| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
The two options 'emmc' and 'sdmmc' now became identical lines after
introducing CONFIG_TARGET_ROOTFS_PARTSIZE.
Remove the now useless if-clauses.
Fixes: a40b4d335a ("mediatek: use CONFIG_TARGET_ROOTFS_PARTSIZE")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
| |
The legacy image for the UniElec U7623-02 until now included
kmod-ata-ahci-mtk. The MT7623 chip doesn't have that IP and that
board uses a PCIe-connected AHCI controller for the SATA port and
mSATA-pins of the mPCIe socket. Hence include kmod-ata-ahci instead.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
Add U-Boot env settings to allow accessing the environment using
fw_printenv and fw_setenv tools on the UniElec U7623 board.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Users of older OpenWrt versions need sysupgrade using the *emmc.img.gz
file once which will upgrade U-Boot and switch to the new image layout.
Users of the vendor firmware need to first flash the legacy image to
then sunsequently carry out a full-flash upgrade.
Alternatively the board can also be flashed using MediaTek's
proprietary SP Flash Tool.
Configuration as well as persistent MAC address will be lost once at
this point and you will have to redo (or restore) all configuration
manually. To restore the previous persistent MAC address users may set
it manually using
fw_setenv ethaddr 00:11:22:33:44:55
For future upgrades once running OpenWrt past this commit, the usual
*sysupgrade.itb file can be used.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
Enable 'rootfs-part' feature to make the size of the partition of the
production image configurable instead of hard-coding it.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
Limit bmt remapping range to cover everything up to and including the kernel image,
use the rest of the flash area for ubi.
Fix partition table and sysupgrade support
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Specifications:
- SoC: MT7622
- RAM: 512MB
- Flash: MX35LF1GE4AB 128MB SPI NAND
- Ethernet: RTL8367S 5x1GbE
- WiFi: 2.4G: MT7622 5G: MT7615N x2
- Other ports: USB3.0 x1
Flash instruction:
*important*: upgrade vendor firmware to at least V7.1cu.643_B20200521
1. hold the reset button and power on the device. wait for about 10s
before releasing the reset button.
2. upload sysupgrade.bin via u-boot recovery page on http://192.168.1.1
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
|
|
|
|
|
|
|
| |
Restore BOOTFS_BLOCKS variable until U7623 gets brushed, so things
hopefully build now.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
| |
The image generation code for the U7623 board expects ext4 filesystem
to be selected in menuconfig and CONFIG_TARGET_ROOTFS_PARTSIZE to be
defined. Now that ext4 isn't enabled any more, the variable was missing
and broke the build.
Set the default (104) instead of using the config variable to fix that.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
When reworking the BPi-R2 the mtk-mmc-img build step was removed
despite it was still needed to build the image for the UniElec U7623
board. Add it back for now until U7623 gets its facelift.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
Support for MMC is built-into the kernel anyway, no need to select the
(empty/stub) kmod package.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* introduce recovery (=initramfs) vs. production dual boot scheme
* make use of uImage.FIT (instead of FAT partition)
* generate images using build steps (instead of external scripts)
* simplify sysupgrade and config restore (thanks to uImage.FIT)
* make sure mmc devices are ordered persistently (set DT aliases)
This commit breaks sysupgrade from existing installations, you will
have to re-install using the sdcard.img.gz image.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
In order to allow easily updating the bootloader on eMMC also provide
artifacts for that. Support for updating bootloader via TFTP will be
added to the loader CLI menu in a follow-up commit.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
Generating the sdcard.img.gz file requires the initramfs/recovery
image to be present. Use the newly introduced 'append-image-stage'
build command to fix the ImageBuilder for the BPi-R64.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
| |
Some of bpi-r64 boards have serial NAND attached to SPI bus.
Add SD card image support for installing openwrt to it.
Default to nand upgrade if root device is not mmc block device.
Separate preloader and uboot images for snand are generated.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
|
|
|
|
|
|
|
| |
eMMC booloader is stored to separate partition.
FIP size is increased to 2MB.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
|
|
|
|
|
|
|
|
| |
Builds images for the Ubiquiti Network UniFi 6 LR device running the
U-Boot build added by the previous commits.
