aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/image
Commit message (Collapse)AuthorAgeFilesLines
* ramips: remove trailing whitespace in MakefilesLeon M. George2021-01-072-2/+2
| | | | | | | | Remove trailing whitespaces in two *.mk files. Signed-off-by: Leon M. George <leon@georgemail.eu> [fix title, add message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Ubiquiti UniFi 6 LiteDavid Bauer2021-01-051-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- MediaTek MT7621AT 256M DDR3 32M SPI-NOR MediaTek MT7603 2T2R 802.11n 2.4GHz MediaTek MT7915 2T2R 802.11ax 5GHz Not Working ----------- - Bluetooth (connected to UART3) UART ---- UART is located in the lower left corner of the board. Pinout is 0 - 3V3 (don't connect) 1 - RX 2 - TX 3 - GND Console is 115200 8N1. Boot ---- 1. Connect to the serial console and connect power. 2. Double-press ESC when prompted 3. Set the fdt address $ fdt addr $(fdtcontroladdr) 4. Remove the signature node from the control FDT $ fdt rm /signature 5. Transfer and boot the OpenWrt initramfs image to the device. Make sure to name the file C0A80114.img and have it reachable at 192.168.1.1/24 $ tftpboot; bootm Installation ------------ 1. Connect to the booted device at 192.168.1.20 using username/password "ubnt". 2. Update the bootloader environment. $ fw_setenv devmode TRUE $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr); fdt rm /signature; bootubnt" $ fw_setenv bootcmd "run boot_openwrt" 3. Transfer the OpenWrt sysupgrade image to the device using SCP. 4. Check the mtd partition number for bs / kernel0 / kernel1 $ cat /proc/mtd 5. Set the bootselect flag to boot from kernel0 $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4 6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1 $ dd if=openwrt.bin of=/dev/mtdblock6 $ dd if=openwrt.bin of=/dev/mtdblock7 7. Reboot the device. It should boot into OpenWrt. Below are the original installation instructions prior to the discovery of "devmode=TRUE". They are not required for installation and are documentation only. The bootloader employs signature verification on the FIT image configurations. This way, booting unauthorized image without patching the bootloader is not possible. Manually configuring the bootcmd in the U-Boot envronment won't work, as this is restored to the default value if modified. The bootloader is made up of three different parts. 1. The SPL performing early board initialization and providing a XModem recovery in case the PBL is missing 2. The PBL being the primary U-Boot application and containing the control FDT. It is LZMA packed with a uImage header. 3. A Ubiquiti standalone U-Boot application providing the main boot routine as well as their recovery mechanism. In a perfect world, we would only replace the PBL, as the SPL does not perform checks on the PBLs integrity. However, as the PBL is in the same eraseblock as the SPL, we need to at least rewrite both. The bootloader will only verify integrity in case it has a "signature" node in it's control device-tree. Renaming the signature node to something else will prevent this from happening. Warning: These instructions are based on the firmware intially shipped with the device and potentially brick your device in a way it can only be recovered using a SPI flasher. Only (!) proceed if you understand this! 1. Extract the bootloader from the U-Boot partition using the OpenWrt initramfs image. 2. Split the bootloader into it's 3 components: $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056 $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360 $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416 3. Strip the uImage header from the PBL $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1 4. Decompress the PBL $ lzma -d pbl.lzma --single-stream The decompressed PBL sha256sum should be d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235 5. Open the decompressed PBL using your favorite hexeditor. Locate the control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the label for the signature node is located. Rename the "signature" string at this offset to "signaturr". The patched PBL sha256sum should be d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97 6. Compress the patched PBL $ lzma -z pbl --lzma1=dict=67108864 The resulting pbl.lzma file should have the sha256sum 7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42 7. Create the PBL uimage $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000 -T firmware -d pbl.lzma patched_pbl.uimage The resulting patched_pbl.uimage should have the sha256sum b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce 8. Reassemble the complete bootloader $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1 conv=sync $ cat spl.bin > patched_uboot.bin $ cat aligned_pbl.uimage >> patched_uboot.bin $ cat ubnt.uimage >> patched_uboot.bin The resulting patched_uboot.bin should have the sha256sum 3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b 9. Transfer your patched bootloader to the device. Also install the kmod-mtd-rw package using opkg and load it. $ insmod mtd-rw.ko i_want_a_brick=1 Write the patched bootloader to mtd0 $ mtd write patched_uboot.bin u-boot 10. Erase the kernel1 partition, as the bootloader might otherwise decide to boot from there. $ mtd erase kernel1 11. Transfer the OpenWrt sysupgrade image to the device and install using sysupgrade. FIT configurations ------------------ In the future, the MT7621 UniFi6 family can be supported by a single OpenWrt image. config@1: U6 Lite config@2: U6 IW config@3: U6 Mesh config@4: U6 Extender config@5: U6 LR-EA (Early Access - GA is MT7622) Signed-off-by: David Bauer <mail@david-bauer.net>
