aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ar71xx/files/arch/mips
Commit message (Collapse)AuthorAgeFilesLines
* ar71xx: cr5000: Fix the reset button as KEY_RESTARTDaniel F. Dickinson2018-07-301-1/+1
| | | | | | | The reset button was incorrectly returning KEY_WPS_BUTTON as the key code. We want KEY_RESTART., so make that fix. Signed-off-by: Daniel F. Dickinson <cshored@thecshore.com>
* ar71xx: cr5000: board data: Use better macro nameDaniel F. Dickinson2018-07-301-2/+2
| | | | | | | The PCIe wireless MAC address address is better labelled as WMAC than MAC to emphasize that it is for a wireless interface. Signed-off-by: Daniel F. Dickinson <cshored@thecshore.com>
* ar71xx: improve MikroTik wAP R supportThibaut VARÈNE2018-07-301-1/+62
| | | | | | | | | | | | | 81d446b045176e3e25bb0ef74e3d060b51a0a353 introduced incomplete support for this device. This patch attempts to correct the situation based on OEM source code. LED1-3 are GSM mode on OFW (2G/3G/4G) hence unassigned here. Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> Tested-by: David Ehrmann <ehrmann@gmail.com>
* ar71xx: rbspi: mark rb911L user led as active lowThibaut VARÈNE2018-07-301-1/+4
| | | | | | | | | | | | The active_low flag was missing for the user LED. This LED is open drain (confirmed in OEM source) and open drain only makes sense for active low GPIOs. The two wireless LEDs mentioned in the comments are also #defined for future reference. Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> Tested-by: Ryan Mounce <ryan@mounce.com.au>
* ar71xx: rbspi: fix RB wAP AC gpio conflict and LEDThibaut VARÈNE2018-07-301-10/+7
| | | | | | | | | | | | | | | e15c63a37574bd15ce3a6636c2f04741ab76f7b9 introduced code that was trying to register GPIO 1 as both an LED and a button. The OEM source makes it clear that LED1 is not wired to the SoC GPIOs. GPIO 1 is the reset button. Furthermore the (green) power led default state should also be defined, (matching OEM source), and it should be used by diag.sh since it's currently the only software-controllable LED. This patch fixes these issues and renames the corresponding #defines for clarity Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
* ar71xx: rbspi: clarify USB power gpios actionThibaut VARÈNE2018-07-301-10/+9
| | | | | | | | | | | | | | | The gpios that control power toggle for USB on the RouterBOARD devices are active low _off_ switches. When they are active (low), power is off. When they are inactive (high), power is on. Rename GPIO defines, set gpios to GPIOF_ACTIVE_LOW for consistency and reflect their true action in the display name. This brings openwrt code in line with OEM. Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> Tested-by: Ryan Mounce <ryan@mounce.com.au>
* ar71xx: add support for MikroTik RB931-2nDThibaut VARÈNE2018-07-163-1/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the MikroTik RB931-2nD (hAP mini): https://mikrotik.com/product/RB931-2nD Specifications: * SoC: Qualcomm QCA9533 (650MHz) * RAM: 32MiB * Storage: 16MiB SPI NOR flash * Ethernet: 3x100M * Wireless: QCA9533 built-in, dual-chain 802.11b/g/n Installation: 1. Setup a DHCP/BOOTP Server with the following parameters: * DHCP-Option 66 (TFTP server name): pointing to a local TFTP server within the same subnet of the DHCP range * DHCP-Option 67 (Bootfile-Name): matching the initramfs filename of the to be booted image. The usable intramfs files are: - openwrt-ar71xx-mikrotik-vmlinux-initramfs.elf - openwrt-ar71xx-mikrotik-vmlinux-initramfs-lzma.elf - openwrt-ar71xx-mikrotik-rb-nor-flash-16M-initramfs-kernel.bin 2. Press the reset button on the board and keep that pressed. 3. Connect the board to your local network via its Internet port. 4. Release the button after the LEDs on the board are turned off. Now the board should load and start the initramfs image from the TFTP server. 5. Now connect the board via either of its LAN ports (2 or 3). 6. Upload the sysupgrade image to the board with scp: $ scp openwrt-ar71xx-mikrotik-rb-nor-flash-16M-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/fw.bin 7. Log in to the running system listening on 192.168.1.1 via ssh as root (without password): $ ssh root@192.168.1.1 8. Flash the uploaded firmware file from the ssh session via the sysupgrade command: root@OpenWrt:~# sysupgrade /tmp/fw.bin Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
* ar71xx: Add support for TP-Link CPE210 v2Adrian Schmutzler2018-06-233-2/+66
