| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
Avoids the overhead of software VLAN untagging in the network stack
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
| |
This adds the SPDX license identifier for the NETGEAR EX6150. It was
missed when submitting the original patch.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The specific flash chip used (W25Q256FVEM) accepts 50MHz for read
requests and higher for others. 104MHz for fast reads. ramips seems to
be limited to 80MHz based on testing with higher values (no speedup).
Based on upstream commit: 97738374a310b9116f9c33832737e517226d3722
time dd if=/dev/mtdblock3 of=/dev/null bs=64k from 42.96s to 7.01s
[test done with backported upstream v4.19 driver[1], for numbers on
stock 4.14 driver please take a look at `ramips: Increase GB-PC2 SPI
frequency to 80MHz` commit message]
1. https://github.com/openwrt/openwrt/pull/1578
Signed-off-by: Rosen Penev <rosenp@gmail.com>
[expanded note about spi driver version]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The flash chip on the board (Spansion S25FL256SAIF00) is rated to
support at least 50MHz for normal read requests according to the
datasheet. 133MHz for fast reads. However, ramips seems to be limited to
80MHz.
>From testing this, higher values do not improve speeds.
time dd if=/dev/mtdblock3 of=/dev/null bs=64k from
42.82s to 14.09s.
boot speed is also faster:
[ 66.884087] procd: - init - vs
[ 48.976049] procd: - init -
Since spi speed was requested:
[ 3.538884] spi-mt7621 1e000b00.spi: sys_freq: 225000000
CPU is 900MHz:
[ 0.000000] CPU Clock: 900MHz
Signed-off-by: Rosen Penev <rosenp@gmail.com>
[fixed commit message by adding missing 0 in the spi-mt7621 clock output]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SoC: MediaTek MT7621
RAM: 64M (Winbond W9751G6KB-25)
FLASH: 16MB (Macronix MX25L12835F)
WiFi: MediaTek MT7662E bgn 2SS
WiFi: MediaTek MT7662E nac 2SS
BTN: ON/OFF - Reset - WPS - AP/Extender toggle
LED: - Arrow Right (blue)
- Arrow Left (blue)
- WiFi 1 (red/green)
- WiFi 2 (red/green)
- Power (green/amber)
- WPS (Green)
UART: UART is present as Pads on the backside of the PCB. They are
located on the other side of the Ethernet port.
3.3V - GND - TX - RX / 57600-8N1
3.3V is the nearest one to the antenna connectors
Installation
------------
Update the factory image via the Netgear web-interfaces (by default:
192.168.1.250/24).
You can also use the factory image with the nmrpflash tool.
For more information see https://github.com/jclehner/nmrpflash
Signed-off-by: David Bauer <mail@david-bauer.net>
[merge conflict in 02_network, flash@0 node rename, wlan DTS triggers]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Device specification:
- SoC: RT5350F
- CPU Frequency: 360 MHz
- Flash Chip: Winbond 25Q32 (4096 KiB)
- RAM: 32768 KiB
- 5x 10/100 Mbps Ethernet (4x LAN, 1x WAN)
- 1x external, non-detachable antenna
- UART (J1) header on PCB (57800 8n1)
- Wireless: SoC-intergated: 2.4GHz 802.11bgn
- USB: None
- 3x LED, 2x button
Flash instruction:
1. Configure PC with static IP 192.168.1.2/24 and start TFTP server.
2. Rename "openwrt-ramips-rt305x-kn_st-squashfs-sysupgrade.bin"
to "kstart_recovery.bin" and place it in TFTP server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power LED start blinking.
4. Router will download file from TFTP server, write it to flash and reboot.
Signed-off-by: Vladimir Kot <vova28rus@gmail.com>
[fixed git commit author and whitespace issues in DTS]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The WIZnet WizFi630S board is in the miniPCIe form factor.
