aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ath79/dts
Commit message (Collapse)AuthorAgeFilesLines
* ath79: fix USB power on TP-Link TL-WR810N v1Tom Stöveken2021-02-261-0/+1
| | | | | | | | | | | Before: Kernel reported "usb_vbus: disabling" and the USB was not providing power After: USB power is switched on, peripheral is powered from the device Signed-off-by: Tom Stöveken <tom@naaa.de> [squash and tidy up] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: enable UART node for GL-USB150Adrian Schmutzler2021-02-251-4/+0
| | | | | | | | | | This was overlooked when adding support for this device. (It has recently been discovered that this was the only device in ath79 having &uart disabled.) Fixes: acc62630132c ("ath79: add support for GL.iNet GL-USB150") Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: create common DTSI for Senao qca955x APsAdrian Schmutzler2021-02-243-170/+101
| | | | | | | | | | | | | | This creates a shared DTSI for qca955x Senao/Engenius APs with concatenated firmware partition/okli loader: - EAP1200H - EnstationAC v1 To make this usable for future boards with 32 MB flash as well, split the partitions node already. Suggested-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: create common DTSI for Senao ar934x APsAdrian Schmutzler2021-02-244-273/+98
| | | | | | | | | | | | | | | This creates a shared DTSI for ar934x Senao/Engenius APs: - EAP300 v2 - ENS202EXT v1 - EAP600 - ECB600 Since ar9341/ar9344 have different configuration, this new file mostly contains the partitioning. Suggested-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: create common DTSI for Senao ar724x APsAdrian Schmutzler2021-02-244-261/+94
| | | | | | | | | | | | | | This creates a shared DTSI for ar724x Senao/Engenius APs: - ENH202 v1 - EAP350 v1 - ECB350 v1 Since ar7240/ar7242 have different configuration, this new file mostly contains the partitioning. Suggested-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: enable UART in SoC DTSI filesAdrian Schmutzler2021-02-24208-847/+16
| | | | | | | | | | | | | | | The uart node is enabled on all devices except one (GL-USB150 *). Thus, let's not have a few hundred nodes to enable it, but do not disable it in the first place. Where the majority of devices is using it, also move the serial0 alias to the DTSI. *) Since GL-USB150 even defines serial0 alias, the missing uart is probably just a mistake. Anyway, disable it for now so this patch stays cosmetic. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: specify device-type for PCI controllersDavid Bauer2021-02-206-0/+14
| | | | | | | | Specify the device_type property for PCI as well as PCIe controllers. Otherwise, the PCI range parser will not be selected when using kernel 5.10. Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: fix USB power GPIO for TP-Link TL-WR810N v1Adrian Schmutzler2021-02-111-1/+1
| | | | | | | | | | | | | | | | | | The TP-Link TL-WR810N v1 is known to cause soft-brick on ath79 and work fine for ar71xx [1]. On closer inspection, the only apparent difference is the GPIO used for the USB regulator, which deviates between the two targets. This applies the value from ar71xx to ath79. Tested successfully by a forum user. [1] https://forum.openwrt.org/t/tp-link-tl-wr810n-v1-ath79/48267 Fixes: cdbf2de77768 ("ath79: Add support for TP-Link WR810N") Fixes: FS#3522 Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for D-Link DAP-3662 A1Sebastian Schaper2021-02-091-0/+102
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R * QCA9882, 802.11ac 2T2R * 2x Gigabit LAN (1x 802.11af PoE) * IP68 pole-mountable outdoor case Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Both ethernet ports are set to LAN by default, matching the labelling on the case. However, since both GMAC Interfaces eth0 and eth1 are connected to the switch (QCA8337), the user may create an additional 'wan' interface as desired and override the vlan id settings to map br-lan / wan to either the PoE or non-PoE port, depending on the individual scenario of use. So, the LAN and WAN ports would then be connected to different GMACs, e.g. config interface 'lan' option ifname 'eth0.1' ... config interface 'wan' option ifname 'eth1.2' ... config switch_vlan option device 'switch0' option vlan '1' option ports '1 0t' config switch_vlan option device 'switch0' option vlan '2' option ports '2 6t' Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> [add configuration example] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: use internal switch for EAP300 v2Michael Pratt2021-02-081-19/+1
| | | | | | | | | | | | | | | | Have the port use GMAC1 with internal switch which fixes the issue of the ethernet LED not functioning The LED is triggered by the internal switch, not a GPIO. The GPIO for the ethernet LED was added in ath79 as it was defined in the ar71xx target but it was not functioning in ath79 for a previously unknown reason. It is unknown why that GPIO was defined as an LED in ar71xx. Signed-off-by: Michael Pratt <mcpratt@pm.me> [drop unrelated changes: model property and SPI max frequency] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for Meraki MR12Martin Kennedy2021-02-051-0/+170
