aboutsummaryrefslogtreecommitdiffstats
path: root/package/firmware/ipq-wifi
Commit message (Collapse)AuthorAgeFilesLines
* ipq40xx: fix BDF file for pcie wifi chip on the GL.Inet GL-B2200Enrico Mioso2022-05-021-0/+0
| | | | | | | | | | | | | | | | | | | | | | | After the switch to pre-calibration, ath10k would fail to initialize the PCIE Wi-Fi on the GL-B200 as follows: ath10k_pci 0000:01:00.0: enabling device (0140 -> 0142) ath10k_pci 0000:01:00.0: qca9888 hw2.0 target 0x01000000 chip_id 0x00000000 sub 0000:0000 [...] ath10k_pci 0000:01:00.0: failed to fetch board data for bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=GL-B2200 from ath10k/QCA9888/hw2.0/board-2.bin ath10k_pci 0000:01:00.0: failed to fetch board-2.bin or board.bin from ath10k/QCA9888/hw2.0 ath10k_pci 0000:01:00.0: failed to fetch board file: -12 ath10k_pci 0000:01:00.0: could not probe fw (-12) Repackage the BDF file after renaming relevant fields and files to allow for the Wi-Fi interface to start again. Fixes: 80d34d9d593 ("ipq40xx: document pcie wifi chip on the GL.Inet GL-B2200") CC: Christian Lamparter <chunkeey@gmail.com> CC: Robert Marko <robimarko@gmail.com> Reviewed-by: Robert Marko <robert.marko@sartura.hr> Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com> (cherry picked from commit e3f9af4fb6e4ba8bf54cb4240f318ad32260a6fa)
* ipq40xx: update E2600AC c1/c2 board张 鹏2022-03-263-2/+4
| | | | | | | | | | Modified the radio frequency hardware part of e2600ac c1/c2, need to cooperate with the modified board.bin file, the device can work normally. Signed-off-by: 张 鹏 <sd20@qxwlan.com> (cherry picked from commit bdc786e82c13547b01bd8f699d00598a974c14f6) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for ZTE MF286DPawel Dembicki2022-02-052-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZTE MF286D is a LTE router with four gigabit ethernet ports and integrated QMI mPCIE modem. Hardware specification: - CPU: IPQ4019 - RAM: 256MB - Flash: NAND 128MB + NOR 2MB - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2 - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11anac 2x2:2 - LTE: mPCIe cat 12 card (Modem chipset MDM9250) - LAN: 4 Gigabit Ports - USB: 1x USB2.0 (regular port). 1x USB3.0 (mpcie - used by the modem) - Serial console: X8 connector 115200 8n1 Known issues: - Many LEDs are driven by the modem. Only internal LEDs and wifi LEDs are driven by cpu. - Wifi LED is triggered by phy0tpt only - No VoIP support - LAN1/WAN port is configured as WAN - ZTE gives only one MAC per device. Use +1/+2/+3 increment for WAN and WLAN0/1 Opening the case: 1. Take of battery lid (no battery support for this model, battery cage is dummy). 2. Unscrew screw placed behind battery lid. 3. Take off back cover. It attached with multiple plastic clamps. 4. Unscrew four more screws hidden behind back case. 5. Remove front panel from blue chassis. There are more plastic clamps. 6. Unscrew two boards, which secures the PCB in the chassis. 7. Extract board from blue chassis. Console connection (X8 connector): 1. Parameters: 115200 8N1 2. Pin description: (from closest pin to X8 descriptor to farthest) - VCC (3.3V) - TX - RX - GND Install Instructions: Serial + initramfs: 1. Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.1.3 2. Connect serial console (115200,8n1) to X8 connector. 3. Connect TFTP server to RJ-45 port. 4. Stop in u-Boot and run u-Boot commands: setenv serverip 192.168.1.3 setenv ipaddr 192.168.1.72 set fdt_high 0x85000000 tftp openwrt-ipq40xx-generic-zte_mf286d-initramfs-fit-zImage.itb bootm $loadaddr 5. Please make backup of original partitions, if you think about revert to stock. 6. Login via ssh or serial and remove stock partitions: ubiattach -m 9 ubirmvol /dev/ubi0 -N ubi_rootfs ubirmvol /dev/ubi0 -N ubi_rootfs_data 7. Install image via "sysupgrade -n". Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com> (cosmetic changes to the commit message) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add MikroTik cAP ac supportAlar Aun2022-02-012-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the MikroTik RouterBOARD RBcAPGi-5acD2nD (cAP ac), a indoor dual band, dual-radio 802.11ac wireless AP, two 10/100/1000 Mbps Ethernet ports. See https://mikrotik.com/product/cap_ac for more info. Specifications: - SoC: Qualcomm Atheros IPQ4018 - RAM: 128 MB - Storage: 16 MB NOR - Wireless: · Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae · Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae - Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 2x 1000/100/10 port, PoE in and passive PoE out Unsupported: - PoE out Installation: Boot the initramfs image via TFTP and then flash the sysupgrade image using "sysupgrade -n" Signed-off-by: Alar Aun <alar.aun@gmail.com>