SoC: Mediatek MT7688AN
RAM: 128MB
Flash: 32Mb
WiFi: 2.4GHz
Ethernet: 3x 100Mbit
USB: 1 (USB 2.0)
serial ports: 2 (1x full, 1xlite)
Flash and recovery instructions: Use the factory installed u-boot boot
loader. It is available on UART2 (115200,8,n,1). Then get the
sysupgrade image from a tftp server.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
[whitespace and device name in makefile fixes]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refreshed all patches.
Altered patches:
- 950-0033-i2c-bcm2835-Add-debug-support.patch
Compile-tested on: ar71xx, cns3xxx, imx6, x86_64
Runtime-tested on: ar71xx, cns3xxx, imx6
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
|
|
|
|
|
|
|
| |
Some broken ISPs (e.g. Comcast) send DHCPv6 packets with hop limit=0.
This trips up the TTL=0 check in the PPE if enabled.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DIR-510L Wireless Router are based on the MT7620A SoC.
Specification:
-MediaTek MT7620A (580 Mhz)
-128 MB of RAM
-16 MB of FLASH
-802.11bgn radio
-1x 10/100 Mbps Ethernet
-2x internal, non-detachable antennas
-UART (J3) header on PCB (57600 8n1)
-1x bi-color LED (GPIO-controlled), 2x button
-JBOOT bootloader
Known issues:
-Ethernet port is used as LAN
-No communication with charger IC. (uart bitbang needed)
Installation:
Apply factory image via d-link http web-gui.
How to revert to OEM firmware:
1.) Push the reset button and turn on the power. Wait until LED start blinking (~10sec.)
2.) Upload original factory image via JBOOT http (IP: 192.168.123.254)
3.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.bin http://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[fixed whitespace issue in 10-rt2x00-eeprom]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
| |
Some boards with JBOOT have partiton between bootloader
and kernel image. This patch add possibility to change kernel
partition start address.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
| |
clk_get_rate returns the current clock rate in Hz for a clock source so
if we divide it by 1M, then we get frequency in MHz and not kHz.
Signed-off-by: Qin Wei <support@vocore.io>
[added missing commit message, and fixed author with SoB from PR message]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reading and writing to and from flash storage is slowed down
enormously by some functions which use a block size of 1.
This patch reworks the extraction scripts to be much faster and
efficient by reading and writing in possibly one big block.
This is based on the initial commit a69e101 for ipq40xx by
Christian Lamparter <chunkeey@gmail.com>.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Rosen Penev <rosenp@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Former "mir3g" board name becomes "xiaomi,mir3g".
- Reorder some entries to maintain alphabetical order.
- Change DTS so status LEDs (yellow/red/blue) mimic
Xiaomi stock firmware: (Section Indicator)
<http://files.xiaomi-mi.co.uk/files/router_pro/router%20PRO%20EN.pdf>
<http://files.xiaomi-mi.co.uk/files/Mi_WiFi_router_3/MiWiFi_router3_EN.pdf>
|Yellow: Update (LED flickering), the launch of the system (steady light);
|Blue: during normal operation (steady light);
|Red: Safe mode (display flicker), system failure (steady light);
Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
[Added link to similar Router 3 model]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I-O DATA WN-AC733GR3 is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7620A.
Specification
- SoC : MediaTek MT7620A
- RAM : DDR2 64 MiB
- Flash : SPI-NOR 8 MiB
- WLAN : 2.4/5 GHz
- 2.4 GHz : MT7620A (SoC), 2T2R
- 5 GHz : MT7610E, 1T1R
- Ethernet : 10/100/1000 Mbps (RTL8367RB)
- LED/key : 4x/4x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J1: Vcc, RX, GND, TX from LED side
- 57600n8
Flash instruction using factory image:
1. Boot WN-AC733GR3 normaly
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt factory image and click update ("更新") button
to perform firmware update
4. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
|
|
|
|
|
|
|
| |
To be able to configure pwms the pwm driver needs to know the number off
cells in the "pwms" property. For this platform this is 2.
