aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/base-files/lib
Commit message (Collapse)AuthorAgeFilesLines
* ramips: remove set_preinit_iface scriptChuanhong Guo2020-04-041-59/+0
| | | | | | | | | | This script isn't suitable for mt7621 anymore due to switching to DSA and it needs a different preinit script. Generic preinit logic in package/base-files has the ability to parse board.json and pick preinit iface accordingly. Just remove this script instead of moving it into subtargets. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: allow to set switchdev by board in ramips_set_preinit_ifaceAdrian Schmutzler2019-12-171-20/+47
| | | | | | | | | | | | | | This adds the option to determine switchdev by board when setting preinit iface for failsafe. The patch reorganizes the code to use functions for setting correct switchdev based on SOC and board, which is supposed to improve readability and maintainability. In this patch, the ramips_switchdev_from_board function is added without specifying an actual device using it. This is meant to make the life of device supporters waiting for merge easier, as there is less to rebase and keep track of. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: split base-files into subtargetsAdrian Schmutzler2019-11-033-188/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While most of the target's contents are split into subtargets, the base-files are maintained for the target as a whole. However, OpenWrt already implements a mechanism that will use (and even prefer) files in the subtargets' directories. This can be exploited to make several scripts subtarget-specific and thus save some space. In certain cases, keeping files in parent (=target) base-files was more convenient, and thus no splitting was performed for those. Note that this will increase overall code lines, but reduce code per subtarget. base-files ipk size reduction: master (mt7621) 60958 B split (mt7620) 46358 B (- 14.3 kiB) split (mt7621) 48759 B (- 11.9 kiB) split (mt76x8) 44948 B (- 15.6 kiB) split (rt288x) 43508 B (- 17.0 kiB) split (rt305x) 45616 B (- 15.0 kiB) split (rt3883) 44176 B (- 16.4 kiB) Run-tested on: GL.iNet GL-MT300N-V2 (mt76x8) D-Link DWR-116 (mt7620) Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Asus RT-AC65PGabor Varga2019-10-241-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Asus RT-AC65P router is identical with the RT-AC85P, but better to make separate images for it. On both routers the installation can be done also via SSH: Note: The user/password for SSH is identical with the one used in the Web-interface. 1. Complete the initial setup wizard. 2. Activate SSH under "Administration" -> "System". 3. Transfer the OpenWrt factory image via scp: > scp openwrt-ramips-mt7621-asus_rt-ac65p-squashfs-factory.bin admin@192.168.50.1:/tmp 4. Connect via SSH to the router. > ssh admin@192.168.50.1 5. Write the OpenWrt image to flash. > mtd-write -i /tmp/openwrt-ramips-mt7621-asus_rt-ac65p-squashfs-factory.bin -d linux 6. Reboot the router > reboot Changelog: v3: removed [] from filename, rebased to latest master v2: Rebased to latest master v1: Initial release Signed-off-by: Gabor Varga <vargagab@gmail.com>
* ramips: replace backticks by $(...)Adrian Schmutzler2019-09-211-1/+1
| | | | | | | | | This replaces deprecated backticks by more versatile $(...) syntax. While at it, remove some useless cat commands and deprecated egrep commands. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: add support for Asus RT-AC85PBirger Koblitz2019-09-201-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SoC: MediaTek MT7621AT dual-core @ 880MHz RAM: 256M (Winbond W632GG6KB-1) FLASH: 128MB (Macronix MX30LF1G18AC-TI) WiFi: - 2.4GHz MediaTek MT7615N bgn - 5GHz MediaTek MT7615N nac Switch: SoC integrated Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x USB 3.1 (Gen 1) BTN: Reset, WPS LED: - Power (blue) - 5Ghz (blue) - 2.4GHz (blue) - Internet (blue) - 4x LAN (blue) (LAN/WAN leds are not controllable by GPIOs) UART: UART is present as Pads marked J4 on the PCB. 3.3V - TX - RX - GND / 57600-8N1 3.3V is the square pad MAC: The MAC address on the router-label matches the MAC of the 2.4 GHz WiFi. LAN and WAN MAC are identical: MAC_LABEL+4 5 GHz WiFi MAC: also MAC_LABEL+4 Installation ------------ Via U-Boot tftpd: Switch on device, within 2s press reset button and keep pressed until power LED starts blinking slowly. Upload factory image via tftp put, the router's ip is 192.168.1.1 and expects the client on 192.168.1.75. The images also work on the Asus RT-AC65P models as tested by Gabor. Signed-off-by: Birger Koblitz <mail@birger-koblitz.de> Tested-by: Gabor Varga <vargagab@gmail.com> [fixed Asus -> ASUS in DTS] Signed-off-by: Petr Štetiar <ynezz@true.cz>
* ramips: add support for Netgear R6260 and R6850Christoph Krapp2019-08-311-0/+2
| | | | | | | | | | | As Netgear uses the same image for R6260, R6350 & R6850 we can merge device tree files and generate separate images for each device. Signed-off-by: Christoph Krapp <achterin@googlemail.com> [add missing WiFi compatible string, fix network configuration] Signed-off-by: David Bauer <mail@david-bauer.net>
* treewide: sysupgrade: get rid of platform_nand_pre_upgrade()Rafał Miłecki2019-07-222-13/+6
| | | | | | | | | | | 1) nand_do_upgrade() is always called by a target code 2) nand_do_upgrade() starts with calling platform_nand_pre_upgrade() It means there is no need for the platform_nand_pre_upgrade() callback at all. All code that was present there could bo moved & simplly called by a target right before the nand_do_upgrade(). Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* treewide: sysupgrade: don't use $ARGV in platform_do_upgrade()Rafał Miłecki2019-07-171-4/+4