* ramips: add support for ELECOM WRC-1167GST2INAGAKI Hiroshi2020-12-221-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 256 MiB - Flash : SPI-NOR 32 MiB - WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LED/keys : 6x/6x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, GND, TX, RX from ethernet port side - 57600n8 - Power : 12VDC, 1A MAC addresses: LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex)) WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex)) 2.4 GHz : 04:AB:18:**:**:09 (none) 5 GHz : 04:AB:18:**:**:0A (none) Flash instruction using factory image: 1. Boot WRC-1167GST2 normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~150 seconds to complete flashing Notes: - there is no way to configure the correct MAC address for secondary phy (5GHz) on MT7615D - Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying ieee80211-freq-limit (fail to register secondary phy due to error) - mtd-mac-address in the wifi node is required for using mtd-mac-address-increment Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> [rebase onto split DTSI] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ELECOM WRC-1167GS2-BINAGAKI Hiroshi2020-12-221-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on MT7621A. Specification: - SoC : MediaTek MT7621A - RAM : DDR3 128 MiB - Flash : SPI-NOR 16 MiB - WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D) - Ethernet : 10/100/1000 Mbps x5 - Switch : MediaTek MT7530 (SoC) - LED/keys : 6x/6x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - J4: 3.3V, GND, TX, RX from ethernet port side - 57600n8 - Power : 12VDC, 1A MAC addresses: LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex)) WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex)) 2.4 GHz : 04:AB:18:**:**:15 (none) 5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex)) Flash instruction using factory image: 1. Boot WRC-1167GS2-B normally 2. Access to "http://192.168.2.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click apply ("適用") button 4. Wait ~120 seconds to complete flashing Notes: - there is no way to configure the correct MAC address for secondary phy (5GHz) on MT7615D - Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying ieee80211-freq-limit (fail to register secondary phy due to error) - mtd-mac-address in the wifi node is required for using mtd-mac-address-increment Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> [rebase onto split DTSI patch] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for D-Link DIR-882 R1Andrew Pikler2020-12-221-0/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MediaTek MT7621AT - RAM: 128 MB (DDR3) - Flash: 16 MB (SPI NOR) - WiFi: MediaTek MT7615N (x2) - Switch: 1 WAN, 4 LAN (Gigabit) - Ports: 1 USB 2.0, 1 USB 3.0 - Buttons: Reset, WiFi Toggle, WPS - LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0 The R1 revision is identical to the A1 revision except - No Config2 Parition, therefore - factory partition resized to 64k from 128K - Firmware partition offset is 0x50000 not 0x60000 - Firmware partitions size increased by 64K - Firmware partition type is "denx,uimage", not "sge,uimage" - Padding of image creation "uimage-padhdr 96" removed Installation: - Older firmware versions: put the factory image on a USB stick, turn on the telnet console, and flash using the following cmd "fw_updater Linux /mnt/usb_X_X/firmware.bin" - D-Link FailsafeUI: Power down the router, press and hold the reset button, then re-plug it. Keep the reset button pressed until the internet LED stops flashing, then jack into any lan port and manually assign a static IP address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2) and go to http://192.168.0.1 Flash with the factory image. Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
* firmware: add tool for signing d-link ru router factory firmware imagesAndrew Pikler2020-12-221-0/+5
| | | | | | | | Some Russian d-link routers require that their firmware be signed with a salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool signs factory images the OEM's firmware accepts them. Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
* ramips: add support for Senao Engenius ESR600HMichael Pratt2020-12-221-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ESR750H Engenius ESR600H is an indoor wireless router with a gigabit switch, 2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port. **Specification:** - RT3662F MIPS SOC, 5 GHz WMAC (2x2) - RT5392L PCI on-board, 2.4 GHz (2x2) - AR8327 RGMII, 7-port GbE, 25 MHz clock - 40 MHz reference clock - 8 MB FLASH 25L6406EM2I-12G - 64 MB RAM - UART at J12 (unpopulated) - 2 internal antennas (5 GHz) - 2 external antennas (2.4 GHz) - 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN) - USB 2 port (GPIO controlled power) **MAC addresses:** MAC Addresses are labeled as WAN and WLAN U-boot environment has the the vendor MAC address for ethernet MAC addresses in "factory" are part of wifi calibration data eth0.2 WAN *:13:e7 u-boot-env wanaddr eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1 phy0 WLAN *:14:b8 factory 0x8004 phy1 ---- *:14:bc factory 0x4 **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Network Setting --> Tools --> Firmware Click Browse and select the factory.dlf image Click Continue to confirm and wait 6 minutes or more... Method 2: Serial console to load TFTP image: (see TFTP recovery) **Return to OEM:** Unlike most Engenius boards, this does not have a 'failsafe' image the only way to return to OEM is serial access to uboot Unlike most Engenius boards, public images are not available... so the only way to return to OEM is to have a copy of the MTD partition "firmware" BEFORE flashing openwrt. **TFTP recovery:** Unlike most Engenius boards, TFTP is reliable here however it requires serial console access (soldering pins to the UART pinouts) build your own image... with 'ramdisk' selected under 'Target Images' rename initramfs-kernel.bin to 'uImageESR-600H' make the file available on a TFTP server at 192.168.99.8 interrupt boot by holding or pressing '4' in serial console as soon as board is powered on `tftpboot 0x81000000` `bootm 0x81000000` perform a sysupgrade **Format of OEM firmware image:** This Engenius board uses the Senao proprietary header with a unique Product ID. The header for factory.bin is generated by the mksenaofw program included in openwrt. .dlf file extension is also required for OEM software to accept it **Note on using OKLI:** the kernel is now too large for the bootloader to handle so OKLI is used via the `kernel-loader` image command recently in master several other ramips boards have the same problem 'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node' see commit ad19751edc21ae713bd95df6b93be64bd1e0c612 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ramips: unify elecom-*-factory for ELECOM WRC-GHBK2-S/GS/GST devicesINAGAKI Hiroshi2020-12-221-16/+5
| | | | | | | | | Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are nearly equal, Unify those definitions by using "-N" option of mkhash and splitting the appending text at the end of firmware image for WRC-GS/GST devices. Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for GL.iNet GL-MT1300Xinfa Deng2020-12-171-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The GL-MT1300 is a high-performance new generation pocket-sized router that offers a powerful hardware and first-class cybersecurity protocol with unique and modern design. Specifications: - SoC: MT7621A, Dual-Core @880MHz - RAM: 256 MB DDR3 - Flash: 32 MB - Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN - Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps) - USB: 1 x USB 3.0 port - Slot: 1 x MicroSD card slot - Button: 1 x Reset button - Switch: 1 x Mode switch - LED: 1 x Blue LED + 1 x White LED MAC addresses based on vendor firmware: WAN : factory 0x4000 LAN : Mac from factory 0x4000 + 1 2.4GHz : factory 0x4 5GHz : Mac form factory 0x4 + 1 Flashing instructions: 1.Connect to one of LAN ports. 2.Set the static IP on the PC to 192.168.1.2. 3.Press the Reset button and power the device (do not release the button). After waiting for the blue led to flash 5 times, the white led will come on and release the button. 4.Browse the 192.168.1.1 web page and update firmware according to web tips. 5.The blue led will flash when the firmware is being upgraded. 6.The blue led stops blinking to indicate that the firmware upgrade is complete and U-Boot automatically starts the firmware. For more information on GL-MT1300, see the OFFICIAL GL.iNet website: https://www.gl-inet.com/products/gl-mt1300/ Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com> [add input-type for switch, wrap long line in 10_fix_wifi_mac] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use full names for Xiaomi Mi Router devicesAdrian Schmutzler2020-12-082-16/+18
| | | | | | | | | | This aligns the device/image names of the older Xiaomi Mi Router devices with their "friendly" model and DEVICE_MODEL properties. This also reintroduces consistency with the newer devices already following that scheme. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for ASUS RT-N56U B1Pavel Chervontsev2020-11-281-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SoC: MediaTek MT7621ST (880 MHz) FLASH: 16 MiB (Macronix MX25L12835FM2I-10G) RAM: 128 MiB (Nanya NT5CB64M16FP-DH) WiFi: MediaTek MT7603EN bgn 2x2:2 WiFi: MediaTek MT7612EN an 2x2:2 BTN: Reset, WPS LED: - Power - WiFi 2.4 GHz - WiFi 5 GHz - WAN - LAN {1-4} - USB {1-2} UART: UART is present as pin hole next to the aluminium capacitor. 3V3 - RX - GND - TX / 115200-8N1 3V3 is the nearest on the aluminium capacitor and nut hole (pin1). USB: 2 ports POWER: 12VDC, 1.5A (Barrel 5.5x2.1) Installation: Via TFTP: Set your computers IP-Address to 192.168.1.75 Power up the Router with the Reset button pressed. Release the Reset button after 5 seconds. Upload OpenWRT sysupgrade image via TFTP: tftp -4 -v -m binary 192.168.1.1 -c put IMAGE MAC addresses: 0x4 *:98 2g/wan, label 0x22 *:9c 0x28 *:98 0x8004 *:9c 5g/lan Though addresses are written to 0x22 and 0x28, it appears that the vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the same here. Signed-off-by: Pavel Chervontsev <cherpash@gmail.com> [add MAC address overview, add label-mac-device, fix IMAGE_SIZE] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: replace missing custom-initramfs-uimageSander Vanheule2020-11-261-1/+1
| | | | | | | | | | custom-initramfs-uimage was replaced by calls to uImage, but apparently mtc_wr1201 was missed in the transistion. Use uImage for this device too. Fixes: 9f574b1b875c "ramips: mt7621: drop custom uImage function" Signed-off-by: Sander Vanheule <sander@svanheule.net>
* ramips: add support for Xiaomi Mi Router 4CAtaberk Özen2020-11-251-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for Xiaomi's Mi Router 4C device. Specifications: - CPU: MediaTek MT7628AN (580MHz) - Flash: 16MB - RAM: 64MB DDR2 - 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA - Antennas: 4x external single band antennas - WAN: 1x 10/100M - LAN: 2x 10/100M - LEDs: 2x yellow/blue. Programmable (labelled as power on case) - Non-programmable (shows WAN activity) - Button: Reset How to install: 1- Use OpenWRTInvasion to gain telnet and ftp access. 2- Push openwrt firmware to /tmp/ using ftp. 3- Connect to router using telnet. (IP: 192.168.31.1 - Username: root - No password) 4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into the router.. 5- It takes around 2 minutes. After that router will restart itself to OpenWrt. Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com> [wrap commit message, bump PKG_RELEASE for uboot-envtools, remove dts-v1 from DTS, fix LED labels] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: drop custom uImage functionSander Vanheule2020-11-251-21/+10
| | | | | | | | Use the mkimage argument overrides provided by uImage to implement the customisations required for the initramfs, instead of the near-identical custom function. Signed-off-by: Sander Vanheule <sander@svanheule.net>
* ramips: add support for TP-Link MR6400 v5Filip Moc2020-11-251-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are: - smaller form factor - different LED GPIOs - different switch connections You can flash via tftp recovery: - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24 - connect to any ethernet port - power on the device while holding the reset button - wait at least 8 seconds before releasing reset button Flashing via OEM web interface does not work. LTE module does not support DHCP so it must be configured via QMI. Hardware Specification (v5.0 EU): - SoC: MT7628NN - Flash: Winbond W25Q64JVS (8MiB) - RAM: ESMT M14D5121632A (64MiB) - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna) - Ethernet: 1NIC (4x100M) - WWAN: TP-LINK LTE MODULE (2x external detachable antenna) - Power: DC 9V 0.85A Signed-off-by: Filip Moc <lede@moc6.cz>
* ramips: add support for TP-Link MR6400 v4Filip Moc2020-11-231-0/+16
| | | | | | | | | | | | | | | | | | | | | | | You can flash via tftp recovery: - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24 - connect to any ethernet port - power on the device while holding the reset button - wait at least 8 seconds before releasing reset button Flashing via OEM web interface does not work. LTE module does not support DHCP so it must be configured via QMI. Hardware Specification (v4.0 EU): - SoC: MT7628NN - Flash: Winbond W25Q64JVS (8MiB) - RAM: ESMT M14D5121632A (64MiB) - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna) - Ethernet: 1NIC (4x100M) - WWAN: TP-LINK LTE MODULE (2x external detachable antenna) - Power: DC 9V 0.85A Signed-off-by: Filip Moc <lede@moc6.cz>