Signed-off-by: Micke Prag <micke.prag@telldus.se>
|
|
|
|
|
|
|
|
|
| |
Refreshed all patches.
Compile-tested on: ar71xx, cns3xxx, imx6, x86_64
Runtime-tested on: ar71xx, cns3xxx, imx6
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
|
|
|
|
| |
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hardware:
CPU: MediaTek MT7621AT (2x880MHz)
RAM: 512MB DDR3
FLASH: 256MB NAND
WiFi: 2.4GHz 4x4 MT7615 b/g/n (Needs driver, See Issues!)
WiFI: 5GHz 4x4 MT7615 a/n/ac (Needs driver, See Issues!)
USB: 1x 3.0
ETH: 1x WAN 10/100/1000 3x LAN 10/100/1000
LED: Power/Status
BTN: RESET
UART: 115200 8n1
Partition layout and boot:
Stock Xiaomi firmware has the MTD split into (among others)
- kernel0 (@0x200000)
- kernel1 (@0x600000)
- rootfs0
- rootfs1
- overlay (ubi)
Xiaomi uboot expects to find kernels at 0x200000 & 0x600000
referred to as system 1 & system 2 respectively.
a kernel is considered suitable for handing control over
if its linux magic number exists & uImage CRC are correct.
If either of those conditions fail, a matching sys'n'_fail flag
is set in uboot env & a restart performed in the hope that the
alternate kernel is okay.
If neither kernel checksums ok and both are marked failed, system 2
is booted anyway.
Note uboot's tftp flash install writes the transferred
image to both kernel partitions.
Installation:
Similar to the Xiaomi MIR3G, we keep stock Xiaomi firmware in
kernel0 for ease of recovery, and install OpenWRT into kernel1 and
after.
The installation file for OpenWRT is a *squashfs-factory.bin file that
contains the kernel and a ubi partition. This is flashed as follows:
nvram set flag_try_sys1_failed=1
nvram set flag_try_sys2_failed=0
nvram commit
dd if=factory.bin bs=1M count=4 | mtd write - kernel1
dd if=factory.bin bs=1M skip=4 | mtd write - rootfs0
reboot
Reverting to stock:
The part of stock firmware we've kept in kernel0 allows us to run stock
recovery, which will re-flash stock firmware from a *.bin file on a USB.
For this we do the following:
fw_setenv flag_try_sys1_failed 0
fw_setenv flag_try_sys2_failed 1
reboot
After reboot the LED status light will blink red, at which point pressing
the 'reset' button will cause stock firmware to be installed from USB.
Issues:
OpenWRT currently does not have support for the MT7615 wifi chips. There is
ongoing work to add mt7615 support to the open source mt76 driver. Until that
support is in place, there are closed-source kernel modules that can be used.
See: https://forum.openwrt.org/t/support-for-xiaomi-wifi-r3p-pro/20290/170
Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[02_network remaps, Added link to notes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ALFA Network Tube-E4G is an outdoor, dual-SIM LTE Cat. 4 CPE, based on
MediaTek MT7620A, equipped with Quectel EC25 miniPCIe modem.
Specification:
- MT7620A (580 MHz)
- 64/128/256 MB of RAM (DDR2)
- 16/32 MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 1x miniPCIe slot (with PCIe and USB 2.0 buses)
- 2x SIM slot (mini, micro) with detect and switch driven by GPIO
- 1x detachable antenna (modem main)
- 1x internal antenna (modem div)
- 1x GPS passive antenna (optional)
- 5x LED (all driven by GPIO)
- 1x button (reset)
- UART (4-pin, 2.54 mm pitch) header on PCB
Other:
Default SIM slot is selected at an early stage by U-Boot, based on
'default_sim' environment value: 1 or unset = SIM1 (mini), 2 = SIM2
(micro). U-Boot also resets the modem, using #PERST signal, before
starting kernel.
