aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ath79
Commit message (Collapse)AuthorAgeFilesLines
* ath79: fix ar934x spi driver delaysOskari Lemmela2022-05-172-0/+89
| | | | | | | | | Backport spi driver delay fixes from the 5.17-rc1 kernel. Signed-off-by: Oskari Lemmela <oskari@lemmela.net> [port also to kernel 5.15] Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com> (cherry picked from commit f8e65fecee1a60a5cde827d4f5df751a02916156)
* ath79: add Netgear WNDAP360Nick Hainke2022-05-174-2/+189
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SoC: Atheros AR7161 RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C) Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g) WLAN: 2.4/5 GHz 2.4 GHz: Atheros AR9220 5 GHz: Atheros AR9223 Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021) LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin) UART: RJ45 9600,8N1 Power: 12 VDC, 1.0 A Installation instruction: 0. Make sure you have latest original firmware (3.7.11.4) 1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232 (9600,8N1) screen /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal 2. Configure your IP-Address to 192.168.1.42 3. When device boots hit spacebar 3. Configure the device for tftpboot setenv ipaddr 192.168.1.1 setenv serverip 192.168.1.42 saveenv 4. Reset the device reset 5. Hit again the spacebar 6. Now load the image via tftp: tftpboot 0x81000000 INITRAMFS.bin 7. Boot the image: bootm 0x81000000 8. Copy the squashfs-image to the device. 9. Do a sysupgrade. https://openwrt.org/toh/netgear/wndap360 The device should be converted from kmod-owl-loader to nvmem-cells in the future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing. That is why this commit is still using kmod-owl-loader. In the future the device tree may look like this: &ath9k0 { nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>; nvmem-cell-names = "mac-address", "calibration"; }; &ath9k1 { nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>; nvmem-cell-names = "mac-address", "calibration"; }; &art { ... cal_art_1000: cal@1000 { reg = <0x1000 0xeb8>; }; cal_art_5000: cal@5000 { reg = <0x5000 0xeb8>; }; }; Signed-off-by: Nick Hainke <vincent@systemli.org> (cherry picked from commit 88527294cda0a46d927b3bca6dbaab507fa1cb96)
* ath79: add support for TP-Link Deco M4R v1 and v2Foica David2022-05-174-0/+169
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the TP-Link Deco M4R (it can also be M4, TP-Link uses both names) v1 and v2. It is similar hardware-wise to the Archer C6 v2. Software-wise it is very different. V2 has a bit different layout from V1 but the chips are the same and the OEM firmware is the same for both versions. Specifications: SoC: QCA9563-AL3A RAM: Zentel A3R1GE40JBF Wireless 2.4GHz: QCA9563-AL3A (main SoC) Wireless 5GHz: QCA9886 Ethernet Switch: QCA8337N-AL3C Flash: 16 MB SPI NOR Flashing: The device's bootloader only accepts images that are signed using TP-Link's RSA key, therefore this way of flashing is not possible. The device has a web GUI that should be accessible after setting up the device using the app (it requires the app to set it up first because the web GUI asks for the TP-Link account password) but for unknown reasons, the web GUI also refuses custom images. There is a debug firmware image that has been shared on the device's OpenWrt forum thread that has telnet unlocked, which the bootloader will accept because it is signed. It can be used to transfer an OpenWrt image file over to the device and then be used with mtd to flash the device. Pre-requisites: - Debug firmware. - A way of transferring the file to the router, you can use an FTP server as an example. - Set a static IP of 192.168.0.2/255.255.255.0 on your computer. - OpenWrt image. Installation: - Unplug your router and turn it upside down. Using a long and thin object like a SIM unlock tool, press and hold the reset button on the router and replug it. Keep holding it until the LED flashes yellow. - Open 192.168.0.1. You should see the bootloader recovery's webpage. Choose the debug firmware that you downloaded and flash it. Wait until the router reboots (at this stage you can remove the static IP). - Open a terminal window and connect to the router via telnet (the primary router should have a 192.168.0.1 IP address, secondary routers are different). - Transfer the file over to the router, you can use curl to download it from the internet (use the insecure flag and make sure your source accepts insecure downloads) or from an FTP server. - The router's default mtd partition scheme has kernel and rootfs separated. We can use dd to split the OpenWrt image file and flash it with mtd: dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256 dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256 - Once the images are ready, you have to flash the device using mtd (make sure to flash the correct partitions or you may be left with a hard bricked router): mtd write kernel.bin kernel mtd write rootfs.bin rootfs - Flashing is done, reboot the device now. Signed-off-by: Foica David <superh552@gmail.com> (cherry picked from commit 063e9047cc8b247ea4b04ee3248b99f3212a42f8)
* kernel: bump 5.10 to 5.10.114John Audia2022-05-171-4/+4
| | | | | | | | | | | All patches automatically rebased. Build system: x86_64 Build-tested: bcm2711/RPi4B Run-tested: bcm2711/RPi4B Signed-off-by: John Audia <therealgraysky@proton.me> (cherry picked from commit 8592df67f40b3afdee68e36dc3820187ec0f98fc)
* ath79: ZTE MF286[A,R]: add "Power button blocker" GPIO switchLech Perczak2022-05-151-0/+20
| | | | | | | | | | | | | | | | ZTE MF286A and MF286R feature a "power switch override" GPIO in stock firmware as means to prevent power interruption during firmware update, especially when used with internal battery. To ensure that this GPIO is properly driven as in stock firmware, configure it with userspace GPIO switch. It was observed that on some units, the modem would not be restarted together with the board itself on reboot, this should help with that as well. Signed-off-by: Lech Perczak <lech.perczak@gmail.com> (cherry picked from commit 1fabeeb799abca1d4fb5ba541410ba847cdc20d9)
* ath79: fix I2C on GL-AR300M devicesPtilopsis Leucotis2022-05-151-0/+9