* ipq40xx: add support for ASUS RT-ACRH17/RT-AC42UJoshua Roys2022-01-153-0/+2
| | | | | | | | | | | | | | | | | | | | | SOC: IPQ4019 CPU: Quad-core ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d DRAM: 256 MB NAND: 128 MiB Macronix MX30LF1G18AC ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4x LAN, 1x WAN) USB: 1x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2 WLAN2: Qualcomm Atheros QCA9984 5GHz 802.11nac 4x4:4 INPUT: 1x WPS, 1x Reset LEDS: Status, WIFI1, WIFI2, WAN (red & blue), 4x LAN This board is very similar to the RT-ACRH13/RT-AC58U. It must be flashed with an intermediary initramfs image, the jffs2 ubi volume deleted, and then finally a sysupgrade with the final image performed. Signed-off-by: Joshua Roys <roysjosh@gmail.com> (added ALT0) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for GL.iNet GL-B2200TruongSinh Tran-Nguyen2021-12-023-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds supports for the GL-B2200 router. Specifications: - SOC: Qualcomm IPQ4019 ARM Quad-Core - RAM: 512 MiB - Flash: 16 MiB NOR - SPI0 - EMMC: 8GB EMMC - ETH: Qualcomm QCA8075 - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2 - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2 - WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2 - INPUT: Reset, WPS - LED: Power, Internet - UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1 - UART2: On board with BLE module - SPI1: On board socket for Zigbee module Update firmware instructions: Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at https://docs.gl-inet.com/en/3/troubleshooting/debrick/). Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware. Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first. What's working: - WiFi 2G, 5G - WPA2/WPA3 Not tested: - Bluetooth LE/Zigbee Credits goes to the original authors of this patch. V1->V2: - updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake) - add uboot-envtools support V2->V3: - Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface V3->V4: - wire up sysupgrade Signed-off-by: Li Zhang <li.zhang@gl-inet.com> [fix tab and trailing space, document what's working and what's not] Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro> [rebase on top of master, address remaining comments] Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com> [remove redundant check in platform.sh] Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ipq40xx: Add support for Teltonika RUTX10Felix Matouschek2021-11-282-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the Teltonika RUTX10. This device is an industrial DIN-rail router with 4 ethernet ports, 2.4G/5G dualband WiFi, Bluetooth, a USB 2.0 port and two GPIOs. The RUTX series devices are very similiar so common parts of the DTS are kept in a DTSI file. They are based on the QCA AP-DK01.1-C1 dev board. See https://teltonika-networks.com/product/rutx10 for more info. Hardware: SoC: Qualcomm IPQ4018 RAM: 256MB DDR3 SPI Flash 1: XTX XT25F128B (16MB, NOR) SPI Flash 2: XTX XT26G02AWS (256MB, NAND) Ethernet: Built-in IPQ4018 (SoC, QCA8075), 4x 10/100/1000 ports WiFi 1: Qualcomm QCA4019 IEEE 802.11b/g/n Wifi 2: Qualcomm QCA4019 IEEE 802.11a/n/ac USB Hub: Genesys Logic GL852GT Bluetooth: Qualcomm CSR8510 (A10U) LED/GPIO controller: STM32F030 with custom firmware Buttons: Reset button Leds: Power (green, cannot be controlled) WiFi 2.4G activity (green) WiFi 5G activity (green) MACs Details verified with the stock firmware: eth0: Partition 0:CONFIG Offset: 0x0 eth1: = eth0 + 1 radio0 (2.4 GHz): = eth0 + 2 radio1 (5.0 GHz): = eth0 + 3 Label MAC address is from eth0. The LED/GPIO controller needs a separate kernel driver to function. The driver was extracted from the Teltonika GPL sources and can be found at following feed: https://github.com/0xFelix/teltonika-rutx-openwrt USB detection of the bluetooth interface is sometimes