aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux
Commit message (Collapse)AuthorAgeFilesLines
...
* realtek: fix build issuesBirger Koblitz2021-01-052-4/+19
| | | | | | | This fixes the build problems for the REALTEK target by adding a proper configuration option for the phy module. Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
* ipq806x: fix LED names of TP-Link Talon AD2700Daniel Golle2021-01-051-2/+2
| | | | | | | | While the underscore in the name of the USB LEDs was removed from DTS, /etc/board.d/01_leds also has to reflect that change. Fixes: 28fd279e5d ("ipq806x: some corrections for TP-Link Talon AD7200") Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ramips: add support for Ubiquiti UniFi 6 LiteDavid Bauer2021-01-059-76/+478
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- MediaTek MT7621AT 256M DDR3 32M SPI-NOR MediaTek MT7603 2T2R 802.11n 2.4GHz MediaTek MT7915 2T2R 802.11ax 5GHz Not Working ----------- - Bluetooth (connected to UART3) UART ---- UART is located in the lower left corner of the board. Pinout is 0 - 3V3 (don't connect) 1 - RX 2 - TX 3 - GND Console is 115200 8N1. Boot ---- 1. Connect to the serial console and connect power. 2. Double-press ESC when prompted 3. Set the fdt address $ fdt addr $(fdtcontroladdr) 4. Remove the signature node from the control FDT $ fdt rm /signature 5. Transfer and boot the OpenWrt initramfs image to the device. Make sure to name the file C0A80114.img and have it reachable at 192.168.1.1/24 $ tftpboot; bootm Installation ------------ 1. Connect to the booted device at 192.168.1.20 using username/password "ubnt". 2. Update the bootloader environment. $ fw_setenv devmode TRUE $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr); fdt rm /signature; bootubnt" $ fw_setenv bootcmd "run boot_openwrt" 3. Transfer the OpenWrt sysupgrade image to the device using SCP. 4. Check the mtd partition number for bs / kernel0 / kernel1 $ cat /proc/mtd 5. Set the bootselect flag to boot from kernel0 $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4 6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1 $ dd if=openwrt.bin of=/dev/mtdblock6 $ dd if=openwrt.bin of=/dev/mtdblock7 7. Reboot the device. It should boot into OpenWrt. Below are the original installation instructions prior to the discovery of "devmode=TRUE". They are not required for installation and are documentation only. The bootloader employs signature verification on the FIT image configurations. This way, booting unauthorized image without patching the bootloader is not possible. Manually configuring the bootcmd in the U-Boot envronment won't work, as this is restored to the default value if modified. The bootloader is made up of three different parts. 1. The SPL performing early board initialization and providing a XModem recovery in case the PBL is missing 2. The PBL being the primary U-Boot application and containing the control FDT. It is LZMA packed with a uImage header. 3. A Ubiquiti standalone U-Boot application providing the main boot routine as well as their recovery mechanism. In a perfect world, we would only replace the PBL, as the SPL does not perform checks on the PBLs integrity. However, as the PBL is in the same eraseblock as the SPL, we need to at least rewrite both. The bootloader will only verify integrity in case it has a "signature" node in it's control device-tree. Renaming the signature node to something else will prevent this from happening. Warning: These instructions are based on the firmware intially shipped with the device and potentially brick your device in a way it can only be recovered using a SPI flasher. Only (!) proceed if you understand this! 1. Extract the bootloader from the U-Boot partition using the OpenWrt initramfs image. 2. Split the bootloader into it's 3 components: $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056 $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360 $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416 3. Strip the uImage header from the PBL $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1 4. Decompress the PBL $ lzma -d pbl.lzma --single-stream The decompressed PBL sha256sum should be d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235 5. Open the decompressed PBL using your favorite hexeditor. Locate the control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the label for the signature node is located. Rename the "signature" string