| | | | | | | | | | | | On GL-AR300M Series GPIO17 described as I2C SDA in Device Tree. Because of GPIO_OUT_FUNCTION4 register was not initialized on start, GPIO17 was uncontrollable, it always in high state. According to QCA9531 documentation, default setting of GPIO17 is SYS_RST_L. In order to make GPIO17 controllable, it should write value 0x00 on bits [15:8] of GPIO_OUT_FUNCTION4 register, located at 0x1804003C address. Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com> (cherry picked from commit 57efdd6a2d815d2491c5b7f22ffaeb6a845bfd0a)
* kernel: bump 5.10 to 5.10.113John Audia2022-05-011-2/+2
| | | | | | | | | | | All patches automatically rebased. Build system: x86_64 Build-tested: bcm2711/RPi4B, mt7622/RT3200 Run-tested: bcm2711/RPi4B, mt7622/RT3200 Signed-off-by: John Audia <graysky@archlinux.us> (cherry picked from commit e08942e76a162962892020a0f7e52ef751ec68e4)
* kernel: bump 5.10 to 5.10.112John Audia2022-05-011-3/+3
| | | | | | | | | | | | | | Manually rebased: ath79/patches-5.10/901-phy-mdio-bitbang-prevent-rescheduling-during-command.patch All other patches automatically rebased. Build system: x86_64 Build-tested: bcm2711/RPi4B, mt7622/RT3200 Run-tested: bcm2711/RPi4B, mt7622/RT3200 Signed-off-by: John Audia <graysky@archlinux.us> (cherry picked from commit cab20be008591f89dd89c4e444cdf022fa7f57eb)
* ath79: add USB power control for GL-AR300M seriesPtilopsisLeucotis2022-05-012-0/+17
| | | | | | | | | | | Add USB power control in DTS for GL.iNet models: - AR300M; - AR300M-Ext; - AR300M16; - AR300M16-Ext. Signed-off-by: PtilopsisLeucotis <PtilopsisLeucotis@yandex.com> (cherry picked from commit 6e9c814022e41a7cfa4db3b1a41e257fd1515bea)
* ath79: ubnt: drop swconfig on ac-{lite,lr,mesh}Martin Weinelt2022-05-011-0/+3
| | | | | | | These don't have switches that could be configured using swconfig. Signed-off-by: Martin Weinelt <hexa@darmstadt.ccc.de> (cherry picked from commit 089eb02abcd7512c6d182953560eb2453ef144ca)
* ath79: ZTE MF286R: add comgt-ncm to DEVICE_PACKAGESLech Perczak2022-05-011-1/+2
| | | | | | | | | | | | When adding support to the router's built-in modem, this required package was omitted, because it was already enabled in the image configuration in use for testing, and this went unnoticed. In result, the modem still isn't fully supported in official images. As it is the primary WAN interface, add the missing package. Fixes: e02fb42c53ba ("comgt: support ZTE MF286R modem") Signed-off-by: Lech Perczak <lech.perczak@gmail.com> (cherry picked from commit 8a1003c5986514d7a78f78b3ee94003837d82582)
* ath79: add support for Sophos AP100/AP55 familyAndrew Powers-Holmes2022-04-198-0/+281
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access points based on the Qualcomm QCA9558 SoC. They share PCB designs with several devices that already have partial or full support, most notably the Devolo DVL1750i/e. The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however the 55 models' ART does not contain calibration data for their third chain despite it being present on the PCB. Specifications common to all models: - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor) - 128 MB RAM - 16 MB SPI flash - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in - Green and Red status LEDs sharing a single external light-pipe - Reset button on PCB[1] - Piezo beeper on PCB[2] - Serial UART header on PCB - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC Unique to AP100 and AP100C: - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express) AP55 and AP55C: - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express) AP100 and AP55: - External RJ45 serial console port[3] - USB 2.0 Type A port, power controlled via GPIO 11 Flashing instructions: This firmware can be flashed either via a compatible Sophos SG or XG firewall appliance, which does not require disassembling the device, or via the U-Boot console available on the internal UART header. To flash via XG appliance: - Register on Sophos' website for a no-cost Home Use XG firewall license - Download and install the XG software on a compatible PC or virtual machine, complete initial appliance setup, and enable SSH console access - Connect the target AP device to the XG appliance's LAN interface - Approve the AP from the XG Web UI and wait until it shows as Active (this can take 3-5 minutes) - Connect to the XG appliance over SSH and access the Advanced Console (Menu option 5, then menu option 3) - Run `sudo awetool` and select the menu option to connect to an AP via SSH. When prompted to enable SSH on the target AP, select Yes. - Wait 2-3 minutes, then select the AP from the awetool menu again. This will connect you to a root shell on the target AP. - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc - Run `mtd -r write /tmp/openwrt.bin astaro_image` - When complete, the access point will reboot to OpenWRT. To flash via U-Boot serial console: - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with netmask 255.255.255.0 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C' - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4] - Connect the AP ethernet to your PC's ethernet port - Connect a terminal to the UART at 115200 8/N/1 as usual - Power on the AP and press a key to cancel autoboot when prompted - Run the following commands at the U-Boot console: - `tftpboot` - `cp.b $fileaddr 0x9f070000 $filesize` - `boot` - The access point will boot to OpenWRT. MAC addresses as verified by OEM firmware: use address source LAN label config 0x201a (label) 2g label + 1 art 0x1002 (also found at config 0x2004) 5g label + 9 art 0x5006 Increments confirmed across three AP55C, two AP55, and one AP100C. These changes have been tested to function on both current master and 21.02.0 without any obvious issues. [1] Button is present but does not alter state of any GPIO on SoC [2] Buzzer and driver circuitry is present on PCB but is not connected to any GPIO. Shorting an unpopulated resistor next to the driver circuitry should connect the buzzer to GPIO 4, but this is unconfirmed. [3] This external RJ45 serial port is disabled in the OEM firmware, but works in OpenWRT without additional configuration, at least on my three test units. [4] On AP100/AP55 models the UART header is accessible after removing the device's top cover. On AP100C/AP55C models, the PCB must be removed for access; three screws secure it to the case. Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net> (cherry picked from commit 6f1efb28983758116a8ecaf9c93e1d875bb70af7)
* ath79: add support for MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)Ryan Mounce2022-04-196-0/+254