a bit flaky. When not detected power cycle the device. When the bluetooth interface was detected properly it can be used with bluez / bluetoothctl. Flash instructions via stock web interface (sysupgrade based): 1. Set PC to fixed ip address 192.168.1.100 2. Push reset button and power on the device 3. Open u-boot HTTP recovery at http://192.168.1.1 4. Upload latest stock firmware and wait until the device is rebooted 5. Open stock web interface at http://192.168.1.1 6. Set some password so the web interface is happy 7. Go to firmware upgrade settings 8. Choose openwrt-ipq40xx-generic-teltonika_rutx10-squashfs-nand-factory.ubi 9. Set 'Keep settings' to off 10. Click update, when warned that it is not a signed image proceed Return to stock firmware: 1. Set PC to fixed ip address 192.168.1.100 2. Push reset button and power on the device 3. Open u-boot HTTP recovery at http://192.168.1.1 4. Upload latest stock firmware and wait until the device is rebooted Note: The DTS expects OpenWrt to be running from the second rootfs partition. u-boot on these devices hot-patches the DTS so running from the first rootfs partition should also be possible. If you want to be save follow the instructions above. u-boot HTTP recovery restores the device so that when flashing OpenWrt from stock firmware it is flashed to the second rootfs partition and the DTS matches. Signed-off-by: Felix Matouschek <felix@matouschek.org>
* ipq40xx: add support for MikroTik hAP ac3Robert Marko2021-11-282-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD (hAP ac³), a indoor dual band, dual-radio 802.11ac wireless AP with external omnidirectional antennae, USB port, five 10/100/1000 Mbps Ethernet ports and PoE passthrough. See https://mikrotik.com/product/hap_ac3 for more info. Specifications: - SoC: Qualcomm Atheros IPQ4019 - RAM: 256 MB - Storage: 16 MB NOR + 128 MB NAND - Wireless: · Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae · Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae - Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port, passive PoE in, PoE passtrough on port 5 - 1x USB Type A port Installation: 1. Boot the initramfs image via TFTP 2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1" 3. Use ubiformat to remove MikroTik specific UBI volumes * Detach the UBI partition by running: "ubidetach -d 0" * Format the partition by running: "ubiformat /dev/mtdN -y" Replace mtdN with the correct mtd index from step 2. 3. Flash the sysupgrade image using "sysupgrade -n" Signed-off-by: Robert Marko <robimarko@gmail.com> Tested-by: Mark Birss <markbirss@gmail.com> Tested-by: Michael Büchler <michael.buechler@posteo.net> Tested-by: Alex Tomkins <tomkins@darkzone.net>
* ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)Richard Yu2021-11-142-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | P&W R619AC is a IPQ4019 Dual-Band AC1200 router. It is made by P&W (p2w-tech.com) known as P&W R619AC but marketed and sold more popularly as G-DOCK 2.0. Specification: * SOC: Qualcomm Atheros IPQ4019 (717 MHz) * RAM: 512 MiB * Flash: 16 MiB (NOR) + 128 MiB (NAND) * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) * Wireless: - 2.4 GHz b/g/n Qualcomm Atheros IPQ4019 - 5 GHz a/n/ac Qualcomm Atheros IPQ4019 * USB: 1 x USB 3.0 * LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED) * Input: 1 x reset * 1 x MicroSD card slot * Serial console: 115200bps, pinheader J2 on PCB * Power: DC 12V 2A * 1 x Unpopulated mPCIe Slot (see below how to connect it) * 1 x Unpopulated Sim Card Slot Installation: 1. Access to tty console via UART serial 2. Enter failsafe mode and mount rootfs <https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset> 3. Edit inittab to enable shell on tty console `sed -i 's/#ttyM/ttyM/' /etc/inittab` 4. Reboot and upload `-nand-factory.bin` to the router (using wget) 5. Use `sysupgrade` command to install Another installation method is to hijack the upgrade server domain of stock firmware, because it's using insecure http. This commit is based on @LGA1150(at GitHub)'s work <https://github.com/LGA1150/openwrt/commit/a4932c8d5a275d1fb4297bd20ec03f9270a45d1c> With some changes: 1. Added `qpic_bam` node in dts. I don't know much about this, but I observed other dtses have this node. 2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not working. This fix is from <https://github.com/coolsnowwolf/lede/commit/51143b4c7571f717afe071db60bbb4db1532cbf2> 3. Removed the 32MB NOR variant. 