aboutsummaryrefslogtreecommitdiffstats
path: root/tools/upslug2
Commit message (Expand)AuthorAgeFilesLines
* add a hacked up version of upslug2 which is able to flash a wrt350nv2 in reco...Felix Fietkau2009-12-123-0/+467
f='#n28'>28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/******************************************************************************
 * page_alloc.c
 * 
 * Simple buddy heap allocator for Xen.
 * 
 * Copyright (c) 2002-2004 K A Fraser
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/types.h>
#include <xen/lib.h>
#include <asm/page.h>
#include <xen/spinlock.h>
#include <xen/slab.h>
#include <xen/irq.h>
#include <asm/domain_page.h>

extern char opt_badpage[];

/*********************
 * ALLOCATION BITMAP
 *  One bit per page of memory. Bit set => page is allocated.
 */

static unsigned long  bitmap_size; /* in bytes */
static unsigned long *alloc_bitmap;
#define PAGES_PER_MAPWORD (sizeof(unsigned long) * 8)

#define allocated_in_map(_pn) \
(alloc_bitmap[(_pn)/PAGES_PER_MAPWORD] & (1<<((_pn)&(PAGES_PER_MAPWORD-1))))

/*
 * Hint regarding bitwise arithmetic in map_{alloc,free}:
 *  -(1<<n)  sets all bits >= n. 
 *  (1<<n)-1 sets all bits <  n.
 * Variable names in map_{alloc,free}:
 *  *_idx == Index into `alloc_bitmap' array.
 *  *_off == Bit offset within an element of the `alloc_bitmap' array.
 */

static void map_alloc(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already allocated. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(!allocated_in_map(first_page + i));
#endif

    curr_idx  = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] |= ((1<<end_off)-1) & -(1<<start_off);
    }
    else 
    {
        alloc_bitmap[curr_idx] |= -(1<<start_off);
        while ( ++curr_idx < end_idx ) alloc_bitmap[curr_idx] = ~0L;
        alloc_bitmap[curr_idx] |= (1<<end_off)-1;
    }
}


static void map_free(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already freed. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(allocated_in_map(first_page + i));
#endif

    curr_idx = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] &= -(1<<end_off) | ((1<<start_off)-1);
    }
    else 
    {
        alloc_bitmap[curr_idx] &= (1<<start_off)-1;
        while ( ++curr_idx != end_idx ) alloc_bitmap[curr_idx] = 0;
        alloc_bitmap[curr_idx] &= -(1<<end_off);
    }
}



/*************************
 * BINARY BUDDY ALLOCATOR
 */

#define MEMZONE_XEN 0
#define MEMZONE_DOM 1
#define NR_ZONES    2

/* Up to 2^10 pages can be allocated at once. */
#define MIN_ORDER  0
#define MAX_ORDER 10
#define NR_ORDERS (MAX_ORDER - MIN_ORDER + 1)
static struct list_head heap[NR_ZONES][NR_ORDERS];

static unsigned long avail[NR_ZONES];

#define round_pgdown(_p)  ((_p)&PAGE_MASK)
#define round_pgup(_p)    (((_p)+(PAGE_SIZE-1))&PAGE_MASK)

static spinlock_t heap_lock = SPIN_LOCK_UNLOCKED;

/* Initialise allocator to handle up to @max_pages. */
unsigned long init_heap_allocator(
    unsigned long bitmap_start, unsigned long max_pages)
{
    int i, j;
    unsigned long bad_pfn;
    char *p;

    memset(avail, 0, sizeof(avail));

    for ( i = 0; i < NR_ZONES; i++ )
        for ( j = 0; j < NR_ORDERS; j++ )
            INIT_LIST_HEAD(&heap[i][j]);

    bitmap_start = round_pgup(bitmap_start);

    /* Allocate space for the allocation bitmap. */
    bitmap_size  = max_pages / 8;
    bitmap_size  = round_pgup(bitmap_size);
    alloc_bitmap = (unsigned long *)phys_to_virt(bitmap_start);

    /* All allocated by default. */
    memset(alloc_bitmap, ~0, bitmap_size);

    /*
     * Process the bad-page list. Marking the page free in the bitmap will
     * indicate to init_heap_pages() that it should not be placed on the 
     * buddy lists.
     */
    p = opt_badpage;
    while ( *p != '\0' )
    {
        bad_pfn = simple_strtoul(p, &p, 0);

        if ( *p == ',' )
            p++;
        else if ( *p != '\0' )
            break;

        if ( (bad_pfn < max_pages) && allocated_in_map(bad_pfn) )
        {
            printk("Marking page %08lx as bad\n", bad_pfn);
            map_free(bad_pfn, 1);
        }
    }

    return bitmap_start + bitmap_size;
}


/* Hand the specified arbitrary page range to the specified heap zone. */
void init_heap_pages(int zone, struct pfn_info *pg, unsigned long nr_pages)
{
    unsigned long i, pfn = page_to_pfn(pg);