Everything but MTD partitions is moved to dtsi.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
Populate the recovery and production partitions of the generated sdcard
image for the Bananapi BPi-R64.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
Ubiquiti's own bootloader expects the configuration mode to be present
with a "@" instead of a "-" for the sperator character. Otherwise
booting of the image fails.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
|
|
|
|
| |
The Bananapi BPi-R64 got a SATA interface which cannot be used at the
same time as the second mPCIe slot. The decission is made by hogging
GPIO 90.
Embed two addtional DT overlay blobs into the image to allow bootloader
selection of either SATA or PCIE1 feature.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
kmod-mt7615e kmod-mt7615-firmware and uboot-envtools are already part
of the target's default package set. No need to add them again for
buffalo_wsr-2533dhp2.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the Buffalo WSR-2533DHP2.
The device uses the Broadcom TRX image format with a special magic. To
be able to boot the images or load them they have to be wrapped with
different headers depending how it is loaded.
There are multiple ways to install OpenWrt on this device.
Boot ramdisk from U-Boot
----------------------------
This will load the image and not write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux to SDRAM via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-initramfs-kernel.bin
4. The system boots the image
Write to flash from U-Boot
-----------------------------
This will load the image over tftp and directly write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux Kernel then write to Flash via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory-uboot.bin
4. The system writes this image into the flash and boots into it.
Write to flash from Web UI
-----------------------------
This will load the image over over the Web UI and write it into the flash
1. Open the Web UI
2. Go to "管理" -> "ファームウェア更新"
3. Select "ローカルファイル指定" and click "更新実行"
4. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory.bin
5. The system writes this image into the flash and boots into it.
Specifications
-------------------
* SoC: MT7622 (4x4 2.4 GHz Wifi)
* Wifi: MT7615 (4x4 5 GHz Wifi)
* Flash: Winbond W29N01HZ 128MB SLC NAND
* RAM 256MB
* Ethernet: Realtek RTL8367S (5 x 1GBit/s, SoC via 2.5GBit/s)
Co-Developed-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* clean up whitespace to make GPT partitioning more readable
* don't select packages already part of the target default selection
* don't select U-Boot variants (breaks ImageBuilder)
* don't select AHCI on boards without SATA
* don't select kmod-usb2 and kmod-ohci, USB 1.x and USB 2.0 devices
work fine with the in-SoC XHCI host having just kmod-usb3 installed.
* select kmod-btmtkuart for devices with Bluetooth support
* sort DEVICE_PACKAGES
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
| |
dd on Mac OS X apparently fails when using 'M' unit for bs.
dd: bs: illegal numeric value
Use 'k' unit instead for 'pad-to' to fix that.
Reported-by: Georgi Valkov <gvalkov@abv.bg>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
| |
All mt7622 devices except for the UBI-variant of the mt7622-rfb1 carry
metadata appended to the sysupgrade image.
Add it for the mt7622-rfb1-ubi as well and check it on sysupgrade to
avoid accidentally flashing firmware for the wrong device (or variant
or future DEVICE_COMPAT_VERSION).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
- set only one EFI system partition
- use shorter path for DEVICE_DTS file
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
|
|
|
|
|
|
|
| |
mt7622 uses MBR partition for booting from SD card.
Add hybrid MBR entry with boot flag after PMBR entry.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
|
|
|
|
|
|
|
|
| |
The previous approach of referencing artifacts in follow-up artifacts
can't work with parallel builds in the current way image.mk is built.
Refactor things so this is not needed.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
Write everything needed for eMMC install into the gaps between
partitions on SD card. In that way, installation to eMMC only needs
the SD card, no additional files need to be loaded via TFTP any more.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
| |
This profile is meant to be used on MT7622 rfb1 AP, indicate that in
the name to make things less confusing.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
**What's new**
* Bring support for the Bananapi BPi-R64 to the level desirable for
a nice hackable routerboard.
* Use ARM Trusted Firmware A from source. (goodbye binary preloader)
* Use Das U-Boot from source. (see previous commit)
* Assemble SD-card image using OpenWrt image-commands.