| | | | | | | stage2 passes image path to platform_do_upgrade() as an argument so it can be simply accessed using $1 Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* ramips: get rid of platform_pre_upgrade()Rafał Miłecki2019-07-161-12/+8
| | | | | | | | | | | The only step between platform_pre_upgrade() and platform_do_upgrade() is switching to ramdisk. It should be fine to "mtd erase firmware" from the later callback and get rid of the first one. This change wasn't tested on affected target but identical code logic was verified to work as expected on brcm47xx with initramfs firmware. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* ramips: Remove base-files/lib/ramips.shAdrian Schmutzler2019-07-103-36/+0
| | | | | | | | | | Having converted the target to use device compatible, ramips.sh is obsolete now. The only remaining entry for the mt7688 evaluation board seems to be orphaned. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips/rt305x: Synchronize Makefiles with DTS compatibleAdrian Schmutzler2019-07-102-310/+1
| | | | Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips/rt288x,rt3883: Synchronize Makefiles with DTS compatibleAdrian Schmutzler2019-07-102-49/+1
| | | | Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips/mt76x8: Synchronize Makefiles with DTS compatibleAdrian Schmutzler2019-07-101-57/+0
| | | | Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips/mt7621: Synchronize Makefiles with DTS compatibleAdrian Schmutzler2019-07-102-87/+6
| | | | Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips/mt7620: Synchronize Makefiles with DTS compatibleAdrian Schmutzler2019-07-101-195/+0
| | | | | | | | | | | | | | | This will "rename" devices in Makefiles to the pattern used in DTS compatible. This will systematize naming of devices enormously. As device names are used to for default SUPPORTED_DEVICES entries, we need to adjust the source for /tmp/sysinfo/board_name, too. So remove relevant entries from base-files/lib/ramips.sh and use device compatible for that. Despite that, base-files are updated, too. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: Improve compatible for TP-Link Archer devicesAdrian Schmutzler2019-07-101-1/+1
| | | | | | | | Include "Archer" in compatible as it is part of the device name. Update Makefile device names where necessary to match compatible. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: Xiaomi MIR3G: detect board name from DTSOzgur Can Leonard2019-03-212-4/+1
| | | | | | | | | | | | | | | | - Former "mir3g" board name becomes "xiaomi,mir3g". - Reorder some entries to maintain alphabetical order. - Change DTS so status LEDs (yellow/red/blue) mimic Xiaomi stock firmware: (Section Indicator) <http://files.xiaomi-mi.co.uk/files/router_pro/router%20PRO%20EN.pdf> <http://files.xiaomi-mi.co.uk/files/Mi_WiFi_router_3/MiWiFi_router3_EN.pdf> |Yellow: Update (LED flickering), the launch of the system (steady light); |Blue: during normal operation (steady light); |Red: Safe mode (display flicker), system failure (steady light); Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com> [Added link to similar Router 3 model] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ramips: add support for Xiaomi Mi Router 3 ProOzgur Can Leonard2019-03-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware: CPU: MediaTek MT7621AT (2x880MHz) RAM: 512MB DDR3 FLASH: 256MB NAND WiFi: 2.4GHz 4x4 MT7615 b/g/n (Needs driver, See Issues!) WiFI: 5GHz 4x4 MT7615 a/n/ac (Needs driver, See Issues!) USB: 1x 3.0 ETH: 1x WAN 10/100/1000 3x LAN 10/100/1000 LED: Power/Status BTN: RESET UART: 115200 8n1 Partition layout and boot: Stock Xiaomi firmware has the MTD split into (among others) - kernel0 (@0x200000) - kernel1 (@0x600000) - rootfs0 - rootfs1 - overlay (ubi) Xiaomi uboot expects to find kernels at 0x200000 & 0x600000 referred to as system 1 & system 2 respectively. a kernel is considered suitable for handing control over if its linux magic number exists & uImage CRC are correct. If either of those conditions fail, a matching sys'n'_fail flag is set in uboot env & a restart performed in the hope that the alternate kernel is okay. If neither kernel checksums ok and both are marked failed, system 2 is booted anyway. Note uboot's tftp flash install writes the transferred image to both kernel partitions. Installation: Similar to the Xiaomi MIR3G, we keep stock Xiaomi firmware in kernel0 for ease of recovery, and install OpenWRT into kernel1 and after. The installation file for OpenWRT is a *squashfs-factory.bin file that contains the kernel and a ubi partition. This is flashed as follows: nvram set flag_try_sys1_failed=1 nvram set flag_try_sys2_failed=0 nvram commit dd if=factory.bin bs=1M count=4 | mtd write - kernel1 dd if=factory.bin bs=1M skip=4 | mtd write - rootfs0 reboot Reverting to stock: The part of stock firmware we've kept in kernel0 allows us to run stock recovery, which will re-flash stock firmware from a *.bin file on a USB. For this we do the following: fw_setenv flag_try_sys1_failed 0 fw_setenv flag_try_sys2_failed 1 reboot After reboot the LED status light will blink red, at which point pressing the 'reset' button will cause stock firmware to be installed from USB. Issues: OpenWRT currently does not have support for the MT7615 wifi chips. There is ongoing work to add mt7615 support to the open source mt76 driver. Until that support is in place, there are closed-source kernel modules that can be used. See: https://forum.openwrt.org/t/support-for-xiaomi-wifi-r3p-pro/20290/170 Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [02_network remaps, Added link to notes]
* ramips: use generic board detection for Wavlink WL-WN575A3Thomas Vincent-Cross2019-02-281-3/+0
| | | | | | Bring Wavlink WL-WN575A3 in line with other Wavlink ramips devices. Signed-off-by: Thomas Vincent-Cross <me@tvc.id.au>