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Port device support for Meraki MR12 from the ar71xx target to ath79. Specifications: - SoC: AR7242-AH1A CPU - RAM: 64MiB (NANYA NT5DS32M16DS-5T) - NOR Flash: 16MiB (MXIC MX25L12845EMI-10G) - Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY) - Ethernet: 1 x 100Mbit port (SoC MAC+PHY) - Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n) Installation: 1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins 2. Open shell case 3. Connect a USB->TTL cable to headers furthest from the RF shield 4. Power on the router; connect to U-boot over 115200-baud connection 5. Interrupt U-boot process to boot Openwrt by running: setenv bootcmd bootm 0xbf0a0000; saveenv; tftpboot 0c00000 <filename-of-initramfs-kernel>.bin; bootm 0c00000; 6. Copy sysupgrade image to /tmp on MR12 7. sysupgrade /tmp/<filename-of-sysupgrade>.bin Notes: - kmod-owl-loader is still required to load the ART partition into the driver. - The manner of storing MAC addresses is updated from ar71xx; it is at 0x66 of the 'config' partition, where it was discovered that the OEM firmware stores it. This is set as read-only. If you are migrating from ar71xx and used the method mentioned above to upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more method for doing this is described below. - Migrating directly from ar71xx has not been thoroughly tested, but one method has been used a couple of times with good success, migrating 18.06.2 to a full image produced as of this commit. Please note that these instructions are only for experienced users, and/or those still able to open their device up to flash it via the serial headers should anything go wrong. 1) Install kmod-mtd-rw and uboot-envtools 2) Run `insmod mtd-rw.ko i_want_a_brick=1` 3) Modify /etc/fw_env.config to point to the u-boot-env partition. The file /etc/fw_env.config should contain: # MTD device env offset env size sector size /dev/mtd1 0x00000 0x10000 0x10000 See https://openwrt.org/docs/techref/bootloader/uboot.config for more details. 4) Run `fw_printenv` to verify everything is correct, as per the link above. 5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address. 6) Manually modify /lib/upgrade/common.sh's get_image function: Change ... cat "$from" 2>/dev/null | $cmd ... into ... ( dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest cat "$from" 2>/dev/null ) | $cmd ... which, during the upgrade process, will pad the image by 128K of zeroes-plus-MAC-address, in order for the ar71xx's firmware partition -- which starts at 0xbf080000 -- to be instead aligned with the ath79 firmware partition, which starts 128K later at 0xbf0a0000. 7) Copy the sysupgrade image into /tmp, as above 8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait Again, this may BRICK YOUR DEVICE, so make *sure* to have your serial cable handy. Signed-off-by: Martin Kennedy <hurricos@gmail.com> [add LED migration and extend compat message] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for Ubiquiti UniFi AP Outdoor+David Bauer2021-02-013-44/+155
| | | | | | | | | | | | | | | | | | | Hardware -------- Atheros AR7241 16M SPI-NOR 64M DDR2 Atheros AR9283 2T2R b/g/n 2x Fast Ethernet (built-in) Installation ------------ Transfer the Firmware update to the device using SCP. Install using fwupdate.real -m <openwrt.bin> -d Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: add support for Senao Engenius EAP1200HMichael Pratt2021-01-231-0/+187
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP1200H Engenius EAP1200H is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ **Specification:** - QCA9557 SOC - QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 populated - 4 internal antenna plates (5 dbi, omni-directional) - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset) **MAC addresses:** MAC addresses are labeled as ETH, 2.4G, and 5GHz Only one Vendor MAC address in flash eth0 ETH *:a2 art 0x0 phy1 2.4G *:a3 --- phy0 5GHz *:a4 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** 2 ways to flash factory.bin from OEM: Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will brick the device DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board, interrupt boot execute tftpboot and bootm 0x81000000 NOTE: TFTP is not reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of EAP1200H is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin openwrt-ar71xx-generic-eap1200h-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* kernel: mtdsplit_uimage: replace "netgear, uimage" parserBjørn Mork2021-01-2214-12/+42
| | | | | | | | | | | | | | | | | | | The "netgear,uimage" parser can be replaced by the generic parser using device specific openwrt,ih-magic and openwrt,ih-type properties. Device tree properties for the following devices have not been set, as they have been dropped from OpenWrt with the removal of the ar71xx target: FW_MAGIC_WNR2000V1 0x32303031 FW_MAGIC_WNR2000V4 0x32303034 FW_MAGIC_WNR1000V2_VC 0x31303030 FW_MAGIC_WPN824N 0x31313030 Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2 Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1 Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: replace "openwrt, okli" parserBjørn Mork2021-01-229-9/+27
| | | | | | | | | The only difference between the "openwrt,okli" and the generic parser is the magic. Set this in device tree for all affected devices and remove the "openwrt,okli" parser. Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202 Signed-off-by: Bjørn Mork <bjorn@mork.no>