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This PR adds support for a popular low-cost 2.4GHz N based AP Specifications: - SoC: Qualcomm Atheros QCA9533 (650MHz) - RAM: 64MB - Storage: 8 MB SPI NOR - Wireless: 2.4GHz N based built into SoC 2x2 - Ethernet: 1x 100/10 Mbps, integrated into SoC, 24V POE IN Installation: Flash factory image through stock firmware WEB UI or through TFTP To get to TFTP recovery just hold reset button while powering on for around 4-5 seconds and release. Rename factory image to recovery.bin Stock TFTP server IP:192.168.0.100 Stock device TFTP adress:192.168.0.254 Notes: TP-Link does not use bootstrap registers so without this patch reference clock detects as 40MHz while it is actually 25MHz. This is due to messed up bootstrap resistor configuration on the PCB. Provided GPL code just forces 25MHz reference clock. That causes booting with completely wrong clocks, for example, CPU tries to boot at 1040MHz while the stock is 650MHz. So this PR depends on PR #672 to remove 40MHz reference clock. Thanks to Sven Eckelmann <sven@narfation.org> for properly patching that. Signed-off-by: Robert Marko <robimarko@gmail.com> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ar71xx: add support for TP-LINK Archer C7 v5Arvid E. Picciani2018-06-203-0/+209
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer C7 v5 is a dual-band AC1750 router, based on Qualcomm/Atheros QCA9563+QCA9880. Specification: - 750/400/250 MHz (CPU/DDR/AHB - 128 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 3T3R 2.4 GHz - 3T3R 5 GHz - 5x 10/100/1000 Mbps Ethernet - 10x LED, 2x button - UART header on PCB Flash instruction: 1. Upload lede-ar71xx-generic-archer-c7-v5-squashfs-factory.bin via Web interface Flash instruction using TFTP recovery: 1. Set PC to fixed ip address 192.168.0.66 2. Download lede-ar71xx-generic-archer-c7-v5-squashfs-factory.bin and rename it to ArcherC7v5_tp_recovery.bin 3. Start a tftp server with the file tp_recovery.bin in its root directory 4. Turn off the router 5. Press and hold Reset button 6. Turn on router with the reset button pressed and wait ~15 seconds 7. Release the reset button and after a short time the firmware should be transferred from the tftp server 8. Wait ~30 second to complete recovery. Signed-off-by: Arvid E. Picciani <aep@exys.org>
* ar71x: add support for Mikrotik Routerboard wAP RDavid Ehrmann2018-06-193-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the Mikrotik wAP R (RBwAPR-2nD). The change is based on 3b15eb0 which added support for the wAP 2nD. This change lacks LED support. Specifications: - SoC: Qualcomm QCA9531 (650 MHz) - RAM: 64 MB - Storage: 16 MB NOR SPI flash - Wireless: built-in QCA9531, 802.11b/g/n 2x2:2 - Ethernet: 1x100Mbps - Power: 9-30V Passive PoE, 9-30V DC jack, 9-30V automotive jack - SIM card slot - Mini-PCIe slot Installation: 1. Login to the Mikrotik WebUI to backup your licence key 2. Change the following settings in System->Routerboard->Settings: - Boot device: try ethernet once then NAND - Boot protocol: DHCP - Force Backup Booter: checked 3. Setup a DHCP/BOOTP server with: - DHCP-Option 66 (TFTP server name) pointing to a local TFTP server within the same subnet of the DHCP range - DHCP-Option 67 (Bootfile-Name) matching the initramfs filename of the to be booted image, e.g. openwrt-ar71xx-mikrotik-vmlinux-initramfs.elf 4. Power off the device 5. If this is the second attempt to boot OpenWRT or the boot device isn't "try ethernet once then NAND," press and hold the reset button while powered off. If this is the first attempt, this step isn't necessary. 6. Power on the device, holding the reset button for 15-20s if already pressed from the previous step. The board should load and start the initramfs image from the TFTP server. Login as root/without password to the started OpenWRT via SSH listing on IPv4 address 192.168.1.1. Use sysupgrade to install OpenWRT. Revert to RouterOS Use the "rbcfg" package on in OpenWRT: - rbcfg set boot_protocol bootp - rbcfg set boot_device ethnand - rbcfg apply Open Netinstall and reboot routerboard. Now Netinstall sees RouterBOARD and you can install RouterOS. If NetInstall gets stuck on Sending offer just wait for it to timeout and then close and open Netinstall again. Click on install again. In order for RouterOS to function properly, you need to restore license for the device. You can do that by including license in NetInstall. Signed-off-by: David Ehrmann <ehrmann@gmail.com>
* ar71xx: add support for Fritz!WLAN Repeater 450EDavid Bauer2018-06-184-0/+188