at this offset to "signaturr". The patched PBL sha256sum should be d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97 6. Compress the patched PBL $ lzma -z pbl --lzma1=dict=67108864 The resulting pbl.lzma file should have the sha256sum 7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42 7. Create the PBL uimage $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000 -T firmware -d pbl.lzma patched_pbl.uimage The resulting patched_pbl.uimage should have the sha256sum b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce 8. Reassemble the complete bootloader $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1 conv=sync $ cat spl.bin > patched_uboot.bin $ cat aligned_pbl.uimage >> patched_uboot.bin $ cat ubnt.uimage >> patched_uboot.bin The resulting patched_uboot.bin should have the sha256sum 3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b 9. Transfer your patched bootloader to the device. Also install the kmod-mtd-rw package using opkg and load it. $ insmod mtd-rw.ko i_want_a_brick=1 Write the patched bootloader to mtd0 $ mtd write patched_uboot.bin u-boot 10. Erase the kernel1 partition, as the bootloader might otherwise decide to boot from there. $ mtd erase kernel1 11. Transfer the OpenWrt sysupgrade image to the device and install using sysupgrade. FIT configurations ------------------ In the future, the MT7621 UniFi6 family can be supported by a single OpenWrt image. config@1: U6 Lite config@2: U6 IW config@3: U6 Mesh config@4: U6 Extender config@5: U6 LR-EA (Early Access - GA is MT7622) Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq806x: some corrections for TP-Link Talon AD7200Daniel Golle2021-01-052-48/+45
| | | | | | | | | | Address most comments made by Adrian Schmutzler on the mailing list. The device name is kept as 'TP-Link Talon AD7200' as that seems to be the marketing name TP-Link chose for that device, it also matches the naming scheme for other TP-Link devices (e.g. 'TP-Link Archer C7'). Fixes: 1a775a4fd0 ("ipq806x: add support for TP-Link Talon AD7200") Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ipq806x: add support for TP-Link Talon AD7200Gary Cooper2021-01-056-0/+468
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device hardware: https://deviwiki.com/wiki/TP-LINK_AD7200_(Talon) The Talon AD7200 is basically an Archer C2600 with a third PCIe lane and an 802.11ad radio. It looks like the Archers C2600/5400 but the housing is slightly larger. Specifications -------------- - IPQ8064 dual-core 1400MHz - QCA9988 2.4GHz WiFi - QCA9990 5GHz WiFi - QCA9500 60GHz WiFi - 32MB SPI Flash - 512MiB RAM - 5 GBit Ports (QCA8337) Installation ------------ Installation is possible from the OEM web interface. Sysupgrade is possible. TFTP recovery is possible. - Image: AD7200_1.0_tp_recovery.bin Notes - This will be the first 802.11ad device supported by mainline. Signed-off-by: Gary Cooper <gaco@bitmessage.de>
* ath79: keep DTSI files for D-Link SoC-specificAdrian Schmutzler2021-01-046-8/+62
| | | | | | | | | | | It is good practice to define device tree files based on specific SoCs. Thus, let's not start to create files that are used across different architectures. Duplicate the DTSI file for D-Link DAP-2xxx in order to have one for qca953x and one for qca955x, respectively. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Fix 02_network setup for D-Link DAP-2660 A1Sebastian Schaper2021-01-041-0/+1
| | | | | | | | | The device is a one-port, but was set up as two-port by the default case in 02_network. Fix it. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> [commit title/message facelift] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for D-Link DAP-3320 A1Sebastian Schaper2021-01-045-3/+74
| | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R * 10/100 Ethernet Port, 802.11af PoE * IP55 pole-mountable outdoor case Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for D-Link DAP-2680 A1Sebastian Schaper2021-01-046-2/+113
| | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R * QCA9984, 802.11ac Wave 2 3T3R * Gigabit LAN Port (AR8035), 802.11at PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for D-Link DAP-2230 A1Sebastian Schaper2021-01-045-0/+73
| | | | | | | | | | | | | | | | | | | | Specifications: * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R * 10/100 Ethernet Port, 802.11af PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ipq806x: consolidate DTS files directorySungbo Eo2021-01-031-0/+0