* ath79: Add support for OpenMesh MR1750 v2Sven Eckelmann2021-01-191-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR1750 v1Sven Eckelmann2021-01-191-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, apply shared DTSI/device node, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: make OpenMesh MR900 DTSI more generalAdrian Schmutzler2021-01-193-13/+38
| | | | | | | | The OpenMesh MR900 and to-be-added MR1750 family are very similar. Make the existing MR900 DTSI more general so it can be used for the MR1750 devices as well. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: apply Engenius ECB1750 style to OpenMesh MR900 RGMII cfgSven Eckelmann2021-01-191-6/+2
| | | | | | | | | | | | | | | The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family. These devices are shipped with an AR803x PHY and had various problems with the delay configuration in ar71xx. These problems are now in the past [1] and parts of the delay configuration should now be done in the PHY only. Just switch to the configuration of the ECB1750 to have an already well tested configuration for ath79 with the newer kernel versions. [1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292 Reported-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh MR900 v2Sven Eckelmann2021-01-191-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR900 v1Sven Eckelmann2021-01-192-0/+190
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: apply Engenius EAP600 style to OpenMesh MR600 RGMII cfgSven Eckelmann2021-01-191-2/+4
| | | | | | | | | | | | | | | The OpenMesh MR600 is a modified version of the EAP600 family. These devices are shipped with an AR803x PHY and had various problems with the delay configuration in ar71xx. These problems are now in the past [1] and parts of the delay configuration should now be done in the PHY only. Just switch to the configuration of the EAP600 to have an already well tested configuration for ath79 with the newer kernel versions. [1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292 Reported-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh MR600 v2Sven Eckelmann2021-01-191-0/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 8x GPIO-LEDs (6x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR600 v1Sven Eckelmann2021-01-192-0/+179
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 4x GPIO-LEDs (2x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, make WLAN LEDs consistent, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: rename UniFi AC kernel1 partitionDavid Bauer2021-01-181-1/+1
| | | | | | | These devices do not run Ubiquiti AirOS. Rename the partition to the name used by other UniFi devices with vendor dualboot support. Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: remove USB port definition for TP-Link TL-WR810N v1Adrian Schmutzler2021-01-151-7/+1
| | | | | | | | The USB port definition is only needed when it is linked to a USB LED. Since there is none for this device, we might as well remove the port definition. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for Ubiquiti Bullet ACRussell Senior2021-01-151-0/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CPU: Atheros AR9342 rev 3 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN 2.4GHz: Atheros AR9342 v3 (ath9k) WLAN 5.0GHz: QCA988X Ports: 1x GbE Flashing procedure is identical to other ubnt devices. https://openwrt.org/toh/ubiquiti/common Flashing through factory firmware 1. Ensure firmware version v8.7.0 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \ hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot (copied from Ubiquiti NanoBeam AC and modified) Flashing from serial console 1. Connect serial console (115200 baud) 2. Connect ethernet to a network with a TFTP server, through a passive PoE injector. 3. Press a key to obtain a u-boot prompt 4. Set your TFTP server's ip address, with: setenv serverip <tftp-server-address> 5. Set the Bullet AC's ip address, with: setenv ipaddr <bullet-ac-address> 6. Set the boot file, with: setenv bootfile <name-of-initramfs-binary-on-tftp-server> 7. Fetch the binary with tftp: tftpboot 8. Boot the initramfs binary: bootm 9. From the initramfs, fetch the sysupgrade binary, and flash it with sysupgrade. The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE must match from the "Flashing through factory firmware" install instructions to work. Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342, on which 5GHz is disabled. It isn't currently known whether phy1 is routed to the N connector at all. Signed-off-by: Russell Senior <russell@personaltelco.net>
* ath79: make Engenius fakeroot partitions read-onlyMichael Pratt2021-01-072-0/+2
| | | | | | | | | | | | | | | | | | For: - ENH202 v1 - ENS202EXT v1 These boards were committed before it was discovered that for all Engenius boards with a "failsafe" image, forcing the failsafe image to load next boot can be achieved by editing the u-boot environment like: `fw_setenv rootfs_checksum 0` So it's not necessary to delete a partition to boot to failsafe image. Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: keep DTSI files for D-Link SoC-specificAdrian Schmutzler2021-01-046-8/+62
| | | | | | | | | | | It is good practice to define device tree files based on specific SoCs. Thus, let's not start to create files that are used across different architectures. Duplicate the DTSI file for D-Link DAP-2xxx in order to have one for qca953x and one for qca955x, respectively. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for D-Link DAP-3320 A1Sebastian Schaper2021-01-041-0/+56
| | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R * 10/100 Ethernet Port, 802.11af PoE * IP55 pole-mountable outdoor case Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for D-Link DAP-2680 A1Sebastian Schaper2021-01-041-0/+89
| | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R * QCA9984, 802.11ac Wave 2 3T3R * Gigabit LAN Port (AR8035), 802.11at PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for D-Link DAP-2230 A1Sebastian Schaper2021-01-041-0/+56
| | | | | | | | | | | | | | | | | | | | Specifications: * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R * 10/100 Ethernet Port, 802.11af PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: fix ethernet-phy label for dlink,dap-2660-a1Adrian Schmutzler2021-01-031-3/+3
| | | | | | | | The phy label/node name should correspond to the reg property. While at it, use more common decimal notation for reg property itself. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM5PSven Eckelmann2020-12-301-0/+166
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here. Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [add LED swap comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM2P v2Sven Eckelmann2020-12-301-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P-LCSven Eckelmann2020-12-302-0/+159
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v3Sven Eckelmann2020-12-291-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v2Sven Eckelmann2020-12-291-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v1Sven Eckelmann2020-12-292-0/+169
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [drop redundant status from eth1] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM2P-HS v4Sven Eckelmann2020-12-281-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 24V passive POE (mode B) + used as WAN interface - eth1 + 802.3af POE + builtin switch port 1 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P v4Sven Eckelmann2020-12-282-0/+165
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 1 * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [wrap two very long lines, fix typo in comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* treewide: use more descriptive names for concatenated partitionsAdrian Schmutzler2020-12-2711-55/+55
| | | | | | | | | | | | | | | | | | | | | | | | A few devices in ath79 and ramips use mtd-concat to concatenate individual partitions into a bigger "firmware" or "ubi" partition. However, the original partitions are still present and visible, and one can write to them directly although this might break the actual virtual, concatenated partition. As we cannot do much about the former, let's at least choose more descriptive names than just "firmwareX" in order to indicate the concatenation to the user. He might be less tempted into overwriting a "fwconcat1" than a "firmware1", which might be perceived as an alternate firmware for dual boot etc. This applies the new naming consistently for all relevant devices, i.e. fwconcatX for virtual "firmware" members and ubiconcatX for "ubi" members. While at it, use DT labels and label property consistently, and also use consistent zero-based indexing. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for Senao Engenius EAP350 v1Michael Pratt2020-12-251-0/+174
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-EAP350 Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port, 2.4 GHz wireless, external ethernet switch, and 2 internal antennas. Specification: - AR7242 SOC - AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 8 MB FLASH MX25L6406E - 32 MB RAM EM6AA160TSA-5G - UART at J2 (populated) - 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset) - 2 internal antennas MAC addresses: MAC address is labeled as "MAC" Only 1 address on label and in flash The OEM software reports these MACs for the ifconfig eth0 MAC *:0c art 0x0 phy0 --- *:0d --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.10.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP350 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap350-uImage-lzma.bin openwrt-senao-eap350-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1024k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. uboot did not have a good value for 1 GBps so it was taken from other similar DTS file. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EAP600Michael Pratt2020-12-251-0/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP600 Engenius EAP600 is a wireless access point with 1 gigabit ethernet port, dual-band wireless, external ethernet switch, 4 internal antennas and 802.3af PoE. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset) - 4 internal antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig eth0 MAC 1 *:5e --- phy1 MAC 2 *:5f --- (2.4 GHz) phy0 ----- *:60 art 0x0 (5 GHz) Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap600-uImage-lzma.bin openwrt-senao-eap600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: Create common DTSI for EAP600 and ECB600Michael Pratt2020-12-252-165/+180
| | | | | | | | | | | The boards have equivalent hardware except for LEDs and equivalent device config except for MACs also use naming convention for mtd-concat partitions to prepare for upcoming patch "treewide: use more descriptive names for concatenated partitions" Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ECB600Michael Pratt2020-12-251-0/+203