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the AVM Fritz!WLAN Repeater 450E SOC: Qualcomm QCA9556 (Scorpion) 560MHz MIPS74Kc RAM: 64MB Zentel A3R12E40CBF DDR2 FLASH: 16MiB Winbond W25Q128 SPI NOR WLAN1: QCA9556 2.4 GHz 802.11b/g/n 3x3 INPUT: WPS button LED: Power, WiFi, LAN, RSSI indicator Serial: Header Next to Black metal shield Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet - 2.4GHz WiFi (correct MAC) - Installation via EVA bootloader - OpenWRT sysupgrade - Buttons - Most LEDs Not working: - 2 RSSI LEDs AVM used for RSSI{0,1} two of the Ethernet PHYs LEDs which they control over MDIO. Our driver doesn't expose these LEDs as GPIOs. While it is possible to implement this feature, it would require an additional kernel patch for a minor functionality. Installation via EVA: In the first seconds after Power is connected, the bootloader will listen for FTP connections on 192.168.178.1. Firmware can be uploaded like following: ftp> quote USER adam2 ftp> quote PASS adam2 ftp> binary ftp> debug ftp> passive ftp> quote MEDIA FLSH ftp> put openwrt-sysupgrade.bin mtd1 Note that this procedure might take up to two minutes. You need to powercycle the Device afterwards to boot OpenWRT. Signed-off-by: David Bauer <mail@david-bauer.net>
* ar71xx: fix incorrect speed setting on QCA9556David Bauer2018-06-181-3/+17
| | | | | | | | | The QCA9556 only has a SGMII interface. However the speed on the ethernet link is set for the non-existant xMII interface. This commit fixes this behavior. Signed-off-by: David Bauer <mail@david-bauer.net>
* ar71xx: Fix offset to WMAC address for 8devices LimaSven Eckelmann2018-06-081-3/+1
| | | | | | | | | | | | | | | | | | The ART partition of the Lima board stores exactly three mac addresses: * 0x0: eth0 * 0x6: eth1 * 0x1002: wmac The first two are correctly assigned in the mach file but the latter points to 0x800. But this position is set to ff:ff:ff:ff:ff:ff. Luckily, the driver falls back in ath9k_hw_init_macaddr to the EEPROM mac address when it doesn't find a valid mac address in the platform_data. Remove this bogus offset to the ART partition to directly load the wmac via the EEPROM data in the ART partition. Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ar71xx: add support for OCEDO KoalaDavid Bauer2018-06-074-0/+173
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the OCEDO Koala SOC: Qualcomm QCA9558 (Scorpion) RAM: 128MB FLASH: 16MiB WLAN1: QCA9558 2.4 GHz 802.11bgn 3x3 WLAN2: QCA9880 5 GHz 802.11nac 3x3 INPUT: RESET button LED: Power, LAN, WiFi 2.4, WiFi 5, SYS Serial: Header Next to Black metal shield Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet - 2.4 GHz WiFi - 5 GHz WiFi - TFTP boot from ramdisk image - Installation via ramdisk image - OpenWRT sysupgrade - Buttons - LEDs Installation seems to be possible only through booting an OpenWRT ramdisk image. Hold down the reset button while powering on the device. It will load a ramdisk image named 'koala-uImage-initramfs-lzma.bin' from 192.168.100.8. Note: depending on the present software, the device might also try to pull a file called 'koala-uimage-factory'. Only the name differs, it is still used as a ramdisk image. Wait for the ramdisk image to boot. OpenWRT can be written to the flash via sysupgrade or mtd. Due to the flip-flop bootloader which we not (yet) support, you need to set the partition the bootloader is selecting. It is possible from the initramfs image with > fw_setenv bootcmd run bootcmd_1 Afterwards you can reboot the device. Signed-off-by: David Bauer <mail@david-bauer.net>
* ar71xx: add support for GL.iNet GL-AR750SLuo chongjun2018-05-274-0/+206
| | | | | | | | | | | | | | | | | | | This patch adds supports for GL-AR750S. Specification: - SOC: QCA9563 (775MHz) - Flash: 16 MiB (W25Q128FVSG) - RAM: 128 MiB DDR2 - Ethernet: 2x 1Gbps LAN + 1x 1Gbps WAN - Wireless: 2.4GHz (bgn) and 5GHz (ac) - USB: 1x USB 2.0 port - Button: 1x switch button, 1x reset button - LED: 3x LEDS (green) Flash instruction: Apply factory image via web-gui. Signed-off-by: Luo chongjun <luochongjun@gl-inet.com>
* kernel: add reset control support to rtl8366 driverJohn Crispin2018-05-241-2/+2
| | | | Signed-off-by: John Crispin <john@phrozen.org>
* ar71xx: Add support for PISEN TS-D084Chuanhong Guo2018-05-224-0/+98