Flash instruction:
You can use the 'sysupgrade' image directly in vendor firmware which is
based on OpenWrt (make sure to not preserve settings - use 'sysupgrade
-n -F ...' command). Alternatively, use web recovery mode in U-Boot:
1. Power the device with reset button pressed, the LAN LED will start
blinking slowly and after ~3 seconds, when it starts blinking faster,
you can release the button.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'sysupgrade' image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
|
|
|
|
|
|
|
| |
dts: disable port4 and leave it ephy mode because it connect to nothing
switch port5 connected to GE port we use it as wan port
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to the (currently unused) mt7620_get_eco() function, introduce
mt7620_get_chipver() and mt7620_get_pkg() functions to allow rt2x00 to
probe for the type of WiSoC. This is ugly and probably unacceptable
for upstream, however, it should help to evaluate which of those hacks
are actually really needed, enumerate the possible values and label
them in a more meaningful way than currently done in the vendor driver.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Device specification:
- SoC: Ralink RT3883 (MIPS 74Kc) 500Mhz
- RAM: 64Mb
- Flash: 8MB (SPI-NOR)
- Ethernet: 10/100/1000 Mbps
- WLAN
Wireless 1: SoC-integrated : 2.4/5 GHz
Wireless 2: 2.4 GHz RT3092L
- LED: 2x USB, WAN, LAN
- Key: WPS, reset
- Serial: 4-pin header, (57600,8,N,1), 3.3V TTL,
GND, RX, TX, V - J12 marking on board
- USB ports: 2 x USB 2.0
Flashing instructions:
Option 1 (from bootloader web)
- Hold reset button on the back of router when plugging
in power (for at-least 10 seconds after plugged in)
- Connect to a Lan port
- Set computer IP to 10.10.10.3
- Go to http://10.10.10.123 in a web browser
- Click the Browse... Button and select the
*squashfs.sysupgrade.bin file then click APPLY
Option 2 (from the stock admin web)
- Go to firmware upgrade
- Upload the **factory** image *initramfs.bin first
- Boot into openwrt
- From Luci web in openwrt upload the *squashfs.sysupgrade.bin
Signed-off-by: Kip Porterfield <kip.porterfield@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added v1 to the compatible identifier, added pciid for
the RT3092L, fixed pci unit-address, split out the F9K110X.dtsi
to prepare for a possible F9K1103 patch]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the TP-Link TL-WR802N-v4.
https://openwrt.org/toh/tp-link/tl-wr802n
Specification:
- MT7628N (580 MHz)
- 64 MB RAM
- 8 MB FLASH
- 2T2R 2.4 GHz
- 1x 10/100 Mbps Ethernet
- 1x LED
Flash instruction:
The only way to flash the image in TL-WR802N v4 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr802n-v4-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 10 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Marcel Jost <majo@icutech.ch>
|
|
|
|
|
|
| |
Bring Wavlink WL-WN575A3 in line with other Wavlink ramips devices.
Signed-off-by: Thomas Vincent-Cross <me@tvc.id.au>
|
|
|
|
|
|
|
|
|
| |
* assign pinmux groups to gpio function for LEDs/buttons
* rename flash node to be more generic in line with other device nodes
* remove useless/incorrect eeprom property from wmac node
* correct base mac address for embedded switch
Signed-off-by: Thomas Vincent-Cross <me@tvc.id.au>
|
|
|
|
|
|
|
|
|
|
|
| |
Buffalo WHR-G300N has a LED for power status indication, but it is not
connected to the GPIO and cannot be controlled by the kernel. So,
WHR-G300N uses "ROUTER" LED as the system status LED instead.
This commit changes it to use "DIAG" LED insted of "ROUTER" like
WHR-G301N in ath79 target.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The R6120 has no 5GHz WLAN LED, the assigned GPIO in fact controls
the WAN LED.
Renames the LED accordingly in the device-tree.
Removes the 5GHz WLAN LED trigger.
Adds the correct WAN port LED trigger.
