ u_int8_t md5_state8[16]; ++ } md5_st; ++ ++#define md5_sta md5_st.md5_state32[0] ++#define md5_stb md5_st.md5_state32[1] ++#define md5_stc md5_st.md5_state32[2] ++#define md5_std md5_st.md5_state32[3] ++#define md5_st8 md5_st.md5_state8 ++ ++ union { ++ u_int64_t md5_count64; ++ u_int8_t md5_count8[8]; ++ } md5_count; ++#define md5_n md5_count.md5_count64 ++#define md5_n8 md5_count.md5_count8 ++ ++ u_int md5_i; ++ u_int8_t md5_buf[MD5_BUFLEN]; ++} md5_ctxt; ++ ++extern void md5_init(md5_ctxt *); ++extern void md5_loop(md5_ctxt *, u_int8_t *, u_int); ++extern void md5_pad(md5_ctxt *); ++extern void md5_result(u_int8_t *, md5_ctxt *); ++ ++/* compatibility */ ++#define MD5_CTX md5_ctxt ++#define MD5Init(x) md5_init((x)) ++#define MD5Update(x, y, z) md5_loop((x), (y), (z)) ++#define MD5Final(x, y) \ ++do { \ ++ md5_pad((y)); \ ++ md5_result((x), (y)); \ ++} while (0) ++ ++#endif /* ! _NETINET6_MD5_H_*/ +--- /dev/null ++++ b/crypto/ocf/safe/safe.c +@@ -0,0 +1,2288 @@ ++/*- ++ * Linux port done by David McCullough ++ * Copyright (C) 2004-2007 David McCullough ++ * The license and original author are listed below. ++ * ++ * Copyright (c) 2003 Sam Leffler, Errno Consulting ++ * Copyright (c) 2003 Global Technology Associates, Inc. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++__FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $"); ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* ++ * SafeNet SafeXcel-1141 hardware crypto accelerator ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#if 1 ++#define DPRINTF(a) do { \ ++ if (debug) { \ ++ printk("%s: ", sc ? \ ++ device_get_nameunit(sc->sc_dev) : "safe"); \ ++ printk a; \ ++ } \ ++ } while (0) ++#else ++#define DPRINTF(a) ++#endif ++ ++/* ++ * until we find a cleaner way, include the BSD md5/sha1 code ++ * here ++ */ ++#define HMAC_HACK 1 ++#ifdef HMAC_HACK ++#define LITTLE_ENDIAN 1234 ++#define BIG_ENDIAN 4321 ++#ifdef __LITTLE_ENDIAN ++#define BYTE_ORDER LITTLE_ENDIAN ++#endif ++#ifdef __BIG_ENDIAN ++#define BYTE_ORDER BIG_ENDIAN ++#endif ++#include ++#include ++#include ++#include ++ ++u_int8_t hmac_ipad_buffer[64] = { ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, ++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 ++}; ++ ++u_int8_t hmac_opad_buffer[64] = { ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, ++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C ++}; ++#endif /* HMAC_HACK */ ++ ++/* add proc entry for this */ ++struct safe_stats safestats; ++ ++#define debug safe_debug ++int safe_debug = 0; ++module_param(safe_debug, int, 0644); ++MODULE_PARM_DESC(safe_debug, "Enable debug"); ++ ++static void safe_callback(struct safe_softc *, struct safe_ringentry *); ++static void safe_feed(struct safe_softc *, struct safe_ringentry *); ++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) ++static void safe_rng_init(struct safe_softc *); ++int safe_rngbufsize = 8; /* 32 bytes each read */ ++module_param(safe_rngbufsize, int, 0644); ++MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)"); ++int safe_rngmaxalarm = 8; /* max alarms before reset */ ++module_param(safe_rngmaxalarm, int, 0644); ++MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset"); ++#endif /* SAFE_NO_RNG */ ++ ++static void safe_totalreset(struct safe_softc *sc); ++static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op); ++static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op); ++static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re); ++static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint); ++static int safe_kstart(struct safe_softc *sc); ++static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr); ++static void safe_kfeed(struct safe_softc *sc); ++static void safe_kpoll(unsigned long arg); ++static void safe_kload_reg(struct safe_softc *sc, u_int32_t off, ++ u_int32_t len, struct crparam *n); ++ ++static int safe_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int safe_freesession(device_t, u_int64_t); ++static int safe_process(device_t, struct cryptop *, int); ++ ++static device_method_t safe_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, safe_newsession), ++ DEVMETHOD(cryptodev_freesession,safe_freesession), ++ DEVMETHOD(cryptodev_process, safe_process), ++ DEVMETHOD(cryptodev_kprocess, safe_kprocess), ++}; ++ ++#define READ_REG(sc,r) readl((sc)->sc_base_addr + (r)) ++#define WRITE_REG(sc,r,val) writel((val), (sc)->sc_base_addr + (r)) ++ ++#define SAFE_MAX_CHIPS 8 ++static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS]; ++ ++/* ++ * split our buffers up into safe DMAable byte fragments to avoid lockup ++ * bug in 1141 HW on rev 1.0. ++ */ ++ ++static int ++pci_map_linear( ++ struct safe_softc *sc, ++ struct safe_operand *buf, ++ void *addr, ++ int len) ++{ ++ dma_addr_t tmp; ++ int chunk, tlen = len; ++ ++ tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL); ++ ++ buf->mapsize += len; ++ while (len > 0) { ++ chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len; ++ buf->segs[buf->nsegs].ds_addr = tmp; ++ buf->segs[buf->nsegs].ds_len = chunk; ++ buf->segs[buf->nsegs].ds_tlen = tlen; ++ buf->nsegs++; ++ tmp += chunk; ++ len -= chunk; ++ tlen = 0; ++ } ++ return 0; ++} ++ ++/* ++ * map in a given uio buffer (great on some arches :-) ++ */ ++ ++static int ++pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio) ++{ ++ struct iovec *iov = uio->uio_iov; ++ int n; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ buf->mapsize = 0; ++ buf->nsegs = 0; ++ ++ for (n = 0; n < uio->uio_iovcnt; n++) { ++ pci_map_linear(sc, buf, iov->iov_base, iov->iov_len); ++ iov++; ++ } ++ ++ /* identify this buffer by the first segment */ ++ buf->map = (void *) buf->segs[0].ds_addr; ++ return(0); ++} ++ ++/* ++ * map in a given sk_buff ++ */ ++ ++static int ++pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb) ++{ ++ int i; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ buf->mapsize = 0; ++ buf->nsegs = 0; ++ ++ pci_map_linear(sc, buf, skb->data, skb_headlen(skb)); ++ ++ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { ++ pci_map_linear(sc, buf, ++ page_address(skb_shinfo(skb)->frags[i].page) + ++ skb_shinfo(skb)->frags[i].page_offset, ++ skb_shinfo(skb)->frags[i].size); ++ } ++ ++ /* identify this buffer by the first segment */ ++ buf->map = (void *) buf->segs[0].ds_addr; ++ return(0); ++} ++ ++ ++#if 0 /* not needed at this time */ ++static void ++pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf) ++{ ++ int i; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ for (i = 0; i < buf->nsegs; i++) ++ pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr, ++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL); ++} ++#endif ++ ++static void ++pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf) ++{ ++ int i; ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ for (i = 0; i < buf->nsegs; i++) { ++ if (buf->segs[i].ds_tlen) { ++ DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen)); ++ pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr, ++ buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL); ++ DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen)); ++ } ++ buf->segs[i].ds_addr = 0; ++ buf->segs[i].ds_len = 0; ++ buf->segs[i].ds_tlen = 0; ++ } ++ buf->nsegs = 0; ++ buf->mapsize = 0; ++ buf->map = 0; ++} ++ ++ ++/* ++ * SafeXcel Interrupt routine ++ */ ++static irqreturn_t ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++safe_intr(int irq, void *arg) ++#else ++safe_intr(int irq, void *arg, struct pt_regs *regs) ++#endif ++{ ++ struct safe_softc *sc = arg; ++ int stat; ++ unsigned long flags; ++ ++ stat = READ_REG(sc, SAFE_HM_STAT); ++ ++ DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat)); ++ ++ if (stat == 0) /* shared irq, not for us */ ++ return IRQ_NONE; ++ ++ WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */ ++ ++ if ((stat & SAFE_INT_PE_DDONE)) { ++ /* ++ * Descriptor(s) done; scan the ring and ++ * process completed operations. ++ */ ++ spin_lock_irqsave(&sc->sc_ringmtx, flags); ++ while (sc->sc_back != sc->sc_front) { ++ struct safe_ringentry *re = sc->sc_back; ++ ++#ifdef SAFE_DEBUG ++ if (debug) { ++ safe_dump_ringstate(sc, __func__); ++ safe_dump_request(sc, __func__, re); ++ } ++#endif ++ /* ++ * safe_process marks ring entries that were allocated ++ * but not used with a csr of zero. This insures the ++ * ring front pointer never needs to be set backwards ++ * in the event that an entry is allocated but not used ++ * because of a setup error. ++ */ ++ DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr)); ++ if (re->re_desc.d_csr != 0) { ++ if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) { ++ DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__)); ++ break; ++ } ++ if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) { ++ DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__)); ++ break; ++ } ++ sc->sc_nqchip--; ++ safe_callback(sc, re); ++ } ++ if (++(sc->sc_back) == sc->sc_ringtop) ++ sc->sc_back = sc->sc_ring; ++ } ++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags); ++ } ++ ++ /* ++ * Check to see if we got any DMA Error ++ */ ++ if (stat & SAFE_INT_PE_ERROR) { ++ printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev), ++ (int)READ_REG(sc, SAFE_PE_DMASTAT)); ++ safestats.st_dmaerr++; ++ safe_totalreset(sc); ++#if 0 ++ safe_feed(sc); ++#endif ++ } ++ ++ if (sc->sc_needwakeup) { /* XXX check high watermark */ ++ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); ++ DPRINTF(("%s: wakeup crypto %x\n", __func__, ++ sc->sc_needwakeup)); ++ sc->sc_needwakeup &= ~wakeup; ++ crypto_unblock(sc->sc_cid, wakeup); ++ } ++ ++ return IRQ_HANDLED; ++} ++ ++/* ++ * safe_feed() - post a request to chip ++ */ ++static void ++safe_feed(struct safe_softc *sc, struct safe_ringentry *re) ++{ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++#ifdef SAFE_DEBUG ++ if (debug) { ++ safe_dump_ringstate(sc, __func__); ++ safe_dump_request(sc, __func__, re); ++ } ++#endif ++ sc->sc_nqchip++; ++ if (sc->sc_nqchip > safestats.st_maxqchip) ++ safestats.st_maxqchip = sc->sc_nqchip; ++ /* poke h/w to check descriptor ring, any value can be written */ ++ WRITE_REG(sc, SAFE_HI_RD_DESCR, 0); ++} ++ ++#define N(a) (sizeof(a) / sizeof (a[0])) ++static void ++safe_setup_enckey(struct safe_session *ses, caddr_t key) ++{ ++ int i; ++ ++ bcopy(key, ses->ses_key, ses->ses_klen / 8); ++ ++ /* PE is little-endian, insure proper byte order */ ++ for (i = 0; i < N(ses->ses_key); i++) ++ ses->ses_key[i] = htole32(ses->ses_key[i]); ++} ++ ++static void ++safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen) ++{ ++#ifdef HMAC_HACK ++ MD5_CTX md5ctx; ++ SHA1_CTX sha1ctx; ++ int i; ++ ++ ++ for (i = 0; i < klen; i++) ++ key[i] ^= HMAC_IPAD_VAL; ++ ++ if (algo == CRYPTO_MD5_HMAC) { ++ MD5Init(&md5ctx); ++ MD5Update(&md5ctx, key, klen); ++ MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen); ++ bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8)); ++ } else { ++ SHA1Init(&sha1ctx); ++ SHA1Update(&sha1ctx, key, klen); ++ SHA1Update(&sha1ctx, hmac_ipad_buffer, ++ SHA1_HMAC_BLOCK_LEN - klen); ++ bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32)); ++ } ++ ++ for (i = 0; i < klen; i++) ++ key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); ++ ++ if (algo == CRYPTO_MD5_HMAC) { ++ MD5Init(&md5ctx); ++ MD5Update(&md5ctx, key, klen); ++ MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen); ++ bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8)); ++ } else { ++ SHA1Init(&sha1ctx); ++ SHA1Update(&sha1ctx, key, klen); ++ SHA1Update(&sha1ctx, hmac_opad_buffer, ++ SHA1_HMAC_BLOCK_LEN - klen); ++ bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32)); ++ } ++ ++ for (i = 0; i < klen; i++) ++ key[i] ^= HMAC_OPAD_VAL; ++ ++#if 0 ++ /* ++ * this code prevents SHA working on a BE host, ++ * so it is obviously wrong. I think the byte ++ * swap setup we do with the chip fixes this for us ++ */ ++ ++ /* PE is little-endian, insure proper byte order */ ++ for (i = 0; i < N(ses->ses_hminner); i++) { ++ ses->ses_hminner[i] = htole32(ses->ses_hminner[i]); ++ ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]); ++ } ++#endif ++#else /* HMAC_HACK */ ++ printk("safe: md5/sha not implemented\n"); ++#endif /* HMAC_HACK */ ++} ++#undef N ++ ++/* ++ * Allocate a new 'session' and return an encoded session id. 'sidp' ++ * contains our registration id, and should contain an encoded session ++ * id on successful allocation. ++ */ ++static int ++safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) ++{ ++ struct safe_softc *sc = device_get_softc(dev); ++ struct cryptoini *c, *encini = NULL, *macini = NULL; ++ struct safe_session *ses = NULL; ++ int sesn; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (sidp == NULL || cri == NULL || sc == NULL) ++ return (EINVAL); ++ ++ for (c = cri; c != NULL; c = c->cri_next) { ++ if (c->cri_alg == CRYPTO_MD5_HMAC || ++ c->cri_alg == CRYPTO_SHA1_HMAC || ++ c->cri_alg == CRYPTO_NULL_HMAC) { ++ if (macini) ++ return (EINVAL); ++ macini = c; ++ } else if (c->cri_alg == CRYPTO_DES_CBC || ++ c->cri_alg == CRYPTO_3DES_CBC || ++ c->cri_alg == CRYPTO_AES_CBC || ++ c->cri_alg == CRYPTO_NULL_CBC) { ++ if (encini) ++ return (EINVAL); ++ encini = c; ++ } else ++ return (EINVAL); ++ } ++ if (encini == NULL && macini == NULL) ++ return (EINVAL); ++ if (encini) { /* validate key length */ ++ switch (encini->cri_alg) { ++ case CRYPTO_DES_CBC: ++ if (encini->cri_klen != 64) ++ return (EINVAL); ++ break; ++ case CRYPTO_3DES_CBC: ++ if (encini->cri_klen != 192) ++ return (EINVAL); ++ break; ++ case CRYPTO_AES_CBC: ++ if (encini->cri_klen != 128 && ++ encini->cri_klen != 192 && ++ encini->cri_klen != 256) ++ return (EINVAL); ++ break; ++ } ++ } ++ ++ if (sc->sc_sessions == NULL) { ++ ses = sc->sc_sessions = (struct safe_session *) ++ kmalloc(sizeof(struct safe_session), SLAB_ATOMIC); ++ if (ses == NULL) ++ return (ENOMEM); ++ memset(ses, 0, sizeof(struct safe_session)); ++ sesn = 0; ++ sc->sc_nsessions = 1; ++ } else { ++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { ++ if (sc->sc_sessions[sesn].ses_used == 0) { ++ ses = &sc->sc_sessions[sesn]; ++ break; ++ } ++ } ++ ++ if (ses == NULL) { ++ sesn = sc->sc_nsessions; ++ ses = (struct safe_session *) ++ kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC); ++ if (ses == NULL) ++ return (ENOMEM); ++ memset(ses, 0, (sesn + 1) * sizeof(struct safe_session)); ++ bcopy(sc->sc_sessions, ses, sesn * ++ sizeof(struct safe_session)); ++ bzero(sc->sc_sessions, sesn * ++ sizeof(struct safe_session)); ++ kfree(sc->sc_sessions); ++ sc->sc_sessions = ses; ++ ses = &sc->sc_sessions[sesn]; ++ sc->sc_nsessions++; ++ } ++ } ++ ++ bzero(ses, sizeof(struct safe_session)); ++ ses->ses_used = 1; ++ ++ if (encini) { ++ /* get an IV */ ++ /* XXX may read fewer than requested */ ++ read_random(ses->ses_iv, sizeof(ses->ses_iv)); ++ ++ ses->ses_klen = encini->cri_klen; ++ if (encini->cri_key != NULL) ++ safe_setup_enckey(ses, encini->cri_key); ++ } ++ ++ if (macini) { ++ ses->ses_mlen = macini->cri_mlen; ++ if (ses->ses_mlen == 0) { ++ if (macini->cri_alg == CRYPTO_MD5_HMAC) ++ ses->ses_mlen = MD5_HASH_LEN; ++ else ++ ses->ses_mlen = SHA1_HASH_LEN; ++ } ++ ++ if (macini->cri_key != NULL) { ++ safe_setup_mackey(ses, macini->cri_alg, macini->cri_key, ++ macini->cri_klen / 8); ++ } ++ } ++ ++ *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn); ++ return (0); ++} ++ ++/* ++ * Deallocate a session. ++ */ ++static int ++safe_freesession(device_t dev, u_int64_t tid) ++{ ++ struct safe_softc *sc = device_get_softc(dev); ++ int session, ret; ++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (sc == NULL) ++ return (EINVAL); ++ ++ session = SAFE_SESSION(sid); ++ if (session < sc->sc_nsessions) { ++ bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); ++ ret = 0; ++ } else ++ ret = EINVAL; ++ return (ret); ++} ++ ++ ++static int ++safe_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ struct safe_softc *sc = device_get_softc(dev); ++ int err = 0, i, nicealign, uniform; ++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; ++ int bypass, oplen, ivsize; ++ caddr_t iv; ++ int16_t coffset; ++ struct safe_session *ses; ++ struct safe_ringentry *re; ++ struct safe_sarec *sa; ++ struct safe_pdesc *pd; ++ u_int32_t cmd0, cmd1, staterec; ++ unsigned long flags; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { ++ safestats.st_invalid++; ++ return (EINVAL); ++ } ++ if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) { ++ safestats.st_badsession++; ++ return (EINVAL); ++ } ++ ++ spin_lock_irqsave(&sc->sc_ringmtx, flags); ++ if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) { ++ safestats.st_ringfull++; ++ sc->sc_needwakeup |= CRYPTO_SYMQ; ++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags); ++ return (ERESTART); ++ } ++ re = sc->sc_front; ++ ++ staterec = re->re_sa.sa_staterec; /* save */ ++ /* NB: zero everything but the PE descriptor */ ++ bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc)); ++ re->re_sa.sa_staterec = staterec; /* restore */ ++ ++ re->re_crp = crp; ++ re->re_sesn = SAFE_SESSION(crp->crp_sid); ++ ++ re->re_src.nsegs = 0; ++ re->re_dst.nsegs = 0; ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ re->re_src_skb = (struct sk_buff *)crp->crp_buf; ++ re->re_dst_skb = (struct sk_buff *)crp->crp_buf; ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ re->re_src_io = (struct uio *)crp->crp_buf; ++ re->re_dst_io = (struct uio *)crp->crp_buf; ++ } else { ++ safestats.st_badflags++; ++ err = EINVAL; ++ goto errout; /* XXX we don't handle contiguous blocks! */ ++ } ++ ++ sa = &re->re_sa; ++ ses = &sc->sc_sessions[re->re_sesn]; ++ ++ crd1 = crp->crp_desc; ++ if (crd1 == NULL) { ++ safestats.st_nodesc++; ++ err = EINVAL; ++ goto errout; ++ } ++ crd2 = crd1->crd_next; ++ ++ cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */ ++ cmd1 = 0; ++ if (crd2 == NULL) { ++ if (crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_NULL_HMAC) { ++ maccrd = crd1; ++ enccrd = NULL; ++ cmd0 |= SAFE_SA_CMD0_OP_HASH; ++ } else if (crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC || ++ crd1->crd_alg == CRYPTO_NULL_CBC) { ++ maccrd = NULL; ++ enccrd = crd1; ++ cmd0 |= SAFE_SA_CMD0_OP_CRYPT; ++ } else { ++ safestats.st_badalg++; ++ err = EINVAL; ++ goto errout; ++ } ++ } else { ++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_NULL_HMAC) && ++ (crd2->crd_alg == CRYPTO_DES_CBC || ++ crd2->crd_alg == CRYPTO_3DES_CBC || ++ crd2->crd_alg == CRYPTO_AES_CBC || ++ crd2->crd_alg == CRYPTO_NULL_CBC) && ++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { ++ maccrd = crd1; ++ enccrd = crd2; ++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC || ++ crd1->crd_alg == CRYPTO_NULL_CBC) && ++ (crd2->crd_alg == CRYPTO_MD5_HMAC || ++ crd2->crd_alg == CRYPTO_SHA1_HMAC || ++ crd2->crd_alg == CRYPTO_NULL_HMAC) && ++ (crd1->crd_flags & CRD_F_ENCRYPT)) { ++ enccrd = crd1; ++ maccrd = crd2; ++ } else { ++ safestats.st_badalg++; ++ err = EINVAL; ++ goto errout; ++ } ++ cmd0 |= SAFE_SA_CMD0_OP_BOTH; ++ } ++ ++ if (enccrd) { ++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) ++ safe_setup_enckey(ses, enccrd->crd_key); ++ ++ if (enccrd->crd_alg == CRYPTO_DES_CBC) { ++ cmd0 |= SAFE_SA_CMD0_DES; ++ cmd1 |= SAFE_SA_CMD1_CBC; ++ ivsize = 2*sizeof(u_int32_t); ++ } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) { ++ cmd0 |= SAFE_SA_CMD0_3DES; ++ cmd1 |= SAFE_SA_CMD1_CBC; ++ ivsize = 2*sizeof(u_int32_t); ++ } else if (enccrd->crd_alg == CRYPTO_AES_CBC) { ++ cmd0 |= SAFE_SA_CMD0_AES; ++ cmd1 |= SAFE_SA_CMD1_CBC; ++ if (ses->ses_klen == 128) ++ cmd1 |= SAFE_SA_CMD1_AES128; ++ else if (ses->ses_klen == 192) ++ cmd1 |= SAFE_SA_CMD1_AES192; ++ else ++ cmd1 |= SAFE_SA_CMD1_AES256; ++ ivsize = 4*sizeof(u_int32_t); ++ } else { ++ cmd0 |= SAFE_SA_CMD0_CRYPT_NULL; ++ ivsize = 0; ++ } ++ ++ /* ++ * Setup encrypt/decrypt state. When using basic ops ++ * we can't use an inline IV because hash/crypt offset ++ * must be from the end of the IV to the start of the ++ * crypt data and this leaves out the preceding header ++ * from the hash calculation. Instead we place the IV ++ * in the state record and set the hash/crypt offset to ++ * copy both the header+IV. ++ */ ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) { ++ cmd0 |= SAFE_SA_CMD0_OUTBOUND; ++ ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ iv = enccrd->crd_iv; ++ else ++ iv = (caddr_t) ses->ses_iv; ++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, iv); ++ } ++ bcopy(iv, re->re_sastate.sa_saved_iv, ivsize); ++ /* make iv LE */ ++ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++) ++ re->re_sastate.sa_saved_iv[i] = ++ cpu_to_le32(re->re_sastate.sa_saved_iv[i]); ++ cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV; ++ re->re_flags |= SAFE_QFLAGS_COPYOUTIV; ++ } else { ++ cmd0 |= SAFE_SA_CMD0_INBOUND; ++ ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { ++ bcopy(enccrd->crd_iv, ++ re->re_sastate.sa_saved_iv, ivsize); ++ } else { ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, ++ (caddr_t)re->re_sastate.sa_saved_iv); ++ } ++ /* make iv LE */ ++ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++) ++ re->re_sastate.sa_saved_iv[i] = ++ cpu_to_le32(re->re_sastate.sa_saved_iv[i]); ++ cmd0 |= SAFE_SA_CMD0_IVLD_STATE; ++ } ++ /* ++ * For basic encryption use the zero pad algorithm. ++ * This pads results to an 8-byte boundary and ++ * suppresses padding verification for inbound (i.e. ++ * decrypt) operations. ++ * ++ * NB: Not sure if the 8-byte pad boundary is a problem. ++ */ ++ cmd0 |= SAFE_SA_CMD0_PAD_ZERO; ++ ++ /* XXX assert key bufs have the same size */ ++ bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key)); ++ } ++ ++ if (maccrd) { ++ if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) { ++ safe_setup_mackey(ses, maccrd->crd_alg, ++ maccrd->crd_key, maccrd->crd_klen / 8); ++ } ++ ++ if (maccrd->crd_alg == CRYPTO_MD5_HMAC) { ++ cmd0 |= SAFE_SA_CMD0_MD5; ++ cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ ++ } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) { ++ cmd0 |= SAFE_SA_CMD0_SHA1; ++ cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ ++ } else { ++ cmd0 |= SAFE_SA_CMD0_HASH_NULL; ++ } ++ /* ++ * Digest data is loaded from the SA and the hash ++ * result is saved to the state block where we ++ * retrieve it for return to the caller. ++ */ ++ /* XXX assert digest bufs have the same size */ ++ bcopy(ses->ses_hminner, sa->sa_indigest, ++ sizeof(sa->sa_indigest)); ++ bcopy(ses->ses_hmouter, sa->sa_outdigest, ++ sizeof(sa->sa_outdigest)); ++ ++ cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH; ++ re->re_flags |= SAFE_QFLAGS_COPYOUTICV; ++ } ++ ++ if (enccrd && maccrd) { ++ /* ++ * The offset from hash data to the start of ++ * crypt data is the difference in the skips. ++ */ ++ bypass = maccrd->crd_skip; ++ coffset = enccrd->crd_skip - maccrd->crd_skip; ++ if (coffset < 0) { ++ DPRINTF(("%s: hash does not precede crypt; " ++ "mac skip %u enc skip %u\n", ++ __func__, maccrd->crd_skip, enccrd->crd_skip)); ++ safestats.st_skipmismatch++; ++ err = EINVAL; ++ goto errout; ++ } ++ oplen = enccrd->crd_skip + enccrd->crd_len; ++ if (maccrd->crd_skip + maccrd->crd_len != oplen) { ++ DPRINTF(("%s: hash amount %u != crypt amount %u\n", ++ __func__, maccrd->crd_skip + maccrd->crd_len, ++ oplen)); ++ safestats.st_lenmismatch++; ++ err = EINVAL; ++ goto errout; ++ } ++#ifdef SAFE_DEBUG ++ if (debug) { ++ printf("mac: skip %d, len %d, inject %d\n", ++ maccrd->crd_skip, maccrd->crd_len, ++ maccrd->crd_inject); ++ printf("enc: skip %d, len %d, inject %d\n", ++ enccrd->crd_skip, enccrd->crd_len, ++ enccrd->crd_inject); ++ printf("bypass %d coffset %d oplen %d\n", ++ bypass, coffset, oplen); ++ } ++#endif ++ if (coffset & 3) { /* offset must be 32-bit aligned */ ++ DPRINTF(("%s: coffset %u misaligned\n", ++ __func__, coffset)); ++ safestats.st_coffmisaligned++; ++ err = EINVAL; ++ goto errout; ++ } ++ coffset >>= 2; ++ if (coffset > 255) { /* offset must be <256 dwords */ ++ DPRINTF(("%s: coffset %u too big\n", ++ __func__, coffset)); ++ safestats.st_cofftoobig++; ++ err = EINVAL; ++ goto errout; ++ } ++ /* ++ * Tell the hardware to copy the header to the output. ++ * The header is defined as the data from the end of ++ * the bypass to the start of data to be encrypted. ++ * Typically this is the inline IV. Note that you need ++ * to do this even if src+dst are the same; it appears ++ * that w/o this bit the crypted data is written ++ * immediately after the bypass data. ++ */ ++ cmd1 |= SAFE_SA_CMD1_HDRCOPY; ++ /* ++ * Disable IP header mutable bit handling. This is ++ * needed to get correct HMAC calculations. ++ */ ++ cmd1 |= SAFE_SA_CMD1_MUTABLE; ++ } else { ++ if (enccrd) { ++ bypass = enccrd->crd_skip; ++ oplen = bypass + enccrd->crd_len; ++ } else { ++ bypass = maccrd->crd_skip; ++ oplen = bypass + maccrd->crd_len; ++ } ++ coffset = 0; ++ } ++ /* XXX verify multiple of 4 when using s/g */ ++ if (bypass > 96) { /* bypass offset must be <= 96 bytes */ ++ DPRINTF(("%s: bypass %u too big\n", __func__, bypass)); ++ safestats.st_bypasstoobig++; ++ err = EINVAL; ++ goto errout; ++ } ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) { ++ safestats.st_noload++; ++ err = ENOMEM; ++ goto errout; ++ } ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ if (pci_map_uio(sc, &re->re_src, re->re_src_io)) { ++ safestats.st_noload++; ++ err = ENOMEM; ++ goto errout; ++ } ++ } ++ nicealign = safe_dmamap_aligned(sc, &re->re_src); ++ uniform = safe_dmamap_uniform(sc, &re->re_src); ++ ++ DPRINTF(("src nicealign %u uniform %u nsegs %u\n", ++ nicealign, uniform, re->re_src.nsegs)); ++ if (re->re_src.nsegs > 1) { ++ re->re_desc.d_src = sc->sc_spalloc.dma_paddr + ++ ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring); ++ for (i = 0; i < re->re_src_nsegs; i++) { ++ /* NB: no need to check if there's space */ ++ pd = sc->sc_spfree; ++ if (++(sc->sc_spfree) == sc->sc_springtop) ++ sc->sc_spfree = sc->sc_spring; ++ ++ KASSERT((pd->pd_flags&3) == 0 || ++ (pd->pd_flags&3) == SAFE_PD_DONE, ++ ("bogus source particle descriptor; flags %x", ++ pd->pd_flags)); ++ pd->pd_addr = re->re_src_segs[i].ds_addr; ++ pd->pd_size = re->re_src_segs[i].ds_len; ++ pd->pd_flags = SAFE_PD_READY; ++ } ++ cmd0 |= SAFE_SA_CMD0_IGATHER; ++ } else { ++ /* ++ * No need for gather, reference the operand directly. ++ */ ++ re->re_desc.d_src = re->re_src_segs[0].ds_addr; ++ } ++ ++ if (enccrd == NULL && maccrd != NULL) { ++ /* ++ * Hash op; no destination needed. ++ */ ++ } else { ++ if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) { ++ if (!nicealign) { ++ safestats.st_iovmisaligned++; ++ err = EINVAL; ++ goto errout; ++ } ++ if (uniform != 1) { ++ device_printf(sc->sc_dev, "!uniform source\n"); ++ if (!uniform) { ++ /* ++ * There's no way to handle the DMA ++ * requirements with this uio. We ++ * could create a separate DMA area for ++ * the result and then copy it back, ++ * but for now we just bail and return ++ * an error. Note that uio requests ++ * > SAFE_MAX_DSIZE are handled because ++ * the DMA map and segment list for the ++ * destination wil result in a ++ * destination particle list that does ++ * the necessary scatter DMA. ++ */ ++ safestats.st_iovnotuniform++; ++ err = EINVAL; ++ goto errout; ++ } ++ } else ++ re->re_dst = re->re_src; ++ } else { ++ safestats.st_badflags++; ++ err = EINVAL; ++ goto errout; ++ } ++ ++ if (re->re_dst.nsegs > 1) { ++ re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr + ++ ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring); ++ for (i = 0; i < re->re_dst_nsegs; i++) { ++ pd = sc->sc_dpfree; ++ KASSERT((pd->pd_flags&3) == 0 || ++ (pd->pd_flags&3) == SAFE_PD_DONE, ++ ("bogus dest particle descriptor; flags %x", ++ pd->pd_flags)); ++ if (++(sc->sc_dpfree) == sc->sc_dpringtop) ++ sc->sc_dpfree = sc->sc_dpring; ++ pd->pd_addr = re->re_dst_segs[i].ds_addr; ++ pd->pd_flags = SAFE_PD_READY; ++ } ++ cmd0 |= SAFE_SA_CMD0_OSCATTER; ++ } else { ++ /* ++ * No need for scatter, reference the operand directly. ++ */ ++ re->re_desc.d_dst = re->re_dst_segs[0].ds_addr; ++ } ++ } ++ ++ /* ++ * All done with setup; fillin the SA command words ++ * and the packet engine descriptor. The operation ++ * is now ready for submission to the hardware. ++ */ ++ sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI; ++ sa->sa_cmd1 = cmd1 ++ | (coffset << SAFE_SA_CMD1_OFFSET_S) ++ | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */ ++ | SAFE_SA_CMD1_SRPCI ++ ; ++ /* ++ * NB: the order of writes is important here. In case the ++ * chip is scanning the ring because of an outstanding request ++ * it might nab this one too. In that case we need to make ++ * sure the setup is complete before we write the length ++ * field of the descriptor as it signals the descriptor is ++ * ready for processing. ++ */ ++ re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI; ++ if (maccrd) ++ re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL; ++ wmb(); ++ re->re_desc.d_len = oplen ++ | SAFE_PE_LEN_READY ++ | (bypass << SAFE_PE_LEN_BYPASS_S) ++ ; ++ ++ safestats.st_ipackets++; ++ safestats.st_ibytes += oplen; ++ ++ if (++(sc->sc_front) == sc->sc_ringtop) ++ sc->sc_front = sc->sc_ring; ++ ++ /* XXX honor batching */ ++ safe_feed(sc, re); ++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags); ++ return (0); ++ ++errout: ++ if (re->re_src.map != re->re_dst.map) ++ pci_unmap_operand(sc, &re->re_dst); ++ if (re->re_src.map) ++ pci_unmap_operand(sc, &re->re_src); ++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags); ++ if (err != ERESTART) { ++ crp->crp_etype = err; ++ crypto_done(crp); ++ } else { ++ sc->sc_needwakeup |= CRYPTO_SYMQ; ++ } ++ return (err); ++} ++ ++static void ++safe_callback(struct safe_softc *sc, struct safe_ringentry *re) ++{ ++ struct cryptop *crp = (struct cryptop *)re->re_crp; ++ struct cryptodesc *crd; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ safestats.st_opackets++; ++ safestats.st_obytes += re->re_dst.mapsize; ++ ++ if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) { ++ device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n", ++ re->re_desc.d_csr, ++ re->re_sa.sa_cmd0, re->re_sa.sa_cmd1); ++ safestats.st_peoperr++; ++ crp->crp_etype = EIO; /* something more meaningful? */ ++ } ++ ++ if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map) ++ pci_unmap_operand(sc, &re->re_dst); ++ pci_unmap_operand(sc, &re->re_src); ++ ++ /* ++ * If result was written to a differet mbuf chain, swap ++ * it in as the return value and reclaim the original. ++ */ ++ if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) { ++ device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n"); ++ /* kfree_skb(skb) */ ++ /* crp->crp_buf = (caddr_t)re->re_dst_skb */ ++ return; ++ } ++ ++ if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) { ++ /* copy out IV for future use */ ++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { ++ int i; ++ int ivsize; ++ ++ if (crd->crd_alg == CRYPTO_DES_CBC || ++ crd->crd_alg == CRYPTO_3DES_CBC) { ++ ivsize = 2*sizeof(u_int32_t); ++ } else if (crd->crd_alg == CRYPTO_AES_CBC) { ++ ivsize = 4*sizeof(u_int32_t); ++ } else ++ continue; ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ crd->crd_skip + crd->crd_len - ivsize, ivsize, ++ (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv); ++ for (i = 0; ++ i < ivsize/sizeof(sc->sc_sessions[re->re_sesn].ses_iv[0]); ++ i++) ++ sc->sc_sessions[re->re_sesn].ses_iv[i] = ++ cpu_to_le32(sc->sc_sessions[re->re_sesn].ses_iv[i]); ++ break; ++ } ++ } ++ ++ if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) { ++ /* copy out ICV result */ ++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { ++ if (!(crd->crd_alg == CRYPTO_MD5_HMAC || ++ crd->crd_alg == CRYPTO_SHA1_HMAC || ++ crd->crd_alg == CRYPTO_NULL_HMAC)) ++ continue; ++ if (crd->crd_alg == CRYPTO_SHA1_HMAC) { ++ /* ++ * SHA-1 ICV's are byte-swapped; fix 'em up ++ * before copy them to their destination. ++ */ ++ re->re_sastate.sa_saved_indigest[0] = ++ cpu_to_be32(re->re_sastate.sa_saved_indigest[0]); ++ re->re_sastate.sa_saved_indigest[1] = ++ cpu_to_be32(re->re_sastate.sa_saved_indigest[1]); ++ re->re_sastate.sa_saved_indigest[2] = ++ cpu_to_be32(re->re_sastate.sa_saved_indigest[2]); ++ } else { ++ re->re_sastate.sa_saved_indigest[0] = ++ cpu_to_le32(re->re_sastate.sa_saved_indigest[0]); ++ re->re_sastate.sa_saved_indigest[1] = ++ cpu_to_le32(re->re_sastate.sa_saved_indigest[1]); ++ re->re_sastate.sa_saved_indigest[2] = ++ cpu_to_le32(re->re_sastate.sa_saved_indigest[2]); ++ } ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, ++ sc->sc_sessions[re->re_sesn].ses_mlen, ++ (caddr_t)re->re_sastate.sa_saved_indigest); ++ break; ++ } ++ } ++ crypto_done(crp); ++} ++ ++ ++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) ++#define SAFE_RNG_MAXWAIT 1000 ++ ++static void ++safe_rng_init(struct safe_softc *sc) ++{ ++ u_int32_t w, v; ++ int i; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ WRITE_REG(sc, SAFE_RNG_CTRL, 0); ++ /* use default value according to the manual */ ++ WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */ ++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); ++ ++ /* ++ * There is a bug in rev 1.0 of the 1140 that when the RNG ++ * is brought out of reset the ready status flag does not ++ * work until the RNG has finished its internal initialization. ++ * ++ * So in order to determine the device is through its ++ * initialization we must read the data register, using the ++ * status reg in the read in case it is initialized. Then read ++ * the data register until it changes from the first read. ++ * Once it changes read the data register until it changes ++ * again. At this time the RNG is considered initialized. ++ * This could take between 750ms - 1000ms in time. ++ */ ++ i = 0; ++ w = READ_REG(sc, SAFE_RNG_OUT); ++ do { ++ v = READ_REG(sc, SAFE_RNG_OUT); ++ if (v != w) { ++ w = v; ++ break; ++ } ++ DELAY(10); ++ } while (++i < SAFE_RNG_MAXWAIT); ++ ++ /* Wait Until data changes again */ ++ i = 0; ++ do { ++ v = READ_REG(sc, SAFE_RNG_OUT); ++ if (v != w) ++ break; ++ DELAY(10); ++ } while (++i < SAFE_RNG_MAXWAIT); ++} ++ ++static __inline void ++safe_rng_disable_short_cycle(struct safe_softc *sc) ++{ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ WRITE_REG(sc, SAFE_RNG_CTRL, ++ READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN); ++} ++ ++static __inline void ++safe_rng_enable_short_cycle(struct safe_softc *sc) ++{ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ WRITE_REG(sc, SAFE_RNG_CTRL, ++ READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN); ++} ++ ++static __inline u_int32_t ++safe_rng_read(struct safe_softc *sc) ++{ ++ int i; ++ ++ i = 0; ++ while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT) ++ ; ++ return READ_REG(sc, SAFE_RNG_OUT); ++} ++ ++static int ++safe_read_random(void *arg, u_int32_t *buf, int maxwords) ++{ ++ struct safe_softc *sc = (struct safe_softc *) arg; ++ int i, rc; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ safestats.st_rng++; ++ /* ++ * Fetch the next block of data. ++ */ ++ if (maxwords > safe_rngbufsize) ++ maxwords = safe_rngbufsize; ++ if (maxwords > SAFE_RNG_MAXBUFSIZ) ++ maxwords = SAFE_RNG_MAXBUFSIZ; ++retry: ++ /* read as much as we can */ ++ for (rc = 0; rc < maxwords; rc++) { ++ if (READ_REG(sc, SAFE_RNG_STAT) != 0) ++ break; ++ buf[rc] = READ_REG(sc, SAFE_RNG_OUT); ++ } ++ if (rc == 0) ++ return 0; ++ /* ++ * Check the comparator alarm count and reset the h/w if ++ * it exceeds our threshold. This guards against the ++ * hardware oscillators resonating with external signals. ++ */ ++ if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) { ++ u_int32_t freq_inc, w; ++ ++ DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__, ++ (unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm)); ++ safestats.st_rngalarm++; ++ safe_rng_enable_short_cycle(sc); ++ freq_inc = 18; ++ for (i = 0; i < 64; i++) { ++ w = READ_REG(sc, SAFE_RNG_CNFG); ++ freq_inc = ((w + freq_inc) & 0x3fL); ++ w = ((w & ~0x3fL) | freq_inc); ++ WRITE_REG(sc, SAFE_RNG_CNFG, w); ++ ++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); ++ ++ (void) safe_rng_read(sc); ++ DELAY(25); ++ ++ if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) { ++ safe_rng_disable_short_cycle(sc); ++ goto retry; ++ } ++ freq_inc = 1; ++ } ++ safe_rng_disable_short_cycle(sc); ++ } else ++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); ++ ++ return(rc); ++} ++#endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */ ++ ++ ++/* ++ * Resets the board. Values in the regesters are left as is ++ * from the reset (i.e. initial values are assigned elsewhere). ++ */ ++static void ++safe_reset_board(struct safe_softc *sc) ++{ ++ u_int32_t v; ++ /* ++ * Reset the device. The manual says no delay ++ * is needed between marking and clearing reset. ++ */ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ v = READ_REG(sc, SAFE_PE_DMACFG) &~ ++ (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | ++ SAFE_PE_DMACFG_SGRESET); ++ WRITE_REG(sc, SAFE_PE_DMACFG, v ++ | SAFE_PE_DMACFG_PERESET ++ | SAFE_PE_DMACFG_PDRRESET ++ | SAFE_PE_DMACFG_SGRESET); ++ WRITE_REG(sc, SAFE_PE_DMACFG, v); ++} ++ ++/* ++ * Initialize registers we need to touch only once. ++ */ ++static void ++safe_init_board(struct safe_softc *sc) ++{ ++ u_int32_t v, dwords; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ v = READ_REG(sc, SAFE_PE_DMACFG); ++ v &=~ ( SAFE_PE_DMACFG_PEMODE ++ | SAFE_PE_DMACFG_FSENA /* failsafe enable */ ++ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ ++ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ ++ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ ++ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ ++ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ ++ | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */ ++ ); ++ v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */ ++ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ ++ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ ++ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ ++ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ ++ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ ++#if 0 ++ | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */ ++#endif ++ ; ++ WRITE_REG(sc, SAFE_PE_DMACFG, v); ++ ++#ifdef __BIG_ENDIAN ++ /* tell the safenet that we are 4321 and not 1234 */ ++ WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b); ++#endif ++ ++ if (sc->sc_chiprev == SAFE_REV(1,0)) { ++ /* ++ * Avoid large PCI DMA transfers. Rev 1.0 has a bug where ++ * "target mode transfers" done while the chip is DMA'ing ++ * >1020 bytes cause the hardware to lockup. To avoid this ++ * we reduce the max PCI transfer size and use small source ++ * particle descriptors (<= 256 bytes). ++ */ ++ WRITE_REG(sc, SAFE_DMA_CFG, 256); ++ device_printf(sc->sc_dev, ++ "Reduce max DMA size to %u words for rev %u.%u WAR\n", ++ (unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff), ++ (unsigned) SAFE_REV_MAJ(sc->sc_chiprev), ++ (unsigned) SAFE_REV_MIN(sc->sc_chiprev)); ++ sc->sc_max_dsize = 256; ++ } else { ++ sc->sc_max_dsize = SAFE_MAX_DSIZE; ++ } ++ ++ /* NB: operands+results are overlaid */ ++ WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr); ++ WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr); ++ /* ++ * Configure ring entry size and number of items in the ring. ++ */ ++ KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0, ++ ("PE ring entry not 32-bit aligned!")); ++ dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t); ++ WRITE_REG(sc, SAFE_PE_RINGCFG, ++ (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE); ++ WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */ ++ ++ WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr); ++ WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr); ++ WRITE_REG(sc, SAFE_PE_PARTSIZE, ++ (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART); ++ /* ++ * NB: destination particles are fixed size. We use ++ * an mbuf cluster and require all results go to ++ * clusters or smaller. ++ */ ++ WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize); ++ ++ /* it's now safe to enable PE mode, do it */ ++ WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE); ++ ++ /* ++ * Configure hardware to use level-triggered interrupts and ++ * to interrupt after each descriptor is processed. ++ */ ++ WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL); ++ WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff); ++ WRITE_REG(sc, SAFE_HI_DESC_CNT, 1); ++ WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR); ++} ++ ++ ++/* ++ * Clean up after a chip crash. ++ * It is assumed that the caller in splimp() ++ */ ++static void ++safe_cleanchip(struct safe_softc *sc) ++{ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (sc->sc_nqchip != 0) { ++ struct safe_ringentry *re = sc->sc_back; ++ ++ while (re != sc->sc_front) { ++ if (re->re_desc.d_csr != 0) ++ safe_free_entry(sc, re); ++ if (++re == sc->sc_ringtop) ++ re = sc->sc_ring; ++ } ++ sc->sc_back = re; ++ sc->sc_nqchip = 0; ++ } ++} ++ ++/* ++ * free a safe_q ++ * It is assumed that the caller is within splimp(). ++ */ ++static int ++safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re) ++{ ++ struct cryptop *crp; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ /* ++ * Free header MCR ++ */ ++ if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb)) ++#ifdef NOTYET ++ m_freem(re->re_dst_m); ++#else ++ printk("%s,%d: SKB not supported\n", __FILE__, __LINE__); ++#endif ++ ++ crp = (struct cryptop *)re->re_crp; ++ ++ re->re_desc.d_csr = 0; ++ ++ crp->crp_etype = EFAULT; ++ crypto_done(crp); ++ return(0); ++} ++ ++/* ++ * Routine to reset the chip and clean up. ++ * It is assumed that the caller is in splimp() ++ */ ++static void ++safe_totalreset(struct safe_softc *sc) ++{ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ safe_reset_board(sc); ++ safe_init_board(sc); ++ safe_cleanchip(sc); ++} ++ ++/* ++ * Is the operand suitable aligned for direct DMA. Each ++ * segment must be aligned on a 32-bit boundary and all ++ * but the last segment must be a multiple of 4 bytes. ++ */ ++static int ++safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op) ++{ ++ int i; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ for (i = 0; i < op->nsegs; i++) { ++ if (op->segs[i].ds_addr & 3) ++ return (0); ++ if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3)) ++ return (0); ++ } ++ return (1); ++} ++ ++/* ++ * Is the operand suitable for direct DMA as the destination ++ * of an operation. The hardware requires that each ``particle'' ++ * but the last in an operation result have the same size. We ++ * fix that size at SAFE_MAX_DSIZE bytes. This routine returns ++ * 0 if some segment is not a multiple of of this size, 1 if all ++ * segments are exactly this size, or 2 if segments are at worst ++ * a multple of this size. ++ */ ++static int ++safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op) ++{ ++ int result = 1; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (op->nsegs > 0) { ++ int i; ++ ++ for (i = 0; i < op->nsegs-1; i++) { ++ if (op->segs[i].ds_len % sc->sc_max_dsize) ++ return (0); ++ if (op->segs[i].ds_len != sc->sc_max_dsize) ++ result = 2; ++ } ++ } ++ return (result); ++} ++ ++static int ++safe_kprocess(device_t dev, struct cryptkop *krp, int hint) ++{ ++ struct safe_softc *sc = device_get_softc(dev); ++ struct safe_pkq *q; ++ unsigned long flags; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (sc == NULL) { ++ krp->krp_status = EINVAL; ++ goto err; ++ } ++ ++ if (krp->krp_op != CRK_MOD_EXP) { ++ krp->krp_status = EOPNOTSUPP; ++ goto err; ++ } ++ ++ q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL); ++ if (q == NULL) { ++ krp->krp_status = ENOMEM; ++ goto err; ++ } ++ memset(q, 0, sizeof(*q)); ++ q->pkq_krp = krp; ++ INIT_LIST_HEAD(&q->pkq_list); ++ ++ spin_lock_irqsave(&sc->sc_pkmtx, flags); ++ list_add_tail(&q->pkq_list, &sc->sc_pkq); ++ safe_kfeed(sc); ++ spin_unlock_irqrestore(&sc->sc_pkmtx, flags); ++ return (0); ++ ++err: ++ crypto_kdone(krp); ++ return (0); ++} ++ ++#define SAFE_CRK_PARAM_BASE 0 ++#define SAFE_CRK_PARAM_EXP 1 ++#define SAFE_CRK_PARAM_MOD 2 ++ ++static int ++safe_kstart(struct safe_softc *sc) ++{ ++ struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp; ++ int exp_bits, mod_bits, base_bits; ++ u_int32_t op, a_off, b_off, c_off, d_off; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (krp->krp_iparams < 3 || krp->krp_oparams != 1) { ++ krp->krp_status = EINVAL; ++ return (1); ++ } ++ ++ base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]); ++ if (base_bits > 2048) ++ goto too_big; ++ if (base_bits <= 0) /* 5. base not zero */ ++ goto too_small; ++ ++ exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]); ++ if (exp_bits > 2048) ++ goto too_big; ++ if (exp_bits <= 0) /* 1. exponent word length > 0 */ ++ goto too_small; /* 4. exponent not zero */ ++ ++ mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]); ++ if (mod_bits > 2048) ++ goto too_big; ++ if (mod_bits <= 32) /* 2. modulus word length > 1 */ ++ goto too_small; /* 8. MSW of modulus != zero */ ++ if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */ ++ goto too_small; ++ if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0) ++ goto bad_domain; /* 6. modulus is odd */ ++ if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits) ++ goto too_small; /* make sure result will fit */ ++ ++ /* 7. modulus > base */ ++ if (mod_bits < base_bits) ++ goto too_small; ++ if (mod_bits == base_bits) { ++ u_int8_t *basep, *modp; ++ int i; ++ ++ basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p + ++ ((base_bits + 7) / 8) - 1; ++ modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p + ++ ((mod_bits + 7) / 8) - 1; ++ ++ for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) { ++ if (*modp < *basep) ++ goto too_small; ++ if (*modp > *basep) ++ break; ++ } ++ } ++ ++ /* And on the 9th step, he rested. */ ++ ++ WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32); ++ WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32); ++ if (mod_bits > 1024) { ++ op = SAFE_PK_FUNC_EXP4; ++ a_off = 0x000; ++ b_off = 0x100; ++ c_off = 0x200; ++ d_off = 0x300; ++ } else { ++ op = SAFE_PK_FUNC_EXP16; ++ a_off = 0x000; ++ b_off = 0x080; ++ c_off = 0x100; ++ d_off = 0x180; ++ } ++ sc->sc_pk_reslen = b_off - a_off; ++ sc->sc_pk_resoff = d_off; ++ ++ /* A is exponent, B is modulus, C is base, D is result */ ++ safe_kload_reg(sc, a_off, b_off - a_off, ++ &krp->krp_param[SAFE_CRK_PARAM_EXP]); ++ WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2); ++ safe_kload_reg(sc, b_off, b_off - a_off, ++ &krp->krp_param[SAFE_CRK_PARAM_MOD]); ++ WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2); ++ safe_kload_reg(sc, c_off, b_off - a_off, ++ &krp->krp_param[SAFE_CRK_PARAM_BASE]); ++ WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2); ++ WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2); ++ ++ WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN); ++ ++ return (0); ++ ++too_big: ++ krp->krp_status = E2BIG; ++ return (1); ++too_small: ++ krp->krp_status = ERANGE; ++ return (1); ++bad_domain: ++ krp->krp_status = EDOM; ++ return (1); ++} ++ ++static int ++safe_ksigbits(struct safe_softc *sc, struct crparam *cr) ++{ ++ u_int plen = (cr->crp_nbits + 7) / 8; ++ int i, sig = plen * 8; ++ u_int8_t c, *p = cr->crp_p; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ for (i = plen - 1; i >= 0; i--) { ++ c = p[i]; ++ if (c != 0) { ++ while ((c & 0x80) == 0) { ++ sig--; ++ c <<= 1; ++ } ++ break; ++ } ++ sig -= 8; ++ } ++ return (sig); ++} ++ ++static void ++safe_kfeed(struct safe_softc *sc) ++{ ++ struct safe_pkq *q, *tmp; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL) ++ return; ++ if (sc->sc_pkq_cur != NULL) ++ return; ++ list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) { ++ sc->sc_pkq_cur = q; ++ list_del(&q->pkq_list); ++ if (safe_kstart(sc) != 0) { ++ crypto_kdone(q->pkq_krp); ++ kfree(q); ++ sc->sc_pkq_cur = NULL; ++ } else { ++ /* op started, start polling */ ++ mod_timer(&sc->sc_pkto, jiffies + 1); ++ break; ++ } ++ } ++} ++ ++static void ++safe_kpoll(unsigned long arg) ++{ ++ struct safe_softc *sc = NULL; ++ struct safe_pkq *q; ++ struct crparam *res; ++ int i; ++ u_int32_t buf[64]; ++ unsigned long flags; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (arg >= SAFE_MAX_CHIPS) ++ return; ++ sc = safe_chip_idx[arg]; ++ if (!sc) { ++ DPRINTF(("%s() - bad callback\n", __FUNCTION__)); ++ return; ++ } ++ ++ spin_lock_irqsave(&sc->sc_pkmtx, flags); ++ if (sc->sc_pkq_cur == NULL) ++ goto out; ++ if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) { ++ /* still running, check back later */ ++ mod_timer(&sc->sc_pkto, jiffies + 1); ++ goto out; ++ } ++ ++ q = sc->sc_pkq_cur; ++ res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams]; ++ bzero(buf, sizeof(buf)); ++ bzero(res->crp_p, (res->crp_nbits + 7) / 8); ++ for (i = 0; i < sc->sc_pk_reslen >> 2; i++) ++ buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START + ++ sc->sc_pk_resoff + (i << 2))); ++ bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8); ++ /* ++ * reduce the bits that need copying if possible ++ */ ++ res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8); ++ res->crp_nbits = safe_ksigbits(sc, res); ++ ++ for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4) ++ WRITE_REG(sc, i, 0); ++ ++ crypto_kdone(q->pkq_krp); ++ kfree(q); ++ sc->sc_pkq_cur = NULL; ++ ++ safe_kfeed(sc); ++out: ++ spin_unlock_irqrestore(&sc->sc_pkmtx, flags); ++} ++ ++static void ++safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len, ++ struct crparam *n) ++{ ++ u_int32_t buf[64], i; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ bzero(buf, sizeof(buf)); ++ bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8); ++ ++ for (i = 0; i < len >> 2; i++) ++ WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2), ++ cpu_to_le32(buf[i])); ++} ++ ++#ifdef SAFE_DEBUG ++static void ++safe_dump_dmastatus(struct safe_softc *sc, const char *tag) ++{ ++ printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n" ++ , tag ++ , READ_REG(sc, SAFE_DMA_ENDIAN) ++ , READ_REG(sc, SAFE_DMA_SRCADDR) ++ , READ_REG(sc, SAFE_DMA_DSTADDR) ++ , READ_REG(sc, SAFE_DMA_STAT) ++ ); ++} ++ ++static void ++safe_dump_intrstate(struct safe_softc *sc, const char *tag) ++{ ++ printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n" ++ , tag ++ , READ_REG(sc, SAFE_HI_CFG) ++ , READ_REG(sc, SAFE_HI_MASK) ++ , READ_REG(sc, SAFE_HI_DESC_CNT) ++ , READ_REG(sc, SAFE_HU_STAT) ++ , READ_REG(sc, SAFE_HM_STAT) ++ ); ++} ++ ++static void ++safe_dump_ringstate(struct safe_softc *sc, const char *tag) ++{ ++ u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT); ++ ++ /* NB: assume caller has lock on ring */ ++ printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n", ++ tag, ++ estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S), ++ (unsigned long)(sc->sc_back - sc->sc_ring), ++ (unsigned long)(sc->sc_front - sc->sc_ring)); ++} ++ ++static void ++safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re) ++{ ++ int ix, nsegs; ++ ++ ix = re - sc->sc_ring; ++ printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n" ++ , tag ++ , re, ix ++ , re->re_desc.d_csr ++ , re->re_desc.d_src ++ , re->re_desc.d_dst ++ , re->re_desc.d_sa ++ , re->re_desc.d_len ++ ); ++ if (re->re_src.nsegs > 1) { ++ ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) / ++ sizeof(struct safe_pdesc); ++ for (nsegs = re->re_src.nsegs; nsegs; nsegs--) { ++ printf(" spd[%u] %p: %p size %u flags %x" ++ , ix, &sc->sc_spring[ix] ++ , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr ++ , sc->sc_spring[ix].pd_size ++ , sc->sc_spring[ix].pd_flags ++ ); ++ if (sc->sc_spring[ix].pd_size == 0) ++ printf(" (zero!)"); ++ printf("\n"); ++ if (++ix == SAFE_TOTAL_SPART) ++ ix = 0; ++ } ++ } ++ if (re->re_dst.nsegs > 1) { ++ ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) / ++ sizeof(struct safe_pdesc); ++ for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) { ++ printf(" dpd[%u] %p: %p flags %x\n" ++ , ix, &sc->sc_dpring[ix] ++ , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr ++ , sc->sc_dpring[ix].pd_flags ++ ); ++ if (++ix == SAFE_TOTAL_DPART) ++ ix = 0; ++ } ++ } ++ printf("sa: cmd0 %08x cmd1 %08x staterec %x\n", ++ re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec); ++ printf("sa: key %x %x %x %x %x %x %x %x\n" ++ , re->re_sa.sa_key[0] ++ , re->re_sa.sa_key[1] ++ , re->re_sa.sa_key[2] ++ , re->re_sa.sa_key[3] ++ , re->re_sa.sa_key[4] ++ , re->re_sa.sa_key[5] ++ , re->re_sa.sa_key[6] ++ , re->re_sa.sa_key[7] ++ ); ++ printf("sa: indigest %x %x %x %x %x\n" ++ , re->re_sa.sa_indigest[0] ++ , re->re_sa.sa_indigest[1] ++ , re->re_sa.sa_indigest[2] ++ , re->re_sa.sa_indigest[3] ++ , re->re_sa.sa_indigest[4] ++ ); ++ printf("sa: outdigest %x %x %x %x %x\n" ++ , re->re_sa.sa_outdigest[0] ++ , re->re_sa.sa_outdigest[1] ++ , re->re_sa.sa_outdigest[2] ++ , re->re_sa.sa_outdigest[3] ++ , re->re_sa.sa_outdigest[4] ++ ); ++ printf("sr: iv %x %x %x %x\n" ++ , re->re_sastate.sa_saved_iv[0] ++ , re->re_sastate.sa_saved_iv[1] ++ , re->re_sastate.sa_saved_iv[2] ++ , re->re_sastate.sa_saved_iv[3] ++ ); ++ printf("sr: hashbc %u indigest %x %x %x %x %x\n" ++ , re->re_sastate.sa_saved_hashbc ++ , re->re_sastate.sa_saved_indigest[0] ++ , re->re_sastate.sa_saved_indigest[1] ++ , re->re_sastate.sa_saved_indigest[2] ++ , re->re_sastate.sa_saved_indigest[3] ++ , re->re_sastate.sa_saved_indigest[4] ++ ); ++} ++ ++static void ++safe_dump_ring(struct safe_softc *sc, const char *tag) ++{ ++ unsigned long flags; ++ ++ spin_lock_irqsave(&sc->sc_ringmtx, flags); ++ printf("\nSafeNet Ring State:\n"); ++ safe_dump_intrstate(sc, tag); ++ safe_dump_dmastatus(sc, tag); ++ safe_dump_ringstate(sc, tag); ++ if (sc->sc_nqchip) { ++ struct safe_ringentry *re = sc->sc_back; ++ do { ++ safe_dump_request(sc, tag, re); ++ if (++re == sc->sc_ringtop) ++ re = sc->sc_ring; ++ } while (re != sc->sc_front); ++ } ++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags); ++} ++#endif /* SAFE_DEBUG */ ++ ++ ++static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent) ++{ ++ struct safe_softc *sc = NULL; ++ u32 mem_start, mem_len, cmd; ++ int i, rc, devinfo; ++ dma_addr_t raddr; ++ static int num_chips = 0; ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ if (pci_enable_device(dev) < 0) ++ return(-ENODEV); ++ ++ if (!dev->irq) { ++ printk("safe: found device with no IRQ assigned. check BIOS settings!"); ++ pci_disable_device(dev); ++ return(-ENODEV); ++ } ++ ++ if (pci_set_mwi(dev)) { ++ printk("safe: pci_set_mwi failed!"); ++ return(-ENODEV); ++ } ++ ++ sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); ++ if (!sc) ++ return(-ENOMEM); ++ memset(sc, 0, sizeof(*sc)); ++ ++ softc_device_init(sc, "safe", num_chips, safe_methods); ++ ++ sc->sc_irq = -1; ++ sc->sc_cid = -1; ++ sc->sc_pcidev = dev; ++ if (num_chips < SAFE_MAX_CHIPS) { ++ safe_chip_idx[device_get_unit(sc->sc_dev)] = sc; ++ num_chips++; ++ } ++ ++ INIT_LIST_HEAD(&sc->sc_pkq); ++ spin_lock_init(&sc->sc_pkmtx); ++ ++ pci_set_drvdata(sc->sc_pcidev, sc); ++ ++ /* we read its hardware registers as memory */ ++ mem_start = pci_resource_start(sc->sc_pcidev, 0); ++ mem_len = pci_resource_len(sc->sc_pcidev, 0); ++ ++ sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len); ++ if (!sc->sc_base_addr) { ++ device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n", ++ mem_start, mem_start + mem_len - 1); ++ goto out; ++ } ++ ++ /* fix up the bus size */ ++ if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) { ++ device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n"); ++ goto out; ++ } ++ if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) { ++ device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n"); ++ goto out; ++ } ++ ++ pci_set_master(sc->sc_pcidev); ++ ++ pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd); ++ ++ if (!(cmd & PCI_COMMAND_MEMORY)) { ++ device_printf(sc->sc_dev, "failed to enable memory mapping\n"); ++ goto out; ++ } ++ ++ if (!(cmd & PCI_COMMAND_MASTER)) { ++ device_printf(sc->sc_dev, "failed to enable bus mastering\n"); ++ goto out; ++ } ++ ++ rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc); ++ if (rc) { ++ device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq); ++ goto out; ++ } ++ sc->sc_irq = dev->irq; ++ ++ sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) & ++ (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN); ++ ++ /* ++ * Allocate packet engine descriptors. ++ */ ++ sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, ++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), ++ &sc->sc_ringalloc.dma_paddr); ++ if (!sc->sc_ringalloc.dma_vaddr) { ++ device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n"); ++ goto out; ++ } ++ ++ /* ++ * Hookup the static portion of all our data structures. ++ */ ++ sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr; ++ sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE; ++ sc->sc_front = sc->sc_ring; ++ sc->sc_back = sc->sc_ring; ++ raddr = sc->sc_ringalloc.dma_paddr; ++ bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry)); ++ for (i = 0; i < SAFE_MAX_NQUEUE; i++) { ++ struct safe_ringentry *re = &sc->sc_ring[i]; ++ ++ re->re_desc.d_sa = raddr + ++ offsetof(struct safe_ringentry, re_sa); ++ re->re_sa.sa_staterec = raddr + ++ offsetof(struct safe_ringentry, re_sastate); ++ ++ raddr += sizeof (struct safe_ringentry); ++ } ++ spin_lock_init(&sc->sc_ringmtx); ++ ++ /* ++ * Allocate scatter and gather particle descriptors. ++ */ ++ sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_SPART * sizeof (struct safe_pdesc), ++ &sc->sc_spalloc.dma_paddr); ++ if (!sc->sc_spalloc.dma_vaddr) { ++ device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n"); ++ goto out; ++ } ++ sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr; ++ sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART; ++ sc->sc_spfree = sc->sc_spring; ++ bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc)); ++ ++ sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), ++ &sc->sc_dpalloc.dma_paddr); ++ if (!sc->sc_dpalloc.dma_vaddr) { ++ device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n"); ++ goto out; ++ } ++ sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr; ++ sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART; ++ sc->sc_dpfree = sc->sc_dpring; ++ bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc)); ++ ++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE); ++ if (sc->sc_cid < 0) { ++ device_printf(sc->sc_dev, "could not get crypto driver id\n"); ++ goto out; ++ } ++ ++ printf("%s:", device_get_nameunit(sc->sc_dev)); ++ ++ devinfo = READ_REG(sc, SAFE_DEVINFO); ++ if (devinfo & SAFE_DEVINFO_RNG) { ++ sc->sc_flags |= SAFE_FLAGS_RNG; ++ printf(" rng"); ++ } ++ if (devinfo & SAFE_DEVINFO_PKEY) { ++ printf(" key"); ++ sc->sc_flags |= SAFE_FLAGS_KEY; ++ crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0); ++#if 0 ++ crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0); ++#endif ++ init_timer(&sc->sc_pkto); ++ sc->sc_pkto.function = safe_kpoll; ++ sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev); ++ } ++ if (devinfo & SAFE_DEVINFO_DES) { ++ printf(" des/3des"); ++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); ++ } ++ if (devinfo & SAFE_DEVINFO_AES) { ++ printf(" aes"); ++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); ++ } ++ if (devinfo & SAFE_DEVINFO_MD5) { ++ printf(" md5"); ++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); ++ } ++ if (devinfo & SAFE_DEVINFO_SHA1) { ++ printf(" sha1"); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); ++ } ++ printf(" null"); ++ crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0); ++ /* XXX other supported algorithms */ ++ printf("\n"); ++ ++ safe_reset_board(sc); /* reset h/w */ ++ safe_init_board(sc); /* init h/w */ ++ ++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) ++ if (sc->sc_flags & SAFE_FLAGS_RNG) { ++ safe_rng_init(sc); ++ crypto_rregister(sc->sc_cid, safe_read_random, sc); ++ } ++#endif /* SAFE_NO_RNG */ ++ ++ return (0); ++ ++out: ++ if (sc->sc_cid >= 0) ++ crypto_unregister_all(sc->sc_cid); ++ if (sc->sc_irq != -1) ++ free_irq(sc->sc_irq, sc); ++ if (sc->sc_ringalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), ++ sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr); ++ if (sc->sc_spalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), ++ sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr); ++ if (sc->sc_dpalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), ++ sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr); ++ kfree(sc); ++ return(-ENODEV); ++} ++ ++static void safe_remove(struct pci_dev *dev) ++{ ++ struct safe_softc *sc = pci_get_drvdata(dev); ++ ++ DPRINTF(("%s()\n", __FUNCTION__)); ++ ++ /* XXX wait/abort active ops */ ++ ++ WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */ ++ ++ del_timer_sync(&sc->sc_pkto); ++ ++ crypto_unregister_all(sc->sc_cid); ++ ++ safe_cleanchip(sc); ++ ++ if (sc->sc_irq != -1) ++ free_irq(sc->sc_irq, sc); ++ if (sc->sc_ringalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), ++ sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr); ++ if (sc->sc_spalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), ++ sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr); ++ if (sc->sc_dpalloc.dma_vaddr) ++ pci_free_consistent(sc->sc_pcidev, ++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), ++ sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr); ++ sc->sc_irq = -1; ++ sc->sc_ringalloc.dma_vaddr = NULL; ++ sc->sc_spalloc.dma_vaddr = NULL; ++ sc->sc_dpalloc.dma_vaddr = NULL; ++} ++ ++static struct pci_device_id safe_pci_tbl[] = { ++ { PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL, ++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, ++ { }, ++}; ++MODULE_DEVICE_TABLE(pci, safe_pci_tbl); ++ ++static struct pci_driver safe_driver = { ++ .name = "safe", ++ .id_table = safe_pci_tbl, ++ .probe = safe_probe, ++ .remove = safe_remove, ++ /* add PM stuff here one day */ ++}; ++ ++static int __init safe_init (void) ++{ ++ struct safe_softc *sc = NULL; ++ int rc; ++ ++ DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init)); ++ ++ rc = pci_register_driver(&safe_driver); ++ pci_register_driver_compat(&safe_driver, rc); ++ ++ return rc; ++} ++ ++static void __exit safe_exit (void) ++{ ++ pci_unregister_driver(&safe_driver); ++} ++ ++module_init(safe_init); ++module_exit(safe_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices"); +--- /dev/null ++++ b/crypto/ocf/safe/sha1.c +@@ -0,0 +1,279 @@ ++/* $KAME: sha1.c,v 1.5 2000/11/08 06:13:08 itojun Exp $ */ ++/* ++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. Neither the name of the project nor the names of its contributors ++ * may be used to endorse or promote products derived from this software ++ * without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++ ++/* ++ * FIPS pub 180-1: Secure Hash Algorithm (SHA-1) ++ * based on: http://csrc.nist.gov/fips/fip180-1.txt ++ * implemented by Jun-ichiro itojun Itoh ++ */ ++ ++#if 0 ++#include ++__FBSDID("$FreeBSD: src/sys/crypto/sha1.c,v 1.9 2003/06/10 21:36:57 obrien Exp $"); ++ ++#include ++#include ++#include ++#include ++ ++#include ++#endif ++ ++/* sanity check */ ++#if BYTE_ORDER != BIG_ENDIAN ++# if BYTE_ORDER != LITTLE_ENDIAN ++# define unsupported 1 ++# endif ++#endif ++ ++#ifndef unsupported ++ ++/* constant table */ ++static u_int32_t _K[] = { 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 }; ++#define K(t) _K[(t) / 20] ++ ++#define F0(b, c, d) (((b) & (c)) | ((~(b)) & (d))) ++#define F1(b, c, d) (((b) ^ (c)) ^ (d)) ++#define F2(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) ++#define F3(b, c, d) (((b) ^ (c)) ^ (d)) ++ ++#define S(n, x) (((x) << (n)) | ((x) >> (32 - n))) ++ ++#undef H ++#define H(n) (ctxt->h.b32[(n)]) ++#define COUNT (ctxt->count) ++#define BCOUNT (ctxt->c.b64[0] / 8) ++#define W(n) (ctxt->m.b32[(n)]) ++ ++#define PUTBYTE(x) { \ ++ ctxt->m.b8[(COUNT % 64)] = (x); \ ++ COUNT++; \ ++ COUNT %= 64; \ ++ ctxt->c.b64[0] += 8; \ ++ if (COUNT % 64 == 0) \ ++ sha1_step(ctxt); \ ++ } ++ ++#define PUTPAD(x) { \ ++ ctxt->m.b8[(COUNT % 64)] = (x); \ ++ COUNT++; \ ++ COUNT %= 64; \ ++ if (COUNT % 64 == 0) \ ++ sha1_step(ctxt); \ ++ } ++ ++static void sha1_step(struct sha1_ctxt *); ++ ++static void ++sha1_step(ctxt) ++ struct sha1_ctxt *ctxt; ++{ ++ u_int32_t a, b, c, d, e; ++ size_t t, s; ++ u_int32_t tmp; ++ ++#if BYTE_ORDER == LITTLE_ENDIAN ++ struct sha1_ctxt tctxt; ++ bcopy(&ctxt->m.b8[0], &tctxt.m.b8[0], 64); ++ ctxt->m.b8[0] = tctxt.m.b8[3]; ctxt->m.b8[1] = tctxt.m.b8[2]; ++ ctxt->m.b8[2] = tctxt.m.b8[1]; ctxt->m.b8[3] = tctxt.m.b8[0]; ++ ctxt->m.b8[4] = tctxt.m.b8[7]; ctxt->m.b8[5] = tctxt.m.b8[6]; ++ ctxt->m.b8[6] = tctxt.m.b8[5]; ctxt->m.b8[7] = tctxt.m.b8[4]; ++ ctxt->m.b8[8] = tctxt.m.b8[11]; ctxt->m.b8[9] = tctxt.m.b8[10]; ++ ctxt->m.b8[10] = tctxt.m.b8[9]; ctxt->m.b8[11] = tctxt.m.b8[8]; ++ ctxt->m.b8[12] = tctxt.m.b8[15]; ctxt->m.b8[13] = tctxt.m.b8[14]; ++ ctxt->m.b8[14] = tctxt.m.b8[13]; ctxt->m.b8[15] = tctxt.m.b8[12]; ++ ctxt->m.b8[16] = tctxt.m.b8[19]; ctxt->m.b8[17] = tctxt.m.b8[18]; ++ ctxt->m.b8[18] = tctxt.m.b8[17]; ctxt->m.b8[19] = tctxt.m.b8[16]; ++ ctxt->m.b8[20] = tctxt.m.b8[23]; ctxt->m.b8[21] = tctxt.m.b8[22]; ++ ctxt->m.b8[22] = tctxt.m.b8[21]; ctxt->m.b8[23] = tctxt.m.b8[20]; ++ ctxt->m.b8[24] = tctxt.m.b8[27]; ctxt->m.b8[25] = tctxt.m.b8[26]; ++ ctxt->m.b8[26] = tctxt.m.b8[25]; ctxt->m.b8[27] = tctxt.m.b8[24]; ++ ctxt->m.b8[28] = tctxt.m.b8[31]; ctxt->m.b8[29] = tctxt.m.b8[30]; ++ ctxt->m.b8[30] = tctxt.m.b8[29]; ctxt->m.b8[31] = tctxt.m.b8[28]; ++ ctxt->m.b8[32] = tctxt.m.b8[35]; ctxt->m.b8[33] = tctxt.m.b8[34]; ++ ctxt->m.b8[34] = tctxt.m.b8[33]; ctxt->m.b8[35] = tctxt.m.b8[32]; ++ ctxt->m.b8[36] = tctxt.m.b8[39]; ctxt->m.b8[37] = tctxt.m.b8[38]; ++ ctxt->m.b8[38] = tctxt.m.b8[37]; ctxt->m.b8[39] = tctxt.m.b8[36]; ++ ctxt->m.b8[40] = tctxt.m.b8[43]; ctxt->m.b8[41] = tctxt.m.b8[42]; ++ ctxt->m.b8[42] = tctxt.m.b8[41]; ctxt->m.b8[43] = tctxt.m.b8[40]; ++ ctxt->m.b8[44] = tctxt.m.b8[47]; ctxt->m.b8[45] = tctxt.m.b8[46]; ++ ctxt->m.b8[46] = tctxt.m.b8[45]; ctxt->m.b8[47] = tctxt.m.b8[44]; ++ ctxt->m.b8[48] = tctxt.m.b8[51]; ctxt->m.b8[49] = tctxt.m.b8[50]; ++ ctxt->m.b8[50] = tctxt.m.b8[49]; ctxt->m.b8[51] = tctxt.m.b8[48]; ++ ctxt->m.b8[52] = tctxt.m.b8[55]; ctxt->m.b8[53] = tctxt.m.b8[54]; ++ ctxt->m.b8[54] = tctxt.m.b8[53]; ctxt->m.b8[55] = tctxt.m.b8[52]; ++ ctxt->m.b8[56] = tctxt.m.b8[59]; ctxt->m.b8[57] = tctxt.m.b8[58]; ++ ctxt->m.b8[58] = tctxt.m.b8[57]; ctxt->m.b8[59] = tctxt.m.b8[56]; ++ ctxt->m.b8[60] = tctxt.m.b8[63]; ctxt->m.b8[61] = tctxt.m.b8[62]; ++ ctxt->m.b8[62] = tctxt.m.b8[61]; ctxt->m.b8[63] = tctxt.m.b8[60]; ++#endif ++ ++ a = H(0); b = H(1); c = H(2); d = H(3); e = H(4); ++ ++ for (t = 0; t < 20; t++) { ++ s = t & 0x0f; ++ if (t >= 16) { ++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s)); ++ } ++ tmp = S(5, a) + F0(b, c, d) + e + W(s) + K(t); ++ e = d; d = c; c = S(30, b); b = a; a = tmp; ++ } ++ for (t = 20; t < 40; t++) { ++ s = t & 0x0f; ++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s)); ++ tmp = S(5, a) + F1(b, c, d) + e + W(s) + K(t); ++ e = d; d = c; c = S(30, b); b = a; a = tmp; ++ } ++ for (t = 40; t < 60; t++) { ++ s = t & 0x0f; ++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s)); ++ tmp = S(5, a) + F2(b, c, d) + e + W(s) + K(t); ++ e = d; d = c; c = S(30, b); b = a; a = tmp; ++ } ++ for (t = 60; t < 80; t++) { ++ s = t & 0x0f; ++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s)); ++ tmp = S(5, a) + F3(b, c, d) + e + W(s) + K(t); ++ e = d; d = c; c = S(30, b); b = a; a = tmp; ++ } ++ ++ H(0) = H(0) + a; ++ H(1) = H(1) + b; ++ H(2) = H(2) + c; ++ H(3) = H(3) + d; ++ H(4) = H(4) + e; ++ ++ bzero(&ctxt->m.b8[0], 64); ++} ++ ++/*------------------------------------------------------------*/ ++ ++void ++sha1_init(ctxt) ++ struct sha1_ctxt *ctxt; ++{ ++ bzero(ctxt, sizeof(struct sha1_ctxt)); ++ H(0) = 0x67452301; ++ H(1) = 0xefcdab89; ++ H(2) = 0x98badcfe; ++ H(3) = 0x10325476; ++ H(4) = 0xc3d2e1f0; ++} ++ ++void ++sha1_pad(ctxt) ++ struct sha1_ctxt *ctxt; ++{ ++ size_t padlen; /*pad length in bytes*/ ++ size_t padstart; ++ ++ PUTPAD(0x80); ++ ++ padstart = COUNT % 64; ++ padlen = 64 - padstart; ++ if (padlen < 8) { ++ bzero(&ctxt->m.b8[padstart], padlen); ++ COUNT += padlen; ++ COUNT %= 64; ++ sha1_step(ctxt); ++ padstart = COUNT % 64; /* should be 0 */ ++ padlen = 64 - padstart; /* should be 64 */ ++ } ++ bzero(&ctxt->m.b8[padstart], padlen - 8); ++ COUNT += (padlen - 8); ++ COUNT %= 64; ++#if BYTE_ORDER == BIG_ENDIAN ++ PUTPAD(ctxt->c.b8[0]); PUTPAD(ctxt->c.b8[1]); ++ PUTPAD(ctxt->c.b8[2]); PUTPAD(ctxt->c.b8[3]); ++ PUTPAD(ctxt->c.b8[4]); PUTPAD(ctxt->c.b8[5]); ++ PUTPAD(ctxt->c.b8[6]); PUTPAD(ctxt->c.b8[7]); ++#else ++ PUTPAD(ctxt->c.b8[7]); PUTPAD(ctxt->c.b8[6]); ++ PUTPAD(ctxt->c.b8[5]); PUTPAD(ctxt->c.b8[4]); ++ PUTPAD(ctxt->c.b8[3]); PUTPAD(ctxt->c.b8[2]); ++ PUTPAD(ctxt->c.b8[1]); PUTPAD(ctxt->c.b8[0]); ++#endif ++} ++ ++void ++sha1_loop(ctxt, input, len) ++ struct sha1_ctxt *ctxt; ++ const u_int8_t *input; ++ size_t len; ++{ ++ size_t gaplen; ++ size_t gapstart; ++ size_t off; ++ size_t copysiz; ++ ++ off = 0; ++ ++ while (off < len) { ++ gapstart = COUNT % 64; ++ gaplen = 64 - gapstart; ++ ++ copysiz = (gaplen < len - off) ? gaplen : len - off; ++ bcopy(&input[off], &ctxt->m.b8[gapstart], copysiz); ++ COUNT += copysiz; ++ COUNT %= 64; ++ ctxt->c.b64[0] += copysiz * 8; ++ if (COUNT % 64 == 0) ++ sha1_step(ctxt); ++ off += copysiz; ++ } ++} ++ ++void ++sha1_result(ctxt, digest0) ++ struct sha1_ctxt *ctxt; ++ caddr_t digest0; ++{ ++ u_int8_t *digest; ++ ++ digest = (u_int8_t *)digest0; ++ sha1_pad(ctxt); ++#if BYTE_ORDER == BIG_ENDIAN ++ bcopy(&ctxt->h.b8[0], digest, 20); ++#else ++ digest[0] = ctxt->h.b8[3]; digest[1] = ctxt->h.b8[2]; ++ digest[2] = ctxt->h.b8[1]; digest[3] = ctxt->h.b8[0]; ++ digest[4] = ctxt->h.b8[7]; digest[5] = ctxt->h.b8[6]; ++ digest[6] = ctxt->h.b8[5]; digest[7] = ctxt->h.b8[4]; ++ digest[8] = ctxt->h.b8[11]; digest[9] = ctxt->h.b8[10]; ++ digest[10] = ctxt->h.b8[9]; digest[11] = ctxt->h.b8[8]; ++ digest[12] = ctxt->h.b8[15]; digest[13] = ctxt->h.b8[14]; ++ digest[14] = ctxt->h.b8[13]; digest[15] = ctxt->h.b8[12]; ++ digest[16] = ctxt->h.b8[19]; digest[17] = ctxt->h.b8[18]; ++ digest[18] = ctxt->h.b8[17]; digest[19] = ctxt->h.b8[16]; ++#endif ++} ++ ++#endif /*unsupported*/ +--- /dev/null ++++ b/crypto/ocf/safe/sha1.h +@@ -0,0 +1,72 @@ ++/* $FreeBSD: src/sys/crypto/sha1.h,v 1.8 2002/03/20 05:13:50 alfred Exp $ */ ++/* $KAME: sha1.h,v 1.5 2000/03/27 04:36:23 sumikawa Exp $ */ ++ ++/* ++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. Neither the name of the project nor the names of its contributors ++ * may be used to endorse or promote products derived from this software ++ * without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++/* ++ * FIPS pub 180-1: Secure Hash Algorithm (SHA-1) ++ * based on: http://csrc.nist.gov/fips/fip180-1.txt ++ * implemented by Jun-ichiro itojun Itoh ++ */ ++ ++#ifndef _NETINET6_SHA1_H_ ++#define _NETINET6_SHA1_H_ ++ ++struct sha1_ctxt { ++ union { ++ u_int8_t b8[20]; ++ u_int32_t b32[5]; ++ } h; ++ union { ++ u_int8_t b8[8]; ++ u_int64_t b64[1]; ++ } c; ++ union { ++ u_int8_t b8[64]; ++ u_int32_t b32[16]; ++ } m; ++ u_int8_t count; ++}; ++ ++#ifdef __KERNEL__ ++extern void sha1_init(struct sha1_ctxt *); ++extern void sha1_pad(struct sha1_ctxt *); ++extern void sha1_loop(struct sha1_ctxt *, const u_int8_t *, size_t); ++extern void sha1_result(struct sha1_ctxt *, caddr_t); ++ ++/* compatibilty with other SHA1 source codes */ ++typedef struct sha1_ctxt SHA1_CTX; ++#define SHA1Init(x) sha1_init((x)) ++#define SHA1Update(x, y, z) sha1_loop((x), (y), (z)) ++#define SHA1Final(x, y) sha1_result((y), (x)) ++#endif /* __KERNEL__ */ ++ ++#define SHA1_RESULTLEN (160/8) ++ ++#endif /*_NETINET6_SHA1_H_*/ +--- /dev/null ++++ b/crypto/ocf/safe/safereg.h +@@ -0,0 +1,421 @@ ++/*- ++ * Copyright (c) 2003 Sam Leffler, Errno Consulting ++ * Copyright (c) 2003 Global Technology Associates, Inc. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++ * $FreeBSD: src/sys/dev/safe/safereg.h,v 1.1 2003/07/21 21:46:07 sam Exp $ ++ */ ++#ifndef _SAFE_SAFEREG_H_ ++#define _SAFE_SAFEREG_H_ ++ ++/* ++ * Register definitions for SafeNet SafeXcel-1141 crypto device. ++ * Definitions from revision 1.3 (Nov 6 2002) of the User's Manual. ++ */ ++ ++#define BS_BAR 0x10 /* DMA base address register */ ++#define BS_TRDY_TIMEOUT 0x40 /* TRDY timeout */ ++#define BS_RETRY_TIMEOUT 0x41 /* DMA retry timeout */ ++ ++#define PCI_VENDOR_SAFENET 0x16ae /* SafeNet, Inc. */ ++ ++/* SafeNet */ ++#define PCI_PRODUCT_SAFEXCEL 0x1141 /* 1141 */ ++ ++#define SAFE_PE_CSR 0x0000 /* Packet Enginge Ctrl/Status */ ++#define SAFE_PE_SRC 0x0004 /* Packet Engine Source */ ++#define SAFE_PE_DST 0x0008 /* Packet Engine Destination */ ++#define SAFE_PE_SA 0x000c /* Packet Engine SA */ ++#define SAFE_PE_LEN 0x0010 /* Packet Engine Length */ ++#define SAFE_PE_DMACFG 0x0040 /* Packet Engine DMA Configuration */ ++#define SAFE_PE_DMASTAT 0x0044 /* Packet Engine DMA Status */ ++#define SAFE_PE_PDRBASE 0x0048 /* Packet Engine Descriptor Ring Base */ ++#define SAFE_PE_RDRBASE 0x004c /* Packet Engine Result Ring Base */ ++#define SAFE_PE_RINGCFG 0x0050 /* Packet Engine Ring Configuration */ ++#define SAFE_PE_RINGPOLL 0x0054 /* Packet Engine Ring Poll */ ++#define SAFE_PE_IRNGSTAT 0x0058 /* Packet Engine Internal Ring Status */ ++#define SAFE_PE_ERNGSTAT 0x005c /* Packet Engine External Ring Status */ ++#define SAFE_PE_IOTHRESH 0x0060 /* Packet Engine I/O Threshold */ ++#define SAFE_PE_GRNGBASE 0x0064 /* Packet Engine Gather Ring Base */ ++#define SAFE_PE_SRNGBASE 0x0068 /* Packet Engine Scatter Ring Base */ ++#define SAFE_PE_PARTSIZE 0x006c /* Packet Engine Particlar Ring Size */ ++#define SAFE_PE_PARTCFG 0x0070 /* Packet Engine Particle Ring Config */ ++#define SAFE_CRYPTO_CTRL 0x0080 /* Crypto Control */ ++#define SAFE_DEVID 0x0084 /* Device ID */ ++#define SAFE_DEVINFO 0x0088 /* Device Info */ ++#define SAFE_HU_STAT 0x00a0 /* Host Unmasked Status */ ++#define SAFE_HM_STAT 0x00a4 /* Host Masked Status (read-only) */ ++#define SAFE_HI_CLR 0x00a4 /* Host Clear Interrupt (write-only) */ ++#define SAFE_HI_MASK 0x00a8 /* Host Mask Control */ ++#define SAFE_HI_CFG 0x00ac /* Interrupt Configuration */ ++#define SAFE_HI_RD_DESCR 0x00b4 /* Force Descriptor Read */ ++#define SAFE_HI_DESC_CNT 0x00b8 /* Host Descriptor Done Count */ ++#define SAFE_DMA_ENDIAN 0x00c0 /* Master Endian Status */ ++#define SAFE_DMA_SRCADDR 0x00c4 /* DMA Source Address Status */ ++#define SAFE_DMA_DSTADDR 0x00c8 /* DMA Destination Address Status */ ++#define SAFE_DMA_STAT 0x00cc /* DMA Current Status */ ++#define SAFE_DMA_CFG 0x00d4 /* DMA Configuration/Status */ ++#define SAFE_ENDIAN 0x00e0 /* Endian Configuration */ ++#define SAFE_PK_A_ADDR 0x0800 /* Public Key A Address */ ++#define SAFE_PK_B_ADDR 0x0804 /* Public Key B Address */ ++#define SAFE_PK_C_ADDR 0x0808 /* Public Key C Address */ ++#define SAFE_PK_D_ADDR 0x080c /* Public Key D Address */ ++#define SAFE_PK_A_LEN 0x0810 /* Public Key A Length */ ++#define SAFE_PK_B_LEN 0x0814 /* Public Key B Length */ ++#define SAFE_PK_SHIFT 0x0818 /* Public Key Shift */ ++#define SAFE_PK_FUNC 0x081c /* Public Key Function */ ++#define SAFE_PK_RAM_START 0x1000 /* Public Key RAM start address */ ++#define SAFE_PK_RAM_END 0x1fff /* Public Key RAM end address */ ++ ++#define SAFE_RNG_OUT 0x0100 /* RNG Output */ ++#define SAFE_RNG_STAT 0x0104 /* RNG Status */ ++#define SAFE_RNG_CTRL 0x0108 /* RNG Control */ ++#define SAFE_RNG_A 0x010c /* RNG A */ ++#define SAFE_RNG_B 0x0110 /* RNG B */ ++#define SAFE_RNG_X_LO 0x0114 /* RNG X [31:0] */ ++#define SAFE_RNG_X_MID 0x0118 /* RNG X [63:32] */ ++#define SAFE_RNG_X_HI 0x011c /* RNG X [80:64] */ ++#define SAFE_RNG_X_CNTR 0x0120 /* RNG Counter */ ++#define SAFE_RNG_ALM_CNT 0x0124 /* RNG Alarm Count */ ++#define SAFE_RNG_CNFG 0x0128 /* RNG Configuration */ ++#define SAFE_RNG_LFSR1_LO 0x012c /* RNG LFSR1 [31:0] */ ++#define SAFE_RNG_LFSR1_HI 0x0130 /* RNG LFSR1 [47:32] */ ++#define SAFE_RNG_LFSR2_LO 0x0134 /* RNG LFSR1 [31:0] */ ++#define SAFE_RNG_LFSR2_HI 0x0138 /* RNG LFSR1 [47:32] */ ++ ++#define SAFE_PE_CSR_READY 0x00000001 /* ready for processing */ ++#define SAFE_PE_CSR_DONE 0x00000002 /* h/w completed processing */ ++#define SAFE_PE_CSR_LOADSA 0x00000004 /* load SA digests */ ++#define SAFE_PE_CSR_HASHFINAL 0x00000010 /* do hash pad & write result */ ++#define SAFE_PE_CSR_SABUSID 0x000000c0 /* bus id for SA */ ++#define SAFE_PE_CSR_SAPCI 0x00000040 /* PCI bus id for SA */ ++#define SAFE_PE_CSR_NXTHDR 0x0000ff00 /* next hdr value for IPsec */ ++#define SAFE_PE_CSR_FPAD 0x0000ff00 /* fixed pad for basic ops */ ++#define SAFE_PE_CSR_STATUS 0x00ff0000 /* operation result status */ ++#define SAFE_PE_CSR_AUTH_FAIL 0x00010000 /* ICV mismatch (inbound) */ ++#define SAFE_PE_CSR_PAD_FAIL 0x00020000 /* pad verify fail (inbound) */ ++#define SAFE_PE_CSR_SEQ_FAIL 0x00040000 /* sequence number (inbound) */ ++#define SAFE_PE_CSR_XERROR 0x00080000 /* extended error follows */ ++#define SAFE_PE_CSR_XECODE 0x00f00000 /* extended error code */ ++#define SAFE_PE_CSR_XECODE_S 20 ++#define SAFE_PE_CSR_XECODE_BADCMD 0 /* invalid command */ ++#define SAFE_PE_CSR_XECODE_BADALG 1 /* invalid algorithm */ ++#define SAFE_PE_CSR_XECODE_ALGDIS 2 /* algorithm disabled */ ++#define SAFE_PE_CSR_XECODE_ZEROLEN 3 /* zero packet length */ ++#define SAFE_PE_CSR_XECODE_DMAERR 4 /* bus DMA error */ ++#define SAFE_PE_CSR_XECODE_PIPEABORT 5 /* secondary bus DMA error */ ++#define SAFE_PE_CSR_XECODE_BADSPI 6 /* IPsec SPI mismatch */ ++#define SAFE_PE_CSR_XECODE_TIMEOUT 10 /* failsafe timeout */ ++#define SAFE_PE_CSR_PAD 0xff000000 /* ESP padding control/status */ ++#define SAFE_PE_CSR_PAD_MIN 0x00000000 /* minimum IPsec padding */ ++#define SAFE_PE_CSR_PAD_16 0x08000000 /* pad to 16-byte boundary */ ++#define SAFE_PE_CSR_PAD_32 0x10000000 /* pad to 32-byte boundary */ ++#define SAFE_PE_CSR_PAD_64 0x20000000 /* pad to 64-byte boundary */ ++#define SAFE_PE_CSR_PAD_128 0x40000000 /* pad to 128-byte boundary */ ++#define SAFE_PE_CSR_PAD_256 0x80000000 /* pad to 256-byte boundary */ ++ ++/* ++ * Check the CSR to see if the PE has returned ownership to ++ * the host. Note that before processing a descriptor this ++ * must be done followed by a check of the SAFE_PE_LEN register ++ * status bits to avoid premature processing of a descriptor ++ * on its way back to the host. ++ */ ++#define SAFE_PE_CSR_IS_DONE(_csr) \ ++ (((_csr) & (SAFE_PE_CSR_READY | SAFE_PE_CSR_DONE)) == SAFE_PE_CSR_DONE) ++ ++#define SAFE_PE_LEN_LENGTH 0x000fffff /* total length (bytes) */ ++#define SAFE_PE_LEN_READY 0x00400000 /* ready for processing */ ++#define SAFE_PE_LEN_DONE 0x00800000 /* h/w completed processing */ ++#define SAFE_PE_LEN_BYPASS 0xff000000 /* bypass offset (bytes) */ ++#define SAFE_PE_LEN_BYPASS_S 24 ++ ++#define SAFE_PE_LEN_IS_DONE(_len) \ ++ (((_len) & (SAFE_PE_LEN_READY | SAFE_PE_LEN_DONE)) == SAFE_PE_LEN_DONE) ++ ++/* NB: these apply to HU_STAT, HM_STAT, HI_CLR, and HI_MASK */ ++#define SAFE_INT_PE_CDONE 0x00000002 /* PE context done */ ++#define SAFE_INT_PE_DDONE 0x00000008 /* PE descriptor done */ ++#define SAFE_INT_PE_ERROR 0x00000010 /* PE error */ ++#define SAFE_INT_PE_ODONE 0x00000020 /* PE operation done */ ++ ++#define SAFE_HI_CFG_PULSE 0x00000001 /* use pulse interrupt */ ++#define SAFE_HI_CFG_LEVEL 0x00000000 /* use level interrupt */ ++#define SAFE_HI_CFG_AUTOCLR 0x00000002 /* auto-clear pulse interrupt */ ++ ++#define SAFE_ENDIAN_PASS 0x000000e4 /* straight pass-thru */ ++#define SAFE_ENDIAN_SWAB 0x0000001b /* swap bytes in 32-bit word */ ++ ++#define SAFE_PE_DMACFG_PERESET 0x00000001 /* reset packet engine */ ++#define SAFE_PE_DMACFG_PDRRESET 0x00000002 /* reset PDR counters/ptrs */ ++#define SAFE_PE_DMACFG_SGRESET 0x00000004 /* reset scatter/gather cache */ ++#define SAFE_PE_DMACFG_FSENA 0x00000008 /* enable failsafe reset */ ++#define SAFE_PE_DMACFG_PEMODE 0x00000100 /* packet engine mode */ ++#define SAFE_PE_DMACFG_SAPREC 0x00000200 /* SA precedes packet */ ++#define SAFE_PE_DMACFG_PKFOLL 0x00000400 /* packet follows descriptor */ ++#define SAFE_PE_DMACFG_GPRBID 0x00003000 /* gather particle ring busid */ ++#define SAFE_PE_DMACFG_GPRPCI 0x00001000 /* PCI gather particle ring */ ++#define SAFE_PE_DMACFG_SPRBID 0x0000c000 /* scatter part. ring busid */ ++#define SAFE_PE_DMACFG_SPRPCI 0x00004000 /* PCI scatter part. ring */ ++#define SAFE_PE_DMACFG_ESDESC 0x00010000 /* endian swap descriptors */ ++#define SAFE_PE_DMACFG_ESSA 0x00020000 /* endian swap SA data */ ++#define SAFE_PE_DMACFG_ESPACKET 0x00040000 /* endian swap packet data */ ++#define SAFE_PE_DMACFG_ESPDESC 0x00080000 /* endian swap particle desc. */ ++#define SAFE_PE_DMACFG_NOPDRUP 0x00100000 /* supp. PDR ownership update */ ++#define SAFE_PD_EDMACFG_PCIMODE 0x01000000 /* PCI target mode */ ++ ++#define SAFE_PE_DMASTAT_PEIDONE 0x00000001 /* PE core input done */ ++#define SAFE_PE_DMASTAT_PEODONE 0x00000002 /* PE core output done */ ++#define SAFE_PE_DMASTAT_ENCDONE 0x00000004 /* encryption done */ ++#define SAFE_PE_DMASTAT_IHDONE 0x00000008 /* inner hash done */ ++#define SAFE_PE_DMASTAT_OHDONE 0x00000010 /* outer hash (HMAC) done */ ++#define SAFE_PE_DMASTAT_PADFLT 0x00000020 /* crypto pad fault */ ++#define SAFE_PE_DMASTAT_ICVFLT 0x00000040 /* ICV fault */ ++#define SAFE_PE_DMASTAT_SPIMIS 0x00000080 /* SPI mismatch */ ++#define SAFE_PE_DMASTAT_CRYPTO 0x00000100 /* crypto engine timeout */ ++#define SAFE_PE_DMASTAT_CQACT 0x00000200 /* command queue active */ ++#define SAFE_PE_DMASTAT_IRACT 0x00000400 /* input request active */ ++#define SAFE_PE_DMASTAT_ORACT 0x00000800 /* output request active */ ++#define SAFE_PE_DMASTAT_PEISIZE 0x003ff000 /* PE input size:32-bit words */ ++#define SAFE_PE_DMASTAT_PEOSIZE 0xffc00000 /* PE out. size:32-bit words */ ++ ++#define SAFE_PE_RINGCFG_SIZE 0x000003ff /* ring size (descriptors) */ ++#define SAFE_PE_RINGCFG_OFFSET 0xffff0000 /* offset btw desc's (dwords) */ ++#define SAFE_PE_RINGCFG_OFFSET_S 16 ++ ++#define SAFE_PE_RINGPOLL_POLL 0x00000fff /* polling frequency/divisor */ ++#define SAFE_PE_RINGPOLL_RETRY 0x03ff0000 /* polling frequency/divisor */ ++#define SAFE_PE_RINGPOLL_CONT 0x80000000 /* continuously poll */ ++ ++#define SAFE_PE_IRNGSTAT_CQAVAIL 0x00000001 /* command queue available */ ++ ++#define SAFE_PE_ERNGSTAT_NEXT 0x03ff0000 /* index of next packet desc. */ ++#define SAFE_PE_ERNGSTAT_NEXT_S 16 ++ ++#define SAFE_PE_IOTHRESH_INPUT 0x000003ff /* input threshold (dwords) */ ++#define SAFE_PE_IOTHRESH_OUTPUT 0x03ff0000 /* output threshold (dwords) */ ++ ++#define SAFE_PE_PARTCFG_SIZE 0x0000ffff /* scatter particle size */ ++#define SAFE_PE_PARTCFG_GBURST 0x00030000 /* gather particle burst */ ++#define SAFE_PE_PARTCFG_GBURST_2 0x00000000 ++#define SAFE_PE_PARTCFG_GBURST_4 0x00010000 ++#define SAFE_PE_PARTCFG_GBURST_8 0x00020000 ++#define SAFE_PE_PARTCFG_GBURST_16 0x00030000 ++#define SAFE_PE_PARTCFG_SBURST 0x000c0000 /* scatter particle burst */ ++#define SAFE_PE_PARTCFG_SBURST_2 0x00000000 ++#define SAFE_PE_PARTCFG_SBURST_4 0x00040000 ++#define SAFE_PE_PARTCFG_SBURST_8 0x00080000 ++#define SAFE_PE_PARTCFG_SBURST_16 0x000c0000 ++ ++#define SAFE_PE_PARTSIZE_SCAT 0xffff0000 /* scatter particle ring size */ ++#define SAFE_PE_PARTSIZE_GATH 0x0000ffff /* gather particle ring size */ ++ ++#define SAFE_CRYPTO_CTRL_3DES 0x00000001 /* enable 3DES support */ ++#define SAFE_CRYPTO_CTRL_PKEY 0x00010000 /* enable public key support */ ++#define SAFE_CRYPTO_CTRL_RNG 0x00020000 /* enable RNG support */ ++ ++#define SAFE_DEVINFO_REV_MIN 0x0000000f /* minor rev for chip */ ++#define SAFE_DEVINFO_REV_MAJ 0x000000f0 /* major rev for chip */ ++#define SAFE_DEVINFO_REV_MAJ_S 4 ++#define SAFE_DEVINFO_DES 0x00000100 /* DES/3DES support present */ ++#define SAFE_DEVINFO_ARC4 0x00000200 /* ARC4 support present */ ++#define SAFE_DEVINFO_AES 0x00000400 /* AES support present */ ++#define SAFE_DEVINFO_MD5 0x00001000 /* MD5 support present */ ++#define SAFE_DEVINFO_SHA1 0x00002000 /* SHA-1 support present */ ++#define SAFE_DEVINFO_RIPEMD 0x00004000 /* RIPEMD support present */ ++#define SAFE_DEVINFO_DEFLATE 0x00010000 /* Deflate support present */ ++#define SAFE_DEVINFO_SARAM 0x00100000 /* on-chip SA RAM present */ ++#define SAFE_DEVINFO_EMIBUS 0x00200000 /* EMI bus present */ ++#define SAFE_DEVINFO_PKEY 0x00400000 /* public key support present */ ++#define SAFE_DEVINFO_RNG 0x00800000 /* RNG present */ ++ ++#define SAFE_REV(_maj, _min) (((_maj) << SAFE_DEVINFO_REV_MAJ_S) | (_min)) ++#define SAFE_REV_MAJ(_chiprev) \ ++ (((_chiprev) & SAFE_DEVINFO_REV_MAJ) >> SAFE_DEVINFO_REV_MAJ_S) ++#define SAFE_REV_MIN(_chiprev) ((_chiprev) & SAFE_DEVINFO_REV_MIN) ++ ++#define SAFE_PK_FUNC_MULT 0x00000001 /* Multiply function */ ++#define SAFE_PK_FUNC_SQUARE 0x00000004 /* Square function */ ++#define SAFE_PK_FUNC_ADD 0x00000010 /* Add function */ ++#define SAFE_PK_FUNC_SUB 0x00000020 /* Subtract function */ ++#define SAFE_PK_FUNC_LSHIFT 0x00000040 /* Left-shift function */ ++#define SAFE_PK_FUNC_RSHIFT 0x00000080 /* Right-shift function */ ++#define SAFE_PK_FUNC_DIV 0x00000100 /* Divide function */ ++#define SAFE_PK_FUNC_CMP 0x00000400 /* Compare function */ ++#define SAFE_PK_FUNC_COPY 0x00000800 /* Copy function */ ++#define SAFE_PK_FUNC_EXP16 0x00002000 /* Exponentiate (4-bit ACT) */ ++#define SAFE_PK_FUNC_EXP4 0x00004000 /* Exponentiate (2-bit ACT) */ ++#define SAFE_PK_FUNC_RUN 0x00008000 /* start/status */ ++ ++#define SAFE_RNG_STAT_BUSY 0x00000001 /* busy, data not valid */ ++ ++#define SAFE_RNG_CTRL_PRE_LFSR 0x00000001 /* enable output pre-LFSR */ ++#define SAFE_RNG_CTRL_TST_MODE 0x00000002 /* enable test mode */ ++#define SAFE_RNG_CTRL_TST_RUN 0x00000004 /* start test state machine */ ++#define SAFE_RNG_CTRL_ENA_RING1 0x00000008 /* test entropy oscillator #1 */ ++#define SAFE_RNG_CTRL_ENA_RING2 0x00000010 /* test entropy oscillator #2 */ ++#define SAFE_RNG_CTRL_DIS_ALARM 0x00000020 /* disable RNG alarm reports */ ++#define SAFE_RNG_CTRL_TST_CLOCK 0x00000040 /* enable test clock */ ++#define SAFE_RNG_CTRL_SHORTEN 0x00000080 /* shorten state timers */ ++#define SAFE_RNG_CTRL_TST_ALARM 0x00000100 /* simulate alarm state */ ++#define SAFE_RNG_CTRL_RST_LFSR 0x00000200 /* reset LFSR */ ++ ++/* ++ * Packet engine descriptor. Note that d_csr is a copy of the ++ * SAFE_PE_CSR register and all definitions apply, and d_len ++ * is a copy of the SAFE_PE_LEN register and all definitions apply. ++ * d_src and d_len may point directly to contiguous data or to a ++ * list of ``particle descriptors'' when using scatter/gather i/o. ++ */ ++struct safe_desc { ++ u_int32_t d_csr; /* per-packet control/status */ ++ u_int32_t d_src; /* source address */ ++ u_int32_t d_dst; /* destination address */ ++ u_int32_t d_sa; /* SA address */ ++ u_int32_t d_len; /* length, bypass, status */ ++}; ++ ++/* ++ * Scatter/Gather particle descriptor. ++ * ++ * NB: scatter descriptors do not specify a size; this is fixed ++ * by the setting of the SAFE_PE_PARTCFG register. ++ */ ++struct safe_pdesc { ++ u_int32_t pd_addr; /* particle address */ ++#ifdef __BIG_ENDIAN ++ u_int16_t pd_flags; /* control word */ ++ u_int16_t pd_size; /* particle size (bytes) */ ++#else ++ u_int16_t pd_flags; /* control word */ ++ u_int16_t pd_size; /* particle size (bytes) */ ++#endif ++}; ++ ++#define SAFE_PD_READY 0x0001 /* ready for processing */ ++#define SAFE_PD_DONE 0x0002 /* h/w completed processing */ ++ ++/* ++ * Security Association (SA) Record (Rev 1). One of these is ++ * required for each operation processed by the packet engine. ++ */ ++struct safe_sarec { ++ u_int32_t sa_cmd0; ++ u_int32_t sa_cmd1; ++ u_int32_t sa_resv0; ++ u_int32_t sa_resv1; ++ u_int32_t sa_key[8]; /* DES/3DES/AES key */ ++ u_int32_t sa_indigest[5]; /* inner digest */ ++ u_int32_t sa_outdigest[5]; /* outer digest */ ++ u_int32_t sa_spi; /* SPI */ ++ u_int32_t sa_seqnum; /* sequence number */ ++ u_int32_t sa_seqmask[2]; /* sequence number mask */ ++ u_int32_t sa_resv2; ++ u_int32_t sa_staterec; /* address of state record */ ++ u_int32_t sa_resv3[2]; ++ u_int32_t sa_samgmt0; /* SA management field 0 */ ++ u_int32_t sa_samgmt1; /* SA management field 0 */ ++}; ++ ++#define SAFE_SA_CMD0_OP 0x00000007 /* operation code */ ++#define SAFE_SA_CMD0_OP_CRYPT 0x00000000 /* encrypt/decrypt (basic) */ ++#define SAFE_SA_CMD0_OP_BOTH 0x00000001 /* encrypt-hash/hash-decrypto */ ++#define SAFE_SA_CMD0_OP_HASH 0x00000003 /* hash (outbound-only) */ ++#define SAFE_SA_CMD0_OP_ESP 0x00000000 /* ESP in/out (proto) */ ++#define SAFE_SA_CMD0_OP_AH 0x00000001 /* AH in/out (proto) */ ++#define SAFE_SA_CMD0_INBOUND 0x00000008 /* inbound operation */ ++#define SAFE_SA_CMD0_OUTBOUND 0x00000000 /* outbound operation */ ++#define SAFE_SA_CMD0_GROUP 0x00000030 /* operation group */ ++#define SAFE_SA_CMD0_BASIC 0x00000000 /* basic operation */ ++#define SAFE_SA_CMD0_PROTO 0x00000010 /* protocol/packet operation */ ++#define SAFE_SA_CMD0_BUNDLE 0x00000020 /* bundled operation (resvd) */ ++#define SAFE_SA_CMD0_PAD 0x000000c0 /* crypto pad method */ ++#define SAFE_SA_CMD0_PAD_IPSEC 0x00000000 /* IPsec padding */ ++#define SAFE_SA_CMD0_PAD_PKCS7 0x00000040 /* PKCS#7 padding */ ++#define SAFE_SA_CMD0_PAD_CONS 0x00000080 /* constant padding */ ++#define SAFE_SA_CMD0_PAD_ZERO 0x000000c0 /* zero padding */ ++#define SAFE_SA_CMD0_CRYPT_ALG 0x00000f00 /* symmetric crypto algorithm */ ++#define SAFE_SA_CMD0_DES 0x00000000 /* DES crypto algorithm */ ++#define SAFE_SA_CMD0_3DES 0x00000100 /* 3DES crypto algorithm */ ++#define SAFE_SA_CMD0_AES 0x00000300 /* AES crypto algorithm */ ++#define SAFE_SA_CMD0_CRYPT_NULL 0x00000f00 /* null crypto algorithm */ ++#define SAFE_SA_CMD0_HASH_ALG 0x0000f000 /* hash algorithm */ ++#define SAFE_SA_CMD0_MD5 0x00000000 /* MD5 hash algorithm */ ++#define SAFE_SA_CMD0_SHA1 0x00001000 /* SHA-1 hash algorithm */ ++#define SAFE_SA_CMD0_HASH_NULL 0x0000f000 /* null hash algorithm */ ++#define SAFE_SA_CMD0_HDR_PROC 0x00080000 /* header processing */ ++#define SAFE_SA_CMD0_IBUSID 0x00300000 /* input bus id */ ++#define SAFE_SA_CMD0_IPCI 0x00100000 /* PCI input bus id */ ++#define SAFE_SA_CMD0_OBUSID 0x00c00000 /* output bus id */ ++#define SAFE_SA_CMD0_OPCI 0x00400000 /* PCI output bus id */ ++#define SAFE_SA_CMD0_IVLD 0x03000000 /* IV loading */ ++#define SAFE_SA_CMD0_IVLD_NONE 0x00000000 /* IV no load (reuse) */ ++#define SAFE_SA_CMD0_IVLD_IBUF 0x01000000 /* IV load from input buffer */ ++#define SAFE_SA_CMD0_IVLD_STATE 0x02000000 /* IV load from state */ ++#define SAFE_SA_CMD0_HSLD 0x0c000000 /* hash state loading */ ++#define SAFE_SA_CMD0_HSLD_SA 0x00000000 /* hash state load from SA */ ++#define SAFE_SA_CMD0_HSLD_STATE 0x08000000 /* hash state load from state */ ++#define SAFE_SA_CMD0_HSLD_NONE 0x0c000000 /* hash state no load */ ++#define SAFE_SA_CMD0_SAVEIV 0x10000000 /* save IV */ ++#define SAFE_SA_CMD0_SAVEHASH 0x20000000 /* save hash state */ ++#define SAFE_SA_CMD0_IGATHER 0x40000000 /* input gather */ ++#define SAFE_SA_CMD0_OSCATTER 0x80000000 /* output scatter */ ++ ++#define SAFE_SA_CMD1_HDRCOPY 0x00000002 /* copy header to output */ ++#define SAFE_SA_CMD1_PAYCOPY 0x00000004 /* copy payload to output */ ++#define SAFE_SA_CMD1_PADCOPY 0x00000008 /* copy pad to output */ ++#define SAFE_SA_CMD1_IPV4 0x00000000 /* IPv4 protocol */ ++#define SAFE_SA_CMD1_IPV6 0x00000010 /* IPv6 protocol */ ++#define SAFE_SA_CMD1_MUTABLE 0x00000020 /* mutable bit processing */ ++#define SAFE_SA_CMD1_SRBUSID 0x000000c0 /* state record bus id */ ++#define SAFE_SA_CMD1_SRPCI 0x00000040 /* state record from PCI */ ++#define SAFE_SA_CMD1_CRMODE 0x00000300 /* crypto mode */ ++#define SAFE_SA_CMD1_ECB 0x00000000 /* ECB crypto mode */ ++#define SAFE_SA_CMD1_CBC 0x00000100 /* CBC crypto mode */ ++#define SAFE_SA_CMD1_OFB 0x00000200 /* OFB crypto mode */ ++#define SAFE_SA_CMD1_CFB 0x00000300 /* CFB crypto mode */ ++#define SAFE_SA_CMD1_CRFEEDBACK 0x00000c00 /* crypto feedback mode */ ++#define SAFE_SA_CMD1_64BIT 0x00000000 /* 64-bit crypto feedback */ ++#define SAFE_SA_CMD1_8BIT 0x00000400 /* 8-bit crypto feedback */ ++#define SAFE_SA_CMD1_1BIT 0x00000800 /* 1-bit crypto feedback */ ++#define SAFE_SA_CMD1_128BIT 0x00000c00 /* 128-bit crypto feedback */ ++#define SAFE_SA_CMD1_OPTIONS 0x00001000 /* HMAC/options mutable bit */ ++#define SAFE_SA_CMD1_HMAC SAFE_SA_CMD1_OPTIONS ++#define SAFE_SA_CMD1_SAREV1 0x00008000 /* SA Revision 1 */ ++#define SAFE_SA_CMD1_OFFSET 0x00ff0000 /* hash/crypto offset(dwords) */ ++#define SAFE_SA_CMD1_OFFSET_S 16 ++#define SAFE_SA_CMD1_AESKEYLEN 0x0f000000 /* AES key length */ ++#define SAFE_SA_CMD1_AES128 0x02000000 /* 128-bit AES key */ ++#define SAFE_SA_CMD1_AES192 0x03000000 /* 192-bit AES key */ ++#define SAFE_SA_CMD1_AES256 0x04000000 /* 256-bit AES key */ ++ ++/* ++ * Security Associate State Record (Rev 1). ++ */ ++struct safe_sastate { ++ u_int32_t sa_saved_iv[4]; /* saved IV (DES/3DES/AES) */ ++ u_int32_t sa_saved_hashbc; /* saved hash byte count */ ++ u_int32_t sa_saved_indigest[5]; /* saved inner digest */ ++}; ++#endif /* _SAFE_SAFEREG_H_ */ +--- /dev/null ++++ b/crypto/ocf/safe/safevar.h +@@ -0,0 +1,230 @@ ++/*- ++ * The linux port of this code done by David McCullough ++ * Copyright (C) 2004-2007 David McCullough ++ * The license and original author are listed below. ++ * ++ * Copyright (c) 2003 Sam Leffler, Errno Consulting ++ * Copyright (c) 2003 Global Technology Associates, Inc. ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++ * $FreeBSD: src/sys/dev/safe/safevar.h,v 1.2 2006/05/17 18:34:26 pjd Exp $ ++ */ ++#ifndef _SAFE_SAFEVAR_H_ ++#define _SAFE_SAFEVAR_H_ ++ ++/* Maximum queue length */ ++#ifndef SAFE_MAX_NQUEUE ++#define SAFE_MAX_NQUEUE 60 ++#endif ++ ++#define SAFE_MAX_PART 64 /* Maximum scatter/gather depth */ ++#define SAFE_DMA_BOUNDARY 0 /* No boundary for source DMA ops */ ++#define SAFE_MAX_DSIZE 2048 /* MCLBYTES Fixed scatter particle size */ ++#define SAFE_MAX_SSIZE 0x0ffff /* Maximum gather particle size */ ++#define SAFE_MAX_DMA 0xfffff /* Maximum PE operand size (20 bits) */ ++/* total src+dst particle descriptors */ ++#define SAFE_TOTAL_DPART (SAFE_MAX_NQUEUE * SAFE_MAX_PART) ++#define SAFE_TOTAL_SPART (SAFE_MAX_NQUEUE * SAFE_MAX_PART) ++ ++#define SAFE_RNG_MAXBUFSIZ 128 /* 32-bit words */ ++ ++#define SAFE_CARD(sid) (((sid) & 0xf0000000) >> 28) ++#define SAFE_SESSION(sid) ( (sid) & 0x0fffffff) ++#define SAFE_SID(crd, sesn) (((crd) << 28) | ((sesn) & 0x0fffffff)) ++ ++#define SAFE_DEF_RTY 0xff /* PCI Retry Timeout */ ++#define SAFE_DEF_TOUT 0xff /* PCI TRDY Timeout */ ++#define SAFE_DEF_CACHELINE 0x01 /* Cache Line setting */ ++ ++#ifdef __KERNEL__ ++/* ++ * State associated with the allocation of each chunk ++ * of memory setup for DMA. ++ */ ++struct safe_dma_alloc { ++ dma_addr_t dma_paddr; ++ void *dma_vaddr; ++}; ++ ++/* ++ * Cryptographic operand state. One of these exists for each ++ * source and destination operand passed in from the crypto ++ * subsystem. When possible source and destination operands ++ * refer to the same memory. More often they are distinct. ++ * We track the virtual address of each operand as well as ++ * where each is mapped for DMA. ++ */ ++struct safe_operand { ++ union { ++ struct sk_buff *skb; ++ struct uio *io; ++ } u; ++ void *map; ++ int mapsize; /* total number of bytes in segs */ ++ struct { ++ dma_addr_t ds_addr; ++ int ds_len; ++ int ds_tlen; ++ } segs[SAFE_MAX_PART]; ++ int nsegs; ++}; ++ ++/* ++ * Packet engine ring entry and cryptographic operation state. ++ * The packet engine requires a ring of descriptors that contain ++ * pointers to various cryptographic state. However the ring ++ * configuration register allows you to specify an arbitrary size ++ * for ring entries. We use this feature to collect most of the ++ * state for each cryptographic request into one spot. Other than ++ * ring entries only the ``particle descriptors'' (scatter/gather ++ * lists) and the actual operand data are kept separate. The ++ * particle descriptors must also be organized in rings. The ++ * operand data can be located aribtrarily (modulo alignment constraints). ++ * ++ * Note that the descriptor ring is mapped onto the PCI bus so ++ * the hardware can DMA data. This means the entire ring must be ++ * contiguous. ++ */ ++struct safe_ringentry { ++ struct safe_desc re_desc; /* command descriptor */ ++ struct safe_sarec re_sa; /* SA record */ ++ struct safe_sastate re_sastate; /* SA state record */ ++ ++ struct cryptop *re_crp; /* crypto operation */ ++ ++ struct safe_operand re_src; /* source operand */ ++ struct safe_operand re_dst; /* destination operand */ ++ ++ int re_sesn; /* crypto session ID */ ++ int re_flags; ++#define SAFE_QFLAGS_COPYOUTIV 0x1 /* copy back on completion */ ++#define SAFE_QFLAGS_COPYOUTICV 0x2 /* copy back on completion */ ++}; ++ ++#define re_src_skb re_src.u.skb ++#define re_src_io re_src.u.io ++#define re_src_map re_src.map ++#define re_src_nsegs re_src.nsegs ++#define re_src_segs re_src.segs ++#define re_src_mapsize re_src.mapsize ++ ++#define re_dst_skb re_dst.u.skb ++#define re_dst_io re_dst.u.io ++#define re_dst_map re_dst.map ++#define re_dst_nsegs re_dst.nsegs ++#define re_dst_segs re_dst.segs ++#define re_dst_mapsize re_dst.mapsize ++ ++struct rndstate_test; ++ ++struct safe_session { ++ u_int32_t ses_used; ++ u_int32_t ses_klen; /* key length in bits */ ++ u_int32_t ses_key[8]; /* DES/3DES/AES key */ ++ u_int32_t ses_mlen; /* hmac length in bytes */ ++ u_int32_t ses_hminner[5]; /* hmac inner state */ ++ u_int32_t ses_hmouter[5]; /* hmac outer state */ ++ u_int32_t ses_iv[4]; /* DES/3DES/AES iv */ ++}; ++ ++struct safe_pkq { ++ struct list_head pkq_list; ++ struct cryptkop *pkq_krp; ++}; ++ ++struct safe_softc { ++ softc_device_decl sc_dev; ++ u32 sc_irq; ++ ++ struct pci_dev *sc_pcidev; ++ ocf_iomem_t sc_base_addr; ++ ++ u_int sc_chiprev; /* major/minor chip revision */ ++ int sc_flags; /* device specific flags */ ++#define SAFE_FLAGS_KEY 0x01 /* has key accelerator */ ++#define SAFE_FLAGS_RNG 0x02 /* hardware rng */ ++ int sc_suspended; ++ int sc_needwakeup; /* notify crypto layer */ ++ int32_t sc_cid; /* crypto tag */ ++ ++ struct safe_dma_alloc sc_ringalloc; /* PE ring allocation state */ ++ struct safe_ringentry *sc_ring; /* PE ring */ ++ struct safe_ringentry *sc_ringtop; /* PE ring top */ ++ struct safe_ringentry *sc_front; /* next free entry */ ++ struct safe_ringentry *sc_back; /* next pending entry */ ++ int sc_nqchip; /* # passed to chip */ ++ spinlock_t sc_ringmtx; /* PE ring lock */ ++ struct safe_pdesc *sc_spring; /* src particle ring */ ++ struct safe_pdesc *sc_springtop; /* src particle ring top */ ++ struct safe_pdesc *sc_spfree; /* next free src particle */ ++ struct safe_dma_alloc sc_spalloc; /* src particle ring state */ ++ struct safe_pdesc *sc_dpring; /* dest particle ring */ ++ struct safe_pdesc *sc_dpringtop; /* dest particle ring top */ ++ struct safe_pdesc *sc_dpfree; /* next free dest particle */ ++ struct safe_dma_alloc sc_dpalloc; /* dst particle ring state */ ++ int sc_nsessions; /* # of sessions */ ++ struct safe_session *sc_sessions; /* sessions */ ++ ++ struct timer_list sc_pkto; /* PK polling */ ++ spinlock_t sc_pkmtx; /* PK lock */ ++ struct list_head sc_pkq; /* queue of PK requests */ ++ struct safe_pkq *sc_pkq_cur; /* current processing request */ ++ u_int32_t sc_pk_reslen, sc_pk_resoff; ++ ++ int sc_max_dsize; /* maximum safe DMA size */ ++}; ++#endif /* __KERNEL__ */ ++ ++struct safe_stats { ++ u_int64_t st_ibytes; ++ u_int64_t st_obytes; ++ u_int32_t st_ipackets; ++ u_int32_t st_opackets; ++ u_int32_t st_invalid; /* invalid argument */ ++ u_int32_t st_badsession; /* invalid session id */ ++ u_int32_t st_badflags; /* flags indicate !(mbuf | uio) */ ++ u_int32_t st_nodesc; /* op submitted w/o descriptors */ ++ u_int32_t st_badalg; /* unsupported algorithm */ ++ u_int32_t st_ringfull; /* PE descriptor ring full */ ++ u_int32_t st_peoperr; /* PE marked error */ ++ u_int32_t st_dmaerr; /* PE DMA error */ ++ u_int32_t st_bypasstoobig; /* bypass > 96 bytes */ ++ u_int32_t st_skipmismatch; /* enc part begins before auth part */ ++ u_int32_t st_lenmismatch; /* enc length different auth length */ ++ u_int32_t st_coffmisaligned; /* crypto offset not 32-bit aligned */ ++ u_int32_t st_cofftoobig; /* crypto offset > 255 words */ ++ u_int32_t st_iovmisaligned; /* iov op not aligned */ ++ u_int32_t st_iovnotuniform; /* iov op not suitable */ ++ u_int32_t st_unaligned; /* unaligned src caused copy */ ++ u_int32_t st_notuniform; /* non-uniform src caused copy */ ++ u_int32_t st_nomap; /* bus_dmamap_create failed */ ++ u_int32_t st_noload; /* bus_dmamap_load_* failed */ ++ u_int32_t st_nombuf; /* MGET* failed */ ++ u_int32_t st_nomcl; /* MCLGET* failed */ ++ u_int32_t st_maxqchip; /* max mcr1 ops out for processing */ ++ u_int32_t st_rng; /* RNG requests */ ++ u_int32_t st_rngalarm; /* RNG alarm requests */ ++ u_int32_t st_noicvcopy; /* ICV data copies suppressed */ ++}; ++#endif /* _SAFE_SAFEVAR_H_ */ +--- /dev/null ++++ b/crypto/ocf/crypto.c +@@ -0,0 +1,1741 @@ ++/*- ++ * Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * The license and original author are listed below. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. ++ * ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ */ ++ ++#if 0 ++#include ++__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $"); ++#endif ++ ++/* ++ * Cryptographic Subsystem. ++ * ++ * This code is derived from the Openbsd Cryptographic Framework (OCF) ++ * that has the copyright shown below. Very little of the original ++ * code remains. ++ */ ++/*- ++ * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) ++ * ++ * This code was written by Angelos D. Keromytis in Athens, Greece, in ++ * February 2000. Network Security Technologies Inc. (NSTI) kindly ++ * supported the development of this code. ++ * ++ * Copyright (c) 2000, 2001 Angelos D. Keromytis ++ * ++ * Permission to use, copy, and modify this software with or without fee ++ * is hereby granted, provided that this entire notice is included in ++ * all source code copies of any software which is or includes a copy or ++ * modification of this software. ++ * ++ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR ++ * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY ++ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE ++ * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR ++ * PURPOSE. ++ * ++__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $"); ++ */ ++ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* ++ * keep track of whether or not we have been initialised, a big ++ * issue if we are linked into the kernel and a driver gets started before ++ * us ++ */ ++static int crypto_initted = 0; ++ ++/* ++ * Crypto drivers register themselves by allocating a slot in the ++ * crypto_drivers table with crypto_get_driverid() and then registering ++ * each algorithm they support with crypto_register() and crypto_kregister(). ++ */ ++ ++/* ++ * lock on driver table ++ * we track its state as spin_is_locked does not do anything on non-SMP boxes ++ */ ++static spinlock_t crypto_drivers_lock; ++static int crypto_drivers_locked; /* for non-SMP boxes */ ++ ++#define CRYPTO_DRIVER_LOCK() \ ++ ({ \ ++ spin_lock_irqsave(&crypto_drivers_lock, d_flags); \ ++ crypto_drivers_locked = 1; \ ++ dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \ ++ }) ++#define CRYPTO_DRIVER_UNLOCK() \ ++ ({ \ ++ dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \ ++ crypto_drivers_locked = 0; \ ++ spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \ ++ }) ++#define CRYPTO_DRIVER_ASSERT() \ ++ ({ \ ++ if (!crypto_drivers_locked) { \ ++ dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \ ++ } \ ++ }) ++ ++/* ++ * Crypto device/driver capabilities structure. ++ * ++ * Synchronization: ++ * (d) - protected by CRYPTO_DRIVER_LOCK() ++ * (q) - protected by CRYPTO_Q_LOCK() ++ * Not tagged fields are read-only. ++ */ ++struct cryptocap { ++ device_t cc_dev; /* (d) device/driver */ ++ u_int32_t cc_sessions; /* (d) # of sessions */ ++ u_int32_t cc_koperations; /* (d) # os asym operations */ ++ /* ++ * Largest possible operator length (in bits) for each type of ++ * encryption algorithm. XXX not used ++ */ ++ u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; ++ u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; ++ u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; ++ ++ int cc_flags; /* (d) flags */ ++#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ ++ int cc_qblocked; /* (q) symmetric q blocked */ ++ int cc_kqblocked; /* (q) asymmetric q blocked */ ++}; ++static struct cryptocap *crypto_drivers = NULL; ++static int crypto_drivers_num = 0; ++ ++/* ++ * There are two queues for crypto requests; one for symmetric (e.g. ++ * cipher) operations and one for asymmetric (e.g. MOD)operations. ++ * A single mutex is used to lock access to both queues. We could ++ * have one per-queue but having one simplifies handling of block/unblock ++ * operations. ++ */ ++static int crp_sleep = 0; ++static LIST_HEAD(crp_q); /* request queues */ ++static LIST_HEAD(crp_kq); ++ ++static spinlock_t crypto_q_lock; ++ ++int crypto_all_qblocked = 0; /* protect with Q_LOCK */ ++module_param(crypto_all_qblocked, int, 0444); ++MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked"); ++ ++int crypto_all_kqblocked = 0; /* protect with Q_LOCK */ ++module_param(crypto_all_kqblocked, int, 0444); ++MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked"); ++ ++#define CRYPTO_Q_LOCK() \ ++ ({ \ ++ spin_lock_irqsave(&crypto_q_lock, q_flags); \ ++ dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \ ++ }) ++#define CRYPTO_Q_UNLOCK() \ ++ ({ \ ++ dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \ ++ spin_unlock_irqrestore(&crypto_q_lock, q_flags); \ ++ }) ++ ++/* ++ * There are two queues for processing completed crypto requests; one ++ * for the symmetric and one for the asymmetric ops. We only need one ++ * but have two to avoid type futzing (cryptop vs. cryptkop). A single ++ * mutex is used to lock access to both queues. Note that this lock ++ * must be separate from the lock on request queues to insure driver ++ * callbacks don't generate lock order reversals. ++ */ ++static LIST_HEAD(crp_ret_q); /* callback queues */ ++static LIST_HEAD(crp_ret_kq); ++ ++static spinlock_t crypto_ret_q_lock; ++#define CRYPTO_RETQ_LOCK() \ ++ ({ \ ++ spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \ ++ dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \ ++ }) ++#define CRYPTO_RETQ_UNLOCK() \ ++ ({ \ ++ dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \ ++ spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \ ++ }) ++#define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq)) ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++static kmem_cache_t *cryptop_zone; ++static kmem_cache_t *cryptodesc_zone; ++#else ++static struct kmem_cache *cryptop_zone; ++static struct kmem_cache *cryptodesc_zone; ++#endif ++ ++#define debug crypto_debug ++int crypto_debug = 0; ++module_param(crypto_debug, int, 0644); ++MODULE_PARM_DESC(crypto_debug, "Enable debug"); ++EXPORT_SYMBOL(crypto_debug); ++ ++/* ++ * Maximum number of outstanding crypto requests before we start ++ * failing requests. We need this to prevent DOS when too many ++ * requests are arriving for us to keep up. Otherwise we will ++ * run the system out of memory. Since crypto is slow, we are ++ * usually the bottleneck that needs to say, enough is enough. ++ * ++ * We cannot print errors when this condition occurs, we are already too ++ * slow, printing anything will just kill us ++ */ ++ ++static int crypto_q_cnt = 0; ++module_param(crypto_q_cnt, int, 0444); ++MODULE_PARM_DESC(crypto_q_cnt, ++ "Current number of outstanding crypto requests"); ++ ++static int crypto_q_max = 1000; ++module_param(crypto_q_max, int, 0644); ++MODULE_PARM_DESC(crypto_q_max, ++ "Maximum number of outstanding crypto requests"); ++ ++#define bootverbose crypto_verbose ++static int crypto_verbose = 0; ++module_param(crypto_verbose, int, 0644); ++MODULE_PARM_DESC(crypto_verbose, ++ "Enable verbose crypto startup"); ++ ++int crypto_usercrypto = 1; /* userland may do crypto reqs */ ++module_param(crypto_usercrypto, int, 0644); ++MODULE_PARM_DESC(crypto_usercrypto, ++ "Enable/disable user-mode access to crypto support"); ++ ++int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ ++module_param(crypto_userasymcrypto, int, 0644); ++MODULE_PARM_DESC(crypto_userasymcrypto, ++ "Enable/disable user-mode access to asymmetric crypto support"); ++ ++int crypto_devallowsoft = 0; /* only use hardware crypto */ ++module_param(crypto_devallowsoft, int, 0644); ++MODULE_PARM_DESC(crypto_devallowsoft, ++ "Enable/disable use of software crypto support"); ++ ++static pid_t cryptoproc = (pid_t) -1; ++static struct completion cryptoproc_exited; ++static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait); ++static pid_t cryptoretproc = (pid_t) -1; ++static struct completion cryptoretproc_exited; ++static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait); ++ ++static int crypto_proc(void *arg); ++static int crypto_ret_proc(void *arg); ++static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); ++static int crypto_kinvoke(struct cryptkop *krp, int flags); ++static void crypto_exit(void); ++static int crypto_init(void); ++ ++static struct cryptostats cryptostats; ++ ++static struct cryptocap * ++crypto_checkdriver(u_int32_t hid) ++{ ++ if (crypto_drivers == NULL) ++ return NULL; ++ return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); ++} ++ ++/* ++ * Compare a driver's list of supported algorithms against another ++ * list; return non-zero if all algorithms are supported. ++ */ ++static int ++driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) ++{ ++ const struct cryptoini *cr; ++ ++ /* See if all the algorithms are supported. */ ++ for (cr = cri; cr; cr = cr->cri_next) ++ if (cap->cc_alg[cr->cri_alg] == 0) ++ return 0; ++ return 1; ++} ++ ++/* ++ * Select a driver for a new session that supports the specified ++ * algorithms and, optionally, is constrained according to the flags. ++ * The algorithm we use here is pretty stupid; just use the ++ * first driver that supports all the algorithms we need. If there ++ * are multiple drivers we choose the driver with the fewest active ++ * sessions. We prefer hardware-backed drivers to software ones. ++ * ++ * XXX We need more smarts here (in real life too, but that's ++ * XXX another story altogether). ++ */ ++static struct cryptocap * ++crypto_select_driver(const struct cryptoini *cri, int flags) ++{ ++ struct cryptocap *cap, *best; ++ int match, hid; ++ ++ CRYPTO_DRIVER_ASSERT(); ++ ++ /* ++ * Look first for hardware crypto devices if permitted. ++ */ ++ if (flags & CRYPTOCAP_F_HARDWARE) ++ match = CRYPTOCAP_F_HARDWARE; ++ else ++ match = CRYPTOCAP_F_SOFTWARE; ++ best = NULL; ++again: ++ for (hid = 0; hid < crypto_drivers_num; hid++) { ++ cap = &crypto_drivers[hid]; ++ /* ++ * If it's not initialized, is in the process of ++ * going away, or is not appropriate (hardware ++ * or software based on match), then skip. ++ */ ++ if (cap->cc_dev == NULL || ++ (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || ++ (cap->cc_flags & match) == 0) ++ continue; ++ ++ /* verify all the algorithms are supported. */ ++ if (driver_suitable(cap, cri)) { ++ if (best == NULL || ++ cap->cc_sessions < best->cc_sessions) ++ best = cap; ++ } ++ } ++ if (best != NULL) ++ return best; ++ if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { ++ /* sort of an Algol 68-style for loop */ ++ match = CRYPTOCAP_F_SOFTWARE; ++ goto again; ++ } ++ return best; ++} ++ ++/* ++ * Create a new session. The crid argument specifies a crypto ++ * driver to use or constraints on a driver to select (hardware ++ * only, software only, either). Whatever driver is selected ++ * must be capable of the requested crypto algorithms. ++ */ ++int ++crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) ++{ ++ struct cryptocap *cap; ++ u_int32_t hid, lid; ++ int err; ++ unsigned long d_flags; ++ ++ CRYPTO_DRIVER_LOCK(); ++ if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { ++ /* ++ * Use specified driver; verify it is capable. ++ */ ++ cap = crypto_checkdriver(crid); ++ if (cap != NULL && !driver_suitable(cap, cri)) ++ cap = NULL; ++ } else { ++ /* ++ * No requested driver; select based on crid flags. ++ */ ++ cap = crypto_select_driver(cri, crid); ++ /* ++ * if NULL then can't do everything in one session. ++ * XXX Fix this. We need to inject a "virtual" session ++ * XXX layer right about here. ++ */ ++ } ++ if (cap != NULL) { ++ /* Call the driver initialization routine. */ ++ hid = cap - crypto_drivers; ++ lid = hid; /* Pass the driver ID. */ ++ cap->cc_sessions++; ++ CRYPTO_DRIVER_UNLOCK(); ++ err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); ++ CRYPTO_DRIVER_LOCK(); ++ if (err == 0) { ++ (*sid) = (cap->cc_flags & 0xff000000) ++ | (hid & 0x00ffffff); ++ (*sid) <<= 32; ++ (*sid) |= (lid & 0xffffffff); ++ } else ++ cap->cc_sessions--; ++ } else ++ err = EINVAL; ++ CRYPTO_DRIVER_UNLOCK(); ++ return err; ++} ++ ++static void ++crypto_remove(struct cryptocap *cap) ++{ ++ CRYPTO_DRIVER_ASSERT(); ++ if (cap->cc_sessions == 0 && cap->cc_koperations == 0) ++ bzero(cap, sizeof(*cap)); ++} ++ ++/* ++ * Delete an existing session (or a reserved session on an unregistered ++ * driver). ++ */ ++int ++crypto_freesession(u_int64_t sid) ++{ ++ struct cryptocap *cap; ++ u_int32_t hid; ++ int err = 0; ++ unsigned long d_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ CRYPTO_DRIVER_LOCK(); ++ ++ if (crypto_drivers == NULL) { ++ err = EINVAL; ++ goto done; ++ } ++ ++ /* Determine two IDs. */ ++ hid = CRYPTO_SESID2HID(sid); ++ ++ if (hid >= crypto_drivers_num) { ++ dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid); ++ err = ENOENT; ++ goto done; ++ } ++ cap = &crypto_drivers[hid]; ++ ++ if (cap->cc_dev) { ++ CRYPTO_DRIVER_UNLOCK(); ++ /* Call the driver cleanup routine, if available, unlocked. */ ++ err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); ++ CRYPTO_DRIVER_LOCK(); ++ } ++ ++ if (cap->cc_sessions) ++ cap->cc_sessions--; ++ ++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ++ crypto_remove(cap); ++ ++done: ++ CRYPTO_DRIVER_UNLOCK(); ++ return err; ++} ++ ++/* ++ * Return an unused driver id. Used by drivers prior to registering ++ * support for the algorithms they handle. ++ */ ++int32_t ++crypto_get_driverid(device_t dev, int flags) ++{ ++ struct cryptocap *newdrv; ++ int i; ++ unsigned long d_flags; ++ ++ if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { ++ printf("%s: no flags specified when registering driver\n", ++ device_get_nameunit(dev)); ++ return -1; ++ } ++ ++ CRYPTO_DRIVER_LOCK(); ++ ++ for (i = 0; i < crypto_drivers_num; i++) { ++ if (crypto_drivers[i].cc_dev == NULL && ++ (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { ++ break; ++ } ++ } ++ ++ /* Out of entries, allocate some more. */ ++ if (i == crypto_drivers_num) { ++ /* Be careful about wrap-around. */ ++ if (2 * crypto_drivers_num <= crypto_drivers_num) { ++ CRYPTO_DRIVER_UNLOCK(); ++ printk("crypto: driver count wraparound!\n"); ++ return -1; ++ } ++ ++ newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap), ++ GFP_KERNEL); ++ if (newdrv == NULL) { ++ CRYPTO_DRIVER_UNLOCK(); ++ printk("crypto: no space to expand driver table!\n"); ++ return -1; ++ } ++ ++ memcpy(newdrv, crypto_drivers, ++ crypto_drivers_num * sizeof(struct cryptocap)); ++ memset(&newdrv[crypto_drivers_num], 0, ++ crypto_drivers_num * sizeof(struct cryptocap)); ++ ++ crypto_drivers_num *= 2; ++ ++ kfree(crypto_drivers); ++ crypto_drivers = newdrv; ++ } ++ ++ /* NB: state is zero'd on free */ ++ crypto_drivers[i].cc_sessions = 1; /* Mark */ ++ crypto_drivers[i].cc_dev = dev; ++ crypto_drivers[i].cc_flags = flags; ++ if (bootverbose) ++ printf("crypto: assign %s driver id %u, flags %u\n", ++ device_get_nameunit(dev), i, flags); ++ ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ return i; ++} ++ ++/* ++ * Lookup a driver by name. We match against the full device ++ * name and unit, and against just the name. The latter gives ++ * us a simple widlcarding by device name. On success return the ++ * driver/hardware identifier; otherwise return -1. ++ */ ++int ++crypto_find_driver(const char *match) ++{ ++ int i, len = strlen(match); ++ unsigned long d_flags; ++ ++ CRYPTO_DRIVER_LOCK(); ++ for (i = 0; i < crypto_drivers_num; i++) { ++ device_t dev = crypto_drivers[i].cc_dev; ++ if (dev == NULL || ++ (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) ++ continue; ++ if (strncmp(match, device_get_nameunit(dev), len) == 0 || ++ strncmp(match, device_get_name(dev), len) == 0) ++ break; ++ } ++ CRYPTO_DRIVER_UNLOCK(); ++ return i < crypto_drivers_num ? i : -1; ++} ++ ++/* ++ * Return the device_t for the specified driver or NULL ++ * if the driver identifier is invalid. ++ */ ++device_t ++crypto_find_device_byhid(int hid) ++{ ++ struct cryptocap *cap = crypto_checkdriver(hid); ++ return cap != NULL ? cap->cc_dev : NULL; ++} ++ ++/* ++ * Return the device/driver capabilities. ++ */ ++int ++crypto_getcaps(int hid) ++{ ++ struct cryptocap *cap = crypto_checkdriver(hid); ++ return cap != NULL ? cap->cc_flags : 0; ++} ++ ++/* ++ * Register support for a key-related algorithm. This routine ++ * is called once for each algorithm supported a driver. ++ */ ++int ++crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) ++{ ++ struct cryptocap *cap; ++ int err; ++ unsigned long d_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ CRYPTO_DRIVER_LOCK(); ++ ++ cap = crypto_checkdriver(driverid); ++ if (cap != NULL && ++ (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { ++ /* ++ * XXX Do some performance testing to determine placing. ++ * XXX We probably need an auxiliary data structure that ++ * XXX describes relative performances. ++ */ ++ ++ cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; ++ if (bootverbose) ++ printf("crypto: %s registers key alg %u flags %u\n" ++ , device_get_nameunit(cap->cc_dev) ++ , kalg ++ , flags ++ ); ++ err = 0; ++ } else ++ err = EINVAL; ++ ++ CRYPTO_DRIVER_UNLOCK(); ++ return err; ++} ++ ++/* ++ * Register support for a non-key-related algorithm. This routine ++ * is called once for each such algorithm supported by a driver. ++ */ ++int ++crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, ++ u_int32_t flags) ++{ ++ struct cryptocap *cap; ++ int err; ++ unsigned long d_flags; ++ ++ dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__, ++ driverid, alg, maxoplen, flags); ++ ++ CRYPTO_DRIVER_LOCK(); ++ ++ cap = crypto_checkdriver(driverid); ++ /* NB: algorithms are in the range [1..max] */ ++ if (cap != NULL && ++ (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { ++ /* ++ * XXX Do some performance testing to determine placing. ++ * XXX We probably need an auxiliary data structure that ++ * XXX describes relative performances. ++ */ ++ ++ cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; ++ cap->cc_max_op_len[alg] = maxoplen; ++ if (bootverbose) ++ printf("crypto: %s registers alg %u flags %u maxoplen %u\n" ++ , device_get_nameunit(cap->cc_dev) ++ , alg ++ , flags ++ , maxoplen ++ ); ++ cap->cc_sessions = 0; /* Unmark */ ++ err = 0; ++ } else ++ err = EINVAL; ++ ++ CRYPTO_DRIVER_UNLOCK(); ++ return err; ++} ++ ++static void ++driver_finis(struct cryptocap *cap) ++{ ++ u_int32_t ses, kops; ++ ++ CRYPTO_DRIVER_ASSERT(); ++ ++ ses = cap->cc_sessions; ++ kops = cap->cc_koperations; ++ bzero(cap, sizeof(*cap)); ++ if (ses != 0 || kops != 0) { ++ /* ++ * If there are pending sessions, ++ * just mark as invalid. ++ */ ++ cap->cc_flags |= CRYPTOCAP_F_CLEANUP; ++ cap->cc_sessions = ses; ++ cap->cc_koperations = kops; ++ } ++} ++ ++/* ++ * Unregister a crypto driver. If there are pending sessions using it, ++ * leave enough information around so that subsequent calls using those ++ * sessions will correctly detect the driver has been unregistered and ++ * reroute requests. ++ */ ++int ++crypto_unregister(u_int32_t driverid, int alg) ++{ ++ struct cryptocap *cap; ++ int i, err; ++ unsigned long d_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ CRYPTO_DRIVER_LOCK(); ++ ++ cap = crypto_checkdriver(driverid); ++ if (cap != NULL && ++ (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && ++ cap->cc_alg[alg] != 0) { ++ cap->cc_alg[alg] = 0; ++ cap->cc_max_op_len[alg] = 0; ++ ++ /* Was this the last algorithm ? */ ++ for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) ++ if (cap->cc_alg[i] != 0) ++ break; ++ ++ if (i == CRYPTO_ALGORITHM_MAX + 1) ++ driver_finis(cap); ++ err = 0; ++ } else ++ err = EINVAL; ++ CRYPTO_DRIVER_UNLOCK(); ++ return err; ++} ++ ++/* ++ * Unregister all algorithms associated with a crypto driver. ++ * If there are pending sessions using it, leave enough information ++ * around so that subsequent calls using those sessions will ++ * correctly detect the driver has been unregistered and reroute ++ * requests. ++ */ ++int ++crypto_unregister_all(u_int32_t driverid) ++{ ++ struct cryptocap *cap; ++ int err; ++ unsigned long d_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ CRYPTO_DRIVER_LOCK(); ++ cap = crypto_checkdriver(driverid); ++ if (cap != NULL) { ++ driver_finis(cap); ++ err = 0; ++ } else ++ err = EINVAL; ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ return err; ++} ++ ++/* ++ * Clear blockage on a driver. The what parameter indicates whether ++ * the driver is now ready for cryptop's and/or cryptokop's. ++ */ ++int ++crypto_unblock(u_int32_t driverid, int what) ++{ ++ struct cryptocap *cap; ++ int err; ++ unsigned long q_flags; ++ ++ CRYPTO_Q_LOCK(); ++ cap = crypto_checkdriver(driverid); ++ if (cap != NULL) { ++ if (what & CRYPTO_SYMQ) { ++ cap->cc_qblocked = 0; ++ crypto_all_qblocked = 0; ++ } ++ if (what & CRYPTO_ASYMQ) { ++ cap->cc_kqblocked = 0; ++ crypto_all_kqblocked = 0; ++ } ++ if (crp_sleep) ++ wake_up_interruptible(&cryptoproc_wait); ++ err = 0; ++ } else ++ err = EINVAL; ++ CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock ++ ++ return err; ++} ++ ++/* ++ * Add a crypto request to a queue, to be processed by the kernel thread. ++ */ ++int ++crypto_dispatch(struct cryptop *crp) ++{ ++ struct cryptocap *cap; ++ int result = -1; ++ unsigned long q_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ cryptostats.cs_ops++; ++ ++ CRYPTO_Q_LOCK(); ++ if (crypto_q_cnt >= crypto_q_max) { ++ CRYPTO_Q_UNLOCK(); ++ cryptostats.cs_drops++; ++ return ENOMEM; ++ } ++ crypto_q_cnt++; ++ ++ /* ++ * Caller marked the request to be processed immediately; dispatch ++ * it directly to the driver unless the driver is currently blocked. ++ */ ++ if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { ++ int hid = CRYPTO_SESID2HID(crp->crp_sid); ++ cap = crypto_checkdriver(hid); ++ /* Driver cannot disappear when there is an active session. */ ++ KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); ++ if (!cap->cc_qblocked) { ++ crypto_all_qblocked = 0; ++ crypto_drivers[hid].cc_qblocked = 1; ++ CRYPTO_Q_UNLOCK(); ++ result = crypto_invoke(cap, crp, 0); ++ CRYPTO_Q_LOCK(); ++ if (result != ERESTART) ++ crypto_drivers[hid].cc_qblocked = 0; ++ } ++ } ++ if (result == ERESTART) { ++ /* ++ * The driver ran out of resources, mark the ++ * driver ``blocked'' for cryptop's and put ++ * the request back in the queue. It would ++ * best to put the request back where we got ++ * it but that's hard so for now we put it ++ * at the front. This should be ok; putting ++ * it at the end does not work. ++ */ ++ list_add(&crp->crp_next, &crp_q); ++ cryptostats.cs_blocks++; ++ } else if (result == -1) { ++ TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); ++ } ++ if (crp_sleep) ++ wake_up_interruptible(&cryptoproc_wait); ++ CRYPTO_Q_UNLOCK(); ++ return 0; ++} ++ ++/* ++ * Add an asymetric crypto request to a queue, ++ * to be processed by the kernel thread. ++ */ ++int ++crypto_kdispatch(struct cryptkop *krp) ++{ ++ int error; ++ unsigned long q_flags; ++ ++ cryptostats.cs_kops++; ++ ++ error = crypto_kinvoke(krp, krp->krp_crid); ++ if (error == ERESTART) { ++ CRYPTO_Q_LOCK(); ++ TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); ++ if (crp_sleep) ++ wake_up_interruptible(&cryptoproc_wait); ++ CRYPTO_Q_UNLOCK(); ++ error = 0; ++ } ++ return error; ++} ++ ++/* ++ * Verify a driver is suitable for the specified operation. ++ */ ++static __inline int ++kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) ++{ ++ return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; ++} ++ ++/* ++ * Select a driver for an asym operation. The driver must ++ * support the necessary algorithm. The caller can constrain ++ * which device is selected with the flags parameter. The ++ * algorithm we use here is pretty stupid; just use the first ++ * driver that supports the algorithms we need. If there are ++ * multiple suitable drivers we choose the driver with the ++ * fewest active operations. We prefer hardware-backed ++ * drivers to software ones when either may be used. ++ */ ++static struct cryptocap * ++crypto_select_kdriver(const struct cryptkop *krp, int flags) ++{ ++ struct cryptocap *cap, *best, *blocked; ++ int match, hid; ++ ++ CRYPTO_DRIVER_ASSERT(); ++ ++ /* ++ * Look first for hardware crypto devices if permitted. ++ */ ++ if (flags & CRYPTOCAP_F_HARDWARE) ++ match = CRYPTOCAP_F_HARDWARE; ++ else ++ match = CRYPTOCAP_F_SOFTWARE; ++ best = NULL; ++ blocked = NULL; ++again: ++ for (hid = 0; hid < crypto_drivers_num; hid++) { ++ cap = &crypto_drivers[hid]; ++ /* ++ * If it's not initialized, is in the process of ++ * going away, or is not appropriate (hardware ++ * or software based on match), then skip. ++ */ ++ if (cap->cc_dev == NULL || ++ (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || ++ (cap->cc_flags & match) == 0) ++ continue; ++ ++ /* verify all the algorithms are supported. */ ++ if (kdriver_suitable(cap, krp)) { ++ if (best == NULL || ++ cap->cc_koperations < best->cc_koperations) ++ best = cap; ++ } ++ } ++ if (best != NULL) ++ return best; ++ if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { ++ /* sort of an Algol 68-style for loop */ ++ match = CRYPTOCAP_F_SOFTWARE; ++ goto again; ++ } ++ return best; ++} ++ ++/* ++ * Dispatch an assymetric crypto request. ++ */ ++static int ++crypto_kinvoke(struct cryptkop *krp, int crid) ++{ ++ struct cryptocap *cap = NULL; ++ int error; ++ unsigned long d_flags; ++ ++ KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); ++ KASSERT(krp->krp_callback != NULL, ++ ("%s: krp->crp_callback == NULL", __func__)); ++ ++ CRYPTO_DRIVER_LOCK(); ++ if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { ++ cap = crypto_checkdriver(crid); ++ if (cap != NULL) { ++ /* ++ * Driver present, it must support the necessary ++ * algorithm and, if s/w drivers are excluded, ++ * it must be registered as hardware-backed. ++ */ ++ if (!kdriver_suitable(cap, krp) || ++ (!crypto_devallowsoft && ++ (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) ++ cap = NULL; ++ } ++ } else { ++ /* ++ * No requested driver; select based on crid flags. ++ */ ++ if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ ++ crid &= ~CRYPTOCAP_F_SOFTWARE; ++ cap = crypto_select_kdriver(krp, crid); ++ } ++ if (cap != NULL && !cap->cc_kqblocked) { ++ krp->krp_hid = cap - crypto_drivers; ++ cap->cc_koperations++; ++ CRYPTO_DRIVER_UNLOCK(); ++ error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); ++ CRYPTO_DRIVER_LOCK(); ++ if (error == ERESTART) { ++ cap->cc_koperations--; ++ CRYPTO_DRIVER_UNLOCK(); ++ return (error); ++ } ++ /* return the actual device used */ ++ krp->krp_crid = krp->krp_hid; ++ } else { ++ /* ++ * NB: cap is !NULL if device is blocked; in ++ * that case return ERESTART so the operation ++ * is resubmitted if possible. ++ */ ++ error = (cap == NULL) ? ENODEV : ERESTART; ++ } ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ if (error) { ++ krp->krp_status = error; ++ crypto_kdone(krp); ++ } ++ return 0; ++} ++ ++ ++/* ++ * Dispatch a crypto request to the appropriate crypto devices. ++ */ ++static int ++crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) ++{ ++ KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); ++ KASSERT(crp->crp_callback != NULL, ++ ("%s: crp->crp_callback == NULL", __func__)); ++ KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++#ifdef CRYPTO_TIMING ++ if (crypto_timing) ++ crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); ++#endif ++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { ++ struct cryptodesc *crd; ++ u_int64_t nid; ++ ++ /* ++ * Driver has unregistered; migrate the session and return ++ * an error to the caller so they'll resubmit the op. ++ * ++ * XXX: What if there are more already queued requests for this ++ * session? ++ */ ++ crypto_freesession(crp->crp_sid); ++ ++ for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) ++ crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); ++ ++ /* XXX propagate flags from initial session? */ ++ if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), ++ CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) ++ crp->crp_sid = nid; ++ ++ crp->crp_etype = EAGAIN; ++ crypto_done(crp); ++ return 0; ++ } else { ++ /* ++ * Invoke the driver to process the request. ++ */ ++ return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); ++ } ++} ++ ++/* ++ * Release a set of crypto descriptors. ++ */ ++void ++crypto_freereq(struct cryptop *crp) ++{ ++ struct cryptodesc *crd; ++ ++ if (crp == NULL) ++ return; ++ ++#ifdef DIAGNOSTIC ++ { ++ struct cryptop *crp2; ++ unsigned long q_flags; ++ ++ CRYPTO_Q_LOCK(); ++ TAILQ_FOREACH(crp2, &crp_q, crp_next) { ++ KASSERT(crp2 != crp, ++ ("Freeing cryptop from the crypto queue (%p).", ++ crp)); ++ } ++ CRYPTO_Q_UNLOCK(); ++ CRYPTO_RETQ_LOCK(); ++ TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { ++ KASSERT(crp2 != crp, ++ ("Freeing cryptop from the return queue (%p).", ++ crp)); ++ } ++ CRYPTO_RETQ_UNLOCK(); ++ } ++#endif ++ ++ while ((crd = crp->crp_desc) != NULL) { ++ crp->crp_desc = crd->crd_next; ++ kmem_cache_free(cryptodesc_zone, crd); ++ } ++ kmem_cache_free(cryptop_zone, crp); ++} ++ ++/* ++ * Acquire a set of crypto descriptors. ++ */ ++struct cryptop * ++crypto_getreq(int num) ++{ ++ struct cryptodesc *crd; ++ struct cryptop *crp; ++ ++ crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC); ++ if (crp != NULL) { ++ memset(crp, 0, sizeof(*crp)); ++ INIT_LIST_HEAD(&crp->crp_next); ++ init_waitqueue_head(&crp->crp_waitq); ++ while (num--) { ++ crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC); ++ if (crd == NULL) { ++ crypto_freereq(crp); ++ return NULL; ++ } ++ memset(crd, 0, sizeof(*crd)); ++ crd->crd_next = crp->crp_desc; ++ crp->crp_desc = crd; ++ } ++ } ++ return crp; ++} ++ ++/* ++ * Invoke the callback on behalf of the driver. ++ */ ++void ++crypto_done(struct cryptop *crp) ++{ ++ unsigned long q_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if ((crp->crp_flags & CRYPTO_F_DONE) == 0) { ++ crp->crp_flags |= CRYPTO_F_DONE; ++ CRYPTO_Q_LOCK(); ++ crypto_q_cnt--; ++ CRYPTO_Q_UNLOCK(); ++ } else ++ printk("crypto: crypto_done op already done, flags 0x%x", ++ crp->crp_flags); ++ if (crp->crp_etype != 0) ++ cryptostats.cs_errs++; ++ /* ++ * CBIMM means unconditionally do the callback immediately; ++ * CBIFSYNC means do the callback immediately only if the ++ * operation was done synchronously. Both are used to avoid ++ * doing extraneous context switches; the latter is mostly ++ * used with the software crypto driver. ++ */ ++ if ((crp->crp_flags & CRYPTO_F_CBIMM) || ++ ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && ++ (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { ++ /* ++ * Do the callback directly. This is ok when the ++ * callback routine does very little (e.g. the ++ * /dev/crypto callback method just does a wakeup). ++ */ ++ crp->crp_callback(crp); ++ } else { ++ unsigned long r_flags; ++ /* ++ * Normal case; queue the callback for the thread. ++ */ ++ CRYPTO_RETQ_LOCK(); ++ if (CRYPTO_RETQ_EMPTY()) ++ wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ ++ TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); ++ CRYPTO_RETQ_UNLOCK(); ++ } ++} ++ ++/* ++ * Invoke the callback on behalf of the driver. ++ */ ++void ++crypto_kdone(struct cryptkop *krp) ++{ ++ struct cryptocap *cap; ++ unsigned long d_flags; ++ ++ if ((krp->krp_flags & CRYPTO_KF_DONE) != 0) ++ printk("crypto: crypto_kdone op already done, flags 0x%x", ++ krp->krp_flags); ++ krp->krp_flags |= CRYPTO_KF_DONE; ++ if (krp->krp_status != 0) ++ cryptostats.cs_kerrs++; ++ ++ CRYPTO_DRIVER_LOCK(); ++ /* XXX: What if driver is loaded in the meantime? */ ++ if (krp->krp_hid < crypto_drivers_num) { ++ cap = &crypto_drivers[krp->krp_hid]; ++ cap->cc_koperations--; ++ KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); ++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ++ crypto_remove(cap); ++ } ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ /* ++ * CBIMM means unconditionally do the callback immediately; ++ * This is used to avoid doing extraneous context switches ++ */ ++ if ((krp->krp_flags & CRYPTO_KF_CBIMM)) { ++ /* ++ * Do the callback directly. This is ok when the ++ * callback routine does very little (e.g. the ++ * /dev/crypto callback method just does a wakeup). ++ */ ++ krp->krp_callback(krp); ++ } else { ++ unsigned long r_flags; ++ /* ++ * Normal case; queue the callback for the thread. ++ */ ++ CRYPTO_RETQ_LOCK(); ++ if (CRYPTO_RETQ_EMPTY()) ++ wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ ++ TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); ++ CRYPTO_RETQ_UNLOCK(); ++ } ++} ++ ++int ++crypto_getfeat(int *featp) ++{ ++ int hid, kalg, feat = 0; ++ unsigned long d_flags; ++ ++ CRYPTO_DRIVER_LOCK(); ++ for (hid = 0; hid < crypto_drivers_num; hid++) { ++ const struct cryptocap *cap = &crypto_drivers[hid]; ++ ++ if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && ++ !crypto_devallowsoft) { ++ continue; ++ } ++ for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) ++ if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) ++ feat |= 1 << kalg; ++ } ++ CRYPTO_DRIVER_UNLOCK(); ++ *featp = feat; ++ return (0); ++} ++ ++/* ++ * Crypto thread, dispatches crypto requests. ++ */ ++static int ++crypto_proc(void *arg) ++{ ++ struct cryptop *crp, *submit; ++ struct cryptkop *krp, *krpp; ++ struct cryptocap *cap; ++ u_int32_t hid; ++ int result, hint; ++ unsigned long q_flags; ++ ++ ocf_daemonize("crypto"); ++ ++ CRYPTO_Q_LOCK(); ++ for (;;) { ++ /* ++ * we need to make sure we don't get into a busy loop with nothing ++ * to do, the two crypto_all_*blocked vars help us find out when ++ * we are all full and can do nothing on any driver or Q. If so we ++ * wait for an unblock. ++ */ ++ crypto_all_qblocked = !list_empty(&crp_q); ++ ++ /* ++ * Find the first element in the queue that can be ++ * processed and look-ahead to see if multiple ops ++ * are ready for the same driver. ++ */ ++ submit = NULL; ++ hint = 0; ++ list_for_each_entry(crp, &crp_q, crp_next) { ++ hid = CRYPTO_SESID2HID(crp->crp_sid); ++ cap = crypto_checkdriver(hid); ++ /* ++ * Driver cannot disappear when there is an active ++ * session. ++ */ ++ KASSERT(cap != NULL, ("%s:%u Driver disappeared.", ++ __func__, __LINE__)); ++ if (cap == NULL || cap->cc_dev == NULL) { ++ /* Op needs to be migrated, process it. */ ++ if (submit == NULL) ++ submit = crp; ++ break; ++ } ++ if (!cap->cc_qblocked) { ++ if (submit != NULL) { ++ /* ++ * We stop on finding another op, ++ * regardless whether its for the same ++ * driver or not. We could keep ++ * searching the queue but it might be ++ * better to just use a per-driver ++ * queue instead. ++ */ ++ if (CRYPTO_SESID2HID(submit->crp_sid) == hid) ++ hint = CRYPTO_HINT_MORE; ++ break; ++ } else { ++ submit = crp; ++ if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) ++ break; ++ /* keep scanning for more are q'd */ ++ } ++ } ++ } ++ if (submit != NULL) { ++ hid = CRYPTO_SESID2HID(submit->crp_sid); ++ crypto_all_qblocked = 0; ++ list_del(&submit->crp_next); ++ crypto_drivers[hid].cc_qblocked = 1; ++ cap = crypto_checkdriver(hid); ++ CRYPTO_Q_UNLOCK(); ++ KASSERT(cap != NULL, ("%s:%u Driver disappeared.", ++ __func__, __LINE__)); ++ result = crypto_invoke(cap, submit, hint); ++ CRYPTO_Q_LOCK(); ++ if (result == ERESTART) { ++ /* ++ * The driver ran out of resources, mark the ++ * driver ``blocked'' for cryptop's and put ++ * the request back in the queue. It would ++ * best to put the request back where we got ++ * it but that's hard so for now we put it ++ * at the front. This should be ok; putting ++ * it at the end does not work. ++ */ ++ /* XXX validate sid again? */ ++ list_add(&submit->crp_next, &crp_q); ++ cryptostats.cs_blocks++; ++ } else ++ crypto_drivers[hid].cc_qblocked=0; ++ } ++ ++ crypto_all_kqblocked = !list_empty(&crp_kq); ++ ++ /* As above, but for key ops */ ++ krp = NULL; ++ list_for_each_entry(krpp, &crp_kq, krp_next) { ++ cap = crypto_checkdriver(krpp->krp_hid); ++ if (cap == NULL || cap->cc_dev == NULL) { ++ /* ++ * Operation needs to be migrated, invalidate ++ * the assigned device so it will reselect a ++ * new one below. Propagate the original ++ * crid selection flags if supplied. ++ */ ++ krp->krp_hid = krp->krp_crid & ++ (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); ++ if (krp->krp_hid == 0) ++ krp->krp_hid = ++ CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; ++ break; ++ } ++ if (!cap->cc_kqblocked) { ++ krp = krpp; ++ break; ++ } ++ } ++ if (krp != NULL) { ++ crypto_all_kqblocked = 0; ++ list_del(&krp->krp_next); ++ crypto_drivers[krp->krp_hid].cc_kqblocked = 1; ++ CRYPTO_Q_UNLOCK(); ++ result = crypto_kinvoke(krp, krp->krp_hid); ++ CRYPTO_Q_LOCK(); ++ if (result == ERESTART) { ++ /* ++ * The driver ran out of resources, mark the ++ * driver ``blocked'' for cryptkop's and put ++ * the request back in the queue. It would ++ * best to put the request back where we got ++ * it but that's hard so for now we put it ++ * at the front. This should be ok; putting ++ * it at the end does not work. ++ */ ++ /* XXX validate sid again? */ ++ list_add(&krp->krp_next, &crp_kq); ++ cryptostats.cs_kblocks++; ++ } else ++ crypto_drivers[krp->krp_hid].cc_kqblocked = 0; ++ } ++ ++ if (submit == NULL && krp == NULL) { ++ /* ++ * Nothing more to be processed. Sleep until we're ++ * woken because there are more ops to process. ++ * This happens either by submission or by a driver ++ * becoming unblocked and notifying us through ++ * crypto_unblock. Note that when we wakeup we ++ * start processing each queue again from the ++ * front. It's not clear that it's important to ++ * preserve this ordering since ops may finish ++ * out of order if dispatched to different devices ++ * and some become blocked while others do not. ++ */ ++ dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n", ++ __FUNCTION__, ++ list_empty(&crp_q), crypto_all_qblocked, ++ list_empty(&crp_kq), crypto_all_kqblocked); ++ CRYPTO_Q_UNLOCK(); ++ crp_sleep = 1; ++ wait_event_interruptible(cryptoproc_wait, ++ !(list_empty(&crp_q) || crypto_all_qblocked) || ++ !(list_empty(&crp_kq) || crypto_all_kqblocked) || ++ cryptoproc == (pid_t) -1); ++ crp_sleep = 0; ++ if (signal_pending (current)) { ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_lock_irq(¤t->sigmask_lock); ++#endif ++ flush_signals(current); ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_unlock_irq(¤t->sigmask_lock); ++#endif ++ } ++ CRYPTO_Q_LOCK(); ++ dprintk("%s - awake\n", __FUNCTION__); ++ if (cryptoproc == (pid_t) -1) ++ break; ++ cryptostats.cs_intrs++; ++ } ++ } ++ CRYPTO_Q_UNLOCK(); ++ complete_and_exit(&cryptoproc_exited, 0); ++} ++ ++/* ++ * Crypto returns thread, does callbacks for processed crypto requests. ++ * Callbacks are done here, rather than in the crypto drivers, because ++ * callbacks typically are expensive and would slow interrupt handling. ++ */ ++static int ++crypto_ret_proc(void *arg) ++{ ++ struct cryptop *crpt; ++ struct cryptkop *krpt; ++ unsigned long r_flags; ++ ++ ocf_daemonize("crypto_ret"); ++ ++ CRYPTO_RETQ_LOCK(); ++ for (;;) { ++ /* Harvest return q's for completed ops */ ++ crpt = NULL; ++ if (!list_empty(&crp_ret_q)) ++ crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next); ++ if (crpt != NULL) ++ list_del(&crpt->crp_next); ++ ++ krpt = NULL; ++ if (!list_empty(&crp_ret_kq)) ++ krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next); ++ if (krpt != NULL) ++ list_del(&krpt->krp_next); ++ ++ if (crpt != NULL || krpt != NULL) { ++ CRYPTO_RETQ_UNLOCK(); ++ /* ++ * Run callbacks unlocked. ++ */ ++ if (crpt != NULL) ++ crpt->crp_callback(crpt); ++ if (krpt != NULL) ++ krpt->krp_callback(krpt); ++ CRYPTO_RETQ_LOCK(); ++ } else { ++ /* ++ * Nothing more to be processed. Sleep until we're ++ * woken because there are more returns to process. ++ */ ++ dprintk("%s - sleeping\n", __FUNCTION__); ++ CRYPTO_RETQ_UNLOCK(); ++ wait_event_interruptible(cryptoretproc_wait, ++ cryptoretproc == (pid_t) -1 || ++ !list_empty(&crp_ret_q) || ++ !list_empty(&crp_ret_kq)); ++ if (signal_pending (current)) { ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_lock_irq(¤t->sigmask_lock); ++#endif ++ flush_signals(current); ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_unlock_irq(¤t->sigmask_lock); ++#endif ++ } ++ CRYPTO_RETQ_LOCK(); ++ dprintk("%s - awake\n", __FUNCTION__); ++ if (cryptoretproc == (pid_t) -1) { ++ dprintk("%s - EXITING!