| | | | | | | | | | | | | | | | | | PISEN TS-D084 is an wireless router with a battery and integrated power supply based on Atheros AR9331. Specification: - 400/400/200 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 8 MB of FLASH (SPI NOR) - 1x 10/100 Mbps Ethernet - 1T1R 2.4 GHz (AR9331) - 1x USB 2.0 Flash instruction: The manufacturer are using exactly the same firmware header as TP-LINK TL-WR703N (including device ID!). Simply upload the factory firmware into WebUI and flashing is done. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ar71xx: WNDR3700: enable RFKILL function for Wifi buttonMichal Cieslakiewicz2018-05-181-4/+4
| | | | | | | | | | | | | | | | | Wifi button for WNDR3700 dual band routers has been renamed to "rfkill" and its emitted keycode changed to KEY_RFKILL. This allows OpenWrt/LEDE to support it 'out of the box' without additional tweaking. Until this patch, button had been sending BTN_2 keycode which was ignored by default (no action script present). To get expected behaviour of switching radios on and off, user had to manually rename/link 'rfkill' script to name 'BTN_2' in /etc/rc.button directory. This patch follows similar changes for other Netgear ar71xx routers, for example WNR2000v3. It applies cleanly to both latest trunk and 17.01 branch. Tested on WNDR3700v1. Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
* ar71xx: fix and improve ALFA Network Tube2H supportPiotr Dymacz2018-05-091-1/+12
| | | | | | | | | Fix ART offset (make it universal for 8/16 MB versions of the board) and while at it, include also GPIO setup for h/w watchdog (EM6324QYSP5B). Fixes: FS#1532 Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for Fritz!Box 4020David Bauer2018-05-076-0/+263
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the AVM Fritz!Box 4020 WiFi-router. SoC: Qualcomm Atheros QCA9561 (Dragonfly) 750MHz RAM: Winbond W971GG6KB-25 FLASH: Macronix MX25L12835F WiFi: QCA9561 b/g/n 3x3 450Mbit/s USB: 1x USB 2.0 IN: WPS button, WiFi button OUT: Power LED green, Internet LED green, WLAN LED green, LAN LED green, INFO LED green, INFO LED red UART: Header Next to Black metal shield Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet (LAN + WAN) - WiFi (correct MAC) - Installation via EVA bootloader - OpenWRT sysupgrade - Buttons - LEDs Not working: - USB port Installation via EVA: In the first seconds after Power is connected, the bootloader will listen for FTP connections on 169.254.157.1 (Might also be 192.168.178.1). Firmware can be uploaded like following: ftp> quote USER adam2 ftp> quote PASS adam2 ftp> binary ftp> debug ftp> passive ftp> quote MEDIA FLSH ftp> put openwrt-sysupgrade.bin mtd1 Note that this procedure might take up to two minutes. After transfer is complete you need to powercycle the device to boot OpenWRT. Signed-off-by: David Bauer <mail@david-bauer.net>
* ar71xx: limit Ethernet speed of UBNT Airmax M (XM) devices to 100Mbit/sMatthias Schiffer2018-04-101-0/+2
| | | | | | | | | Some Airmax devices can establish a Gigabit link even though the MAC only supports 10/100 MBit/s, leading to broken connectivity. Prevent this from happening by limiting the speed to 100MBit/s. Fixes: FS#296 Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
* ar71xx: add support for TP-Link Archer C60 v2Henryk Heisig2018-04-074-1/+93
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer C60 v2 is a dual-band AC1350 router, based on Qualcomm/Atheros QCA9561 + QCA9886. Specification: - 775/650/258 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 8 MB of FLASH (SPI NOR) - 3T3R 2.4 GHz - 2T2R 5 GHz - 5x 10/100 Mbps Ethernet - 7x LED, 2x button - UART header on PCB Flash instruction (web): Download lede-ar71xx-generic-archer-c60-v2-squashfs-factory.bin and use OEM System Tools - Firmware Upgrade site. Flash instruction (recovery): 1. Set PC to fixed IP address 192.168.0.66 2. Download lede-ar71xx-generic-archer-c60-v2-squashfs-factory.bin and rename it to tp_recovery.bin 3. Start a tftp server with the file tp_recovery.bin in its root directory 4. Turn off the router 5. Press and hold reset button 6. Turn on router with the reset button pressed and wait ~15 seconds 7. Release the reset button and after a short time the firmware should be transferred from the tftp server 8. Wait ~30 second to complete recovery Flash instruction (under U-Boot, using UART): tftp 0x81000000 lede-ar71xx-...-sysupgrade.bin erase 0x9f030000 +$filesize cp.b $fileaddr 0x9f030000 $filesize reset Signed-off-by: Henryk Heisig <hyniu@o2.pl>
* ar71xx: add support for TP-Link TL-WR940N v6Robert Marko2018-04-062-17/+53
| | | | | | | | | Add support for TL-WR940N v6 board. It is pretty much the same as v5 except they only left WAN LED and removed other ones. Installation: flash factory image through WEB UI or use TFTP. Signed-off-by: Robert Marko <robimarko@gmail.com>