* ramips: add support for Archer C50 v4David Bauer2019-01-261-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the TP-Link Archer C50 v4. It uses the same hardware as the v3 variant, sharing the same FCC-ID. CPU: MediaTek MT7628 (580MHz) RAM: 64M DDR2 FLASH: 8M SPI WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated WiFI: 5GHz 2x2 MT7612 a/n/ac ETH: 1x WAN 4x LAN LED: Power, WiFi2, WiFi5, LAN, WAN, WPS BTN: WPS/WiFi, RESET UART: Near ETH ports, 115200 8n1, TP-Link pinout Create Factory image -------------------- As all installation methods require a U-Boot to be integrated into the Image (and we do not ship one with the image) we are not able to create an image in the OpenWRT build-process. Download a TP-Link image from their Wesite and a OpenWRT sysupgrade image for the device and build yourself a factory image like following: TP-Link image: tpl.bin OpenWRT sysupgrade image: owrt.bin > dd if=tpl.bin of=boot.bin bs=131584 count=1 > cat owrt.bin >> boot.bin Installing via Web-UI --------------------- Upload the boot.bin via TP-Links firmware upgrade tool in the web-interface. Installing via Recovery ----------------------- Activate Web-Recovery by beginning the upgrade Process with a Firmware-Image from TP-Link. After starting the Firmware Upgrade, wait ~3 seconds (When update status is switching to 0%), then disconnect the power supply from the device. Upgrade flag (which activates Web-Recovery) is written before the OS-image is touched and removed after write is succesfull, so this procedure should be safe. Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1. When active, all LEDs but the WPS LED are off. Remeber to assign yourself a static IP-address as DHCP is not active in this mode. The boot.bin can now be uploaded and flashed using the web-recovery. Installing via TFTP ------------------- Prepare an image like following (Filenames from factory image steps apply here) > dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1 > dd if=tpl.bin of=tmp.bin bs=131584 count=1 > dd if=tmp.bin of=boot.bin bs=512 skip=1 > cat boot.bin >> tp_recovery.bin > cat owrt.bin >> tp_recovery.bin Place tp_recovery.bin in root directory of TFTP server and listen on 192.168.0.66/24. Connect router LAN ports with your computer and power up the router while pressing the reset button. The router will download the image via tftp and after ~1 Minute reboot into OpenWRT. U-Boot CLI ---------- U-Boot CLI can be activated by holding down '4' on bootup. Dual U-Boot ----------- This is the first TP-Link MediaTek device to feature a split-uboot design. The first (factory-uboot) provides recovery via TFTP and HTTP, jumping straight into the second (firmware-uboot) if no recovery needs to be performed. The firmware-uboot unpacks and executed the kernel. Web-Recovery ------------ TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 / TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition before beginning to write and removes it afterwards. If the router boots with this flag set, bootloader will automatically start Web-recovery and listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT factory image can be written. By doing the same while performing sysupgrade, we can take advantage of the Web-recovery in OpenWRT. It is important to note that Web-Recovery is only based on this flag. It can't detect e.g. a crashing kernel or other means. Once activated it won't boot the OS before a recovery action (either via TFTP or HTTP) is performed. This recovery-mode is indicated by an illuminated WPS-LED on boot. Signed-off-by: David Bauer <mail@david-bauer.net>
* ramips: add RB750Gr3 native supportAnton Arapov2019-01-052-3/+1
| | | | | | | | | | | | | | | | | This patch adds support of MikroTik RouterBOARD 750Gr3, without the need to reflashing the bootloader. Installation through RouterBoot follows the usual MikroTik method https://openwrt.org/toh/mikrotik/common Since the image isn't compatible with RouterBOARD 750Gr3 installations which have replaced the bootloader, the former used userspace boardname is not added to the SUPPORTED_DEVICES, to prevent a brick while trying to upgrade to the image with native support. Signed-off-by: Anton Arapov <arapov@gmail.com> Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for Netgear R6350NOGUCHI Hiroshi2018-12-161-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Netgear R6350 is a wireless router, aka Netgear AC1750. Specification: - SoC: Mediatek MT7621AT (2 CPU cores, 4 threads) - RAM: 128MiB (Nanya NT5CC64M16GP-DI) - ROM: 128MiB NAND Flash (Macronix MX30LF1G18AC-TI) - Wireless: for 11b/g/n (upto 300Mbps): MT7603 for 11a/ac (upto 1450Mbps) : MT7615, is not avaliable now - Ethernet LAN speed: up to 1000Mbps - Ethernet LAN ports: 4 - Ethernet WAN speed: up to 1000Mbps - Ethernet WAN ports: 1 - USB ports: 1 (USB 2.0) - LEDs: 4 (all can be controlled by SoC's GPIO) - buttons: 2 - serial ports: unknown Installation through telnet: - Copy kernel.bin and rootfs.bin to a USB flash disk, plug to usb port on the router. - Enable telnet with link: http://192.168.1.1/setup.cgi?todo=debug (login if required, default: admin password) - You will see "Debug Enabled!" - Telnet 192.168.1.1 and login with "root" - ls /mnt/shares/ to find out path of your USB disk. 'myUdisk' for example. - cd /mnt/shares/myUdisk - mtd_write write rootfs.bin Rootfs - mtd_write write kernel.bin Kernel - reboot recovery when bricked: nmrpflash can be used to recover to the netgear firmware if a broken image was flashed. The SC_PART_MAP partition suggests that an on flash partition table exists. After implementing a partition parser/builder for the sercom partition format, the definitions don't match the flash layout used by the stock firmware. It either means the partition format has not yet been completely understood or it isn't used by the stock firmware. For now, use fixed partitions instead. Signed-off-by: NOGUCHI Hiroshi <drvlabo@gmail.com> [apply latest ramips changes and document the on flash partition map issues] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: drop old image validation codeMathias Kresin2018-12-121-329/+1