\n", __FUNCTION__); ++ break; ++ } ++ cryptostats.cs_rets++; ++ } ++ } ++ CRYPTO_RETQ_UNLOCK(); ++ complete_and_exit(&cryptoretproc_exited, 0); ++} ++ ++ ++#if 0 /* should put this into /proc or something */ ++static void ++db_show_drivers(void) ++{ ++ int hid; ++ ++ db_printf("%12s %4s %4s %8s %2s %2s\n" ++ , "Device" ++ , "Ses" ++ , "Kops" ++ , "Flags" ++ , "QB" ++ , "KB" ++ ); ++ for (hid = 0; hid < crypto_drivers_num; hid++) { ++ const struct cryptocap *cap = &crypto_drivers[hid]; ++ if (cap->cc_dev == NULL) ++ continue; ++ db_printf("%-12s %4u %4u %08x %2u %2u\n" ++ , device_get_nameunit(cap->cc_dev) ++ , cap->cc_sessions ++ , cap->cc_koperations ++ , cap->cc_flags ++ , cap->cc_qblocked ++ , cap->cc_kqblocked ++ ); ++ } ++} ++ ++DB_SHOW_COMMAND(crypto, db_show_crypto) ++{ ++ struct cryptop *crp; ++ ++ db_show_drivers(); ++ db_printf("\n"); ++ ++ db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", ++ "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", ++ "Desc", "Callback"); ++ TAILQ_FOREACH(crp, &crp_q, crp_next) { ++ db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" ++ , (int) CRYPTO_SESID2HID(crp->crp_sid) ++ , (int) CRYPTO_SESID2CAPS(crp->crp_sid) ++ , crp->crp_ilen, crp->crp_olen ++ , crp->crp_etype ++ , crp->crp_flags ++ , crp->crp_desc ++ , crp->crp_callback ++ ); ++ } ++ if (!TAILQ_EMPTY(&crp_ret_q)) { ++ db_printf("\n%4s %4s %4s %8s\n", ++ "HID", "Etype", "Flags", "Callback"); ++ TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { ++ db_printf("%4u %4u %04x %8p\n" ++ , (int) CRYPTO_SESID2HID(crp->crp_sid) ++ , crp->crp_etype ++ , crp->crp_flags ++ , crp->crp_callback ++ ); ++ } ++ } ++} ++ ++DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) ++{ ++ struct cryptkop *krp; ++ ++ db_show_drivers(); ++ db_printf("\n"); ++ ++ db_printf("%4s %5s %4s %4s %8s %4s %8s\n", ++ "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); ++ TAILQ_FOREACH(krp, &crp_kq, krp_next) { ++ db_printf("%4u %5u %4u %4u %08x %4u %8p\n" ++ , krp->krp_op ++ , krp->krp_status ++ , krp->krp_iparams, krp->krp_oparams ++ , krp->krp_crid, krp->krp_hid ++ , krp->krp_callback ++ ); ++ } ++ if (!TAILQ_EMPTY(&crp_ret_q)) { ++ db_printf("%4s %5s %8s %4s %8s\n", ++ "Op", "Status", "CRID", "HID", "Callback"); ++ TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { ++ db_printf("%4u %5u %08x %4u %8p\n" ++ , krp->krp_op ++ , krp->krp_status ++ , krp->krp_crid, krp->krp_hid ++ , krp->krp_callback ++ ); ++ } ++ } ++} ++#endif ++ ++ ++static int ++crypto_init(void) ++{ ++ int error; ++ ++ dprintk("%s(0x%x)\n", __FUNCTION__, (int) crypto_init); ++ ++ if (crypto_initted) ++ return 0; ++ crypto_initted = 1; ++ ++ spin_lock_init(&crypto_drivers_lock); ++ spin_lock_init(&crypto_q_lock); ++ spin_lock_init(&crypto_ret_q_lock); ++ ++ cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop), ++ 0, SLAB_HWCACHE_ALIGN, NULL ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++ , NULL ++#endif ++ ); ++ ++ cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc), ++ 0, SLAB_HWCACHE_ALIGN, NULL ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++ , NULL ++#endif ++ ); ++ ++ if (cryptodesc_zone == NULL || cryptop_zone == NULL) { ++ printk("crypto: crypto_init cannot setup crypto zones\n"); ++ error = ENOMEM; ++ goto bad; ++ } ++ ++ crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; ++ crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap), ++ GFP_KERNEL); ++ if (crypto_drivers == NULL) { ++ printk("crypto: crypto_init cannot setup crypto drivers\n"); ++ error = ENOMEM; ++ goto bad; ++ } ++ ++ memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap)); ++ ++ init_completion(&cryptoproc_exited); ++ init_completion(&cryptoretproc_exited); ++ ++ cryptoproc = 0; /* to avoid race condition where proc runs first */ ++ cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES); ++ if (cryptoproc < 0) { ++ error = cryptoproc; ++ printk("crypto: crypto_init cannot start crypto thread; error %d", ++ error); ++ goto bad; ++ } ++ ++ cryptoretproc = 0; /* to avoid race condition where proc runs first */ ++ cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES); ++ if (cryptoretproc < 0) { ++ error = cryptoretproc; ++ printk("crypto: crypto_init cannot start cryptoret thread; error %d", ++ error); ++ goto bad; ++ } ++ ++ return 0; ++bad: ++ crypto_exit(); ++ return error; ++} ++ ++ ++static void ++crypto_exit(void) ++{ ++ pid_t p; ++ unsigned long d_flags; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ /* ++ * Terminate any crypto threads. ++ */ ++ ++ CRYPTO_DRIVER_LOCK(); ++ p = cryptoproc; ++ cryptoproc = (pid_t) -1; ++ kill_proc(p, SIGTERM, 1); ++ wake_up_interruptible(&cryptoproc_wait); ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ wait_for_completion(&cryptoproc_exited); ++ ++ CRYPTO_DRIVER_LOCK(); ++ p = cryptoretproc; ++ cryptoretproc = (pid_t) -1; ++ kill_proc(p, SIGTERM, 1); ++ wake_up_interruptible(&cryptoretproc_wait); ++ CRYPTO_DRIVER_UNLOCK(); ++ ++ wait_for_completion(&cryptoretproc_exited); ++ ++ /* XXX flush queues??? */ ++ ++ /* ++ * Reclaim dynamically allocated resources. ++ */ ++ if (crypto_drivers != NULL) ++ kfree(crypto_drivers); ++ ++ if (cryptodesc_zone != NULL) ++ kmem_cache_destroy(cryptodesc_zone); ++ if (cryptop_zone != NULL) ++ kmem_cache_destroy(cryptop_zone); ++} ++ ++ ++EXPORT_SYMBOL(crypto_newsession); ++EXPORT_SYMBOL(crypto_freesession); ++EXPORT_SYMBOL(crypto_get_driverid); ++EXPORT_SYMBOL(crypto_kregister); ++EXPORT_SYMBOL(crypto_register); ++EXPORT_SYMBOL(crypto_unregister); ++EXPORT_SYMBOL(crypto_unregister_all); ++EXPORT_SYMBOL(crypto_unblock); ++EXPORT_SYMBOL(crypto_dispatch); ++EXPORT_SYMBOL(crypto_kdispatch); ++EXPORT_SYMBOL(crypto_freereq); ++EXPORT_SYMBOL(crypto_getreq); ++EXPORT_SYMBOL(crypto_done); ++EXPORT_SYMBOL(crypto_kdone); ++EXPORT_SYMBOL(crypto_getfeat); ++EXPORT_SYMBOL(crypto_userasymcrypto); ++EXPORT_SYMBOL(crypto_getcaps); ++EXPORT_SYMBOL(crypto_find_driver); ++EXPORT_SYMBOL(crypto_find_device_byhid); ++ ++module_init(crypto_init); ++module_exit(crypto_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)"); +--- /dev/null ++++ b/crypto/ocf/criov.c +@@ -0,0 +1,215 @@ ++/* $OpenBSD: criov.c,v 1.9 2002/01/29 15:48:29 jason Exp $ */ ++ ++/* ++ * Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * The license and original author are listed below. ++ * ++ * Copyright (c) 1999 Theo de Raadt ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++__FBSDID("$FreeBSD: src/sys/opencrypto/criov.c,v 1.5 2006/06/04 22:15:13 pjd Exp $"); ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++/* ++ * This macro is only for avoiding code duplication, as we need to skip ++ * given number of bytes in the same way in three functions below. ++ */ ++#define CUIO_SKIP() do { \ ++ KASSERT(off >= 0, ("%s: off %d < 0", __func__, off)); \ ++ KASSERT(len >= 0, ("%s: len %d < 0", __func__, len)); \ ++ while (off > 0) { \ ++ KASSERT(iol >= 0, ("%s: empty in skip", __func__)); \ ++ if (off < iov->iov_len) \ ++ break; \ ++ off -= iov->iov_len; \ ++ iol--; \ ++ iov++; \ ++ } \ ++} while (0) ++ ++void ++cuio_copydata(struct uio* uio, int off, int len, caddr_t cp) ++{ ++ struct iovec *iov = uio->uio_iov; ++ int iol = uio->uio_iovcnt; ++ unsigned count; ++ ++ CUIO_SKIP(); ++ while (len > 0) { ++ KASSERT(iol >= 0, ("%s: empty", __func__)); ++ count = min((int)(iov->iov_len - off), len); ++ memcpy(cp, ((caddr_t)iov->iov_base) + off, count); ++ len -= count; ++ cp += count; ++ off = 0; ++ iol--; ++ iov++; ++ } ++} ++ ++void ++cuio_copyback(struct uio* uio, int off, int len, caddr_t cp) ++{ ++ struct iovec *iov = uio->uio_iov; ++ int iol = uio->uio_iovcnt; ++ unsigned count; ++ ++ CUIO_SKIP(); ++ while (len > 0) { ++ KASSERT(iol >= 0, ("%s: empty", __func__)); ++ count = min((int)(iov->iov_len - off), len); ++ memcpy(((caddr_t)iov->iov_base) + off, cp, count); ++ len -= count; ++ cp += count; ++ off = 0; ++ iol--; ++ iov++; ++ } ++} ++ ++/* ++ * Return a pointer to iov/offset of location in iovec list. ++ */ ++struct iovec * ++cuio_getptr(struct uio *uio, int loc, int *off) ++{ ++ struct iovec *iov = uio->uio_iov; ++ int iol = uio->uio_iovcnt; ++ ++ while (loc >= 0) { ++ /* Normal end of search */ ++ if (loc < iov->iov_len) { ++ *off = loc; ++ return (iov); ++ } ++ ++ loc -= iov->iov_len; ++ if (iol == 0) { ++ if (loc == 0) { ++ /* Point at the end of valid data */ ++ *off = iov->iov_len; ++ return (iov); ++ } else ++ return (NULL); ++ } else { ++ iov++, iol--; ++ } ++ } ++ ++ return (NULL); ++} ++ ++EXPORT_SYMBOL(cuio_copyback); ++EXPORT_SYMBOL(cuio_copydata); ++EXPORT_SYMBOL(cuio_getptr); ++ ++ ++static void ++skb_copy_bits_back(struct sk_buff *skb, int offset, caddr_t cp, int len) ++{ ++ int i; ++ if (offset < skb_headlen(skb)) { ++ memcpy(skb->data + offset, cp, min_t(int, skb_headlen(skb), len)); ++ len -= skb_headlen(skb); ++ cp += skb_headlen(skb); ++ } ++ offset -= skb_headlen(skb); ++ for (i = 0; len > 0 && i < skb_shinfo(skb)->nr_frags; i++) { ++ if (offset < skb_shinfo(skb)->frags[i].size) { ++ memcpy(page_address(skb_shinfo(skb)->frags[i].page) + ++ skb_shinfo(skb)->frags[i].page_offset, ++ cp, min_t(int, skb_shinfo(skb)->frags[i].size, len)); ++ len -= skb_shinfo(skb)->frags[i].size; ++ cp += skb_shinfo(skb)->frags[i].size; ++ } ++ offset -= skb_shinfo(skb)->frags[i].size; ++ } ++} ++ ++void ++crypto_copyback(int flags, caddr_t buf, int off, int size, caddr_t in) ++{ ++ ++ if ((flags & CRYPTO_F_SKBUF) != 0) ++ skb_copy_bits_back((struct sk_buff *)buf, off, in, size); ++ else if ((flags & CRYPTO_F_IOV) != 0) ++ cuio_copyback((struct uio *)buf, off, size, in); ++ else ++ bcopy(in, buf + off, size); ++} ++ ++void ++crypto_copydata(int flags, caddr_t buf, int off, int size, caddr_t out) ++{ ++ ++ if ((flags & CRYPTO_F_SKBUF) != 0) ++ skb_copy_bits((struct sk_buff *)buf, off, out, size); ++ else if ((flags & CRYPTO_F_IOV) != 0) ++ cuio_copydata((struct uio *)buf, off, size, out); ++ else ++ bcopy(buf + off, out, size); ++} ++ ++int ++crypto_apply(int flags, caddr_t buf, int off, int len, ++ int (*f)(void *, void *, u_int), void *arg) ++{ ++#if 0 ++ int error; ++ ++ if ((flags & CRYPTO_F_SKBUF) != 0) ++ error = XXXXXX((struct mbuf *)buf, off, len, f, arg); ++ else if ((flags & CRYPTO_F_IOV) != 0) ++ error = cuio_apply((struct uio *)buf, off, len, f, arg); ++ else ++ error = (*f)(arg, buf + off, len); ++ return (error); ++#else ++ KASSERT(0, ("crypto_apply not implemented!\n")); ++#endif ++ return 0; ++} ++ ++EXPORT_SYMBOL(crypto_copyback); ++EXPORT_SYMBOL(crypto_copydata); ++EXPORT_SYMBOL(crypto_apply); ++ +--- /dev/null ++++ b/crypto/ocf/uio.h +@@ -0,0 +1,54 @@ ++#ifndef _OCF_UIO_H_ ++#define _OCF_UIO_H_ ++ ++#include ++ ++/* ++ * The linux uio.h doesn't have all we need. To be fully api compatible ++ * with the BSD cryptodev, we need to keep this around. Perhaps this can ++ * be moved back into the linux/uio.h ++ * ++ * Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ * --------------------------------------------------------------------------- ++ */ ++ ++struct uio { ++ struct iovec *uio_iov; ++ int uio_iovcnt; ++ off_t uio_offset; ++ int uio_resid; ++#if 0 ++ enum uio_seg uio_segflg; ++ enum uio_rw uio_rw; ++ struct thread *uio_td; ++#endif ++}; ++ ++#endif +--- /dev/null ++++ b/crypto/ocf/talitos/talitos.c +@@ -0,0 +1,1359 @@ ++/* ++ * crypto/ocf/talitos/talitos.c ++ * ++ * An OCF-Linux module that uses Freescale's SEC to do the crypto. ++ * Based on crypto/ocf/hifn and crypto/ocf/safe OCF drivers ++ * ++ * Copyright (c) 2006 Freescale Semiconductor, Inc. ++ * ++ * This code written by Kim A. B. Phillips ++ * some code copied from files with the following: ++ * Copyright (C) 2004-2007 David McCullough ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include /* dma_map_single() */ ++#include ++ ++#include ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) ++#include ++#endif ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++#include ++#endif ++ ++#include ++#include ++ ++#define DRV_NAME "talitos" ++ ++#include "talitos_dev.h" ++#include "talitos_soft.h" ++ ++#define read_random(p,l) get_random_bytes(p,l) ++ ++const char talitos_driver_name[] = "Talitos OCF"; ++const char talitos_driver_version[] = "0.2"; ++ ++static int talitos_newsession(device_t dev, u_int32_t *sidp, ++ struct cryptoini *cri); ++static int talitos_freesession(device_t dev, u_int64_t tid); ++static int talitos_process(device_t dev, struct cryptop *crp, int hint); ++static void dump_talitos_status(struct talitos_softc *sc); ++static int talitos_submit(struct talitos_softc *sc, struct talitos_desc *td, ++ int chsel); ++static void talitos_doneprocessing(struct talitos_softc *sc); ++static void talitos_init_device(struct talitos_softc *sc); ++static void talitos_reset_device_master(struct talitos_softc *sc); ++static void talitos_reset_device(struct talitos_softc *sc); ++static void talitos_errorprocessing(struct talitos_softc *sc); ++#ifdef CONFIG_PPC_MERGE ++static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match); ++static int talitos_remove(struct of_device *ofdev); ++#else ++static int talitos_probe(struct platform_device *pdev); ++static int talitos_remove(struct platform_device *pdev); ++#endif ++#ifdef CONFIG_OCF_RANDOMHARVEST ++static int talitos_read_random(void *arg, u_int32_t *buf, int maxwords); ++static void talitos_rng_init(struct talitos_softc *sc); ++#endif ++ ++static device_method_t talitos_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, talitos_newsession), ++ DEVMETHOD(cryptodev_freesession,talitos_freesession), ++ DEVMETHOD(cryptodev_process, talitos_process), ++}; ++ ++#define debug talitos_debug ++int talitos_debug = 0; ++module_param(talitos_debug, int, 0644); ++MODULE_PARM_DESC(talitos_debug, "Enable debug"); ++ ++static inline void talitos_write(volatile unsigned *addr, u32 val) ++{ ++ out_be32(addr, val); ++} ++ ++static inline u32 talitos_read(volatile unsigned *addr) ++{ ++ u32 val; ++ val = in_be32(addr); ++ return val; ++} ++ ++static void dump_talitos_status(struct talitos_softc *sc) ++{ ++ unsigned int v, v_hi, i, *ptr; ++ v = talitos_read(sc->sc_base_addr + TALITOS_MCR); ++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_MCR_HI); ++ printk(KERN_INFO "%s: MCR 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), v, v_hi); ++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR); ++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI); ++ printk(KERN_INFO "%s: IMR 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), v, v_hi); ++ v = talitos_read(sc->sc_base_addr + TALITOS_ISR); ++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI); ++ printk(KERN_INFO "%s: ISR 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), v, v_hi); ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CDPR); ++ v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CDPR_HI); ++ printk(KERN_INFO "%s: CDPR ch%d 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), i, v, v_hi); ++ } ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CCPSR); ++ v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CCPSR_HI); ++ printk(KERN_INFO "%s: CCPSR ch%d 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), i, v, v_hi); ++ } ++ ptr = sc->sc_base_addr + TALITOS_CH_DESCBUF; ++ for (i = 0; i < 16; i++) { ++ v = talitos_read(ptr++); v_hi = talitos_read(ptr++); ++ printk(KERN_INFO "%s: DESCBUF ch0 0x%08x_%08x (tdp%02d)\n", ++ device_get_nameunit(sc->sc_cdev), v, v_hi, i); ++ } ++ return; ++} ++ ++ ++#ifdef CONFIG_OCF_RANDOMHARVEST ++/* ++ * pull random numbers off the RNG FIFO, not exceeding amount available ++ */ ++static int ++talitos_read_random(void *arg, u_int32_t *buf, int maxwords) ++{ ++ struct talitos_softc *sc = (struct talitos_softc *) arg; ++ int rc; ++ u_int32_t v; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* check for things like FIFO underflow */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI); ++ if (unlikely(v)) { ++ printk(KERN_ERR "%s: RNGISR_HI error %08x\n", ++ device_get_nameunit(sc->sc_cdev), v); ++ return 0; ++ } ++ /* ++ * OFL is number of available 64-bit words, ++ * shift and convert to a 32-bit word count ++ */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI); ++ v = (v & TALITOS_RNGSR_HI_OFL) >> (16 - 1); ++ if (maxwords > v) ++ maxwords = v; ++ for (rc = 0; rc < maxwords; rc++) { ++ buf[rc] = talitos_read(sc->sc_base_addr + ++ TALITOS_RNG_FIFO + rc*sizeof(u_int32_t)); ++ } ++ if (maxwords & 1) { ++ /* ++ * RNG will complain with an AE in the RNGISR ++ * if we don't complete the pairs of 32-bit reads ++ * to its 64-bit register based FIFO ++ */ ++ v = talitos_read(sc->sc_base_addr + ++ TALITOS_RNG_FIFO + rc*sizeof(u_int32_t)); ++ } ++ ++ return rc; ++} ++ ++static void ++talitos_rng_init(struct talitos_softc *sc) ++{ ++ u_int32_t v; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ /* reset RNG EU */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGRCR_HI); ++ v |= TALITOS_RNGRCR_HI_SR; ++ talitos_write(sc->sc_base_addr + TALITOS_RNGRCR_HI, v); ++ while ((talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI) ++ & TALITOS_RNGSR_HI_RD) == 0) ++ cpu_relax(); ++ /* ++ * we tell the RNG to start filling the RNG FIFO ++ * by writing the RNGDSR ++ */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGDSR_HI); ++ talitos_write(sc->sc_base_addr + TALITOS_RNGDSR_HI, v); ++ /* ++ * 64 bits of data will be pushed onto the FIFO every ++ * 256 SEC cycles until the FIFO is full. The RNG then ++ * attempts to keep the FIFO full. ++ */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI); ++ if (v) { ++ printk(KERN_ERR "%s: RNGISR_HI error %08x\n", ++ device_get_nameunit(sc->sc_cdev), v); ++ return; ++ } ++ /* ++ * n.b. we need to add a FIPS test here - if the RNG is going ++ * to fail, it's going to fail at reset time ++ */ ++ return; ++} ++#endif /* CONFIG_OCF_RANDOMHARVEST */ ++ ++/* ++ * Generate a new software session. ++ */ ++static int ++talitos_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) ++{ ++ struct cryptoini *c, *encini = NULL, *macini = NULL; ++ struct talitos_softc *sc = device_get_softc(dev); ++ struct talitos_session *ses = NULL; ++ int sesn; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ if (sidp == NULL || cri == NULL || sc == NULL) { ++ DPRINTF("%s,%d - EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ for (c = cri; c != NULL; c = c->cri_next) { ++ if (c->cri_alg == CRYPTO_MD5 || ++ c->cri_alg == CRYPTO_MD5_HMAC || ++ c->cri_alg == CRYPTO_SHA1 || ++ c->cri_alg == CRYPTO_SHA1_HMAC || ++ c->cri_alg == CRYPTO_NULL_HMAC) { ++ if (macini) ++ return EINVAL; ++ macini = c; ++ } else if (c->cri_alg == CRYPTO_DES_CBC || ++ c->cri_alg == CRYPTO_3DES_CBC || ++ c->cri_alg == CRYPTO_AES_CBC || ++ c->cri_alg == CRYPTO_NULL_CBC) { ++ if (encini) ++ return EINVAL; ++ encini = c; ++ } else { ++ DPRINTF("UNKNOWN c->cri_alg %d\n", encini->cri_alg); ++ return EINVAL; ++ } ++ } ++ if (encini == NULL && macini == NULL) ++ return EINVAL; ++ if (encini) { ++ /* validate key length */ ++ switch (encini->cri_alg) { ++ case CRYPTO_DES_CBC: ++ if (encini->cri_klen != 64) ++ return EINVAL; ++ break; ++ case CRYPTO_3DES_CBC: ++ if (encini->cri_klen != 192) { ++ return EINVAL; ++ } ++ break; ++ case CRYPTO_AES_CBC: ++ if (encini->cri_klen != 128 && ++ encini->cri_klen != 192 && ++ encini->cri_klen != 256) ++ return EINVAL; ++ break; ++ default: ++ DPRINTF("UNKNOWN encini->cri_alg %d\n", ++ encini->cri_alg); ++ return EINVAL; ++ } ++ } ++ ++ if (sc->sc_sessions == NULL) { ++ ses = sc->sc_sessions = (struct talitos_session *) ++ kmalloc(sizeof(struct talitos_session), SLAB_ATOMIC); ++ if (ses == NULL) ++ return ENOMEM; ++ memset(ses, 0, sizeof(struct talitos_session)); ++ sesn = 0; ++ sc->sc_nsessions = 1; ++ } else { ++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { ++ if (sc->sc_sessions[sesn].ses_used == 0) { ++ ses = &sc->sc_sessions[sesn]; ++ break; ++ } ++ } ++ ++ if (ses == NULL) { ++ /* allocating session */ ++ sesn = sc->sc_nsessions; ++ ses = (struct talitos_session *) kmalloc( ++ (sesn + 1) * sizeof(struct talitos_session), ++ SLAB_ATOMIC); ++ if (ses == NULL) ++ return ENOMEM; ++ memset(ses, 0, ++ (sesn + 1) * sizeof(struct talitos_session)); ++ memcpy(ses, sc->sc_sessions, ++ sesn * sizeof(struct talitos_session)); ++ memset(sc->sc_sessions, 0, ++ sesn * sizeof(struct talitos_session)); ++ kfree(sc->sc_sessions); ++ sc->sc_sessions = ses; ++ ses = &sc->sc_sessions[sesn]; ++ sc->sc_nsessions++; ++ } ++ } ++ ++ ses->ses_used = 1; ++ ++ if (encini) { ++ /* get an IV */ ++ /* XXX may read fewer than requested */ ++ read_random(ses->ses_iv, sizeof(ses->ses_iv)); ++ ++ ses->ses_klen = (encini->cri_klen + 7) / 8; ++ memcpy(ses->ses_key, encini->cri_key, ses->ses_klen); ++ if (macini) { ++ /* doing hash on top of cipher */ ++ ses->ses_hmac_len = (macini->cri_klen + 7) / 8; ++ memcpy(ses->ses_hmac, macini->cri_key, ++ ses->ses_hmac_len); ++ } ++ } else if (macini) { ++ /* doing hash */ ++ ses->ses_klen = (macini->cri_klen + 7) / 8; ++ memcpy(ses->ses_key, macini->cri_key, ses->ses_klen); ++ } ++ ++ /* back compat way of determining MSC result len */ ++ if (macini) { ++ ses->ses_mlen = macini->cri_mlen; ++ if (ses->ses_mlen == 0) { ++ if (macini->cri_alg == CRYPTO_MD5_HMAC) ++ ses->ses_mlen = MD5_HASH_LEN; ++ else ++ ses->ses_mlen = SHA1_HASH_LEN; ++ } ++ } ++ ++ /* really should make up a template td here, ++ * and only fill things like i/o and direction in process() */ ++ ++ /* assign session ID */ ++ *sidp = TALITOS_SID(sc->sc_num, sesn); ++ return 0; ++} ++ ++/* ++ * Deallocate a session. ++ */ ++static int ++talitos_freesession(device_t dev, u_int64_t tid) ++{ ++ struct talitos_softc *sc = device_get_softc(dev); ++ int session, ret; ++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; ++ ++ if (sc == NULL) ++ return EINVAL; ++ session = TALITOS_SESSION(sid); ++ if (session < sc->sc_nsessions) { ++ memset(&sc->sc_sessions[session], 0, ++ sizeof(sc->sc_sessions[session])); ++ ret = 0; ++ } else ++ ret = EINVAL; ++ return ret; ++} ++ ++/* ++ * launch device processing - it will come back with done notification ++ * in the form of an interrupt and/or HDR_DONE_BITS in header ++ */ ++static int ++talitos_submit( ++ struct talitos_softc *sc, ++ struct talitos_desc *td, ++ int chsel) ++{ ++ u_int32_t v; ++ ++ v = dma_map_single(NULL, td, sizeof(*td), DMA_TO_DEVICE); ++ talitos_write(sc->sc_base_addr + ++ chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF, 0); ++ talitos_write(sc->sc_base_addr + ++ chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF_HI, v); ++ return 0; ++} ++ ++static int ++talitos_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ int i, err = 0, ivsize; ++ struct talitos_softc *sc = device_get_softc(dev); ++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; ++ caddr_t iv; ++ struct talitos_session *ses; ++ struct talitos_desc *td; ++ unsigned long flags; ++ /* descriptor mappings */ ++ int hmac_key, hmac_data, cipher_iv, cipher_key, ++ in_fifo, out_fifo, cipher_iv_out; ++ static int chsel = -1; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { ++ return EINVAL; ++ } ++ crp->crp_etype = 0; ++ if (TALITOS_SESSION(crp->crp_sid) >= sc->sc_nsessions) { ++ return EINVAL; ++ } ++ ++ ses = &sc->sc_sessions[TALITOS_SESSION(crp->crp_sid)]; ++ ++ /* enter the channel scheduler */ ++ spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags); ++ ++ /* reuse channel that already had/has requests for the required EU */ ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ if (sc->sc_chnlastalg[i] == crp->crp_desc->crd_alg) ++ break; ++ } ++ if (i == sc->sc_num_channels) { ++ /* ++ * haven't seen this algo the last sc_num_channels or more ++ * use round robin in this case ++ * nb: sc->sc_num_channels must be power of 2 ++ */ ++ chsel = (chsel + 1) & (sc->sc_num_channels - 1); ++ } else { ++ /* ++ * matches channel with same target execution unit; ++ * use same channel in this case ++ */ ++ chsel = i; ++ } ++ sc->sc_chnlastalg[chsel] = crp->crp_desc->crd_alg; ++ ++ /* release the channel scheduler lock */ ++ spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags); ++ ++ /* acquire the selected channel fifo lock */ ++ spin_lock_irqsave(&sc->sc_chnfifolock[chsel], flags); ++ ++ /* find and reserve next available descriptor-cryptop pair */ ++ for (i = 0; i < sc->sc_chfifo_len; i++) { ++ if (sc->sc_chnfifo[chsel][i].cf_desc.hdr == 0) { ++ /* ++ * ensure correct descriptor formation by ++ * avoiding inadvertently setting "optional" entries ++ * e.g. not using "optional" dptr2 for MD/HMAC descs ++ */ ++ memset(&sc->sc_chnfifo[chsel][i].cf_desc, ++ 0, sizeof(*td)); ++ /* reserve it with done notification request bit */ ++ sc->sc_chnfifo[chsel][i].cf_desc.hdr |= ++ TALITOS_DONE_NOTIFY; ++ break; ++ } ++ } ++ spin_unlock_irqrestore(&sc->sc_chnfifolock[chsel], flags); ++ ++ if (i == sc->sc_chfifo_len) { ++ /* fifo full */ ++ err = ERESTART; ++ goto errout; ++ } ++ ++ td = &sc->sc_chnfifo[chsel][i].cf_desc; ++ sc->sc_chnfifo[chsel][i].cf_crp = crp; ++ ++ crd1 = crp->crp_desc; ++ if (crd1 == NULL) { ++ err = EINVAL; ++ goto errout; ++ } ++ crd2 = crd1->crd_next; ++ /* prevent compiler warning */ ++ hmac_key = 0; ++ hmac_data = 0; ++ if (crd2 == NULL) { ++ td->hdr |= TD_TYPE_COMMON_NONSNOOP_NO_AFEU; ++ /* assign descriptor dword ptr mappings for this desc. type */ ++ cipher_iv = 1; ++ cipher_key = 2; ++ in_fifo = 3; ++ cipher_iv_out = 5; ++ if (crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1 || ++ crd1->crd_alg == CRYPTO_MD5) { ++ out_fifo = 5; ++ maccrd = crd1; ++ enccrd = NULL; ++ } else if (crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC || ++ crd1->crd_alg == CRYPTO_ARC4) { ++ out_fifo = 4; ++ maccrd = NULL; ++ enccrd = crd1; ++ } else { ++ DPRINTF("UNKNOWN crd1->crd_alg %d\n", crd1->crd_alg); ++ err = EINVAL; ++ goto errout; ++ } ++ } else { ++ if (sc->sc_desc_types & TALITOS_HAS_DT_IPSEC_ESP) { ++ td->hdr |= TD_TYPE_IPSEC_ESP; ++ } else { ++ DPRINTF("unimplemented: multiple descriptor ipsec\n"); ++ err = EINVAL; ++ goto errout; ++ } ++ /* assign descriptor dword ptr mappings for this desc. type */ ++ hmac_key = 0; ++ hmac_data = 1; ++ cipher_iv = 2; ++ cipher_key = 3; ++ in_fifo = 4; ++ out_fifo = 5; ++ cipher_iv_out = 6; ++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC || ++ crd1->crd_alg == CRYPTO_SHA1_HMAC || ++ crd1->crd_alg == CRYPTO_MD5 || ++ crd1->crd_alg == CRYPTO_SHA1) && ++ (crd2->crd_alg == CRYPTO_DES_CBC || ++ crd2->crd_alg == CRYPTO_3DES_CBC || ++ crd2->crd_alg == CRYPTO_AES_CBC || ++ crd2->crd_alg == CRYPTO_ARC4) && ++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { ++ maccrd = crd1; ++ enccrd = crd2; ++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC || ++ crd1->crd_alg == CRYPTO_ARC4 || ++ crd1->crd_alg == CRYPTO_3DES_CBC || ++ crd1->crd_alg == CRYPTO_AES_CBC) && ++ (crd2->crd_alg == CRYPTO_MD5_HMAC || ++ crd2->crd_alg == CRYPTO_SHA1_HMAC || ++ crd2->crd_alg == CRYPTO_MD5 || ++ crd2->crd_alg == CRYPTO_SHA1) && ++ (crd1->crd_flags & CRD_F_ENCRYPT)) { ++ enccrd = crd1; ++ maccrd = crd2; ++ } else { ++ /* We cannot order the SEC as requested */ ++ printk("%s: cannot do the order\n", ++ device_get_nameunit(sc->sc_cdev)); ++ err = EINVAL; ++ goto errout; ++ } ++ } ++ /* assign in_fifo and out_fifo based on input/output struct type */ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ /* using SKB buffers */ ++ struct sk_buff *skb = (struct sk_buff *)crp->crp_buf; ++ if (skb_shinfo(skb)->nr_frags) { ++ printk("%s: skb frags unimplemented\n", ++ device_get_nameunit(sc->sc_cdev)); ++ err = EINVAL; ++ goto errout; ++ } ++ td->ptr[in_fifo].ptr = dma_map_single(NULL, skb->data, ++ skb->len, DMA_TO_DEVICE); ++ td->ptr[in_fifo].len = skb->len; ++ td->ptr[out_fifo].ptr = dma_map_single(NULL, skb->data, ++ skb->len, DMA_TO_DEVICE); ++ td->ptr[out_fifo].len = skb->len; ++ td->ptr[hmac_data].ptr = dma_map_single(NULL, skb->data, ++ skb->len, DMA_TO_DEVICE); ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ /* using IOV buffers */ ++ struct uio *uiop = (struct uio *)crp->crp_buf; ++ if (uiop->uio_iovcnt > 1) { ++ printk("%s: iov frags unimplemented\n", ++ device_get_nameunit(sc->sc_cdev)); ++ err = EINVAL; ++ goto errout; ++ } ++ td->ptr[in_fifo].ptr = dma_map_single(NULL, ++ uiop->uio_iov->iov_base, crp->crp_ilen, DMA_TO_DEVICE); ++ td->ptr[in_fifo].len = crp->crp_ilen; ++ /* crp_olen is never set; always use crp_ilen */ ++ td->ptr[out_fifo].ptr = dma_map_single(NULL, ++ uiop->uio_iov->iov_base, ++ crp->crp_ilen, DMA_TO_DEVICE); ++ td->ptr[out_fifo].len = crp->crp_ilen; ++ } else { ++ /* using contig buffers */ ++ td->ptr[in_fifo].ptr = dma_map_single(NULL, ++ crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE); ++ td->ptr[in_fifo].len = crp->crp_ilen; ++ td->ptr[out_fifo].ptr = dma_map_single(NULL, ++ crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE); ++ td->ptr[out_fifo].len = crp->crp_ilen; ++ } ++ if (enccrd) { ++ switch (enccrd->crd_alg) { ++ case CRYPTO_3DES_CBC: ++ td->hdr |= TALITOS_MODE0_DEU_3DES; ++ /* FALLTHROUGH */ ++ case CRYPTO_DES_CBC: ++ td->hdr |= TALITOS_SEL0_DEU ++ | TALITOS_MODE0_DEU_CBC; ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) ++ td->hdr |= TALITOS_MODE0_DEU_ENC; ++ ivsize = 2*sizeof(u_int32_t); ++ DPRINTF("%cDES ses %d ch %d len %d\n", ++ (td->hdr & TALITOS_MODE0_DEU_3DES)?'3':'1', ++ (u32)TALITOS_SESSION(crp->crp_sid), ++ chsel, td->ptr[in_fifo].len); ++ break; ++ case CRYPTO_AES_CBC: ++ td->hdr |= TALITOS_SEL0_AESU ++ | TALITOS_MODE0_AESU_CBC; ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) ++ td->hdr |= TALITOS_MODE0_AESU_ENC; ++ ivsize = 4*sizeof(u_int32_t); ++ DPRINTF("AES ses %d ch %d len %d\n", ++ (u32)TALITOS_SESSION(crp->crp_sid), ++ chsel, td->ptr[in_fifo].len); ++ break; ++ default: ++ printk("%s: unimplemented enccrd->crd_alg %d\n", ++ device_get_nameunit(sc->sc_cdev), enccrd->crd_alg); ++ err = EINVAL; ++ goto errout; ++ } ++ /* ++ * Setup encrypt/decrypt state. When using basic ops ++ * we can't use an inline IV because hash/crypt offset ++ * must be from the end of the IV to the start of the ++ * crypt data and this leaves out the preceding header ++ * from the hash calculation. Instead we place the IV ++ * in the state record and set the hash/crypt offset to ++ * copy both the header+IV. ++ */ ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) { ++ td->hdr |= TALITOS_DIR_OUTBOUND; ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ iv = enccrd->crd_iv; ++ else ++ iv = (caddr_t) ses->ses_iv; ++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, iv); ++ } ++ } else { ++ td->hdr |= TALITOS_DIR_INBOUND; ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { ++ iv = enccrd->crd_iv; ++ bcopy(enccrd->crd_iv, iv, ivsize); ++ } else { ++ iv = (caddr_t) ses->ses_iv; ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, iv); ++ } ++ } ++ td->ptr[cipher_iv].ptr = dma_map_single(NULL, iv, ivsize, ++ DMA_TO_DEVICE); ++ td->ptr[cipher_iv].len = ivsize; ++ /* ++ * we don't need the cipher iv out length/pointer ++ * field to do ESP IPsec. Therefore we set the len field as 0, ++ * which tells the SEC not to do anything with this len/ptr ++ * field. Previously, when length/pointer as pointing to iv, ++ * it gave us corruption of packets. ++ */ ++ td->ptr[cipher_iv_out].len = 0; ++ } ++ if (enccrd && maccrd) { ++ /* this is ipsec only for now */ ++ td->hdr |= TALITOS_SEL1_MDEU ++ | TALITOS_MODE1_MDEU_INIT ++ | TALITOS_MODE1_MDEU_PAD; ++ switch (maccrd->crd_alg) { ++ case CRYPTO_MD5: ++ td->hdr |= TALITOS_MODE1_MDEU_MD5; ++ break; ++ case CRYPTO_MD5_HMAC: ++ td->hdr |= TALITOS_MODE1_MDEU_MD5_HMAC; ++ break; ++ case CRYPTO_SHA1: ++ td->hdr |= TALITOS_MODE1_MDEU_SHA1; ++ break; ++ case CRYPTO_SHA1_HMAC: ++ td->hdr |= TALITOS_MODE1_MDEU_SHA1_HMAC; ++ break; ++ default: ++ /* We cannot order the SEC as requested */ ++ printk("%s: cannot do the order\n", ++ device_get_nameunit(sc->sc_cdev)); ++ err = EINVAL; ++ goto errout; ++ } ++ if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) || ++ (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) { ++ /* ++ * The offset from hash data to the start of ++ * crypt data is the difference in the skips. ++ */ ++ /* ipsec only for now */ ++ td->ptr[hmac_key].ptr = dma_map_single(NULL, ++ ses->ses_hmac, ses->ses_hmac_len, DMA_TO_DEVICE); ++ td->ptr[hmac_key].len = ses->ses_hmac_len; ++ td->ptr[in_fifo].ptr += enccrd->crd_skip; ++ td->ptr[in_fifo].len = enccrd->crd_len; ++ td->ptr[out_fifo].ptr += enccrd->crd_skip; ++ td->ptr[out_fifo].len = enccrd->crd_len; ++ /* bytes of HMAC to postpend to ciphertext */ ++ td->ptr[out_fifo].extent = ses->ses_mlen; ++ td->ptr[hmac_data].ptr += maccrd->crd_skip; ++ td->ptr[hmac_data].len = enccrd->crd_skip - maccrd->crd_skip; ++ } ++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) { ++ printk("%s: CRD_F_KEY_EXPLICIT unimplemented\n", ++ device_get_nameunit(sc->sc_cdev)); ++ } ++ } ++ if (!enccrd && maccrd) { ++ /* single MD5 or SHA */ ++ td->hdr |= TALITOS_SEL0_MDEU ++ | TALITOS_MODE0_MDEU_INIT ++ | TALITOS_MODE0_MDEU_PAD; ++ switch (maccrd->crd_alg) { ++ case CRYPTO_MD5: ++ td->hdr |= TALITOS_MODE0_MDEU_MD5; ++ DPRINTF("MD5 ses %d ch %d len %d\n", ++ (u32)TALITOS_SESSION(crp->crp_sid), ++ chsel, td->ptr[in_fifo].len); ++ break; ++ case CRYPTO_MD5_HMAC: ++ td->hdr |= TALITOS_MODE0_MDEU_MD5_HMAC; ++ break; ++ case CRYPTO_SHA1: ++ td->hdr |= TALITOS_MODE0_MDEU_SHA1; ++ DPRINTF("SHA1 ses %d ch %d len %d\n", ++ (u32)TALITOS_SESSION(crp->crp_sid), ++ chsel, td->ptr[in_fifo].len); ++ break; ++ case CRYPTO_SHA1_HMAC: ++ td->hdr |= TALITOS_MODE0_MDEU_SHA1_HMAC; ++ break; ++ default: ++ /* We cannot order the SEC as requested */ ++ DPRINTF("cannot do the order\n"); ++ err = EINVAL; ++ goto errout; ++ } ++ ++ if (crp->crp_flags & CRYPTO_F_IOV) ++ td->ptr[out_fifo].ptr += maccrd->crd_inject; ++ ++ if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) || ++ (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) { ++ td->ptr[hmac_key].ptr = dma_map_single(NULL, ++ ses->ses_hmac, ses->ses_hmac_len, ++ DMA_TO_DEVICE); ++ td->ptr[hmac_key].len = ses->ses_hmac_len; ++ } ++ } ++ else { ++ /* using process key (session data has duplicate) */ ++ td->ptr[cipher_key].ptr = dma_map_single(NULL, ++ enccrd->crd_key, (enccrd->crd_klen + 7) / 8, ++ DMA_TO_DEVICE); ++ td->ptr[cipher_key].len = (enccrd->crd_klen + 7) / 8; ++ } ++ /* descriptor complete - GO! */ ++ return talitos_submit(sc, td, chsel); ++ ++errout: ++ if (err != ERESTART) { ++ crp->crp_etype = err; ++ crypto_done(crp); ++ } ++ return err; ++} ++ ++/* go through all channels descriptors, notifying OCF what has ++ * _and_hasn't_ successfully completed and reset the device ++ * (otherwise it's up to decoding desc hdrs!) ++ */ ++static void talitos_errorprocessing(struct talitos_softc *sc) ++{ ++ unsigned long flags; ++ int i, j; ++ ++ /* disable further scheduling until under control */ ++ spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags); ++ ++ if (debug) dump_talitos_status(sc); ++ /* go through descriptors, try and salvage those successfully done, ++ * and EIO those that weren't ++ */ ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ spin_lock_irqsave(&sc->sc_chnfifolock[i], flags); ++ for (j = 0; j < sc->sc_chfifo_len; j++) { ++ if (sc->sc_chnfifo[i][j].cf_desc.hdr) { ++ if ((sc->sc_chnfifo[i][j].cf_desc.hdr ++ & TALITOS_HDR_DONE_BITS) ++ != TALITOS_HDR_DONE_BITS) { ++ /* this one didn't finish */ ++ /* signify in crp->etype */ ++ sc->sc_chnfifo[i][j].cf_crp->crp_etype ++ = EIO; ++ } ++ } else ++ continue; /* free entry */ ++ /* either way, notify ocf */ ++ crypto_done(sc->sc_chnfifo[i][j].cf_crp); ++ /* and tag it available again ++ * ++ * memset to ensure correct descriptor formation by ++ * avoiding inadvertently setting "optional" entries ++ * e.g. not using "optional" dptr2 MD/HMAC processing ++ */ ++ memset(&sc->sc_chnfifo[i][j].cf_desc, ++ 0, sizeof(struct talitos_desc)); ++ } ++ spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags); ++ } ++ /* reset and initialize the SEC h/w device */ ++ talitos_reset_device(sc); ++ talitos_init_device(sc); ++#ifdef CONFIG_OCF_RANDOMHARVEST ++ if (sc->sc_exec_units & TALITOS_HAS_EU_RNG) ++ talitos_rng_init(sc); ++#endif ++ ++ /* Okay. Stand by. */ ++ spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags); ++ ++ return; ++} ++ ++/* go through all channels descriptors, notifying OCF what's been done */ ++static void talitos_doneprocessing(struct talitos_softc *sc) ++{ ++ unsigned long flags; ++ int i, j; ++ ++ /* go through descriptors looking for done bits */ ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ spin_lock_irqsave(&sc->sc_chnfifolock[i], flags); ++ for (j = 0; j < sc->sc_chfifo_len; j++) { ++ /* descriptor has done bits set? */ ++ if ((sc->sc_chnfifo[i][j].cf_desc.hdr ++ & TALITOS_HDR_DONE_BITS) ++ == TALITOS_HDR_DONE_BITS) { ++ /* notify ocf */ ++ crypto_done(sc->sc_chnfifo[i][j].cf_crp); ++ /* and tag it available again ++ * ++ * memset to ensure correct descriptor formation by ++ * avoiding inadvertently setting "optional" entries ++ * e.g. not using "optional" dptr2 MD/HMAC processing ++ */ ++ memset(&sc->sc_chnfifo[i][j].cf_desc, ++ 0, sizeof(struct talitos_desc)); ++ } ++ } ++ spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags); ++ } ++ return; ++} ++ ++static irqreturn_t ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) ++talitos_intr(int irq, void *arg) ++#else ++talitos_intr(int irq, void *arg, struct pt_regs *regs) ++#endif ++{ ++ struct talitos_softc *sc = arg; ++ u_int32_t v, v_hi; ++ ++ /* ack */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_ISR); ++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI); ++ talitos_write(sc->sc_base_addr + TALITOS_ICR, v); ++ talitos_write(sc->sc_base_addr + TALITOS_ICR_HI, v_hi); ++ ++ if (unlikely(v & TALITOS_ISR_ERROR)) { ++ /* Okay, Houston, we've had a problem here. */ ++ printk(KERN_DEBUG "%s: got error interrupt - ISR 0x%08x_%08x\n", ++ device_get_nameunit(sc->sc_cdev), v, v_hi); ++ talitos_errorprocessing(sc); ++ } else ++ if (likely(v & TALITOS_ISR_DONE)) { ++ talitos_doneprocessing(sc); ++ } ++ return IRQ_HANDLED; ++} ++ ++/* ++ * Initialize registers we need to touch only once. ++ */ ++static void ++talitos_init_device(struct talitos_softc *sc) ++{ ++ u_int32_t v; ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* init all channels */ ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ v = talitos_read(sc->sc_base_addr + ++ i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI); ++ v |= TALITOS_CH_CCCR_HI_CDWE ++ | TALITOS_CH_CCCR_HI_CDIE; /* invoke interrupt if done */ ++ talitos_write(sc->sc_base_addr + ++ i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI, v); ++ } ++ /* enable all interrupts */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR); ++ v |= TALITOS_IMR_ALL; ++ talitos_write(sc->sc_base_addr + TALITOS_IMR, v); ++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI); ++ v |= TALITOS_IMR_HI_ERRONLY; ++ talitos_write(sc->sc_base_addr + TALITOS_IMR_HI, v); ++ return; ++} ++ ++/* ++ * set the master reset bit on the device. ++ */ ++static void ++talitos_reset_device_master(struct talitos_softc *sc) ++{ ++ u_int32_t v; ++ ++ /* Reset the device by writing 1 to MCR:SWR and waiting 'til cleared */ ++ v = talitos_read(sc->sc_base_addr + TALITOS_MCR); ++ talitos_write(sc->sc_base_addr + TALITOS_MCR, v | TALITOS_MCR_SWR); ++ ++ while (talitos_read(sc->sc_base_addr + TALITOS_MCR) & TALITOS_MCR_SWR) ++ cpu_relax(); ++ ++ return; ++} ++ ++/* ++ * Resets the device. Values in the registers are left as is ++ * from the reset (i.e. initial values are assigned elsewhere). ++ */ ++static void ++talitos_reset_device(struct talitos_softc *sc) ++{ ++ u_int32_t v; ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ /* ++ * Master reset ++ * errata documentation: warning: certain SEC interrupts ++ * are not fully cleared by writing the MCR:SWR bit, ++ * set bit twice to completely reset ++ */ ++ talitos_reset_device_master(sc); /* once */ ++ talitos_reset_device_master(sc); /* and once again */ ++ ++ /* reset all channels */ ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CCCR); ++ talitos_write(sc->sc_base_addr + i*TALITOS_CH_OFFSET + ++ TALITOS_CH_CCCR, v | TALITOS_CH_CCCR_RESET); ++ } ++} ++ ++/* Set up the crypto device structure, private data, ++ * and anything else we need before we start */ ++#ifdef CONFIG_PPC_MERGE ++static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match) ++#else ++static int talitos_probe(struct platform_device *pdev) ++#endif ++{ ++ struct talitos_softc *sc = NULL; ++ struct resource *r; ++#ifdef CONFIG_PPC_MERGE ++ struct device *device = &ofdev->dev; ++ struct device_node *np = ofdev->node; ++ const unsigned int *prop; ++ int err; ++ struct resource res; ++#endif ++ static int num_chips = 0; ++ int rc; ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ sc = (struct talitos_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); ++ if (!sc) ++ return -ENOMEM; ++ memset(sc, 0, sizeof(*sc)); ++ ++ softc_device_init(sc, DRV_NAME, num_chips, talitos_methods); ++ ++ sc->sc_irq = -1; ++ sc->sc_cid = -1; ++#ifndef CONFIG_PPC_MERGE ++ sc->sc_dev = pdev; ++#endif ++ sc->sc_num = num_chips++; ++ ++#ifdef CONFIG_PPC_MERGE ++ dev_set_drvdata(device, sc); ++#else ++ platform_set_drvdata(sc->sc_dev, sc); ++#endif ++ ++ /* get the irq line */ ++#ifdef CONFIG_PPC_MERGE ++ err = of_address_to_resource(np, 0, &res); ++ if (err) ++ return -EINVAL; ++ r = &res; ++ ++ sc->sc_irq = irq_of_parse_and_map(np, 0); ++#else ++ /* get a pointer to the register memory */ ++ r = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ ++ sc->sc_irq = platform_get_irq(pdev, 0); ++#endif ++ rc = request_irq(sc->sc_irq, talitos_intr, 0, ++ device_get_nameunit(sc->sc_cdev), sc); ++ if (rc) { ++ printk(KERN_ERR "%s: failed to hook irq %d\n", ++ device_get_nameunit(sc->sc_cdev), sc->sc_irq); ++ sc->sc_irq = -1; ++ goto out; ++ } ++ ++ sc->sc_base_addr = (ocf_iomem_t) ioremap(r->start, (r->end - r->start)); ++ if (!sc->sc_base_addr) { ++ printk(KERN_ERR "%s: failed to ioremap\n", ++ device_get_nameunit(sc->sc_cdev)); ++ goto out; ++ } ++ ++ /* figure out our SEC's properties and capabilities */ ++ sc->sc_chiprev = (u64)talitos_read(sc->sc_base_addr + TALITOS_ID) << 32 ++ | talitos_read(sc->sc_base_addr + TALITOS_ID_HI); ++ DPRINTF("sec id 0x%llx\n", sc->sc_chiprev); ++ ++#ifdef CONFIG_PPC_MERGE ++ /* get SEC properties from device tree, defaulting to SEC 2.0 */ ++ ++ prop = of_get_property(np, "num-channels", NULL); ++ sc->sc_num_channels = prop ? *prop : TALITOS_NCHANNELS_SEC_2_0; ++ ++ prop = of_get_property(np, "channel-fifo-len", NULL); ++ sc->sc_chfifo_len = prop ? *prop : TALITOS_CHFIFOLEN_SEC_2_0; ++ ++ prop = of_get_property(np, "exec-units-mask", NULL); ++ sc->sc_exec_units = prop ? *prop : TALITOS_HAS_EUS_SEC_2_0; ++ ++ prop = of_get_property(np, "descriptor-types-mask", NULL); ++ sc->sc_desc_types = prop ? *prop : TALITOS_HAS_DESCTYPES_SEC_2_0; ++#else ++ /* bulk should go away with openfirmware flat device tree support */ ++ if (sc->sc_chiprev & TALITOS_ID_SEC_2_0) { ++ sc->sc_num_channels = TALITOS_NCHANNELS_SEC_2_0; ++ sc->sc_chfifo_len = TALITOS_CHFIFOLEN_SEC_2_0; ++ sc->sc_exec_units = TALITOS_HAS_EUS_SEC_2_0; ++ sc->sc_desc_types = TALITOS_HAS_DESCTYPES_SEC_2_0; ++ } else { ++ printk(KERN_ERR "%s: failed to id device\n", ++ device_get_nameunit(sc->sc_cdev)); ++ goto out; ++ } ++#endif ++ ++ /* + 1 is for the meta-channel lock used by the channel scheduler */ ++ sc->sc_chnfifolock = (spinlock_t *) kmalloc( ++ (sc->sc_num_channels + 1) * sizeof(spinlock_t), GFP_KERNEL); ++ if (!sc->sc_chnfifolock) ++ goto out; ++ for (i = 0; i < sc->sc_num_channels + 1; i++) { ++ spin_lock_init(&sc->sc_chnfifolock[i]); ++ } ++ ++ sc->sc_chnlastalg = (int *) kmalloc( ++ sc->sc_num_channels * sizeof(int), GFP_KERNEL); ++ if (!sc->sc_chnlastalg) ++ goto out; ++ memset(sc->sc_chnlastalg, 0, sc->sc_num_channels * sizeof(int)); ++ ++ sc->sc_chnfifo = (struct desc_cryptop_pair **) kmalloc( ++ sc->sc_num_channels * sizeof(struct desc_cryptop_pair *), ++ GFP_KERNEL); ++ if (!sc->sc_chnfifo) ++ goto out; ++ for (i = 0; i < sc->sc_num_channels; i++) { ++ sc->sc_chnfifo[i] = (struct desc_cryptop_pair *) kmalloc( ++ sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair), ++ GFP_KERNEL); ++ if (!sc->sc_chnfifo[i]) ++ goto out; ++ memset(sc->sc_chnfifo[i], 0, ++ sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair)); ++ } ++ ++ /* reset and initialize the SEC h/w device */ ++ talitos_reset_device(sc); ++ talitos_init_device(sc); ++ ++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE); ++ if (sc->sc_cid < 0) { ++ printk(KERN_ERR "%s: could not get crypto driver id\n", ++ device_get_nameunit(sc->sc_cdev)); ++ goto out; ++ } ++ ++ /* register algorithms with the framework */ ++ printk("%s:", device_get_nameunit(sc->sc_cdev)); ++ ++ if (sc->sc_exec_units & TALITOS_HAS_EU_RNG) { ++ printk(" rng"); ++#ifdef CONFIG_OCF_RANDOMHARVEST ++ talitos_rng_init(sc); ++ crypto_rregister(sc->sc_cid, talitos_read_random, sc); ++#endif ++ } ++ if (sc->sc_exec_units & TALITOS_HAS_EU_DEU) { ++ printk(" des/3des"); ++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); ++ } ++ if (sc->sc_exec_units & TALITOS_HAS_EU_AESU) { ++ printk(" aes"); ++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); ++ } ++ if (sc->sc_exec_units & TALITOS_HAS_EU_MDEU) { ++ printk(" md5"); ++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0); ++ /* HMAC support only with IPsec for now */ ++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); ++ printk(" sha1"); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0); ++ /* HMAC support only with IPsec for now */ ++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); ++ } ++ printk("\n"); ++ return 0; ++ ++out: ++#ifndef CONFIG_PPC_MERGE ++ talitos_remove(pdev); ++#endif ++ return -ENOMEM; ++} ++ ++#ifdef CONFIG_PPC_MERGE ++static int talitos_remove(struct of_device *ofdev) ++#else ++static int talitos_remove(struct platform_device *pdev) ++#endif ++{ ++#ifdef CONFIG_PPC_MERGE ++ struct talitos_softc *sc = dev_get_drvdata(&ofdev->dev); ++#else ++ struct talitos_softc *sc = platform_get_drvdata(pdev); ++#endif ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ if (sc->sc_cid >= 0) ++ crypto_unregister_all(sc->sc_cid); ++ if (sc->sc_chnfifo) { ++ for (i = 0; i < sc->sc_num_channels; i++) ++ if (sc->sc_chnfifo[i]) ++ kfree(sc->sc_chnfifo[i]); ++ kfree(sc->sc_chnfifo); ++ } ++ if (sc->sc_chnlastalg) ++ kfree(sc->sc_chnlastalg); ++ if (sc->sc_chnfifolock) ++ kfree(sc->sc_chnfifolock); ++ if (sc->sc_irq != -1) ++ free_irq(sc->sc_irq, sc); ++ if (sc->sc_base_addr) ++ iounmap((void *) sc->sc_base_addr); ++ kfree(sc); ++ return 0; ++} ++ ++#ifdef CONFIG_PPC_MERGE ++static struct of_device_id talitos_match[] = { ++ { ++ .type = "crypto", ++ .compatible = "talitos", ++ }, ++ {}, ++}; ++ ++MODULE_DEVICE_TABLE(of, talitos_match); ++ ++static struct of_platform_driver talitos_driver = { ++ .name = DRV_NAME, ++ .match_table = talitos_match, ++ .probe = talitos_probe, ++ .remove = talitos_remove, ++}; ++ ++static int __init talitos_init(void) ++{ ++ return of_register_platform_driver(&talitos_driver); ++} ++ ++static void __exit talitos_exit(void) ++{ ++ of_unregister_platform_driver(&talitos_driver); ++} ++#else ++/* Structure for a platform device driver */ ++static struct platform_driver talitos_driver = { ++ .probe = talitos_probe, ++ .remove = talitos_remove, ++ .driver = { ++ .name = "fsl-sec2", ++ } ++}; ++ ++static int __init talitos_init(void) ++{ ++ return platform_driver_register(&talitos_driver); ++} ++ ++static void __exit talitos_exit(void) ++{ ++ platform_driver_unregister(&talitos_driver); ++} ++#endif ++ ++module_init(talitos_init); ++module_exit(talitos_exit); ++ ++MODULE_LICENSE("Dual BSD/GPL"); ++MODULE_AUTHOR("kim.phillips@freescale.com"); ++MODULE_DESCRIPTION("OCF driver for Freescale SEC (talitos)"); +--- /dev/null ++++ b/crypto/ocf/talitos/talitos_soft.h +@@ -0,0 +1,77 @@ ++/* ++ * Freescale SEC data structures for integration with ocf-linux ++ * ++ * Copyright (c) 2006 Freescale Semiconductor, Inc. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ */ ++ ++/* ++ * paired descriptor and associated crypto operation ++ */ ++struct desc_cryptop_pair { ++ struct talitos_desc cf_desc; /* descriptor ptr */ ++ struct cryptop *cf_crp; /* cryptop ptr */ ++}; ++ ++/* ++ * Holds data specific to a single talitos device. ++ */ ++struct talitos_softc { ++ softc_device_decl sc_cdev; ++ struct platform_device *sc_dev; /* device backpointer */ ++ ocf_iomem_t sc_base_addr; ++ int sc_irq; ++ int sc_num; /* if we have multiple chips */ ++ int32_t sc_cid; /* crypto tag */ ++ u64 sc_chiprev; /* major/minor chip revision */ ++ int sc_nsessions; ++ struct talitos_session *sc_sessions; ++ int sc_num_channels;/* number of crypto channels */ ++ int sc_chfifo_len; /* channel fetch fifo len */ ++ int sc_exec_units; /* execution units mask */ ++ int sc_desc_types; /* descriptor types mask */ ++ /* ++ * mutual exclusion for intra-channel resources, e.g. fetch fifos ++ * the last entry is a meta-channel lock used by the channel scheduler ++ */ ++ spinlock_t *sc_chnfifolock; ++ /* sc_chnlastalgo contains last algorithm for that channel */ ++ int *sc_chnlastalg; ++ /* sc_chnfifo holds pending descriptor--crypto operation pairs */ ++ struct desc_cryptop_pair **sc_chnfifo; ++}; ++ ++struct talitos_session { ++ u_int32_t ses_used; ++ u_int32_t ses_klen; /* key length in bits */ ++ u_int32_t ses_key[8]; /* DES/3DES/AES key */ ++ u_int32_t ses_hmac[5]; /* hmac inner state */ ++ u_int32_t ses_hmac_len; /* hmac length */ ++ u_int32_t ses_iv[4]; /* DES/3DES/AES iv */ ++ u_int32_t ses_mlen; /* desired hash result len (12=ipsec or 16) */ ++}; ++ ++#define TALITOS_SESSION(sid) ((sid) & 0x0fffffff) ++#define TALITOS_SID(crd, sesn) (((crd) << 28) | ((sesn) & 0x0fffffff)) +--- /dev/null ++++ b/crypto/ocf/talitos/talitos_dev.h +@@ -0,0 +1,277 @@ ++/* ++ * Freescale SEC (talitos) device dependent data structures ++ * ++ * Copyright (c) 2006 Freescale Semiconductor, Inc. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ */ ++ ++/* device ID register values */ ++#define TALITOS_ID_SEC_2_0 0x40 ++#define TALITOS_ID_SEC_2_1 0x40 /* cross ref with IP block revision reg */ ++ ++/* ++ * following num_channels, channel-fifo-depth, exec-unit-mask, and ++ * descriptor-types-mask are for forward-compatibility with openfirmware ++ * flat device trees ++ */ ++ ++/* ++ * num_channels : the number of channels available in each SEC version. ++ */ ++ ++/* n.b. this driver requires these values be a power of 2 */ ++#define TALITOS_NCHANNELS_SEC_1_0 4 ++#define TALITOS_NCHANNELS_SEC_1_2 1 ++#define TALITOS_NCHANNELS_SEC_2_0 4 ++#define TALITOS_NCHANNELS_SEC_2_01 4 ++#define TALITOS_NCHANNELS_SEC_2_1 4 ++#define TALITOS_NCHANNELS_SEC_2_4 4 ++ ++/* ++ * channel-fifo-depth : The number of descriptor ++ * pointers a channel fetch fifo can hold. ++ */ ++#define TALITOS_CHFIFOLEN_SEC_1_0 1 ++#define TALITOS_CHFIFOLEN_SEC_1_2 1 ++#define TALITOS_CHFIFOLEN_SEC_2_0 24 ++#define TALITOS_CHFIFOLEN_SEC_2_01 24 ++#define TALITOS_CHFIFOLEN_SEC_2_1 24 ++#define TALITOS_CHFIFOLEN_SEC_2_4 24 ++ ++/* ++ * exec-unit-mask : The bitmask representing what Execution Units (EUs) ++ * are available. EU information should be encoded following the SEC's ++ * EU_SEL0 bitfield documentation, i.e. as follows: ++ * ++ * bit 31 = set if SEC permits no-EU selection (should be always set) ++ * bit 30 = set if SEC has the ARC4 EU (AFEU) ++ * bit 29 = set if SEC has the des/3des EU (DEU) ++ * bit 28 = set if SEC has the message digest EU (MDEU) ++ * bit 27 = set if SEC has the random number generator EU (RNG) ++ * bit 26 = set if SEC has the public key EU (PKEU) ++ * bit 25 = set if SEC has the aes EU (AESU) ++ * bit 24 = set if SEC has the Kasumi EU (KEU) ++ * ++ */ ++#define TALITOS_HAS_EU_NONE (1<<0) ++#define TALITOS_HAS_EU_AFEU (1<<1) ++#define TALITOS_HAS_EU_DEU (1<<2) ++#define TALITOS_HAS_EU_MDEU (1<<3) ++#define TALITOS_HAS_EU_RNG (1<<4) ++#define TALITOS_HAS_EU_PKEU (1<<5) ++#define TALITOS_HAS_EU_AESU (1<<6) ++#define TALITOS_HAS_EU_KEU (1<<7) ++ ++/* the corresponding masks for each SEC version */ ++#define TALITOS_HAS_EUS_SEC_1_0 0x7f ++#define TALITOS_HAS_EUS_SEC_1_2 0x4d ++#define TALITOS_HAS_EUS_SEC_2_0 0x7f ++#define TALITOS_HAS_EUS_SEC_2_01 0x7f ++#define TALITOS_HAS_EUS_SEC_2_1 0xff ++#define TALITOS_HAS_EUS_SEC_2_4 0x7f ++ ++/* ++ * descriptor-types-mask : The bitmask representing what descriptors ++ * are available. Descriptor type information should be encoded ++ * following the SEC's Descriptor Header Dword DESC_TYPE field ++ * documentation, i.e. as follows: ++ * ++ * bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type ++ * bit 1 = set if SEC supports the ipsec_esp descriptor type ++ * bit 2 = set if SEC supports the common_nonsnoop desc. type ++ * bit 3 = set if SEC supports the 802.11i AES ccmp desc. type ++ * bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type ++ * bit 5 = set if SEC supports the srtp descriptor type ++ * bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type ++ * bit 7 = set if SEC supports the pkeu_assemble descriptor type ++ * bit 8 = set if SEC supports the aesu_key_expand_output desc.type ++ * bit 9 = set if SEC supports the pkeu_ptmul descriptor type ++ * bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type ++ * bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type ++ * ++ * ..and so on and so forth. ++ */ ++#define TALITOS_HAS_DT_AESU_CTR_NONSNOOP (1<<0) ++#define TALITOS_HAS_DT_IPSEC_ESP (1<<1) ++#define TALITOS_HAS_DT_COMMON_NONSNOOP (1<<2) ++ ++/* the corresponding masks for each SEC version */ ++#define TALITOS_HAS_DESCTYPES_SEC_2_0 0x01010ebf ++#define TALITOS_HAS_DESCTYPES_SEC_2_1 0x012b0ebf ++ ++/* ++ * a TALITOS_xxx_HI address points to the low data bits (32-63) of the register ++ */ ++ ++/* global register offset addresses */ ++#define TALITOS_ID 0x1020 ++#define TALITOS_ID_HI 0x1024 ++#define TALITOS_MCR 0x1030 /* master control register */ ++#define TALITOS_MCR_HI 0x1038 /* master control register */ ++#define TALITOS_MCR_SWR 0x1 ++#define TALITOS_IMR 0x1008 /* interrupt mask register */ ++#define TALITOS_IMR_ALL 0x00010fff /* enable all interrupts mask */ ++#define TALITOS_IMR_ERRONLY 0x00010aaa /* enable error interrupts */ ++#define TALITOS_IMR_HI 0x100C /* interrupt mask register */ ++#define TALITOS_IMR_HI_ALL 0x00323333 /* enable all interrupts mask */ ++#define TALITOS_IMR_HI_ERRONLY 0x00222222 /* enable error interrupts */ ++#define TALITOS_ISR 0x1010 /* interrupt status register */ ++#define TALITOS_ISR_ERROR 0x00010faa /* errors mask */ ++#define TALITOS_ISR_DONE 0x00000055 /* channel(s) done mask */ ++#define TALITOS_ISR_HI 0x1014 /* interrupt status register */ ++#define TALITOS_ICR 0x1018 /* interrupt clear register */ ++#define TALITOS_ICR_HI 0x101C /* interrupt clear register */ ++ ++/* channel register address stride */ ++#define TALITOS_CH_OFFSET 0x100 ++ ++/* channel register offset addresses and bits */ ++#define TALITOS_CH_CCCR 0x1108 /* Crypto-Channel Config Register */ ++#define TALITOS_CH_CCCR_RESET 0x1 /* Channel Reset bit */ ++#define TALITOS_CH_CCCR_HI 0x110c /* Crypto-Channel Config Register */ ++#define TALITOS_CH_CCCR_HI_CDWE 0x10 /* Channel done writeback enable bit */ ++#define TALITOS_CH_CCCR_HI_NT 0x4 /* Notification type bit */ ++#define TALITOS_CH_CCCR_HI_CDIE 0x2 /* Channel Done Interrupt Enable bit */ ++#define TALITOS_CH_CCPSR 0x1110 /* Crypto-Channel Pointer Status Reg */ ++#define TALITOS_CH_CCPSR_HI 0x1114 /* Crypto-Channel Pointer Status Reg */ ++#define TALITOS_CH_FF 0x1148 /* Fetch FIFO */ ++#define TALITOS_CH_FF_HI 0x114c /* Fetch FIFO's FETCH_ADRS */ ++#define TALITOS_CH_CDPR 0x1140 /* Crypto-Channel Pointer Status Reg */ ++#define TALITOS_CH_CDPR_HI 0x1144 /* Crypto-Channel Pointer Status Reg */ ++#define TALITOS_CH_DESCBUF 0x1180 /* (thru 11bf) Crypto-Channel ++ * Descriptor Buffer (debug) */ ++ ++/* execution unit register offset addresses and bits */ ++#define TALITOS_DEUSR 0x2028 /* DEU status register */ ++#define TALITOS_DEUSR_HI 0x202c /* DEU status register */ ++#define TALITOS_DEUISR 0x2030 /* DEU interrupt status register */ ++#define TALITOS_DEUISR_HI 0x2034 /* DEU interrupt status register */ ++#define TALITOS_DEUICR 0x2038 /* DEU interrupt control register */ ++#define TALITOS_DEUICR_HI 0x203c /* DEU interrupt control register */ ++#define TALITOS_AESUISR 0x4030 /* AESU interrupt status register */ ++#define TALITOS_AESUISR_HI 0x4034 /* AESU interrupt status register */ ++#define TALITOS_AESUICR 0x4038 /* AESU interrupt control register */ ++#define TALITOS_AESUICR_HI 0x403c /* AESU interrupt control register */ ++#define TALITOS_MDEUISR 0x6030 /* MDEU interrupt status register */ ++#define TALITOS_MDEUISR_HI 0x6034 /* MDEU interrupt status register */ ++#define TALITOS_RNGSR 0xa028 /* RNG status register */ ++#define TALITOS_RNGSR_HI 0xa02c /* RNG status register */ ++#define TALITOS_RNGSR_HI_RD 0x1 /* RNG Reset done */ ++#define TALITOS_RNGSR_HI_OFL 0xff0000/* number of dwords in RNG output FIFO*/ ++#define TALITOS_RNGDSR 0xa010 /* RNG data size register */ ++#define TALITOS_RNGDSR_HI 0xa014 /* RNG data size register */ ++#define TALITOS_RNG_FIFO 0xa800 /* RNG FIFO - pool of random numbers */ ++#define TALITOS_RNGISR 0xa030 /* RNG Interrupt status register */ ++#define TALITOS_RNGISR_HI 0xa034 /* RNG Interrupt status register */ ++#define TALITOS_RNGRCR 0xa018 /* RNG Reset control register */ ++#define TALITOS_RNGRCR_HI 0xa01c /* RNG Reset control register */ ++#define TALITOS_RNGRCR_HI_SR 0x1 /* RNG RNGRCR:Software Reset */ ++ ++/* descriptor pointer entry */ ++struct talitos_desc_ptr { ++ u16 len; /* length */ ++ u8 extent; /* jump (to s/g link table) and extent */ ++ u8 res; /* reserved */ ++ u32 ptr; /* pointer */ ++}; ++ ++/* descriptor */ ++struct talitos_desc { ++ u32 hdr; /* header */ ++ u32 res; /* reserved */ ++ struct talitos_desc_ptr ptr[7]; /* ptr/len pair array */ ++}; ++ ++/* talitos descriptor header (hdr) bits */ ++ ++/* primary execution unit select */ ++#define TALITOS_SEL0_AFEU 0x10000000 ++#define TALITOS_SEL0_DEU 0x20000000 ++#define TALITOS_SEL0_MDEU 0x30000000 ++#define TALITOS_SEL0_RNG 0x40000000 ++#define TALITOS_SEL0_PKEU 0x50000000 ++#define TALITOS_SEL0_AESU 0x60000000 ++ ++/* primary execution unit mode (MODE0) and derivatives */ ++#define TALITOS_MODE0_AESU_CBC 0x00200000 ++#define TALITOS_MODE0_AESU_ENC 0x00100000 ++#define TALITOS_MODE0_DEU_CBC 0x00400000 ++#define TALITOS_MODE0_DEU_3DES 0x00200000 ++#define TALITOS_MODE0_DEU_ENC 0x00100000 ++#define TALITOS_MODE0_MDEU_INIT 0x01000000 /* init starting regs */ ++#define TALITOS_MODE0_MDEU_HMAC 0x00800000 ++#define TALITOS_MODE0_MDEU_PAD 0x00400000 /* PD */ ++#define TALITOS_MODE0_MDEU_MD5 0x00200000 ++#define TALITOS_MODE0_MDEU_SHA256 0x00100000 ++#define TALITOS_MODE0_MDEU_SHA1 0x00000000 /* SHA-160 */ ++#define TALITOS_MODE0_MDEU_MD5_HMAC \ ++ (TALITOS_MODE0_MDEU_MD5 | TALITOS_MODE0_MDEU_HMAC) ++#define TALITOS_MODE0_MDEU_SHA256_HMAC \ ++ (TALITOS_MODE0_MDEU_SHA256 | TALITOS_MODE0_MDEU_HMAC) ++#define TALITOS_MODE0_MDEU_SHA1_HMAC \ ++ (TALITOS_MODE0_MDEU_SHA1 | TALITOS_MODE0_MDEU_HMAC) ++ ++/* secondary execution unit select (SEL1) */ ++/* it's MDEU or nothing */ ++#define TALITOS_SEL1_MDEU 0x00030000 ++ ++/* secondary execution unit mode (MODE1) and derivatives */ ++#define TALITOS_MODE1_MDEU_INIT 0x00001000 /* init starting regs */ ++#define TALITOS_MODE1_MDEU_HMAC 0x00000800 ++#define TALITOS_MODE1_MDEU_PAD 0x00000400 /* PD */ ++#define TALITOS_MODE1_MDEU_MD5 0x00000200 ++#define TALITOS_MODE1_MDEU_SHA256 0x00000100 ++#define TALITOS_MODE1_MDEU_SHA1 0x00000000 /* SHA-160 */ ++#define TALITOS_MODE1_MDEU_MD5_HMAC \ ++ (TALITOS_MODE1_MDEU_MD5 | TALITOS_MODE1_MDEU_HMAC) ++#define TALITOS_MODE1_MDEU_SHA256_HMAC \ ++ (TALITOS_MODE1_MDEU_SHA256 | TALITOS_MODE1_MDEU_HMAC) ++#define TALITOS_MODE1_MDEU_SHA1_HMAC \ ++ (TALITOS_MODE1_MDEU_SHA1 | TALITOS_MODE1_MDEU_HMAC) ++ ++/* direction of overall data flow (DIR) */ ++#define TALITOS_DIR_OUTBOUND 0x00000000 ++#define TALITOS_DIR_INBOUND 0x00000002 ++ ++/* done notification (DN) */ ++#define TALITOS_DONE_NOTIFY 0x00000001 ++ ++/* descriptor types */ ++/* odd numbers here are valid on SEC2 and greater only (e.g. ipsec_esp) */ ++#define TD_TYPE_AESU_CTR_NONSNOOP (0 << 3) ++#define TD_TYPE_IPSEC_ESP (1 << 3) ++#define TD_TYPE_COMMON_NONSNOOP_NO_AFEU (2 << 3) ++#define TD_TYPE_HMAC_SNOOP_NO_AFEU (4 << 3) ++ ++#define TALITOS_HDR_DONE_BITS 0xff000000 ++ ++#define DPRINTF(a...) do { \ ++ if (debug) { \ ++ printk("%s: ", sc ? \ ++ device_get_nameunit(sc->sc_cdev) : "talitos"); \ ++ printk(a); \ ++ } \ ++ } while (0) +--- /dev/null ++++ b/crypto/ocf/random.c +@@ -0,0 +1,317 @@ ++/* ++ * A system independant way of adding entropy to the kernels pool ++ * this way the drivers can focus on the real work and we can take ++ * care of pushing it to the appropriate place in the kernel. ++ * ++ * This should be fast and callable from timers/interrupts ++ * ++ * Written by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#ifdef CONFIG_OCF_FIPS ++#include "rndtest.h" ++#endif ++ ++#ifndef HAS_RANDOM_INPUT_WAIT ++#error "Please do not enable OCF_RANDOMHARVEST unless you have applied patches" ++#endif ++ ++/* ++ * a hack to access the debug levels from the crypto driver ++ */ ++extern int crypto_debug; ++#define debug crypto_debug ++ ++/* ++ * a list of all registered random providers ++ */ ++static LIST_HEAD(random_ops); ++static int started = 0; ++static int initted = 0; ++ ++struct random_op { ++ struct list_head random_list; ++ u_int32_t driverid; ++ int (*read_random)(void *arg, u_int32_t *buf, int len); ++ void *arg; ++}; ++ ++static int random_proc(void *arg); ++ ++static pid_t randomproc = (pid_t) -1; ++static spinlock_t random_lock; ++ ++/* ++ * just init the spin locks ++ */ ++static int ++crypto_random_init(void) ++{ ++ spin_lock_init(&random_lock); ++ initted = 1; ++ return(0); ++} ++ ++/* ++ * Add the given random reader to our list (if not present) ++ * and start the thread (if not already started) ++ * ++ * we have to assume that driver id is ok for now ++ */ ++int ++crypto_rregister( ++ u_int32_t driverid, ++ int (*read_random)(void *arg, u_int32_t *buf, int len), ++ void *arg) ++{ ++ unsigned long flags; ++ int ret = 0; ++ struct random_op *rops, *tmp; ++ ++ dprintk("%s,%d: %s(0x%x, %p, %p)\n", __FILE__, __LINE__, ++ __FUNCTION__, driverid, read_random, arg); ++ ++ if (!initted) ++ crypto_random_init(); ++ ++#if 0 ++ struct cryptocap *cap; ++ ++ cap = crypto_checkdriver(driverid); ++ if (!cap) ++ return EINVAL; ++#endif ++ ++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) { ++ if (rops->driverid == driverid && rops->read_random == read_random) ++ return EEXIST; ++ } ++ ++ rops = (struct random_op *) kmalloc(sizeof(*rops), GFP_KERNEL); ++ if (!rops) ++ return ENOMEM; ++ ++ rops->driverid = driverid; ++ rops->read_random = read_random; ++ rops->arg = arg; ++ ++ spin_lock_irqsave(&random_lock, flags); ++ list_add_tail(&rops->random_list, &random_ops); ++ if (!started) { ++ randomproc = kernel_thread(random_proc, NULL, CLONE_FS|CLONE_FILES); ++ if (randomproc < 0) { ++ ret = randomproc; ++ printk("crypto: crypto_rregister cannot start random thread; " ++ "error %d", ret); ++ } else ++ started = 1; ++ } ++ spin_unlock_irqrestore(&random_lock, flags); ++ ++ return ret; ++} ++EXPORT_SYMBOL(crypto_rregister); ++ ++int ++crypto_runregister_all(u_int32_t driverid) ++{ ++ struct random_op *rops, *tmp; ++ unsigned long flags; ++ ++ dprintk("%s,%d: %s(0x%x)\n", __FILE__, __LINE__, __FUNCTION__, driverid); ++ ++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) { ++ if (rops->driverid == driverid) { ++ list_del(&rops->random_list); ++ kfree(rops); ++ } ++ } ++ ++ spin_lock_irqsave(&random_lock, flags); ++ if (list_empty(&random_ops) && started) ++ kill_proc(randomproc, SIGKILL, 1); ++ spin_unlock_irqrestore(&random_lock, flags); ++ return(0); ++} ++EXPORT_SYMBOL(crypto_runregister_all); ++ ++/* ++ * while we can add entropy to random.c continue to read random data from ++ * the drivers and push it to random. ++ */ ++static int ++random_proc(void *arg) ++{ ++ int n; ++ int wantcnt; ++ int bufcnt = 0; ++ int retval = 0; ++ int *buf = NULL; ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ daemonize(); ++ spin_lock_irq(¤t->sigmask_lock); ++ sigemptyset(¤t->blocked); ++ recalc_sigpending(current); ++ spin_unlock_irq(¤t->sigmask_lock); ++ sprintf(current->comm, "ocf-random"); ++#else ++ daemonize("ocf-random"); ++ allow_signal(SIGKILL); ++#endif ++ ++ (void) get_fs(); ++ set_fs(get_ds()); ++ ++#ifdef CONFIG_OCF_FIPS ++#define NUM_INT (RNDTEST_NBYTES/sizeof(int)) ++#else ++#define NUM_INT 32 ++#endif ++ ++ /* ++ * some devices can transferr their RNG data direct into memory, ++ * so make sure it is device friendly ++ */ ++ buf = kmalloc(NUM_INT * sizeof(int), GFP_DMA); ++ if (NULL == buf) { ++ printk("crypto: RNG could not allocate memory\n"); ++ retval = -ENOMEM; ++ goto bad_alloc; ++ } ++ ++ wantcnt = NUM_INT; /* start by adding some entropy */ ++ ++ /* ++ * its possible due to errors or driver removal that we no longer ++ * have anything to do, if so exit or we will consume all the CPU ++ * doing nothing ++ */ ++ while (!list_empty(&random_ops)) { ++ struct random_op *rops, *tmp; ++ ++#ifdef CONFIG_OCF_FIPS ++ if (wantcnt) ++ wantcnt = NUM_INT; /* FIPs mode can do 20000 bits or none */ ++#endif ++ ++ /* see if we can get enough entropy to make the world ++ * a better place. ++ */ ++ while (bufcnt < wantcnt && bufcnt < NUM_INT) { ++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) { ++ ++ n = (*rops->read_random)(rops->arg, &buf[bufcnt], ++ NUM_INT - bufcnt); ++ ++ /* on failure remove the random number generator */ ++ if (n == -1) { ++ list_del(&rops->random_list); ++ printk("crypto: RNG (driverid=0x%x) failed, disabling\n", ++ rops->driverid); ++ kfree(rops); ++ } else if (n > 0) ++ bufcnt += n; ++ } ++ /* give up CPU for a bit, just in case as this is a loop */ ++ schedule(); ++ } ++ ++ ++#ifdef CONFIG_OCF_FIPS ++ if (bufcnt > 0 && rndtest_buf((unsigned char *) &buf[0])) { ++ dprintk("crypto: buffer had fips errors, discarding\n"); ++ bufcnt = 0; ++ } ++#endif ++ ++ /* ++ * if we have a certified buffer, we can send some data ++ * to /dev/random and move along ++ */ ++ if (bufcnt > 0) { ++ /* add what we have */ ++ random_input_words(buf, bufcnt, bufcnt*sizeof(int)*8); ++ bufcnt = 0; ++ } ++ ++ /* give up CPU for a bit so we don't hog while filling */ ++ schedule(); ++ ++ /* wait for needing more */ ++ wantcnt = random_input_wait(); ++ ++ if (wantcnt <= 0) ++ wantcnt = 0; /* try to get some info again */ ++ else ++ /* round up to one word or we can loop forever */ ++ wantcnt = (wantcnt + (sizeof(int)*8)) / (sizeof(int)*8); ++ if (wantcnt > NUM_INT) { ++ wantcnt = NUM_INT; ++ } ++ ++ if (signal_pending(current)) { ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_lock_irq(¤t->sigmask_lock); ++#endif ++ flush_signals(current); ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++ spin_unlock_irq(¤t->sigmask_lock); ++#endif ++ } ++ } ++ ++ kfree(buf); ++ ++bad_alloc: ++ spin_lock_irq(&random_lock); ++ randomproc = (pid_t) -1; ++ started = 0; ++ spin_unlock_irq(&random_lock); ++ ++ return retval; ++} ++ +--- /dev/null ++++ b/crypto/ocf/ocf-bench.c +@@ -0,0 +1,436 @@ ++/* ++ * A loadable module that benchmarks the OCF crypto speed from kernel space. ++ * ++ * Copyright (C) 2004-2007 David McCullough ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ */ ++ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#ifdef I_HAVE_AN_XSCALE_WITH_INTEL_SDK ++#define BENCH_IXP_ACCESS_LIB 1 ++#endif ++#ifdef BENCH_IXP_ACCESS_LIB ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#endif ++ ++/* ++ * support for access lib version 1.4 ++ */ ++#ifndef IX_MBUF_PRIV ++#define IX_MBUF_PRIV(x) ((x)->priv) ++#endif ++ ++/* ++ * the number of simultaneously active requests ++ */ ++static int request_q_len = 20; ++module_param(request_q_len, int, 0); ++MODULE_PARM_DESC(request_q_len, "Number of outstanding requests"); ++/* ++ * how many requests we want to have processed ++ */ ++static int request_num = 1024; ++module_param(request_num, int, 0); ++MODULE_PARM_DESC(request_num, "run for at least this many requests"); ++/* ++ * the size of each request ++ */ ++static int request_size = 1500; ++module_param(request_size, int, 0); ++MODULE_PARM_DESC(request_size, "size of each request"); ++ ++/* ++ * a structure for each request ++ */ ++typedef struct { ++ struct work_struct work; ++#ifdef BENCH_IXP_ACCESS_LIB ++ IX_MBUF mbuf; ++#endif ++ unsigned char *buffer; ++} request_t; ++ ++static request_t *requests; ++ ++static int outstanding; ++static int total; ++ ++/*************************************************************************/ ++/* ++ * OCF benchmark routines ++ */ ++ ++static uint64_t ocf_cryptoid; ++static int ocf_init(void); ++static int ocf_cb(struct cryptop *crp); ++static void ocf_request(void *arg); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ocf_request_wq(struct work_struct *work); ++#endif ++ ++static int ++ocf_init(void) ++{ ++ int error; ++ struct cryptoini crie, cria; ++ struct cryptodesc crda, crde; ++ ++ memset(&crie, 0, sizeof(crie)); ++ memset(&cria, 0, sizeof(cria)); ++ memset(&crde, 0, sizeof(crde)); ++ memset(&crda, 0, sizeof(crda)); ++ ++ cria.cri_alg = CRYPTO_SHA1_HMAC; ++ cria.cri_klen = 20 * 8; ++ cria.cri_key = "0123456789abcdefghij"; ++ ++ crie.cri_alg = CRYPTO_3DES_CBC; ++ crie.cri_klen = 24 * 8; ++ crie.cri_key = "0123456789abcdefghijklmn"; ++ ++ crie.cri_next = &cria; ++ ++ error = crypto_newsession(&ocf_cryptoid, &crie, 0); ++ if (error) { ++ printk("crypto_newsession failed %d\n", error); ++ return -1; ++ } ++ return 0; ++} ++ ++static int ++ocf_cb(struct cryptop *crp) ++{ ++ request_t *r = (request_t *) crp->crp_opaque; ++ ++ if (crp->crp_etype) ++ printk("Error in OCF processing: %d\n", crp->crp_etype); ++ total++; ++ crypto_freereq(crp); ++ crp = NULL; ++ ++ if (total > request_num) { ++ outstanding--; ++ return 0; ++ } ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ INIT_WORK(&r->work, ocf_request_wq); ++#else ++ INIT_WORK(&r->work, ocf_request, r); ++#endif ++ schedule_work(&r->work); ++ return 0; ++} ++ ++ ++static void ++ocf_request(void *arg) ++{ ++ request_t *r = arg; ++ struct cryptop *crp = crypto_getreq(2); ++ struct cryptodesc *crde, *crda; ++ ++ if (!crp) { ++ outstanding--; ++ return; ++ } ++ ++ crde = crp->crp_desc; ++ crda = crde->crd_next; ++ ++ crda->crd_skip = 0; ++ crda->crd_flags = 0; ++ crda->crd_len = request_size; ++ crda->crd_inject = request_size; ++ crda->crd_alg = CRYPTO_SHA1_HMAC; ++ crda->crd_key = "0123456789abcdefghij"; ++ crda->crd_klen = 20 * 8; ++ ++ crde->crd_skip = 0; ++ crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_ENCRYPT; ++ crde->crd_len = request_size; ++ crde->crd_inject = request_size; ++ crde->crd_alg = CRYPTO_3DES_CBC; ++ crde->crd_key = "0123456789abcdefghijklmn"; ++ crde->crd_klen = 24 * 8; ++ ++ crp->crp_ilen = request_size + 64; ++ crp->crp_flags = CRYPTO_F_CBIMM; ++ crp->crp_buf = (caddr_t) r->buffer; ++ crp->crp_callback = ocf_cb; ++ crp->crp_sid = ocf_cryptoid; ++ crp->crp_opaque = (caddr_t) r; ++ crypto_dispatch(crp); ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ++ocf_request_wq(struct work_struct *work) ++{ ++ request_t *r = container_of(work, request_t, work); ++ ocf_request(r); ++} ++#endif ++ ++/*************************************************************************/ ++#ifdef BENCH_IXP_ACCESS_LIB ++/*************************************************************************/ ++/* ++ * CryptoAcc benchmark routines ++ */ ++ ++static IxCryptoAccCtx ixp_ctx; ++static UINT32 ixp_ctx_id; ++static IX_MBUF ixp_pri; ++static IX_MBUF ixp_sec; ++static int ixp_registered = 0; ++ ++static void ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, ++ IxCryptoAccStatus status); ++static void ixp_perform_cb(UINT32 ctx_id, IX_MBUF *sbufp, IX_MBUF *dbufp, ++ IxCryptoAccStatus status); ++static void ixp_request(void *arg); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ixp_request_wq(struct work_struct *work); ++#endif ++ ++static int ++ixp_init(void) ++{ ++ IxCryptoAccStatus status; ++ ++ ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_3DES; ++ ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC; ++ ixp_ctx.cipherCtx.cipherKeyLen = 24; ++ ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64; ++ ixp_ctx.cipherCtx.cipherInitialVectorLen = IX_CRYPTO_ACC_DES_IV_64; ++ memcpy(ixp_ctx.cipherCtx.key.cipherKey, "0123456789abcdefghijklmn", 24); ++ ++ ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_SHA1; ++ ixp_ctx.authCtx.authDigestLen = 12; ++ ixp_ctx.authCtx.aadLen = 0; ++ ixp_ctx.authCtx.authKeyLen = 20; ++ memcpy(ixp_ctx.authCtx.key.authKey, "0123456789abcdefghij", 20); ++ ++ ixp_ctx.useDifferentSrcAndDestMbufs = 0; ++ ixp_ctx.operation = IX_CRYPTO_ACC_OP_ENCRYPT_AUTH ; ++ ++ IX_MBUF_MLEN(&ixp_pri) = IX_MBUF_PKT_LEN(&ixp_pri) = 128; ++ IX_MBUF_MDATA(&ixp_pri) = (unsigned char *) kmalloc(128, SLAB_ATOMIC); ++ IX_MBUF_MLEN(&ixp_sec) = IX_MBUF_PKT_LEN(&ixp_sec) = 128; ++ IX_MBUF_MDATA(&ixp_sec) = (unsigned char *) kmalloc(128, SLAB_ATOMIC); ++ ++ status = ixCryptoAccCtxRegister(&ixp_ctx, &ixp_pri, &ixp_sec, ++ ixp_register_cb, ixp_perform_cb, &ixp_ctx_id); ++ ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) { ++ while (!ixp_registered) ++ schedule(); ++ return ixp_registered < 0 ? -1 : 0; ++ } ++ ++ printk("ixp: ixCryptoAccCtxRegister failed %d\n", status); ++ return -1; ++} ++ ++static void ++ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, IxCryptoAccStatus status) ++{ ++ if (bufp) { ++ IX_MBUF_MLEN(bufp) = IX_MBUF_PKT_LEN(bufp) = 0; ++ kfree(IX_MBUF_MDATA(bufp)); ++ IX_MBUF_MDATA(bufp) = NULL; ++ } ++ ++ if (IX_CRYPTO_ACC_STATUS_WAIT == status) ++ return; ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) ++ ixp_registered = 1; ++ else ++ ixp_registered = -1; ++} ++ ++static void ++ixp_perform_cb( ++ UINT32 ctx_id, ++ IX_MBUF *sbufp, ++ IX_MBUF *dbufp, ++ IxCryptoAccStatus status) ++{ ++ request_t *r = NULL; ++ ++ total++; ++ if (total > request_num) { ++ outstanding--; ++ return; ++ } ++ ++ if (!sbufp || !(r = IX_MBUF_PRIV(sbufp))) { ++ printk("crappo %p %p\n", sbufp, r); ++ outstanding--; ++ return; ++ } ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ INIT_WORK(&r->work, ixp_request_wq); ++#else ++ INIT_WORK(&r->work, ixp_request, r); ++#endif ++ schedule_work(&r->work); ++} ++ ++static void ++ixp_request(void *arg) ++{ ++ request_t *r = arg; ++ IxCryptoAccStatus status; ++ ++ memset(&r->mbuf, 0, sizeof(r->mbuf)); ++ IX_MBUF_MLEN(&r->mbuf) = IX_MBUF_PKT_LEN(&r->mbuf) = request_size + 64; ++ IX_MBUF_MDATA(&r->mbuf) = r->buffer; ++ IX_MBUF_PRIV(&r->mbuf) = r; ++ status = ixCryptoAccAuthCryptPerform(ixp_ctx_id, &r->mbuf, NULL, ++ 0, request_size, 0, request_size, request_size, r->buffer); ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS != status) { ++ printk("status1 = %d\n", status); ++ outstanding--; ++ return; ++ } ++ return; ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ++ixp_request_wq(struct work_struct *work) ++{ ++ request_t *r = container_of(work, request_t, work); ++ ixp_request(r); ++} ++#endif ++ ++/*************************************************************************/ ++#endif /* BENCH_IXP_ACCESS_LIB */ ++/*************************************************************************/ ++ ++int ++ocfbench_init(void) ++{ ++ int i, jstart, jstop; ++ ++ printk("Crypto Speed tests\n"); ++ ++ requests = kmalloc(sizeof(request_t) * request_q_len, GFP_KERNEL); ++ if (!requests) { ++ printk("malloc failed\n"); ++ return -EINVAL; ++ } ++ ++ for (i = 0; i < request_q_len; i++) { ++ /* +64 for return data */ ++ requests[i].buffer = kmalloc(request_size + 128, GFP_DMA); ++ if (!requests[i].buffer) { ++ printk("malloc failed\n"); ++ return -EINVAL; ++ } ++ memset(requests[i].buffer, '0' + i, request_size + 128); ++ } ++ ++ /* ++ * OCF benchmark ++ */ ++ printk("OCF: testing ...\n"); ++ ocf_init(); ++ total = outstanding = 0; ++ jstart = jiffies; ++ for (i = 0; i < request_q_len; i++) { ++ outstanding++; ++ ocf_request(&requests[i]); ++ } ++ while (outstanding > 0) ++ schedule(); ++ jstop = jiffies; ++ ++ printk("OCF: %d requests of %d bytes in %d jiffies\n", total, request_size, ++ jstop - jstart); ++ ++#ifdef BENCH_IXP_ACCESS_LIB ++ /* ++ * IXP benchmark ++ */ ++ printk("IXP: testing ...\n"); ++ ixp_init(); ++ total = outstanding = 0; ++ jstart = jiffies; ++ for (i = 0; i < request_q_len; i++) { ++ outstanding++; ++ ixp_request(&requests[i]); ++ } ++ while (outstanding > 0) ++ schedule(); ++ jstop = jiffies; ++ ++ printk("IXP: %d requests of %d bytes in %d jiffies\n", total, request_size, ++ jstop - jstart); ++#endif /* BENCH_IXP_ACCESS_LIB */ ++ ++ for (i = 0; i < request_q_len; i++) ++ kfree(requests[i].buffer); ++ kfree(requests); ++ return -EINVAL; /* always fail to load so it can be re-run quickly ;-) */ ++} ++ ++static void __exit ocfbench_exit(void) ++{ ++} ++ ++module_init(ocfbench_init); ++module_exit(ocfbench_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("Benchmark various in-kernel crypto speeds"); +--- /dev/null ++++ b/crypto/ocf/ixp4xx/ixp4xx.c +@@ -0,0 +1,1328 @@ ++/* ++ * An OCF module that uses Intels IXP CryptACC API to do the crypto. ++ * This driver requires the IXP400 Access Library that is available ++ * from Intel in order to operate (or compile). ++ * ++ * Written by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#ifndef IX_MBUF_PRIV ++#define IX_MBUF_PRIV(x) ((x)->priv) ++#endif ++ ++struct ixp_data; ++ ++struct ixp_q { ++ struct list_head ixp_q_list; ++ struct ixp_data *ixp_q_data; ++ struct cryptop *ixp_q_crp; ++ struct cryptodesc *ixp_q_ccrd; ++ struct cryptodesc *ixp_q_acrd; ++ IX_MBUF ixp_q_mbuf; ++ UINT8 *ixp_hash_dest; /* Location for hash in client buffer */ ++ UINT8 *ixp_hash_src; /* Location of hash in internal buffer */ ++ unsigned char ixp_q_iv_data[IX_CRYPTO_ACC_MAX_CIPHER_IV_LENGTH]; ++ unsigned char *ixp_q_iv; ++}; ++ ++struct ixp_data { ++ int ixp_registered; /* is the context registered */ ++ int ixp_crd_flags; /* detect direction changes */ ++ ++ int ixp_cipher_alg; ++ int ixp_auth_alg; ++ ++ UINT32 ixp_ctx_id; ++ UINT32 ixp_hash_key_id; /* used when hashing */ ++ IxCryptoAccCtx ixp_ctx; ++ IX_MBUF ixp_pri_mbuf; ++ IX_MBUF ixp_sec_mbuf; ++ ++ struct work_struct ixp_pending_work; ++ struct work_struct ixp_registration_work; ++ struct list_head ixp_q; /* unprocessed requests */ ++}; ++ ++#ifdef __ixp46X ++ ++#define MAX_IOP_SIZE 64 /* words */ ++#define MAX_OOP_SIZE 128 ++ ++#define MAX_PARAMS 3 ++ ++struct ixp_pkq { ++ struct list_head pkq_list; ++ struct cryptkop *pkq_krp; ++ ++ IxCryptoAccPkeEauInOperands pkq_op; ++ IxCryptoAccPkeEauOpResult pkq_result; ++ ++ UINT32 pkq_ibuf0[MAX_IOP_SIZE]; ++ UINT32 pkq_ibuf1[MAX_IOP_SIZE]; ++ UINT32 pkq_ibuf2[MAX_IOP_SIZE]; ++ UINT32 pkq_obuf[MAX_OOP_SIZE]; ++}; ++ ++static LIST_HEAD(ixp_pkq); /* current PK wait list */ ++static struct ixp_pkq *ixp_pk_cur; ++static spinlock_t ixp_pkq_lock; ++ ++#endif /* __ixp46X */ ++ ++static int ixp_blocked = 0; ++ ++static int32_t ixp_id = -1; ++static struct ixp_data **ixp_sessions = NULL; ++static u_int32_t ixp_sesnum = 0; ++ ++static int ixp_process(device_t, struct cryptop *, int); ++static int ixp_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int ixp_freesession(device_t, u_int64_t); ++#ifdef __ixp46X ++static int ixp_kprocess(device_t, struct cryptkop *krp, int hint); ++#endif ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++static kmem_cache_t *qcache; ++#else ++static struct kmem_cache *qcache; ++#endif ++ ++#define debug ixp_debug ++static int ixp_debug = 0; ++module_param(ixp_debug, int, 0644); ++MODULE_PARM_DESC(ixp_debug, "Enable debug"); ++ ++static int ixp_init_crypto = 1; ++module_param(ixp_init_crypto, int, 0444); /* RO after load/boot */ ++MODULE_PARM_DESC(ixp_init_crypto, "Call ixCryptoAccInit (default is 1)"); ++ ++static void ixp_process_pending(void *arg); ++static void ixp_registration(void *arg); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ixp_process_pending_wq(struct work_struct *work); ++static void ixp_registration_wq(struct work_struct *work); ++#endif ++ ++/* ++ * dummy device structure ++ */ ++ ++static struct { ++ softc_device_decl sc_dev; ++} ixpdev; ++ ++static device_method_t ixp_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, ixp_newsession), ++ DEVMETHOD(cryptodev_freesession,ixp_freesession), ++ DEVMETHOD(cryptodev_process, ixp_process), ++#ifdef __ixp46X ++ DEVMETHOD(cryptodev_kprocess, ixp_kprocess), ++#endif ++}; ++ ++/* ++ * Generate a new software session. ++ */ ++static int ++ixp_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri) ++{ ++ struct ixp_data *ixp; ++ u_int32_t i; ++#define AUTH_LEN(cri, def) \ ++ (cri->cri_mlen ? cri->cri_mlen : (def)) ++ ++ dprintk("%s():alg %d\n", __FUNCTION__,cri->cri_alg); ++ if (sid == NULL || cri == NULL) { ++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ if (ixp_sessions) { ++ for (i = 1; i < ixp_sesnum; i++) ++ if (ixp_sessions[i] == NULL) ++ break; ++ } else ++ i = 1; /* NB: to silence compiler warning */ ++ ++ if (ixp_sessions == NULL || i == ixp_sesnum) { ++ struct ixp_data **ixpd; ++ ++ if (ixp_sessions == NULL) { ++ i = 1; /* We leave ixp_sessions[0] empty */ ++ ixp_sesnum = CRYPTO_SW_SESSIONS; ++ } else ++ ixp_sesnum *= 2; ++ ++ ixpd = kmalloc(ixp_sesnum * sizeof(struct ixp_data *), SLAB_ATOMIC); ++ if (ixpd == NULL) { ++ /* Reset session number */ ++ if (ixp_sesnum == CRYPTO_SW_SESSIONS) ++ ixp_sesnum = 0; ++ else ++ ixp_sesnum /= 2; ++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ memset(ixpd, 0, ixp_sesnum * sizeof(struct ixp_data *)); ++ ++ /* Copy existing sessions */ ++ if (ixp_sessions) { ++ memcpy(ixpd, ixp_sessions, ++ (ixp_sesnum / 2) * sizeof(struct ixp_data *)); ++ kfree(ixp_sessions); ++ } ++ ++ ixp_sessions = ixpd; ++ } ++ ++ ixp_sessions[i] = (struct ixp_data *) kmalloc(sizeof(struct ixp_data), ++ SLAB_ATOMIC); ++ if (ixp_sessions[i] == NULL) { ++ ixp_freesession(NULL, i); ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ ++ *sid = i; ++ ++ ixp = ixp_sessions[i]; ++ memset(ixp, 0, sizeof(*ixp)); ++ ++ ixp->ixp_cipher_alg = -1; ++ ixp->ixp_auth_alg = -1; ++ ixp->ixp_ctx_id = -1; ++ INIT_LIST_HEAD(&ixp->ixp_q); ++ ++ ixp->ixp_ctx.useDifferentSrcAndDestMbufs = 0; ++ ++ while (cri) { ++ switch (cri->cri_alg) { ++ case CRYPTO_DES_CBC: ++ ixp->ixp_cipher_alg = cri->cri_alg; ++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_DES; ++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC; ++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8; ++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64; ++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen = ++ IX_CRYPTO_ACC_DES_IV_64; ++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey, ++ cri->cri_key, (cri->cri_klen + 7) / 8); ++ break; ++ ++ case CRYPTO_3DES_CBC: ++ ixp->ixp_cipher_alg = cri->cri_alg; ++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_3DES; ++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC; ++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8; ++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64; ++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen = ++ IX_CRYPTO_ACC_DES_IV_64; ++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey, ++ cri->cri_key, (cri->cri_klen + 7) / 8); ++ break; ++ ++ case CRYPTO_RIJNDAEL128_CBC: ++ ixp->ixp_cipher_alg = cri->cri_alg; ++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_AES; ++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC; ++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8; ++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = 16; ++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen = 16; ++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey, ++ cri->cri_key, (cri->cri_klen + 7) / 8); ++ break; ++ ++ case CRYPTO_MD5: ++ case CRYPTO_MD5_HMAC: ++ ixp->ixp_auth_alg = cri->cri_alg; ++ ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_MD5; ++ ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, MD5_HASH_LEN); ++ ixp->ixp_ctx.authCtx.aadLen = 0; ++ /* Only MD5_HMAC needs a key */ ++ if (cri->cri_alg == CRYPTO_MD5_HMAC) { ++ ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8; ++ if (ixp->ixp_ctx.authCtx.authKeyLen > ++ sizeof(ixp->ixp_ctx.authCtx.key.authKey)) { ++ printk( ++ "ixp4xx: Invalid key length for MD5_HMAC - %d bits\n", ++ cri->cri_klen); ++ ixp_freesession(NULL, i); ++ return EINVAL; ++ } ++ memcpy(ixp->ixp_ctx.authCtx.key.authKey, ++ cri->cri_key, (cri->cri_klen + 7) / 8); ++ } ++ break; ++ ++ case CRYPTO_SHA1: ++ case CRYPTO_SHA1_HMAC: ++ ixp->ixp_auth_alg = cri->cri_alg; ++ ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_SHA1; ++ ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, SHA1_HASH_LEN); ++ ixp->ixp_ctx.authCtx.aadLen = 0; ++ /* Only SHA1_HMAC needs a key */ ++ if (cri->cri_alg == CRYPTO_SHA1_HMAC) { ++ ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8; ++ if (ixp->ixp_ctx.authCtx.authKeyLen > ++ sizeof(ixp->ixp_ctx.authCtx.key.authKey)) { ++ printk( ++ "ixp4xx: Invalid key length for SHA1_HMAC - %d bits\n", ++ cri->cri_klen); ++ ixp_freesession(NULL, i); ++ return EINVAL; ++ } ++ memcpy(ixp->ixp_ctx.authCtx.key.authKey, ++ cri->cri_key, (cri->cri_klen + 7) / 8); ++ } ++ break; ++ ++ default: ++ printk("ixp: unknown algo 0x%x\n", cri->cri_alg); ++ ixp_freesession(NULL, i); ++ return EINVAL; ++ } ++ cri = cri->cri_next; ++ } ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending_wq); ++ INIT_WORK(&ixp->ixp_registration_work, ixp_registration_wq); ++#else ++ INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending, ixp); ++ INIT_WORK(&ixp->ixp_registration_work, ixp_registration, ixp); ++#endif ++ ++ return 0; ++} ++ ++ ++/* ++ * Free a session. ++ */ ++static int ++ixp_freesession(device_t dev, u_int64_t tid) ++{ ++ u_int32_t sid = CRYPTO_SESID2LID(tid); ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (sid > ixp_sesnum || ixp_sessions == NULL || ++ ixp_sessions[sid] == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ /* Silently accept and return */ ++ if (sid == 0) ++ return 0; ++ ++ if (ixp_sessions[sid]) { ++ if (ixp_sessions[sid]->ixp_ctx_id != -1) { ++ ixCryptoAccCtxUnregister(ixp_sessions[sid]->ixp_ctx_id); ++ ixp_sessions[sid]->ixp_ctx_id = -1; ++ } ++ ++ flush_scheduled_work(); ++ ++ kfree(ixp_sessions[sid]); ++ } ++ ixp_sessions[sid] = NULL; ++ if (ixp_blocked) { ++ ixp_blocked = 0; ++ crypto_unblock(ixp_id, CRYPTO_SYMQ); ++ } ++ return 0; ++} ++ ++ ++/* ++ * callback for when hash processing is complete ++ */ ++ ++static void ++ixp_hash_perform_cb( ++ UINT32 hash_key_id, ++ IX_MBUF *bufp, ++ IxCryptoAccStatus status) ++{ ++ struct ixp_q *q; ++ ++ dprintk("%s(%u, %p, 0x%x)\n", __FUNCTION__, hash_key_id, bufp, status); ++ ++ if (bufp == NULL) { ++ printk("ixp: NULL buf in %s\n", __FUNCTION__); ++ return; ++ } ++ ++ q = IX_MBUF_PRIV(bufp); ++ if (q == NULL) { ++ printk("ixp: NULL priv in %s\n", __FUNCTION__); ++ return; ++ } ++ ++ if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ /* On success, need to copy hash back into original client buffer */ ++ memcpy(q->ixp_hash_dest, q->ixp_hash_src, ++ (q->ixp_q_data->ixp_auth_alg == CRYPTO_SHA1) ? ++ SHA1_HASH_LEN : MD5_HASH_LEN); ++ } ++ else { ++ printk("ixp: hash perform failed status=%d\n", status); ++ q->ixp_q_crp->crp_etype = EINVAL; ++ } ++ ++ /* Free internal buffer used for hashing */ ++ kfree(IX_MBUF_MDATA(&q->ixp_q_mbuf)); ++ ++ crypto_done(q->ixp_q_crp); ++ kmem_cache_free(qcache, q); ++} ++ ++/* ++ * setup a request and perform it ++ */ ++static void ++ixp_q_process(struct ixp_q *q) ++{ ++ IxCryptoAccStatus status; ++ struct ixp_data *ixp = q->ixp_q_data; ++ int auth_off = 0; ++ int auth_len = 0; ++ int crypt_off = 0; ++ int crypt_len = 0; ++ int icv_off = 0; ++ char *crypt_func; ++ ++ dprintk("%s(%p)\n", __FUNCTION__, q); ++ ++ if (q->ixp_q_ccrd) { ++ if (q->ixp_q_ccrd->crd_flags & CRD_F_IV_EXPLICIT) { ++ q->ixp_q_iv = q->ixp_q_ccrd->crd_iv; ++ } else { ++ q->ixp_q_iv = q->ixp_q_iv_data; ++ crypto_copydata(q->ixp_q_crp->crp_flags, q->ixp_q_crp->crp_buf, ++ q->ixp_q_ccrd->crd_inject, ++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen, ++ (caddr_t) q->ixp_q_iv); ++ } ++ ++ if (q->ixp_q_acrd) { ++ auth_off = q->ixp_q_acrd->crd_skip; ++ auth_len = q->ixp_q_acrd->crd_len; ++ icv_off = q->ixp_q_acrd->crd_inject; ++ } ++ ++ crypt_off = q->ixp_q_ccrd->crd_skip; ++ crypt_len = q->ixp_q_ccrd->crd_len; ++ } else { /* if (q->ixp_q_acrd) */ ++ auth_off = q->ixp_q_acrd->crd_skip; ++ auth_len = q->ixp_q_acrd->crd_len; ++ icv_off = q->ixp_q_acrd->crd_inject; ++ } ++ ++ if (q->ixp_q_crp->crp_flags & CRYPTO_F_SKBUF) { ++ struct sk_buff *skb = (struct sk_buff *) q->ixp_q_crp->crp_buf; ++ if (skb_shinfo(skb)->nr_frags) { ++ /* ++ * DAVIDM fix this limitation one day by using ++ * a buffer pool and chaining, it is not currently ++ * needed for current user/kernel space acceleration ++ */ ++ printk("ixp: Cannot handle fragmented skb's yet !\n"); ++ q->ixp_q_crp->crp_etype = ENOENT; ++ goto done; ++ } ++ IX_MBUF_MLEN(&q->ixp_q_mbuf) = ++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = skb->len; ++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = skb->data; ++ } else if (q->ixp_q_crp->crp_flags & CRYPTO_F_IOV) { ++ struct uio *uiop = (struct uio *) q->ixp_q_crp->crp_buf; ++ if (uiop->uio_iovcnt != 1) { ++ /* ++ * DAVIDM fix this limitation one day by using ++ * a buffer pool and chaining, it is not currently ++ * needed for current user/kernel space acceleration ++ */ ++ printk("ixp: Cannot handle more than 1 iovec yet !\n"); ++ q->ixp_q_crp->crp_etype = ENOENT; ++ goto done; ++ } ++ IX_MBUF_MLEN(&q->ixp_q_mbuf) = ++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_len; ++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_base; ++ } else /* contig buffer */ { ++ IX_MBUF_MLEN(&q->ixp_q_mbuf) = ++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_ilen; ++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_buf; ++ } ++ ++ IX_MBUF_PRIV(&q->ixp_q_mbuf) = q; ++ ++ if (ixp->ixp_auth_alg == CRYPTO_SHA1 || ixp->ixp_auth_alg == CRYPTO_MD5) { ++ /* ++ * For SHA1 and MD5 hash, need to create an internal buffer that is big ++ * enough to hold the original data + the appropriate padding for the ++ * hash algorithm. ++ */ ++ UINT8 *tbuf = NULL; ++ ++ IX_MBUF_MLEN(&q->ixp_q_mbuf) = IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = ++ ((IX_MBUF_MLEN(&q->ixp_q_mbuf) * 8) + 72 + 511) / 8; ++ tbuf = kmalloc(IX_MBUF_MLEN(&q->ixp_q_mbuf), SLAB_ATOMIC); ++ ++ if (IX_MBUF_MDATA(&q->ixp_q_mbuf) == NULL) { ++ printk("ixp: kmalloc(%u, SLAB_ATOMIC) failed\n", ++ IX_MBUF_MLEN(&q->ixp_q_mbuf)); ++ q->ixp_q_crp->crp_etype = ENOMEM; ++ goto done; ++ } ++ memcpy(tbuf, &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off], auth_len); ++ ++ /* Set location in client buffer to copy hash into */ ++ q->ixp_hash_dest = ++ &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off + auth_len]; ++ ++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = tbuf; ++ ++ /* Set location in internal buffer for where hash starts */ ++ q->ixp_hash_src = &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_len]; ++ ++ crypt_func = "ixCryptoAccHashPerform"; ++ status = ixCryptoAccHashPerform(ixp->ixp_ctx.authCtx.authAlgo, ++ &q->ixp_q_mbuf, ixp_hash_perform_cb, 0, auth_len, auth_len, ++ &ixp->ixp_hash_key_id); ++ } ++ else { ++ crypt_func = "ixCryptoAccAuthCryptPerform"; ++ status = ixCryptoAccAuthCryptPerform(ixp->ixp_ctx_id, &q->ixp_q_mbuf, ++ NULL, auth_off, auth_len, crypt_off, crypt_len, icv_off, ++ q->ixp_q_iv); ++ } ++ ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) ++ return; ++ ++ if (IX_CRYPTO_ACC_STATUS_QUEUE_FULL == status) { ++ q->ixp_q_crp->crp_etype = ENOMEM; ++ goto done; ++ } ++ ++ printk("ixp: %s failed %u\n", crypt_func, status); ++ q->ixp_q_crp->crp_etype = EINVAL; ++ ++done: ++ crypto_done(q->ixp_q_crp); ++ kmem_cache_free(qcache, q); ++} ++ ++ ++/* ++ * because we cannot process the Q from the Register callback ++ * we do it here on a task Q. ++ */ ++ ++static void ++ixp_process_pending(void *arg) ++{ ++ struct ixp_data *ixp = arg; ++ struct ixp_q *q = NULL; ++ ++ dprintk("%s(%p)\n", __FUNCTION__, arg); ++ ++ if (!ixp) ++ return; ++ ++ while (!list_empty(&ixp->ixp_q)) { ++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list); ++ list_del(&q->ixp_q_list); ++ ixp_q_process(q); ++ } ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ++ixp_process_pending_wq(struct work_struct *work) ++{ ++ struct ixp_data *ixp = container_of(work, struct ixp_data, ++ ixp_pending_work); ++ ixp_process_pending(ixp); ++} ++#endif ++ ++/* ++ * callback for when context registration is complete ++ */ ++ ++static void ++ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, IxCryptoAccStatus status) ++{ ++ int i; ++ struct ixp_data *ixp; ++ struct ixp_q *q; ++ ++ dprintk("%s(%d, %p, %d)\n", __FUNCTION__, ctx_id, bufp, status); ++ ++ /* ++ * free any buffer passed in to this routine ++ */ ++ if (bufp) { ++ IX_MBUF_MLEN(bufp) = IX_MBUF_PKT_LEN(bufp) = 0; ++ kfree(IX_MBUF_MDATA(bufp)); ++ IX_MBUF_MDATA(bufp) = NULL; ++ } ++ ++ for (i = 0; i < ixp_sesnum; i++) { ++ ixp = ixp_sessions[i]; ++ if (ixp && ixp->ixp_ctx_id == ctx_id) ++ break; ++ } ++ if (i >= ixp_sesnum) { ++ printk("ixp: invalid context id %d\n", ctx_id); ++ return; ++ } ++ ++ if (IX_CRYPTO_ACC_STATUS_WAIT == status) { ++ /* this is normal to free the first of two buffers */ ++ dprintk("ixp: register not finished yet.\n"); ++ return; ++ } ++ ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS != status) { ++ printk("ixp: register failed 0x%x\n", status); ++ while (!list_empty(&ixp->ixp_q)) { ++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list); ++ list_del(&q->ixp_q_list); ++ q->ixp_q_crp->crp_etype = EINVAL; ++ crypto_done(q->ixp_q_crp); ++ kmem_cache_free(qcache, q); ++ } ++ return; ++ } ++ ++ /* ++ * we are now registered, we cannot start processing the Q here ++ * or we get strange errors with AES (DES/3DES seem to be ok). ++ */ ++ ixp->ixp_registered = 1; ++ schedule_work(&ixp->ixp_pending_work); ++} ++ ++ ++/* ++ * callback for when data processing is complete ++ */ ++ ++static void ++ixp_perform_cb( ++ UINT32 ctx_id, ++ IX_MBUF *sbufp, ++ IX_MBUF *dbufp, ++ IxCryptoAccStatus status) ++{ ++ struct ixp_q *q; ++ ++ dprintk("%s(%d, %p, %p, 0x%x)\n", __FUNCTION__, ctx_id, sbufp, ++ dbufp, status); ++ ++ if (sbufp == NULL) { ++ printk("ixp: NULL sbuf in ixp_perform_cb\n"); ++ return; ++ } ++ ++ q = IX_MBUF_PRIV(sbufp); ++ if (q == NULL) { ++ printk("ixp: NULL priv in ixp_perform_cb\n"); ++ return; ++ } ++ ++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ printk("ixp: perform failed status=%d\n", status); ++ q->ixp_q_crp->crp_etype = EINVAL; ++ } ++ ++ crypto_done(q->ixp_q_crp); ++ kmem_cache_free(qcache, q); ++} ++ ++ ++/* ++ * registration is not callable at IRQ time, so we defer ++ * to a task queue, this routines completes the registration for us ++ * when the task queue runs ++ * ++ * Unfortunately this means we cannot tell OCF that the driver is blocked, ++ * we do that on the next request. ++ */ ++ ++static void ++ixp_registration(void *arg) ++{ ++ struct ixp_data *ixp = arg; ++ struct ixp_q *q = NULL; ++ IX_MBUF *pri = NULL, *sec = NULL; ++ int status = IX_CRYPTO_ACC_STATUS_SUCCESS; ++ ++ if (!ixp) { ++ printk("ixp: ixp_registration with no arg\n"); ++ return; ++ } ++ ++ if (ixp->ixp_ctx_id != -1) { ++ ixCryptoAccCtxUnregister(ixp->ixp_ctx_id); ++ ixp->ixp_ctx_id = -1; ++ } ++ ++ if (list_empty(&ixp->ixp_q)) { ++ printk("ixp: ixp_registration with no Q\n"); ++ return; ++ } ++ ++ /* ++ * setup the primary and secondary buffers ++ */ ++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list); ++ if (q->ixp_q_acrd) { ++ pri = &ixp->ixp_pri_mbuf; ++ sec = &ixp->ixp_sec_mbuf; ++ IX_MBUF_MLEN(pri) = IX_MBUF_PKT_LEN(pri) = 128; ++ IX_MBUF_MDATA(pri) = (unsigned char *) kmalloc(128, SLAB_ATOMIC); ++ IX_MBUF_MLEN(sec) = IX_MBUF_PKT_LEN(sec) = 128; ++ IX_MBUF_MDATA(sec) = (unsigned char *) kmalloc(128, SLAB_ATOMIC); ++ } ++ ++ /* Only need to register if a crypt op or HMAC op */ ++ if (!