aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/image
Commit message (Collapse)AuthorAgeFilesLines
* ramips: add support for ELECOM WRC-1750GST2INAGAKI Hiroshi2021-03-211-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1750GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 256 MiB (NT5CC128M16JR-EK) - Flash : SPI-NOR 32 MiB (MX25L25645GMI-08G) - WLAN : 2.4/5 GHz 3T3R (2x MediaTek MT7615) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LEDs/Keys : 4x/6x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, GND, TX, RX, from ethernet port side - 57600n8 - Power : 12 VDC, 1.5 A Flash instruction using factory image: 1. Boot WRC-1750GST2 normally with "Router" mode 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~120 seconds to complete flashing MAC addresses: LAN : 04:AB:18:xx:xx:23 (Factory, 0xE000 (hex)) WAN : 04:AB:18:xx:xx:24 (Factory, 0xE006 (hex)) 2.4GHz : 04:AB:18:xx:xx:25 (Factory, 0x4 (hex)) 5GHz : 04:AB:18:xx:xx:26 (Factory, 0x8004 (hex)) Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* rampis: use lzma-loader for ZTE MF283+Lech Perczak2021-03-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | Without that, after merging support to master, the device fails to boot due to LZMA decompression error: 3: System Boot system code via Flash. ## Booting image at bc080000 ... raspi_read: from:80000 len:40 . Image Name: MIPS OpenWrt Linux-5.4.99 Created: 2021-02-25 23:35:00 UTC Image Type: MIPS Linux Kernel Image (lzma compressed) Data Size: 1786664 Bytes = 1.7 MB Load Address: 80000000 Entry Point: 80000000 raspi_read: from:80040 len:1b4328 ............................ Verifying Checksum ... OK Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover Use lzma-loader to fix it. Fixes: 59d065c9f81c ("ramips: add support for ZTE MF283+") Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ramips: fix broken UniFi 6 Lite imageDavid Bauer2021-03-181-0/+1
| | | | | | | | Ubiquiti's own bootloader expects the configuration mode to be present with a "@" instead of a "-" for the sperator character. Otherwise booting of the image fails. Signed-off-by: David Bauer <mail@david-bauer.net>
* treewide: make AddDepends/usb-serial selectiveAdrian Schmutzler2021-03-063-6/+6
| | | | | | | Make packages depending on usb-serial selective, so we do not have to add kmod-usb-serial manually for every device. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ZTE MF283+Lech Perczak2021-02-261-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem. Hardware highlighs: - CPU: MIPS24KEc at 400MHz, - RAM: 64MB DDR2, - Flash: 16MB SPI, - Ethernet: 4 10/100M port switch with VLAN support, - Wireless: Dual-stream 802.11n (RT2860), with two internal antennas, - WWAN: Built-in ZTE P685M modem, with two internal antennas and two switching SMA connectors for external antennas, - FXS: Single ATA, with two connectors marked PHONE1 and PHONE2, internally wired in parallel by 0-Ohm resistors, handled entirely by internal WWAN modem. - USB: internal miniPCIe slot for modem, unpopulated USB A connector on PCB. - SIM slot for the WWAN modem. - UART connector for the console (unpopulated) at 3.3V, pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND, settings: 57600-8-N-1. - LEDs: Power (fixed), WLAN, WWAN (RGB), phone (bicolor, controlled by modem), Signal, 4 link/act LEDs for LAN1-4. - Buttons: WPS, reset. Installation: As the modem is, for most of the time, provided by carriers, there is no possibility to flash through web interface, only built-in FOTA update and TFTP recovery are supported. There are two installation methods: (1) Using serial console and initramfs-kernel - recommended, as it allows you to back up original firmware, or (2) Using TFTP recovery - does not require disassembly. (1) Using serial console: To install OpenWrt, one needs to disassemble the router and flash it via TFTP by using serial console: - Locate unpopulated 4-pin header on the top of the board, near buttons. - Connect UART adapter to the connector. Use 3.3V voltage level only, omit VCC connection. Pin 1 (VCC) is marked by square pad. - Put your initramfs-kernel image in TFTP server directory. - Power-up the device. - Press "1" to load initramfs image to RAM. - Enter IP address chosen for the device (defaults to 192.168.0.1). - Enter TFTP server IP address (defaults to 192.168.0.22). - Enter image filename as put inside TFTP server - something short, like firmware.bin is recommended. - Hit enter to load the image. U-boot will store above values in persistent environment for next installation. - If you ever might want to return to vendor firmware, BACK UP CONTENTS OF YOUR FLASH NOW. For this router, commonly used by mobile networks, plain vendor images are not officially available. To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the most important, and copy them over network to your PC. But in case anything goes wrong, PLEASE do back up ALL OF THEM. - From under OpenWrt just booted, load the sysupgrade image to tmpfs, and execute sysupgrade. (2) Using TFTP recovery - Set your host IP to 192.168.0.22 - for example using: sudo ip addr add 192.168.0.22/24 dev <interface> - Set up a TFTP server on your machine - Put the sysupgrade image in TFTP server root named as 'root_uImage' (no quotes), for example using tftpd: cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage - Power on the router holding BOTH Reset and WPS buttons held for around 5 seconds, until after WWAN and Signal LEDs blink. - Wait for OpenWrt to start booting up, this should take around a minute. Return to original firmware: Here, again there are two possibilities are possible, just like for installation: (1) Using initramfs-kernel image and serial console (2) Using TFTP recovery (1) Using initramfs-kernel image and serial console - Boot OpenWrt initramfs-kernel image via TFTP the same as for installation. - Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/ - Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is your backup taken before OpenWrt installation, and /dev/mtd3 is the "firmware" partition. (2) Using TFTP recovery - Follow the same steps as for installation, but replacing 'root_uImage' with firmware backup you took during installation, or by vendor firmware obtained elsewhere. A few quirks of the device, noted from my instance: - Wired and wireless MAC addresses written in flash are the same, despite being in separate locations. - Power LED is hardwired to 3.3V, so there is no status LED per se, and WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED for status - original firmware also does this in bootup. - FXS subsystem and its LED is controlled by the modem, so it work independently of OpenWrt. Tested to work even before OpenWrt booted. I managed to open up modem's shell via ADB, and found from its kernel logs, that FXS and its LED is indeed controlled by modem. - While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for each and every one of them manually, so this might not be complete - it looks like bicolor LED is used for FXS, possibly to support dual-ported variant in other device sharing the PCB. - Flash performance is very low, despite enabling 50MHz clock and fast read command, due to using 4k sectors throughout the target. I decided to keep it at the moment, to avoid breaking existing devices - I identified one potentially affected, should this be limited to under 4MB of Flash. The difference between sysupgrade durations is whopping 3min vs 8min, so this is worth pursuing. In vendor firmware, WWAN LED behaviour is as follows, citing the manual: - red - no registration, - green - 3G, - blue - 4G. Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan looks reasonable at the moment, for full replacement, a script similar to "rssileds" would need to be developed. Behaviour of "Signal LED" in vendor firmware is as follows: - Off - no signal, - Blinking - poor coverage - Solid - good coverage. A few more details on the built-in LTE modem: Modem is not fully supported upstream in Linux - only two CDC ports (DIAG and one for QMI) probe. I sent patches upstream to add required device IDs for full support. The mapping of USB functions is as follows: - CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools. - CDC (PCUI) - not supported by upstream 'option' driver yet. Patch submitted upstream. - CDC (Modem) - Exactly the same as above - QMI - A patch is sent upstream to add device ID, with that in place, uqmi did connect successfully, once I selected correct PDP context type for my SIM (IPv4-only, not default IPv4v6). - ADB - self-explanatory, one can access the ADB shell with a device ID added to 51-android.rules like so: SUBSYSTEM!="usb", GOTO="android_usb_rules_end" LABEL="android_usb_rules_begin" SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes" ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess" LABEL="android_usb_rules_end" While not really needed in OpenWrt, it might come useful if one decides to move the modem to their PC to hack it further, insides seem to be pretty interesting. ADB also works well from within OpenWrt without that. O course it isn't needed for normal operation, so I left it out of DEVICE_PACKAGES. Signed-off-by: Lech Perczak <lech.perczak@gmail.com> [remove kmod-usb-ledtrig-usbport, take merged upstream patches] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use lzma-loader for Wevo devicesSeo Suchan2021-02-191-0/+2
| | | | | | | | | | As kernel size increased it start to fail to load squishfs image, using lzma-loader fixed it. wevo_11acnas is almost same device as w2914ns-v2 except ram size, so I expect same thing would've happen in that device too. Signed-off-by: Seo Suchan <abnoeh@mail.com> Reviewed-by: Sungbo Eo <mans0n@gorani.run>
* ramips: mt7621: add TP-Link EAP235-Wall supportSander Vanheule2021-02-191-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access point with four gigabit ethernet ports. When connecting to the device's serial port, it is strongly advised to use an isolated UART adapter. This prevents linking different power domains created by the PoE power supply, which may damage your devices. The device's U-Boot supports saving modified environments with `saveenv`. However, there is no u-boot-env partition, and saving modifications will cause the partition table to be overwritten. This is not an issue for running OpenWrt, but will prevent the vendor FW from functioning properly. Device specifications: * SoC: MT7621DAT * RAM: 128MiB * Flash: 16MiB SPI-NOR * Wireless 2.4GHz (MT7603EN): b/g/n, 2x2 * Wireless 5GHz (MT7613BEN): a/n/ac, 2x2 * Ethernet: 4× GbE * Back side: ETH0, PoE PD port * Bottom side: ETH1, ETH2, ETH3 * Single white device LED * LED button, reset button (available for failsafe) * PoE pass-through on port ETH3 (enabled with GPIO) Datasheet of the flash chip specifies a maximum frequency of 33MHz, but that didn't work. 20MHz gives no errors with reading (flash dump) or writing (sysupgrade). Device mac addresses: Stock firmware uses the same MAC address for ethernet (on device label) and 2.4GHz wireless. The 5GHz wireless address is incremented by one. This address is stored in the 'info' ('default-mac') partition at an offset of 8 bytes. From OEM ifconfig: eth a4:2b:b0:...:88 ra0 a4:2b:b0:...:88 rai0 a4:2b:b0:...:89 Flashing instructions: * Enable SSH in the web interface, and SSH into the target device * run `cliclientd stopcs`, this should return "success" * upload the factory image via the web interface Debricking: U-boot can be interrupted during boot, serial console is 57600 baud, 8n1 This allows installing a sysupgrade image, or fixing the device in another way. * Access serial header from the side of the board, close to ETH3, pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3. * Interrupt bootloader by holding '4' during boot, which drops the bootloader into its shell * Change default 'serverip' and 'ipaddr' variables (optional) * Download initramfs with `tftpboot`, and boot image with `bootm` # tftpboot 84000000 openwrt-initramfs.bin # bootm Revert to stock: Using the tplink-safeloader utility from the firmware-utils package, TP-Link's firmware image can be converted to an OpenWrt-compatible sysupgrade image: $ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \ -z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin This can then be flashed using the OpenWrt sysupgrade interface. The image will appear to be incompatible and must be force flashed, without keeping the current configuration. Known issues: - DFS support is incomplete (known issue with MT7613) - MT7613 radio may stop responding when idling, reboot required. This was an issue with the ddc75ff704 version of mt76, but appears to have improved/disappeared with bc3963764d. Error notice example: [ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout Hardware was kindly provided for porting by Stijn Segers. Tested-by: Stijn Segers <foss@volatilesystems.org> Signed-off-by: Sander Vanheule <sander@svanheule.net>
* ramips: remove factory image for TP-Link Archer C20 v1Stijn Segers2021-02-191-0/+1
| | | | | | | | | | | | Similarly to the Archer C2 v1, the Archer C20 v1 will brick when one tries to flash an OpenWrt factory image through the TP-Link web UI. The wiki page contains an explicit warning about this [1]. Disable the factory image altogether since it serves no purpose. [1] https://openwrt.org/toh/tp-link/tp-link_archer_c20_v1#installation Signed-off-by: Stijn Segers <foss@volatilesystems.org>
* ramips: remove factory image for TP-Link Archer C2 v1Stijn Segers2021-02-131-0/+1
| | | | | | | | | | | | | | | | | | | Initial commit 8375623a0640 ("ramips: add support for TP-Link Archer C2") contains detailed installation instructions, which do not mention a factory image. From what I can see, no support to install OpenWrt through the vendor web interface has been added since. The factory image is also conspicuously absent from the device page in the wiki. Yet, it is available for download. I bricked my Archer C2 loading the factory image through the web UI. Serial showed this error during bootloop: Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover This patch disables the undocumented factory image so users won't get tricked into thinking easy web UI flashing actually works. Signed-off-by: Stijn Segers <foss@volatilesystems.org>