| | | | | | | Due to the enforced image metadata we ensure that the correct image is uploaded. Checks based on a magic arn't required any more. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: enforce image metadata verificationMathias Kresin2018-12-121-0/+1
| | | | | | | Now that we got rid of all legacy images, we can enforce image metadata verification. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: drop support for ALLNET ALL0239-3G and Sitecom WL-341 v3Mathias Kresin2018-12-122-8/+0
| | | | | | | | | | | | Beside one exception, no one took care of these two remaining boards still using the legacy image build code during the last two years. Since OpenWrt 14.07 the ALLNET ALL0239-3G image building is broken. The Sitecom WL-341 v3 image build code looks pretty hackish and broken. It's questionable if the legacy image works as all. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for D-Link DWR-118-A1Pawel Dembicki2018-12-031-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The DWR-118-A1 Wireless Router is based on the MT7620A SoC. Specification: - MediaTek MT7620A (580 Mhz) - 64 MB of RAM - 16 MB of FLASH - 1x 802.11bgn radio - 1x 802.11ac radio (MT7610EN) - 3x 10/100 Mbps Ethernet (3 LAN) - 2x 10/100/1000 Mbps ICPlus IP1001 Ethernet PHY (1 WAN AND 1 LAN) - 1x internal, non-detachable antenna - 2x external, non-detachable antennas - 1x USB 2.0 - UART (J1) header on PCB (57600 8n1) - 7x LED (5x GPIO-controlled), 2x button - JBOOT bootloader Known issues: - WIFI 5G LED not working - flash is very slow The status led has been assigned to the dwr-118-a1:green:internet led. At the end of the boot it is switched off and is available for other operation. Work correctly also during sysupgrade operation. Installation: Apply factory image via http web-gui or JBOOT recovery page How to revert to OEM firmware: - push the reset button and turn on the power. Wait until LED start blinking (~10sec.) - upload original factory image via JBOOT http (IP: 192.168.123.254) Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
* ramips: add support for MTC Wireless Router WR1201Valentín Kivachuk2018-11-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MTC Wireless Router WR1201 is the OEM name of the board. It is also sold rebranded as STRONG Dual Band Gigabit Router 1200. Specification: - SoC: MediaTek MT7621A (880 MHz) - Flash: 16 MiB - RAM: 128 MiB - Wireless: 2.4Ghz(MT7602EN) and 5Ghz (MT7612EN) - Ethernet speed: 10/100/1000 - Ethernet ports: 4+1 - 1x USB 3.0 - 1x microSD reader - Serial baud rate of Bootloader and factory firmware: 57600 The OEM webinterface writes only as much bytes as listed in the uImage header field to the flash. Also, the OEM webinterface evaluates the name field of uImage header before flashing (the string "WR1201_8_128") To flash via webinterface, is mandatory to use first initramfs.bin and after (from the OpenWrt) the sysupgrade.bin Some notes: - Some microSD will not work: mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising SDIO card mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising MMC card mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising SDIO card mtk-sd 1e130000.sdhci: card claims to support voltages below defined range mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising MMC card mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising SDIO card mtk-sd 1e130000.sdhci: no support for card's volts mmc0: error -22 whilst initialising MMC card Signed-off-by: Valentín Kivachuk <vk18496@gmail.com>
* ramips: add support for UniElec U7621-06-512M-64M variantNishant Sharma2018-11-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | Add support for UniElec U7621-06 variant with 512MB RAM and 64MB flash. Additional specs are below: CPU: MT7621 (880Mhz) Bootloader: Ralink U-Boot Flash: 64MB - U-Boot identifies as Macronix MX66L51235F - kernel identifies as MX66L51235l (65536 Kbytes) RAM: 512MB Rest of the details as per commit 46ab81e405d2 ("ramips add support for UniElec U7621-06") Signed-off-by: Nishant Sharma <nishant@unmukti.in> [use generic board detection, add firmware partition compatible, extend firmware partition to use all of the remaining flash space, add a maximum image size matching the firmware partition size] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: use generic board detection for Unielec u7621-06Mathias Kresin2018-11-282-4/+1
| | | | | | | | Use the generic board detection for the board instead of the target specific one. Mark the sysupgrade image compatible with the former used userspace boardname to allow an upgrade from earlier versions. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for Wavlink WL-WN570HA1Thomas Vincent-Cross2018-11-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the Wavlink WL-WN570HA1, a dual-band PoE wireless router with the following specifications: - CPU: MediaTek MT7688AN 580MHz - Flash: 8MB - RAM: 64MB - Ethernet: 1x 10/100Mbps - 2.4 GHz: 802.11b/g/n SoC, 1T1R, 27 dBm - 5 GHz: 802.11a/n/ac MT7610E, 1T1R, 25 dBm - Antennas: 2x external (1 per radio), detachable - LEDs: 3 programmable + Wi-Fi, WAN/LAN, Power - Buttons: Reset Flashing instructions: Factory U-boot launches a TFTP client if reset button is pressed during power-on. Rename the sysupgrade file and configure TFTP as follows: - Client (WL-WN570HA1) IP: 192.168.10.101 - Server IP: 192.168.10.100 - Filename: firmware.bin Signed-off-by: Thomas Vincent-Cross <me@tvc.id.au> [use generic board detection, add firmware partition compatible] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: improve BDCOM WAP2100-SK supportMathias Kresin2018-11-262-4/+1