(ixp->ixp_auth_alg == CRYPTO_SHA1 || ++ ixp->ixp_auth_alg == CRYPTO_MD5)) { ++ status = ixCryptoAccCtxRegister( ++ &ixp->ixp_ctx, ++ pri, sec, ++ ixp_register_cb, ++ ixp_perform_cb, ++ &ixp->ixp_ctx_id); ++ } ++ else { ++ /* Otherwise we start processing pending q */ ++ schedule_work(&ixp->ixp_pending_work); ++ } ++ ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) ++ return; ++ ++ if (IX_CRYPTO_ACC_STATUS_EXCEED_MAX_TUNNELS == status) { ++ printk("ixp: ixCryptoAccCtxRegister failed (out of tunnels)\n"); ++ ixp_blocked = 1; ++ /* perhaps we should return EGAIN on queued ops ? */ ++ return; ++ } ++ ++ printk("ixp: ixCryptoAccCtxRegister failed %d\n", status); ++ ixp->ixp_ctx_id = -1; ++ ++ /* ++ * everything waiting is toasted ++ */ ++ while (!list_empty(&ixp->ixp_q)) { ++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list); ++ list_del(&q->ixp_q_list); ++ q->ixp_q_crp->crp_etype = ENOENT; ++ crypto_done(q->ixp_q_crp); ++ kmem_cache_free(qcache, q); ++ } ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++static void ++ixp_registration_wq(struct work_struct *work) ++{ ++ struct ixp_data *ixp = container_of(work, struct ixp_data, ++ ixp_registration_work); ++ ixp_registration(ixp); ++} ++#endif ++ ++/* ++ * Process a request. ++ */ ++static int ++ixp_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ struct ixp_data *ixp; ++ unsigned int lid; ++ struct ixp_q *q = NULL; ++ int status; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ /* Sanity check */ ++ if (crp == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ crp->crp_etype = 0; ++ ++ if (ixp_blocked) ++ return ERESTART; ++ ++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ crp->crp_etype = EINVAL; ++ goto done; ++ } ++ ++ /* ++ * find the session we are using ++ */ ++ ++ lid = crp->crp_sid & 0xffffffff; ++ if (lid >= ixp_sesnum || lid == 0 || ixp_sessions == NULL || ++ ixp_sessions[lid] == NULL) { ++ crp->crp_etype = ENOENT; ++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__); ++ goto done; ++ } ++ ixp = ixp_sessions[lid]; ++ ++ /* ++ * setup a new request ready for queuing ++ */ ++ q = kmem_cache_alloc(qcache, SLAB_ATOMIC); ++ if (q == NULL) { ++ dprintk("%s,%d: ENOMEM\n", __FILE__, __LINE__); ++ crp->crp_etype = ENOMEM; ++ goto done; ++ } ++ /* ++ * save some cycles by only zeroing the important bits ++ */ ++ memset(&q->ixp_q_mbuf, 0, sizeof(q->ixp_q_mbuf)); ++ q->ixp_q_ccrd = NULL; ++ q->ixp_q_acrd = NULL; ++ q->ixp_q_crp = crp; ++ q->ixp_q_data = ixp; ++ ++ /* ++ * point the cipher and auth descriptors appropriately ++ * check that we have something to do ++ */ ++ if (crp->crp_desc->crd_alg == ixp->ixp_cipher_alg) ++ q->ixp_q_ccrd = crp->crp_desc; ++ else if (crp->crp_desc->crd_alg == ixp->ixp_auth_alg) ++ q->ixp_q_acrd = crp->crp_desc; ++ else { ++ crp->crp_etype = ENOENT; ++ dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__); ++ goto done; ++ } ++ if (crp->crp_desc->crd_next) { ++ if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_cipher_alg) ++ q->ixp_q_ccrd = crp->crp_desc->crd_next; ++ else if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_auth_alg) ++ q->ixp_q_acrd = crp->crp_desc->crd_next; ++ else { ++ crp->crp_etype = ENOENT; ++ dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__); ++ goto done; ++ } ++ } ++ ++ /* ++ * If there is a direction change for this context then we mark it as ++ * unregistered and re-register is for the new direction. This is not ++ * a very expensive operation and currently only tends to happen when ++ * user-space application are doing benchmarks ++ * ++ * DM - we should be checking for pending requests before unregistering. ++ */ ++ if (q->ixp_q_ccrd && ixp->ixp_registered && ++ ixp->ixp_crd_flags != (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT)) { ++ dprintk("%s - detected direction change on session\n", __FUNCTION__); ++ ixp->ixp_registered = 0; ++ } ++ ++ /* ++ * if we are registered, call straight into the perform code ++ */ ++ if (ixp->ixp_registered) { ++ ixp_q_process(q); ++ return 0; ++ } ++ ++ /* ++ * the only part of the context not set in newsession is the direction ++ * dependent parts ++ */ ++ if (q->ixp_q_ccrd) { ++ ixp->ixp_crd_flags = (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT); ++ if (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT) { ++ ixp->ixp_ctx.operation = q->ixp_q_acrd ? ++ IX_CRYPTO_ACC_OP_ENCRYPT_AUTH : IX_CRYPTO_ACC_OP_ENCRYPT; ++ } else { ++ ixp->ixp_ctx.operation = q->ixp_q_acrd ? ++ IX_CRYPTO_ACC_OP_AUTH_DECRYPT : IX_CRYPTO_ACC_OP_DECRYPT; ++ } ++ } else { ++ /* q->ixp_q_acrd must be set if we are here */ ++ ixp->ixp_ctx.operation = IX_CRYPTO_ACC_OP_AUTH_CALC; ++ } ++ ++ status = list_empty(&ixp->ixp_q); ++ list_add_tail(&q->ixp_q_list, &ixp->ixp_q); ++ if (status) ++ schedule_work(&ixp->ixp_registration_work); ++ return 0; ++ ++done: ++ if (q) ++ kmem_cache_free(qcache, q); ++ crypto_done(crp); ++ return 0; ++} ++ ++ ++#ifdef __ixp46X ++/* ++ * key processing support for the ixp465 ++ */ ++ ++ ++/* ++ * copy a BN (LE) into a buffer (BE) an fill out the op appropriately ++ * assume zeroed and only copy bits that are significant ++ */ ++ ++static int ++ixp_copy_ibuf(struct crparam *p, IxCryptoAccPkeEauOperand *op, UINT32 *buf) ++{ ++ unsigned char *src = (unsigned char *) p->crp_p; ++ unsigned char *dst; ++ int len, bits = p->crp_nbits; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ if (bits > MAX_IOP_SIZE * sizeof(UINT32) * 8) { ++ dprintk("%s - ibuf too big (%d > %d)\n", __FUNCTION__, ++ bits, MAX_IOP_SIZE * sizeof(UINT32) * 8); ++ return -1; ++ } ++ ++ len = (bits + 31) / 32; /* the number UINT32's needed */ ++ ++ dst = (unsigned char *) &buf[len]; ++ dst--; ++ ++ while (bits > 0) { ++ *dst-- = *src++; ++ bits -= 8; ++ } ++ ++#if 0 /* no need to zero remaining bits as it is done during request alloc */ ++ while (dst > (unsigned char *) buf) ++ *dst-- = '\0'; ++#endif ++ ++ op->pData = buf; ++ op->dataLen = len; ++ return 0; ++} ++ ++/* ++ * copy out the result, be as forgiving as we can about small output buffers ++ */ ++ ++static int ++ixp_copy_obuf(struct crparam *p, IxCryptoAccPkeEauOpResult *op, UINT32 *buf) ++{ ++ unsigned char *dst = (unsigned char *) p->crp_p; ++ unsigned char *src = (unsigned char *) buf; ++ int len, z, bits = p->crp_nbits; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ len = op->dataLen * sizeof(UINT32); ++ ++ /* skip leading zeroes to be small buffer friendly */ ++ z = 0; ++ while (z < len && src[z] == '\0') ++ z++; ++ ++ src += len; ++ src--; ++ len -= z; ++ ++ while (len > 0 && bits > 0) { ++ *dst++ = *src--; ++ len--; ++ bits -= 8; ++ } ++ ++ while (bits > 0) { ++ *dst++ = '\0'; ++ bits -= 8; ++ } ++ ++ if (len > 0) { ++ dprintk("%s - obuf is %d (z=%d, ob=%d) bytes too small\n", ++ __FUNCTION__, len, z, p->crp_nbits / 8); ++ return -1; ++ } ++ ++ return 0; ++} ++ ++ ++/* ++ * the parameter offsets for exp_mod ++ */ ++ ++#define IXP_PARAM_BASE 0 ++#define IXP_PARAM_EXP 1 ++#define IXP_PARAM_MOD 2 ++#define IXP_PARAM_RES 3 ++ ++/* ++ * key processing complete callback, is also used to start processing ++ * by passing a NULL for pResult ++ */ ++ ++static void ++ixp_kperform_cb( ++ IxCryptoAccPkeEauOperation operation, ++ IxCryptoAccPkeEauOpResult *pResult, ++ BOOL carryOrBorrow, ++ IxCryptoAccStatus status) ++{ ++ struct ixp_pkq *q, *tmp; ++ unsigned long flags; ++ ++ dprintk("%s(0x%x, %p, %d, 0x%x)\n", __FUNCTION__, operation, pResult, ++ carryOrBorrow, status); ++ ++ /* handle a completed request */ ++ if (pResult) { ++ if (ixp_pk_cur && &ixp_pk_cur->pkq_result == pResult) { ++ q = ixp_pk_cur; ++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ dprintk("%s() - op failed 0x%x\n", __FUNCTION__, status); ++ q->pkq_krp->krp_status = ERANGE; /* could do better */ ++ } else { ++ /* copy out the result */ ++ if (ixp_copy_obuf(&q->pkq_krp->krp_param[IXP_PARAM_RES], ++ &q->pkq_result, q->pkq_obuf)) ++ q->pkq_krp->krp_status = ERANGE; ++ } ++ crypto_kdone(q->pkq_krp); ++ kfree(q); ++ ixp_pk_cur = NULL; ++ } else ++ printk("%s - callback with invalid result pointer\n", __FUNCTION__); ++ } ++ ++ spin_lock_irqsave(&ixp_pkq_lock, flags); ++ if (ixp_pk_cur || list_empty(&ixp_pkq)) { ++ spin_unlock_irqrestore(&ixp_pkq_lock, flags); ++ return; ++ } ++ ++ list_for_each_entry_safe(q, tmp, &ixp_pkq, pkq_list) { ++ ++ list_del(&q->pkq_list); ++ ixp_pk_cur = q; ++ ++ spin_unlock_irqrestore(&ixp_pkq_lock, flags); ++ ++ status = ixCryptoAccPkeEauPerform( ++ IX_CRYPTO_ACC_OP_EAU_MOD_EXP, ++ &q->pkq_op, ++ ixp_kperform_cb, ++ &q->pkq_result); ++ ++ if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ dprintk("%s() - ixCryptoAccPkeEauPerform SUCCESS\n", __FUNCTION__); ++ return; /* callback will return here for callback */ ++ } else if (status == IX_CRYPTO_ACC_STATUS_RETRY) { ++ printk("%s() - ixCryptoAccPkeEauPerform RETRY\n", __FUNCTION__); ++ } else { ++ printk("%s() - ixCryptoAccPkeEauPerform failed %d\n", ++ __FUNCTION__, status); ++ } ++ q->pkq_krp->krp_status = ERANGE; /* could do better */ ++ crypto_kdone(q->pkq_krp); ++ kfree(q); ++ spin_lock_irqsave(&ixp_pkq_lock, flags); ++ } ++ spin_unlock_irqrestore(&ixp_pkq_lock, flags); ++} ++ ++ ++static int ++ixp_kprocess(device_t dev, struct cryptkop *krp, int hint) ++{ ++ struct ixp_pkq *q; ++ int rc = 0; ++ unsigned long flags; ++ ++ dprintk("%s l1=%d l2=%d l3=%d l4=%d\n", __FUNCTION__, ++ krp->krp_param[IXP_PARAM_BASE].crp_nbits, ++ krp->krp_param[IXP_PARAM_EXP].crp_nbits, ++ krp->krp_param[IXP_PARAM_MOD].crp_nbits, ++ krp->krp_param[IXP_PARAM_RES].crp_nbits); ++ ++ ++ if (krp->krp_op != CRK_MOD_EXP) { ++ krp->krp_status = EOPNOTSUPP; ++ goto err; ++ } ++ ++ q = (struct ixp_pkq *) kmalloc(sizeof(*q), GFP_KERNEL); ++ if (q == NULL) { ++ krp->krp_status = ENOMEM; ++ goto err; ++ } ++ ++ /* ++ * The PKE engine does not appear to zero the output buffer ++ * appropriately, so we need to do it all here. ++ */ ++ memset(q, 0, sizeof(*q)); ++ ++ q->pkq_krp = krp; ++ INIT_LIST_HEAD(&q->pkq_list); ++ ++ if (ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_BASE], &q->pkq_op.modExpOpr.M, ++ q->pkq_ibuf0)) ++ rc = 1; ++ if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_EXP], ++ &q->pkq_op.modExpOpr.e, q->pkq_ibuf1)) ++ rc = 2; ++ if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_MOD], ++ &q->pkq_op.modExpOpr.N, q->pkq_ibuf2)) ++ rc = 3; ++ ++ if (rc) { ++ kfree(q); ++ krp->krp_status = ERANGE; ++ goto err; ++ } ++ ++ q->pkq_result.pData = q->pkq_obuf; ++ q->pkq_result.dataLen = ++ (krp->krp_param[IXP_PARAM_RES].crp_nbits + 31) / 32; ++ ++ spin_lock_irqsave(&ixp_pkq_lock, flags); ++ list_add_tail(&q->pkq_list, &ixp_pkq); ++ spin_unlock_irqrestore(&ixp_pkq_lock, flags); ++ ++ if (!ixp_pk_cur) ++ ixp_kperform_cb(0, NULL, 0, 0); ++ return (0); ++ ++err: ++ crypto_kdone(krp); ++ return (0); ++} ++ ++ ++ ++#ifdef CONFIG_OCF_RANDOMHARVEST ++/* ++ * We run the random number generator output through SHA so that it ++ * is FIPS compliant. ++ */ ++ ++static volatile int sha_done = 0; ++static unsigned char sha_digest[20]; ++ ++static void ++ixp_hash_cb(UINT8 *digest, IxCryptoAccStatus status) ++{ ++ dprintk("%s(%p, %d)\n", __FUNCTION__, digest, status); ++ if (sha_digest != digest) ++ printk("digest error\n"); ++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) ++ sha_done = 1; ++ else ++ sha_done = -status; ++} ++ ++static int ++ixp_read_random(void *arg, u_int32_t *buf, int maxwords) ++{ ++ IxCryptoAccStatus status; ++ int i, n, rc; ++ ++ dprintk("%s(%p, %d)\n", __FUNCTION__, buf, maxwords); ++ memset(buf, 0, maxwords * sizeof(*buf)); ++ status = ixCryptoAccPkePseudoRandomNumberGet(maxwords, buf); ++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ dprintk("%s: ixCryptoAccPkePseudoRandomNumberGet failed %d\n", ++ __FUNCTION__, status); ++ return 0; ++ } ++ ++ /* ++ * run the random data through SHA to make it look more random ++ */ ++ ++ n = sizeof(sha_digest); /* process digest bytes at a time */ ++ ++ rc = 0; ++ for (i = 0; i < maxwords; i += n / sizeof(*buf)) { ++ if ((maxwords - i) * sizeof(*buf) < n) ++ n = (maxwords - i) * sizeof(*buf); ++ sha_done = 0; ++ status = ixCryptoAccPkeHashPerform(IX_CRYPTO_ACC_AUTH_SHA1, ++ (UINT8 *) &buf[i], n, ixp_hash_cb, sha_digest); ++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) { ++ dprintk("ixCryptoAccPkeHashPerform failed %d\n", status); ++ return -EIO; ++ } ++ while (!sha_done) ++ schedule(); ++ if (sha_done < 0) { ++ dprintk("ixCryptoAccPkeHashPerform failed CB %d\n", -sha_done); ++ return 0; ++ } ++ memcpy(&buf[i], sha_digest, n); ++ rc += n / sizeof(*buf);; ++ } ++ ++ return rc; ++} ++#endif /* CONFIG_OCF_RANDOMHARVEST */ ++ ++#endif /* __ixp46X */ ++ ++ ++ ++/* ++ * our driver startup and shutdown routines ++ */ ++ ++static int ++ixp_init(void) ++{ ++ dprintk("%s(%p)\n", __FUNCTION__, ixp_init); ++ ++ if (ixp_init_crypto && ixCryptoAccInit() != IX_CRYPTO_ACC_STATUS_SUCCESS) ++ printk("ixCryptoAccInit failed, assuming already initialised!\n"); ++ ++ qcache = kmem_cache_create("ixp4xx_q", sizeof(struct ixp_q), 0, ++ SLAB_HWCACHE_ALIGN, NULL ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++ , NULL ++#endif ++ ); ++ if (!qcache) { ++ printk("failed to create Qcache\n"); ++ return -ENOENT; ++ } ++ ++ memset(&ixpdev, 0, sizeof(ixpdev)); ++ softc_device_init(&ixpdev, "ixp4xx", 0, ixp_methods); ++ ++ ixp_id = crypto_get_driverid(softc_get_device(&ixpdev), ++ CRYPTOCAP_F_HARDWARE); ++ if (ixp_id < 0) ++ panic("IXP/OCF crypto device cannot initialize!"); ++ ++#define REGISTER(alg) \ ++ crypto_register(ixp_id,alg,0,0) ++ ++ REGISTER(CRYPTO_DES_CBC); ++ REGISTER(CRYPTO_3DES_CBC); ++ REGISTER(CRYPTO_RIJNDAEL128_CBC); ++#ifdef CONFIG_OCF_IXP4XX_SHA1_MD5 ++ REGISTER(CRYPTO_MD5); ++ REGISTER(CRYPTO_SHA1); ++#endif ++ REGISTER(CRYPTO_MD5_HMAC); ++ REGISTER(CRYPTO_SHA1_HMAC); ++#undef REGISTER ++ ++#ifdef __ixp46X ++ spin_lock_init(&ixp_pkq_lock); ++ /* ++ * we do not enable the go fast options here as they can potentially ++ * allow timing based attacks ++ * ++ * http://www.openssl.org/news/secadv_20030219.txt ++ */ ++ ixCryptoAccPkeEauExpConfig(0, 0); ++ crypto_kregister(ixp_id, CRK_MOD_EXP, 0); ++#ifdef CONFIG_OCF_RANDOMHARVEST ++ crypto_rregister(ixp_id, ixp_read_random, NULL); ++#endif ++#endif ++ ++ return 0; ++} ++ ++static void ++ixp_exit(void) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ crypto_unregister_all(ixp_id); ++ ixp_id = -1; ++ kmem_cache_destroy(qcache); ++ qcache = NULL; ++} ++ ++module_init(ixp_init); ++module_exit(ixp_exit); ++ ++MODULE_LICENSE("Dual BSD/GPL"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("ixp (OCF module for IXP4xx crypto)"); +--- /dev/null ++++ b/crypto/ocf/cryptodev.c +@@ -0,0 +1,1048 @@ ++/* $OpenBSD: cryptodev.c,v 1.52 2002/06/19 07:22:46 deraadt Exp $ */ ++ ++/*- ++ * Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * The license and original author are listed below. ++ * ++ * Copyright (c) 2001 Theo de Raadt ++ * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored in part by the Defense Advanced Research Projects ++ * Agency (DARPA) and Air Force Research Laboratory, Air Force ++ * Materiel Command, USAF, under agreement number F30602-01-2-0537. ++ * ++__FBSDID("$FreeBSD: src/sys/opencrypto/cryptodev.c,v 1.34 2007/05/09 19:37:02 gnn Exp $"); ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++extern asmlinkage long sys_dup(unsigned int fildes); ++ ++#define debug cryptodev_debug ++int cryptodev_debug = 0; ++module_param(cryptodev_debug, int, 0644); ++MODULE_PARM_DESC(cryptodev_debug, "Enable cryptodev debug"); ++ ++struct csession_info { ++ u_int16_t blocksize; ++ u_int16_t minkey, maxkey; ++ ++ u_int16_t keysize; ++ /* u_int16_t hashsize; */ ++ u_int16_t authsize; ++ /* u_int16_t ctxsize; */ ++}; ++ ++struct csession { ++ struct list_head list; ++ u_int64_t sid; ++ u_int32_t ses; ++ ++ wait_queue_head_t waitq; ++ ++ u_int32_t cipher; ++ ++ u_int32_t mac; ++ ++ caddr_t key; ++ int keylen; ++ u_char tmp_iv[EALG_MAX_BLOCK_LEN]; ++ ++ caddr_t mackey; ++ int mackeylen; ++ ++ struct csession_info info; ++ ++ struct iovec iovec; ++ struct uio uio; ++ int error; ++}; ++ ++struct fcrypt { ++ struct list_head csessions; ++ int sesn; ++}; ++ ++static struct csession *csefind(struct fcrypt *, u_int); ++static int csedelete(struct fcrypt *, struct csession *); ++static struct csession *cseadd(struct fcrypt *, struct csession *); ++static struct csession *csecreate(struct fcrypt *, u_int64_t, ++ struct cryptoini *crie, struct cryptoini *cria, struct csession_info *); ++static int csefree(struct csession *); ++ ++static int cryptodev_op(struct csession *, struct crypt_op *); ++static int cryptodev_key(struct crypt_kop *); ++static int cryptodev_find(struct crypt_find_op *); ++ ++static int cryptodev_cb(void *); ++static int cryptodev_open(struct inode *inode, struct file *filp); ++ ++/* ++ * Check a crypto identifier to see if it requested ++ * a valid crid and it's capabilities match. ++ */ ++static int ++checkcrid(int crid) ++{ ++ int hid = crid & ~(CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE); ++ int typ = crid & (CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE); ++ int caps = 0; ++ ++ /* if the user hasn't selected a driver, then just call newsession */ ++ if (hid == 0 && typ != 0) ++ return 0; ++ ++ caps = crypto_getcaps(hid); ++ ++ /* didn't find anything with capabilities */ ++ if (caps == 0) { ++ dprintk("%s: hid=%x typ=%x not matched\n", __FUNCTION__, hid, typ); ++ return EINVAL; ++ } ++ ++ /* the user didn't specify SW or HW, so the driver is ok */ ++ if (typ == 0) ++ return 0; ++ ++ /* if the type specified didn't match */ ++ if (typ != (caps & (CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE))) { ++ dprintk("%s: hid=%x typ=%x caps=%x not matched\n", __FUNCTION__, ++ hid, typ, caps); ++ return EINVAL; ++ } ++ ++ return 0; ++} ++ ++static int ++cryptodev_op(struct csession *cse, struct crypt_op *cop) ++{ ++ struct cryptop *crp = NULL; ++ struct cryptodesc *crde = NULL, *crda = NULL; ++ int error = 0; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (cop->len > CRYPTO_MAX_DATA_LEN) { ++ dprintk("%s: %d > %d\n", __FUNCTION__, cop->len, CRYPTO_MAX_DATA_LEN); ++ return (E2BIG); ++ } ++ ++ if (cse->info.blocksize && (cop->len % cse->info.blocksize) != 0) { ++ dprintk("%s: blocksize=%d len=%d\n", __FUNCTION__, cse->info.blocksize, ++ cop->len); ++ return (EINVAL); ++ } ++ ++ cse->uio.uio_iov = &cse->iovec; ++ cse->uio.uio_iovcnt = 1; ++ cse->uio.uio_offset = 0; ++#if 0 ++ cse->uio.uio_resid = cop->len; ++ cse->uio.uio_segflg = UIO_SYSSPACE; ++ cse->uio.uio_rw = UIO_WRITE; ++ cse->uio.uio_td = td; ++#endif ++ cse->uio.uio_iov[0].iov_len = cop->len; ++ if (cse->info.authsize) ++ cse->uio.uio_iov[0].iov_len += cse->info.authsize; ++ cse->uio.uio_iov[0].iov_base = kmalloc(cse->uio.uio_iov[0].iov_len, ++ GFP_KERNEL); ++ ++ if (cse->uio.uio_iov[0].iov_base == NULL) { ++ dprintk("%s: iov_base kmalloc(%d) failed\n", __FUNCTION__, ++ cse->uio.uio_iov[0].iov_len); ++ return (ENOMEM); ++ } ++ ++ crp = crypto_getreq((cse->info.blocksize != 0) + (cse->info.authsize != 0)); ++ if (crp == NULL) { ++ dprintk("%s: ENOMEM\n", __FUNCTION__); ++ error = ENOMEM; ++ goto bail; ++ } ++ ++ if (cse->info.authsize) { ++ crda = crp->crp_desc; ++ if (cse->info.blocksize) ++ crde = crda->crd_next; ++ } else { ++ if (cse->info.blocksize) ++ crde = crp->crp_desc; ++ else { ++ dprintk("%s: bad request\n", __FUNCTION__); ++ error = EINVAL; ++ goto bail; ++ } ++ } ++ ++ if ((error = copy_from_user(cse->uio.uio_iov[0].iov_base, cop->src, ++ cop->len))) { ++ dprintk("%s: bad copy\n", __FUNCTION__); ++ goto bail; ++ } ++ ++ if (crda) { ++ crda->crd_skip = 0; ++ crda->crd_len = cop->len; ++ crda->crd_inject = cop->len; ++ ++ crda->crd_alg = cse->mac; ++ crda->crd_key = cse->mackey; ++ crda->crd_klen = cse->mackeylen * 8; ++ } ++ ++ if (crde) { ++ if (cop->op == COP_ENCRYPT) ++ crde->crd_flags |= CRD_F_ENCRYPT; ++ else ++ crde->crd_flags &= ~CRD_F_ENCRYPT; ++ crde->crd_len = cop->len; ++ crde->crd_inject = 0; ++ ++ crde->crd_alg = cse->cipher; ++ crde->crd_key = cse->key; ++ crde->crd_klen = cse->keylen * 8; ++ } ++ ++ crp->crp_ilen = cse->uio.uio_iov[0].iov_len; ++ crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIMM ++ | (cop->flags & COP_F_BATCH); ++ crp->crp_buf = (caddr_t)&cse->uio; ++ crp->crp_callback = (int (*) (struct cryptop *)) cryptodev_cb; ++ crp->crp_sid = cse->sid; ++ crp->crp_opaque = (void *)cse; ++ ++ if (cop->iv) { ++ if (crde == NULL) { ++ error = EINVAL; ++ dprintk("%s no crde\n", __FUNCTION__); ++ goto bail; ++ } ++ if (cse->cipher == CRYPTO_ARC4) { /* XXX use flag? */ ++ error = EINVAL; ++ dprintk("%s arc4 with IV\n", __FUNCTION__); ++ goto bail; ++ } ++ if ((error = copy_from_user(cse->tmp_iv, cop->iv, ++ cse->info.blocksize))) { ++ dprintk("%s bad iv copy\n", __FUNCTION__); ++ goto bail; ++ } ++ memcpy(crde->crd_iv, cse->tmp_iv, cse->info.blocksize); ++ crde->crd_flags |= CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT; ++ crde->crd_skip = 0; ++ } else if (cse->cipher == CRYPTO_ARC4) { /* XXX use flag? */ ++ crde->crd_skip = 0; ++ } else if (crde) { ++ crde->crd_flags |= CRD_F_IV_PRESENT; ++ crde->crd_skip = cse->info.blocksize; ++ crde->crd_len -= cse->info.blocksize; ++ } ++ ++ if (cop->mac && crda == NULL) { ++ error = EINVAL; ++ dprintk("%s no crda\n", __FUNCTION__); ++ goto bail; ++ } ++ ++ /* ++ * Let the dispatch run unlocked, then, interlock against the ++ * callback before checking if the operation completed and going ++ * to sleep. This insures drivers don't inherit our lock which ++ * results in a lock order reversal between crypto_dispatch forced ++ * entry and the crypto_done callback into us. ++ */ ++ error = crypto_dispatch(crp); ++ if (error == 0) { ++ dprintk("%s about to WAIT\n", __FUNCTION__); ++ /* ++ * we really need to wait for driver to complete to maintain ++ * state, luckily interrupts will be remembered ++ */ ++ do { ++ error = wait_event_interruptible(crp->crp_waitq, ++ ((crp->crp_flags & CRYPTO_F_DONE) != 0)); ++ /* ++ * we can't break out of this loop or we will leave behind ++ * a huge mess, however, staying here means if your driver ++ * is broken user applications can hang and not be killed. ++ * The solution, fix your driver :-) ++ */ ++ if (error) { ++ schedule(); ++ error = 0; ++ } ++ } while ((crp->crp_flags & CRYPTO_F_DONE) == 0); ++ dprintk("%s finished WAITING error=%d\n", __FUNCTION__, error); ++ } ++ ++ if (crp->crp_etype != 0) { ++ error = crp->crp_etype; ++ dprintk("%s error in crp processing\n", __FUNCTION__); ++ goto bail; ++ } ++ ++ if (cse->error) { ++ error = cse->error; ++ dprintk("%s error in cse processing\n", __FUNCTION__); ++ goto bail; ++ } ++ ++ if (cop->dst && (error = copy_to_user(cop->dst, ++ cse->uio.uio_iov[0].iov_base, cop->len))) { ++ dprintk("%s bad dst copy\n", __FUNCTION__); ++ goto bail; ++ } ++ ++ if (cop->mac && ++ (error=copy_to_user(cop->mac, ++ (caddr_t)cse->uio.uio_iov[0].iov_base + cop->len, ++ cse->info.authsize))) { ++ dprintk("%s bad mac copy\n", __FUNCTION__); ++ goto bail; ++ } ++ ++bail: ++ if (crp) ++ crypto_freereq(crp); ++ if (cse->uio.uio_iov[0].iov_base) ++ kfree(cse->uio.uio_iov[0].iov_base); ++ ++ return (error); ++} ++ ++static int ++cryptodev_cb(void *op) ++{ ++ struct cryptop *crp = (struct cryptop *) op; ++ struct csession *cse = (struct csession *)crp->crp_opaque; ++ int error; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ error = crp->crp_etype; ++ if (error == EAGAIN) { ++ crp->crp_flags &= ~CRYPTO_F_DONE; ++#ifdef NOTYET ++ /* ++ * DAVIDM I am fairly sure that we should turn this into a batch ++ * request to stop bad karma/lockup, revisit ++ */ ++ crp->crp_flags |= CRYPTO_F_BATCH; ++#endif ++ return crypto_dispatch(crp); ++ } ++ if (error != 0 || (crp->crp_flags & CRYPTO_F_DONE)) { ++ cse->error = error; ++ wake_up_interruptible(&crp->crp_waitq); ++ } ++ return (0); ++} ++ ++static int ++cryptodevkey_cb(void *op) ++{ ++ struct cryptkop *krp = (struct cryptkop *) op; ++ dprintk("%s()\n", __FUNCTION__); ++ wake_up_interruptible(&krp->krp_waitq); ++ return (0); ++} ++ ++static int ++cryptodev_key(struct crypt_kop *kop) ++{ ++ struct cryptkop *krp = NULL; ++ int error = EINVAL; ++ int in, out, size, i; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (kop->crk_iparams + kop->crk_oparams > CRK_MAXPARAM) { ++ dprintk("%s params too big\n", __FUNCTION__); ++ return (EFBIG); ++ } ++ ++ in = kop->crk_iparams; ++ out = kop->crk_oparams; ++ switch (kop->crk_op) { ++ case CRK_MOD_EXP: ++ if (in == 3 && out == 1) ++ break; ++ return (EINVAL); ++ case CRK_MOD_EXP_CRT: ++ if (in == 6 && out == 1) ++ break; ++ return (EINVAL); ++ case CRK_DSA_SIGN: ++ if (in == 5 && out == 2) ++ break; ++ return (EINVAL); ++ case CRK_DSA_VERIFY: ++ if (in == 7 && out == 0) ++ break; ++ return (EINVAL); ++ case CRK_DH_COMPUTE_KEY: ++ if (in == 3 && out == 1) ++ break; ++ return (EINVAL); ++ default: ++ return (EINVAL); ++ } ++ ++ krp = (struct cryptkop *)kmalloc(sizeof *krp, GFP_KERNEL); ++ if (!krp) ++ return (ENOMEM); ++ bzero(krp, sizeof *krp); ++ krp->krp_op = kop->crk_op; ++ krp->krp_status = kop->crk_status; ++ krp->krp_iparams = kop->crk_iparams; ++ krp->krp_oparams = kop->crk_oparams; ++ krp->krp_crid = kop->crk_crid; ++ krp->krp_status = 0; ++ krp->krp_flags = CRYPTO_KF_CBIMM; ++ krp->krp_callback = (int (*) (struct cryptkop *)) cryptodevkey_cb; ++ init_waitqueue_head(&krp->krp_waitq); ++ ++ for (i = 0; i < CRK_MAXPARAM; i++) ++ krp->krp_param[i].crp_nbits = kop->crk_param[i].crp_nbits; ++ for (i = 0; i < krp->krp_iparams + krp->krp_oparams; i++) { ++ size = (krp->krp_param[i].crp_nbits + 7) / 8; ++ if (size == 0) ++ continue; ++ krp->krp_param[i].crp_p = (caddr_t) kmalloc(size, GFP_KERNEL); ++ if (i >= krp->krp_iparams) ++ continue; ++ error = copy_from_user(krp->krp_param[i].crp_p, ++ kop->crk_param[i].crp_p, size); ++ if (error) ++ goto fail; ++ } ++ ++ error = crypto_kdispatch(krp); ++ if (error) ++ goto fail; ++ ++ do { ++ error = wait_event_interruptible(krp->krp_waitq, ++ ((krp->krp_flags & CRYPTO_KF_DONE) != 0)); ++ /* ++ * we can't break out of this loop or we will leave behind ++ * a huge mess, however, staying here means if your driver ++ * is broken user applications can hang and not be killed. ++ * The solution, fix your driver :-) ++ */ ++ if (error) { ++ schedule(); ++ error = 0; ++ } ++ } while ((krp->krp_flags & CRYPTO_KF_DONE) == 0); ++ ++ dprintk("%s finished WAITING error=%d\n", __FUNCTION__, error); ++ ++ kop->crk_crid = krp->krp_crid; /* device that did the work */ ++ if (krp->krp_status != 0) { ++ error = krp->krp_status; ++ goto fail; ++ } ++ ++ for (i = krp->krp_iparams; i < krp->krp_iparams + krp->krp_oparams; i++) { ++ size = (krp->krp_param[i].crp_nbits + 7) / 8; ++ if (size == 0) ++ continue; ++ error = copy_to_user(kop->crk_param[i].crp_p, krp->krp_param[i].crp_p, ++ size); ++ if (error) ++ goto fail; ++ } ++ ++fail: ++ if (krp) { ++ kop->crk_status = krp->krp_status; ++ for (i = 0; i < CRK_MAXPARAM; i++) { ++ if (krp->krp_param[i].crp_p) ++ kfree(krp->krp_param[i].crp_p); ++ } ++ kfree(krp); ++ } ++ return (error); ++} ++ ++static int ++cryptodev_find(struct crypt_find_op *find) ++{ ++ device_t dev; ++ ++ if (find->crid != -1) { ++ dev = crypto_find_device_byhid(find->crid); ++ if (dev == NULL) ++ return (ENOENT); ++ strlcpy(find->name, device_get_nameunit(dev), ++ sizeof(find->name)); ++ } else { ++ find->crid = crypto_find_driver(find->name); ++ if (find->crid == -1) ++ return (ENOENT); ++ } ++ return (0); ++} ++ ++static struct csession * ++csefind(struct fcrypt *fcr, u_int ses) ++{ ++ struct csession *cse; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ list_for_each_entry(cse, &fcr->csessions, list) ++ if (cse->ses == ses) ++ return (cse); ++ return (NULL); ++} ++ ++static int ++csedelete(struct fcrypt *fcr, struct csession *cse_del) ++{ ++ struct csession *cse; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ list_for_each_entry(cse, &fcr->csessions, list) { ++ if (cse == cse_del) { ++ list_del(&cse->list); ++ return (1); ++ } ++ } ++ return (0); ++} ++ ++static struct csession * ++cseadd(struct fcrypt *fcr, struct csession *cse) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ list_add_tail(&cse->list, &fcr->csessions); ++ cse->ses = fcr->sesn++; ++ return (cse); ++} ++ ++static struct csession * ++csecreate(struct fcrypt *fcr, u_int64_t sid, struct cryptoini *crie, ++ struct cryptoini *cria, struct csession_info *info) ++{ ++ struct csession *cse; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ cse = (struct csession *) kmalloc(sizeof(struct csession), GFP_KERNEL); ++ if (cse == NULL) ++ return NULL; ++ memset(cse, 0, sizeof(struct csession)); ++ ++ INIT_LIST_HEAD(&cse->list); ++ init_waitqueue_head(&cse->waitq); ++ ++ cse->key = crie->cri_key; ++ cse->keylen = crie->cri_klen/8; ++ cse->mackey = cria->cri_key; ++ cse->mackeylen = cria->cri_klen/8; ++ cse->sid = sid; ++ cse->cipher = crie->cri_alg; ++ cse->mac = cria->cri_alg; ++ cse->info = *info; ++ cseadd(fcr, cse); ++ return (cse); ++} ++ ++static int ++csefree(struct csession *cse) ++{ ++ int error; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ error = crypto_freesession(cse->sid); ++ if (cse->key) ++ kfree(cse->key); ++ if (cse->mackey) ++ kfree(cse->mackey); ++ kfree(cse); ++ return(error); ++} ++ ++static int ++cryptodev_ioctl( ++ struct inode *inode, ++ struct file *filp, ++ unsigned int cmd, ++ unsigned long arg) ++{ ++ struct cryptoini cria, crie; ++ struct fcrypt *fcr = filp->private_data; ++ struct csession *cse; ++ struct csession_info info; ++ struct session2_op sop; ++ struct crypt_op cop; ++ struct crypt_kop kop; ++ struct crypt_find_op fop; ++ u_int64_t sid; ++ u_int32_t ses; ++ int feat, fd, error = 0, crid; ++ mm_segment_t fs; ++ ++ dprintk("%s(cmd=%x arg=%lx)\n", __FUNCTION__, cmd, arg); ++ ++ switch (cmd) { ++ ++ case CRIOGET: { ++ dprintk("%s(CRIOGET)\n", __FUNCTION__); ++ fs = get_fs(); ++ set_fs(get_ds()); ++ for (fd = 0; fd < files_fdtable(current->files)->max_fds; fd++) ++ if (files_fdtable(current->files)->fd[fd] == filp) ++ break; ++ fd = sys_dup(fd); ++ set_fs(fs); ++ put_user(fd, (int *) arg); ++ return IS_ERR_VALUE(fd) ? fd : 0; ++ } ++ ++#define CIOCGSESSSTR (cmd == CIOCGSESSION ? "CIOCGSESSION" : "CIOCGSESSION2") ++ case CIOCGSESSION: ++ case CIOCGSESSION2: ++ dprintk("%s(%s)\n", __FUNCTION__, CIOCGSESSSTR); ++ memset(&crie, 0, sizeof(crie)); ++ memset(&cria, 0, sizeof(cria)); ++ memset(&info, 0, sizeof(info)); ++ memset(&sop, 0, sizeof(sop)); ++ ++ if (copy_from_user(&sop, (void*)arg, (cmd == CIOCGSESSION) ? ++ sizeof(struct session_op) : sizeof(sop))) { ++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EFAULT; ++ goto bail; ++ } ++ ++ switch (sop.cipher) { ++ case 0: ++ dprintk("%s(%s) - no cipher\n", __FUNCTION__, CIOCGSESSSTR); ++ break; ++ case CRYPTO_NULL_CBC: ++ info.blocksize = NULL_BLOCK_LEN; ++ info.minkey = NULL_MIN_KEY_LEN; ++ info.maxkey = NULL_MAX_KEY_LEN; ++ break; ++ case CRYPTO_DES_CBC: ++ info.blocksize = DES_BLOCK_LEN; ++ info.minkey = DES_MIN_KEY_LEN; ++ info.maxkey = DES_MAX_KEY_LEN; ++ break; ++ case CRYPTO_3DES_CBC: ++ info.blocksize = DES3_BLOCK_LEN; ++ info.minkey = DES3_MIN_KEY_LEN; ++ info.maxkey = DES3_MAX_KEY_LEN; ++ break; ++ case CRYPTO_BLF_CBC: ++ info.blocksize = BLOWFISH_BLOCK_LEN; ++ info.minkey = BLOWFISH_MIN_KEY_LEN; ++ info.maxkey = BLOWFISH_MAX_KEY_LEN; ++ break; ++ case CRYPTO_CAST_CBC: ++ info.blocksize = CAST128_BLOCK_LEN; ++ info.minkey = CAST128_MIN_KEY_LEN; ++ info.maxkey = CAST128_MAX_KEY_LEN; ++ break; ++ case CRYPTO_SKIPJACK_CBC: ++ info.blocksize = SKIPJACK_BLOCK_LEN; ++ info.minkey = SKIPJACK_MIN_KEY_LEN; ++ info.maxkey = SKIPJACK_MAX_KEY_LEN; ++ break; ++ case CRYPTO_AES_CBC: ++ info.blocksize = AES_BLOCK_LEN; ++ info.minkey = AES_MIN_KEY_LEN; ++ info.maxkey = AES_MAX_KEY_LEN; ++ break; ++ case CRYPTO_ARC4: ++ info.blocksize = ARC4_BLOCK_LEN; ++ info.minkey = ARC4_MIN_KEY_LEN; ++ info.maxkey = ARC4_MAX_KEY_LEN; ++ break; ++ case CRYPTO_CAMELLIA_CBC: ++ info.blocksize = CAMELLIA_BLOCK_LEN; ++ info.minkey = CAMELLIA_MIN_KEY_LEN; ++ info.maxkey = CAMELLIA_MAX_KEY_LEN; ++ break; ++ default: ++ dprintk("%s(%s) - bad cipher\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EINVAL; ++ goto bail; ++ } ++ ++ switch (sop.mac) { ++ case 0: ++ dprintk("%s(%s) - no mac\n", __FUNCTION__, CIOCGSESSSTR); ++ break; ++ case CRYPTO_NULL_HMAC: ++ info.authsize = NULL_HASH_LEN; ++ break; ++ case CRYPTO_MD5: ++ info.authsize = MD5_HASH_LEN; ++ break; ++ case CRYPTO_SHA1: ++ info.authsize = SHA1_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_256: ++ info.authsize = SHA2_256_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_384: ++ info.authsize = SHA2_384_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_512: ++ info.authsize = SHA2_512_HASH_LEN; ++ break; ++ case CRYPTO_RIPEMD160: ++ info.authsize = RIPEMD160_HASH_LEN; ++ break; ++ case CRYPTO_MD5_HMAC: ++ info.authsize = MD5_HASH_LEN; ++ break; ++ case CRYPTO_SHA1_HMAC: ++ info.authsize = SHA1_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_256_HMAC: ++ info.authsize = SHA2_256_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_384_HMAC: ++ info.authsize = SHA2_384_HASH_LEN; ++ break; ++ case CRYPTO_SHA2_512_HMAC: ++ info.authsize = SHA2_512_HASH_LEN; ++ break; ++ case CRYPTO_RIPEMD160_HMAC: ++ info.authsize = RIPEMD160_HASH_LEN; ++ break; ++ default: ++ dprintk("%s(%s) - bad mac\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EINVAL; ++ goto bail; ++ } ++ ++ if (info.blocksize) { ++ crie.cri_alg = sop.cipher; ++ crie.cri_klen = sop.keylen * 8; ++ if ((info.maxkey && sop.keylen > info.maxkey) || ++ sop.keylen < info.minkey) { ++ dprintk("%s(%s) - bad key\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EINVAL; ++ goto bail; ++ } ++ ++ crie.cri_key = (u_int8_t *) kmalloc(crie.cri_klen/8+1, GFP_KERNEL); ++ if (copy_from_user(crie.cri_key, sop.key, ++ crie.cri_klen/8)) { ++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EFAULT; ++ goto bail; ++ } ++ if (info.authsize) ++ crie.cri_next = &cria; ++ } ++ ++ if (info.authsize) { ++ cria.cri_alg = sop.mac; ++ cria.cri_klen = sop.mackeylen * 8; ++ if ((info.maxkey && sop.mackeylen > info.maxkey) || ++ sop.keylen < info.minkey) { ++ dprintk("%s(%s) - mackeylen %d\n", __FUNCTION__, CIOCGSESSSTR, ++ sop.mackeylen); ++ error = EINVAL; ++ goto bail; ++ } ++ ++ if (cria.cri_klen) { ++ cria.cri_key = (u_int8_t *) kmalloc(cria.cri_klen/8,GFP_KERNEL); ++ if (copy_from_user(cria.cri_key, sop.mackey, ++ cria.cri_klen / 8)) { ++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EFAULT; ++ goto bail; ++ } ++ } ++ } ++ ++ /* NB: CIOGSESSION2 has the crid */ ++ if (cmd == CIOCGSESSION2) { ++ crid = sop.crid; ++ error = checkcrid(crid); ++ if (error) { ++ dprintk("%s(%s) - checkcrid %x\n", __FUNCTION__, ++ CIOCGSESSSTR, error); ++ goto bail; ++ } ++ } else { ++ /* allow either HW or SW to be used */ ++ crid = CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE; ++ } ++ error = crypto_newsession(&sid, (info.blocksize ? &crie : &cria), crid); ++ if (error) { ++ dprintk("%s(%s) - newsession %d\n",__FUNCTION__,CIOCGSESSSTR,error); ++ goto bail; ++ } ++ ++ cse = csecreate(fcr, sid, &crie, &cria, &info); ++ if (cse == NULL) { ++ crypto_freesession(sid); ++ error = EINVAL; ++ dprintk("%s(%s) - csecreate failed\n", __FUNCTION__, CIOCGSESSSTR); ++ goto bail; ++ } ++ sop.ses = cse->ses; ++ ++ if (cmd == CIOCGSESSION2) { ++ /* return hardware/driver id */ ++ sop.crid = CRYPTO_SESID2HID(cse->sid); ++ } ++ ++ if (copy_to_user((void*)arg, &sop, (cmd == CIOCGSESSION) ? ++ sizeof(struct session_op) : sizeof(sop))) { ++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR); ++ error = EFAULT; ++ } ++bail: ++ if (error) { ++ dprintk("%s(%s) - bail %d\n", __FUNCTION__, CIOCGSESSSTR, error); ++ if (crie.cri_key) ++ kfree(crie.cri_key); ++ if (cria.cri_key) ++ kfree(cria.cri_key); ++ } ++ break; ++ case CIOCFSESSION: ++ dprintk("%s(CIOCFSESSION)\n", __FUNCTION__); ++ get_user(ses, (uint32_t*)arg); ++ cse = csefind(fcr, ses); ++ if (cse == NULL) { ++ error = EINVAL; ++ dprintk("%s(CIOCFSESSION) - Fail %d\n", __FUNCTION__, error); ++ break; ++ } ++ csedelete(fcr, cse); ++ error = csefree(cse); ++ break; ++ case CIOCCRYPT: ++ dprintk("%s(CIOCCRYPT)\n", __FUNCTION__); ++ if(copy_from_user(&cop, (void*)arg, sizeof(cop))) { ++ dprintk("%s(CIOCCRYPT) - bad copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ cse = csefind(fcr, cop.ses); ++ if (cse == NULL) { ++ error = EINVAL; ++ dprintk("%s(CIOCCRYPT) - Fail %d\n", __FUNCTION__, error); ++ break; ++ } ++ error = cryptodev_op(cse, &cop); ++ if(copy_to_user((void*)arg, &cop, sizeof(cop))) { ++ dprintk("%s(CIOCCRYPT) - bad return copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ break; ++ case CIOCKEY: ++ case CIOCKEY2: ++ dprintk("%s(CIOCKEY)\n", __FUNCTION__); ++ if (!crypto_userasymcrypto) ++ return (EPERM); /* XXX compat? */ ++ if(copy_from_user(&kop, (void*)arg, sizeof(kop))) { ++ dprintk("%s(CIOCKEY) - bad copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ if (cmd == CIOCKEY) { ++ /* NB: crypto core enforces s/w driver use */ ++ kop.crk_crid = ++ CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE; ++ } ++ error = cryptodev_key(&kop); ++ if(copy_to_user((void*)arg, &kop, sizeof(kop))) { ++ dprintk("%s(CIOCGKEY) - bad return copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ break; ++ case CIOCASYMFEAT: ++ dprintk("%s(CIOCASYMFEAT)\n", __FUNCTION__); ++ if (!crypto_userasymcrypto) { ++ /* ++ * NB: if user asym crypto operations are ++ * not permitted return "no algorithms" ++ * so well-behaved applications will just ++ * fallback to doing them in software. ++ */ ++ feat = 0; ++ } else ++ error = crypto_getfeat(&feat); ++ if (!error) { ++ error = copy_to_user((void*)arg, &feat, sizeof(feat)); ++ } ++ break; ++ case CIOCFINDDEV: ++ if (copy_from_user(&fop, (void*)arg, sizeof(fop))) { ++ dprintk("%s(CIOCFINDDEV) - bad copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ error = cryptodev_find(&fop); ++ if (copy_to_user((void*)arg, &fop, sizeof(fop))) { ++ dprintk("%s(CIOCFINDDEV) - bad return copy\n", __FUNCTION__); ++ error = EFAULT; ++ goto bail; ++ } ++ break; ++ default: ++ dprintk("%s(unknown ioctl 0x%x)\n", __FUNCTION__, cmd); ++ error = EINVAL; ++ break; ++ } ++ return(-error); ++} ++ ++#ifdef HAVE_UNLOCKED_IOCTL ++static long ++cryptodev_unlocked_ioctl( ++ struct file *filp, ++ unsigned int cmd, ++ unsigned long arg) ++{ ++ return cryptodev_ioctl(NULL, filp, cmd, arg); ++} ++#endif ++ ++static int ++cryptodev_open(struct inode *inode, struct file *filp) ++{ ++ struct fcrypt *fcr; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (filp->private_data) { ++ printk("cryptodev: Private data already exists !\n"); ++ return(0); ++ } ++ ++ fcr = kmalloc(sizeof(*fcr), GFP_KERNEL); ++ if (!fcr) { ++ dprintk("%s() - malloc failed\n", __FUNCTION__); ++ return(-ENOMEM); ++ } ++ memset(fcr, 0, sizeof(*fcr)); ++ ++ INIT_LIST_HEAD(&fcr->csessions); ++ filp->private_data = fcr; ++ return(0); ++} ++ ++static int ++cryptodev_release(struct inode *inode, struct file *filp) ++{ ++ struct fcrypt *fcr = filp->private_data; ++ struct csession *cse, *tmp; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (!filp) { ++ printk("cryptodev: No private data on release\n"); ++ return(0); ++ } ++ ++ list_for_each_entry_safe(cse, tmp, &fcr->csessions, list) { ++ list_del(&cse->list); ++ (void)csefree(cse); ++ } ++ filp->private_data = NULL; ++ kfree(fcr); ++ return(0); ++} ++ ++static struct file_operations cryptodev_fops = { ++ .owner = THIS_MODULE, ++ .open = cryptodev_open, ++ .release = cryptodev_release, ++ .ioctl = cryptodev_ioctl, ++#ifdef HAVE_UNLOCKED_IOCTL ++ .unlocked_ioctl = cryptodev_unlocked_ioctl, ++#endif ++}; ++ ++static struct miscdevice cryptodev = { ++ .minor = CRYPTODEV_MINOR, ++ .name = "crypto", ++ .fops = &cryptodev_fops, ++}; ++ ++static int __init ++cryptodev_init(void) ++{ ++ int rc; ++ ++ dprintk("%s(%p)\n", __FUNCTION__, cryptodev_init); ++ rc = misc_register(&cryptodev); ++ if (rc) { ++ printk(KERN_ERR "cryptodev: registration of /dev/crypto failed\n"); ++ return(rc); ++ } ++ ++ return(0); ++} ++ ++static void __exit ++cryptodev_exit(void) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ misc_deregister(&cryptodev); ++} ++ ++module_init(cryptodev_init); ++module_exit(cryptodev_exit); ++ ++MODULE_LICENSE("BSD"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("Cryptodev (user interface to OCF)"); +--- /dev/null ++++ b/crypto/ocf/cryptodev.h +@@ -0,0 +1,478 @@ ++/* $FreeBSD: src/sys/opencrypto/cryptodev.h,v 1.25 2007/05/09 19:37:02 gnn Exp $ */ ++/* $OpenBSD: cryptodev.h,v 1.31 2002/06/11 11:14:29 beck Exp $ */ ++ ++/*- ++ * Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * The license and original author are listed below. ++ * ++ * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) ++ * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting ++ * ++ * This code was written by Angelos D. Keromytis in Athens, Greece, in ++ * February 2000. Network Security Technologies Inc. (NSTI) kindly ++ * supported the development of this code. ++ * ++ * Copyright (c) 2000 Angelos D. Keromytis ++ * ++ * Permission to use, copy, and modify this software with or without fee ++ * is hereby granted, provided that this entire notice is included in ++ * all source code copies of any software which is or includes a copy or ++ * modification of this software. ++ * ++ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR ++ * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY ++ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE ++ * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR ++ * PURPOSE. ++ * ++ * Copyright (c) 2001 Theo de Raadt ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ * Effort sponsored in part by the Defense Advanced Research Projects ++ * Agency (DARPA) and Air Force Research Laboratory, Air Force ++ * Materiel Command, USAF, under agreement number F30602-01-2-0537. ++ * ++ */ ++ ++#ifndef _CRYPTO_CRYPTO_H_ ++#define _CRYPTO_CRYPTO_H_ ++ ++/* Some initial values */ ++#define CRYPTO_DRIVERS_INITIAL 4 ++#define CRYPTO_SW_SESSIONS 32 ++ ++/* Hash values */ ++#define NULL_HASH_LEN 0 ++#define MD5_HASH_LEN 16 ++#define SHA1_HASH_LEN 20 ++#define RIPEMD160_HASH_LEN 20 ++#define SHA2_256_HASH_LEN 32 ++#define SHA2_384_HASH_LEN 48 ++#define SHA2_512_HASH_LEN 64 ++#define MD5_KPDK_HASH_LEN 16 ++#define SHA1_KPDK_HASH_LEN 20 ++/* Maximum hash algorithm result length */ ++#define HASH_MAX_LEN SHA2_512_HASH_LEN /* Keep this updated */ ++ ++/* HMAC values */ ++#define NULL_HMAC_BLOCK_LEN 1 ++#define MD5_HMAC_BLOCK_LEN 64 ++#define SHA1_HMAC_BLOCK_LEN 64 ++#define RIPEMD160_HMAC_BLOCK_LEN 64 ++#define SHA2_256_HMAC_BLOCK_LEN 64 ++#define SHA2_384_HMAC_BLOCK_LEN 128 ++#define SHA2_512_HMAC_BLOCK_LEN 128 ++/* Maximum HMAC block length */ ++#define HMAC_MAX_BLOCK_LEN SHA2_512_HMAC_BLOCK_LEN /* Keep this updated */ ++#define HMAC_IPAD_VAL 0x36 ++#define HMAC_OPAD_VAL 0x5C ++ ++/* Encryption algorithm block sizes */ ++#define NULL_BLOCK_LEN 1 ++#define DES_BLOCK_LEN 8 ++#define DES3_BLOCK_LEN 8 ++#define BLOWFISH_BLOCK_LEN 8 ++#define SKIPJACK_BLOCK_LEN 8 ++#define CAST128_BLOCK_LEN 8 ++#define RIJNDAEL128_BLOCK_LEN 16 ++#define AES_BLOCK_LEN RIJNDAEL128_BLOCK_LEN ++#define CAMELLIA_BLOCK_LEN 16 ++#define ARC4_BLOCK_LEN 1 ++#define EALG_MAX_BLOCK_LEN AES_BLOCK_LEN /* Keep this updated */ ++ ++/* Encryption algorithm min and max key sizes */ ++#define NULL_MIN_KEY_LEN 0 ++#define NULL_MAX_KEY_LEN 0 ++#define DES_MIN_KEY_LEN 8 ++#define DES_MAX_KEY_LEN 8 ++#define DES3_MIN_KEY_LEN 24 ++#define DES3_MAX_KEY_LEN 24 ++#define BLOWFISH_MIN_KEY_LEN 4 ++#define BLOWFISH_MAX_KEY_LEN 56 ++#define SKIPJACK_MIN_KEY_LEN 10 ++#define SKIPJACK_MAX_KEY_LEN 10 ++#define CAST128_MIN_KEY_LEN 5 ++#define CAST128_MAX_KEY_LEN 16 ++#define RIJNDAEL128_MIN_KEY_LEN 16 ++#define RIJNDAEL128_MAX_KEY_LEN 32 ++#define AES_MIN_KEY_LEN RIJNDAEL128_MIN_KEY_LEN ++#define AES_MAX_KEY_LEN RIJNDAEL128_MAX_KEY_LEN ++#define CAMELLIA_MIN_KEY_LEN 16 ++#define CAMELLIA_MAX_KEY_LEN 32 ++#define ARC4_MIN_KEY_LEN 1 ++#define ARC4_MAX_KEY_LEN 256 ++ ++/* Max size of data that can be processed */ ++#define CRYPTO_MAX_DATA_LEN 64*1024 - 1 ++ ++#define CRYPTO_ALGORITHM_MIN 1 ++#define CRYPTO_DES_CBC 1 ++#define CRYPTO_3DES_CBC 2 ++#define CRYPTO_BLF_CBC 3 ++#define CRYPTO_CAST_CBC 4 ++#define CRYPTO_SKIPJACK_CBC 5 ++#define CRYPTO_MD5_HMAC 6 ++#define CRYPTO_SHA1_HMAC 7 ++#define CRYPTO_RIPEMD160_HMAC 8 ++#define CRYPTO_MD5_KPDK 9 ++#define CRYPTO_SHA1_KPDK 10 ++#define CRYPTO_RIJNDAEL128_CBC 11 /* 128 bit blocksize */ ++#define CRYPTO_AES_CBC 11 /* 128 bit blocksize -- the same as above */ ++#define CRYPTO_ARC4 12 ++#define CRYPTO_MD5 13 ++#define CRYPTO_SHA1 14 ++#define CRYPTO_NULL_HMAC 15 ++#define CRYPTO_NULL_CBC 16 ++#define CRYPTO_DEFLATE_COMP 17 /* Deflate compression algorithm */ ++#define CRYPTO_SHA2_256_HMAC 18 ++#define CRYPTO_SHA2_384_HMAC 19 ++#define CRYPTO_SHA2_512_HMAC 20 ++#define CRYPTO_CAMELLIA_CBC 21 ++#define CRYPTO_SHA2_256 22 ++#define CRYPTO_SHA2_384 23 ++#define CRYPTO_SHA2_512 24 ++#define CRYPTO_RIPEMD160 25 ++#define CRYPTO_ALGORITHM_MAX 25 /* Keep updated - see below */ ++ ++/* Algorithm flags */ ++#define CRYPTO_ALG_FLAG_SUPPORTED 0x01 /* Algorithm is supported */ ++#define CRYPTO_ALG_FLAG_RNG_ENABLE 0x02 /* Has HW RNG for DH/DSA */ ++#define CRYPTO_ALG_FLAG_DSA_SHA 0x04 /* Can do SHA on msg */ ++ ++/* ++ * Crypto driver/device flags. They can set in the crid ++ * parameter when creating a session or submitting a key ++ * op to affect the device/driver assigned. If neither ++ * of these are specified then the crid is assumed to hold ++ * the driver id of an existing (and suitable) device that ++ * must be used to satisfy the request. ++ */ ++#define CRYPTO_FLAG_HARDWARE 0x01000000 /* hardware accelerated */ ++#define CRYPTO_FLAG_SOFTWARE 0x02000000 /* software implementation */ ++ ++/* NB: deprecated */ ++struct session_op { ++ u_int32_t cipher; /* ie. CRYPTO_DES_CBC */ ++ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */ ++ ++ u_int32_t keylen; /* cipher key */ ++ caddr_t key; ++ int mackeylen; /* mac key */ ++ caddr_t mackey; ++ ++ u_int32_t ses; /* returns: session # */ ++}; ++ ++struct session2_op { ++ u_int32_t cipher; /* ie. CRYPTO_DES_CBC */ ++ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */ ++ ++ u_int32_t keylen; /* cipher key */ ++ caddr_t key; ++ int mackeylen; /* mac key */ ++ caddr_t mackey; ++ ++ u_int32_t ses; /* returns: session # */ ++ int crid; /* driver id + flags (rw) */ ++ int pad[4]; /* for future expansion */ ++}; ++ ++struct crypt_op { ++ u_int32_t ses; ++ u_int16_t op; /* i.e. COP_ENCRYPT */ ++#define COP_NONE 0 ++#define COP_ENCRYPT 1 ++#define COP_DECRYPT 2 ++ u_int16_t flags; ++#define COP_F_BATCH 0x0008 /* Batch op if possible */ ++ u_int len; ++ caddr_t src, dst; /* become