* ar71xx: change brand name WHQX to QxwlanPeng Zhang2018-04-064-10/+10
| | | | Signed-off-by: Peng Zhang <sd20@qxwlan.com>
* ar71xx: Add support for D-Link DAP-1330 a1Nicolò Veronese2018-04-054-0/+157
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | D-Link DAP-1330 rev. A1 is a wall-plug N300 Wi-Fi range extender, based on Qualcomm/Atheros QCA9533 v2. Short specification: - 650/393/216 MHz (CPU/DDR/AHB) - 1x 10/100 Mbps Ethernet - 64 MB of RAM (DDR1) - 8 MB of FLASH - 2T2R 2.4 GHz - 2x external antennas - 6x LED (2 are bi-color), 2x button - 4 pin on pcb (looking from eth port and from left to right tx,rx,gnd,vcc) Flash instruction: use "factory" image directly in vendor GUI. This device has a recovery system that assign the ip addr of env variable "serverip" via dhcp to a pc, and the "ipaddr" value to itself. The recovery it's triggered by a not bootable firmware, or pressing the reset button during the bootloader startup (first 30 seconds). The recovery uses a http page to restore the firmware, and it's checking the firmware image header, so use the "factory" image to restore or the original firmware. You can access vendor firmware over serial using: - login: root - password: linuxrocks Image was tested only in EU version of the device, but should work also with the same device version sold in other countries. Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
* ar71xx: Fix typo in wan LED color of gl-mifiReto Schneider2018-04-041-1/+1
| | | | | | | | | It was wrong from the beginning and the trigger for the wan led was never set due to the typo. Signed-off-by: Reto Schneider <code@reto-schneider.ch> [add commit message] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ar71xx: add support for Ubiquiti Litebeam M5Arne Zachlod2018-03-152-0/+59
| | | | | | | | | | | | | | | | | Specification: - SoC: Atheros AR9342 - Flash: 8 MiB - RAM: 64 MiB - UART: 1x UART on PCB - 115200 8N1 - Ethernet: 1 x 100 Mbit with passive PoE (24V/0.2A) Doesn't work: * Flash via TFTP with Ubiquiti Uboot Installation via vendor firmware: - upload factory image via webinterface Signed-off-by: Arne Zachlod <arne@nerdkeller.org>
* ar71xx: remove pdata->fifo_cfg*Felix Fietkau2018-03-042-53/+0
| | | | | | The values are the same for all chipsets that use it Signed-off-by: Felix Fietkau <nbd@nbd.name>
* ar71xx: add support for GainStrong Oolite V5.2Piotr Dymacz2018-02-224-0/+125
| | | | | | | | | | | | | | | | | | | | | | | | | | | | GainStrong Oolite V5.2 is a small (39.5 x 78 mm), dual-band system on module, based on Qualcomm QCA9531 + QCA9887. All QCA9531 SOC GPIOs are available on castellated pins. Specification: - 650/400/200 MHz (CPU/DDR/AHB) - 64/128 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 5x 10/100 Mbps Ethernet (all ports available on castellated pins) - 2T2R 2.4 GHz (QCA9531), with ext. PA and LNA - 1T1R 5 GHz (QCA9887) with ext. FEM (SKY85710-11) - 3x U.FL - 1x USB 2.0 The dedicated development board includes 5 FE ports, USB 2.0 port, two buttons (one directly connected to SOC reset input), header with all GPIOs and several LEDs. Flash instruction: Vendor firmware is based on OpenWrt. LuCI or sysupgrade can be used to flash OpenWrt firmware. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: rework GainStrong devices supportPiotr Dymacz2018-02-226-204/+148
| | | | | | | | | - combine support for Oolite/MiniBox V1.0 in single mach-*.c file - fix model/board names - include correct/full vendor name - drop redundant package and factory image Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for AR9331 based Hak5 devicesSebastian Kinne2018-02-225-0/+309
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for AR9331 based Hak5 penetration testing tools: - WiFi Pineapple NANO - LAN Turtle - Packet Squirrel WiFi Pineapple NANO specifications: - SoC: Atheros AR9331 (400 MHz) - RAM: 64 MB (DDR2) - FLASH: 16 MB - WiFi: 1T1R AR9331 (built-in), 1T1R AR9271 (built-in via USB bus) - Ethernet: 1x FE over USB (ASIX AX88772A) - Ports: 2x RP-SMA for antennas, 1x USB 2.0 (host), 1x micro SD - Power: USB 5 V, 1.5 A - Other: status LED, reset button LAN Turtle specifications: - SoC: Atheros AR9331 (400 MHz) - RAM: 64 MB (DDR2) - FLASH: 16 MB - WiFi: none - Ethernet: 1x FE (AR9331), 1x FE over USB (Realtek RTL8152B) - Ports: 1x RJ45, version dependent: micro SD or 3G SIM slot - Power: USB 5 V, 0.5 A - Other: status LED, reset button (inside, on PCB) Packet Squirrel specifications: - SoC: Atheros AR9331 (400 MHz) - RAM: 64 MB (DDR2) - FLASH: 16 MB - WiFi: none - Ethernet: 2x FE (AR9331) - Ports: 2x RJ45, 1x USB 2.0 - Power: USB 5 V, 0.12 A - Other: status LED, reset button, 4-way switch Flash instructions for all 3 devices: Original firmware is based on OpenWrt. Use sysupgrade via SSH to flash. Signed-off-by: Sebastian Kinne <contact@sebkinne.com> [squashed commits, combined and reworked mach files, aligned board naming with general convention, fixed minor issues, tested on real hardware, reworded commit subject and description] Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: YunCore AP90Q image supports also AP80QPiotr Dymacz2018-02-223-4/+4
| | | | | | | Vendor released new model (AP80Q) which is identical from hardware point of view with already supported AP90Q. Include AP80Q in machine name. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for YunCore T830Piotr Dymacz2018-02-224-0/+139
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | YunCore T830 is a simple N300 router with 5-port FE switch, detachable antennas and USB 2.0 port. Specification: - 650/597/216 MHz (CPU/DDR/AHB) - 128 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 5x 10/100 Mbps Ethernet - 2T2R 2.4 GHz (QCA9531), with ext. PA (SKY65174-21) and LNA - two external, detachable antennas (RP-SMA) - 1x USB 2.0 - 8x LED (7 driven by GPIO) - 1x button (reset) - DC jack for main power input (12 V) - UART and JTAG headers on PCB Flash instruction: 1. First, gain root access to the device, following below steps: - Login into web gui (default password/IP: admin/192.168.188.253). - Go to "Advanced" -> "Management" -> "System" and download backup of configuration (bakfile.bin). - Open the file as tar.gz archive, edit/update "shadow" file and change hash of root password to something known. - Repack the archive, rename it back to "bakfile.bin" and use to restore configuration of the device. - After that, device will reboot and can be accessed over SSH. 2. Then, install OpenWrt: - Login over SSH and issue command: fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" - Upload "sysupgrade" image and install it (only if previous command succeeded) with command: "sysupgrade -n -F openwrt-...". Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for Samsung WAM250Piotr Dymacz2018-02-224-0/+134
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344. FCC ID: A3LWAM250. Specification: - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz (AR9344), with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: fix COMFAST CF-E375AC supportPiotr Dymacz2018-02-221-26/+24
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for COMFAST CF-E385ACPiotr Dymacz2018-02-222-35/+139
| | | | | | | | | | | | | | | | | | | | | | | | | | COMFAST CF-E385AC is an AC2200 ceiling mount AP with PoE support, based on Qualcomm/Atheros QCA9558 + QCA9984 + QCA8337N. Specification: - 720/600/200 MHz (CPU/DDR/AHB) - 256 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 2x 10/100/1000 Mbps Ethernet, with PoE support - 3T3R 2.4 GHz (QCA9558), with external LNA and PA (SE2576L) - 4T4R 5 GHz (QCA9984), with external FEM (SKY85728-11) - 7x internal antennas - 1x RGB LED (driven by GPIO) - 1x button (reset) - UART, LEDs/GPIO and USB headers on PCB - external watchdog (Pericon Technology PT7A7514) Flash instruction: Original firmware is based on OpenWrt. Use sysupgrade image directly in vendor GUI. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: rename COMFAST CF-E355AC to CF-E355AC v1Piotr Dymacz2018-02-221-12/+41
| | | | | | | | There are now supported two versions of the CF-E355AC board which differ in 802.11ac radio chip. Include version number in board, model, image filename, etc., also for the v1. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for COMFAST CF-E355AC v2Ding Tengfei2018-02-223-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | COMFAST CF-E355AC v2 is a ceiling mount AP with PoE support, based on Qualcomm/Atheros QCA9531 + QCA9886. Short specification: - 2x 10/100 Mbps Ethernet, with PoE support - 128MB of RAM (DDR2) - 16 MB of FLASH - 2T2R 2.4 GHz, 802.11b/g/n - 2T2R 5 GHz, 802.11ac/n/a, WAVE 2 - built-in 4x 3 dBi antennas - output power (max): 500 mW (27 dBm) - 1x RGB LED, 1x button - built-in watchdog chipset Flash instruction: Original firmware is based on OpenWrt. Use sysupgrade image directly in vendor GUI. Signed-off-by: Ding Tengfei <dtf@comfast.cn> [updated kernel config for both boards] Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: add support for WHQX E1700AC/E600G/E600GAC v2Peng Zhang2018-02-225-0/+356