----
Currently, the MAC address for the Netgear R6120 is read from the NVRAM
partition. The offset for the MAC address however is not consistent
across devices or firmware versions.
Switch to using the factory partition like all other Netgear devices do.
----
The LAN ports of the R6120 are labled in reverse on the casing.
Adjust LuCI switchport numbering accordingly.
----
The WiFi eeprom offsets for the R6120 are currently wrong (5GHz offset
is bigger than the partition itself).
Fixes poor performance on 2.4 and 5 GHz.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I-O DATA WN-AC1167GR is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7620A.
Specification:
- SoC : MediaTek MT7620A
- RAM : DDR2 64 MB
- Flash : SPI-NOR 8MB
- WLAN : 2.4/5 GHz, 2T2R
- 2.4 GHz: MT7620A (SoC)
- 5 GHz : MT7612E
- Ethernet: 10/100/1000 Mbps (ext. MT7530)
- LED/key : 4x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J2: TX, GND, RX, Vcc from SoC side
- 115200n8
Flash instruction using factory image:
1. Boot WN-AC1167GR normaly
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt factory image and click update ("更新") button
to perform firmware update
4. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refreshed all patches.
Remove upstreamed:
- 950-0434-mmc-bcm2835-Recover-from-MMC_SEND_EXT_CSD.patch
Compile-tested on: ar71xx, cns3xxx, imx6, x86_64
Runtime-tested on: ar71xx, cns3xxx, imx6
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
|
|
|
|
|
|
|
|
| |
This option was a spi nor hack which is dropped in commit
bcf4a5f474 ("ramips: remove chunked-io patch and set spi->max_transfer_size instead")
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [edit message]
|
|
|
|
|
|
| |
This enables MT7610E of the EVB
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
|
|
|
|
|
|
|
|
| |
The WeVo 11AC NAS has a MT7612E 802.11ac chip on the PCB.
Signed-off-by: Ju Se Hoon <joosahoon@gmail.com>
[renamed author from Albis-dev to real name, editted commit message]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In DTS Checklist[1] we're now demanding proper generic node names, as
the name of a node should reflect the function of the device and use
generic name for that[2]. Everybody seems to be copy&pasting from DTS
files available in the repository today, so let's unify that naming
there as well and provide proper examples.
1. https://openwrt.org/submitting-patches#dts_checklist
2. https://github.com/devicetree-org/devicetree-specification/blob/master/source/devicetree-basics.rst#generic-names-recommendation
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [split up]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In DTS Checklist[1] we're now demanding proper generic node names, as
the name of a node should reflect the function of the device and use
generic name for that[2]. Everybody seems to be copy&pasting from DTS
files available in the repository today, so let's unify that naming
there as well and provide proper examples.
1. https://openwrt.org/submitting-patches#dts_checklist
2. https://github.com/devicetree-org/devicetree-specification/blob/master/source/devicetree-basics.rst#generic-names-recommendation
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [split up]
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refreshed all patches.
Adapted patches:
- 012-kbuild-add-macro-for-controlling-warnings-to-linux-c.patch
Compile-tested on: ar71xx, cns3xxx, imx6, x86_64
Runtime-tested on: ar71xx, cns3xxx, imx6
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding license in order to fully satisfy dts checklist:
- https://openwrt.org/submitting-patches#dts_checklist
Signed-off-by: Anton Arapov <arapov@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Acked-by: Thibaut <hacks@slashdirt.org>
Acked-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Acked-by: Chuanhong Guo <gch981213@gmail.com>
Acked-by: Andrew Yong <me@ndoo.sg>
Acked-by: Alex Maclean <monkeh@monkeh.net>
|
|
|
|
|
|
|
| |
Reuse a device-specific switch port mapping which also applies to the
D-Link DIR-615 H1.
Signed-off-by: Mirko Parthey <mirko.parthey@web.de>
|
|
|
|
|
|
| |
Improves LAN<->WLAN bridging/routing performance
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refreshed all patches.