iov[] inside kernel */ ++ caddr_t mac; /* must be big enough for chosen MAC */ ++ caddr_t iv; ++}; ++ ++/* ++ * Parameters for looking up a crypto driver/device by ++ * device name or by id. The latter are returned for ++ * created sessions (crid) and completed key operations. ++ */ ++struct crypt_find_op { ++ int crid; /* driver id + flags */ ++ char name[32]; /* device/driver name */ ++}; ++ ++/* bignum parameter, in packed bytes, ... */ ++struct crparam { ++ caddr_t crp_p; ++ u_int crp_nbits; ++}; ++ ++#define CRK_MAXPARAM 8 ++ ++struct crypt_kop { ++ u_int crk_op; /* ie. CRK_MOD_EXP or other */ ++ u_int crk_status; /* return status */ ++ u_short crk_iparams; /* # of input parameters */ ++ u_short crk_oparams; /* # of output parameters */ ++ u_int crk_crid; /* NB: only used by CIOCKEY2 (rw) */ ++ struct crparam crk_param[CRK_MAXPARAM]; ++}; ++#define CRK_ALGORITM_MIN 0 ++#define CRK_MOD_EXP 0 ++#define CRK_MOD_EXP_CRT 1 ++#define CRK_DSA_SIGN 2 ++#define CRK_DSA_VERIFY 3 ++#define CRK_DH_COMPUTE_KEY 4 ++#define CRK_ALGORITHM_MAX 4 /* Keep updated - see below */ ++ ++#define CRF_MOD_EXP (1 << CRK_MOD_EXP) ++#define CRF_MOD_EXP_CRT (1 << CRK_MOD_EXP_CRT) ++#define CRF_DSA_SIGN (1 << CRK_DSA_SIGN) ++#define CRF_DSA_VERIFY (1 << CRK_DSA_VERIFY) ++#define CRF_DH_COMPUTE_KEY (1 << CRK_DH_COMPUTE_KEY) ++ ++/* ++ * done against open of /dev/crypto, to get a cloned descriptor. ++ * Please use F_SETFD against the cloned descriptor. ++ */ ++#define CRIOGET _IOWR('c', 100, u_int32_t) ++#define CRIOASYMFEAT CIOCASYMFEAT ++#define CRIOFINDDEV CIOCFINDDEV ++ ++/* the following are done against the cloned descriptor */ ++#define CIOCGSESSION _IOWR('c', 101, struct session_op) ++#define CIOCFSESSION _IOW('c', 102, u_int32_t) ++#define CIOCCRYPT _IOWR('c', 103, struct crypt_op) ++#define CIOCKEY _IOWR('c', 104, struct crypt_kop) ++#define CIOCASYMFEAT _IOR('c', 105, u_int32_t) ++#define CIOCGSESSION2 _IOWR('c', 106, struct session2_op) ++#define CIOCKEY2 _IOWR('c', 107, struct crypt_kop) ++#define CIOCFINDDEV _IOWR('c', 108, struct crypt_find_op) ++ ++struct cryptotstat { ++ struct timespec acc; /* total accumulated time */ ++ struct timespec min; /* min time */ ++ struct timespec max; /* max time */ ++ u_int32_t count; /* number of observations */ ++}; ++ ++struct cryptostats { ++ u_int32_t cs_ops; /* symmetric crypto ops submitted */ ++ u_int32_t cs_errs; /* symmetric crypto ops that failed */ ++ u_int32_t cs_kops; /* asymetric/key ops submitted */ ++ u_int32_t cs_kerrs; /* asymetric/key ops that failed */ ++ u_int32_t cs_intrs; /* crypto swi thread activations */ ++ u_int32_t cs_rets; /* crypto return thread activations */ ++ u_int32_t cs_blocks; /* symmetric op driver block */ ++ u_int32_t cs_kblocks; /* symmetric op driver block */ ++ /* ++ * When CRYPTO_TIMING is defined at compile time and the ++ * sysctl debug.crypto is set to 1, the crypto system will ++ * accumulate statistics about how long it takes to process ++ * crypto requests at various points during processing. ++ */ ++ struct cryptotstat cs_invoke; /* crypto_dipsatch -> crypto_invoke */ ++ struct cryptotstat cs_done; /* crypto_invoke -> crypto_done */ ++ struct cryptotstat cs_cb; /* crypto_done -> callback */ ++ struct cryptotstat cs_finis; /* callback -> callback return */ ++ ++ u_int32_t cs_drops; /* crypto ops dropped due to congestion */ ++}; ++ ++#ifdef __KERNEL__ ++ ++/* Standard initialization structure beginning */ ++struct cryptoini { ++ int cri_alg; /* Algorithm to use */ ++ int cri_klen; /* Key length, in bits */ ++ int cri_mlen; /* Number of bytes we want from the ++ entire hash. 0 means all. */ ++ caddr_t cri_key; /* key to use */ ++ u_int8_t cri_iv[EALG_MAX_BLOCK_LEN]; /* IV to use */ ++ struct cryptoini *cri_next; ++}; ++ ++/* Describe boundaries of a single crypto operation */ ++struct cryptodesc { ++ int crd_skip; /* How many bytes to ignore from start */ ++ int crd_len; /* How many bytes to process */ ++ int crd_inject; /* Where to inject results, if applicable */ ++ int crd_flags; ++ ++#define CRD_F_ENCRYPT 0x01 /* Set when doing encryption */ ++#define CRD_F_IV_PRESENT 0x02 /* When encrypting, IV is already in ++ place, so don't copy. */ ++#define CRD_F_IV_EXPLICIT 0x04 /* IV explicitly provided */ ++#define CRD_F_DSA_SHA_NEEDED 0x08 /* Compute SHA-1 of buffer for DSA */ ++#define CRD_F_KEY_EXPLICIT 0x10 /* Key explicitly provided */ ++#define CRD_F_COMP 0x0f /* Set when doing compression */ ++ ++ struct cryptoini CRD_INI; /* Initialization/context data */ ++#define crd_iv CRD_INI.cri_iv ++#define crd_key CRD_INI.cri_key ++#define crd_alg CRD_INI.cri_alg ++#define crd_klen CRD_INI.cri_klen ++ ++ struct cryptodesc *crd_next; ++}; ++ ++/* Structure describing complete operation */ ++struct cryptop { ++ struct list_head crp_next; ++ wait_queue_head_t crp_waitq; ++ ++ u_int64_t crp_sid; /* Session ID */ ++ int crp_ilen; /* Input data total length */ ++ int crp_olen; /* Result total length */ ++ ++ int crp_etype; /* ++ * Error type (zero means no error). ++ * All error codes except EAGAIN ++ * indicate possible data corruption (as in, ++ * the data have been touched). On all ++ * errors, the crp_sid may have changed ++ * (reset to a new one), so the caller ++ * should always check and use the new ++ * value on future requests. ++ */ ++ int crp_flags; ++ ++#define CRYPTO_F_SKBUF 0x0001 /* Input/output are skbuf chains */ ++#define CRYPTO_F_IOV 0x0002 /* Input/output are uio */ ++#define CRYPTO_F_REL 0x0004 /* Must return data in same place */ ++#define CRYPTO_F_BATCH 0x0008 /* Batch op if possible */ ++#define CRYPTO_F_CBIMM 0x0010 /* Do callback immediately */ ++#define CRYPTO_F_DONE 0x0020 /* Operation completed */ ++#define CRYPTO_F_CBIFSYNC 0x0040 /* Do CBIMM if op is synchronous */ ++ ++ caddr_t crp_buf; /* Data to be processed */ ++ caddr_t crp_opaque; /* Opaque pointer, passed along */ ++ struct cryptodesc *crp_desc; /* Linked list of processing descriptors */ ++ ++ int (*crp_callback)(struct cryptop *); /* Callback function */ ++}; ++ ++#define CRYPTO_BUF_CONTIG 0x0 ++#define CRYPTO_BUF_IOV 0x1 ++#define CRYPTO_BUF_SKBUF 0x2 ++ ++#define CRYPTO_OP_DECRYPT 0x0 ++#define CRYPTO_OP_ENCRYPT 0x1 ++ ++/* ++ * Hints passed to process methods. ++ */ ++#define CRYPTO_HINT_MORE 0x1 /* more ops coming shortly */ ++ ++struct cryptkop { ++ struct list_head krp_next; ++ wait_queue_head_t krp_waitq; ++ ++ int krp_flags; ++#define CRYPTO_KF_DONE 0x0001 /* Operation completed */ ++#define CRYPTO_KF_CBIMM 0x0002 /* Do callback immediately */ ++ ++ u_int krp_op; /* ie. CRK_MOD_EXP or other */ ++ u_int krp_status; /* return status */ ++ u_short krp_iparams; /* # of input parameters */ ++ u_short krp_oparams; /* # of output parameters */ ++ u_int krp_crid; /* desired device, etc. */ ++ u_int32_t krp_hid; ++ struct crparam krp_param[CRK_MAXPARAM]; /* kvm */ ++ int (*krp_callback)(struct cryptkop *); ++}; ++ ++#include ++ ++/* ++ * Session ids are 64 bits. The lower 32 bits contain a "local id" which ++ * is a driver-private session identifier. The upper 32 bits contain a ++ * "hardware id" used by the core crypto code to identify the driver and ++ * a copy of the driver's capabilities that can be used by client code to ++ * optimize operation. ++ */ ++#define CRYPTO_SESID2HID(_sid) (((_sid) >> 32) & 0x00ffffff) ++#define CRYPTO_SESID2CAPS(_sid) (((_sid) >> 32) & 0xff000000) ++#define CRYPTO_SESID2LID(_sid) (((u_int32_t) (_sid)) & 0xffffffff) ++ ++extern int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard); ++extern int crypto_freesession(u_int64_t sid); ++#define CRYPTOCAP_F_HARDWARE CRYPTO_FLAG_HARDWARE ++#define CRYPTOCAP_F_SOFTWARE CRYPTO_FLAG_SOFTWARE ++#define CRYPTOCAP_F_SYNC 0x04000000 /* operates synchronously */ ++extern int32_t crypto_get_driverid(device_t dev, int flags); ++extern int crypto_find_driver(const char *); ++extern device_t crypto_find_device_byhid(int hid); ++extern int crypto_getcaps(int hid); ++extern int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, ++ u_int32_t flags); ++extern int crypto_kregister(u_int32_t, int, u_int32_t); ++extern int crypto_unregister(u_int32_t driverid, int alg); ++extern int crypto_unregister_all(u_int32_t driverid); ++extern int crypto_dispatch(struct cryptop *crp); ++extern int crypto_kdispatch(struct cryptkop *); ++#define CRYPTO_SYMQ 0x1 ++#define CRYPTO_ASYMQ 0x2 ++extern int crypto_unblock(u_int32_t, int); ++extern void crypto_done(struct cryptop *crp); ++extern void crypto_kdone(struct cryptkop *); ++extern int crypto_getfeat(int *); ++ ++extern void crypto_freereq(struct cryptop *crp); ++extern struct cryptop *crypto_getreq(int num); ++ ++extern int crypto_usercrypto; /* userland may do crypto requests */ ++extern int crypto_userasymcrypto; /* userland may do asym crypto reqs */ ++extern int crypto_devallowsoft; /* only use hardware crypto */ ++ ++/* ++ * random number support, crypto_unregister_all will unregister ++ */ ++extern int crypto_rregister(u_int32_t driverid, ++ int (*read_random)(void *arg, u_int32_t *buf, int len), void *arg); ++extern int crypto_runregister_all(u_int32_t driverid); ++ ++/* ++ * Crypto-related utility routines used mainly by drivers. ++ * ++ * XXX these don't really belong here; but for now they're ++ * kept apart from the rest of the system. ++ */ ++struct uio; ++extern void cuio_copydata(struct uio* uio, int off, int len, caddr_t cp); ++extern void cuio_copyback(struct uio* uio, int off, int len, caddr_t cp); ++extern struct iovec *cuio_getptr(struct uio *uio, int loc, int *off); ++ ++extern void crypto_copyback(int flags, caddr_t buf, int off, int size, ++ caddr_t in); ++extern void crypto_copydata(int flags, caddr_t buf, int off, int size, ++ caddr_t out); ++extern int crypto_apply(int flags, caddr_t buf, int off, int len, ++ int (*f)(void *, void *, u_int), void *arg); ++ ++#endif /* __KERNEL__ */ ++#endif /* _CRYPTO_CRYPTO_H_ */ +--- /dev/null ++++ b/crypto/ocf/ocfnull/ocfnull.c +@@ -0,0 +1,203 @@ ++/* ++ * An OCF module for determining the cost of crypto versus the cost of ++ * IPSec processing outside of OCF. This modules gives us the effect of ++ * zero cost encryption, of course you will need to run it at both ends ++ * since it does no crypto at all. ++ * ++ * Written by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++static int32_t null_id = -1; ++static u_int32_t null_sesnum = 0; ++ ++static int null_process(device_t, struct cryptop *, int); ++static int null_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int null_freesession(device_t, u_int64_t); ++ ++#define debug ocfnull_debug ++int ocfnull_debug = 0; ++module_param(ocfnull_debug, int, 0644); ++MODULE_PARM_DESC(ocfnull_debug, "Enable debug"); ++ ++/* ++ * dummy device structure ++ */ ++ ++static struct { ++ softc_device_decl sc_dev; ++} nulldev; ++ ++static device_method_t null_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, null_newsession), ++ DEVMETHOD(cryptodev_freesession,null_freesession), ++ DEVMETHOD(cryptodev_process, null_process), ++}; ++ ++/* ++ * Generate a new software session. ++ */ ++static int ++null_newsession(device_t arg, u_int32_t *sid, struct cryptoini *cri) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ if (sid == NULL || cri == NULL) { ++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ if (null_sesnum == 0) ++ null_sesnum++; ++ *sid = null_sesnum++; ++ return 0; ++} ++ ++ ++/* ++ * Free a session. ++ */ ++static int ++null_freesession(device_t arg, u_int64_t tid) ++{ ++ u_int32_t sid = CRYPTO_SESID2LID(tid); ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (sid > null_sesnum) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ /* Silently accept and return */ ++ if (sid == 0) ++ return 0; ++ return 0; ++} ++ ++ ++/* ++ * Process a request. ++ */ ++static int ++null_process(device_t arg, struct cryptop *crp, int hint) ++{ ++ unsigned int lid; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ ++ /* Sanity check */ ++ if (crp == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ crp->crp_etype = 0; ++ ++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ crp->crp_etype = EINVAL; ++ goto done; ++ } ++ ++ /* ++ * find the session we are using ++ */ ++ ++ lid = crp->crp_sid & 0xffffffff; ++ if (lid >= null_sesnum || lid == 0) { ++ crp->crp_etype = ENOENT; ++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__); ++ goto done; ++ } ++ ++done: ++ crypto_done(crp); ++ return 0; ++} ++ ++ ++/* ++ * our driver startup and shutdown routines ++ */ ++ ++static int ++null_init(void) ++{ ++ dprintk("%s(%p)\n", __FUNCTION__, null_init); ++ ++ memset(&nulldev, 0, sizeof(nulldev)); ++ softc_device_init(&nulldev, "ocfnull", 0, null_methods); ++ ++ null_id = crypto_get_driverid(softc_get_device(&nulldev), ++ CRYPTOCAP_F_HARDWARE); ++ if (null_id < 0) ++ panic("ocfnull: crypto device cannot initialize!"); ++ ++#define REGISTER(alg) \ ++ crypto_register(null_id,alg,0,0) ++ REGISTER(CRYPTO_DES_CBC); ++ REGISTER(CRYPTO_3DES_CBC); ++ REGISTER(CRYPTO_RIJNDAEL128_CBC); ++ REGISTER(CRYPTO_MD5); ++ REGISTER(CRYPTO_SHA1); ++ REGISTER(CRYPTO_MD5_HMAC); ++ REGISTER(CRYPTO_SHA1_HMAC); ++#undef REGISTER ++ ++ return 0; ++} ++ ++static void ++null_exit(void) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ crypto_unregister_all(null_id); ++ null_id = -1; ++} ++ ++module_init(null_init); ++module_exit(null_exit); ++ ++MODULE_LICENSE("Dual BSD/GPL"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("ocfnull - claims a lot but does nothing"); +--- /dev/null ++++ b/crypto/ocf/cryptosoft.c +@@ -0,0 +1,898 @@ ++/* ++ * An OCF module that uses the linux kernel cryptoapi, based on the ++ * original cryptosoft for BSD by Angelos D. Keromytis (angelos@cis.upenn.edu) ++ * but is mostly unrecognisable, ++ * ++ * Written by David McCullough ++ * Copyright (C) 2004-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this product ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ * --------------------------------------------------------------------------- ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++struct { ++ softc_device_decl sc_dev; ++} swcr_softc; ++ ++#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) ++ ++/* Software session entry */ ++ ++#define SW_TYPE_CIPHER 0 ++#define SW_TYPE_HMAC 1 ++#define SW_TYPE_AUTH2 2 ++#define SW_TYPE_HASH 3 ++#define SW_TYPE_COMP 4 ++#define SW_TYPE_BLKCIPHER 5 ++ ++struct swcr_data { ++ int sw_type; ++ int sw_alg; ++ struct crypto_tfm *sw_tfm; ++ union { ++ struct { ++ char *sw_key; ++ int sw_klen; ++ int sw_mlen; ++ } hmac; ++ void *sw_comp_buf; ++ } u; ++ struct swcr_data *sw_next; ++}; ++ ++#ifndef CRYPTO_TFM_MODE_CBC ++/* ++ * As of linux-2.6.21 this is no longer defined, and presumably no longer ++ * needed to be passed into the crypto core code. ++ */ ++#define CRYPTO_TFM_MODE_CBC 0 ++#define CRYPTO_TFM_MODE_ECB 0 ++#endif ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ++ /* ++ * Linux 2.6.19 introduced a new Crypto API, setup macro's to convert new ++ * API into old API. ++ */ ++ ++ /* Symmetric/Block Cipher */ ++ struct blkcipher_desc ++ { ++ struct crypto_tfm *tfm; ++ void *info; ++ }; ++ #define ecb(X) #X ++ #define cbc(X) #X ++ #define crypto_has_blkcipher(X, Y, Z) crypto_alg_available(X, 0) ++ #define crypto_blkcipher_cast(X) X ++ #define crypto_blkcipher_tfm(X) X ++ #define crypto_alloc_blkcipher(X, Y, Z) crypto_alloc_tfm(X, mode) ++ #define crypto_blkcipher_ivsize(X) crypto_tfm_alg_ivsize(X) ++ #define crypto_blkcipher_blocksize(X) crypto_tfm_alg_blocksize(X) ++ #define crypto_blkcipher_setkey(X, Y, Z) crypto_cipher_setkey(X, Y, Z) ++ #define crypto_blkcipher_encrypt_iv(W, X, Y, Z) \ ++ crypto_cipher_encrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info)) ++ #define crypto_blkcipher_decrypt_iv(W, X, Y, Z) \ ++ crypto_cipher_decrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info)) ++ ++ /* Hash/HMAC/Digest */ ++ struct hash_desc ++ { ++ struct crypto_tfm *tfm; ++ }; ++ #define hmac(X) #X ++ #define crypto_has_hash(X, Y, Z) crypto_alg_available(X, 0) ++ #define crypto_hash_cast(X) X ++ #define crypto_hash_tfm(X) X ++ #define crypto_alloc_hash(X, Y, Z) crypto_alloc_tfm(X, mode) ++ #define crypto_hash_digestsize(X) crypto_tfm_alg_digestsize(X) ++ #define crypto_hash_digest(W, X, Y, Z) \ ++ crypto_digest_digest((W)->tfm, X, sg_num, Z) ++ ++ /* Asymmetric Cipher */ ++ #define crypto_has_cipher(X, Y, Z) crypto_alg_available(X, 0) ++ ++ /* Compression */ ++ #define crypto_has_comp(X, Y, Z) crypto_alg_available(X, 0) ++ #define crypto_comp_tfm(X) X ++ #define crypto_comp_cast(X) X ++ #define crypto_alloc_comp(X, Y, Z) crypto_alloc_tfm(X, mode) ++#else ++ #define ecb(X) "ecb(" #X ")" ++ #define cbc(X) "cbc(" #X ")" ++ #define hmac(X) "hmac(" #X ")" ++#endif /* if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */ ++ ++struct crypto_details ++{ ++ char *alg_name; ++ int mode; ++ int sw_type; ++}; ++ ++/* ++ * This needs to be kept updated with CRYPTO_xxx list (cryptodev.h). ++ * If the Algorithm is not supported, then insert a {NULL, 0, 0} entry. ++ * ++ * IMPORTANT: The index to the array IS CRYPTO_xxx. ++ */ ++static struct crypto_details crypto_details[CRYPTO_ALGORITHM_MAX + 1] = { ++ { NULL, 0, 0 }, ++ /* CRYPTO_xxx index starts at 1 */ ++ { cbc(des), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { cbc(des3_ede), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { cbc(blowfish), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { cbc(cast5), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { cbc(skipjack), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { hmac(md5), 0, SW_TYPE_HMAC }, ++ { hmac(sha1), 0, SW_TYPE_HMAC }, ++ { hmac(ripemd160), 0, SW_TYPE_HMAC }, ++ { "md5-kpdk??", 0, SW_TYPE_HASH }, ++ { "sha1-kpdk??", 0, SW_TYPE_HASH }, ++ { cbc(aes), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { ecb(arc4), CRYPTO_TFM_MODE_ECB, SW_TYPE_BLKCIPHER }, ++ { "md5", 0, SW_TYPE_HASH }, ++ { "sha1", 0, SW_TYPE_HASH }, ++ { hmac(digest_null), 0, SW_TYPE_HMAC }, ++ { cbc(cipher_null), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { "deflate", 0, SW_TYPE_COMP }, ++ { hmac(sha256), 0, SW_TYPE_HMAC }, ++ { hmac(sha384), 0, SW_TYPE_HMAC }, ++ { hmac(sha512), 0, SW_TYPE_HMAC }, ++ { cbc(camellia), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER }, ++ { "sha256", 0, SW_TYPE_HASH }, ++ { "sha384", 0, SW_TYPE_HASH }, ++ { "sha512", 0, SW_TYPE_HASH }, ++ { "ripemd160", 0, SW_TYPE_HASH }, ++}; ++ ++int32_t swcr_id = -1; ++module_param(swcr_id, int, 0444); ++MODULE_PARM_DESC(swcr_id, "Read-Only OCF ID for cryptosoft driver"); ++ ++int swcr_fail_if_compression_grows = 1; ++module_param(swcr_fail_if_compression_grows, int, 0644); ++MODULE_PARM_DESC(swcr_fail_if_compression_grows, ++ "Treat compression that results in more data as a failure"); ++ ++static struct swcr_data **swcr_sessions = NULL; ++static u_int32_t swcr_sesnum = 0; ++ ++static int swcr_process(device_t, struct cryptop *, int); ++static int swcr_newsession(device_t, u_int32_t *, struct cryptoini *); ++static int swcr_freesession(device_t, u_int64_t); ++ ++static device_method_t swcr_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, swcr_newsession), ++ DEVMETHOD(cryptodev_freesession,swcr_freesession), ++ DEVMETHOD(cryptodev_process, swcr_process), ++}; ++ ++#define debug swcr_debug ++int swcr_debug = 0; ++module_param(swcr_debug, int, 0644); ++MODULE_PARM_DESC(swcr_debug, "Enable debug"); ++ ++/* ++ * Generate a new software session. ++ */ ++static int ++swcr_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri) ++{ ++ struct swcr_data **swd; ++ u_int32_t i; ++ int error; ++ char *algo; ++ int mode, sw_type; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (sid == NULL || cri == NULL) { ++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ if (swcr_sessions) { ++ for (i = 1; i < swcr_sesnum; i++) ++ if (swcr_sessions[i] == NULL) ++ break; ++ } else ++ i = 1; /* NB: to silence compiler warning */ ++ ++ if (swcr_sessions == NULL || i == swcr_sesnum) { ++ if (swcr_sessions == NULL) { ++ i = 1; /* We leave swcr_sessions[0] empty */ ++ swcr_sesnum = CRYPTO_SW_SESSIONS; ++ } else ++ swcr_sesnum *= 2; ++ ++ swd = kmalloc(swcr_sesnum * sizeof(struct swcr_data *), SLAB_ATOMIC); ++ if (swd == NULL) { ++ /* Reset session number */ ++ if (swcr_sesnum == CRYPTO_SW_SESSIONS) ++ swcr_sesnum = 0; ++ else ++ swcr_sesnum /= 2; ++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *)); ++ ++ /* Copy existing sessions */ ++ if (swcr_sessions) { ++ memcpy(swd, swcr_sessions, ++ (swcr_sesnum / 2) * sizeof(struct swcr_data *)); ++ kfree(swcr_sessions); ++ } ++ ++ swcr_sessions = swd; ++ } ++ ++ swd = &swcr_sessions[i]; ++ *sid = i; ++ ++ while (cri) { ++ *swd = (struct swcr_data *) kmalloc(sizeof(struct swcr_data), ++ SLAB_ATOMIC); ++ if (*swd == NULL) { ++ swcr_freesession(NULL, i); ++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ memset(*swd, 0, sizeof(struct swcr_data)); ++ ++ if (cri->cri_alg > CRYPTO_ALGORITHM_MAX) { ++ printk("cryptosoft: Unknown algorithm 0x%x\n", cri->cri_alg); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ ++ algo = crypto_details[cri->cri_alg].alg_name; ++ if (!algo || !*algo) { ++ printk("cryptosoft: Unsupported algorithm 0x%x\n", cri->cri_alg); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ ++ mode = crypto_details[cri->cri_alg].mode; ++ sw_type = crypto_details[cri->cri_alg].sw_type; ++ ++ /* Algorithm specific configuration */ ++ switch (cri->cri_alg) { ++ case CRYPTO_NULL_CBC: ++ cri->cri_klen = 0; /* make it work with crypto API */ ++ break; ++ default: ++ break; ++ } ++ ++ if (sw_type == SW_TYPE_BLKCIPHER) { ++ dprintk("%s crypto_alloc_blkcipher(%s, 0x%x)\n", __FUNCTION__, ++ algo, mode); ++ ++ (*swd)->sw_tfm = crypto_blkcipher_tfm( ++ crypto_alloc_blkcipher(algo, 0, ++ CRYPTO_ALG_ASYNC)); ++ if (!(*swd)->sw_tfm) { ++ dprintk("cryptosoft: crypto_alloc_blkcipher failed(%s,0x%x)\n", ++ algo,mode); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ ++ if (debug) { ++ dprintk("%s key:cri->cri_klen=%d,(cri->cri_klen + 7)/8=%d", ++ __FUNCTION__,cri->cri_klen,(cri->cri_klen + 7)/8); ++ for (i = 0; i < (cri->cri_klen + 7) / 8; i++) ++ { ++ dprintk("%s0x%x", (i % 8) ? " " : "\n ",cri->cri_key[i]); ++ } ++ dprintk("\n"); ++ } ++ error = crypto_blkcipher_setkey( ++ crypto_blkcipher_cast((*swd)->sw_tfm), cri->cri_key, ++ (cri->cri_klen + 7) / 8); ++ if (error) { ++ printk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n", error, ++ (*swd)->sw_tfm->crt_flags); ++ swcr_freesession(NULL, i); ++ return error; ++ } ++ } else if (sw_type == SW_TYPE_HMAC || sw_type == SW_TYPE_HASH) { ++ dprintk("%s crypto_alloc_hash(%s, 0x%x)\n", __FUNCTION__, ++ algo, mode); ++ ++ (*swd)->sw_tfm = crypto_hash_tfm( ++ crypto_alloc_hash(algo, 0, CRYPTO_ALG_ASYNC)); ++ ++ if (!(*swd)->sw_tfm) { ++ dprintk("cryptosoft: crypto_alloc_hash failed(%s,0x%x)\n", ++ algo, mode); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ ++ (*swd)->u.hmac.sw_klen = (cri->cri_klen + 7) / 8; ++ (*swd)->u.hmac.sw_key = (char *)kmalloc((*swd)->u.hmac.sw_klen, ++ SLAB_ATOMIC); ++ if ((*swd)->u.hmac.sw_key == NULL) { ++ swcr_freesession(NULL, i); ++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ memcpy((*swd)->u.hmac.sw_key, cri->cri_key, (*swd)->u.hmac.sw_klen); ++ if (cri->cri_mlen) { ++ (*swd)->u.hmac.sw_mlen = cri->cri_mlen; ++ } else { ++ (*swd)->u.hmac.sw_mlen = ++ crypto_hash_digestsize( ++ crypto_hash_cast((*swd)->sw_tfm)); ++ } ++ } else if (sw_type == SW_TYPE_COMP) { ++ (*swd)->sw_tfm = crypto_comp_tfm( ++ crypto_alloc_comp(algo, 0, CRYPTO_ALG_ASYNC)); ++ if (!(*swd)->sw_tfm) { ++ dprintk("cryptosoft: crypto_alloc_comp failed(%s,0x%x)\n", ++ algo, mode); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ (*swd)->u.sw_comp_buf = kmalloc(CRYPTO_MAX_DATA_LEN, SLAB_ATOMIC); ++ if ((*swd)->u.sw_comp_buf == NULL) { ++ swcr_freesession(NULL, i); ++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__); ++ return ENOBUFS; ++ } ++ } else { ++ printk("cryptosoft: Unhandled sw_type %d\n", sw_type); ++ swcr_freesession(NULL, i); ++ return EINVAL; ++ } ++ ++ (*swd)->sw_alg = cri->cri_alg; ++ (*swd)->sw_type = sw_type; ++ ++ cri = cri->cri_next; ++ swd = &((*swd)->sw_next); ++ } ++ return 0; ++} ++ ++/* ++ * Free a session. ++ */ ++static int ++swcr_freesession(device_t dev, u_int64_t tid) ++{ ++ struct swcr_data *swd; ++ u_int32_t sid = CRYPTO_SESID2LID(tid); ++ ++ dprintk("%s()\n", __FUNCTION__); ++ if (sid > swcr_sesnum || swcr_sessions == NULL || ++ swcr_sessions[sid] == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return(EINVAL); ++ } ++ ++ /* Silently accept and return */ ++ if (sid == 0) ++ return(0); ++ ++ while ((swd = swcr_sessions[sid]) != NULL) { ++ swcr_sessions[sid] = swd->sw_next; ++ if (swd->sw_tfm) ++ crypto_free_tfm(swd->sw_tfm); ++ if (swd->sw_type == SW_TYPE_COMP) { ++ if (swd->u.sw_comp_buf) ++ kfree(swd->u.sw_comp_buf); ++ } else { ++ if (swd->u.hmac.sw_key) ++ kfree(swd->u.hmac.sw_key); ++ } ++ kfree(swd); ++ } ++ return 0; ++} ++ ++/* ++ * Process a software request. ++ */ ++static int ++swcr_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ struct cryptodesc *crd; ++ struct swcr_data *sw; ++ u_int32_t lid; ++#define SCATTERLIST_MAX 16 ++ struct scatterlist sg[SCATTERLIST_MAX]; ++ int sg_num, sg_len, skip; ++ struct sk_buff *skb = NULL; ++ struct uio *uiop = NULL; ++ ++ dprintk("%s()\n", __FUNCTION__); ++ /* Sanity check */ ++ if (crp == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ return EINVAL; ++ } ++ ++ crp->crp_etype = 0; ++ ++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) { ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ crp->crp_etype = EINVAL; ++ goto done; ++ } ++ ++ lid = crp->crp_sid & 0xffffffff; ++ if (lid >= swcr_sesnum || lid == 0 || swcr_sessions == NULL || ++ swcr_sessions[lid] == NULL) { ++ crp->crp_etype = ENOENT; ++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__); ++ goto done; ++ } ++ ++ /* ++ * do some error checking outside of the loop for SKB and IOV processing ++ * this leaves us with valid skb or uiop pointers for later ++ */ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ skb = (struct sk_buff *) crp->crp_buf; ++ if (skb_shinfo(skb)->nr_frags >= SCATTERLIST_MAX) { ++ printk("%s,%d: %d nr_frags > SCATTERLIST_MAX", __FILE__, __LINE__, ++ skb_shinfo(skb)->nr_frags); ++ goto done; ++ } ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ uiop = (struct uio *) crp->crp_buf; ++ if (uiop->uio_iovcnt > SCATTERLIST_MAX) { ++ printk("%s,%d: %d uio_iovcnt > SCATTERLIST_MAX", __FILE__, __LINE__, ++ uiop->uio_iovcnt); ++ goto done; ++ } ++ } ++ ++ /* Go through crypto descriptors, processing as we go */ ++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { ++ /* ++ * Find the crypto context. ++ * ++ * XXX Note that the logic here prevents us from having ++ * XXX the same algorithm multiple times in a session ++ * XXX (or rather, we can but it won't give us the right ++ * XXX results). To do that, we'd need some way of differentiating ++ * XXX between the various instances of an algorithm (so we can ++ * XXX locate the correct crypto context). ++ */ ++ for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg; ++ sw = sw->sw_next) ++ ; ++ ++ /* No such context ? */ ++ if (sw == NULL) { ++ crp->crp_etype = EINVAL; ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ goto done; ++ } ++ ++ skip = crd->crd_skip; ++ ++ /* ++ * setup the SG list skip from the start of the buffer ++ */ ++ memset(sg, 0, sizeof(sg)); ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ int i, len; ++ ++ sg_num = 0; ++ sg_len = 0; ++ ++ if (skip < skb_headlen(skb)) { ++ len = skb_headlen(skb) - skip; ++ if (len + sg_len > crd->crd_len) ++ len = crd->crd_len - sg_len; ++ sg_set_page(&sg[sg_num], ++ virt_to_page(skb->data + skip), len, ++ offset_in_page(skb->data + skip)); ++ sg_len += len; ++ sg_num++; ++ skip = 0; ++ } else ++ skip -= skb_headlen(skb); ++ ++ for (i = 0; sg_len < crd->crd_len && ++ i < skb_shinfo(skb)->nr_frags && ++ sg_num < SCATTERLIST_MAX; i++) { ++ if (skip < skb_shinfo(skb)->frags[i].size) { ++ len = skb_shinfo(skb)->frags[i].size - skip; ++ if (len + sg_len > crd->crd_len) ++ len = crd->crd_len - sg_len; ++ sg_set_page(&sg[sg_num], ++ skb_shinfo(skb)->frags[i].page, ++ len, ++ skb_shinfo(skb)->frags[i].page_offset + skip); ++ sg_len += len; ++ sg_num++; ++ skip = 0; ++ } else ++ skip -= skb_shinfo(skb)->frags[i].size; ++ } ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ int len; ++ ++ sg_len = 0; ++ for (sg_num = 0; sg_len <= crd->crd_len && ++ sg_num < uiop->uio_iovcnt && ++ sg_num < SCATTERLIST_MAX; sg_num++) { ++ if (skip <= uiop->uio_iov[sg_num].iov_len) { ++ len = uiop->uio_iov[sg_num].iov_len - skip; ++ if (len + sg_len > crd->crd_len) ++ len = crd->crd_len - sg_len; ++ sg_set_page(&sg[sg_num], ++ virt_to_page(uiop->uio_iov[sg_num].iov_base+skip), ++ len, ++ offset_in_page(uiop->uio_iov[sg_num].iov_base+skip)); ++ sg_len += len; ++ skip = 0; ++ } else ++ skip -= uiop->uio_iov[sg_num].iov_len; ++ } ++ } else { ++ sg_len = (crp->crp_ilen - skip); ++ if (sg_len > crd->crd_len) ++ sg_len = crd->crd_len; ++ sg_set_page(&sg[0], virt_to_page(crp->crp_buf + skip), ++ sg_len, offset_in_page(crp->crp_buf + skip)); ++ sg_num = 1; ++ } ++ ++ ++ switch (sw->sw_type) { ++ case SW_TYPE_BLKCIPHER: { ++ unsigned char iv[EALG_MAX_BLOCK_LEN]; ++ unsigned char *ivp = iv; ++ int ivsize = ++ crypto_blkcipher_ivsize(crypto_blkcipher_cast(sw->sw_tfm)); ++ struct blkcipher_desc desc; ++ ++ if (sg_len < crypto_blkcipher_blocksize( ++ crypto_blkcipher_cast(sw->sw_tfm))) { ++ crp->crp_etype = EINVAL; ++ dprintk("%s,%d: EINVAL len %d < %d\n", __FILE__, __LINE__, ++ sg_len, crypto_blkcipher_blocksize( ++ crypto_blkcipher_cast(sw->sw_tfm))); ++ goto done; ++ } ++ ++ if (ivsize > sizeof(iv)) { ++ crp->crp_etype = EINVAL; ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ goto done; ++ } ++ ++ if (crd->crd_flags & CRD_F_KEY_EXPLICIT) { ++ int i, error; ++ ++ if (debug) { ++ dprintk("%s key:", __FUNCTION__); ++ for (i = 0; i < (crd->crd_klen + 7) / 8; i++) ++ dprintk("%s0x%x", (i % 8) ? " " : "\n ", ++ crd->crd_key[i]); ++ dprintk("\n"); ++ } ++ error = crypto_blkcipher_setkey( ++ crypto_blkcipher_cast(sw->sw_tfm), crd->crd_key, ++ (crd->crd_klen + 7) / 8); ++ if (error) { ++ dprintk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n", ++ error, sw->sw_tfm->crt_flags); ++ crp->crp_etype = -error; ++ } ++ } ++ ++ memset(&desc, 0, sizeof(desc)); ++ desc.tfm = crypto_blkcipher_cast(sw->sw_tfm); ++ ++ if (crd->crd_flags & CRD_F_ENCRYPT) { /* encrypt */ ++ ++ if (crd->crd_flags & CRD_F_IV_EXPLICIT) { ++ ivp = crd->crd_iv; ++ } else { ++ get_random_bytes(ivp, ivsize); ++ } ++ /* ++ * do we have to copy the IV back to the buffer ? ++ */ ++ if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, ivsize, (caddr_t)ivp); ++ } ++ desc.info = ivp; ++ crypto_blkcipher_encrypt_iv(&desc, sg, sg, sg_len); ++ ++ } else { /*decrypt */ ++ ++ if (crd->crd_flags & CRD_F_IV_EXPLICIT) { ++ ivp = crd->crd_iv; ++ } else { ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, ivsize, (caddr_t)ivp); ++ } ++ desc.info = ivp; ++ crypto_blkcipher_decrypt_iv(&desc, sg, sg, sg_len); ++ } ++ } break; ++ case SW_TYPE_HMAC: ++ case SW_TYPE_HASH: ++ { ++ char result[HASH_MAX_LEN]; ++ struct hash_desc desc; ++ ++ /* check we have room for the result */ ++ if (crp->crp_ilen - crd->crd_inject < sw->u.hmac.sw_mlen) { ++ dprintk( ++ "cryptosoft: EINVAL crp_ilen=%d, len=%d, inject=%d digestsize=%d\n", ++ crp->crp_ilen, crd->crd_skip + sg_len, crd->crd_inject, ++ sw->u.hmac.sw_mlen); ++ crp->crp_etype = EINVAL; ++ goto done; ++ } ++ ++ memset(&desc, 0, sizeof(desc)); ++ desc.tfm = crypto_hash_cast(sw->sw_tfm); ++ ++ memset(result, 0, sizeof(result)); ++ ++ if (sw->sw_type == SW_TYPE_HMAC) { ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ++ crypto_hmac(sw->sw_tfm, sw->u.hmac.sw_key, &sw->u.hmac.sw_klen, ++ sg, sg_num, result); ++#else ++ crypto_hash_setkey(desc.tfm, sw->u.hmac.sw_key, ++ sw->u.hmac.sw_klen); ++ crypto_hash_digest(&desc, sg, sg_len, result); ++#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */ ++ ++ } else { /* SW_TYPE_HASH */ ++ crypto_hash_digest(&desc, sg, sg_len, result); ++ } ++ ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, sw->u.hmac.sw_mlen, result); ++ } ++ break; ++ ++ case SW_TYPE_COMP: { ++ void *ibuf = NULL; ++ void *obuf = sw->u.sw_comp_buf; ++ int ilen = sg_len, olen = CRYPTO_MAX_DATA_LEN; ++ int ret = 0; ++ ++ /* ++ * we need to use an additional copy if there is more than one ++ * input chunk since the kernel comp routines do not handle ++ * SG yet. Otherwise we just use the input buffer as is. ++ * Rather than allocate another buffer we just split the tmp ++ * buffer we already have. ++ * Perhaps we should just use zlib directly ? ++ */ ++ if (sg_num > 1) { ++ int blk; ++ ++ ibuf = obuf; ++ for (blk = 0; blk < sg_num; blk++) { ++ memcpy(obuf, sg_virt(&sg[blk]), ++ sg[blk].length); ++ obuf += sg[blk].length; ++ } ++ olen -= sg_len; ++ } else ++ ibuf = sg_virt(&sg[0]); ++ ++ if (crd->crd_flags & CRD_F_ENCRYPT) { /* compress */ ++ ret = crypto_comp_compress(crypto_comp_cast(sw->sw_tfm), ++ ibuf, ilen, obuf, &olen); ++ if (!ret && olen > crd->crd_len) { ++ dprintk("cryptosoft: ERANGE compress %d into %d\n", ++ crd->crd_len, olen); ++ if (swcr_fail_if_compression_grows) ++ ret = ERANGE; ++ } ++ } else { /* decompress */ ++ ret = crypto_comp_decompress(crypto_comp_cast(sw->sw_tfm), ++ ibuf, ilen, obuf, &olen); ++ if (!ret && (olen + crd->crd_inject) > crp->crp_olen) { ++ dprintk("cryptosoft: ETOOSMALL decompress %d into %d, " ++ "space for %d,at offset %d\n", ++ crd->crd_len, olen, crp->crp_olen, crd->crd_inject); ++ ret = ETOOSMALL; ++ } ++ } ++ if (ret) ++ dprintk("%s,%d: ret = %d\n", __FILE__, __LINE__, ret); ++ ++ /* ++ * on success copy result back, ++ * linux crpyto API returns -errno, we need to fix that ++ */ ++ crp->crp_etype = ret < 0 ? -ret : ret; ++ if (ret == 0) { ++ /* copy back the result and return it's size */ ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ crd->crd_inject, olen, obuf); ++ crp->crp_olen = olen; ++ } ++ ++ ++ } break; ++ ++ default: ++ /* Unknown/unsupported algorithm */ ++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__); ++ crp->crp_etype = EINVAL; ++ goto done; ++ } ++ } ++ ++done: ++ crypto_done(crp); ++ return 0; ++} ++ ++static int ++cryptosoft_init(void) ++{ ++ int i, sw_type, mode; ++ char *algo; ++ ++ dprintk("%s(%p)\n", __FUNCTION__, cryptosoft_init); ++ ++ softc_device_init(&swcr_softc, "cryptosoft", 0, swcr_methods); ++ ++ swcr_id = crypto_get_driverid(softc_get_device(&swcr_softc), ++ CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC); ++ if (swcr_id < 0) { ++ printk("Software crypto device cannot initialize!"); ++ return -ENODEV; ++ } ++ ++#define REGISTER(alg) \ ++ crypto_register(swcr_id, alg, 0,0); ++ ++ for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; ++i) ++ { ++ ++ algo = crypto_details[i].alg_name; ++ if (!algo || !*algo) ++ { ++ dprintk("%s:Algorithm %d not supported\n", __FUNCTION__, i); ++ continue; ++ } ++ ++ mode = crypto_details[i].mode; ++ sw_type = crypto_details[i].sw_type; ++ ++ switch (sw_type) ++ { ++ case SW_TYPE_CIPHER: ++ if (crypto_has_cipher(algo, 0, CRYPTO_ALG_ASYNC)) ++ { ++ REGISTER(i); ++ } ++ else ++ { ++ dprintk("%s:CIPHER algorithm %d:'%s' not supported\n", ++ __FUNCTION__, i, algo); ++ } ++ break; ++ case SW_TYPE_HMAC: ++ if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC)) ++ { ++ REGISTER(i); ++ } ++ else ++ { ++ dprintk("%s:HMAC algorithm %d:'%s' not supported\n", ++ __FUNCTION__, i, algo); ++ } ++ break; ++ case SW_TYPE_HASH: ++ if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC)) ++ { ++ REGISTER(i); ++ } ++ else ++ { ++ dprintk("%s:HASH algorithm %d:'%s' not supported\n", ++ __FUNCTION__, i, algo); ++ } ++ break; ++ case SW_TYPE_COMP: ++ if (crypto_has_comp(algo, 0, CRYPTO_ALG_ASYNC)) ++ { ++ REGISTER(i); ++ } ++ else ++ { ++ dprintk("%s:COMP algorithm %d:'%s' not supported\n", ++ __FUNCTION__, i, algo); ++ } ++ break; ++ case SW_TYPE_BLKCIPHER: ++ if (crypto_has_blkcipher(algo, 0, CRYPTO_ALG_ASYNC)) ++ { ++ REGISTER(i); ++ } ++ else ++ { ++ dprintk("%s:BLKCIPHER algorithm %d:'%s' not supported\n", ++ __FUNCTION__, i, algo); ++ } ++ break; ++ default: ++ dprintk( ++ "%s:Algorithm Type %d not supported (algorithm %d:'%s')\n", ++ __FUNCTION__, sw_type, i, algo); ++ break; ++ } ++ } ++ ++ return(0); ++} ++ ++static void ++cryptosoft_exit(void) ++{ ++ dprintk("%s()\n", __FUNCTION__); ++ crypto_unregister_all(swcr_id); ++ swcr_id = -1; ++} ++ ++module_init(cryptosoft_init); ++module_exit(cryptosoft_exit); ++ ++MODULE_LICENSE("Dual BSD/GPL"); ++MODULE_AUTHOR("David McCullough "); ++MODULE_DESCRIPTION("Cryptosoft (OCF module for kernel crypto)"); +--- /dev/null ++++ b/crypto/ocf/rndtest.c +@@ -0,0 +1,300 @@ ++/* $OpenBSD$ */ ++ ++/* ++ * OCF/Linux port done by David McCullough ++ * Copyright (C) 2006-2007 David McCullough ++ * Copyright (C) 2004-2005 Intel Corporation. ++ * The license and original author are listed below. ++ * ++ * Copyright (c) 2002 Jason L. Wright (jason@thought.net) ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. All advertising materials mentioning features or use of this software ++ * must display the following acknowledgement: ++ * This product includes software developed by Jason L. Wright ++ * 4. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ++ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ++ * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, ++ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ++ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ++ * POSSIBILITY OF SUCH DAMAGE. ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "rndtest.h" ++ ++static struct rndtest_stats rndstats; ++ ++static void rndtest_test(struct rndtest_state *); ++ ++/* The tests themselves */ ++static int rndtest_monobit(struct rndtest_state *); ++static int rndtest_runs(struct rndtest_state *); ++static int rndtest_longruns(struct rndtest_state *); ++static int rndtest_chi_4(struct rndtest_state *); ++ ++static int rndtest_runs_check(struct rndtest_state *, int, int *); ++static void rndtest_runs_record(struct rndtest_state *, int, int *); ++ ++static const struct rndtest_testfunc { ++ int (*test)(struct rndtest_state *); ++} rndtest_funcs[] = { ++ { rndtest_monobit }, ++ { rndtest_runs }, ++ { rndtest_chi_4 }, ++ { rndtest_longruns }, ++}; ++ ++#define RNDTEST_NTESTS (sizeof(rndtest_funcs)/sizeof(rndtest_funcs[0])) ++ ++static void ++rndtest_test(struct rndtest_state *rsp) ++{ ++ int i, rv = 0; ++ ++ rndstats.rst_tests++; ++ for (i = 0; i < RNDTEST_NTESTS; i++) ++ rv |= (*rndtest_funcs[i].test)(rsp); ++ rsp->rs_discard = (rv != 0); ++} ++ ++ ++extern int crypto_debug; ++#define rndtest_verbose 2 ++#define rndtest_report(rsp, failure, fmt, a...) \ ++ { if (failure || crypto_debug) { printk("rng_test: " fmt "\n", a); } else; } ++ ++#define RNDTEST_MONOBIT_MINONES 9725 ++#define RNDTEST_MONOBIT_MAXONES 10275 ++ ++static int ++rndtest_monobit(struct rndtest_state *rsp) ++{ ++ int i, ones = 0, j; ++ u_int8_t r; ++ ++ for (i = 0; i < RNDTEST_NBYTES; i++) { ++ r = rsp->rs_buf[i]; ++ for (j = 0; j < 8; j++, r <<= 1) ++ if (r & 0x80) ++ ones++; ++ } ++ if (ones > RNDTEST_MONOBIT_MINONES && ++ ones < RNDTEST_MONOBIT_MAXONES) { ++ if (rndtest_verbose > 1) ++ rndtest_report(rsp, 0, "monobit pass (%d < %d < %d)", ++ RNDTEST_MONOBIT_MINONES, ones, ++ RNDTEST_MONOBIT_MAXONES); ++ return (0); ++ } else { ++ if (rndtest_verbose) ++ rndtest_report(rsp, 1, ++ "monobit failed (%d ones)", ones); ++ rndstats.rst_monobit++; ++ return (-1); ++ } ++} ++ ++#define RNDTEST_RUNS_NINTERVAL 6 ++ ++static const struct rndtest_runs_tabs { ++ u_int16_t min, max; ++} rndtest_runs_tab[] = { ++ { 2343, 2657 }, ++ { 1135, 1365 }, ++ { 542, 708 }, ++ { 251, 373 }, ++ { 111, 201 }, ++ { 111, 201 }, ++}; ++ ++static int ++rndtest_runs(struct rndtest_state *rsp) ++{ ++ int i, j, ones, zeros, rv = 0; ++ int onei[RNDTEST_RUNS_NINTERVAL], zeroi[RNDTEST_RUNS_NINTERVAL]; ++ u_int8_t c; ++ ++ bzero(onei, sizeof(onei)); ++ bzero(zeroi, sizeof(zeroi)); ++ ones = zeros = 0; ++ for (i = 0; i < RNDTEST_NBYTES; i++) { ++ c = rsp->rs_buf[i]; ++ for (j = 0; j < 8; j++, c <<= 1) { ++ if (c & 0x80) { ++ ones++; ++ rndtest_runs_record(rsp, zeros, zeroi); ++ zeros = 0; ++ } else { ++ zeros++; ++ rndtest_runs_record(rsp, ones, onei); ++ ones = 0; ++ } ++ } ++ } ++ rndtest_runs_record(rsp, ones, onei); ++ rndtest_runs_record(rsp, zeros, zeroi); ++ ++ rv |= rndtest_runs_check(rsp, 0, zeroi); ++ rv |= rndtest_runs_check(rsp, 1, onei); ++ ++ if (rv) ++ rndstats.rst_runs++; ++ ++ return (rv); ++} ++ ++static void ++rndtest_runs_record(struct rndtest_state *rsp, int len, int *intrv) ++{ ++ if (len == 0) ++ return; ++ if (len > RNDTEST_RUNS_NINTERVAL) ++ len = RNDTEST_RUNS_NINTERVAL; ++ len -= 1; ++ intrv[len]++; ++} ++ ++static int ++rndtest_runs_check(struct rndtest_state *rsp, int val, int *src) ++{ ++ int i, rv = 0; ++ ++ for (i = 0; i < RNDTEST_RUNS_NINTERVAL; i++) { ++ if (src[i] < rndtest_runs_tab[i].min || ++ src[i] > rndtest_runs_tab[i].max) { ++ rndtest_report(rsp, 1, ++ "%s interval %d failed (%d, %d-%d)", ++ val ? "ones" : "zeros", ++ i + 1, src[i], rndtest_runs_tab[i].min, ++ rndtest_runs_tab[i].max); ++ rv = -1; ++ } else { ++ rndtest_report(rsp, 0, ++ "runs pass %s interval %d (%d < %d < %d)", ++ val ? "ones" : "zeros", ++ i + 1, rndtest_runs_tab[i].min, src[i], ++ rndtest_runs_tab[i].max); ++ } ++ } ++ return (rv); ++} ++ ++static int ++rndtest_longruns(struct rndtest_state *rsp) ++{ ++ int i, j, ones = 0, zeros = 0, maxones = 0, maxzeros = 0; ++ u_int8_t c; ++ ++ for (i = 0; i < RNDTEST_NBYTES; i++) { ++ c = rsp->rs_buf[i]; ++ for (j = 0; j < 8; j++, c <<= 1) { ++ if (c & 0x80) { ++ zeros = 0; ++ ones++; ++ if (ones > maxones) ++ maxones = ones; ++ } else { ++ ones = 0; ++ zeros++; ++ if (zeros > maxzeros) ++ maxzeros = zeros; ++ } ++ } ++ } ++ ++ if (maxones < 26 && maxzeros < 26) { ++ rndtest_report(rsp, 0, "longruns pass (%d ones, %d zeros)", ++ maxones, maxzeros); ++ return (0); ++ } else { ++ rndtest_report(rsp, 1, "longruns fail (%d ones, %d zeros)", ++ maxones, maxzeros); ++ rndstats.rst_longruns++; ++ return (-1); ++ } ++} ++ ++/* ++ * chi^2 test over 4 bits: (this is called the poker test in FIPS 140-2, ++ * but it is really the chi^2 test over 4 bits (the poker test as described ++ * by Knuth vol 2 is something different, and I take him as authoritative ++ * on nomenclature over NIST). ++ */ ++#define RNDTEST_CHI4_K 16 ++#define RNDTEST_CHI4_K_MASK (RNDTEST_CHI4_K - 1) ++ ++/* ++ * The unnormalized values are used so that we don't have to worry about ++ * fractional precision. The "real" value is found by: ++ * (V - 1562500) * (16 / 5000) = Vn (where V is the unnormalized value) ++ */ ++#define RNDTEST_CHI4_VMIN 1563181 /* 2.1792 */ ++#define RNDTEST_CHI4_VMAX 1576929 /* 46.1728 */ ++ ++static int ++rndtest_chi_4(struct rndtest_state *rsp) ++{ ++ unsigned int freq[RNDTEST_CHI4_K], i, sum; ++ ++ for (i = 0; i < RNDTEST_CHI4_K; i++) ++ freq[i] = 0; ++ ++ /* Get number of occurances of each 4 bit pattern */ ++ for (i = 0; i < RNDTEST_NBYTES; i++) { ++ freq[(rsp->rs_buf[i] >> 4) & RNDTEST_CHI4_K_MASK]++; ++ freq[(rsp->rs_buf[i] >> 0) & RNDTEST_CHI4_K_MASK]++; ++ } ++ ++ for (i = 0, sum = 0; i < RNDTEST_CHI4_K; i++) ++ sum += freq[i] * freq[i]; ++ ++ if (sum >= 1563181 && sum <= 1576929) { ++ rndtest_report(rsp, 0, "chi^2(4): pass (sum %u)", sum); ++ return (0); ++ } else { ++ rndtest_report(rsp, 1, "chi^2(4): failed (sum %u)", sum); ++ rndstats.rst_chi++; ++ return (-1); ++ } ++} ++ ++int ++rndtest_buf(unsigned char *buf) ++{ ++ struct rndtest_state rsp; ++ ++ memset(&rsp, 0, sizeof(rsp)); ++ rsp.rs_buf = buf; ++ rndtest_test(&rsp); ++ return(rsp.rs_discard); ++} ++ +--- /dev/null ++++ b/crypto/ocf/rndtest.h +@@ -0,0 +1,54 @@ ++/* $FreeBSD: src/sys/dev/rndtest/rndtest.h,v 1.1 2003/03/11 22:54:44 sam Exp $ */ ++/* $OpenBSD$ */ ++ ++/* ++ * Copyright (c) 2002 Jason L. Wright (jason@thought.net) ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. All advertising materials mentioning features or use of this software ++ * must display the following acknowledgement: ++ * This product includes software developed by Jason L. Wright ++ * 4. The name of the author may not be used to endorse or promote products ++ * derived from this software without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ++ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ++ * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, ++ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ++ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ++ * POSSIBILITY OF SUCH DAMAGE. ++ */ ++ ++ ++/* Some of the tests depend on these values */ ++#define RNDTEST_NBYTES 2500 ++#define RNDTEST_NBITS (8 * RNDTEST_NBYTES) ++ ++struct rndtest_state { ++ int rs_discard; /* discard/accept random data */ ++ u_int8_t *rs_buf; ++}; ++ ++struct rndtest_stats { ++ u_int32_t rst_discard; /* number of bytes discarded */ ++ u_int32_t rst_tests; /* number of test runs */ ++ u_int32_t rst_monobit; /* monobit test failures */ ++ u_int32_t rst_runs; /* 0/1 runs failures */ ++ u_int32_t rst_longruns; /* longruns failures */ ++ u_int32_t rst_chi; /* chi^2 failures */ ++}; ++ ++extern int rndtest_buf(unsigned char *buf); +--- /dev/null ++++ b/crypto/ocf/ocf-compat.h +@@ -0,0 +1,268 @@ ++#ifndef _BSD_COMPAT_H_ ++#define _BSD_COMPAT_H_ 1 ++/****************************************************************************/ ++/* ++ * Provide compat routines for older linux kernels and BSD kernels ++ * ++ * Written by David McCullough ++ * Copyright (C) 2007 David McCullough ++ * ++ * LICENSE TERMS ++ * ++ * The free distribution and use of this software in both source and binary ++ * form is allowed (with or without changes) provided that: ++ * ++ * 1. distributions of this source code include the above copyright ++ * notice, this list of conditions and the following disclaimer; ++ * ++ * 2. distributions in binary form include the above copyright ++ * notice, this list of conditions and the following disclaimer ++ * in the documentation and/or other associated materials; ++ * ++ * 3. the copyright holder's name is not used to endorse products ++ * built using this software without specific written permission. ++ * ++ * ALTERNATIVELY, provided that this notice is retained in full, this file ++ * may be distributed under the terms of the GNU General Public License (GPL), ++ * in which case the provisions of the GPL apply INSTEAD OF those given above. ++ * ++ * DISCLAIMER ++ * ++ * This software is provided 'as is' with no explicit or implied warranties ++ * in respect of its properties, including, but not limited to, correctness ++ * and/or fitness for purpose. ++ */ ++/****************************************************************************/ ++#ifdef __KERNEL__ ++/* ++ * fake some BSD driver interface stuff specifically for OCF use ++ */ ++ ++typedef struct ocf_device *device_t; ++ ++typedef struct { ++ int (*cryptodev_newsession)(device_t dev, u_int32_t *sidp, struct cryptoini *cri); ++ int (*cryptodev_freesession)(device_t dev, u_int64_t tid); ++ int (*cryptodev_process)(device_t dev, struct cryptop *crp, int hint); ++ int (*cryptodev_kprocess)(device_t dev, struct cryptkop *krp, int hint); ++} device_method_t; ++#define DEVMETHOD(id, func) id: func ++ ++struct ocf_device { ++ char name[32]; /* the driver name */ ++ char nameunit[32]; /* the driver name + HW instance */ ++ int unit; ++ device_method_t methods; ++ void *softc; ++}; ++ ++#define CRYPTODEV_NEWSESSION(dev, sid, cri) \ ++ ((*(dev)->methods.cryptodev_newsession)(dev,sid,cri)) ++#define CRYPTODEV_FREESESSION(dev, sid) \ ++ ((*(dev)->methods.cryptodev_freesession)(dev, sid)) ++#define CRYPTODEV_PROCESS(dev, crp, hint) \ ++ ((*(dev)->methods.cryptodev_process)(dev, crp, hint)) ++#define CRYPTODEV_KPROCESS(dev, krp, hint) \ ++ ((*(dev)->methods.cryptodev_kprocess)(dev, krp, hint)) ++ ++#define device_get_name(dev) ((dev)->name) ++#define device_get_nameunit(dev) ((dev)->nameunit) ++#define device_get_unit(dev) ((dev)->unit) ++#define device_get_softc(dev) ((dev)->softc) ++ ++#define softc_device_decl \ ++ struct ocf_device _device; \ ++ device_t ++ ++#define softc_device_init(_sc, _name, _unit, _methods) \ ++ if (1) {\ ++ strncpy((_sc)->_device.name, _name, sizeof((_sc)->_device.name) - 1); \ ++ snprintf((_sc)->_device.nameunit, sizeof((_sc)->_device.name), "%s%d", _name, _unit); \ ++ (_sc)->_device.unit = _unit; \ ++ (_sc)->_device.methods = _methods; \ ++ (_sc)->_device.softc = (void *) _sc; \ ++ *(device_t *)((softc_get_device(_sc))+1) = &(_sc)->_device; \ ++ } else ++ ++#define softc_get_device(_sc) (&(_sc)->_device) ++ ++/* ++ * iomem support for 2.4 and 2.6 kernels ++ */ ++#include ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++#define ocf_iomem_t unsigned long ++ ++/* ++ * implement simple workqueue like support for older kernels ++ */ ++ ++#include ++ ++#define work_struct tq_struct ++ ++#define INIT_WORK(wp, fp, ap) \ ++ do { \ ++ (wp)->sync = 0; \ ++ (wp)->routine = (fp); \ ++ (wp)->data = (ap); \ ++ } while (0) ++ ++#define schedule_work(wp) \ ++ do { \ ++ queue_task((wp), &tq_immediate); \ ++ mark_bh(IMMEDIATE_BH); \ ++ } while (0) ++ ++#define flush_scheduled_work() run_task_queue(&tq_immediate) ++ ++#else ++#define ocf_iomem_t void __iomem * ++ ++#include ++ ++#endif ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) ++#define files_fdtable(files) (files) ++#endif ++ ++#ifdef MODULE_PARM ++#undef module_param /* just in case */ ++#define module_param(a,b,c) MODULE_PARM(a,"i") ++#endif ++ ++#define bzero(s,l) memset(s,0,l) ++#define bcopy(s,d,l) memcpy(d,s,l) ++#define bcmp(x, y, l) memcmp(x,y,l) ++ ++#define MIN(x,y) ((x) < (y) ? (x) : (y)) ++ ++#define device_printf(dev, a...) ({ \ ++ printk("%s: ", device_get_nameunit(dev)); printk(a); \ ++ }) ++ ++#undef printf ++#define printf(fmt...) printk(fmt) ++ ++#define KASSERT(c,p) if (!