* ramips: add support for the Hak5 WiFi Pineapple Mark 7Marc Egerton2020-11-181-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the WiFi Pineapple Mark 7, a wireless penetration testing tool. Specifications: * SoC: MediaTek MT7628 (580MHz) * RAM: 256MiB (DDR2) * Storage 1: 32MiB NOR (SPI) * Storage 2: 2GB eMMC * Wireless 1: 802.11b/g/n 2.4GHz (Built In) * Wireless 2: 802.11b/g/n 2.4GHz (MT7601) * Wireless 3: 802.11b/g/n 2.4GHz (MT7601) * USB: 1x USB Type-A 2.0 Host Port * Ethernet: 1x USB Type-C AX88772C Ethernet * UART: 57600 8N1 on PCB * Inputs: 1x Reset Button * Outputs: 1x RGB LED * FCCID: 2AA52MK7 Flash Instructions: Original firmware is based on OpenWRT. Use sysupgrade via SSH to flash. Signed-off-by: Marc Egerton <foxtrot@realloc.me> [pepe2k@gmail.com: set only required/used gpio groups to gpio function] Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ramips: add Xiaomi Mi Router 4A Gigabit explicitlyAdrian Schmutzler2020-11-121-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This device has previously been supported by the image for Xiaomi Mi Router 3G v2. Since this is not obvious, the 4A is marketed as a new major revision and it also seems to have a different bootloader, this will be both more tidy and more helpful for the users. Apart from that, note that there also is a 100M version of the device that uses mt7628 platform, so a specifically named image will also prevent confusion in this area. Specifications: - SoC: MediaTek MT7621 - Flash: 16 MiB NOR SPI - RAM: 128 MiB DDR3 - Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN) - WIFI0: MT7603E 2.4GHz 802.11b/g/n - WIFI1: MT7612E 5GHz 802.11ac - Antennas: 4x external (2 per radio), non-detachable - LEDs: Programmable "power" LED (two-coloured, yellow/blue) Non-programmable "internet" LED (shows WAN activity) - Buttons: Reset Installation: Bootloader won't accept any serial input unless "boot_wait" u-boot environment variable is changed to "on". Vendor firmware won't accept any serial input until "uart_en" is set to "1". Using the https://github.com/acecilia/OpenWRTInvasion exploit you can gain access to shell to enable these options: To enable uart keyboard actions - 'nvram set uart_en=1' To make uboot delay boot work - 'nvram set boot_wait=on' Set boot delay to 5 - 'nvram set bootdelay=5' Then run 'nvram commit' to make the changes permanent. Once in the shell (following the OpenWRTInvasion instructions) you can then run the following to flash OpenWrt and then reboot: 'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin --output firmware.bin; mtd -e OS1 -r write firmware.bin OS1' Suggested-by: David Bentham <db260179@gmail.com> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for D-Link DIR-2640 A1James McGuire2020-11-111-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for D-Link DIR-2640 A1. Specifications: * Board: AP-MTKH7-0002 * SoC: MediaTek MT7621AT * RAM: 256 MB (DDR3) * Flash: 128 MB (NAND) * WiFi: MediaTek MT7615N (x2) * Switch: 1 WAN, 4 LAN (Gigabit) * Ports: 1 USB 2.0, 1 USB 3.0 * Buttons: Reset, WPS * LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue), WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue) Notes: * WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips Installation: * D-Link Recovery GUI: power down the router, press and hold the reset button, then re-plug it. Keep the reset button pressed until the power LED starts flashing orange, manually assign a static IP address under the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1 * Some modern browsers may have problems flashing via the Recovery GUI, if that occurs consider uploading the firmware through cURL: curl -v -i -F "firmware=@file.bin" 192.168.0.1 MAC addresses: lan factory 0xe000 *:a7 (label) wan factory 0xe006 *:aa 2.4 factory 0xe000 +1 *:a8 5.0 factory 0xe000 +2 *:a9 Seems like vendor didn't replace the dummy entries in the calibration data. Signed-off-by: James McGuire <jamesm51@gmail.com> [fix device definition title] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* mt7621: mikrotik: use vmlinuz (zBoot ELF)John Thomson2020-10-291-2/+2
| | | | | | | | | | | | - minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz - ~5 seconds for kernel decompression, which was equivalent to the additional time to load the uncompressed ELF from SPI NOR. - Removes requirement for lzma-loader, which may have been causing some image builds to fail to boot on Mikrotik mt7621. Fixes: FS#3354 Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org> Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
* ramips: add support for Wavlink WL-WN530HG4Nuno Goncalves2020-10-271-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | Same hardware as Phicomm K2G but different flash layout. Specification: - SoC: MediaTek MT7620A - Flash: 8 MB - RAM: 64 MB - Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5) - Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped with external PA. - UART: 1 x UART on PCB - 57600 8N1 Flash instruction: To avoid requiring UART for TFTP a dual flash procedure is suggested to install the squashfs image: 1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin to WN530HG4-WAVLINK. 2. Flash this file with the factory web interface. 3. With OpenWRT now running use standard sysupgrade to install the squashfs image. Signed-off-by: Nuno Goncalves <nunojpg@gmail.com> [remove dts-v1, remove model from LED labels, wrap commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: use lzma-loader for U7621-06Jianhui Zhao2020-10-251-0/+2
| | | | | | | The U7621-06 fails to boot if the kernel is large. Enabling lzma-loader resolves the issue. Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
* ramips: add support for TOTOLINK X5000RChuanhong Guo2020-10-251-0/+10