* ramips: add support for ELECOM WRC-1167FSINAGAKI Hiroshi2021-02-111-0/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167FS is a 2.4/5 GHz band 11ac (WiFi-5) router, based on MT7628AN. Specification: - SoC : MediaTek MT7628AN - RAM : DDR2 64 MiB (NT5TU32M16FG-AC) - Flash : SPI-NOR 16 MiB (W25Q128JVSIQ) - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : MediaTek MT7628AN (SoC) - 5 GHz : MediaTek MT7612E - Ethernet : 10/100 Mbps x2 - Switch : MT7628AN (SoC) - LEDs/Keys : 6x, 3x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J1: 3.3V, GND, TX, RX from "J1" marking - 57600n8 - Power : 12 VDC, 1 A Flash instruction using factory image: 1. Boot WRC-1167FS normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button to perform firmware update 4. Wait ~120 seconds to complete flashing Notes: - Last 0x800000 (8 MiB) in SPI-NOR flash is not used on stock firmware - Additional padding in factory image is required to avoid incomplete flashing on stock firmware MAC addresses: - LAN : BC:5C:4C:xx:xx:68 (Config, ethaddr (text) / Factory, 0x28 (hex)) - WAN : BC:5C:4C:xx:xx:69 (Config, wanaddr (text) / Factory, 0x22 (hex)) - 2.4GHz: BC:5C:4C:xx:xx:6A (Config, rmac (text) / Factory, 0x4 (hex)) - 5GHz : BC:5C:4C:xx:xx:6B (Config, rmac2 (text) / Factory, 0x8004 (hex)) Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* target: use SPDX license identifiers on MakefilesAdrian Schmutzler2021-02-101-4/+2
| | | | | | Use SPDX license tags to allow machines to check licenses. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Cudy WR1300Andrew Pikler2021-02-091-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MediaTek MT7621AT - RAM: 128 MB (DDR3) - Flash: 16 MB (SPI NOR) - WiFi: MediaTek MT7603E, MediaTek MT7612E - Switch: 1 WAN, 4 LAN (Gigabit) - Ports: 1 USB 3.0 - Buttons: Reset, WPS - LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB - Power: DC 12V 1A tip positive UART Serial: 115200 baud Located on unpopulated 4 pin header near J4: J4 [o] Rx [o] Tx [o] GND [ ] Vcc - Do not connect Installation: Download and flash the manufacturer's built OpenWRT image available at http://www.cudytech.com/openwrt_software_download Install the new OpenWRT image via luci (System -> Backup/Flash firmware) Be sure to NOT keep settings. The force upgrade may need to be checked due to differences in router naming conventions. Recovery: - Loads only signed manufacture firmware due to bootloader RSA verification - serve tftp-recovery image as /recovery.bin on 192.168.1.88/24 - connect to any lan ethernet port - power on the device while holding the reset button - wait at least 8 seconds before releasing reset button for image to download - See http://www.cudytech.com/newsinfo/547425.html MAC addresses as verified by OEM firmware: use address source LAN *:f0 label WAN *:f1 label + 1 2g *:f0 label 5g *:f2 label + 2 The label MAC address is found in bdinfo 0xde00. Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
* ramips: add support for JCG Y2Chukun Pan2021-02-091-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | JCG Y2 is an AC1300M router Hardware specs: SoC: MediaTek MT7621AT Flash: Winbond W25Q128JVSQ 16MiB RAM: Nanya NT5CB128M16 256MiB WLAN: 2.4/5 GHz 2T2R (1x MediaTek MT7615) Ethernet: 10/100/1000 Mbps x5 LED: POWER, INTERNET, 2.4G, 5G Button: Reset Power: DC 12V,1A Flash instructions: Upload factory.bin in stock firmware's upgrade page. MAC addresses map: 0x0004 *:c8 wlan2g/wlan5g/label 0xe000 *:c7 lan 0xe006 *:c6 wan Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
* ramips: disable default build for HooToo HT-TM02Szabolcs Hubai2021-02-071-0/+1
| | | | | | | | | | | | | | | | | | While the latest version of 19.07 release is usable, the current master is unbootable on the device in a normal way. "Normal way" installations includes: - sysupgrade (e.g. from 19.07) - RESET button recovery with Ron Curry's (Wingspinner) UBoot image (10.10.10.3 + "Kernal.bin") - RESET button recovery with original U-Boot (10.10.10.254 + "kernel") One could flash and boot the latest master sysupgrade image successfully with serial access to the device. But a sysupgrade from this state still breaks the U-Boot and soft-bricks the device. Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
* ramips: add support for I-O DATA WN-DX1200GRINAGAKI Hiroshi2021-02-071-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I-O DATA WN-DX1200GR is a 2.4/5 GHz band 11ac (WiFi-5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 128 MiB - Flash : raw NAND 128 MiB - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : MediaTek MT7603E - 5 GHz : MediaTek MT7613BE - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LEDs/keys : 2x/3x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J5: 3.3V, TX, RX, NC, GND from triangle-mark - 57600n8 - Power : 12 VDC, 1 A Flash instruction using initramfs image: 1. Boot WN-DX1200GR normally 2. Access to "http://192.168.0.1/" and open firmware update page ("ファームウェア") 3. Select the OpenWrt initramfs image and click update ("更新") button to perform firmware update 4. On the initramfs image, perform sysupgrade with the squashfs-sysupgrade image 5. Wait ~120 seconds to complete flashing Notes: - currently, mt7615e driver in mt76 doesn't fully support MT7613 (MT7663) wifi chip - the eeprom data in flash is not used by mt7615e driver and the driver reports the tx-power up to 3dBm - the correct MAC address for MT7613BE in eeprom data cannot be assigned to the phy - last 0x80000 (512 KiB) in NAND flash is not used on stock firmware - stock firmware requires "customized uImage header" (called as "combo image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't - uImage magic ( 0x0 - 0x3 ) : 0x434F4D43 ("COMC") - header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32" - image name (0x20 - 0x37) : model ID and firmware versions - data length (0x38 - 0x3b) : kernel + rootfs - data crc32 (0x3c - 0x3f) : kernel + rootfs MAC addresses: LAN: 50:41:B9:xx:xx:08 (Ubootenv, ethaddr (text) / Factory, 0x1E000 (hex)) WAN: 50:41:B9:xx:xx:0A (Factory, 0x1E006 (hex)) 2.4GHz: 50:41:B9:xx:xx:08 (Factory, 0x4 (hex)) 5GHz: 50:41:B9:xx:xx:09 (Factory, 0x8004 (hex)) Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> [add check whether dflag_offset is set] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* build: move elx-header into image-commands.mkYanase Yuki2021-02-051-20/+0
| | | | | | | ELECOM WAB-I1750-PS will need this in ath79, so move it to common Makefile. Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