| | | | | | | | | | | | | | | | | | | | | Use the generic board detection instead of the target specific one as all recent additions are doing. Setup the USB led via devicetree (a58535771f11) and include the required driver by default. Merge the led userspace setting with an existing identical case. Use the wps led for boot status indication. Move the partitions into a partition table node (6031ab345df8) and drop needless labels. Drop misplaced cells properties (53624c1702e6). Cleanup the pinmux and only switch pins to gpio functions which a referenced as gpio in the dts. Match the maximum image size with the size of the firmware partition. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: improve Skylab SKW92A supportMathias Kresin2018-11-262-4/+1
| | | | | | | | | | | | | | | | Use the generic board detection instead of the target specific one as all recent additions are doing. Add the wireless led according the gpio number from the datasheet. Rename the board part of the leds to match the name used for the compatible string. Finally, do not hijack the wps led for boot status indication longer than necessary. Merge userspace config into existing cases. Include the manufacture Name in the dts model string. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for Lava LR-25G001Pawel Dembicki2018-11-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Lava LR-25G001 Wireless Router is based on the MT7620A SoC. Specification: - MediaTek MT7620A (580 Mhz) - 64 MB of RAM - 16 MB of FLASH - 1x 802.11bgn radio - 1x 802.11ac radio (MT7610EN) - 5x 10/100/1000 Mbps AR8337 Switch (1 WAN AND 4 LAN) - 2x external, detachable antennas - 1x USB 2.0 - UART (J3) header on PCB (57600 8n1) - 8x LED (3x GPIO-controlled), 2x button - JBOOT bootloader Known issues: - Work only three Gigabit ports (3/5, 1 WAN and 2LAN) Installation: Apply factory image via http web-gui or JBOOT recovery page How to revert to OEM firmware: - push the reset button and turn on the power. Wait until LED start blinking (~10sec.) - upload original factory image via JBOOT http (IP: 192.168.123.254) Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
* ramips: Add support for ZTE ZXECS EBG3130 aka BDCOM WAP2100-SKPetr Štetiar2018-11-262-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On the bottom sticker it's branded as ZTE ZXECS EBG3130 device, but in factory OpenWrt image it's referenced as BDCOM WAP2100-SK device. Specifications: - SoC: MediaTek MT7620A - RAM: 128 MB - Flash: 16 MB - Ethernet: 5 FE ports - Wireless radio: 2T2R 2.4 GHz and 1T1R 5 GHz (MT7610EN, unsupported) - UART: 1 x UART on PCB marked as J2 (R=RX, T=TX, G=GND) with 115200 8N1 config - LEDs: Power, FE ports 1-5, WPS, USB, RF 2.4G, RF 5G - Other: USB port, SD card slot and 2x external antennas (non-detachable) Flashing instructions: A) The U-Boot has HTTP based firmware upgrade A1) Flashing notes We've identified so far two different batches of units, unfortunately each batch has different U-Boot bootloader flashed with different default environment variables, thus each batch has different IP address for accessing web based firmware updater. * First batch has web based bootloader IP address 1.1.1.1 * Second batch has web based bootloader IP address 192.168.1.250 In case you can't connect to either of those IPs, you can try to get the default IP address via two methods: A1.1) Serial console, then the IP address is visible during the boot ... HTTP server is starting at IP: 1.1.1.1 raspi_read: from:40004 len:6 HTTP server is ready! ... A1.2) Over telnet/SSH using this command: root@bdcom:/# grep ipaddr= /dev/mtd0 ipaddr=1.1.1.1 A2) Flashing with browser * Change IP address of PC to 1.1.1.2 with 255.255.255.0 netmask * Reboot the device and try to reach web based bootloader in the browser with the following URL http://1.1.1.1 * Quickly select the firmware sysupgrade file and click on the `Update firmware` button, this all has to be done within 10 seconds, bootloader doesn't wait any longer If done correctly, the web page should show UPDATE IN PROGRESS page with progress indicator. Once the flashing completes (it takes roughly around 1 minute), the device will reboot to the OpenWrt firmware A3) Flashing with curl sudo ip addr add 1.1.1.2/24 dev eth0 curl \ --verbose \ --retry 3 \ --retry-delay 1 \ --retry-max-time 30 \ --connect-timeout 30 \ --form "firmware=@openwrt-ramips-mt7620-BDCOM-WAP2100-SK-squashfs-sysupgrade.bin" \ http://1.1.1.1 Now power on the router. B) The U-boot is based on Ralink SDK so we can flash the firmware using UART. 1. Configure PC with a static IP address and setup an TFTP server. 2. Put the firmware into the tftp directory. 3. Connect the UART line as described on the PCB (G=GND, R=RX, T=TX) 4. Power up the device and press 2, follow the instruction to set device and tftp server IP address and input the firmware file name. U-boot will then load the firmware and write it into the flash. Signed-off-by: Petr Štetiar <ynezz@true.cz>