| | | | | | | | | | | | | | | | | | | | | | Specifications: - SoC: MT7621AT - RAM: 256MB - Flash: 16MB (EN25QH128A) - Ethernet: 5xGbE - WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps Known issue: MT7915 DBDC variant isn't supported yet. Flash instruction: Upload the sysupgrade firmware to the firmware upgrade page in vendor fw. Other info: MT7915 seems to have two PCIEs connected to MT7621. Card detected on PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: add support for TP-Link RE200 v4Richard Fröhning2020-10-201-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN like the v2/v3. Specifications -------------- - MediaTek MT7628AN (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 1T1R 5 GHz - 1x 10/100 Mbps Ethernet - 8x LED (GPIO-controlled), 2x button - UART connection holes on PCB (57600 8n1) There are 2.4G and 5G LEDs in red and green which are controlled separately. MAC addresses ------------- The MAC address assignment matches stock firmware, i.e.: LAN : *:8E 2.4G: *:8D 5G : *:8C MAC address assignment has been done according to the RE200 v2. The label MAC address matches the OpenWrt ethernet address. Installation ------------ Web Interface ------------- It is possible to upgrade to OpenWrt via the web interface. Simply flash the -factory.bin from OEM. In contrast to a stock firmware, this will not overwrite U-Boot. Recovery -------- Unfortunately, this devices does not offer a recovery mode or a tftp installation method. If the web interface upgrade fails, you have to open your device and attach serial console. Instructions for serial console and recovery may be checked out in commit 6d6f36ae787c ("ramips: add support for TP-Link RE200 v2") or on the device's Wiki page. Signed-off-by: Richard Fröhning <misanthropos@gmx.de> [removed empty line, fix commit message formatting] Signed-off-by: David Bauer <mail@david-bauer.net>
* ramips: add support for Linksys EA7300 v2J. Scott Heppler2020-09-231-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This submission relied heavily on the work of Santiago Rodriguez-Papa <contact at rodsan.dev> Specifications: * SoC: MediaTek MT7621A (880 MHz 2c/4t) * RAM: Winbond W632GG6MB-12 (256M DDR3-1600) * Flash: Winbond W29N01HVSINA (128M NAND) * Eth: MediaTek MT7621A (10/100/1000 Mbps x5) * Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz) 4 antennae: 1 internal and 3 non-deatachable * USB: 3.0 (x1) * LEDs: White (x1 logo) Green (x6 eth + wps) Orange (x5, hardware-bound) * Buttons: Reset (x1) WPS (x1) Installation: Flash factory image through GUI. This might fail due to the A/B nature of this device. When flashing, OEM firmware writes over the non-booted partition. If booted from 'A', flashing over 'B' won't work. To get around this, you should flash the OEM image over itself. This will then boot the router from 'B' and allow you to flash OpenWRT without problems. Reverting to factory firmware: Hard-reset the router three times to force it to boot from 'B.' This is where the stock firmware resides. To remove any traces of OpenWRT from your router simply flash the OEM image at this point. Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
* ramips: mt7621: pbr-m1: fix firmware sizeChuanhong Guo2020-09-131-1/+1
| | | | | | | This board is equipped with Winbond W25Q256FV 32M SPI-NOR. Fix partition size for that. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: fix partitions and boot for RAVPower RP-WD03Adrian Schmutzler2020-09-111-7/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The RAVPower RP-WD03 is a battery powered router, with an Ethernet and USB port. Due due a limitation in the vendor supplied U-Boot bootloader, we cannot exceed a 1.5 MB kernel size, as is the case with recent builds (i.e. post v19.07). This breaks both factory and sysupgrade images. To address this, use the lzma loader (loader-okli) to work around this limitation. The improvements here also address the "misplaced" U-Boot environment partition, which is located between the kernel and rootfs in the stock image / implementation. This is addressed by making use of mtd-concat, maximizing space available in the booted image. This will make sysupgrade from earlier versions impossible. Changes are based on the recently supported HooToo HT-TM05, as the hardware is almost identical (except for RAM size) and is from the same vendor (SunValley). While at it, also change the SPI frequency accordingly. Installation: - Download the needed OpenWrt install files, place them in the root of a clean TFTP server running on your computer. Rename the files as, - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs - Plug the router into your computer via Ethernet - Set your computer to use 10.10.10.254 as its IP address - With your router shut down, hold down the power button until the first white LED lights up. - Push and hold the reset button and release the power button. Continue holding the reset button for 30 seconds or until it begins searching for files on your TFTP server, whichever comes first. - The router (10.10.10.128) will look for your computer at 10.10.10.254 and install the two files. Once it has finished installation, it will automatically reboot and start up OpenWrt. - Set your computer to use DHCP for its IP address Notes: - U-Boot environment can be modified, u-boot-env is preserved on initial install or sysupgrade - mtd-concat functionality is included, to leave a "hole" for u-boot-env, combining the OEM kernel and rootfs partitions Most of the changes in this commit are the work of Russell Morris (as credited below), I only wrapped them up and added compat-version. Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader to work! Fixes: 5ef79af4f80f ("ramips: add support for Ravpower WD03") Suggested-by: Russell Morris <rmorris@rkmorris.us> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use proper name for RAVPower RP-WD03Adrian Schmutzler2020-09-111-4/+5
| | | | | | | | The proper model name is RP-WD03 (i.e. with the RP- prefix). Adjust all names to that. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: move ravpower-wd009-factory recipe to mt76x8.mkAdrian Schmutzler2020-09-112-6/+8
| | | | | | | The recipe is only used for a single device, so put it in the subtarget file. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: disable default build for Ravpower RP-WD03Adrian Schmutzler2020-09-091-0/+1
| | | | | | | | | | This device has a 1.5M kernel size limit during boot and is unbootable since February 2019 [1]. [1] https://forum.openwrt.org/t/ravpower-wd03-does-not-start-with-openwrt-master/49792 Reported-by: Szabolcs Hubai <szab.hu@gmail.com> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* Revert "treewide: add sysupgrade comment for early DSA-adopters"Adrian Schmutzler2020-09-081-2/+1