* ramips: add support for UniElec U7621-01David Bentham2021-02-051-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniElec U7621-01 is a router platform board, the smaller model of the U7621-06. The device has the following specifications: - MT7621AT (880 MHz) - 256 of RAM (DDR3) - 16 MB of FLASH (SPI NOR) - 5x 1 Gbps Ethernet (MT7621 built-in switch) - 1x 2.4Ghz MT7603E - 1x 5Ghz MT7612 - 1x miniPCIe slots (PCIe bus only) - 1x miniSIM slot - 1x USB 2.0 (uses the usb 3.0 driver) - 8x LEDs (1x GPIO-controlled) - 1x reset button - 1x UART header (4-pins) - 1x GPIO header (30-pins) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - 1x 2.4Ghz MT7603E (wifi) - 1x 5Ghz MT7612 (wifi) - miniPCIe slots (tested with Wi-Fi cards and LTE modem cards) - miniSIM slot (works with normal size simcard) - sysupgrade - reset button Installation: This board has no locked down bootloader. The seller can be asked to install openwrt v18.06, so upgrades are standard sysupgrade method. Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. LEDs list (left to right): - ESW_P0_LED_0 - ESW_P1_LED_0 - ESW_P2_LED_0 - ESW_P3_LED_0 - ESW_P4_LED_0 - CTS2_N (GPIO10, configured as "status" LED) - LED_WLAN# (connected with pin 44 in wifi1 slot) Signed-off-by: David Bentham <db260179@gmail.com> [add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Hi-Link HLK-7688AEwan Parker2021-02-051-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MediaTek MT7688AN - RAM: 128 MB - Flash: 32 MB - Ethernet: 5x 10/100 (1x WAN, 4x LAN) - Wireless: built in 2.4GHz (bgn) - USB: 1x USB 2.0 port - Buttons: 1x Reset - LEDs: 1x (WiFi) Flash instructions: - Configure TFTP server with IP address 10.10.10.3 - Name the firmware file as firmware.bin - Connect any Ethernet port to the TFTP server's LAN - Choose option 2 in U-Boot - Alternatively choose option 7 to upload firmware to the built-in web server MAC addresses as verified by OEM firmware: use address source 2g *:XX factory 0x4 LAN *:XX+1 factory 0x28 WAN *:XX+1 factory 0x2e Notes: This board is ostensibly a module containing the MediaTek MT7688AN SoC, 128 MB DDR2 SDRAM and 32 MB flash storage. The SoC can be operated in IoT Gateway Mode or IoT Device Mode. From some vendors the U-Boot that comes installed operates on UART 2 which is inaccessible in gateway mode and operates unreliably in the Linux kernel when using more than 64 MB of RAM. For those, updating U-Boot is recommended. Signed-off-by: Ewan Parker <ewan@ewan.cc> [add WLAN to 01_leds] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ELECOM WRC-2533GHBK-IINAGAKI Hiroshi2021-01-291-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-2533GHBK-I is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 128 MiB - Flash : SPI-NOR 16 MiB - WLAN : 2.4/5 GHz 4T4R (2x MediaTek MT7615) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LED/keys : 4x/3x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, RX, GND, TX from SoC side - 57600n8 - Power : 12VDC, 1.5A Flash instruction using factory image: 1. Boot WRC-2533GHBK-I normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~150 seconds to complete flashing MAC addresses: LAN : BC:5C:4C:xx:xx:89 (Config, ethaddr (text)) WAN : BC:5C:4C:xx:xx:88 (Config, wanaddr (text)) 2.4GHz : BC:5C:4C:xx:xx:8A (Factory, 0x4 (hex)) 5GHz : BC:5C:4C:xx:xx:8B (Factory, 0x8004 (hex)) Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> Reviewed-by: Sungbo Eo <mans0n@gorani.run>
* ramips: use lzma-loader on zbtlink devicesFelix Fietkau2021-01-271-0/+3
| | | | | | Fixes boot loader LZMA decompression issues Signed-off-by: Felix Fietkau <nbd@nbd.name>
* treewide: provide global default for SUPPORTED_DEVICESAdrian Schmutzler2021-01-231-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The majority of our targets provide a default value for the variable SUPPORTED_DEVICES, which is used in images to check against the compatible on a running device: SUPPORTED_DEVICES := $(subst _,$(comma),$(1)) At the moment, this is implemented in the Device/Default block of the individual targets or even subtargets. However, since we standardized device names and compatible in the recent past, almost all targets are following the same scheme now: device/image name: vendor_model compatible: vendor,model The equal redundant definitions are a symptom of this process. Consequently, this patch moves the definition to image.mk making it a global default. For the few targets not using the scheme above, SUPPORTED_DEVICES will be defined to a different value in Device/Default anyway, overwriting the default. In other words: This change is supposed to be cosmetic. This can be used as a global measure to get the current compatible with: $(firstword $(SUPPORTED_DEVICES)) (Though this is not precisely an achievement of this commit.) Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: add support for Xiaomi Mi Router 4Dmytro Oz2021-01-211-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for the RAM (256Mib→128Mib), LEDs and gpio (MiNet button). Specifications: Power: 12 VDC, 1 A Connector type: barrel CPU1: MediaTek MT7621A (880 MHz, 4 cores) FLA1: 128 MiB (ESMT F59L1G81MA) RAM1: 128 MiB (ESMT M15T1G1664A) WI1 chip1: MediaTek MT7603EN WI1 802dot11 protocols: bgn WI1 MIMO config: 2x2:2 WI1 antenna connector: U.FL WI2 chip1: MediaTek MT7612EN WI2 802dot11 protocols: an+ac WI2 MIMO config: 2x2:2 WI2 antenna connector: U.FL ETH chip1: MediaTek MT7621A Switch: MediaTek MT7621A UART Serial [o] TX [o] GND [o] RX [ ] VCC - Do not connect it MAC addresses as verified by OEM firmware: use address source LAN *:c2 factory 0xe000 (label) WAN *:c3 factory 0xe006 2g *:c4 factory 0x0000 5g *:c5 factory 0x8000 Flashing instructions: 1.Create a simple http server (nginx etc) 2.set uart enable To enable writing to the console, you must reset to factory settings Then you see uboot boot, press the keyboard 4 button (enter uboot command line) If it is not successful, repeat the above operation of restoring the factory settings. After entering the uboot command line, type: setenv uart_en 1 saveenv boot 3.use shell in uart cd /tmp wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1 mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0 nvram set flag_try_sys1_failed=1 nvram commit reboot 4.login to the router http://192.168.1.1/ Installation via Software exploit Find the instructions in the https://github.com/acecilia/OpenWRTInvasion Signed-off-by: Dmytro Oz <sequentiality@gmail.com> [commit message facelift, rebase onto shared DTSI/common device definition, bump uboot-envtools] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: reorganize shared device definitions for XiaomiAdrian Schmutzler2021-01-211-21/+13
| | | | | | | | | | This creates a shared device definition for Xiaomi devices with NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin. This allows to consolidate similar/duplicate code for AC2100 family and Mi Router 3G. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* kernel: drop empty kmod-ledtrig-* packagesSungbo Eo2021-01-152-13/+11
| | | | | | | | | | | | | | The following four led triggers are enabled in generic config. * kmod-ledtrig-default-on * kmod-ledtrig-heartbeat * kmod-ledtrig-netdev * kmod-ledtrig-timer Drop the packages and remove them from DEVICE_PACKAGES. There's no other package depending on them in this repo. Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* ramips: remove trailing whitespace in MakefilesLeon M. George2021-01-072-2/+2