| | | | | | | | | Commit 29ca10e537ee ("ipq806x: remove support for kernel 4.19") moved DTS files to "files" directory, but after that a new DTS file was added to the former "files-5.4" directory. Move it to the new directory. Fixes: 98b86296e67d ("ipq806x: add support for ASRock G10") Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* mediatek: remove unnecessary execute permission bitSungbo Eo2021-01-031-0/+0
| | | | | | | | | Kernel config does not need to be executable. 644 is enough. Fixes: 25d9df670b85 ("mediatek: add v5.4 support") Signed-off-by: Sungbo Eo <mans0n@gorani.run> [split by targets] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ipq40xx: remove unnecessary execute permission bitSungbo Eo2021-01-031-0/+0
| | | | | | | | | DTS files do not need to be executable. 644 is enough. Fixes: 0fbdb51f7643 ("ipq40xx: add Edgecore OAP-100 support") Signed-off-by: Sungbo Eo <mans0n@gorani.run> [split by targets] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: fix ethernet-phy label for dlink,dap-2660-a1Adrian Schmutzler2021-01-031-3/+3
| | | | | | | | The phy label/node name should correspond to the reg property. While at it, use more common decimal notation for reg property itself. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ipq806x: reenable CONFIG_CMDLINE_OVERRIDE and ASRock G10Pawel Dembicki2021-01-012-2/+1
| | | | | | | | | | This reverts commit 57e4cc8261ca6f0b32e4da6922a8f52ef82c4dc6. Cmdline override patch was fixed. It's time for reenable Asrock G10 support. Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com> Tested-by: Hannu Nyman <hannu.nyman@iki.fi> (run-tested for R7800)
* ipq806x: fix 900-arm-add-cmdline-override.patchPawel Dembicki2021-01-011-11/+11
| | | | | | | | | | | | 900-arm-add-cmdline-override.patch have missplaced entry in arch/arm/Kconfig file. It causes problem with other cmdline patches. This patch put Kconfig entry in correct place. Fixes: 98b86296e67d ("ipq806x: add support for ASRock G10") Suggested-by: Hannu Nyman <hannu.nyman@iki.fi> Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com> Tested-by: Hannu Nyman <hannu.nyman@iki.fi> (run-tested for R7800)
* kernel/hack-5.4: make UDP tunneling user-selectableRui Salvaterra2021-01-011-0/+11
| | | | | | | | | | | | | UDP tunneling support isn't user-selectable, but it's required by WireGuard which is, for the time being, an out-of-tree module. We currently work around this issue by selecting an unrelated module which depends on UDP tunnelling (VXLAN). This is inconvenient, as it implies this unrelated module needs to be built-in when doing a monolithic build. Fix this inconvenience by making UDP tunneling user-selectable in the kernel configuration. Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
* ath79: drop upstreamed patchDavid Bauer2021-01-012-71/+7
| | | | | | | | This patch was backported to the 5.4 kernel tree as commit c2d5c4df27e0 at least since release v5.4.28. Since then, it enables RX an TX ready override twice. Signed-off-by: David Bauer <mail@david-bauer.net>
* kernel: bump 5.4 to 5.4.86Adrian Schmutzler2021-01-0130-113/+45
| | | | | | | | | | | | | | | | | Removed upstreamed patches: pending-5.4/499-mtd-parser-cmdline-Fix-parsing-of-part-names-with-co.patch Manually merged: pending-5.4/611-netfilter_match_bypass_default_table.patch layerscape/302-dts-0112-arm64-dts-fsl-ls1028a-prepare-dts-for-overlay.patch Build-tested: ipq806x/R7800, bcm27xx/bcm2711, ath79/{generic,tiny}, ipq40xx, octeon, ramips/mt7621, realtek, x86/64 Run-tested: ipq806x/R7800, realtek Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Tested-by: John Audia <graysky@archlinux.us> Tested-by: Stijn Segers <foss@volatilesystems.org>
* ipq40xx: remove non-existent ethernet PHYDavid Bauer2020-12-302-0/+8
| | | | | | | | | Since updating the MDIO driver, the probe will fail hard on any PHY not present on the bus, while this was not the case prior. Fixes commit 26b1f72381fb ("ipq40xx: net: phy: ar40xx: remove PHY handling") Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: Add support for OpenMesh OM5PSven Eckelmann2020-12-304-1/+188
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here. Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [add LED swap comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM2P v2Sven Eckelmann2020-12-304-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P-LCSven Eckelmann2020-12-305-1/+170