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | WHQX E1700AC v2 is based on Qualcomm QCA9563 + QCA9880 + QCA8334. Specification: - 750/400/250 MHz (CPU/DDR/AHB) - 128 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 3T3R 2.4 GHz (QCA9563) with external FEM (SKY85309-11) - 3T3R 5 GHz (QCA9880) with external FEM (SKY85728-11) - 2x 10/100/1000 Mbps Ethernet (one port with PoE support) - 1x miniPCIe slot (USB 2.0 bus only) - 1x microSIM slot - 1x USB 2.0 - 5x LED (4 driven by GPIO) - 1x button (reset) - 1x 2-pos switch - 1x DC jack for main power input (9-48 V) - UART (J5) and LEDs (J13) headers on PCB WHQX E600G is based on Qualcomm QCA9531. Specification: - 650/391/216 MHz (CPU/DDR/AHB) - 64/128 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 2T2R 2.4 GHz (QCA9531) with external PA (LXK-6601) - 2x 10/100 Mbps Ethernet (one port with PoE support) - 1x miniPCIe slot (with PCIe and USB 2.0 buses) - 1x microSIM slot - 5x LED (4 driven by GPIO) - 1x button (reset) - 1x DC jack for main power input (9-48 V) - UART (J100), SIM (J34), JTAG (J5) and LEDs (J7) headers on PCB WHQX E600GAC is based on Qualcomm QCA9531 + QCA9887. Specification: - 650/391/216 MHz (CPU/DDR/AHB) - 64/128 MB of RAM (DDR2) - 8/16 MB of FLASH (SPI NOR) - 2T2R 2.4 GHz (QCA9531) - 1T1R 5 GHz (QCA9887) with external FEM (SKY85703-11) - 2x 10/100 Mbps Ethernet - 6x LED (1x RGB, 5 driven by GPIO) - 1x button (reset) - 1x DC jack for main power input (9-12 V) - UART (J100), USB (J102), JTAG (J5) and LEDs (J7) header on PCB Important notice: First version of these boards are using different mtd layout, with ART data at the end. You should not use v2 images on v1 board because it will result in lost of ART data! Flash instruction (using U-Boot CLI and tftp server): 1. Configure PC with static IP 192.168.1.10 and tftp server. 2. Rename "sysupgrade" filename to "firmware.bin" and place it in tftp server directory. 3. Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. 4. Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): 1. Configure PC with static IP 192.168.1.xxx(2-254)/24. 2. Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. 3. Open your browser and enter 192.168.1.1, select "sysupgrade" image and click the upgrade button. Signed-off-by: Peng Zhang <sd20@qxwlan.com> [reworked: image generation code, mach-* files, commit description, fixed minor code style issues, rebased on master] Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: fix typos and indentation in Kconfig.openwrtPiotr Dymacz2018-02-221-3/+3
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ar71xx: include vendor name for GL iNet productsKyson Lok2018-02-224-5/+4
| | | | | | | This patch include GL.iNet vendor name in the machine name for GL.iNet vendor products. Signed-off-by: Kyson Lok <kysonlok@gmail.com>
* ar71xx: uniform GL iNet products mach nameKyson Lok2018-02-222-2/+2
| | | | | | | The mach name of GL AR150 and GL AR300 is inconsistent with other products. Signed-off-by: Kyson Lok <kysonlok@gmail.com>
* ar71xx: add more registers to ar71x_regs.hJulien Dusser2018-02-131-11/+0
| | | | | | | | | | Add more registers and flags to ar71x_regs.h for QCA955x and QCA956x SoCs. Values come from Qualcomm Atheros u-boot code. Patches can be merged into 622-MIPS-ath79-add-more-register-defines-for-QCA956x-SoC.patch Signed-off-by: Julien Dusser <julien.dusser@free.fr>
* ar71xx: Add eTactica EG-200 supportKarl Palsson2018-02-134-0/+111
| | | | | | | | | | | | | | EG-200 is a DIN rail mountable device with one ethernet port, wifi, an RS-485 port, and an internal USB attached uSD card reader. Two leds, "modbus" and "etactica" are managed by userspace applications in factory firmware. Flash instruction: Original firmware is based on OpenWrt. Use sysupgrade image directly in vendor GUI. Signed-off-by: Karl Palsson <karlp@etactica.com>
* ar71xx: add support for TP-Link RE355Henryk Heisig2018-02-134-5/+69
| | | | | | | | | | | | | | | | | | | | | | | | This device is identical as TP-Link RE450 RE355 is a dual-band AC1200 router, based on Qualcomm/Atheros QCA9558+QCA9880. Specification: 720/600/200 MHz (CPU/DDR/AHB) 64/128 MB of RAM (DDR2) 8 MB of FLASH (SPI NOR) 3T3R 2.4 GHz 3T3R 5 GHz 1x 10/100/1000 Mbps Ethernet 7x LED, 3x button UART header on PCB Flash instruction: Web: Download lede-ar71xx-generic-archer-c60-v2-squashfs-factory.bin and use OEM System Tools - Firmware Upgrade site. Signed-off-by: Henryk Heisig <hyniu@o2.pl>