| | | | | | | | Remove trailing whitespaces in two *.mk files. Signed-off-by: Leon M. George <leon@georgemail.eu> [fix title, add message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Ubiquiti UniFi 6 LiteDavid Bauer2021-01-051-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- MediaTek MT7621AT 256M DDR3 32M SPI-NOR MediaTek MT7603 2T2R 802.11n 2.4GHz MediaTek MT7915 2T2R 802.11ax 5GHz Not Working ----------- - Bluetooth (connected to UART3) UART ---- UART is located in the lower left corner of the board. Pinout is 0 - 3V3 (don't connect) 1 - RX 2 - TX 3 - GND Console is 115200 8N1. Boot ---- 1. Connect to the serial console and connect power. 2. Double-press ESC when prompted 3. Set the fdt address $ fdt addr $(fdtcontroladdr) 4. Remove the signature node from the control FDT $ fdt rm /signature 5. Transfer and boot the OpenWrt initramfs image to the device. Make sure to name the file C0A80114.img and have it reachable at 192.168.1.1/24 $ tftpboot; bootm Installation ------------ 1. Connect to the booted device at 192.168.1.20 using username/password "ubnt". 2. Update the bootloader environment. $ fw_setenv devmode TRUE $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr); fdt rm /signature; bootubnt" $ fw_setenv bootcmd "run boot_openwrt" 3. Transfer the OpenWrt sysupgrade image to the device using SCP. 4. Check the mtd partition number for bs / kernel0 / kernel1 $ cat /proc/mtd 5. Set the bootselect flag to boot from kernel0 $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4 6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1 $ dd if=openwrt.bin of=/dev/mtdblock6 $ dd if=openwrt.bin of=/dev/mtdblock7 7. Reboot the device. It should boot into OpenWrt. Below are the original installation instructions prior to the discovery of "devmode=TRUE". They are not required for installation and are documentation only. The bootloader employs signature verification on the FIT image configurations. This way, booting unauthorized image without patching the bootloader is not possible. Manually configuring the bootcmd in the U-Boot envronment won't work, as this is restored to the default value if modified. The bootloader is made up of three different parts. 1. The SPL performing early board initialization and providing a XModem recovery in case the PBL is missing 2. The PBL being the primary U-Boot application and containing the control FDT. It is LZMA packed with a uImage header. 3. A Ubiquiti standalone U-Boot application providing the main boot routine as well as their recovery mechanism. In a perfect world, we would only replace the PBL, as the SPL does not perform checks on the PBLs integrity. However, as the PBL is in the same eraseblock as the SPL, we need to at least rewrite both. The bootloader will only verify integrity in case it has a "signature" node in it's control device-tree. Renaming the signature node to something else will prevent this from happening. Warning: These instructions are based on the firmware intially shipped with the device and potentially brick your device in a way it can only be recovered using a SPI flasher. Only (!) proceed if you understand this! 1. Extract the bootloader from the U-Boot partition using the OpenWrt initramfs image. 2. Split the bootloader into it's 3 components: $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056 $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360 $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416 3. Strip the uImage header from the PBL $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1 4. Decompress the PBL $ lzma -d pbl.lzma --single-stream The decompressed PBL sha256sum should be d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235 5. Open the decompressed PBL using your favorite hexeditor. Locate the control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the label for the signature node is located. Rename the "signature" string at this offset to "signaturr". The patched PBL sha256sum should be d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97 6. Compress the patched PBL $ lzma -z pbl --lzma1=dict=67108864 The resulting pbl.lzma file should have the sha256sum 7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42 7. Create the PBL uimage $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000 -T firmware -d pbl.lzma patched_pbl.uimage The resulting patched_pbl.uimage should have the sha256sum b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce 8. Reassemble the complete bootloader $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1 conv=sync $ cat spl.bin > patched_uboot.bin $ cat aligned_pbl.uimage >> patched_uboot.bin $ cat ubnt.uimage >> patched_uboot.bin The resulting patched_uboot.bin should have the sha256sum 3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b 9. Transfer your patched bootloader to the device. Also install the kmod-mtd-rw package using opkg and load it. $ insmod mtd-rw.ko i_want_a_brick=1 Write the patched bootloader to mtd0 $ mtd write patched_uboot.bin u-boot 10. Erase the kernel1 partition, as the bootloader might otherwise decide to boot from there. $ mtd erase kernel1 11. Transfer the OpenWrt sysupgrade image to the device and install using sysupgrade. FIT configurations ------------------ In the future, the MT7621 UniFi6 family can be supported by a single OpenWrt image. config@1: U6 Lite config@2: U6 IW config@3: U6 Mesh config@4: U6 Extender config@5: U6 LR-EA (Early Access - GA is MT7622) Signed-off-by: David Bauer <mail@david-bauer.net>
* ramips: add support for ELECOM WRC-1167GST2INAGAKI Hiroshi2020-12-221-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 256 MiB - Flash : SPI-NOR 32 MiB - WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LED/keys : 6x/6x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, GND, TX, RX from ethernet port side - 57600n8 - Power : 12VDC, 1A MAC addresses: LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex)) WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex)) 2.4 GHz : 04:AB:18:**:**:09 (none) 5 GHz : 04:AB:18:**:**:0A (none) Flash instruction using factory image: 1. Boot WRC-1167GST2 normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~150 seconds to complete flashing Notes: - there is no way to configure the correct MAC address for secondary phy (5GHz) on MT7615D - Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying ieee80211-freq-limit (fail to register secondary phy due to error) - mtd-mac-address in the wifi node is required for using mtd-mac-address-increment Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> [rebase onto split DTSI] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ELECOM WRC-1167GS2-BINAGAKI Hiroshi2020-12-221-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 128 MiB - Flash : SPI-NOR 16 MiB - WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LED/keys : 6x/6x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, GND, TX, RX from ethernet port side - 57600n8 - Power : 12VDC, 1A