(c)) { printk p ; } else ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++#define ocf_daemonize(str) \ ++ daemonize(); \ ++ spin_lock_irq(¤t->sigmask_lock); \ ++ sigemptyset(¤t->blocked); \ ++ recalc_sigpending(current); \ ++ spin_unlock_irq(¤t->sigmask_lock); \ ++ sprintf(current->comm, str); ++#else ++#define ocf_daemonize(str) daemonize(str); ++#endif ++ ++#define TAILQ_INSERT_TAIL(q,d,m) list_add_tail(&(d)->m, (q)) ++#define TAILQ_EMPTY(q) list_empty(q) ++#define TAILQ_FOREACH(v, q, m) list_for_each_entry(v, q, m) ++ ++#define read_random(p,l) get_random_bytes(p,l) ++ ++#define DELAY(x) ((x) > 2000 ? mdelay((x)/1000) : udelay(x)) ++#define strtoul simple_strtoul ++ ++#define pci_get_vendor(dev) ((dev)->vendor) ++#define pci_get_device(dev) ((dev)->device) ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ++#define pci_set_consistent_dma_mask(dev, mask) (0) ++#endif ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) ++#define pci_dma_sync_single_for_cpu pci_dma_sync_single ++#endif ++ ++#ifndef DMA_32BIT_MASK ++#define DMA_32BIT_MASK 0x00000000ffffffffULL ++#endif ++ ++#define htole32(x) cpu_to_le32(x) ++#define htobe32(x) cpu_to_be32(x) ++#define htole16(x) cpu_to_le16(x) ++#define htobe16(x) cpu_to_be16(x) ++ ++/* older kernels don't have these */ ++ ++#ifndef IRQ_NONE ++#define IRQ_NONE ++#define IRQ_HANDLED ++#define irqreturn_t void ++#endif ++#ifndef IRQF_SHARED ++#define IRQF_SHARED SA_SHIRQ ++#endif ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) ++# define strlcpy(dest,src,len) \ ++ ({strncpy(dest,src,(len)-1); ((char *)dest)[(len)-1] = '\0'; }) ++#endif ++ ++#ifndef MAX_ERRNO ++#define MAX_ERRNO 4095 ++#endif ++#ifndef IS_ERR_VALUE ++#define IS_ERR_VALUE(x) ((unsigned long)(x) >= (unsigned long)-MAX_ERRNO) ++#endif ++ ++/* ++ * common debug for all ++ */ ++#if 1 ++#define dprintk(a...) do { if (debug) printk(a); } while(0) ++#else ++#define dprintk(a...) ++#endif ++ ++#ifndef SLAB_ATOMIC ++/* Changed in 2.6.20, must use GFP_ATOMIC now */ ++#define SLAB_ATOMIC GFP_ATOMIC ++#endif ++ ++/* ++ * need some additional support for older kernels */ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,2) ++#define pci_register_driver_compat(driver, rc) \ ++ do { \ ++ if ((rc) > 0) { \ ++ (rc) = 0; \ ++ } else if (rc == 0) { \ ++ (rc) = -ENODEV; \ ++ } else { \ ++ pci_unregister_driver(driver); \ ++ } \ ++ } while (0) ++#elif LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) ++#define pci_register_driver_compat(driver,rc) ((rc) = (rc) < 0 ? (rc) : 0) ++#else ++#define pci_register_driver_compat(driver,rc) ++#endif ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24) ++ ++#include ++ ++static inline void sg_set_page(struct scatterlist *sg, struct page *page, ++ unsigned int len, unsigned int offset) ++{ ++ sg->page = page; ++ sg->offset = offset; ++ sg->length = len; ++} ++ ++static inline void *sg_virt(struct scatterlist *sg) ++{ ++ return page_address(sg->page) + sg->offset; ++} ++ ++#endif ++ ++#endif /* __KERNEL__ */ ++ ++/****************************************************************************/ ++#endif /* _BSD_COMPAT_H_ */ +--- /dev/null ++++ b/crypto/ocf/pasemi/pasemi.c +@@ -0,0 +1,1009 @@ ++/* ++ * Copyright (C) 2007 PA Semi, Inc ++ * ++ * Driver for the PA Semi PWRficient DMA Crypto Engine ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ++ */ ++ ++#ifndef AUTOCONF_INCLUDED ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "pasemi_fnu.h" ++ ++#define DRV_NAME "pasemi" ++ ++#define TIMER_INTERVAL 1000 ++ ++static void __devexit pasemi_dma_remove(struct pci_dev *pdev); ++static struct pasdma_status volatile * dma_status; ++ ++static int debug; ++module_param(debug, int, 0644); ++MODULE_PARM_DESC(debug, "Enable debug"); ++ ++static void pasemi_desc_start(struct pasemi_desc *desc, u64 hdr) ++{ ++ desc->postop = 0; ++ desc->quad[0] = hdr; ++ desc->quad_cnt = 1; ++ desc->size = 1; ++} ++ ++static void pasemi_desc_build(struct pasemi_desc *desc, u64 val) ++{ ++ desc->quad[desc->quad_cnt++] = val; ++ desc->size = (desc->quad_cnt + 1) / 2; ++} ++ ++static void pasemi_desc_hdr(struct pasemi_desc *desc, u64 hdr) ++{ ++ desc->quad[0] |= hdr; ++} ++ ++static int pasemi_desc_size(struct pasemi_desc *desc) ++{ ++ return desc->size; ++} ++ ++static void pasemi_ring_add_desc( ++ struct pasemi_fnu_txring *ring, ++ struct pasemi_desc *desc, ++ struct cryptop *crp) { ++ int i; ++ int ring_index = 2 * (ring->next_to_fill & (TX_RING_SIZE-1)); ++ ++ TX_DESC_INFO(ring, ring->next_to_fill).desc_size = desc->size; ++ TX_DESC_INFO(ring, ring->next_to_fill).desc_postop = desc->postop; ++ TX_DESC_INFO(ring, ring->next_to_fill).cf_crp = crp; ++ ++ for (i = 0; i < desc->quad_cnt; i += 2) { ++ ring_index = 2 * (ring->next_to_fill & (TX_RING_SIZE-1)); ++ ring->desc[ring_index] = desc->quad[i]; ++ ring->desc[ring_index + 1] = desc->quad[i + 1]; ++ ring->next_to_fill++; ++ } ++ ++ if (desc->quad_cnt & 1) ++ ring->desc[ring_index + 1] = 0; ++} ++ ++static void pasemi_ring_incr(struct pasemi_softc *sc, int chan_index, int incr) ++{ ++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_INCR(sc->base_chan + chan_index), ++ incr); ++} ++ ++/* ++ * Generate a new software session. ++ */ ++static int ++pasemi_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) ++{ ++ struct cryptoini *c, *encini = NULL, *macini = NULL; ++ struct pasemi_softc *sc = device_get_softc(dev); ++ struct pasemi_session *ses = NULL, **sespp; ++ int sesn, blksz = 0; ++ u64 ccmd = 0; ++ unsigned long flags; ++ struct pasemi_desc init_desc; ++ struct pasemi_fnu_txring *txring; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ if (sidp == NULL || cri == NULL || sc == NULL) { ++ DPRINTF("%s,%d - EINVAL\n", __FILE__, __LINE__); ++ return -EINVAL; ++ } ++ for (c = cri; c != NULL; c = c->cri_next) { ++ if (ALG_IS_SIG(c->cri_alg)) { ++ if (macini) ++ return -EINVAL; ++ macini = c; ++ } else if (ALG_IS_CIPHER(c->cri_alg)) { ++ if (encini) ++ return -EINVAL; ++ encini = c; ++ } else { ++ DPRINTF("UNKNOWN c->cri_alg %d\n", c->cri_alg); ++ return -EINVAL; ++ } ++ } ++ if (encini == NULL && macini == NULL) ++ return -EINVAL; ++ if (encini) { ++ /* validate key length */ ++ switch (encini->cri_alg) { ++ case CRYPTO_DES_CBC: ++ if (encini->cri_klen != 64) ++ return -EINVAL; ++ ccmd = DMA_CALGO_DES; ++ break; ++ case CRYPTO_3DES_CBC: ++ if (encini->cri_klen != 192) ++ return -EINVAL; ++ ccmd = DMA_CALGO_3DES; ++ break; ++ case CRYPTO_AES_CBC: ++ if (encini->cri_klen != 128 && ++ encini->cri_klen != 192 && ++ encini->cri_klen != 256) ++ return -EINVAL; ++ ccmd = DMA_CALGO_AES; ++ break; ++ case CRYPTO_ARC4: ++ if (encini->cri_klen != 128) ++ return -EINVAL; ++ ccmd = DMA_CALGO_ARC; ++ break; ++ default: ++ DPRINTF("UNKNOWN encini->cri_alg %d\n", ++ encini->cri_alg); ++ return -EINVAL; ++ } ++ } ++ ++ if (macini) { ++ switch (macini->cri_alg) { ++ case CRYPTO_MD5: ++ case CRYPTO_MD5_HMAC: ++ blksz = 16; ++ break; ++ case CRYPTO_SHA1: ++ case CRYPTO_SHA1_HMAC: ++ blksz = 20; ++ break; ++ default: ++ DPRINTF("UNKNOWN macini->cri_alg %d\n", ++ macini->cri_alg); ++ return -EINVAL; ++ } ++ if (((macini->cri_klen + 7) / 8) > blksz) { ++ DPRINTF("key length %d bigger than blksize %d not supported\n", ++ ((macini->cri_klen + 7) / 8), blksz); ++ return -EINVAL; ++ } ++ } ++ ++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { ++ if (sc->sc_sessions[sesn] == NULL) { ++ sc->sc_sessions[sesn] = (struct pasemi_session *) ++ kzalloc(sizeof(struct pasemi_session), GFP_ATOMIC); ++ ses = sc->sc_sessions[sesn]; ++ break; ++ } else if (sc->sc_sessions[sesn]->used == 0) { ++ ses = sc->sc_sessions[sesn]; ++ break; ++ } ++ } ++ ++ if (ses == NULL) { ++ sespp = (struct pasemi_session **) ++ kzalloc(sc->sc_nsessions * 2 * ++ sizeof(struct pasemi_session *), GFP_ATOMIC); ++ if (sespp == NULL) ++ return -ENOMEM; ++ memcpy(sespp, sc->sc_sessions, ++ sc->sc_nsessions * sizeof(struct pasemi_session *)); ++ kfree(sc->sc_sessions); ++ sc->sc_sessions = sespp; ++ sesn = sc->sc_nsessions; ++ ses = sc->sc_sessions[sesn] = (struct pasemi_session *) ++ kzalloc(sizeof(struct pasemi_session), GFP_ATOMIC); ++ if (ses == NULL) ++ return -ENOMEM; ++ sc->sc_nsessions *= 2; ++ } ++ ++ ses->used = 1; ++ ++ ses->dma_addr = pci_map_single(sc->dma_pdev, (void *) ses->civ, ++ sizeof(struct pasemi_session), DMA_TO_DEVICE); ++ ++ /* enter the channel scheduler */ ++ spin_lock_irqsave(&sc->sc_chnlock, flags); ++ ++ /* ARC4 has to be processed by the even channel */ ++ if (encini && (encini->cri_alg == CRYPTO_ARC4)) ++ ses->chan = sc->sc_lastchn & ~1; ++ else ++ ses->chan = sc->sc_lastchn; ++ sc->sc_lastchn = (sc->sc_lastchn + 1) % sc->sc_num_channels; ++ ++ spin_unlock_irqrestore(&sc->sc_chnlock, flags); ++ ++ txring = &sc->tx[ses->chan]; ++ ++ if (encini) { ++ ses->ccmd = ccmd; ++ ++ /* get an IV */ ++ /* XXX may read fewer than requested */ ++ get_random_bytes(ses->civ, sizeof(ses->civ)); ++ ++ ses->keysz = (encini->cri_klen - 63) / 64; ++ memcpy(ses->key, encini->cri_key, (ses->keysz + 1) * 8); ++ ++ pasemi_desc_start(&init_desc, ++ XCT_CTRL_HDR(ses->chan, (encini && macini) ? 0x68 : 0x40, DMA_FN_CIV0)); ++ pasemi_desc_build(&init_desc, ++ XCT_FUN_SRC_PTR((encini && macini) ? 0x68 : 0x40, ses->dma_addr)); ++ } ++ if (macini) { ++ if (macini->cri_alg == CRYPTO_MD5_HMAC || ++ macini->cri_alg == CRYPTO_SHA1_HMAC) ++ memcpy(ses->hkey, macini->cri_key, blksz); ++ else { ++ /* Load initialization constants(RFC 1321, 3174) */ ++ ses->hiv[0] = 0x67452301efcdab89ULL; ++ ses->hiv[1] = 0x98badcfe10325476ULL; ++ ses->hiv[2] = 0xc3d2e1f000000000ULL; ++ } ++ ses->hseq = 0ULL; ++ } ++ ++ spin_lock_irqsave(&txring->fill_lock, flags); ++ ++ if (((txring->next_to_fill + pasemi_desc_size(&init_desc)) - ++ txring->next_to_clean) > TX_RING_SIZE) { ++ spin_unlock_irqrestore(&txring->fill_lock, flags); ++ return ERESTART; ++ } ++ ++ if (encini) { ++ pasemi_ring_add_desc(txring, &init_desc, NULL); ++ pasemi_ring_incr(sc, ses->chan, ++ pasemi_desc_size(&init_desc)); ++ } ++ ++ txring->sesn = sesn; ++ spin_unlock_irqrestore(&txring->fill_lock, flags); ++ ++ *sidp = PASEMI_SID(sesn); ++ return 0; ++} ++ ++/* ++ * Deallocate a session. ++ */ ++static int ++pasemi_freesession(device_t dev, u_int64_t tid) ++{ ++ struct pasemi_softc *sc = device_get_softc(dev); ++ int session; ++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (sc == NULL) ++ return -EINVAL; ++ session = PASEMI_SESSION(sid); ++ if (session >= sc->sc_nsessions || !sc->sc_sessions[session]) ++ return -EINVAL; ++ ++ pci_unmap_single(sc->dma_pdev, ++ sc->sc_sessions[session]->dma_addr, ++ sizeof(struct pasemi_session), DMA_TO_DEVICE); ++ memset(sc->sc_sessions[session], 0, ++ sizeof(struct pasemi_session)); ++ ++ return 0; ++} ++ ++static int ++pasemi_process(device_t dev, struct cryptop *crp, int hint) ++{ ++ ++ int err = 0, ivsize, srclen = 0, reinit = 0, reinit_size = 0, chsel; ++ struct pasemi_softc *sc = device_get_softc(dev); ++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; ++ caddr_t ivp; ++ struct pasemi_desc init_desc, work_desc; ++ struct pasemi_session *ses; ++ struct sk_buff *skb; ++ struct uio *uiop; ++ unsigned long flags; ++ struct pasemi_fnu_txring *txring; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL) ++ return -EINVAL; ++ ++ crp->crp_etype = 0; ++ if (PASEMI_SESSION(crp->crp_sid) >= sc->sc_nsessions) ++ return -EINVAL; ++ ++ ses = sc->sc_sessions[PASEMI_SESSION(crp->crp_sid)]; ++ ++ crd1 = crp->crp_desc; ++ if (crd1 == NULL) { ++ err = -EINVAL; ++ goto errout; ++ } ++ crd2 = crd1->crd_next; ++ ++ if (ALG_IS_SIG(crd1->crd_alg)) { ++ maccrd = crd1; ++ if (crd2 == NULL) ++ enccrd = NULL; ++ else if (ALG_IS_CIPHER(crd2->crd_alg) && ++ (crd2->crd_flags & CRD_F_ENCRYPT) == 0) ++ enccrd = crd2; ++ else ++ goto erralg; ++ } else if (ALG_IS_CIPHER(crd1->crd_alg)) { ++ enccrd = crd1; ++ if (crd2 == NULL) ++ maccrd = NULL; ++ else if (ALG_IS_SIG(crd2->crd_alg) && ++ (crd1->crd_flags & CRD_F_ENCRYPT)) ++ maccrd = crd2; ++ else ++ goto erralg; ++ } else ++ goto erralg; ++ ++ chsel = ses->chan; ++ ++ txring = &sc->tx[chsel]; ++ ++ if (enccrd && !maccrd) { ++ if (enccrd->crd_alg == CRYPTO_ARC4) ++ reinit = 1; ++ reinit_size = 0x40; ++ srclen = crp->crp_ilen; ++ ++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I ++ | XCT_FUN_FUN(chsel)); ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) ++ pasemi_desc_hdr(&work_desc, XCT_FUN_CRM_ENC); ++ else ++ pasemi_desc_hdr(&work_desc, XCT_FUN_CRM_DEC); ++ } else if (enccrd && maccrd) { ++ if (enccrd->crd_alg == CRYPTO_ARC4) ++ reinit = 1; ++ reinit_size = 0x68; ++ ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) { ++ /* Encrypt -> Authenticate */ ++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_ENC_SIG ++ | XCT_FUN_A | XCT_FUN_FUN(chsel)); ++ srclen = maccrd->crd_skip + maccrd->crd_len; ++ } else { ++ /* Authenticate -> Decrypt */ ++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_SIG_DEC ++ | XCT_FUN_24BRES | XCT_FUN_FUN(chsel)); ++ pasemi_desc_build(&work_desc, 0); ++ pasemi_desc_build(&work_desc, 0); ++ pasemi_desc_build(&work_desc, 0); ++ work_desc.postop = PASEMI_CHECK_SIG; ++ srclen = crp->crp_ilen; ++ } ++ ++ pasemi_desc_hdr(&work_desc, XCT_FUN_SHL(maccrd->crd_skip / 4)); ++ pasemi_desc_hdr(&work_desc, XCT_FUN_CHL(enccrd->crd_skip - maccrd->crd_skip)); ++ } else if (!enccrd && maccrd) { ++ srclen = maccrd->crd_len; ++ ++ pasemi_desc_start(&init_desc, ++ XCT_CTRL_HDR(chsel, 0x58, DMA_FN_HKEY0)); ++ pasemi_desc_build(&init_desc, ++ XCT_FUN_SRC_PTR(0x58, ((struct pasemi_session *)ses->dma_addr)->hkey)); ++ ++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_SIG ++ | XCT_FUN_A | XCT_FUN_FUN(chsel)); ++ } ++ ++ if (enccrd) { ++ switch (enccrd->crd_alg) { ++ case CRYPTO_3DES_CBC: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_3DES | ++ XCT_FUN_BCM_CBC); ++ ivsize = sizeof(u64); ++ break; ++ case CRYPTO_DES_CBC: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_DES | ++ XCT_FUN_BCM_CBC); ++ ivsize = sizeof(u64); ++ break; ++ case CRYPTO_AES_CBC: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_AES | ++ XCT_FUN_BCM_CBC); ++ ivsize = 2 * sizeof(u64); ++ break; ++ case CRYPTO_ARC4: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_ARC); ++ ivsize = 0; ++ break; ++ default: ++ printk(DRV_NAME ": unimplemented enccrd->crd_alg %d\n", ++ enccrd->crd_alg); ++ err = -EINVAL; ++ goto errout; ++ } ++ ++ ivp = (ivsize == sizeof(u64)) ? (caddr_t) &ses->civ[1] : (caddr_t) &ses->civ[0]; ++ if (enccrd->crd_flags & CRD_F_ENCRYPT) { ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ memcpy(ivp, enccrd->crd_iv, ivsize); ++ /* If IV is not present in the buffer already, it has to be copied there */ ++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) ++ crypto_copyback(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, ivp); ++ } else { ++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) ++ /* IV is provided expicitly in descriptor */ ++ memcpy(ivp, enccrd->crd_iv, ivsize); ++ else ++ /* IV is provided in the packet */ ++ crypto_copydata(crp->crp_flags, crp->crp_buf, ++ enccrd->crd_inject, ivsize, ++ ivp); ++ } ++ } ++ ++ if (maccrd) { ++ switch (maccrd->crd_alg) { ++ case CRYPTO_MD5: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_MD5 | ++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4)); ++ break; ++ case CRYPTO_SHA1: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_SHA1 | ++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4)); ++ break; ++ case CRYPTO_MD5_HMAC: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_HMAC_MD5 | ++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4)); ++ break; ++ case CRYPTO_SHA1_HMAC: ++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_HMAC_SHA1 | ++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4)); ++ break; ++ default: ++ printk(DRV_NAME ": unimplemented maccrd->crd_alg %d\n", ++ maccrd->crd_alg); ++ err = -EINVAL; ++ goto errout; ++ } ++ } ++ ++ if (crp->crp_flags & CRYPTO_F_SKBUF) { ++ /* using SKB buffers */ ++ skb = (struct sk_buff *)crp->crp_buf; ++ if (skb_shinfo(skb)->nr_frags) { ++ printk(DRV_NAME ": skb frags unimplemented\n"); ++ err = -EINVAL; ++ goto errout; ++ } ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_DST_PTR(skb->len, pci_map_single( ++ sc->dma_pdev, skb->data, ++ skb->len, DMA_TO_DEVICE))); ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_SRC_PTR( ++ srclen, pci_map_single( ++ sc->dma_pdev, skb->data, ++ srclen, DMA_TO_DEVICE))); ++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen)); ++ } else if (crp->crp_flags & CRYPTO_F_IOV) { ++ /* using IOV buffers */ ++ uiop = (struct uio *)crp->crp_buf; ++ if (uiop->uio_iovcnt > 1) { ++ printk(DRV_NAME ": iov frags unimplemented\n"); ++ err = -EINVAL; ++ goto errout; ++ } ++ ++ /* crp_olen is never set; always use crp_ilen */ ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_DST_PTR(crp->crp_ilen, pci_map_single( ++ sc->dma_pdev, ++ uiop->uio_iov->iov_base, ++ crp->crp_ilen, DMA_TO_DEVICE))); ++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen)); ++ ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_SRC_PTR(srclen, pci_map_single( ++ sc->dma_pdev, ++ uiop->uio_iov->iov_base, ++ srclen, DMA_TO_DEVICE))); ++ } else { ++ /* using contig buffers */ ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_DST_PTR(crp->crp_ilen, pci_map_single( ++ sc->dma_pdev, ++ crp->crp_buf, ++ crp->crp_ilen, DMA_TO_DEVICE))); ++ pasemi_desc_build( ++ &work_desc, ++ XCT_FUN_SRC_PTR(srclen, pci_map_single( ++ sc->dma_pdev, ++ crp->crp_buf, srclen, ++ DMA_TO_DEVICE))); ++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen)); ++ } ++ ++ spin_lock_irqsave(&txring->fill_lock, flags); ++ ++ if (txring->sesn != PASEMI_SESSION(crp->crp_sid)) { ++ txring->sesn = PASEMI_SESSION(crp->crp_sid); ++ reinit = 1; ++ } ++ ++ if (enccrd) { ++ pasemi_desc_start(&init_desc, ++ XCT_CTRL_HDR(chsel, reinit ? reinit_size : 0x10, DMA_FN_CIV0)); ++ pasemi_desc_build(&init_desc, ++ XCT_FUN_SRC_PTR(reinit ? reinit_size : 0x10, ses->dma_addr)); ++ } ++ ++ if (((txring->next_to_fill + pasemi_desc_size(&init_desc) + ++ pasemi_desc_size(&work_desc)) - ++ txring->next_to_clean) > TX_RING_SIZE) { ++ spin_unlock_irqrestore(&txring->fill_lock, flags); ++ err = ERESTART; ++ goto errout; ++ } ++ ++ pasemi_ring_add_desc(txring, &init_desc, NULL); ++ pasemi_ring_add_desc(txring, &work_desc, crp); ++ ++ pasemi_ring_incr(sc, chsel, ++ pasemi_desc_size(&init_desc) + ++ pasemi_desc_size(&work_desc)); ++ ++ spin_unlock_irqrestore(&txring->fill_lock, flags); ++ ++ mod_timer(&txring->crypto_timer, jiffies + TIMER_INTERVAL); ++ ++ return 0; ++ ++erralg: ++ printk(DRV_NAME ": unsupported algorithm or algorithm order alg1 %d alg2 %d\n", ++ crd1->crd_alg, crd2->crd_alg); ++ err = -EINVAL; ++ ++errout: ++ if (err != ERESTART) { ++ crp->crp_etype = err; ++ crypto_done(crp); ++ } ++ return err; ++} ++ ++static int pasemi_clean_tx(struct pasemi_softc *sc, int chan) ++{ ++ int i, j, ring_idx; ++ struct pasemi_fnu_txring *ring = &sc->tx[chan]; ++ u16 delta_cnt; ++ int flags, loops = 10; ++ int desc_size; ++ struct cryptop *crp; ++ ++ spin_lock_irqsave(&ring->clean_lock, flags); ++ ++ while ((delta_cnt = (dma_status->tx_sta[sc->base_chan + chan] ++ & PAS_STATUS_PCNT_M) - ring->total_pktcnt) ++ && loops--) { ++ ++ for (i = 0; i < delta_cnt; i++) { ++ desc_size = TX_DESC_INFO(ring, ring->next_to_clean).desc_size; ++ crp = TX_DESC_INFO(ring, ring->next_to_clean).cf_crp; ++ if (crp) { ++ ring_idx = 2 * (ring->next_to_clean & (TX_RING_SIZE-1)); ++ if (TX_DESC_INFO(ring, ring->next_to_clean).desc_postop & PASEMI_CHECK_SIG) { ++ /* Need to make sure signature matched, ++ * if not - return error */ ++ if (!(ring->desc[ring_idx + 1] & (1ULL << 63))) ++ crp->crp_etype = -EINVAL; ++ } ++ crypto_done(TX_DESC_INFO(ring, ++ ring->next_to_clean).cf_crp); ++ TX_DESC_INFO(ring, ring->next_to_clean).cf_crp = NULL; ++ pci_unmap_single( ++ sc->dma_pdev, ++ XCT_PTR_ADDR_LEN(ring->desc[ring_idx + 1]), ++ PCI_DMA_TODEVICE); ++ ++ ring->desc[ring_idx] = ring->desc[ring_idx + 1] = 0; ++ ++ ring->next_to_clean++; ++ for (j = 1; j < desc_size; j++) { ++ ring_idx = 2 * ++ (ring->next_to_clean & ++ (TX_RING_SIZE-1)); ++ pci_unmap_single( ++ sc->dma_pdev, ++ XCT_PTR_ADDR_LEN(ring->desc[ring_idx]), ++ PCI_DMA_TODEVICE); ++ if (ring->desc[ring_idx + 1]) ++ pci_unmap_single( ++ sc->dma_pdev, ++ XCT_PTR_ADDR_LEN( ++ ring->desc[ ++ ring_idx + 1]), ++ PCI_DMA_TODEVICE); ++ ring->desc[ring_idx] = ++ ring->desc[ring_idx + 1] = 0; ++ ring->next_to_clean++; ++ } ++ } else { ++ for (j = 0; j < desc_size; j++) { ++ ring_idx = 2 * (ring->next_to_clean & (TX_RING_SIZE-1)); ++ ring->desc[ring_idx] = ++ ring->desc[ring_idx + 1] = 0; ++ ring->next_to_clean++; ++ } ++ } ++ } ++ ++ ring->total_pktcnt += delta_cnt; ++ } ++ spin_unlock_irqrestore(&ring->clean_lock, flags); ++ ++ return 0; ++} ++ ++static void sweepup_tx(struct pasemi_softc *sc) ++{ ++ int i; ++ ++ for (i = 0; i < sc->sc_num_channels; i++) ++ pasemi_clean_tx(sc, i); ++} ++ ++static irqreturn_t pasemi_intr(int irq, void *arg, struct pt_regs *regs) ++{ ++ struct pasemi_softc *sc = arg; ++ unsigned int reg; ++ int chan = irq - sc->base_irq; ++ int chan_index = sc->base_chan + chan; ++ u64 stat = dma_status->tx_sta[chan_index]; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (!(stat & PAS_STATUS_CAUSE_M)) ++ return IRQ_NONE; ++ ++ pasemi_clean_tx(sc, chan); ++ ++ stat = dma_status->tx_sta[chan_index]; ++ ++ reg = PAS_IOB_DMA_TXCH_RESET_PINTC | ++ PAS_IOB_DMA_TXCH_RESET_PCNT(sc->tx[chan].total_pktcnt); ++ ++ if (stat & PAS_STATUS_SOFT) ++ reg |= PAS_IOB_DMA_RXCH_RESET_SINTC; ++ ++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_RESET(chan_index), reg); ++ ++ ++ return IRQ_HANDLED; ++} ++ ++static int pasemi_dma_setup_tx_resources(struct pasemi_softc *sc, int chan) ++{ ++ u32 val; ++ int chan_index = chan + sc->base_chan; ++ int ret; ++ struct pasemi_fnu_txring *ring; ++ ++ ring = &sc->tx[chan]; ++ ++ spin_lock_init(&ring->fill_lock); ++ spin_lock_init(&ring->clean_lock); ++ ++ ring->desc_info = kzalloc(sizeof(struct pasemi_desc_info) * ++ TX_RING_SIZE, GFP_KERNEL); ++ if (!ring->desc_info) ++ return -ENOMEM; ++ ++ /* Allocate descriptors */ ++ ring->desc = dma_alloc_coherent(&sc->dma_pdev->dev, ++ TX_RING_SIZE * ++ 2 * sizeof(u64), ++ &ring->dma, GFP_KERNEL); ++ if (!ring->desc) ++ return -ENOMEM; ++ ++ memset((void *) ring->desc, 0, TX_RING_SIZE * 2 * sizeof(u64)); ++ ++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_RESET(chan_index), 0x30); ++ ++ ring->total_pktcnt = 0; ++ ++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_BASEL(chan_index), ++ PAS_DMA_TXCHAN_BASEL_BRBL(ring->dma)); ++ ++ val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->dma >> 32); ++ val |= PAS_DMA_TXCHAN_BASEU_SIZ(TX_RING_SIZE >> 2); ++ ++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_BASEU(chan_index), val); ++ ++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_CFG(chan_index), ++ PAS_DMA_TXCHAN_CFG_TY_FUNC | ++ PAS_DMA_TXCHAN_CFG_TATTR(chan) | ++ PAS_DMA_TXCHAN_CFG_WT(2)); ++ ++ /* enable tx channel */ ++ out_le32(sc->dma_regs + ++ PAS_DMA_TXCHAN_TCMDSTA(chan_index), ++ PAS_DMA_TXCHAN_TCMDSTA_EN); ++ ++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_CFG(chan_index), ++ PAS_IOB_DMA_TXCH_CFG_CNTTH(1000)); ++ ++ ring->next_to_fill = 0; ++ ring->next_to_clean = 0; ++ ++ snprintf(ring->irq_name, sizeof(ring->irq_name), ++ "%s%d", "crypto", chan); ++ ++ ring->irq = irq_create_mapping(NULL, sc->base_irq + chan); ++ ret = request_irq(ring->irq, (irq_handler_t) ++ pasemi_intr, IRQF_DISABLED, ring->irq_name, sc); ++ if (ret) { ++ printk(KERN_ERR DRV_NAME ": failed to hook irq %d ret %d\n", ++ ring->irq, ret); ++ ring->irq = -1; ++ return ret; ++ } ++ ++ setup_timer(&ring->crypto_timer, (void *) sweepup_tx, (unsigned long) sc); ++ ++ return 0; ++} ++ ++static device_method_t pasemi_methods = { ++ /* crypto device methods */ ++ DEVMETHOD(cryptodev_newsession, pasemi_newsession), ++ DEVMETHOD(cryptodev_freesession, pasemi_freesession), ++ DEVMETHOD(cryptodev_process, pasemi_process), ++}; ++ ++/* Set up the crypto device structure, private data, ++ * and anything else we need before we start */ ++ ++static int __devinit ++pasemi_dma_probe(struct pci_dev *pdev, const struct pci_device_id *ent) ++{ ++ struct pasemi_softc *sc; ++ int ret, i; ++ ++ DPRINTF(KERN_ERR "%s()\n", __FUNCTION__); ++ ++ sc = kzalloc(sizeof(*sc), GFP_KERNEL); ++ if (!sc) ++ return -ENOMEM; ++ ++ softc_device_init(sc, DRV_NAME, 1, pasemi_methods); ++ ++ pci_set_drvdata(pdev, sc); ++ ++ spin_lock_init(&sc->sc_chnlock); ++ ++ sc->sc_sessions = (struct pasemi_session **) ++ kzalloc(PASEMI_INITIAL_SESSIONS * ++ sizeof(struct pasemi_session *), GFP_ATOMIC); ++ if (sc->sc_sessions == NULL) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ sc->sc_nsessions = PASEMI_INITIAL_SESSIONS; ++ sc->sc_lastchn = 0; ++ sc->base_irq = pdev->irq + 6; ++ sc->base_chan = 6; ++ sc->sc_cid = -1; ++ sc->dma_pdev = pdev; ++ ++ sc->iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL); ++ if (!sc->iob_pdev) { ++ dev_err(&pdev->dev, "Can't find I/O Bridge\n"); ++ ret = -ENODEV; ++ goto out; ++ } ++ ++ /* This is hardcoded and ugly, but we have some firmware versions ++ * who don't provide the register space in the device tree. Luckily ++ * they are at well-known locations so we can just do the math here. ++ */ ++ sc->dma_regs = ++ ioremap(0xe0000000 + (sc->dma_pdev->devfn << 12), 0x2000); ++ sc->iob_regs = ++ ioremap(0xe0000000 + (sc->iob_pdev->devfn << 12), 0x2000); ++ if (!sc->dma_regs || !sc->iob_regs) { ++ dev_err(&pdev->dev, "Can't map registers\n"); ++ ret = -ENODEV; ++ goto out; ++ } ++ ++ dma_status = __ioremap(0xfd800000, 0x1000, 0); ++ if (!dma_status) { ++ ret = -ENODEV; ++ dev_err(&pdev->dev, "Can't map dmastatus space\n"); ++ goto out; ++ } ++ ++ sc->tx = (struct pasemi_fnu_txring *) ++ kzalloc(sizeof(struct pasemi_fnu_txring) ++ * 8, GFP_KERNEL); ++ if (!sc->tx) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ /* Initialize the h/w */ ++ out_le32(sc->dma_regs + PAS_DMA_COM_CFG, ++ (in_le32(sc->dma_regs + PAS_DMA_COM_CFG) | ++ PAS_DMA_COM_CFG_FWF)); ++ out_le32(sc->dma_regs + PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN); ++ ++ for (i = 0; i < PASEMI_FNU_CHANNELS; i++) { ++ sc->sc_num_channels++; ++ ret = pasemi_dma_setup_tx_resources(sc, i); ++ if (ret) ++ goto out; ++ } ++ ++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc), ++ CRYPTOCAP_F_HARDWARE); ++ if (sc->sc_cid < 0) { ++ printk(KERN_ERR DRV_NAME ": could not get crypto driver id\n"); ++ ret = -ENXIO; ++ goto out; ++ } ++ ++ /* register algorithms with the framework */ ++ printk(DRV_NAME ":"); ++ ++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); ++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); ++ ++ return 0; ++ ++out: ++ pasemi_dma_remove(pdev); ++ return ret; ++} ++ ++#define MAX_RETRIES 5000 ++ ++static void pasemi_free_tx_resources(struct pasemi_softc *sc, int chan) ++{ ++ struct pasemi_fnu_txring *ring = &sc->tx[chan]; ++ int chan_index = chan + sc->base_chan; ++ int retries; ++ u32 stat; ++ ++ /* Stop the channel */ ++ out_le32(sc->dma_regs + ++ PAS_DMA_TXCHAN_TCMDSTA(chan_index), ++ PAS_DMA_TXCHAN_TCMDSTA_ST); ++ ++ for (retries = 0; retries < MAX_RETRIES; retries++) { ++ stat = in_le32(sc->dma_regs + ++ PAS_DMA_TXCHAN_TCMDSTA(chan_index)); ++ if (!(stat & PAS_DMA_TXCHAN_TCMDSTA_ACT)) ++ break; ++ cond_resched(); ++ } ++ ++ if (stat & PAS_DMA_TXCHAN_TCMDSTA_ACT) ++ dev_err(&sc->dma_pdev->dev, "Failed to stop tx channel %d\n", ++ chan_index); ++ ++ /* Disable the channel */ ++ out_le32(sc->dma_regs + ++ PAS_DMA_TXCHAN_TCMDSTA(chan_index), ++ 0); ++ ++ if (ring->desc_info) ++ kfree((void *) ring->desc_info); ++ if (ring->desc) ++ dma_free_coherent(&sc->dma_pdev->dev, ++ TX_RING_SIZE * ++ 2 * sizeof(u64), ++ (void *) ring->desc, ring->dma); ++ if (ring->irq != -1) ++ free_irq(ring->irq, sc); ++ ++ del_timer(&ring->crypto_timer); ++} ++ ++static void __devexit pasemi_dma_remove(struct pci_dev *pdev) ++{ ++ struct pasemi_softc *sc = pci_get_drvdata(pdev); ++ int i; ++ ++ DPRINTF("%s()\n", __FUNCTION__); ++ ++ if (sc->sc_cid >= 0) { ++ crypto_unregister_all(sc->sc_cid); ++ } ++ ++ if (sc->tx) { ++ for (i = 0; i < sc->sc_num_channels; i++) ++ pasemi_free_tx_resources(sc, i); ++ ++ kfree(sc->tx); ++ } ++ if (sc->sc_sessions) { ++ for (i = 0; i < sc->sc_nsessions; i++) ++ kfree(sc->sc_sessions[i]); ++ kfree(sc->sc_sessions); ++ } ++ if (sc->iob_pdev) ++ pci_dev_put(sc->iob_pdev); ++ if (sc->dma_regs) ++ iounmap(sc->dma_regs); ++ if (sc->iob_regs) ++ iounmap(sc->iob_regs); ++ kfree(sc); ++} ++ ++static struct pci_device_id pasemi_dma_pci_tbl[] = { ++ { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa007) }, ++}; ++ ++MODULE_DEVICE_TABLE(pci, pasemi_dma_pci_tbl); ++ ++static struct pci_driver pasemi_dma_driver = { ++ .name = "pasemi_dma", ++ .id_table = pasemi_dma_pci_tbl, ++ .probe = pasemi_dma_probe, ++ .remove = __devexit_p(pasemi_dma_remove), ++}; ++ ++static void __exit pasemi_dma_cleanup_module(void) ++{ ++ pci_unregister_driver(&pasemi_dma_driver); ++ __iounmap(dma_status); ++ dma_status = NULL; ++} ++ ++int pasemi_dma_init_module(void) ++{ ++ return pci_register_driver(&pasemi_dma_driver); ++} ++ ++module_init(pasemi_dma_init_module); ++module_exit(pasemi_dma_cleanup_module); ++ ++MODULE_LICENSE("Dual BSD/GPL"); ++MODULE_AUTHOR("Egor Martovetsky egor@pasemi.com"); ++MODULE_DESCRIPTION("OCF driver for PA Semi PWRficient DMA Crypto Engine"); +--- /dev/null ++++ b/crypto/ocf/pasemi/pasemi_fnu.h +@@ -0,0 +1,410 @@ ++/* ++ * Copyright (C) 2007 PA Semi, Inc ++ * ++ * Driver for the PA Semi PWRficient DMA Crypto Engine, soft state and ++ * hardware register layouts. ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ++ */ ++ ++#ifndef PASEMI_FNU_H ++#define PASEMI_FNU_H ++ ++#include ++ ++#define PASEMI_SESSION(sid) ((sid) & 0xffffffff) ++#define PASEMI_SID(sesn) ((sesn) & 0xffffffff) ++#define DPRINTF(a...) if (debug) { printk(DRV_NAME ": " a); } ++ ++/* Must be a power of two */ ++#define RX_RING_SIZE 512 ++#define TX_RING_SIZE 512 ++#define TX_DESC(ring, num) ((ring)->desc[2 * (num & (TX_RING_SIZE-1))]) ++#define TX_DESC_INFO(ring, num) ((ring)->desc_info[(num) & (TX_RING_SIZE-1)]) ++#define MAX_DESC_SIZE 8 ++#define PASEMI_INITIAL_SESSIONS 10 ++#define PASEMI_FNU_CHANNELS 8 ++ ++/* DMA descriptor */ ++struct pasemi_desc { ++ u64 quad[2*MAX_DESC_SIZE]; ++ int quad_cnt; ++ int size; ++ int postop; ++}; ++ ++/* ++ * Holds per descriptor data ++ */ ++struct pasemi_desc_info { ++ int desc_size; ++ int desc_postop; ++#define PASEMI_CHECK_SIG 0x1 ++ ++ struct cryptop *cf_crp; ++}; ++ ++/* ++ * Holds per channel data ++ */ ++struct pasemi_fnu_txring { ++ volatile u64 *desc; ++ volatile struct ++ pasemi_desc_info *desc_info; ++ dma_addr_t dma; ++ struct timer_list crypto_timer; ++ spinlock_t fill_lock; ++ spinlock_t clean_lock; ++ unsigned int next_to_fill; ++ unsigned int next_to_clean; ++ u16 total_pktcnt; ++ int irq; ++ int sesn; ++ char irq_name[10]; ++}; ++ ++/* ++ * Holds data specific to a single pasemi device. ++ */ ++struct pasemi_softc { ++ softc_device_decl sc_cdev; ++ struct pci_dev *dma_pdev; /* device backpointer */ ++ struct pci_dev *iob_pdev; /* device backpointer */ ++ void __iomem *dma_regs; ++ void __iomem *iob_regs; ++ int base_irq; ++ int base_chan; ++ int32_t sc_cid; /* crypto tag */ ++ int sc_nsessions; ++ struct pasemi_session **sc_sessions; ++ int sc_num_channels;/* number of crypto channels */ ++ ++ /* pointer to the array of txring datastructures, one txring per channel */ ++ struct pasemi_fnu_txring *tx; ++ ++ /* ++ * mutual exclusion for the channel scheduler ++ */ ++ spinlock_t sc_chnlock; ++ /* last channel used, for now use round-robin to allocate channels */ ++ int sc_lastchn; ++}; ++ ++struct pasemi_session { ++ u64 civ[2]; ++ u64 keysz; ++ u64 key[4]; ++ u64 ccmd; ++ u64 hkey[4]; ++ u64 hseq; ++ u64 giv[2]; ++ u64 hiv[4]; ++ ++ int used; ++ dma_addr_t dma_addr; ++ int chan; ++}; ++ ++/* status register layout in IOB region, at 0xfd800000 */ ++struct pasdma_status { ++ u64 rx_sta[64]; ++ u64 tx_sta[20]; ++}; ++ ++#define ALG_IS_CIPHER(alg) ((alg == CRYPTO_DES_CBC) || \ ++ (alg == CRYPTO_3DES_CBC) || \ ++ (alg == CRYPTO_AES_CBC) || \ ++ (alg == CRYPTO_ARC4) || \ ++ (alg == CRYPTO_NULL_CBC)) ++ ++#define ALG_IS_SIG(alg) ((alg == CRYPTO_MD5) || \ ++ (alg == CRYPTO_MD5_HMAC) || \ ++ (alg == CRYPTO_SHA1) || \ ++ (alg == CRYPTO_SHA1_HMAC) || \ ++ (alg == CRYPTO_NULL_HMAC)) ++ ++enum { ++ PAS_DMA_COM_TXCMD = 0x100, /* Transmit Command Register */ ++ PAS_DMA_COM_TXSTA = 0x104, /* Transmit Status Register */ ++ PAS_DMA_COM_RXCMD = 0x108, /* Receive Command Register */ ++ PAS_DMA_COM_RXSTA = 0x10c, /* Receive Status Register */ ++ PAS_DMA_COM_CFG = 0x114, /* DMA Configuration Register */ ++}; ++ ++/* All these registers live in the PCI configuration space for the DMA PCI ++ * device. Use the normal PCI config access functions for them. ++ */ ++ ++#define PAS_DMA_COM_CFG_FWF 0x18000000 ++ ++#define PAS_DMA_COM_TXCMD_EN 0x00000001 /* enable */ ++#define PAS_DMA_COM_TXSTA_ACT 0x00000001 /* active */ ++#define PAS_DMA_COM_RXCMD_EN 0x00000001 /* enable */ ++#define PAS_DMA_COM_RXSTA_ACT 0x00000001 /* active */ ++ ++#define _PAS_DMA_TXCHAN_STRIDE 0x20 /* Size per channel */ ++#define _PAS_DMA_TXCHAN_TCMDSTA 0x300 /* Command / Status */ ++#define _PAS_DMA_TXCHAN_CFG 0x304 /* Configuration */ ++#define _PAS_DMA_TXCHAN_DSCRBU 0x308 /* Descriptor BU Allocation */ ++#define _PAS_DMA_TXCHAN_INCR 0x310 /* Descriptor increment */ ++#define _PAS_DMA_TXCHAN_CNT 0x314 /* Descriptor count/offset */ ++#define _PAS_DMA_TXCHAN_BASEL 0x318 /* Descriptor ring base (low) */ ++#define _PAS_DMA_TXCHAN_BASEU 0x31c /* (high) */ ++#define PAS_DMA_TXCHAN_TCMDSTA(c) (0x300+(c)*_PAS_DMA_TXCHAN_STRIDE) ++#define PAS_DMA_TXCHAN_TCMDSTA_EN 0x00000001 /* Enabled */ ++#define PAS_DMA_TXCHAN_TCMDSTA_ST 0x00000002 /* Stop interface */ ++#define PAS_DMA_TXCHAN_TCMDSTA_ACT 0x00010000 /* Active */ ++#define PAS_DMA_TXCHAN_CFG(c) (0x304+(c)*_PAS_DMA_TXCHAN_STRIDE) ++#define PAS_DMA_TXCHAN_CFG_TY_FUNC 0x00000002 /* Type = interface */ ++#define PAS_DMA_TXCHAN_CFG_TY_IFACE 0x00000000 /* Type = interface */ ++#define PAS_DMA_TXCHAN_CFG_TATTR_M 0x0000003c ++#define PAS_DMA_TXCHAN_CFG_TATTR_S 2 ++#define PAS_DMA_TXCHAN_CFG_TATTR(x) (((x) << PAS_DMA_TXCHAN_CFG_TATTR_S) & \ ++ PAS_DMA_TXCHAN_CFG_TATTR_M) ++#define PAS_DMA_TXCHAN_CFG_WT_M 0x000001c0 ++#define PAS_DMA_TXCHAN_CFG_WT_S 6 ++#define PAS_DMA_TXCHAN_CFG_WT(x) (((x) << PAS_DMA_TXCHAN_CFG_WT_S) & \ ++ PAS_DMA_TXCHAN_CFG_WT_M) ++#define PAS_DMA_TXCHAN_CFG_LPSQ_FAST 0x00000400 ++#define PAS_DMA_TXCHAN_CFG_LPDQ_FAST 0x00000800 ++#define PAS_DMA_TXCHAN_CFG_CF 0x00001000 /* Clean first line */ ++#define PAS_DMA_TXCHAN_CFG_CL 0x00002000 /* Clean last line */ ++#define PAS_DMA_TXCHAN_CFG_UP 0x00004000 /* update tx descr when sent */ ++#define PAS_DMA_TXCHAN_INCR(c) (0x310+(c)*_PAS_DMA_TXCHAN_STRIDE) ++#define PAS_DMA_TXCHAN_BASEL(c) (0x318+(c)*_PAS_DMA_TXCHAN_STRIDE) ++#define PAS_DMA_TXCHAN_BASEL_BRBL_M 0xffffffc0 ++#define PAS_DMA_TXCHAN_BASEL_BRBL_S 0 ++#define PAS_DMA_TXCHAN_BASEL_BRBL(x) (((x) << PAS_DMA_TXCHAN_BASEL_BRBL_S) & \ ++ PAS_DMA_TXCHAN_BASEL_BRBL_M) ++#define PAS_DMA_TXCHAN_BASEU(c) (0x31c+(c)*_PAS_DMA_TXCHAN_STRIDE) ++#define PAS_DMA_TXCHAN_BASEU_BRBH_M 0x00000fff ++#define PAS_DMA_TXCHAN_BASEU_BRBH_S 0 ++#define PAS_DMA_TXCHAN_BASEU_BRBH(x) (((x) << PAS_DMA_TXCHAN_BASEU_BRBH_S) & \ ++ PAS_DMA_TXCHAN_BASEU_BRBH_M) ++/* # of cache lines worth of buffer ring */ ++#define PAS_DMA_TXCHAN_BASEU_SIZ_M 0x3fff0000 ++#define PAS_DMA_TXCHAN_BASEU_SIZ_S 16 /* 0 = 16K */ ++#define PAS_DMA_TXCHAN_BASEU_SIZ(x) (((x) << PAS_DMA_TXCHAN_BASEU_SIZ_S) & \ ++ PAS_DMA_TXCHAN_BASEU_SIZ_M) ++ ++#define PAS_STATUS_PCNT_M 0x000000000000ffffull ++#define PAS_STATUS_PCNT_S 0 ++#define PAS_STATUS_DCNT_M 0x00000000ffff0000ull ++#define PAS_STATUS_DCNT_S 16 ++#define PAS_STATUS_BPCNT_M 0x0000ffff00000000ull ++#define PAS_STATUS_BPCNT_S 32 ++#define PAS_STATUS_CAUSE_M 0xf000000000000000ull ++#define PAS_STATUS_TIMER 0x1000000000000000ull ++#define PAS_STATUS_ERROR 0x2000000000000000ull ++#define PAS_STATUS_SOFT 0x4000000000000000ull ++#define PAS_STATUS_INT 0x8000000000000000ull ++ ++#define PAS_IOB_DMA_RXCH_CFG(i) (0x1100 + (i)*4) ++#define PAS_IOB_DMA_RXCH_CFG_CNTTH_M 0x00000fff ++#define PAS_IOB_DMA_RXCH_CFG_CNTTH_S 0 ++#define PAS_IOB_DMA_RXCH_CFG_CNTTH(x) (((x) << PAS_IOB_DMA_RXCH_CFG_CNTTH_S) & \ ++ PAS_IOB_DMA_RXCH_CFG_CNTTH_M) ++#define PAS_IOB_DMA_TXCH_CFG(i) (0x1200 + (i)*4) ++#define PAS_IOB_DMA_TXCH_CFG_CNTTH_M 0x00000fff ++#define PAS_IOB_DMA_TXCH_CFG_CNTTH_S 0 ++#define PAS_IOB_DMA_TXCH_CFG_CNTTH(x) (((x) << PAS_IOB_DMA_TXCH_CFG_CNTTH_S) & \ ++ PAS_IOB_DMA_TXCH_CFG_CNTTH_M) ++#define PAS_IOB_DMA_RXCH_STAT(i) (0x1300 + (i)*4) ++#define PAS_IOB_DMA_RXCH_STAT_INTGEN 0x00001000 ++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL_M 0x00000fff ++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL_S 0 ++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL(x) (((x) << PAS_IOB_DMA_RXCH_STAT_CNTDEL_S) &\ ++ PAS_IOB_DMA_RXCH_STAT_CNTDEL_M) ++#define PAS_IOB_DMA_TXCH_STAT(i) (0x1400 + (i)*4) ++#define PAS_IOB_DMA_TXCH_STAT_INTGEN 0x00001000 ++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL_M 0x00000fff ++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL_S 0 ++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL(x) (((x) << PAS_IOB_DMA_TXCH_STAT_CNTDEL_S) &\ ++ PAS_IOB_DMA_TXCH_STAT_CNTDEL_M) ++#define PAS_IOB_DMA_RXCH_RESET(i) (0x1500 + (i)*4) ++#define PAS_IOB_DMA_RXCH_RESET_PCNT_M 0xffff0000 ++#define PAS_IOB_DMA_RXCH_RESET_PCNT_S 16 ++#define PAS_IOB_DMA_RXCH_RESET_PCNT(x) (((x) << PAS_IOB_DMA_RXCH_RESET_PCNT_S) & \ ++ PAS_IOB_DMA_RXCH_RESET_PCNT_M) ++#define PAS_IOB_DMA_RXCH_RESET_PCNTRST 0x00000020 ++#define PAS_IOB_DMA_RXCH_RESET_DCNTRST 0x00000010 ++#define PAS_IOB_DMA_RXCH_RESET_TINTC 0x00000008 ++#define PAS_IOB_DMA_RXCH_RESET_DINTC 0x00000004 ++#define PAS_IOB_DMA_RXCH_RESET_SINTC 0x00000002 ++#define PAS_IOB_DMA_RXCH_RESET_PINTC 0x00000001 ++#define PAS_IOB_DMA_TXCH_RESET(i) (0x1600 + (i)*4) ++#define PAS_IOB_DMA_TXCH_RESET_PCNT_M 0xffff0000 ++#define PAS_IOB_DMA_TXCH_RESET_PCNT_S 16 ++#define PAS_IOB_DMA_TXCH_RESET_PCNT(x) (((x) << PAS_IOB_DMA_TXCH_RESET_PCNT_S) & \ ++ PAS_IOB_DMA_TXCH_RESET_PCNT_M) ++#define PAS_IOB_DMA_TXCH_RESET_PCNTRST 0x00000020 ++#define PAS_IOB_DMA_TXCH_RESET_DCNTRST 0x00000010 ++#define PAS_IOB_DMA_TXCH_RESET_TINTC 0x00000008 ++#define PAS_IOB_DMA_TXCH_RESET_DINTC 0x00000004 ++#define PAS_IOB_DMA_TXCH_RESET_SINTC 0x00000002 ++#define PAS_IOB_DMA_TXCH_RESET_PINTC 0x00000001 ++ ++#define PAS_IOB_DMA_COM_TIMEOUTCFG 0x1700 ++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_M 0x00ffffff ++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_S 0 ++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(x) (((x) << PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_S) & \ ++ PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_M) ++ ++/* Transmit descriptor fields */ ++#define XCT_MACTX_T 0x8000000000000000ull ++#define XCT_MACTX_ST 0x4000000000000000ull ++#define XCT_MACTX_NORES 0x0000000000000000ull ++#define XCT_MACTX_8BRES 0x1000000000000000ull ++#define XCT_MACTX_24BRES 0x2000000000000000ull ++#define XCT_MACTX_40BRES 0x3000000000000000ull ++#define XCT_MACTX_I 0x0800000000000000ull ++#define XCT_MACTX_O 0x0400000000000000ull ++#define XCT_MACTX_E 0x0200000000000000ull ++#define XCT_MACTX_VLAN_M 0x0180000000000000ull ++#define XCT_MACTX_VLAN_NOP 0x0000000000000000ull ++#define XCT_MACTX_VLAN_REMOVE 0x0080000000000000ull ++#define XCT_MACTX_VLAN_INSERT 0x0100000000000000ull ++#define XCT_MACTX_VLAN_REPLACE 0x0180000000000000ull ++#define XCT_MACTX_CRC_M 0x0060000000000000ull ++#define XCT_MACTX_CRC_NOP 0x0000000000000000ull ++#define XCT_MACTX_CRC_INSERT 0x0020000000000000ull ++#define XCT_MACTX_CRC_PAD 0x0040000000000000ull ++#define XCT_MACTX_CRC_REPLACE 0x0060000000000000ull ++#define XCT_MACTX_SS 0x0010000000000000ull ++#define XCT_MACTX_LLEN_M 0x00007fff00000000ull ++#define XCT_MACTX_LLEN_S 32ull ++#define XCT_MACTX_LLEN(x) ((((long)(x)) << XCT_MACTX_LLEN_S) & \ ++ XCT_MACTX_LLEN_M) ++#define XCT_MACTX_IPH_M 0x00000000f8000000ull ++#define XCT_MACTX_IPH_S 27ull ++#define XCT_MACTX_IPH(x) ((((long)(x)) << XCT_MACTX_IPH_S) & \ ++ XCT_MACTX_IPH_M) ++#define XCT_MACTX_IPO_M 0x0000000007c00000ull ++#define XCT_MACTX_IPO_S 22ull ++#define XCT_MACTX_IPO(x) ((((long)(x)) << XCT_MACTX_IPO_S) & \ ++ XCT_MACTX_IPO_M) ++#define XCT_MACTX_CSUM_M 0x0000000000000060ull ++#define XCT_MACTX_CSUM_NOP 0x0000000000000000ull ++#define XCT_MACTX_CSUM_TCP 0x0000000000000040ull ++#define XCT_MACTX_CSUM_UDP 0x0000000000000060ull ++#define XCT_MACTX_V6 0x0000000000000010ull ++#define XCT_MACTX_C 0x0000000000000004ull ++#define XCT_MACTX_AL2 0x0000000000000002ull ++ ++#define XCT_PTR_T 0x8000000000000000ull ++#define XCT_PTR_LEN_M 0x7ffff00000000000ull ++#define XCT_PTR_LEN_S 44 ++#define XCT_PTR_LEN(x) ((((long)(x)) << XCT_PTR_LEN_S) & \ ++ XCT_PTR_LEN_M) ++#define XCT_PTR_ADDR_M 0x00000fffffffffffull ++#define XCT_PTR_ADDR_S 0 ++#define XCT_PTR_ADDR(x) ((((long)(x)) << XCT_PTR_ADDR_S) & \ ++ XCT_PTR_ADDR_M) ++ ++/* Function descriptor fields */ ++#define XCT_FUN_T 0x8000000000000000ull ++#define XCT_FUN_ST 0x4000000000000000ull ++#define XCT_FUN_NORES 0x0000000000000000ull ++#define XCT_FUN_8BRES 0x1000000000000000ull ++#define XCT_FUN_24BRES 0x2000000000000000ull ++#define XCT_FUN_40BRES 0x3000000000000000ull ++#define XCT_FUN_I 0x0800000000000000ull ++#define XCT_FUN_O 0x0400000000000000ull ++#define XCT_FUN_E 0x0200000000000000ull ++#define XCT_FUN_FUN_S 54 ++#define XCT_FUN_FUN_M 0x01c0000000000000ull ++#define XCT_FUN_FUN(num) ((((long)(num)) << XCT_FUN_FUN_S) & \ ++ XCT_FUN_FUN_M) ++#define XCT_FUN_CRM_NOP 0x0000000000000000ull ++#define XCT_FUN_CRM_SIG 0x0008000000000000ull ++#define XCT_FUN_CRM_ENC 0x0010000000000000ull ++#define XCT_FUN_CRM_DEC 0x0018000000000000ull ++#define XCT_FUN_CRM_SIG_ENC 0x0020000000000000ull ++#define XCT_FUN_CRM_ENC_SIG 0x0028000000000000ull ++#define XCT_FUN_CRM_SIG_DEC 0x0030000000000000ull ++#define XCT_FUN_CRM_DEC_SIG 0x0038000000000000ull ++#define XCT_FUN_LLEN_M 0x0007ffff00000000ull ++#define XCT_FUN_LLEN_S 32ULL ++#define XCT_FUN_LLEN(x) ((((long)(x)) << XCT_FUN_LLEN_S) & \ ++ XCT_FUN_LLEN_M) ++#define XCT_FUN_SHL_M 0x00000000f8000000ull ++#define XCT_FUN_SHL_S 27ull ++#define XCT_FUN_SHL(x) ((((long)(x)) << XCT_FUN_SHL_S) & \ ++ XCT_FUN_SHL_M) ++#define XCT_FUN_CHL_M 0x0000000007c00000ull ++#define XCT_FUN_CHL_S 22ull ++#define XCT_FUN_CHL(x) ((((long)(x)) << XCT_FUN_CHL_S) & \ ++ XCT_FUN_CHL_M) ++#define XCT_FUN_HSZ_M 0x00000000003c0000ull ++#define XCT_FUN_HSZ_S 18ull ++#define XCT_FUN_HSZ(x) ((((long)(x)) << XCT_FUN_HSZ_S) & \ ++ XCT_FUN_HSZ_M) ++#define XCT_FUN_ALG_DES 0x0000000000000000ull ++#define XCT_FUN_ALG_3DES 0x0000000000008000ull ++#define XCT_FUN_ALG_AES 0x0000000000010000ull ++#define XCT_FUN_ALG_ARC 0x0000000000018000ull ++#define XCT_FUN_ALG_KASUMI 0x0000000000020000ull ++#define XCT_FUN_BCM_ECB 0x0000000000000000ull ++#define XCT_FUN_BCM_CBC 0x0000000000001000ull ++#define XCT_FUN_BCM_CFB 0x0000000000002000ull ++#define XCT_FUN_BCM_OFB 0x0000000000003000ull ++#define XCT_FUN_BCM_CNT 0x0000000000003800ull ++#define XCT_FUN_BCM_KAS_F8 0x0000000000002800ull ++#define XCT_FUN_BCM_KAS_F9 0x0000000000001800ull ++#define XCT_FUN_BCP_NO_PAD 0x0000000000000000ull ++#define XCT_FUN_BCP_ZRO 0x0000000000000200ull ++#define XCT_FUN_BCP_PL 0x0000000000000400ull ++#define XCT_FUN_BCP_INCR 0x0000000000000600ull ++#define XCT_FUN_SIG_MD5 (0ull << 4) ++#define XCT_FUN_SIG_SHA1 (2ull << 4) ++#define XCT_FUN_SIG_HMAC_MD5 (8ull << 4) ++#define XCT_FUN_SIG_HMAC_SHA1 (10ull << 4) ++#define XCT_FUN_A 0x0000000000000008ull ++#define XCT_FUN_C 0x0000000000000004ull ++#define XCT_FUN_AL2 0x0000000000000002ull ++#define XCT_FUN_SE 0x0000000000000001ull ++ ++#define XCT_FUN_SRC_PTR(len, addr) (XCT_PTR_LEN(len) | XCT_PTR_ADDR(addr)) ++#define XCT_FUN_DST_PTR(len, addr) (XCT_FUN_SRC_PTR(len, addr) | \ ++ 0x8000000000000000ull) ++ ++#define XCT_CTRL_HDR_FUN_NUM_M 0x01c0000000000000ull ++#define XCT_CTRL_HDR_FUN_NUM_S 54 ++#define XCT_CTRL_HDR_LEN_M 0x0007ffff00000000ull ++#define XCT_CTRL_HDR_LEN_S 32 ++#define XCT_CTRL_HDR_REG_M 0x00000000000000ffull ++#define XCT_CTRL_HDR_REG_S 0 ++ ++#define XCT_CTRL_HDR(funcN,len,reg) (0x9400000000000000ull | \ ++ ((((long)(funcN)) << XCT_CTRL_HDR_FUN_NUM_S) \ ++ & XCT_CTRL_HDR_FUN_NUM_M) | \ ++ ((((long)(len)) << \ ++ XCT_CTRL_HDR_LEN_S) & XCT_CTRL_HDR_LEN_M) | \ ++ ((((long)(reg)) << \ ++ XCT_CTRL_HDR_REG_S) & XCT_CTRL_HDR_REG_M)) ++ ++/* Function config command options */ ++#define DMA_CALGO_DES 0x00 ++#define DMA_CALGO_3DES 0x01 ++#define DMA_CALGO_AES 0x02 ++#define DMA_CALGO_ARC 0x03 ++ ++#define DMA_FN_CIV0 0x02 ++#define DMA_FN_CIV1 0x03 ++#define DMA_FN_HKEY0 0x0a ++ ++#define XCT_PTR_ADDR_LEN(ptr) ((ptr) & XCT_PTR_ADDR_M), \ ++ (((ptr) & XCT_PTR_LEN_M) >> XCT_PTR_LEN_S) ++ ++#endif /* PASEMI_FNU_H */ -- cgit v1.2.3