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac) Specifications: - SoC: QCA9558 - RAM: 128 MB - Flash: 16 MB SPI - 2.4GHz WLAN: 3x3:3 802.11n on SoC - 5GHz WLAN: 3x3:3 802.11ac on QCA9880 connected via PCIe - Switch: 5x 1000/100/10 on QCA8337 connected via RGMII - SFP cage: connected via SGMII (tested with genuine & generic GLC-T) - USB: 1x type A, GPIO power switch - PoE: Passive input on Ether1, GPIO switched passthrough to Ether5 - Reset button - "SFP" LED connected to SoC - Ethernet LEDs connected to QCA8337 switch - Green WLAN LED connected to QCA9880 Not working: - Red WLAN LED Installation: TFTP boot initramfs image and then perform sysupgrade. Follow common MikroTik procedure as in https://openwrt.org/toh/mikrotik/common. Signed-off-by: Ryan Mounce <ryan@mounce.com.au> (cherry picked from commit c2140e32ce32b9cc60f7d408e20bdf45dce6a634)
* ath79: add support for MikroTik RouterBOARD wAP-2nD (wAP)David Musil2022-04-185-1/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | The MikroTik RouterBOARD wAP-2nd (sold as wAP) is a small 2.4 GHz 802.11b/g/n PoE-capable AP. Specifications: - SoC: Qualcomm Atheros QCA9533 - Flash: 16 MB (SPI) - RAM: 64 MB - Ethernet: 1x 10/100 Mbps (PoE in) - WiFi: AR9531 2T2R 2.4 GHz (SoC) - 3x green LEDs (1x lan, 1x wlan, 1x user) See https://mikrotik.com/product/RBwAP2nD for more info. Flashing: TFTP boot initramfs image and then perform sysupgrade. Follow common MikroTik procedure as in https://openwrt.org/toh/mikrotik/common. Note: following 781d4bfb397cdd12ee0151eb66c577f470e3377d The network setup avoids using the integrated switch and connects the single Ethernet port directly. This way, link speed (10/100 Mbps) is properly reported by eth0. Signed-off-by: David Musil <0x444d@protonmail.com> (cherry picked from commit e20de224427008e0f26161f924bc347d974fd15a)
* ath79: add support for Yuncore A930Thibaut VARÈNE2022-04-152-0/+128
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR - 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN) - 2T2R 802.11b/g/n 2.4GHz Flash instructions: If your device comes with generic QSDK based firmware, you can login over telnet (login: root, empty password, default IP: 192.168.188.253), issue first (important!) 'fw_setenv' command and then perform regular upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download image to the device, SSH server is not available): fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin In case your device runs firmware with YunCore custom GUI, you can use U-Boot recovery mode: 1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with 'tftp' image renamed to 'upgrade.bin' 2. Power the device with reset button pressed and release it after 5-7 seconds, recovery mode should start downloading image from server (unfortunately, there is no visible indication that recovery got enabled - in case of problems check TFTP server logs) Signed-off-by: Clemens Hopfer <openwrt@wireloss.net> Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> (cherry picked from commit a05dcb07241aa83a4416b56201e31b4af8518981)
* ath79: add support for Yuncore XD3200Thibaut VARÈNE2022-04-155-2/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR - 2T2R 802.11b/g/n 2.4GHz - 2T2R 802.11n/ac 5GHz - 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port) LED for 5 GHz WLAN is currently not supported as it is connected directly to the QCA9882 radio chip. Flash instructions: If your device comes with generic QSDK based firmware, you can login over telnet (login: root, empty password, default IP: 192.168.188.253), issue first (important!) 'fw_setenv' command and then perform regular upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download image to the device, SSH server is not available): fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin In case your device runs firmware with YunCore custom GUI, you can use U-Boot recovery mode: 1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with 'tftp' image renamed to 'upgrade.bin' 2. Power the device with reset button pressed and release it after 5-7 seconds, recovery mode should start downloading image from server (unfortunately, there is no visible indication that recovery got enabled - in case of problems check TFTP server logs) Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> (cherry picked from commit c91df224f54fdd44c9c0487a8c91876f5d273164)
* ath79: Move TPLink WPA8630Pv2 to ath79-tiny targetJoe Mullally2022-04-109-42/+95
| | | | | | | | | | | | | | | | | | | | | | | | | | | | These devices only have 6MiB available for firmware, which is not enough for recent release images, so move these to the tiny target. Note for users sysupgrading from the previous ath79-generic snapshot images: The tiny target kernel has a 4Kb flash erase block size instead of the generic target's 64kb. This means the JFFS2 overlay partition containing settings must be reformatted with the new block size or else there will be data corruption. To do this, backup your settings before upgrading, then during the sysupgrade, de-select "Keep Settings". On the CLI, use "sysupgrade -n". If you forget to do this and your system becomes unstable after upgrading, you can do this to format the partition and recover: * Reboot * Press RESET when Power LED blinks during boot to enter Failsafe mode * SSH to 192.168.1.1 * Run "firstboot" and reboot Signed-off-by: Joe Mullally <jwmullally@gmail.com> Tested-by: Robert Högberg <robert.hogberg@gmail.com> (cherry picked from commit 44e1e5d153d00915a7e516c9af3f440cbd84cf78)
* ath79: migrate Archer C5 5GHz radio device pathsJan-Niklas Burfeind2022-03-311-0/+1
| | | | | | | | | | | | When upgrading a TP-Link Archer C5 v1 from ar71xx to ath79, the 5ghz radio stops working because the device path changed. Same has been done for the Archer C7 before: commit e19506f20618 ("ath79: migrate Archer C7 5GHz radio device paths") Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me> (cherry picked from commit c6eb63d48f942f1e54737ed182776cf9a08de542)
* ath79: fix label MAC address for Ubiquiti UniFi AP Outdoor+Matthias Schiffer2022-03-303-2/+4
| | | | | | | | | | The label has the MAC address of eth0, not the WLAN PHY address. We can merge the definition back into ar7241_ubnt_unifi.dtsi, as both DTS derived from it use the same interface for their label MAC addresses after all. Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net> (cherry picked from commit aee9ccf5c1b536189ebee8c232273657334da843)