| | | | | | | | | | This reverts commit e81e625ca375d6dc3c885ec870ec15757ac76d72. This was meant just for early DSA-adopters. Those should have updated by now, remove it so future updaters get the intended experience. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for D-Link DIR-2660 A1Josh Bendavid2020-09-061-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for D-Link DIR-2660 A1. Specifications: * Board: AP-MTKH7-0002 * SoC: MediaTek MT7621AT * RAM: 256 MB (DDR3) * Flash: 128 MB (NAND) * WiFi: MediaTek MT7615N (x2) * Switch: 1 WAN, 4 LAN (Gigabit) * Ports: 1 USB 2.0, 1 USB 3.0 * Buttons: Reset, WPS * LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white), WiFi 5G (white), USB 3.0 (white), USB 2.0 (white) Notes: * WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips Installation: * D-Link Recovery GUI: power down the router, press and hold the reset button, then re-plug it. Keep the reset button pressed until the power LED starts flashing orange, manually assign a static IP address under the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1 * Some modern browsers may have problems flashing via the Recovery GUI, if that occurs consider uploading the firmware through cURL: curl -v -i -F "firmware=@file.bin" 192.168.0.1 MAC addresses: lan factory 0xe000 *:a7 (label) wan factory 0xe006 *:aa 2.4 factory 0xe000 +1 *:a8 5.0 factory 0xe000 +2 *:a9 Seems like vendor didn't replace the dummy entries in the calibration data. Signed-off-by: Josh Bendavid <joshbendavid@gmail.com> [rebase onto already merged DIR-1960 A1, add MAC addresses to commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for HooToo HT-TM05Russell Morris2020-09-032-0/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port. Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli). Specifications: SOC: MediaTek MT7620N BATTERY: 10400mAh WLAN: 802.11bgn LAN: 1x 10/100 Mbps Ethernet USB: 1x USB 2.0 (Type-A) RAM: 64 MB FLASH: GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz Flash itself specified to 80 MHz, but speed limited by mt7620 SPI fast-read enabled (m25p) LED: Status LED (blue after boot, green with WiFi traffic 4 leds to indicate power level of the battery (unable to control) INPUT: Power, reset button MAC assignment based on vendor firmware: 2.4 GHz *:b4 (factory 0x04) LAN/label *:b4 (factory 0x28) WAN *:b5 (factory 0x2e) Tested and working: - Ethernet - 2.4 GHz WiFi (Correct MAC-address) - Installation from TFTP (recovery) - OpenWRT sysupgrade (Preserving and non-preserving), through the usual ways: command line and LuCI - LEDs (except as noted above) - Button (reset) - I2C, which is needed for reading battery charge status and level - U-Boot environment / variables (from U-Boot, and OpenWrt) Installation: - Download the needed OpenWrt install files, place them in the root of a clean TFTP server running on your computer. Rename the files as, - ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel - ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs - Plug the router into your computer via Ethernet - Set your computer to use 10.10.10.254 as its IP address - With your router shut down, hold down the power button until the first white LED lights up. - Push and hold the reset button and release the power button. Continue holding the reset button for 30 seconds or until it begins searching for files on your TFTP server, whichever comes first. - The router (10.10.10.128) will look for your computer at 10.10.10.254 and install the two files. Once it has finished installation, it will automatically reboot and start up OpenWrt. - Set your computer to use DHCP for its IP address Notes: - U-Boot environment can be modified, u-boot-env is preserved on initial install or sysupgrade - mtd-concat functionality is included, to leave a "hole" for u-boot-env, combining the OEM kernel and rootfs partitions I would like to thank @mpratt14 and @xabolcs for their help getting the lzma loader to work! Signed-off-by: Russell Morris <rmorris@rkmorris.us> [drop changes in image/Makefile, fix indent and PKG_RELEASE in uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift, add COMPILE to Device/Default] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: image: add recipe for OKLI loaderChuanhong Guo2020-09-031-1/+17
| | | | Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: lzma-loader: make FLASH_START configurableChuanhong Guo2020-09-033-4/+8
| | | | | | | | | | | FLASH_START is supposed to point at the memory area where NOR flash are mapped. We currently have an incorrect FLASH_START copied from ar71xx back then and the loader doesn't work under OKLI mode. On ramips, mt7621 has it's flash mapped to 0x1fc00000 and other SoCs uses 0x1c000000. This commit makes FLASH_START a configurable value to handle both cases. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: rt3883: use lzma-loader for DIR-645Perry Melange2020-08-281-0/+1
| | | | | | | | | The DIR-645 fails to boot if the kernel is large. Enabling lzma-loader resolves the issue. Run-tested on D-Link DIR-645. Signed-off-by: Perry Melange <isprotejesvalkata@gmail.com>
* ramips: add support for Wavlink WL-WN531A6Georgi Vlaev2020-08-281-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for Wavlink WL-WN531A6 (Quantum D6). Specifications: -------------- * SoC: Mediatek MT7621AT 2C2T, 880MHz * RAM: 128MB DDR3, Nanya NT5CB64M16GP-EK * Flash: 16MB SPI NOR flash, GigaDevice GD25Q127CSIG * WiFi 5GHz: Mediatek MT7615N (4x4:4) on mini PCIE slot. * WiFi 2.4GHz: Mediatek MT7603EN (2x2:2) on mini PCIE slot. * Ethernet: MT7630, 5x 1000Base-T * LED: Power, WAN, LAN(x4), WiFi, WPS, dual color "WAVLINK" LED logo on the top cover. * Buttons: Reset, WPS, "Turbo", touch button on the top cover via RH6015C touch sensor. * UART: UART1: serial console (57600 8n1) on the J4 header located below the top heatsink. UART2: J12 header, located on the right side of the board. * USB: One USB3 port. * I2C: J9 header, located below the top heatsink. Backup the OEM Firmware: ----------------------- There isn't any firmware released for the WL-WN531A6 on the Wavlink web site. Reverting back to the OEM firmware is not possible unless we have a backup of the original OEM firmware. The OEM firmware is stored on /dev/mtd4 ("Kernel"). 1) Plug a FAT32 formatted USB flash drive into the USB port. 2) Navigate to "Setup->USB Storage". Under the "Available Network folder" you can see part of the mount point of the newly mounted flash drive filesystem - e.g "sda1". The full mount point is prefixed with "/media", so in this case the mount point becomes "/media/sda1". 3) Go to http://192.168.10.1/webcmd.shtml . 4) Type the following line in the "Command" input box: dd if=/dev/mtd4ro of=/media/sda1/firmware.bin 5) Click "Apply" 6) After few seconds, in the text area should appear this output: 30080+0 records in 30080+0 records out 7) Type "sync" in the "Command" input box and click "Apply". 8) At this point the OEM firmware is stored on the flash drive as "firmware.bin". The size of the file is 15040 KB. Installation: ------------ * Flashing instructions (OEM web interface): The OEM web interface accepts only files with names containing "WN531A6". It's also impossible to flash the *-sysupgrade.bin image, so we have to flash the *-initramfs-kernel.bin first and use the OpenWrt's upgrade interface to write the sysupgrade image. 