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v3Sven Eckelmann2020-12-294-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v2Sven Eckelmann2020-12-294-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v1Sven Eckelmann2020-12-295-0/+180
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [drop redundant status from eth1] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: increase openmesh sysupgrade copy block sizeSven Eckelmann2020-12-281-7/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The upgrade script for the openmesh sysupgrade procedure used always an 1 byte block size. This made it easier to seek the correct position in the CE image and to make sure the right amount of data was copied. But this also meant that the reading/writing of data required an excessive amount of syscalls and copy operations. A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the write operation (170s in total) during the sysupgrade. But it is possible to reduce this overhead slightly: * index access to read the file size can be done in single 8 byte chunk (while doing the seek with byte granularity) because each size entry is example 8 bytes long * the fwupgrade.cfg can be read as one block (while seeking to its position using its actual byte offset) because it should be rather small and fit into the RAM easily * the kernel can be read in 1KB blocks (while seking to its positions using its actual byte offset) because the the size of the kernel is always a multiple of the NOR flash block size (64KB and 256KB) This results in a sysupgrade write time of roughly 90s (140s in total). This could be reduced even further when also using larger chunks for the rootfs. But the squashfs rootfs image is at the moment always (256KB or 64KB) * block + 4 bytes long. It would be expected that the time for the sysupgrade write could be reduced to roughly 30s (80s in total) when busybox's dd would support the iflag count_bytes. Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P-HS v4Sven Eckelmann2020-12-285-2/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 24V passive POE (mode B) + used as WAN interface - eth1 + 802.3af POE + builtin switch port 1 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P v4Sven Eckelmann2020-12-287-0/+306
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 1 * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [wrap two very long lines, fix typo in comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ipq806x: disable CONFIG_CMDLINE_OVERRIDE and ASRock G10Adrian Schmutzler2020-12-282-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | After device support for ASRock G10 was added in [1], several people reported broken ipq806x devices, with one or several of the following symptoms: - Device does not boot - Sysupgrade does not work - Serial console is broken The issues appears to be caused by the introduction of the symbol CONFIG_CMDLINE_OVERRIDE=y in [1]. This patch disables the corresponding symbol again and marks the ASRock as BROKEN, as it probably won't work properly without it. Further references: https://bugs.openwrt.org/index.php?do=details&task_id=3540 https://github.com/openwrt/openwrt/commit/98b86296e67dd2b467212fe1a577656e6d3725da#commitcomment-45455875 [1] 98b86296e67d ("ipq806x: add support for ASRock G10") Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: remove duplicate sysupgrade.bin for dlink_dap-2xxxAdrian Schmutzler2020-12-281-1/+1
| | | | | | | | | | | | sysupgrade.bin has been added to IMAGES twice, resulting in warnings like: Makefile:86: warning: overriding recipe for target '[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin' Makefile:86: warning: ignoring old recipe for target '[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin' Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79/mikrotik: disable building NAND imagesAdrian Schmutzler2020-12-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | The current support for MikroTik NAND-based devices relies on a gross hack that packs the kernel into a static YAFFS stub, as the stock bootloader only supports booting a YAFFS-encapsulated kernel. The problem with this approach is that since the kernel partition is blindly overwritten without any kind of wear or badblock management (due to lack of proper support for YAFFS in OpenWRT), the NAND flash is not worn uniformly and eventually badblocks appear, leading to unbootable devices. This issue has been reported here [1] and discussed in more detail here [2]. [1] https://forum.openwrt.org/t/rb433-bad-sector-cannot-start-openwrt/71519 [2] https://github.com/openwrt/openwrt/pull/3026#issuecomment-673597461 Until a proper fix is found (or the stock bootloader supports other filesystems), we disable building these images to prevent unknowing users from risking their devices. Thanks to Thibaut Varène for summarizing the details above. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* treewide: use more descriptive names for concatenated partitionsAdrian Schmutzler2020-12-2713-68/+68