* ar71xx:add support for COMFAST CF-E375ACDing Tengfei2018-02-114-0/+117
| | | | | | | | | | | | | | | | | | | | | | | | COMFAST CF-E375AC is a ceiling mount AP with PoE support, based on Qualcomm/Atheros QCA9563 + QCA9886 + QCA8337. Short specification: 2x 10/100/1000 Mbps Ethernet, with PoE support 128MB of RAM (DDR2) 16 MB of FLASH 3T3R 2.4 GHz, 802.11b/g/n 2T2R 5 GHz, 802.11ac/n/a, wave 2 built-in 5x 3 dBi antennas output power (max): 500 mW (27 dBm) 1x RGB LED, 1x button built-in watchdog chipset Flash instruction: Original firmware is based on OpenWrt. Use sysupgrade image directly in vendor GUI. Signed-off-by: Ding Tengfei <dtf@comfast.cn>
* ar71xx: add ew-balin platform from Embedded WirelessCatrinel Catrinescu2018-01-254-0/+123
| | | | | | | | | | | | | | | | | | | Add the Embedded Wireless "Balin" platform SoC: QCA AR9344 or AR9350 RAM: DDR2-RAM 64MBytes Flash: SPI-NOR 16MBytes WLAN: 2 x 2 MIMO 2.4 & 5 GHz IEEE802.11 a/b/g/n Ethernet: 3 x 10/100 Mb/s USB: 1 x USB2.0 Host/Device bootstrap-pin at power-up PCI-Express: 1 x lane PCIe 1.2 UART: 1 x Normal, 1 x High-Speed JTAG: 1 x EJTAG GPIO: 10 x Input/Output multiplexed The module comes already with the current vanilla OpenWrt firmware. To update, use "sysupgrade" image directly in vendor firmware. Signed-off-by: Catrinel Catrinescu <cc@80211.de>
* ar71xx: add support for the MikroTik RB911-2Hn/5Hn boardsGabor Juhos2018-01-223-0/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The patch adds support for the MikroTik RB911-2Hn (911 Lite2) and the RB911-5Hn (911 Lite5) boards: https://mikrotik.com/product/RB911-2Hn https://mikrotik.com/product/RB911-5Hn The two boards are using the same hardware design, the only difference between the two is the supported wireless band. Specifications: * SoC: Atheros AR9344 (600MHz) * RAM: 64MiB * Storage: 16 MiB SPI NOR flash * Ethernet: 1x100M (Passive PoE in) * Wireless: AR9344 built-in wireless MAC, single chain 802.11b/g/n (911-2Hn) or 802.11a/g/n (911-5Hn) Notes: * Older versions of these boards might be equipped with a NAND flash chip instead of the SPI NOR device. Those boards are not supported (yet). * The MikroTik RB911-5HnD (911 Lite5 Dual) board also uses the same hardware. Support for that can be added later with little effort probably. Installation: 1. Setup a DHCP/BOOTP Server with the following parameters: * DHCP-Option 66 (TFTP server name): pointing to a local TFTP server within the same subnet of the DHCP range * DHCP-Option 67 (Bootfile-Name): matching the initramfs filename of the to be booted image. The usable intramfs files are: - openwrt-ar71xx-mikrotik-vmlinux-initramfs.elf - openwrt-ar71xx-mikrotik-vmlinux-initramfs-lzma.elf - openwrt-ar71xx-mikrotik-rb-nor-flash-16M-initramfs-kernel.bin 2. Press the reset button on the board and keep that pressed. 3. Connect the board to your local network via its ethernet port. 4. Release the button after the LEDs on the board are turned off. Now the board should load and start the initramfs image from the TFTP server. 5. Upload the sysupgrade image to the board with scp: $ scp openwrt-ar71xx-mikrotik-rb-nor-flash-16M-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/fw.bin 5. Log in to the running system listening on 192.168.1.1 via ssh as root (without password): $ ssh root@192.168.1.1 7. Flash the uploaded firmware file from the ssh session via the sysupgrade command: root@OpenWrt:~# sysupgrade /tmp/fw.bin Signed-off-by: Gabor Juhos <juhosg@freemail.hu>
* ar71xx: mach-rbspi: return rb_info from rbspi_platform_setupGabor Juhos2018-01-221-13/+13
| | | | | | | | | | | | Modify the rbspi_platform_setup() function to return the pointer of the rb_info structure. This allows board specific setup routines to access the various fields of the information. It is useful for investigating the hardware option bits for example. Also update the board setup codes, to ensure that those handle the new return value correctly. Signed-off-by: Gabor Juhos <juhosg@freemail.hu>
* ar71xx: add definitions for RouterBOARD hardware option bitsGabor Juhos2018-01-221-0/+26
| | | | | | | | | | | | Add bit definitions for the 'hardware options' tag which is used in the MikroTik devices' hardware configurations. These values can be used in board setup codes, to do different initialization sequences. The values were obtained from the RouterOS 6.41-rc38 patches. Additionally, introduce two helper functions what make the processing of the hardware options easy. Signed-off-by: Gabor Juhos <juhosg@freemail.hu>