Remove upstreamed patches:
- 142-jffs2-Fix-use-of-uninitialized-delayed_work-lockdep-.patch
Compile-tested on: ar71xx, cns3xxx, imx6, x86_64
Runtime-tested on: ar71xx, cns3xxx, imx6
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
|
|
|
|
|
|
|
|
| |
Two regmap dependencies were wrong, this patch fixes them.
This was detected by the build bots.
Fixes: fd5c16870169 ("kernel: Build: Split kmod-regmap")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reduces the needed modifications to the mainline Linux kernel and
also makes the regmap package work with an out of tree kernel which
does not have these modifications.
The regmap-core is only added when it is really build as a module.
The regmap-core is normally bool so it cannot be built as a module in an
unmodified kernel. When it is selected by on other kernel module it will
always be selected as build in and it also does not show up in
$(LINUX_DIR)/modules.builtin as it is not supposed to be a kernel module.
When it is not in $(LINUX_DIR)/modules.builtin the build system expects
it to be built as a .ko file.
Just check if the module is really there and only add it in that case.
This splits the regmap package into multiple packages, one for each bus type.
This way only the bus maps which are really needed have to be added.
This also splits the I2C, SPI and MMIO regmap into separate packages to not
require all these subsystems to build them, on an unmodified upstream kernel
this also causes problems in some situations.
Signed-off-by: Hauke Mehrtens <hauke.mehrtens@intel.com>
|
|
|
|
|
|
| |
The splitter isn't required by any of the boards in the subtarget.
Signed-off-by: Mathias Kresin <dev@kresin.me>
|
|
|
|
|
|
|
| |
It's no longer needed as all mt7621 devices use DT binding (supported by
upstream mtd code) for specifying "firmware" part format explicitly.
Signed-off-by: Mathias Kresin <dev@kresin.me>
|
|
|
|
|
|
|
|
|
| |
It results in calling the right MTD parser directly instead of trying
them one by one.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
[use the lzma splitter for the AR670W]
Signed-off-by: Mathias Kresin <dev@kresin.me>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch picked from commit 82618062cf7e
This enables 4B opcodes for MX25L25635F, to fix the reboot crash
issue (FS#1120) At least 3 devices are using this flash
- GeHua GHL-R-001
- Youku YK1
- Newifi D1
Now the MX25L25635F can be correctly detected without breaking MX25L25635E
[ 3.034324] spi-mt7621 1e000b00.spi: sys_freq: 220000000
[ 3.045962] m25p80 spi0.0: mx25l25635f (32768 Kbytes)
[ 3.056098] 4 fixed-partitions partitions found on MTD device spi0.0
[ 3.068748] Creating 4 MTD partitions on "spi0.0":
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [added deprecation notice]
|
|
|
|
|
|
|
| |
Adjust the model string and device title to match other Netgear routers
in the ramips target.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current code directly writes the FOE entry to hash_val+1 position
when hash collision occurs. However, it is found that this behavior
will cause the cache and the hardware FOE table to be inconsistent.
For example, there are three flows, and their hashed values are all
equal to 100. The first flow is written to the position of 100. The
second flow is written to the position of 100+1. Then, the logic of
the current code will also write the third flow to 100+1.
At this time, the cache has flow 1 and 2; and the hardware FOE table
has flow 1 and 3, where these two parts store different contents.
So it is necessary to check whether the hash_val+1 is also occupied
before writing. If hash_val+1 is also occupied, we won’t bind th
third flow to the FOE table.
Addition to that, we also cancel the processing of foe_entry removal
because the hardware has auto age-out ability. The hardware will
periodically iterate through the FOE table to find out the time-out
entry and set it as INVALID.
Signed-off-by: HsiuWen Yen <y.hsiuwen@gmail.com>
|
|
|
|
|
|
| |
Use the correct splitter for board with the edimax header.
Signed-off-by: Mathias Kresin <dev@kresin.me>
|