1) Rename openwrt-ramips-mt7621-wavlink_wl-wn531a6-initramfs-kernel.bin to WN531A6.bin. 2) Connect your computer to the one of the LAN ports of the router with an Ethernet cable and open http://192.168.10.1 3) Browse to Setup -> Firmware Upgrade interface. 4) Upload the (renamed) OpenWrt image - WN531A6.bin. 5) Proceed with the firmware installation and give the device a few minutes to finish and reboot. 6) After reboot wait for the "WAVLINK" logo on the top cover to turn solid blue, and open http://192.168.1.1 7) Use the OpenWrt's "Flash Firmware" interface to write the OpenWrt sysupgrade image: openwrt-ramips-mt7621-wavlink_wl-wn531a6-squashfs-sysupgrade.bin * Flashing instructions (u-boot TFTP): 1) Configure a TFTP server on your computer and set its IP to 192.168.10.100 2) Rename the OpenWrt sysupgrade image to firmware.bin and place it in the root folder of the TFTP server. 3) Power off the device and connect an Ethernet cable from one of its LAN ports your computer. 4) Press the "Reset" button (and keep it pressed) 5) Power on the device. 6) After a few seconds, when the connected port LAN LED stops blinking fast, release the "Reset" button. 7) Flashing OpenWrt takes less than a minute, system will reboot automatically. 8) After reboot the WAVLINK logo on the top cover will indicate the current OpenWrt running status (wait until the logo tunrs solid blue). Revert to the OEM Firmware: -------------------------- * U-boot TFTP: Follow "Flashing instructions (u-boot TFTP)" and use the "firmware.bin" backup image. * OpenWrt "Flash Firmware" interface: Upload the "firmware.bin" backup image and select "Force update" before continuing. Notes: ----- * The MAC address shown on the label at the back of the device is assigned to the 2.4G WiFi adapter. MAC addresses assigned by the OEM firmware: 2.4G: *:XX (label): factory@0x0004 5G: *:XX + 1 : factory@0x8004 WAN: *:XX - 1 : factory@0xe006 LAN: *:XX - 2 : factory@0xe000 * The I2C bus and UART2 are fully functional. The headers are not populated. Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
* ramips: add support for TP-Link TL-WR850N v2Andrew Freeman2020-08-271-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the TP-Link TL-WR850N v2. This device is very similar to TP-Link TL-WR840 v4 and TP-Link TL-WR841 v13. Specifications: SOC: MediaTek MT7628NN Flash: 8 MiB SPI RAM: 64 MiB WLAN: MediaTek MT7628NN Ethernet: 5 ports (100M) Installation Using the integrated tftp capability of the router: 1. Turn off the router. 2. Connect pc to one of the router LAN ports. 3. Set your PC IPv4 address to 192.168.0.66/24. 4. Run any TFTP server on the PC. 5. Put the recovery firmware on the root directory of TFTP server and name the file tp_recovery.bin 6. Start the router by pressing power button while holding the WPS/Reset button (or both WPS/Reset and WIFI buttons) 7. Router connects to your PC with IPv4 address 192.168.0.2, downloads the firmware, installs it and reboots. LEDs are flashing. Now you have OpenWrt installed. 8. Change your IPv4 PC address to something in 192.168.1.0/24 network or use DHCP to get an address from your OpenWrt router. 9. Done! You can login to your router via ssh. Forum link: https://forum.openwrt.org/t/add-support-for-tp-link-tl-wr850n-v2/66899 Signed-off-by: Andrew Freeman <labz56@gmail.com> [squash an tidy up commits, sort nodes] Signed-off-by: Darsh Patel <darshkpatel@gmail.com> [minor commit message adjustments] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: use lzma-loader for ZBT-WG3526Rustam Gaptulin2020-08-241-0/+2
| | | | | | | | | | | | The wg3526 fails to boot if the kernel is large. Enabling lzma-loader resolves the issue on both the wg3526-16m and wg3526-32m. Fixes: FS#3143 Signed-off-by: Rustam Gaptulin <rascal6@gmail.com> [commit message facelift] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* treewide: use wpad-basic-wolfssl as defaultPetr Štetiar2020-08-202-19/+19
| | | | | | | | | | | | | | | In order to support SAE/WPA3-Personal in default images. Replace almost all occurencies of wpad-basic and wpad-mini with wpad-basic-wolfssl for consistency. Keep out ar71xx from the list as it won't be in the next release and would only make backports harder. Build-tested (build-bot settings): ath79: generic, ramips: mt7620/mt76x8/rt305x, lantiq: xrx200/xway, sunxi: a53 Signed-off-by: Petr Štetiar <ynezz@true.cz> [rebase, extend commit message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for MikroTik RouterBOARD 760iGS (hEX S)John Thomson2020-08-131-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the MikroTik RouterBOARD 760iGS router. It is similar to the already supported RouterBOARD 750Gr3. The 760iGS device features an added SFP cage, and passive PoE out on port 5 compared to the RB750Gr3. https://mikrotik.com/product/hex_s Specifications: - SoC: MediaTek MT7621A - CPU: 880MHz - Flash: 16 MB - RAM: 256 MB - Ethernet: 5x 10/100/1000 Mbps - SFP cage - USB port - microSD slot Unsupported: - Beeper (requires PWM driver) - ZT2046Q (ADS7846 compatible) on SPI as slave 1 (CS1) The linux driver requires an interrupt, and pendown GPIO These are unknown, and not needed with the touchscreen only used for temperature and voltage monitoring. ads7846 hwmon: temp0 is degrees Celsius temp1 is voltage * 32 GPIOs: - 07: input passive PoE out (lan5) compatible (Mikrotik) device connected - 17: output passive PoE out (lan5) switch Installation through RouterBoot follows the usual MikroTik method https://openwrt.org/toh/mikrotik/common To boot to intramfs image in RAM: 1. Setup TFTP server to serve intramfs image. 2. Plug Ethernet cable into WAN port. 3. Unplug power, hold reset button and plug power in. Wait (~25 seconds) for beep and then release reset button. The SFP LED will be lit in RouterBoot, but will not be lit in OpenWRT. 4. Wait for a minute. Router should be running OpenWrt, check by plugging in to port 2-5 and going to 192.168.1.1. To install OpenWrt to flash: 1. Follow steps above to boot intramfs image in RAM. 2. Flash the sysupgrade.bin image with web interface or sysupgrade. 3. Once the router reboots you will be running OpenWrt from flash. OEM firmware differences: - RouterOS assigns a different MAC address for each port - The first address (E01 on the sticker) is used for wan (ether1 in OEM). - The next address is used for lan2. - The last address (E06 on the sticker) is used for sfp. [Initial port work, shared dtsi] Signed-off-by: Vince Grassia <vincenzo.grassia@zionark.com> [SFP support and GPIO identification] Signed-off-by: Luka Logar <luka.logar@iname.com> [Misc. fixes and submission] Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au> [rebase, drop uart3 from state_default on 750gr3, minor commit title/message facelift] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use gpio-export for Mikrotik RouterBOARD 750Gr3 beeperJohn Thomson2020-08-131-1/+1