* ramips: add support for Skylab SKW92A in EVBRussell Senior2018-11-262-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifically, SKW92A_E16, described here: http://www.skylabmodule.com/wp-content/uploads/SkyLab_SKW92A_V1.04_datasheet.pdf Specification: - MediaTek MT7628N/N (580 Mhz) - 64 MB of RAM - 16 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x u.FL - Power by micro-USB connector at USB1 on EVB - UART via micro-USB connector at USB3 on EVB (57600 8n1) - 5x Ethernet LEDs - 1x WLAN LEDs - 1x WPS LED connected by jumper wire from I2S_CK on J20 to WPS_LED pin hole next to daughter board on EVB - WPS/Reset button (S2 on EVB) - RESET button (S1 on EVB) is *not* connected to RST hole next to daughter board Flash instruction: >From Skylab firmware: 1. Associate with SKYLAP_AP 2. In a browser, load: http://10.10.10.254/ 3. Username/password: admin/admin 4. In web admin interface: Administration / Upload Firmware, browse to sysupgrade image, apply, flash will fail with a message: Not a valid firmware. *** Warning: "/var/tmpFW" has corrupted data! 5. Telnet to 10.10.10.254, drops you into a root shell with no credentials 6. # cd /var 7. # mtd_write -r write tmpFW mtd4 Unlocking mtd4 ... Writing from tmpFW to mtd4 ... [e] 8. When flash has completed, you will have booted into your firmware. >From U-boot via TFTP and initramfs: 1. Place openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin on a TFTP server 2. Connect to serial console at USB3 on EVB 3. Connect ethernet between port 1 (not WAN) and your TFTP server (e.g. 192.168.11.20) 4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC 5. Apply power to EVB 6. Interrupt u-boot with keypress of "1" 7. At u-boot prompts: Input device IP (10.10.10.123) ==:192.168.11.21 Input server IP (10.10.10.3) ==:192.168.11.20 Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin 8. Move ethernet to port 0 (WAN) on EVB 9. At new OpenWrt console shell, fetch squashfs-sysupgrade image and flash with sysupgrade. >From U-boot via TFTP direct flash: 1. Place openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin on a TFTP server 2. Connect to serial console at USB3 on EVB (57600 8N1) 3. Connect ethernet between port 1 (not WAN) an your TFTP server (e.g. 192.168.11.20) 4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC 5. Apply power to EVB 6. Interrupt u-boot with keypress of "2" 7. At u-boot prompts: Warning!! Erase Linux in Flash then burn new one. Are you sure?(Y/N) Y Input device IP (10.10.10.123) ==:192.168.11.21 Input server IP (10.10.10.3) ==:192.168.11.20 Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin 8. When transfer is complete or as OpenWrt begins booting, move ethernet to port 0 (WAN). Signed-off-by: Russell Senior <russell@personaltelco.net>
* ramips: add support for TP-Link TL-MR3020 v3Carlo Nel2018-09-061-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link TL-MR3020 v3 is a pocket-size router based on MediaTek MT7628N. This PR is based on the work of @meyergru[1], with his permission. Specification: - MediaTek MT7628N/N (575 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz - 1x 10/100 Mbps Ethernet Flash instruction: The only way to flash the image in TL-MR3020 v3 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.225/24 and tftp server. 2. Rename "openwrt-ramips-mt76x8-tplink_tl-mr3020-v3-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with the LAN port, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. [1] https://github.com/meyergru/lede-source/commits/TL-MR3020-V3 Signed-off-by: Carlo Nel <carlojnel@gmail.com>
* ramips: add support for ELECOM WRC-1900GSTNOGUCHI Hiroshi2018-08-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1900GST is a wireless router, based on Mediatek MT7621A. This is almost same as WRC-2533GST except wireless specs. Specifications: - SoC : MT7621A (four logical CPU cores) - RAM : 128MiB - ROM : 16MiB of SPI NOR-FLASH - wireless : 5GHz : 3T3R up to 1300Mbps/11ac with MT7615 2.4GHz : 3T3R up to 600Mbps/11n with MT7615 - Ethernet : 5 ports, all ports is capable of 1000base-T - Ether switch : MT7530 (MT7621A built-in) - LEDs : 4 LEDs - buttons : 2 buttons and 1 slide-switch - UART : header is on PCB, 57600bps Flash instruction using factory image: 1. Connect the computer to the LAN port of WRC-1900GST 2. Connect power cable to WRC-1900GST and turn on it 3. Access to "https://192.168.2.1/" and open firmware update page ("ファームウェア更新") 4. Select the OpenWrt factory image and click apply ("適用") button 5. Wait ~150 seconds to complete flashing Signed-off-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
* treewide: consolidate upgrade state setMathias Kresin2018-08-161-6/+0
| | | | | | | | | | Set the (sys)upgrade state when sourcing the stage2 script instead of setting the state for each target individual. This change fixes the, due to a missing state set, not working upgrade led on ath79 and apm821xx. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for D-Link DWR-118-A2Cezary Jackiewicz2018-08-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The DWR-118-A2 Wireless Router is based on the MT7620A SoC. Specification: - MediaTek MT7620A (580 Mhz) - 128 MB of RAM - 16 MB of FLASH - 1x 802.11bgn radio - 1x 802.11ac radio (MT7612EN) - 4x 10/100 Mbps Ethernet (1 WAN and 3 LAN) - 1x 10/100/1000 Mbps Marvell Ethernet PHY (1 LAN) - 2x external, non-detachable antennas - 1x USB 2.0 - UART (J1) header on PCB (57600 8n1) - 7x LED (5x GPIO-controlled), 2x button - JBOOT bootloader Known issues: - GELAN not working - flash is very slow The status led has been assigned to the dwr-118-a2:green:internet led. At the end of the boot it is switched off and is available for other operation. Work correctly also during sysupgrade operation. Installation: Apply factory image via http web-gui or JBOOT recovery page How to revert to OEM firmware: - push the reset button and turn on the power. Wait until LED start blinking (~10sec.) - upload original factory image via JBOOT http (IP: 192.168.123.254) Signed-off-by: Cezary Jackiewicz <cezary@eko.one.pl> Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
* ramips: add support for HiWiFi HC5861Bold-masterDeng Qingfang2018-08-141-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | HiWiFi "Gee Enjoy1200" HC5861B is a dual-band router based on MediaTek MT7628AN https://www.hiwifi.com/enjoy-view Specifications: - MediaTek MT7628AN 580MHz - 128 MB DDR2 RAM - 16 MB SPI Flash - 2.4G MT7628AN 802.11bgn 2T2R 300Mbps - 5G MT7612EN 802.11ac 2T2R 867Mbps - 5x 10/100 Mbps Ethernet Flash instruction: 1. Get SSH access to the router 2. SSH to router with `ssh -p 1022 root@192.168.199.1`, The SSH password is the same as the webconfig one 3. Upload OpenWrt sysupgrade firmware into the router's `/tmp` folder with SCP 4. Run `mtd write /tmp/<filename> firmware` 5. reboot Everything is working Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