MAC addresses: LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex)) WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex)) 2.4 GHz : 04:AB:18:**:**:15 (none) 5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex)) Flash instruction using factory image: 1. Boot WRC-1167GS2-B normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~120 seconds to complete flashing Notes: - there is no way to configure the correct MAC address for secondary phy (5GHz) on MT7615D - Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying ieee80211-freq-limit (fail to register secondary phy due to error) - mtd-mac-address in the wifi node is required for using mtd-mac-address-increment Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> [rebase onto split DTSI patch] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for D-Link DIR-882 R1Andrew Pikler2020-12-221-0/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MediaTek MT7621AT - RAM: 128 MB (DDR3) - Flash: 16 MB (SPI NOR) - WiFi: MediaTek MT7615N (x2) - Switch: 1 WAN, 4 LAN (Gigabit) - Ports: 1 USB 2.0, 1 USB 3.0 - Buttons: Reset, WiFi Toggle, WPS - LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0 The R1 revision is identical to the A1 revision except - No Config2 Parition, therefore - factory partition resized to 64k from 128K - Firmware partition offset is 0x50000 not 0x60000 - Firmware partitions size increased by 64K - Firmware partition type is "denx,uimage", not "sge,uimage" - Padding of image creation "uimage-padhdr 96" removed Installation: - Older firmware versions: put the factory image on a USB stick, turn on the telnet console, and flash using the following cmd "fw_updater Linux /mnt/usb_X_X/firmware.bin" - D-Link FailsafeUI: Power down the router, press and hold the reset button, then re-plug it. Keep the reset button pressed until the internet LED stops flashing, then jack into any lan port and manually assign a static IP address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2) and go to http://192.168.0.1 Flash with the factory image. Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
* firmware: add tool for signing d-link ru router factory firmware imagesAndrew Pikler2020-12-221-0/+5
| | | | | | | | Some Russian d-link routers require that their firmware be signed with a salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool signs factory images the OEM's firmware accepts them. Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
* ramips: add support for Senao Engenius ESR600HMichael Pratt2020-12-221-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ESR750H Engenius ESR600H is an indoor wireless router with a gigabit switch, 2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port. **Specification:** - RT3662F MIPS SOC, 5 GHz WMAC (2x2) - RT5392L PCI on-board, 2.4 GHz (2x2) - AR8327 RGMII, 7-port GbE, 25 MHz clock - 40 MHz reference clock - 8 MB FLASH 25L6406EM2I-12G - 64 MB RAM - UART at J12 (unpopulated) - 2 internal antennas (5 GHz) - 2 external antennas (2.4 GHz) - 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN) - USB 2 port (GPIO controlled power) **MAC addresses:** MAC Addresses are labeled as WAN and WLAN U-boot environment has the the vendor MAC address for ethernet MAC addresses in "factory" are part of wifi calibration data eth0.2 WAN *:13:e7 u-boot-env wanaddr eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1 phy0 WLAN *:14:b8 factory 0x8004 phy1 ---- *:14:bc factory 0x4 **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Network Setting --> Tools --> Firmware Click Browse and select the factory.dlf image Click Continue to confirm and wait 6 minutes or more... Method 2: Serial console to load TFTP image: (see TFTP recovery) **Return to OEM:** Unlike most Engenius boards, this does not have a 'failsafe' image the only way to return to OEM is serial access to uboot Unlike most Engenius boards, public images are not available... so the only way to return to OEM is to have a copy of the MTD partition "firmware" BEFORE flashing openwrt. **TFTP recovery:** Unlike most Engenius boards, TFTP is reliable here however it requires serial console access (soldering pins to the UART pinouts) build your own image... with 'ramdisk' selected under 'Target Images' rename initramfs-kernel.bin to 'uImageESR-600H' make the file available on a TFTP server at 192.168.99.8 interrupt boot by holding or pressing '4' in serial console as soon as board is powered on `tftpboot 0x81000000` `bootm 0x81000000` perform a sysupgrade **Format of OEM firmware image:** This Engenius board uses the Senao proprietary header with a unique Product ID. The header for factory.bin is generated by the mksenaofw program included in openwrt. .dlf file extension is also required for OEM software to accept it **Note on using OKLI:** the kernel is now too large for the bootloader to handle so OKLI is used via the `kernel-loader` image command recently in master several other ramips boards have the same problem 'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node' see commit ad19751edc21ae713bd95df6b93be64bd1e0c612 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ramips: unify elecom-*-factory for ELECOM WRC-GHBK2-S/GS/GST devicesINAGAKI Hiroshi2020-12-221-16/+5
| | | | | | | | | Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are nearly equal, Unify those definitions by using "-N" option of mkhash and splitting the appending text at the end of firmware image for WRC-GS/GST devices. Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for GL.iNet GL-MT1300Xinfa Deng2020-12-171-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The GL-MT1300 is a high-performance new generation pocket-sized router that offers a powerful hardware and first-class cybersecurity protocol with unique and modern design. Specifications: - SoC: MT7621A, Dual-Core @880MHz - RAM: 256 MB DDR3 - Flash: 32 MB - Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN - Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps) - USB: 1 x USB 3.0 port - Slot: 1 x MicroSD card slot - Button: 1 x Reset button - Switch: 1 x Mode switch - LED: 1 x Blue LED + 1 x White LED MAC addresses based on vendor firmware: WAN : factory 0x4000 LAN : Mac from factory 0x4000 + 1 2.4GHz : factory 0x4 5GHz : Mac form factory 0x4 + 1 Flashing instructions: 1.Connect to one of LAN ports. 2.Set the static IP on the PC to 192.168.1.2. 3.Press the Reset button and power the device (do not release the button). After waiting for the blue led to flash 5 times, the white led will come on and release the button. 4.Browse the 192.168.1.1 web page and update firmware according to web tips. 5.The blue led will flash when the firmware is being upgraded. 6.The blue led stops blinking to indicate that the firmware upgrade is complete and U-Boot automatically starts the firmware. For more information on GL-MT1300, see the OFFICIAL GL.iNet website: https://www.gl-inet.com/products/gl-mt1300/ Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com> [add input-type for switch, wrap long line in 10_fix_wifi_mac] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use full names for Xiaomi Mi Router devicesAdrian Schmutzler2020-12-082-16/+18