* ath79: fix link for long cables with OCEDO RaccoonDavid Bauer2022-03-261-1/+12
| | | | | | | | | | The OCEDO Raccoon had significant packet-loss with cables longer than 50 meter. Disabling EEE restores normal operation. Also change the ethernet config to reduce loss on sub-1G links. Signed-off-by: David Bauer <mail@david-bauer.net> (cherry picked from commit 4551bfd91f31be5987727c77e58333fa06ba3acd)
* ath79: fix TPLINK_HWREV field for TL-WR1043ND v4Matthias Schiffer2022-03-251-0/+1
| | | | | | | | | | | Required to allow sysupgrades from OpenWrt 19.07. Closes #7071 Fixes: 98fbf2edc021 ("ath79: move TPLINK_HWID/_HWREV to parent for tplink-safeloader") Tested-by: J. Burfeind <git@aiyionpri.me> Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net> (cherry picked from commit 8ba71f1f6f2359f9cf54201e9fc037df33f123c0)
* ath79: change Ubiquiti UniFi AP model name to include "AP"Matthias Schiffer2022-03-242-2/+2
| | | | | | | | | | While it hasn't always been clear whether the "AP" is part of the model name on the Ubiquiti website, we include it for all other pre-AC variants (AP Pro and the AP Outdoor+). Add it to the original UniFi AP as well for consistency. Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net> (cherry picked from commit dc23df8a8ca728871d84f0a140f4b52c36b03f1d)
* ath79: fix label MAC address for Ubiquiti UniFiMatthias Schiffer2022-03-243-4/+2
| | | | | | | The label has the MAC address of eth0, not the WLAN PHY address. Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net> (cherry picked from commit 2a02b7049966dc77ae9519ca165f29b75e0dbf0e)
* ath79: improve support for GL.iNet GL-XE300Pascal Coudurier2022-03-173-1/+10
| | | | | | | | | | - fix eth0 eth1 sharing same mac so it conforms to the behavior stated in the original commit and the way it is in vendor firmware : WAN is label, LAN is label +1 and WLAN is label +2 - add default leds config - add default network config Signed-off-by: Pascal Coudurier <coudu@wanadoo.fr>
* ath79: add support for Araknis AN-700-AP-I-ACMichael Pratt2022-03-135-0/+119
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: 2AG6R-AN700APIAC Araknis AN-700-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:xb art 0x0 phy1 2.4G *:xc --- phy0 5GHz *:xd --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Araknis AN-500-AP-I-ACMichael Pratt2022-03-135-0/+120
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: 2AG6R-AN500APIAC Araknis AN-500-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1200 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:e1 art 0x0 phy1 2.4G *:e2 --- phy0 5GHz *:e3 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Araknis AN-300-AP-I-NMichael Pratt2022-03-135-0/+134
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-AN300APIN Araknis AN-300-AP-I-N is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EWS310AP the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2 - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM 1839ZFG V59C1512164QFJ25 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:7d art 0x0 phy1 2.4G *:7e --- phy0 5GHz *:7f --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: improve factory.bin for some Senao devicesMichael Pratt2022-03-131-1/+3
| | | | | | | | | | | | | | | | | | | | | | | Some boards with firmware made with Senao SDK based on Linux 3.3 have the following lines in the OEM upgrade script at /etc/fwupgrade.sh local append="" local CONF_TAR="/tmp/sysupgrade.tgz" [ -f "$CONF_TAR" ] && append="-j $CONF_TAR" and \# check FWINFO filename [ -z $(ls FWINFO* | grep -i ${modelname}) ] && errcode="1" This addition also prevents needing to factory reset after flashing for some boards that also have these lines in the script \# Support downgrade but do default (Smart v2.x.x.x -> senaowrt v1.x.x.x) [ $(ls FWINFO* | grep -i ${modelname} | cut -d "-" -f4 | cut -c 2) -lt 2 ] && append="" Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: Add LED labels for Airtight C-75Sven Schwermer2022-03-131-0/+2
| | | | | | | | | Keep labels since OpenWrt userland tooling (get_dt_led) depends on them to find the LED instances referenced by the led-* aliases. The label for the amber power LED was removed in 4eefdc7adb. Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
* ath79: fix button labels for WZR-HP-AG300H and WZR-600DHPJeffery To2022-03-081-0/+6
| | | | | | | | These were present in ar71xx but overlooked when porting to ath79. Fixes: 480bf2827392 ("ath79: add support for Buffalo WZR-HP-AG300H") Signed-off-by: Jeffery To <jeffery.to@gmail.com>
* ath79: add support for MikroTik RouterBOARD mAP liteThibaut VARÈNE2022-03-085-1/+81
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The MikroTik RouterBOARD mAPL-2nd (sold as mAP Lite) is a small 2.4 GHz 802.11b/g/n PoE-capable AP. See https://mikrotik.com/product/RBmAPL-2nD for more info. Specifications: - SoC: Qualcomm Atheros QCA9533 - RAM: 64 MB - Storage: 16 MB NOR - Wireless: Atheros AR9531 (SoC) 802.11b/g/n 2x2:2, 1.5 dBi antenna - Ethernet: Atheros AR8229 (SoC), 1x 10/100 port, 802.3af/at PoE in - 4 user-controllable LEDs: · 1x power (green) · 1x user (green) · 1x lan (green) · 1x wlan (green) Flashing: TFTP boot initramfs image and then perform sysupgrade. Follow common MikroTik procedure as in https://openwrt.org/toh/mikrotik/common. Note: following 781d4bfb397cdd12ee0151eb66c577f470e3377d The network setup avoids using the integrated switch and connects the single Ethernet port directly. This way, link speed (10/100 Mbps) is properly reported by eth0. Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
* ath79: Add green power LED to Airtight C-75Sven Schwermer2022-03-081-7/+15
| | | | | | | In addition to the missing green LED definition, the polarity of the amber power LED was incorrect which is fixed here. Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
* kernel: bump 5.10 to 5.10.103Rui Salvaterra2022-03-051-2/+2
| | | | | | Patches automatically rebased. Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
* kernel: bump 5.10 to 5.10.102John Audia2022-03-013-8/+8
| | | | | | | | | | | | | | | Removed upstreamed: bcm4908/patches-5.10/180-i2c-brcmstb-fix-support-for-DSL-and-CM-variants.patch[1] All other patches automatically rebased. 1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.102&id=f333c1916fd6b55900029bf8f918cc00009e2111 Build system: x86_64 Build-tested: bcm2711/RPi4B, mt7622/RT3200 Run-tested: bcm2711/RPi4B, mt7622/RT3200 Signed-off-by: John Audia <graysky@archlinux.us>