* ramips: fix BR-6478ACv2 supportDaniel Gimpelevich2018-08-132-4/+1
| | | | | | | | | | | | | | | | | The wholesale changes introduced in commit f9b8328 missed this DTS file because it hadn't been merged yet. This patch brings it in line to match the other mt7620a devices' DTS files. Additionally, the Internet LED is now labeled correctly and set to unused by default, since the WAN interface is not known in every configuration. Using sysupgrade between images before and after this commit will require the -F flag. Tested-by: Rohan Murch <rohan.murch@gmail.com> Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us> [drop internet led default setting] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for Netgear R6120Ludwig Thomeczek2018-08-131-0/+1
| | | | | | | | | | | | | | | | | | | | This patch adds support for the Netgear R6120, aka Netgear AC1200. Specification: - SoC: MediaTek MT7628 (580 MHz) - Flash: 16 MiB - RAM: 64 MiB - Wireless: 2.4Ghz(builtin) and 5Ghz (MT7612E) - LAN speed: 10/100 - LAN ports: 4 - WAN speed: 10/100 - WAN ports: 1 - Serial baud rate of Bootloader and factory firmware: 57600 To flash use nmrpflash with the provided factory.img. Flashing via webinterface will not work, for now. Signed-off-by: Ludwig Thomeczek <ledesrc@wxorx.net>
* ramips: add support for Edimax BR-6478AC v2Daniel Gimpelevich2018-08-062-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | Roll-up of patches by Rohan Murch, Hans Ulli Kroll, and James McKenzie. Taken from https://forum.openwrt.org/viewtopic.php?id=67192 and updated. Specification: - System-On-Chip: MT7620A - CPU/Speed: 580 MHz - Flash-Chip: Macronix MX25L6405D - Flash size: 8192 KiB - RAM: 64 MiB - Wireless No1: SoC-integrated: MT7620A 2.4GHz 802.11bgn - Wireless No2: On-board chip: MT7612E 5GHz 802.11ac - Switch: Mediatek MT7530W Gigabit Switch - USB: Yes 1 x 2.0 Installation: 1. Download sysupgrade.bin 2. Open vendor web interface 3. Choose to upgrade firmware 4. After reboot connect via ethernet at 192.168.1.1 Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
* ramips: add support for ELECOM WRC-2533GSTINAGAKI Hiroshi2018-07-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-2533GST is a 2.4/5 GHz band 11ac rotuer, based on MediaTek MT7621A. Specification: - MT7621A (2-Core, 4-Threads) - 128 MB of RAM (DDR3) - 16 MB of Flash (SPI) - 4T4R 2.4/5 GHz wifi - MediaTek MT7615 - 5x 10/100/1000 Mbps Ethernet - 4x LEDs, 6 keys (2x buttons, 1x slide switch) - UART header on PCB - Vcc, GND, TX, RX from ethernet port side - baudrate: 57600 bps Flash instruction using factory image: 1. Connect the computer to the LAN port of WRC-2533GST 2. Connect power cable to WRC-2533GST and turn on it 3. Access to "https://192.168.2.1/" and open firmware update page ("ファームウェア更新") 4. Select the OpenWrt factory image and click apply ("適用") button 5. Wait ~150 seconds to complete flashing Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for Blueendless Kimax U35WFAdemar Arvati Filho2018-07-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Blueendless Kimax U35WF is a 3,5" HDD Enclosure with Wi-Fi and Ethernet Patch rewritten from: https://forum.openwrt.org/viewtopic.php?id=66908 Based on: https://github.com/lede-project/source/pull/965 Specification: - SoC: MediaTek MT7620N - CPU/Speed: 580 MHz - Flash-Chip: KH25L12835F Spi Flash - Flash size: 16 MiB - RAM: 64 MiB - LAN: 1x 100 Mbps Ethernet - WiFi SoC-integrated: 802.11bgn - 1x USB 2.0 - UART: for serial console Installation: 1. Download sysupgrade.bin 2. Open vendor web interface 3. Choose to upgrade firmware 3. After reboot connect via ethernet at 192.168.1.1 Signed-off-by: Ademar Arvati Filho <arvati@hotmail.com>
* ramips: add support for I-O DATA WN-AX1167GRINAGAKI Hiroshi2018-07-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I-O DATA WN-AX1167GR is a 2.4/5 GHz band 11ac router, based on MediaTek MT7621A. Specification: - MT7621A (2-Cores, 4-Threads) - 64 MB of RAM (DDR2) - 16 MB of Flash (SPI) - 2T2R 2.4/5 GHz - 5x 10/100/1000 Mbps Ethernet - 2x LEDs, 4x keys (2x buttons, 1x slide switch) - UART header on PCB - Vcc, GND, TX, RX from ethernet port side - baudrate: 115200 bps (U-Boot, OpenWrt) Stock firmware: In the stock firmware, WN-AX1167GR has two os images each composed of Linux kernel and rootfs. These images are stored in "Kernel" and "app" partition of the following partitions, respectively. (excerpt from dmesg): MX25L12805D(c2 2018c220) (16384 Kbytes) mtd .name = raspi, .size = 0x01000000 (16M) .erasesize = 0x00010000 (64K) .numeraseregions = 0 Creating 10 MTD partitions on "raspi": 0x000000000000-0x000001000000 : "ALL" 0x000000000000-0x000000030000 : "Bootloader" 0x000000030000-0x000000040000 : "Config " 0x000000040000-0x000000050000 : "Factory" 0x000000050000-0x000000060000 : "iNIC_rf" 0x000000060000-0x0000007e0000 : "Kernel" 0x000000800000-0x000000f80000 : "app" 0x000000f90000-0x000000fa0000 : "Key" 0x000000fa0000-0x000000fb0000 : "backup" 0x000000fb0000-0x000001000000 : "storage" The flag for boot partition is stored in "Key" partition, and U-Boot reads this and determines the partition to boot. If the image that U-Boot first reads according to the flag is "Bad Magic Number", U-Boot then tries to boot from the other image. If the second image is correct, change the flag to the number corresponding to that image and boot from that image. (example): ## Booting image at bc800000 ... Bad Magic Number,FFFFFFFF Boot from KERNEL 1 !! ## Booting image at bc060000 ... Image Name: MIPS OpenWrt Linux-4.14.50 Image Type: MIPS Linux kernel Image (lzma compressed) Data Size: 1865917 Bytes = 1.8 MB Load Address: 80001000 Entry Point: 80001000 Verifying Checksum ... OK Uncompressing Kernel Image ... OK raspi_erase_write: offs:f90000, count:34 . . Done! Starting kernel ... Flash instruction using factory image: 1. Connect the computer to the LAN port of WN-AX1167GR 2. Connect power cable to WN-AX1167GR and turn on it 3. Access to "192.168.0.1" on the web browser and open firmware update page ("ファームウェア") 4. Select the OpenWrt factory image and perform firmware update 5. On the initramfs image, execute "mtd erase firmware" to erase stock firmware and execute sysupgrade with sysupgrade image for WN-AX1167GR 6. Wait ~180 seconds to complete flasing Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for TL-WA801ND v5Romain MARIADASSOU2018-07-041-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - System-On-Chip: MediaTek MT7628NN - CPU/Speed: 580 MHz - Flash-Chip: ELM Technology GD25Q64 - Flash size: 8192 KiB - RAM: 64 MiB - Wireless No1: SoC-integrated: MT7628N 2.4GHz 802.11bgn Currently the only method to install openwrt for the first time is via TFTP recovery. After first install you can use regular updates. Flash instructions: 1) To flash the recovery image, start a TFTP server with IP address 192.168.0.66 and serve the recovery image named tp_recovery.bin. 2) Connect your device to the LAN port, then press the WPS and Reset button and power it up. Keep pressing the WPS/Reset button for 10 seconds or until the lock LED is lighting up. It will try to download the recovery image and flash it. It can take up to 2-3 minutes to finish. When it reaches 100%, the router will reboot itself. Signed-off-by: Romain MARIADASSOU <roms2000@free.fr>
* ramips: add support for ZyXEL Keenetic Extra IIMaxim Anisimov2018-07-041-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - System-On-Chip: MT7628N/N - CPU/Speed: 580 MHz - Flash-Chip: Winbond w25q256 - Flash size: 32768 KiB - RAM: 128 MiB - 5x 10/100 Mbps Ethernet - 4x external, non-detachable antennas - UART (J1) header on PCB (57600 8n1) - Wireless No1 (2T2R): SoC-integrated: MT7628N 2.4GHz 802.11bgn - Wireless No2 (2T2R): On-board chip: MT7612EN 5GHz 802.11ac - USB: Yes 1 x 2.0 - 4x LED, 3x button The device supports dual boot mode. So we use only first half of flash. Flash instruction: The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.1.2/24 and tftp server. 2. Rename "openwrt-ramips-mt76x8-zyxel_keenetic-extra-ii-squashfs-factory.bin" to "kextra2_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed until power led start blinking. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
* ramips: add support for MikroTik RouterBOARD RBM11gTobias Schramm2018-07-041-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the MikroTik RouterBOARD RBM11g. =Hardware= The RBM11g is a mt7621 based device featuring one GbE port and one miniPCIe slot with a sim card socket and USB 2.0. ==Switch== The single onboard Ethernet port is connected the CPU directly. The internal switch of the mt7621 SoC is disabled. ==Flash== The device has one spi nor flash chip. It is a 128 Mbit winbond 25Q128FVS connected to CS0. ==PCIe== The board features a single miniPCIe slot. It has a dedicated mini SIM socket and a USB 2.0 port. Power to the miniPCIe slot is controlled via GPIO9. ==USB== There are no external USB ports. ==Power== The board can accept both, passive PoE and external power via a 2.1 mm barrel jack (center-positive). The input voltage range is 11-32 V. ==Serial port== The device does have an onboard UART on an unpopulated header next to the flash chip: GND: pin 2 TX: pin 7 RX: pin 6 Settings: 115200, 8N1 See below illustration for positioning of the header. 0 = screw hole * = some pin T = TX pin R = RX pin G = GND pin Pinout: +--------------- |O | __ | / \ | \__/ | | | | +---+ | |RAM| | +--+ | | | |**| <- unpopulated header with UART | |*T| +---+ | |R*| +--------+ | |**| | | | |G*| | CPU | | +--+ | | | +--+ | | | | | +--------+ | +--+ <- flash chip |O | +-----+ | | | |+--+ | | || | | | +--------------------- =Installation= To install an OpenWRT image to the device two components must be built: 1. A openwrt initramfs image 2. A openwrt sysupgrade image ===initramfs & sysupgrade image=== Select target devices "Mikrotik RBM11G" in openwrt menuconfig and build the images. This will create the images "openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin" and "openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin" in the output directory. ==Installing== **Make sure to back up your RouterOS license in case you do ever want to go back to RouterOS using "/system license output" and back up the created license file.** When rebooted the board will try booting via ethernet first. If your board does not boot via ethernet automatically you will have to attach to the serial port and set ethernet as boot device within RouterBOOT. 1. Set up a dhcp server that points the bootfile to tftp server serving the "openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin" initramfs image 2. Connect to ethernet port on board 3. Power on the board 4. Wait for OpenWrt to boot Right now OpenWrt will be running with a SSH server listening. Now OpenWrt must be flashed to the devices flash: 1. Copy "openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin" to the device using scp. 2. Write openwrt to flash using "sysupgrade openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin" Once the flashing completes the board will reboot. Disconnect from the devices ethernet port or stop the DHCP/TFTP server to prevent the device from booting via ethernet again. The device should now boot straight to OpenWrt. Signed-off-by: Tobias Schramm <tobleminer@gmail.com>