| | | | | | | | | | | | | | | | | | | | | | | | A few devices in ath79 and ramips use mtd-concat to concatenate individual partitions into a bigger "firmware" or "ubi" partition. However, the original partitions are still present and visible, and one can write to them directly although this might break the actual virtual, concatenated partition. As we cannot do much about the former, let's at least choose more descriptive names than just "firmwareX" in order to indicate the concatenation to the user. He might be less tempted into overwriting a "fwconcat1" than a "firmware1", which might be perceived as an alternate firmware for dual boot etc. This applies the new naming consistently for all relevant devices, i.e. fwconcatX for virtual "firmware" members and ubiconcatX for "ubi" members. While at it, use DT labels and label property consistently, and also use consistent zero-based indexing. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* kernel: add disabled PROC_STRIPPEDSungbo Eo2020-12-274-3/+1
| | | | | | | | | | Otherwise the missing symbol is added to target config for every kernel config refresh. While at it, remove the disabled symbol from target configs. Fixes: 4943bc5cff47 ("kernel: only strip proc for small flash devices") Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* kernel: remove target specific setting of CONFIG_TCP_CONG_ADVANCEDYousong Zhou2020-12-263-3/+0
| | | | | | | | | | | The option was introduced in upstream linux commit a6484045 ("[TCP]: Do not present confusing congestion control options by default."). The option is set to y in generic config and to the moment does not incur additional size increment. Make it y for all so that packages such as kmod-tcp-bbr do not have to set it on every occasion Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
* ipq40xx: add support for GL.iNet GL-AP1300Dongming Han2020-12-256-1/+290
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MiB FLASH1: 4 MiB NOR FLASH2: 128 MiB NAND ETH: Qualcomm QCA8075 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2 INPUT: Reset LED: Power, Internet UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1 OTHER: On board with BLE module - by cp210x USB serial chip On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed Install via uboot tftp or uboot web failsafe. By uboot tftp: (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi (IPQ40xx) # run lf By uboot web failsafe: Push the reset button for 10 seconds util the power led flash faster, then use broswer to access http://192.168.1.1 Afterwards upgrade can use sysupgrade image. Signed-off-by: Dongming Han <handongming@gl-inet.com>
* ipq806x: add support for NEC Platforms Aterm WG2600HP3Yanase Yuki2020-12-256-3/+457
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NEC Platforms Aterm WG2600HP3 is a dual-band router based on Qualcomm IPQ8062. Specification ------------- - SoC: Qualcomm IPQ8062 - RAM: 512MiB - Flash memory: SPI-NOR 32MiB (Cypress S25FL256S) - Wi-Fi: Qualcomm QCA9984 (2.4GHz, 1ch - 13ch) - Wi-Fi: Qualcomm QCA9984 (5GHz, 36ch - 64ch, 100ch - 140ch) - Ethernet: 4x 100/1000 Mbps (1x WAN, 4x LAN) - LED: 6x green LED, 6x red LED - Input: 2x tactile switch, 1x SP3T slide switch - Serial console: 115200bps, through-hole J3 - [ ] [GND] [ ] [TX] [RX] ----> DC jack - Power: DC 12V 1.5A This device does not support VHT160 and VHT80+80. Custom BDFs are required to limit VHT capabilities. Flash instructions ------------------ 1. Setup TFTP server (IP address: 192.168.1.2) 2. Put initramfs image into TFTP server directory 3. Connect WG2600HP3 lan port and computer that runs TFTP server 4. Connect to the serial console 5. Interrupt booting by Esc key (password: chiron) 6. Execute the following commands # setenv bootcmd "nboot 0x44000000 1 0x860000" # saveenv # setenv ipaddr 192.168.1.1 # setenv serverip 192.168.1.2 # tftpboot 0x44000000 openwrt-ipq806x-generic-nec_wg2600hp3-initramfs-uImage 7. After booting OpenWrt initramfs image, backup SPI-NOR flash memory 8. Erase firmware partition # mtd erase firmware 9. Run sysupgrade Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