| | | | | | | | | | This aligns the device/image names of the older Xiaomi Mi Router devices with their "friendly" model and DEVICE_MODEL properties. This also reintroduces consistency with the newer devices already following that scheme. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ASUS RT-N56U B1Pavel Chervontsev2020-11-281-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SoC: MediaTek MT7621ST (880 MHz) FLASH: 16 MiB (Macronix MX25L12835FM2I-10G) RAM: 128 MiB (Nanya NT5CB64M16FP-DH) WiFi: MediaTek MT7603EN bgn 2x2:2 WiFi: MediaTek MT7612EN an 2x2:2 BTN: Reset, WPS LED: - Power - WiFi 2.4 GHz - WiFi 5 GHz - WAN - LAN {1-4} - USB {1-2} UART: UART is present as pin hole next to the aluminium capacitor. 3V3 - RX - GND - TX / 115200-8N1 3V3 is the nearest on the aluminium capacitor and nut hole (pin1). USB: 2 ports POWER: 12VDC, 1.5A (Barrel 5.5x2.1) Installation: Via TFTP: Set your computers IP-Address to 192.168.1.75 Power up the Router with the Reset button pressed. Release the Reset button after 5 seconds. Upload OpenWRT sysupgrade image via TFTP: tftp -4 -v -m binary 192.168.1.1 -c put IMAGE MAC addresses: 0x4 *:98 2g/wan, label 0x22 *:9c 0x28 *:98 0x8004 *:9c 5g/lan Though addresses are written to 0x22 and 0x28, it appears that the vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the same here. Signed-off-by: Pavel Chervontsev <cherpash@gmail.com> [add MAC address overview, add label-mac-device, fix IMAGE_SIZE] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: replace missing custom-initramfs-uimageSander Vanheule2020-11-261-1/+1
| | | | | | | | | | custom-initramfs-uimage was replaced by calls to uImage, but apparently mtc_wr1201 was missed in the transistion. Use uImage for this device too. Fixes: 9f574b1b875c "ramips: mt7621: drop custom uImage function" Signed-off-by: Sander Vanheule <sander@svanheule.net>
* ramips: add support for Xiaomi Mi Router 4CAtaberk Özen2020-11-251-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for Xiaomi's Mi Router 4C device. Specifications: - CPU: MediaTek MT7628AN (580MHz) - Flash: 16MB - RAM: 64MB DDR2 - 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA - Antennas: 4x external single band antennas - WAN: 1x 10/100M - LAN: 2x 10/100M - LEDs: 2x yellow/blue. Programmable (labelled as power on case) - Non-programmable (shows WAN activity) - Button: Reset How to install: 1- Use OpenWRTInvasion to gain telnet and ftp access. 2- Push openwrt firmware to /tmp/ using ftp. 3- Connect to router using telnet. (IP: 192.168.31.1 - Username: root - No password) 4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into the router.. 5- It takes around 2 minutes. After that router will restart itself to OpenWrt. Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com> [wrap commit message, bump PKG_RELEASE for uboot-envtools, remove dts-v1 from DTS, fix LED labels] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: drop custom uImage functionSander Vanheule2020-11-251-21/+10
| | | | | | | | Use the mkimage argument overrides provided by uImage to implement the customisations required for the initramfs, instead of the near-identical custom function. Signed-off-by: Sander Vanheule <sander@svanheule.net>
* ramips: add support for TP-Link MR6400 v5Filip Moc2020-11-251-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are: - smaller form factor - different LED GPIOs - different switch connections You can flash via tftp recovery: - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24 - connect to any ethernet port - power on the device while holding the reset button - wait at least 8 seconds before releasing reset button Flashing via OEM web interface does not work. LTE module does not support DHCP so it must be configured via QMI. Hardware Specification (v5.0 EU): - SoC: MT7628NN - Flash: Winbond W25Q64JVS (8MiB) - RAM: ESMT M14D5121632A (64MiB) - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna) - Ethernet: 1NIC (4x100M) - WWAN: TP-LINK LTE MODULE (2x external detachable antenna) - Power: DC 9V 0.85A Signed-off-by: Filip Moc <lede@moc6.cz>
* ramips: add support for TP-Link MR6400 v4Filip Moc2020-11-231-0/+16
| | | | | | | | | | | | | | | | | | | | | | | You can flash via tftp recovery: - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24 - connect to any ethernet port - power on the device while holding the reset button - wait at least 8 seconds before releasing reset button Flashing via OEM web interface does not work. LTE module does not support DHCP so it must be configured via QMI. Hardware Specification (v4.0 EU): - SoC: MT7628NN - Flash: Winbond W25Q64JVS (8MiB) - RAM: ESMT M14D5121632A (64MiB) - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna) - Ethernet: 1NIC (4x100M) - WWAN: TP-LINK LTE MODULE (2x external detachable antenna) - Power: DC 9V 0.85A Signed-off-by: Filip Moc <lede@moc6.cz>
* ramips: add support for the Hak5 WiFi Pineapple Mark 7Marc Egerton2020-11-181-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the WiFi Pineapple Mark 7, a wireless penetration testing tool. Specifications: * SoC: MediaTek MT7628 (580MHz) * RAM: 256MiB (DDR2) * Storage 1: 32MiB NOR (SPI) * Storage 2: 2GB eMMC * Wireless 1: 802.11b/g/n 2.4GHz (Built In) * Wireless 2: 802.11b/g/n 2.4GHz (MT7601) * Wireless 3: 802.11b/g/n 2.4GHz (MT7601) * USB: 1x USB Type-A 2.0 Host Port * Ethernet: 1x USB Type-C AX88772C Ethernet * UART: 57600 8N1 on PCB * Inputs: 1x Reset Button * Outputs: 1x RGB LED * FCCID: 2AA52MK7 Flash Instructions: Original firmware is based on OpenWRT. Use sysupgrade via SSH to flash. Signed-off-by: Marc Egerton <foxtrot@realloc.me> [pepe2k@gmail.com: set only required/used gpio groups to gpio function] Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ramips: add Xiaomi Mi Router 4A Gigabit explicitlyAdrian Schmutzler2020-11-121-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This device has previously been supported by the image for Xiaomi Mi Router 3G v2. Since this is not obvious, the 4A is marketed as a new major revision and it also seems to have a different bootloader, this will be both more tidy and more helpful for the users. Apart from that, note that there also is a 100M version of the device that uses mt7628 platform, so a specifically named image will also prevent confusion in this area. Specifications: - SoC: MediaTek MT7621 - Flash: 16 MiB NOR SPI - RAM: 128 MiB DDR3 - Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN) - WIFI0: MT7603E 2.4GHz 802.11b/g/n - WIFI1: MT7612E 5GHz 802.11ac - Antennas: 4x external (2 per radio), non-detachable - LEDs: Programmable "power" LED (two-coloured, yellow/blue) Non-programmable "internet" LED (shows WAN activity) - Buttons: Reset Installation: Bootloader won't accept any serial input unless "boot_wait" u-boot environment variable is changed to "on". Vendor firmware won't accept any serial input until "uart_en" is set to "1". Using the https://github.com/acecilia/OpenWRTInvasion