* ath79: add support for TP-Link Archer A9 v6Piotr Dymacz2022-02-274-0/+265
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer A9 v6 (FCCID: TE7A9V6) is an AC1900 Wave-2 gigabit home router based on a combination of Qualcomm QCN5502 (most likely a 4x4:4 version of the QCA9563 WiSOC), QCA9984 and QCA8337N. The vendor's firmware content reveals that the same device might be available on the US market under name 'Archer C90 v6'. Due to lack of access to such hardware, support introduced in this commit was tested only on the EU version (sold under 'Archer A9 v6' name). Based on the information on the PL version of the vendor website, this device has been already phased out and is no longer available. Specifications: - Qualcomm QCN5502 (775 MHz) - 128 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 5x Gbps Ethernet (Qualcomm QCA8337N over SGMII) - Wi-Fi: - 802.11b/g/n on 2.4 GHz: Qualcomm QCN5502* in 4x4:4 mode - 802.11a/n/ac on 5 GHz: Qualcomm QCA9984 in 3x3:3 mode - 3x non-detachable, dual-band external antennas (~3.5 dBi for 5 GHz, ~2.2 dBi for 2.4 GHz, IPEX/U.FL connectors) - 1x internal PCB antenna for 2.4 GHz (~1.8 dBi) - 1x USB 2.0 Type-A - 11x LED (4x connected to QCA8337N, 7x connected to QCN5502) - 2x button (reset, WPS) - UART (4-pin, 2.54 mm pitch) header on PCB (not populated) - 1x mechanical power switch - 1x DC jack (12 V) *) unsupported due to missing support for QCN550x in ath9k UART system serial console notice: The RX signal of the main SOC's UART on this device is shared with the WPS button's GPIO. The first-stage U-Boot by default disables the RX, resulting in a non-functional UART input. If you press and keep 'ENTER' on the serial console during early boot-up, the first-stage U-Boot will enable RX input. Vendor firmware allows password-less access to the system over serial. Flash instruction (vendor GUI): 1. It is recommended to first upgrade vendor firmware to the latest version (1.1.1 Build 20210315 rel.40637 at the time of writing). 2. Use the 'factory' image directly in the vendor's GUI. Flash instruction (TFTP based recovery in second-stage U-Boot): 1. Rename 'factory' image to 'ArcherA9v6_tp_recovery.bin' 2. Setup a TFTP server on your PC with IP 192.168.0.66/24. 3. Press and hold the reset button for ~5 sec while turning on power. 4. The device will download image, flash it and reboot. Flash instruction (web based recovery in first-stage U-Boot): 1. Use 'CTRL+C' during power-up to enable CLI in first-stage U-Boot. 2. Connect a PC with IP set to 192.168.0.1 to one of the LAN ports. 3. Issue 'httpd' command and visit http://192.168.0.1 in browser. 4. Use the 'factory' image. If you would like to restore vendor's firmware, follow one of the recovery methods described above. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: add support for ALFA Network Tube-2HQPiotr Dymacz2022-02-274-0/+85
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which was based on the Atheros AR9331. The new version uses Qualcomm QCA9531. Specifications: - Qualcomm/Atheros QCA9531 v2 - 650/400/200 MHz (CPU/DDR/AHB) - 64 or 128 MB of RAM (DDR2) - 16+ MB of flash (SPI NOR) - 1x 10/100 Mbps Ethernet with passive PoE input (24 V) (802.3at/af PoE support with optional module) - 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA - 1x Type-N (male) antenna connector - 6x LED (5x driven by GPIO) - 1x button (reset) - external h/w watchdog (EM6324QYSP5B, enabled by default) - UART (4-pin, 2.00 mm pitch) header on PCB Flash instruction: You can use sysupgrade image directly in vendor firmware which is based on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot: 1. Configure PC with static IP 192.168.1.2/24. 2. Connect PC with one of RJ45 ports, press the reset button, power up device, wait for first blink of all LEDs (indicates network setup), then keep button for 3 following blinks and release it. 3. Open 192.168.1.1 address in your browser and upload sysupgrade image. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: utilize ath9k 'nvmem-cells' on ALFA Network boardsPiotr Dymacz2022-02-273-30/+49
| | | | | | | Drop custom 'mtd-cal-data' and switch to 'nvmem-cells' based solution for fetching radio calibration data and its MAC address. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: reduce 'nvmem-cells' definitions on ALFA Network QCA9531 boardsPiotr Dymacz2022-02-274-30/+8
| | | | | | | | | | All the QCA9531 based boards from ALFA Network are based on the same design and share a common DTSI: 'qca9531_alfa-network_r36a.dtsi'. Instead of defining 'nvmem-cells' for the MAC address in every device's DTS, move definition to the common DTSI file. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: support ZTE MF286A/RLech Perczak2022-02-267-201/+406
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit Ethernet switch, FXS and external USB 2.0 port. Hardware highlights: - CPU: QCA9563 SoC at 775MHz, - RAM: 128MB DDR2, - NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only, - NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data, - Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio, - WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio, - Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port, - WWAN: [MF286A] MDM9230-based category 6 internal LTE modem [MF286R] PXA1826-based category 7 internal LTE modem in extended mini-PCIE form factor, with 3 internal antennas and 2 external antenna connections, single mini-SIM slot. - FXS: one external ATA port (handled entirely by modem part) with two physical connections in parallel, - USB: Single external USB 2.0 port, - Switches: power switch, WPS, Wi-Fi and reset buttons, - LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery, Signal state) handled entirely by modem. 4 link status LEDs handled by the switch on the backside. - Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and monitoring handled by modem. - Label MAC device: eth0 The device shares many components with previous model, MF286, differing mostly by a Wave2 5GHz radio, flash layout and internal LED color. In case of MF286A, the modem is the same as in MF286. MF286R uses a different modem based on Marvell PXA1826 chip. Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully supported, but it is expected to use comgt-ncm for connection, as it uses standard 3GPP AT commands for connection establishment. Console connection: connector X2 is the console port, with the following pinout, starting from pin 1, which is the topmost pin when the board is upright: - VCC (3.3V). Do not use unless you need to source power for the converer from it. - TX - RX - GND Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1. Installation: Due to different flash layout from stock firmware, sysupgrade from within stock firmware is impossible, despite it's based on QSDK which itself is based on OpenWrt. STEP 0: Stock firmware update: As installing OpenWrt cuts you off from official firmware updates for the modem part, it is recommended to update the stock firmware to latest version before installation, to have built-in modem at the latest firmware version. STEP 1: gaining root shell: Method 1: This works if busybox has telnetd compiled in the binary. If this does not work, try method 2. Using well-known exploit to start telnetd on your router - works only if Busybox on stock firmware has telnetd included: - Open stock firmware web interface - Navigate to "URL filtering" section by going to "Advanced settings", then "Firewall" and finally "URL filter". - Add an entry ending with "&&telnetd&&", for example "http://hostname/&&telnetd&&". - telnetd will immediately listen on port 4719. - After connecting to telnetd use "admin/admin" as credentials. Method 2: This works if busybox does not have telnetd compiled in. Notably, this is the case in DNA.fi firmware. If this does not work, try method 3. - Set IP of your computer to 192.168.0.22. (or appropriate subnet if changed) - Have a TFTP server running at that address - Download MIPS build of busybox including telnetd, for example from: https://busybox.net/downloads/binaries/1.21.1/busybox-mips and put it in it's root directory. Rename it as "telnetd". - As previously, login to router's web UI and navigate to "URL filtering" - Using "Inspect" feature, extend "maxlength" property of the input field named "addURLFilter", so it looks like this: <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332" class="required form-control"> - Stay on the page - do not navigate anywhere - Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter. - Save the settings. This will download the telnetd binary over tftp and execute it. You should be able to log in at port 23, using "admin/admin" as credentials. Method 3: If the above doesn't work, use the serial console - it exposes root shell directly without need for login. Some stock firmwares, notably one from finnish DNA operator lack telnetd in their builds. STEP 2: Backing up original software: As the stock firmware may be customized by the carrier and is not officially available in the Internet, IT IS IMPERATIVE to back up the stock firmware, if you ever plan to returning to stock firmware. It is highly recommended to perform backup using both methods, to avoid hassle of reassembling firmware images in future, if a restore is needed. Method 1: after booting OpenWrt initramfs image via TFTP: PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION. - Dump stock firmware located on stock kernel and ubi partitions: ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin And keep them in a safe place, should a restore be needed in future. Method 2: using stock firmware: - Connect an external USB drive formatted with FAT or ext4 to the USB port. - The drive will be auto-mounted to /var/usb_disk - Check the flash layout of the device: cat /proc/mtd It should show the following: mtd0: 000a0000 00010000 "u-boot" mtd1: 00020000 00010000 "u-boot-env" mtd2: 00140000 00010000 "reserved1" mtd3: 000a0000 00020000 "fota-flag" mtd4: 00080000 00020000 "art" mtd5: 00080000 00020000 "mac" mtd6: 000c0000 00020000 "reserved2" mtd7: 00400000 00020000 "cfg-param" mtd8: 00400000 00020000 "log" mtd9: 000a0000 00020000 "oops" mtd10: 00500000 00020000 "reserved3" mtd11: 00800000 00020000 "web" mtd12: 00300000 00020000 "kernel" mtd13: 01a00000 00020000 "rootfs" mtd14: 01900000 00020000 "data" mtd15: 03200000 00020000 "fota" mtd16: 01d00000 00020000 "firmware" Differences might indicate that this is NOT a MF286A device but one of other variants. - Copy over all MTD partitions, for example by executing the following: for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \ /var/usb_disk/mtd$i; done "Firmware" partition can be skipped, it is a concatenation of "kernel" and "rootfs". - If the count of MTD partitions is different, this might indicate that this is not a MF286A device, but one of its other variants. - (optionally) rename the files according to MTD partition names from /proc/mtd - Unmount the filesystem: umount /var/usb_disk; sync and then remove the drive. - Store the files in safe place if you ever plan to return to stock firmware. This is especially important, because stock firmware for this device is not available officially, and is usually customized by the mobile providers. STEP 3: Booting initramfs image: Method 1: using serial console (RECOMMENDED): - Have TFTP server running, exposing the OpenWrt initramfs image, and set your computer's IP address as 192.168.0.22. This is the default expected by U-boot. You may wish to change that, and alter later commands accordingly. - Connect the serial console if you haven't done so already, - Interrupt boot sequence by pressing any key in U-boot when prompted - Use the following commands to boot OpenWrt initramfs through TFTP: setenv serverip 192.168.0.22 setenv ipaddr 192.168.0.1 tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin bootm 0x81000000 (Replace server IP and router IP as needed). There is no emergency TFTP boot sequence triggered by buttons, contrary to MF283+. - When OpenWrt initramfs finishes booting, proceed to actual installation. Method 2: using initramfs image as temporary boot kernel This exploits the fact, that kernel and rootfs MTD devices are consecutive on NAND flash, so from within stock image, an initramfs can be written to this area and booted by U-boot on next reboot, because it uses "nboot" command which isn't limited by kernel partition size. - Download the initramfs-kernel.bin image - After backing up the previous MTD contents, write the images to the "firmware" MTD device, which conveniently concatenates "kernel" and "rootfs" partitions that can fit the initramfs image: nandwrite -p /dev/<firmware-mtd> \ /var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin - If write is OK, reboot the device, it will reboot to OpenWrt initramfs: reboot -f - After rebooting, SSH into