* ipq806x: add support for Qualcomm IPQ8062 SoCYanase Yuki2020-12-251-0/+103
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for Qualcomm IPQ8062 SoC. IPQ8062 is a lower clock variant of IPQ8064. CPU and NSS clocks: - CPU: 384 MHz - 1 GHz - NSS: 110 MHz - 550 MHz opp and l2 clock values are taken from WG2600HP3 GPL source code [1]. Due to a lack of devices, I didn't test the following features. - SATA - NAND flash memory controller - SD - USB - GSBI2, GSBI7 - PCIE2 - GMAC0, GMAC3 Works properly: - GSBI4 UART - GSBI5 SPI - GMAC1, GMAC2 - PCIE0, PCIE1 - MDIO0 Does not work properly: - CPU SPC - This can cause a system hang. Same as IPQ8065. See 2336c2dbb1929837f7e42d4315c8073342a5b46b [1] https://www.aterm.jp/function/wg2600hp3/appendix/opensource.html Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
* rockchip: use USB host by default on rk3399-rock-pi-4Marty Jones2020-12-251-0/+32
| | | | | | | This backport fix connections errors on the upper USB3 port of the Radxa ROCK Pi 4 . Signed-off-by: Marty Jones <mj8263788@gmail.com>
* ath79: add support for Senao Engenius EAP350 v1Michael Pratt2020-12-254-0/+187
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-EAP350 Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port, 2.4 GHz wireless, external ethernet switch, and 2 internal antennas. Specification: - AR7242 SOC - AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 8 MB FLASH MX25L6406E - 32 MB RAM EM6AA160TSA-5G - UART at J2 (populated) - 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset) - 2 internal antennas MAC addresses: MAC address is labeled as "MAC" Only 1 address on label and in flash The OEM software reports these MACs for the ifconfig eth0 MAC *:0c art 0x0 phy0 --- *:0d --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.10.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP350 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap350-uImage-lzma.bin openwrt-senao-eap350-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1024k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. uboot did not have a good value for 1 GBps so it was taken from other similar DTS file. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EAP600Michael Pratt2020-12-254-0/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP600 Engenius EAP600 is a wireless access point with 1 gigabit ethernet port, dual-band wireless, external ethernet switch, 4 internal antennas and 802.3af PoE. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset) - 4 internal antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig eth0 MAC 1 *:5e --- phy1 MAC 2 *:5f --- (2.4 GHz) phy0 ----- *:60 art 0x0 (5 GHz) Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap600-uImage-lzma.bin openwrt-senao-eap600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: Create common DTSI for EAP600 and ECB600Michael Pratt2020-12-252-165/+180
| | | | | | | | | | | The boards have equivalent hardware except for LEDs and equivalent device config except for MACs also use naming convention for mtd-concat partitions to prepare for upcoming patch "treewide: use more descriptive names for concatenated partitions" Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ECB600Michael Pratt2020-12-254-4/+219
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ECB600 Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port, dual-band wireless, external ethernet switch, and 4 external antennas. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset) - 4 external antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig phy1 MAC 1 *:52 --- (2.4 GHz) phy0 MAC 2 *:53 --- (5 GHz) eth0 ----- *:54 art 0x0 Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ECB600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-ecb600-uImage-lzma.bin openwrt-senao-ecb600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the ECB series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: update image command for Plasma Cloud PA300Sven Wegener2020-12-251-1/+1