exploit you can gain access to shell to enable these options: To enable uart keyboard actions - 'nvram set uart_en=1' To make uboot delay boot work - 'nvram set boot_wait=on' Set boot delay to 5 - 'nvram set bootdelay=5' Then run 'nvram commit' to make the changes permanent. Once in the shell (following the OpenWRTInvasion instructions) you can then run the following to flash OpenWrt and then reboot: 'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin --output firmware.bin; mtd -e OS1 -r write firmware.bin OS1' Suggested-by: David Bentham <db260179@gmail.com> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for D-Link DIR-2640 A1James McGuire2020-11-111-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for D-Link DIR-2640 A1. Specifications: * Board: AP-MTKH7-0002 * SoC: MediaTek MT7621AT * RAM: 256 MB (DDR3) * Flash: 128 MB (NAND) * WiFi: MediaTek MT7615N (x2) * Switch: 1 WAN, 4 LAN (Gigabit) * Ports: 1 USB 2.0, 1 USB 3.0 * Buttons: Reset, WPS * LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue), WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue) Notes: * WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips Installation: * D-Link Recovery GUI: power down the router, press and hold the reset button, then re-plug it. Keep the reset button pressed until the power LED starts flashing orange, manually assign a static IP address under the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1 * Some modern browsers may have problems flashing via the Recovery GUI, if that occurs consider uploading the firmware through cURL: curl -v -i -F "firmware=@file.bin" 192.168.0.1 MAC addresses: lan factory 0xe000 *:a7 (label) wan factory 0xe006 *:aa 2.4 factory 0xe000 +1 *:a8 5.0 factory 0xe000 +2 *:a9 Seems like vendor didn't replace the dummy entries in the calibration data. Signed-off-by: James McGuire <jamesm51@gmail.com> [fix device definition title] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* mt7621: mikrotik: use vmlinuz (zBoot ELF)John Thomson2020-10-291-2/+2
| | | | | | | | | | | | - minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz - ~5 seconds for kernel decompression, which was equivalent to the additional time to load the uncompressed ELF from SPI NOR. - Removes requirement for lzma-loader, which may have been causing some image builds to fail to boot on Mikrotik mt7621. Fixes: FS#3354 Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org> Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
* ramips: add support for Wavlink WL-WN530HG4Nuno Goncalves2020-10-271-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | Same hardware as Phicomm K2G but different flash layout. Specification: - SoC: MediaTek MT7620A - Flash: 8 MB - RAM: 64 MB - Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5) - Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped with external PA. - UART: 1 x UART on PCB - 57600 8N1 Flash instruction: To avoid requiring UART for TFTP a dual flash procedure is suggested to install the squashfs image: 1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin to WN530HG4-WAVLINK. 2. Flash this file with the factory web interface. 3. With OpenWRT now running use standard sysupgrade to install the squashfs image. Signed-off-by: Nuno Goncalves <nunojpg@gmail.com> [remove dts-v1, remove model from LED labels, wrap commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: use lzma-loader for U7621-06Jianhui Zhao2020-10-251-0/+2
| | | | | | | The U7621-06 fails to boot if the kernel is large. Enabling lzma-loader resolves the issue. Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
* ramips: add support for TOTOLINK X5000RChuanhong Guo2020-10-251-0/+10
| | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MT7621AT - RAM: 256MB - Flash: 16MB (EN25QH128A) - Ethernet: 5xGbE - WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps Known issue: MT7915 DBDC variant isn't supported yet. Flash instruction: Upload the sysupgrade firmware to the firmware upgrade page in vendor fw. Other info: MT7915 seems to have two PCIEs connected to MT7621. Card detected on PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: add support for TP-Link RE200 v4Richard Fröhning2020-10-201-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN like the v2/v3. Specifications -------------- - MediaTek MT7628AN (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 1T1R 5 GHz - 1x 10/100 Mbps Ethernet - 8x LED (GPIO-controlled), 2x button - UART connection holes on PCB (57600 8n1) There are 2.4G and 5G LEDs in red and green which are controlled separately. MAC addresses ------------- The MAC address assignment matches stock firmware, i.e.: LAN : *:8E 2.4G: *:8D 5G : *:8C MAC address assignment has been done according to the RE200 v2. The label MAC address matches the OpenWrt ethernet address. Installation ------------ Web Interface ------------- It is possible to upgrade to OpenWrt via the web interface. Simply flash the -factory.bin from OEM. In contrast to a stock firmware, this will not overwrite U-Boot. Recovery -------- Unfortunately, this devices does not offer a recovery mode or a tftp installation method. If the web interface upgrade fails, you have to open your device and attach serial console. Instructions for serial console and recovery may be checked out in commit 6d6f36ae787c ("ramips: add support for TP-Link RE200 v2") or on the device's Wiki page. Signed-off-by: Richard Fröhning <misanthropos@gmx.de> [removed empty line, fix commit message formatting] Signed-off-by: David Bauer <mail@david-bauer.net>
* ramips: add support for Linksys EA7300 v2J. Scott Heppler2020-09-231-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This submission relied heavily on the work of Santiago Rodriguez-Papa <contact at rodsan.dev> Specifications: * SoC: MediaTek MT7621A (880 MHz 2c/4t) * RAM: Winbond W632GG6MB-12 (256M DDR3-1600) * Flash: Winbond W29N01HVSINA (128M NAND) * Eth: MediaTek MT7621A (10/100/1000 Mbps x5) * Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz) 4 antennae: 1 internal and 3 non-deatachable * USB: 3.0 (x1) * LEDs: White (x1 logo) Green (x6 eth + wps) Orange (x5, hardware-bound) * Buttons: Reset (x1) WPS (x1) Installation: Flash factory image through GUI. This might fail due to the A/B nature of this device. When flashing, OEM firmware writes over the non-booted partition. If booted from 'A', flashing over 'B' won't work. To get around this, you should flash the OEM image over itself. This will then boot the router from 'B' and allow you to flash OpenWRT without problems. Reverting to factory firmware: Hard-reset the router three times to force it to boot from 'B.' This is where the stock firmware resides. To remove any traces of OpenWRT from your router simply flash the OEM image at this point. Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
* ramips: mt7621: pbr-m1: fix firmware sizeChuanhong Guo2020-09-131-1/+1
| | | | | | | This board is equipped with Winbond W25Q256FV 32M SPI-NOR. Fix partition size for that. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>