(no gen_sd_cruz_foo.sh added, this is not Raspbian)
* Updated kernel options to support root filesystem.
* Updated DTS to match OpenWrt LAN ports, known LEDs, buttons, ...
* Detect root device, handle sysupgrade, config restore, ...
* Wire up (known) LEDs and buttons in OpenWrt-fashion.
* Build one set of images from SD-card and eMMC.
* Hopefully provide a good example of how things can be done right
from scratch.
**Installation and images**
* Have an empty SD-card at hand
* Write stuff to the card, as root (card device is /dev/mmcblkX)
- write header, gpt, bl2, atf, u-boot and recovery kernel:
`cat *bpi-r64-boot-sdcard.img *bpi-r64-initramfs-recovery.fit > /dev/mmcblkX`
- rescan partitions:
`blockdev --rereadpt /dev/mmcblkX`
- write main system to production partition:
`cat *bpi-r64-squashfs-sysupgrade.fit > /dev/mmcblkXp5`
* Installation to eMMC works using SD-card bootloader via TFTP
When running OpenWrt of SD-card, issue this to trigger installation
to eMMC:
`fw_setenv bootcmd run emmc_init`
Be prepared to serve the content of bin/targets/mediatek/mt7622 on
TFTP server address 192.168.1.254.
**What's missing**
* The red LED is always on, probably a hardware bug.
* AHCI (probably needs DTS changes)
* Ship SD-card image ready with every needed for eMMC install.
* The eMMC has a second, currently unused boot partition. This would
be ideal to store the WiFi EEPROM and Ethernet MAC address(es).
@sinovoip ideas?
Thanks to Thomas Hühn @thuehn for providing the hardware!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The vendor flash layout of the Linksys E8450 is problematic as it uses
the SPI-NAND chip without any wear-leveling while at the same time
wasting a lot of space for padding.
Use an all-UBI layout instead, storing the kernel+dtb+squashfs in
uImage.FIT standard format in UBI volume 'fit', the read-write
overlay in UBI volume 'rootfs_data' as well as reduntant U-Boot
environments 'ubootenv' and 'ubootenv2', and a 'recovery'
kernel+dtb+initramfs uImage.FIT for dual-boot.
** WARNING **
THIS PROCEDURE CAN EASILY BRICK YOUR DEVICE PERMANENTLY IF NOT CARRIED
OUT VERY CAREFULLY AND EXACTLY AS DESCRIBED!
Step 0
* Configure your PC to have the static IPv4 address 192.168.1.254/24
* Provide bin/targets/mediatek/mt7622 via TFTP
Now continue EITHER with step 1A or 1B, depending on your preference
(and on having serial console wired up or not).
Step 1A (Using the vendor web interface (or non-UBI OpenWrt install))
In order to update to the new bootloader and UBI-based firmware,
use the web browser of your choice to open the routers web-interface
accessible on http://192.168.1.1
* Navigate to
'Configuration' -> 'Administration' -> 'Firmware Upgrade'
* Upload the file
openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
and proceed with the upgrade.
* Once OpenWrt comes up, use SCP to upload the new bootloader files to
/tmp on the router:
*-mt7622-linksys_e8450-ubi-preloader.bin
*-mt7622-linksys_e8450-ubi-bl31-uboot.fip
* Connect via SSH as you will now need to replace the bootloader in
the Flash.
ssh root@192.168.1.1
(the usual warnings)
* First of all, backup all the flash now:
for mtd in /dev/mtdblock*; do
dd if=$mtd of=/tmp/$(basename $mtd);
done
* Then use SCP to copy /tmp/mtdblock* from the router and keep them
safe. You will need them should you ever want to return to the
factory firmware!
* Now flow the uploaded files:
mtd -e /dev/mtd0 write /tmp/*linksys_e8450-ubi-preloader.bin /dev/mtd0
mtd -e /dev/mtd1 write /tmp/*linksys_e8450-ubi-bl31-uboot.fip /dev/mtd1
If and only if both writes look like the completed successfully
reboot the router. Now continue with step 2.
Step 1B (Using the vendor bootloader serial console)
* Use the serial to backup all /dev/mtd* devices before using the
stock firmware (you got root shell when connected to serial).