| | | | | | | | | | | | | Commit 5fc28ef47959 ("ath79: Add support for Plasma Cloud PA300") added the IMAGE/sysupgrade.bin/squashfs definition, which leaks into other devices, resulting in sysupgrade.bin images that are actually tarballs and do not boot when directly written to flash. We can use the normal sysupgrade.bin command variable for this device. Signed-off-by: Sven Wegener <sven.wegener@stealer.net> [fix format, spelling] Signed-off-by: David Bauer <mail@david-bauer.net>
* oxnas: now longer build KD20 factory imageDaniel Golle2020-12-231-4/+0
| | | | | | | | | | The image never worked in any release and is also broken in snapshots due to stock bootloader not loading more than 4 MiB. Hence it's better to remove the image for now, users who want to flash OpenWrt on new devices may build LEDE 17.01 with everything possible disabled to get a small enough and working factory image. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ipq40xx: net: ethernet: edma: use generic PHY printRobert Marko2020-12-231-2/+2
| | | | | | | | | | | | | Lets use the generic upstream phy_print_status() instead of doing something similar by hand. Before: ess_edma c080000.edma: eth1: GMAC Link is up with phy_speed=1000 After: ess_edma c080000.edma eth1: Link is Up - 1Gbps/Full - flow control rx/tx Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: net: ethernet: edma: use generic ksettings functionsRobert Marko2020-12-231-56/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since we now have a proper PHY driver for QCA807x and AR803x has already been supported properly there is no need for the driver to be poking on PHY registers for ethtool ops. So, lets simply use the generic phy_ethtool_ksettings_get/phy_ethtool_ksettings_set functions. This also has the advantage of properly populating stuff other than speeds like, transceiver type, MDI-X etc. ethtool before: root@OpenWrt:/# ethtool eth1 Settings for eth1: Supported ports: [ TP MII ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full 1000baseX/Full Supported pause frame use: Symmetric Receive-only Supports auto-negotiation: Yes Supported FEC modes: Not reported Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full 1000baseX/Full Advertised pause frame use: Symmetric Receive-only Advertised auto-negotiation: Yes Advertised FEC modes: Not reported Link partner advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full Link partner advertised pause frame use: No Link partner advertised auto-negotiation: No Link partner advertised FEC modes: Not reported Speed: 1000Mb/s Duplex: Full Port: Twisted Pair PHYAD: 4 Transceiver: internal Auto-negotiation: on MDI-X: Unknown Supports Wake-on: d Wake-on: d Current message level: 0x00000000 (0) Link detected: yes ethtool after: root@OpenWrt:/# ethtool eth1 Settings for eth1: Supported ports: [ TP MII ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full 1000baseX/Full Supported pause frame use: Symmetric Receive-only Supports auto-negotiation: Yes Supported FEC modes: Not reported Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full 1000baseX/Full Advertised pause frame use: Symmetric Receive-only Advertised auto-negotiation: Yes Advertised FEC modes: Not reported Link partner advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full 1000baseT/Full Link partner advertised pause frame use: Symmetric Receive-only Link partner advertised auto-negotiation: Yes Link partner advertised FEC modes: Not reported Speed: 1000Mb/s Duplex: Full Port: Twisted Pair PHYAD: 4 Transceiver: external Auto-negotiation: on MDI-X: off (auto) Supports Wake-on: d Wake-on: d Current message level: 0x00000000 (0) Link detected: yes Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: dts: convert PHY GPIO bindingsRobert Marko2020-12-232-22/+41
| | | | | | | | | | Since the new PHY driver manages each PHY individually and therefore registers each PHY that is marked with gpio-controller; DT property as a GPIO controller we need to convert old DT bindings to account for this. Only 2 boards use this so its not much of an issue. Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: dts: add QCA807x propertiesRobert Marko2020-12-232-2/+64
| | | | | | | | This adds necessary DT properties for QCA807x PHY-s to IPQ4019 DTSI. Also adds the PSGMII PHY as it wont get probed otherwise. Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: net: ethernet: edma: fix link detectionRobert Marko2020-12-231-0/+4
| | | | | | | PHY needs to be soft reset before starting it from ethernet driver as AR40xx calibration will leave it in unwanted state. Signed-off-by: Robert Marko <robert.marko@sartura.hr>