    /* Process each page in turn, skipping bad pages. */
    for ( i = 0; i < nr_pages; i++ )
    {
        if ( likely(allocated_in_map(pfn+i)) ) /* bad page? */
            free_heap_pages(zone, pg+i, 0);
    }
}


/* Allocate 2^@order contiguous pages. */
struct pfn_info *alloc_heap_pages(int zone, int order)
{
    int i;
    struct pfn_info *pg;

    if ( unlikely(order < MIN_ORDER) || unlikely(order > MAX_ORDER) )
        return NULL;

    spin_lock(&heap_lock);

    /* Find smallest order which can satisfy the request. */
    for ( i = order; i < NR_ORDERS; i++ )
	if ( !list_empty(&heap[zone][i]) )
	    break;

    if ( i == NR_ORDERS ) 
        goto no_memory;
 
    pg = list_entry(heap[zone][i].next, struct pfn_info, list);
    list_del(&pg->list);

    /* We may have to halve the chunk a number of times. */
    while ( i != order )
    {
        PFN_ORDER(pg) = --i;
        list_add_tail(&pg->list, &heap[zone][i]);
        pg += 1 << i;
    }
    
    map_alloc(page_to_pfn(pg), 1 << order);
    avail[zone] -= 1 << order;

    spin_unlock(&heap_lock);

    return pg;

 no_memory:
    spin_unlock(&heap_lock);
    return NULL;
}


/* Free 2^@order set of pages. */
void free_heap_pages(int zone, struct pfn_info *pg, int order)
{
    unsigned long mask;

    spin_lock(&heap_lock);

    map_free(page_to_pfn(pg), 1 << order);
    avail[zone] += 1 << order;
    
    /* Merge chunks as far as possible. */
    while ( order < MAX_ORDER )
    {
        mask = 1 << order;

        if ( (page_to_pfn(pg) & mask) )
        {
            /* Merge with predecessor block? */
            if ( allocated_in_map(page_to_pfn(pg)-mask) ||
                 (PFN_ORDER(pg-mask) != order) )
                break;
            list_del(&(pg-mask)->list);
            pg -= mask;
        }
        else
        {
            /* Merge with successor block? */
            if ( allocated_in_map(page_to_pfn(pg)+mask) ||
                 (PFN_ORDER(pg+mask) != order) )
                break;
            list_del(&(pg+mask)->list);
        }
        
        order++;
    }

    PFN_ORDER(pg) = order;
    list_add_tail(&pg->list, &heap[zone][order]);

    spin_unlock(&heap_lock);
}


/*
 * Scrub all unallocated pages in all heap zones. This function is more
 * convoluted than appears necessary because we do not want to continuously
 * hold the lock or disable interrupts while scrubbing very large memory areas.
 */
void scrub_heap_pages(void)
{
    void *p;
    unsigned long pfn, flags;

    for ( pfn = 0; pfn < (bitmap_size * 8); pfn++ )
    {
        /* Quick lock-free check. */
        if ( allocated_in_map(pfn) )
            continue;
        
        spin_lock_irqsave(&heap_lock, flags);
        
        /* Re-check page status with lock held. */
        if ( !allocated_in_map(pfn) )
        {
            p = map_domain_mem(pfn << PAGE_SHIFT);
            clear_page(p);
            unmap_domain_mem(p);
        }
        
        spin_unlock_irqrestore(&heap_lock, flags);
    }
}



/*************************
 * XEN-HEAP SUB-ALLOCATOR
 */

void init_xenheap_pages(unsigned long ps, unsigned long pe)
{
    unsigned long flags;

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    memguard_guard_range(__va(ps), pe - ps);

    local_irq_save(flags);
    init_heap_pages(MEMZONE_XEN, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
    local_irq_restore(flags);
}


unsigned long alloc_xenheap_pages(int order)
{
    unsigned long flags;
    struct pfn_info *pg;
    int i, attempts = 0;

 retry:
    local_irq_save(flags);
    pg = alloc_heap_pages(MEMZONE_XEN, order);
    local_irq_restore(flags);

    if ( unlikely(pg == NULL) )
        goto no_memory;

    memguard_unguard_range(page_to_virt(pg), 1 << (order + PAGE_SHIFT));

    for ( i = 0; i < (1 << order); i++ )
    {
        pg[i].count_info        = 0;
        pg[i].u.inuse.domain    = NULL;
        pg[i].u.inuse.type_info = 0;
    }

    return (unsigned long)page_to_virt(pg);

 no_memory:
    if ( attempts++ < 8 )
    {
        xmem_cache_reap();
        goto retry;
    }

    printk("Cannot handle page request order %d!\n", order);
    dump_slabinfo();
    return 0;
}


void free_xenheap_pages(unsigned long p, int order)
{
    unsigned long flags;

    memguard_guard_range((void *)p, 1 << (order + PAGE_SHIFT));    

    local_irq_save(flags);
    free_heap_pages(MEMZONE_XEN, virt_to_page(p), order);
    local_irq_restore(flags);
}