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ECB600 Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port, dual-band wireless, external ethernet switch, and 4 external antennas. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset) - 4 external antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig phy1 MAC 1 *:52 --- (2.4 GHz) phy0 MAC 2 *:53 --- (5 GHz) eth0 ----- *:54 art 0x0 Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ECB600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-ecb600-uImage-lzma.bin openwrt-senao-ecb600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the ECB series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EnStationAC v1Michael Pratt2020-12-221-0/+201
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ENSTAC Engenius EnStationAC v1 is an outdoor wireless access point/bridge with 2 gigabit ethernet ports on 2 external ethernet switches, 5 GHz only wireless, internal antenna plates, and proprietery PoE. Specification: - QCA9557 SOC - QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm) - AR8035-A switch (RGMII GbE with PoE+ IN) - AR8031 switch (SGMII GbE with PoE OUT) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 (unpopulated) - internal antenna plates (19 dbi, directional) - 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset) MAC addresses: MAC addresses are labeled as ETH and 5GHz Vendor MAC addresses in flash are duplicate eth0 ETH *:d3 art 0x0/0x6 eth1 ---- *:d4 --- phy0 5GHz *:d5 --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade TFTP recovery: rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board hold or press reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times Format of OEM firmware image: The OEM software of EnStationAC is a heavily modified version of Openwrt Altitude Adjustment 12.09. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-enstationac-uImage-lzma.bin openwrt-ar71xx-enstationac-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8033 switch between the SOC and the ethernet PHY chips. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. For eth0 at 1000 speed, the value returned was ae000000 but that didn't work, so following the logical pattern from the rest of the values, the guessed value of a3000000 works better. later discovered that delay can be placed on the PHY end only with phy-mode as 'rgmii-id' and set register to 0x82... Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> [fixed SoB to match From:] Signed-off-by: Petr Štetiar <ynezz@true.cz>
* ath79: add support for D-Link DAP-2660 A1Sebastian Schaper2020-12-222-0/+143
| | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R * QCA9882, 802.11ac 2T2R * Gigabit LAN Port (AR8035), 802.11af PoE Installation: * Factory Web UI is at 192.168.0.50 login with 'admin' and blank password, flash factory.bin * Recovery Web UI is at 192.168.0.50 connect network cable, hold reset button during power-on and keep it pressed until uploading has started (only required when checksum is ok, e.g. for reverting back to oem firmware), flash factory.bin After flashing factory.bin, additional free space can be reclaimed by flashing sysupgrade.bin, since the factory image requires some padding to be accepted for upgrading via OEM Web UI. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for Ubiquiti airCube ACRoman Kuzmitskii2020-12-221-0/+117
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Ubiquiti Network airCube AC is a cube shaped device supporting 2.4 GHz and 5 GHz with internal 2x2 MIMO antennas. It can be powered with either one of: - 24v power supply with 3.0mm x 1.0mm barrel plug - 24v passive PoE on first LAN port There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN). First LAN port have optional PoE passthrough to the WAN port. SoC: Qualcomm / Atheros AR9342 RAM: 64 MB DDR2 Flash: 16 MB SPI NOR Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN) LEDS: 1x via a SPI controller (not yet supported) Buttons: 1x Reset Serial: 1x (only RX and TX); 115200 baud, 8N1 Missing features: - LED control is not supported Physical to internal switch port mapping: - physical port #1 (poe in) = switchport 2 - physical port #2 = switchport 3 - physical port #3 = switchport 5 - physical port #4 (wan/poe out) = switchport 4 Factory update is tested and is the same as for Ubiquiti AirCube ISP hence the shared configuration between that devices. Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
* ath79: add support for MikroTik RouterBOARD wAPR-2nD (wAP R)Roger Pueyo Centelles2020-12-221-0/+71
| | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the MikroTik RouterBOARD wAPR-2nD (wAP R) router, a weatherproof 2.4 GHz access point with a miniPCI-e slot and a SIM card slot. Specifications: - SoC: Qualcomm Atheros QCA9533 - Flash: 16 MB (SPI) - RAM: 64 MB - Ethernet: 1x 10/100 Mbps (PoE in) - WiFi: AR9531 2T2R 2.4 GHz (SoC) - miniPCI-e slot - 4x green LEDs (1x WiFi, 3x RSSI) - 1x reset button See https://mikrotik.com/product/RBwAPR-2nD for more details. Flashing: TFTP boot initramfs image and then perform sysupgrade. Follow common MikroTik procedure as in https://openwrt.org/toh/mikrotik/common. Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>