| | | | | | | | | | | | | This beeper hardware requires a PWM driver for frequency selection. Since the GPIO driver does not provide that, revert the beeper support to a simple gpio-export. This effectively reverts the corresponding changes from 6ba58b7b020c ("ramips: cleanup the RB750Gr3 support") Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au> [commit title/message facelift] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* treewide: make dependency on kmod-usb-net selectiveAdrian Schmutzler2020-08-102-2/+2
| | | | | | | | A bunch of kernel modules depends on kmod-usb-net, but does not select it. Make AddDepends/usb-net selective, so we can drop some redundant +kmod-usb-net definitions for DEVICE_PACKAGES. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* treewide: add sysupgrade comment for early DSA-adoptersAdrian Schmutzler2020-08-081-1/+2
| | | | | | | | | | Add a specific comment for early DSA-adopters that they can keep their config when prompted due to compat-version increase. This is a temporary solution, the patch should be simply reverted before any release. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: implement compatibility version for DSA migrationAdrian Schmutzler2020-08-081-0/+82
| | | | | | | | | | | | | | | | | | | This implements the newly introduced compat-version to prevent broken upgrade between swconfig and DSA for ramips' mt7621 subtarget. In order to make the situation more transparent for the user, and to prevent large switch-cases for devices, it is more convenient to have the entire subtarget 1.1-by-default. This means that new devices will be added with 1.1 from the start, but in contrast we don't need to switch them in board.d files. Apart from that, users that manually backport devices to 19.07 with swconfig will have an equivalent upgrade experience to officially supported devices. Since DSA support on mt7621 is out for a while already, this applies the same uci-defaults workaround for early adopters as already done for kirkwood and mvebu in previous commits. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: use lzma-loader for RT5350F-OLinuXino devicesSungbo Eo2020-08-081-0/+2
| | | | | | | The bootloader fails to extract a big kernel, e.g. v5.4 kernel image with ALL_KMODS enabled. This can be fixed by using lzma-loader. Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* ramips: adjust LZMA_TEXT_START for 32MB RAM devicesSungbo Eo2020-08-081-1/+1
| | | | | | | | | | Currently the lzma-loader is placed in RAM at 32MB offset, which does not make sense for devices with only 32MB RAM. If we adjust LZMA_TEXT_START to 24MB offset, then the lzma-loader can be used on those devices and still about 24MB memory will be available for uncompressed image, which should be enough for most use cases. Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* ramips: invert wpad selection for mt7621Adrian Schmutzler2020-08-071-80/+87
| | | | | | | | | | | | | | | | | | | For ramips/mt7621, the wpad-basic package is not selected by default, but added for every device individually as needed. While this might be technically correct if the SoC does not come with a Wifi module, only 18 of 97 devices for that platform are set up _without_ wpad-basic currently. Therefore, it seems more convenient to add wpad-basic by default for the subtarget and then just remove it for the 18 mentioned devices, instead of having to add it for about 60 times instead. This would also match the behavior of the 5 other subtargets, where wpad-basic/wpad-mini is added by default as well, and thus be more obvious to developers without detailed SoC knowledge. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Netgear JWNR2010 v5Shibajee Roy2020-08-061-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - CPU: MediaTek MT7620N (580 MHz) - Flash size: 4 MB NOR SPI - RAM size: 32 MB DDR1 - Bootloader: U-Boot - Wireless: MT7620N 2x2 MIMO 802.11b/g/n (2.4 GHz) - Switch: MT7620 built-in 10/100 switch with vlan support - Ports: 4x LAN, 1x WAN - Others: 7x LED, Reset button, UART header on PCB (57600 8N1) Flash instructions: 1. Use ethernet cable to connect router with PC/Laptop, any router LAN port will work. 2. To flash openwrt we are using nmrpflash[1]. 3. Flash commands: First we need to identify the correct Ethernet id. nmrpflash -L nmrpflash -i net* -f openwrt-ramips-mt7620-netgear_jwnr2010-v5-squashfs-factory.img This will show something like "Advertising NMRP server on net*..." (net*, *=1,2,3... etc.) 4. Now remove the power cable from router back side and immediately connect it again. You will see flash notification in CMD window, once it says reboot the device just plug off the router and plug in again. Revert to stock: 1. Download the stock firmware from official netgear support[2]. 2. Follow the same nmrpflash procedure like above, this time just use the stock firmware. nmrpflash -i net* -f N300-V1.1.0.54_1.0.1.img MAC addresses on stock firmware: LAN = *:28 (label) WAN = *:29 WLAN = *:28 On flash, the only valid MAC address is found in factory 0x4. Special Note: This openwrt firmware will also support other netgear N300 routers like below as they share same stock firmware[3]. JNR1010v2 / WNR614 / WNR618 / JWNR2000v5 / WNR2020 / WNR1000v4 / WNR2020v2 / WNR2050 [1] https://github.com/jclehner/nmrpflash [2] https://www.netgear.com/support/product/JWNR2010v5.aspx [3] http://kb.netgear.com/000059663 Signed-off-by: Shibajee Roy <ador250@protonmail.com> [create DTSI, use netgear_sercomm_nor, disable by default, add MAC addresses to commit message, add label MAC address] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add common definition netgear_sercomm_norAdrian Schmutzler2020-08-063-27/+24
| | | | | | | | Like NAND-based devices, SPI-NOR based Netgear devices also share a common setup for their images. This creates a common defition for them in image/Makefile, so it can be reused across subtargets. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>