/*************************
 * DOMAIN-HEAP SUB-ALLOCATOR
 */

void init_domheap_pages(unsigned long ps, unsigned long pe)
{
    ASSERT(!in_irq());

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    init_heap_pages(MEMZONE_DOM, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
}


struct pfn_info *alloc_domheap_pages(struct domain *d, int order)
{
    struct pfn_info *pg;
    unsigned long mask, flushed_mask, pfn_stamp, cpu_stamp;
    int i, j;

    ASSERT(!in_irq());

    if ( unlikely((pg = alloc_heap_pages(MEMZONE_DOM, order)) == NULL) )
        return NULL;

    flushed_mask = 0;
    for ( i = 0; i < (1 << order); i++ )
    {
        if ( (mask = (pg[i].u.free.cpu_mask & ~flushed_mask)) != 0 )
        {
            pfn_stamp = pg[i].tlbflush_timestamp;
            for ( j = 0; (mask != 0) && (j < smp_num_cpus); j++ )
            {
                if ( mask & (1<<j) )
                {
                    cpu_stamp = tlbflush_time[j];
                    if ( !NEED_FLUSH(cpu_stamp, pfn_stamp) )
                        mask &= ~(1<<j);
                }
            }
            
            if ( unlikely(mask != 0) )
            {
                flush_tlb_mask(mask);
                perfc_incrc(need_flush_tlb_flush);
                flushed_mask |= mask;
            }
        }

        pg[i].count_info        = 0;
        pg[i].u.inuse.domain    = NULL;
        pg[i].u.inuse.type_info = 0;
    }

    if ( d == NULL )
        return pg;

    spin_lock(&d->page_alloc_lock);

    if ( unlikely(test_bit(DF_DYING, &d->flags)) ||
         unlikely((d->tot_pages + (1 << order)) > d->max_pages) )
    {
        DPRINTK("Over-allocation for domain %u: %u > %u\n",
                d->id, d->tot_pages + (1 << order), d->max_pages);
        DPRINTK("...or the domain is dying (%d)\n", 
                !!test_bit(DF_DYING, &d->flags));
        spin_unlock(&d->page_alloc_lock);
        free_heap_pages(MEMZONE_DOM, pg, order);
        return NULL;
    }

    if ( unlikely(d->tot_pages == 0) )
        get_knownalive_domain(d);

    d->tot_pages += 1 << order;

    for ( i = 0; i < (1 << order); i++ )
    {
        pg[i].u.inuse.domain = d;
        wmb(); /* Domain pointer must be visible before updating refcnt. */
        pg[i].count_info |= PGC_allocated | 1;
        list_add_tail(&pg[i].list, &d->page_list);
    }

    spin_unlock(&d->page_alloc_lock);
    
    return pg;
}


void free_domheap_pages(struct pfn_info *pg, int order)
{
    int            i, drop_dom_ref;
    struct domain *d = pg->u.inuse.domain;
    void          *p;

    ASSERT(!in_irq());

    if ( unlikely(IS_XEN_HEAP_FRAME(pg)) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for ( i = 0; i < (1 << order); i++ )
            list_del(&pg[i].list);

        d->xenheap_pages -= 1 << order;
        drop_dom_ref = (d->xenheap_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);
    }
    else if ( likely(d != NULL) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for ( i = 0; i < (1 << order); i++ )
        {
            ASSERT((pg[i].u.inuse.type_info & PGT_count_mask) == 0);
            pg[i].tlbflush_timestamp  = tlbflush_current_time();
            pg[i].u.free.cpu_mask     = 1 << d->processor;
            list_del(&pg[i].list);

            /*
             * Normally we expect a domain to clear pages before freeing them,
             * if it cares about the secrecy of their contents. However, after
             * a domain has died we assume responsibility for erasure.
             */
            if ( unlikely(test_bit(DF_DYING, &d->flags)) )
            {
                p = map_domain_mem(page_to_phys(&pg[i]));
                clear_page(p);
                unmap_domain_mem(p);
            }
        }

        d->tot_pages -= 1 << order;
        drop_dom_ref = (d->tot_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);

        free_heap_pages(MEMZONE_DOM, pg, order);
    }
    else
    {
        /* Freeing an anonymous domain-heap page. */
        free_heap_pages(MEMZONE_DOM, pg, order);
        drop_dom_ref = 0;
    }

    if ( drop_dom_ref )
        put_domain(d);
}


unsigned long avail_domheap_pages(void)
{
    return avail[MEMZONE_DOM];
}