* Then reboot and select 'U-Boot Console' in the boot menu.
* Copy the following lines, one by one:
tftpboot 0x40080000 openwrt-mediatek-mt7622-linksys_e8450-ubi-preloader.bin
tftpboot 0x40100000 openwrt-mediatek-mt7622-linksys_e8450-ubi-bl31-uboot.fip
nand erase 0x0 0x180000
nand write 0x40080000 0x0 0x180000
reset
Now continue with step 2
Step 2
Once the new bootchain comes up, the loader will initialize UBI and the
ubootenv volumes. It will then of course fail to find any bootable
volume and hence resort to load kernel via TFTP from server
192.168.1.254 while giving itself the address 192.168.1.1
The requested file is called
openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
and your TFTP server should provide exactly that :)
It will be written to UBI as recovery image and booted.
You can then continue and flash the production OS image, either
by using sysupgrade in the booted initramfs recovery OS, or by using
the bootloader menu and TFTP.
That's it. Go ahead and mess around with a bootchain built almost
completely from source (only DRAM calibration blobs are fitted in bl2,
and the irreplacable on-chip ROM loader remains, of course).
And enjoy U-Boot built with many great features out-of-the-box.
You can access the bootloader environment from within OpenWrt using the
'fw_printenv' and 'fw_setenv' commands. Don't be afraid, once you got
the new bootchain installed the device should be fairly unbrickable
(holding reset button before and during power-on resets things and
allows reflashing recovery image via TFTP)
Special thanks to @dvn0 (Devan Carpenter) for providing amazingly fast
infra for test-builds, allowing for `make clean ; make -j$(nproc)` in
less than two minutes :)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Linksys E8450, also known as Belkin RT3200, is a dual-band
IEEE 802.11bgn/ac/ax router based on MediaTek MT7622BV and
MediaTek MT7915AN chips.
FCC: K7S-03571 and K7S-03572
Hardware highlights:
- CPU: MediaTek MT7622BV (2x ARM Cortex-A53 @ 1350 MHz max.)
- RAM: 512MB DDR3
- Flash: 128MB SPI-NAND (2k+64)
- Ethernet: MT7531BE switch with 5 1000Base-T ports
CPU port connected with 2500Base-X
- WiFi 2.4 GHz: 802.11bgn 4T4R built-in antennas
MT7622VB built-in
- WiFi 5 GHz: 802.11ac/ax 4T4R built-in antennas
MT7915AN chip on-board via PCIe
MT7975AN front-end
- Buttons: Reset and WPS
- LEDS: 3 user controllable LEDs, 4 wired to switch
- USB: USB2.0, single port
- no Bluetooth (supported by SoC, not wired on board)
- Serial: JST PH 2.0MM 6 Pin connector inside device
----_____________----
[ GND RX - TX - - ]
---------------------
- JTAG: unpopulated ARM JTAG 20-pin connector (works)
This commit adds support for the device in a way that is compatible
with the vendor firmware's bootloader and dual-boot flash layout, the
resulting image can directly be flashed using the vendor firmware.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
| |
Switch mt7622 subtarget to Linux 5.10, it has been tested by many of us
on several devices for a couple of weeks already.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MediaTek targets always use U-Boot's modern uImage.FIT format which
allows bundling several blobs into a single file including hashes,
descriptions and more. In fact, we are already using that to bundle
the Flattened Device Tree blob with the kernel on this and many
other targets.
In the same fashion, we can now make use of the newly introduced
support for building seperate ramdisk to uImage.FIT with a dedicated
initrd blob checked and loaded by U-Boot instead of embedding the
cpio archive into the kernel itself.
This allows for having larger ramdisks, choosing ramdisk compression
independently of kernel compression (while only kernel is decompressed
by the bootloader) and for more easily replacing or modifying the
filesystem contained in an initramfs image.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
| |
f2fs tools are needed for generating f2fs overlay.
vfat modules are used for recovery mounting.
Fixes: f72a2b004c3 ("mediatek: add bpi-r64 emmc support")
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
|
|
|
|
|
|
|
| |
Instead of adding those device tree sources using a patch, simply move
them to the newly created dts folder.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Use approach suggested by Adrian Schmutzler instead of introducing
another device variable.