the device and use sysupgrade to perform proper installation. Method 3: using built-in TFTP recovery (LAST RESORT): - With that method, ensure you have complete backup of system's NAND flash first. It involves deliberately erasing the kernel. - Download "-initramfs-kernel.bin" image for the device. - Prepare the recovery image by prepending 8MB of zeroes to the image, and name it root_uImage: dd if=/dev/zero of=padding.bin bs=8M count=1 cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin > root_uImage - Set up a TFTP server at 192.0.0.1/8. Router will use random address from that range. - Put the previously generated "root_uImage" into TFTP server root directory. - Deliberately erase "kernel" partition" using stock firmware after taking backup. THIS IS POINT OF NO RETURN. - Restart the device. U-boot will attempt flashing the recovery initramfs image, which will let you perform actual installation using sysupgrade. This might take a considerable time, sometimes the router doesn't establish Ethernet link properly right after booting. Be patient. - After U-boot finishes flashing, the LEDs of switch ports will all light up. At this moment, perform power-on reset, and wait for OpenWrt initramfs to finish booting. Then proceed to actual installation. STEP 4: Actual installation: - Set your computer IP to 192.168.1.22/24 - scp the sysupgrade image to the device: scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \ root@192.168.1.1:/tmp/ - ssh into the device and execute sysupgrade: sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin - Wait for router to reboot to full OpenWrt. STEP 5: WAN connection establishment Since the router is equipped with LTE modem as its main WAN interface, it might be useful to connect to the Internet right away after installation. To do so, please put the following entries in /etc/config/network, replacing the specific configuration entries with one needed for your ISP: config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth '<auth>' # As required, usually 'none' option pincode '<pin>' # If required by SIM option apn '<apn>' # As required by ISP option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6' For example, the following works for most polish ISPs config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth 'none' option apn 'internet' option pdptype 'ipv4' The required minimum is: config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' In this case, the modem will use last configured APN from stock firmware - this should work out of the box, unless your SIM requires PIN which can't be switched off. If you have build with LuCI, installing luci-proto-qmi helps with this task. Restoring the stock firmware: Preparation: If you took your backup using stock firmware, you will need to reassemble the partitions into images to be restored onto the flash. The layout might differ from ISP to ISP, this example is based on generic stock firmware The only partitions you really care about are "web", "kernel", and "rootfs". These are required to restore the stock firmware through factory TFTP recovery. Because kernel partition was enlarged, compared to stock firmware, the kernel and rootfs MTDs don't align anymore, and you need to carve out required data if you only have backup from stock FW: - Prepare kernel image cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin truncate -s 4M owrt_kernel_restore.bin - Cut off first 1MB from rootfs dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1 - Prepare image to write to "ubi" meta-partition: cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \ mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \ owrt_ubi_ubi_restore.bin You can skip the "fota" partition altogether, it is used only for stock firmware update purposes and can be overwritten safely anyway. The same is true for "data" partition which on my device was found to be unused at all. Restoring mtd5_cfg-param.bin will restore the stock firmware configuration you had before. Method 1: Using initramfs: This method is recmmended if you took your backup from within OpenWrt initramfs, as the reassembly is not needed. - Boot to initramfs as in step 3: - Completely detach ubi0 partition using ubidetach /dev/ubi0_0 - Look up the kernel and ubi partitions in /proc/mtd - Copy over the stock kernel image using scp to /tmp - Erase kernel and restore stock kernel: (scp mtd4_kernel.bin root@192.168.1.1:/tmp/) mtd write <kernel_mtd> mtd4_kernel.bin rm mtd4_kernel.bin - Copy over the stock partition backups one-by-one using scp to /tmp, and restore them individually. Otherwise you might run out of space in tmpfs: (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin rm mtd3_ubiconcat0.bin (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin rm mtd5_ubiconcat1.bin - If the write was correct, force a device reboot with reboot -f Method 2: Using live OpenWrt system (NOT RECOMMENDED): - Prepare a USB flash drive contatining MTD backup files - Ensure you have kmod-usb-storage and filesystem driver installed for your drive - Mount your flash drive mkdir /tmp/usb mount /dev/sda1 /tmp/usb - Remount your UBI volume at /overlay to R/O mount -o remount,ro /overlay - Write back the kernel and ubi partitions from USB drive cd /tmp/usb mtd write mtd4_kernel.bin /dev/<kernel_mtd> mtd write mtd9_ubi.bin /dev/<kernel_ubi> - If everything went well, force a device reboot with reboot -f Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota" MTD partition which may be safely erased after reboot anyway. Method 3: using built-in TFTP recovery: This method is recommended if you took backups using stock firmware. - Assemble a recovery rootfs image from backup of stock partitions by concatenating "web", "kernel", "rootfs" images dumped from the device, as "root_uImage" - Use it in place of "root_uImage" recovery initramfs image as in the TFTP pre-installation method. Quirks and known issuesa - It was observed, that CH340-based USB-UART converters output garbage during U-boot phase of system boot. At least CP2102 is known to work properly. - Kernel partition size is increased to 4MB compared to stock 3MB, to accomodate future kernel updates - at this moment OpenWrt 5.10 kernel image is at 2.5MB which is dangerously close to the limit. This has no effect on booting the system - but keep that in mind when reassembling an image to restore stock firmware. - uqmi seems to be unable to change APN manually, so please use