Also revert the unnecessary white-space changes accidentally introduced
by the previous commit.
Fixed: c067b1e79b ("mediatek: move out-of-tree DTS files to dedicated dts folder")
Suggested-by: Adrian Schmutzler <mail@adrianschmutzler.de>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Use dedicated dts folder like on ramips to store device tree source
files for boards not already supported in vanilla Linux.
Doing so instead of having them in files-* has several advantages:
* we don't need to duplicate them for several kernel versions
* changes to a device tree don't trigger a complete kernel rebuild
* the files are more obvious to find
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hardware
--------
MediaTek MT7622
512MB DDR3 RAM
64M SPI-NOR Flash (Winbond W25Q512JV)
MediaTek MT7622 802.11bgn 4T4R WMAC
MediaTek MT7915 802.11ax 4T4R
Marvell AQR1112 100/1000/2500 NBase-T PHY
Holtek HT32F52241 LED controller
Reset Switch
UART
----
CPU UART0 at the pinout next to the Holtek MCU.
Pinout (first pin next to SoC / MCU)
0 3V3
1 RX
2 TX
3 GND
Settings are 115200 8N1.
Opening the case
----------------
Opening the case is not a nice task, as itis glued together. Insert a
flat knife between the front and back casing below the ethernet port.
Open up a gap this way and insert a flat scredriver, remove the knife.
Work your way around the casing by applying force to seperate the front
and back casing. This losens the glue and opens the plastic clips. Be
gentle, as these clips are very cheap and break quickly.
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Transfer the OpenWrt sysupgrade image to the device using SCP.
3. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
4. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock6
5. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock8
$ dd if=openwrt.bin of=/dev/mtdblock9
6. Reboot the device. It should boot into OpenWrt.
Signed-off-by: David Bauer <mail@david-bauer.net>
|
|
|
|
|
|
| |
Use SPDX license tags to allow machines to check licenses.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
| |
Use SPDX license tags to allow machines to check licenses.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
|
|
|
|
| |
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out that 'echo -e' isn't portable; it doesn't work in the dash
builtin echo and Ubuntu users are complaining.
I can't even get octal (specified by POSIX) to work consistently because
those variants of 'echo' which *do* support -e don't seem to interpret
octalwithout it.
I could switch to /bin/echo but using -e with that isn't actually
portable *either* even though it works today.
For now just stick with bash, and use its builtin. We may end up using
something else entirely; perhaps perl.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a full eMMC image including U-Boot, which means that the
kernel can inherit the true RAM size detected by the preloader.
As implemented in previous commits, sysupgrade to this image from
the legacy layout (and via that, from the vendor-installed image)
is supported.
Rename the legacy image for the 512MiB board, for clarity.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
|
|
|
| |
As I buy more hardware and continue to work on consolidation, This will
apply to a lot of MediaTek platforms; rename it accordingly.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
|
|
|
|
|
|
|
| |
This actually covers fairly much all the MediaTek platforms; they
only have different images because they don't include the preloader
and U-Boot, and rely on preinstalled stuff from the vendor.
So this script can slowly take over the world as we complete the
support for various other platforms, starting with UniElec U7623…
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many MediaTek SoCs can be unbricked by using the SP Flash Tool from
http://spflashtool.com/ along with a "scatter list" file, which is
just a text file listing which image gets loaded where.
We use a trivial partition layout for the tool, with the whole eMMC
image as a single "partition", which means users just need to unzip
the sysupgrade image. Doing the real partition layout would be overly
complex and would require the individual partitions to be shipped
as artifacts — or users to extract them out of the sysupgrade image
just for the tool to put them adjacent to each other on the eMMC
anyway.
The tool does require a copy of the preloader in order to operate,
even when it isn't flashing the preloader to the eMMC boot region.
So drop that into the bin directory as an artifact too.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
|
|
|
|
|
| |
bpi-r2 images are shipped with mainline u-boot which can extract lzma
with no problem.
remove custom kernel recipe to build lzma fit image instead of
uncompressed fit with zboot.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
|