the one you used before in stock firmware first. If you need to change it, please use protocok '3g' to establish connection once, or use the following command to change APN (and optionally IP type) manually: echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0 - The only usable LED as a "system LED" is the blue debug LED hidden inside the case. All other LEDs are controlled by modem, on which the router part has some influence only on Wi-Fi LED. - Wi-Fi LED currently doesn't work while under OpenWrt, despite having correct GPIO mapping. All other LEDs are controlled by modem, including this one in stock firmware. GPIO19, mapped there only acts as a gate, while the actual signal source seems to be 5GHz Wi-Fi radio, however it seems it is not the LED exposed by ath10k as ath10k-phy0. - GPIO5 used for modem reset is a suicide switch, causing a hardware reset of whole board, not only the modem. It is attached to gpio-restart driver, to restart the modem on reboot as well, to ensure QMI connectivity after reboot, which tends to fail otherwise. - Modem, as in MF283+, exposes root shell over ADB - while not needed for OpenWrt operation at all - have fun lurking around. The same modem module is used as in older MF286. Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: add Zyxel EMG2926-Q10AAlex Henrie2022-02-267-0/+20
| | | | | | | | | The Zyxel EMG2926-Q10A is 99% the Zyxel NBG6716, but the bootloader expects a different product name when flashing over TFTP. Also, the EMG2926-Q10A always has 128 MiB of NAND flash whereas the NBG6716 reportedly can have either 128 MiB or 256 MiB. Signed-off-by: Alex Henrie <alexhenrie24@gmail.com>
* ath79: image: use 'kmod-usb-chipidea2' for AR933x devicesPiotr Dymacz2022-02-212-3/+3
| | | | | | | AR933x based devices should include 'kmod-usb-chipidea2' for USB support. Fixes: #9243. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: image: drop 'BOARDNAME' from devices recipesPiotr Dymacz2022-02-211-4/+0
| | | | | | | The 'BOARDNAME' variable is part of target configuration and shouldn't be part of a device's image recipe. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: fix wndr4500v3 lan port order to match caseGraham Cole2022-02-201-2/+5
| | | | | | | | The LED and LAN port numbering on the case of wndr4500v3 devices are reversed relative to the wndr4300v2. I created this patch to so that the ordering in OpenWRT will be consistent with that. Signed-off-by: Graham Cole <diakka@gmail.com>
* ath79: utilize nvmem on Netgear EX7300 v2Sungbo Eo2022-02-202-14/+46
| | | | | | | | | | | | | mtd-mac-address should no longer be used after commit 5ae2e786395c ("kernel: drop support for mtd-mac-address"). Convert it to nvmem-cells. While at it, also convert OpenWrt's custom mtd-cal-data property and userspace pre-calibration data extraction to the nvmem implementation. Note: nvmem-cells in QCN5502 wmac has not been tested. Fixes: c32008a37b81 ("ath79: add partial support for Netgear EX7300v2") Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* ath79: Add support for Ubiquiti NanoBeam AC Gen1 XCDaniel González Cabanelas2022-02-195-0/+124
| | | | | | | | | | | | | | | | | | | | | | The Ubiquiti NanoBeam AC Gen1 XC (NBE-5AC-19) is an outdoor 802.11ac CPE with a waterproof casing (ultrasonically welded) and bulb shaped. Hardware: - SoC: Qualcomm Atheros QCA9558 - RAM: 128 MB DDR2 - Flash: 16 MB SPI NOR - Ethernet: 1x GbE, AR8033 phy connected via SGMII - PSU: 24 Vdc passive PoE - WiFi 5 GHz: Qualcomm Atheros QCA988X - Buttons: 1x reset - LEDs: 1x power, 1x Ethernet, 4x RSSI, all blue - Internal antenna: 19 dBi planar Installation from stock airOS firmware: - Follow instructions for XC-type Ubiquiti devices on OpenWrt wiki at https://openwrt.org/toh/ubiquiti/common Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
* ath79: use gpio-cascade for Buffalo WZR-HP-G300NHMauri Sandberg2022-02-192-11/+32
| | | | | | | Switch to a generic GPIO cascade driver. Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi> Signed-off-by: Petr Štetiar <ynezz@true.cz> [missing commit description]
* kernel: bump 5.10 to 5.10.98John Audia2022-02-111-1/+1
| | | | | | | | | | | | | Manually rebased: bcm27xx/patches-5.10/950-0675-drm-vc4-hdmi-Drop-devm-interrupt-handler-for-CEC-int.patch All other patches automatically rebased. Build system: x86_64 Build-tested: bcm2711/RPi4B, mt7622/RT3200 Run-tested: bcm2711/RPi4B, mt7622/RT3200 Signed-off-by: John Audia <graysky@archlinux.us>
* ath79: add support for Mikrotik LHG 5Jakob Riepler2022-02-076-0/+177
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The MikroTik LHG 5 series (product codes RBLHG-5nD, RBLHG-5HPnD and RBLHG-5HPnD-XL) devices are an outdoor 5GHz CPE with a 24.5dBi or 27dBi integrated antenna built around the Atheros AR9344 SoC. It is very similar to the SXT Lite5 series which this patch is based upon. Specifications: - SoC: Atheros AR9344 - RAM: 64 MB - Storage: 16 MB SPI NOR - Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2 - Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port, 8-32 Vdc PoE in - 8 user-controllable LEDs: - 1x power (blue) - 1x user (white) - 1x ethernet (green) - 5x rssi (green) See https://mikrotik.com/product/RBLHG-5nD for more details. Notes: The device was already supported in the ar71xx target. Flashing: TFTP boot initramfs image and then perform a sysupgrade. Follow common MikroTik procedure as in https://openwrt.org/toh/mikrotik/common. Signed-off-by: Jakob Riepler <jakob+openwrt@chaosfield.at>
* ath79: add partial support for Netgear EX7300v2Wenli Looi2022-02-074-0/+241
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- SoC: QCN5502 Flash: 16 MiB RAM: 128 MiB Ethernet: 1 gigabit port Wireless No1: QCN5502 on-chip 2.4GHz 4x4 Wireless No2: QCA9984 pcie 5GHz 4x4 USB: none Installation ------------ Flash the factory image using the stock web interface or TFTP the factory image to the bootloader. What works ---------- - LEDs - Ethernet port - 5GHz wifi (QCA9984 pcie) What doesn't work ----------------- - 2.4GHz wifi (QCN5502 on-chip) (I was not able to make this work, probably because ath9k requires some changes to support QCN5502.) Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
* ath79: add support for booting QCN5502 SoCWenli Looi2022-02-071-0/+48
| | | | | | | Based on wikidevi, QCN5502 is a "Dragonfly" like QCA9561 and QCA9563. Treating it as QCA956x seems to work. Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>