4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes wlan2g led light up. 5. Added ethphy led config in dts. 6. Changed nand partition label from `rootfs` to `ubi`. About the 128MiB variant: The stock bootloader sets size of nand to 64MiB. But most of this devices have 128MiB nand. If you want to use all 128MiB, you need to modify the `MIBIB` data of bootloader. More details can be found on github: <https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060> For instructions on how to flash the MIBIB partition from u-boot console: <https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232> About the Mini PCIe slot: (from "ygleg") "The REFCLK signals on the Mini PCIe slot is not connected on this board out of the box. If you want to use the Mini PCIe slot on the board, you need to (preferably) solder two 0402 resistors: R436 (REFCLK+) and R444 (REFCLK-)..." This and much more information is provoided in the github comment: <https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670> Signed-off-by: Richard Yu <yurichard3839@gmail.com> Signed-off-by: DENG Qingfang <dqfext@gmail.com> [Added comment about MIBIB+128 MiB variant. Added commit message section about pcie slot. Renamed gpio-leds' subnodes and added color, function+enum properties.] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: Work around Plasma Cloud PA1200 5GHz crashSven Eckelmann2021-09-231-0/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It was noticed [1] that the ath10k firmware crashes on 5GHz since OpenWrt 21.02.0. The problem seems to be triggered by the the nonLinearTxFir field in the 5GHz BDF. If baseEepHeader.nonLinearTxFir (offset 0xc2) is 1 then the firmware just crashes when setting up the 5Ghz radio using `ifconfig wlan1 up`: ath10k_ahb a800000.wifi: firmware crashed! (guid 9e36ee82-4d2c-4c63-b20b-609a1eaca30c) ath10k_ahb a800000.wifi: qca4019 hw1.0 target 0x01000000 chip_id 0x003b00ff sub 0000:0000 ath10k_ahb a800000.wifi: kconfig debug 0 debugfs 1 tracing 0 dfs 1 testmode 0 ath10k_ahb a800000.wifi: firmware ver 10.4-3.6-00140 api 5 features no-p2p,mfp,peer-flow-ctrl,btcoex-param,allows-mesh-bcast,no-ps crc32 ba79b746 ath10k_ahb a800000.wifi: board_file api 2 bmi_id 0:17 crc32 5f400efc ath10k_ahb a800000.wifi: htt-ver 2.2 wmi-op 6 htt-op 4 cal pre-cal-file max-sta 512 raw 0 hwcrypto 1 ath10k_ahb a800000.wifi: firmware register dump: ath10k_ahb a800000.wifi: [00]: 0x0000000B 0x000015B3 0x009C3C27 0x00975B31 ath10k_ahb a800000.wifi: [04]: 0x009C3C27 0x00060530 0x00000018 0x004176B8 ath10k_ahb a800000.wifi: [08]: 0x00405A50 0x00412A30 0x00000000 0x00000000 ath10k_ahb a800000.wifi: [12]: 0x00000009 0x00000000 0x009B9742 0x009B974F ath10k_ahb a800000.wifi: [16]: 0x00971238 0x009B9742 0x00000000 0x00000000 ath10k_ahb a800000.wifi: [20]: 0x409C3C27 0x004053DC 0x00000D2C 0x00405A60 ath10k_ahb a800000.wifi: [24]: 0x809C3E13 0x0040543C 0x00000000 0xC09C3C27 ath10k_ahb a800000.wifi: [28]: 0x809B9AC5 0x0040547C 0x00412A30 0x0040549C ath10k_ahb a800000.wifi: [32]: 0x809B8ECD 0x0040549C 0x00000001 0x00412A30 ath10k_ahb a800000.wifi: [36]: 0x809B8FF3 0x004054CC 0x00412838 0x00000014 ath10k_ahb a800000.wifi: [40]: 0x809BEF98 0x0040551C 0x0041627C 0x00000002 ath10k_ahb a800000.wifi: [44]: 0x80986D47 0x0040553C 0x0041627C 0x00416A88 ath10k_ahb a800000.wifi: [48]: 0x809CBB0A 0x0040559C 0x0041ACC0 0x00000000 ath10k_ahb a800000.wifi: [52]: 0x809864EE 0x0040560C 0x0041ACC0 0x00000001 ath10k_ahb a800000.wifi: [56]: 0x809CA8A4 0x0040564C 0x0041ACC0 0x00000001 ath10k_ahb a800000.wifi: Copy Engine register dump: ath10k_ahb a800000.wifi: [00]: 0x0004a000 14 14 3 3 ath10k_ahb a800000.wifi: [01]: 0x0004a400 16 16 22 23 ath10k_ahb a800000.wifi: [02]: 0x0004a800 3 3 2 3 ath10k_ahb a800000.wifi: [03]: 0x0004ac00 15 15 15 15 ath10k_ahb a800000.wifi: [04]: 0x0004b000 4 4 44 4 ath10k_ahb a800000.wifi: [05]: 0x0004b400 3 3 2 3 ath10k_ahb a800000.wifi: [06]: 0x0004b800 1 1 1 1 ath10k_ahb a800000.wifi: [07]: 0x0004bc00 1 1 1 1 ath10k_ahb a800000.wifi: [08]: 0x0004c000 0 0 127 0 ath10k_ahb a800000.wifi: [09]: 0x0004c400 0 0 0 0 ath10k_ahb a800000.wifi: [10]: 0x0004c800 0 0 0 0 ath10k_ahb a800000.wifi: [11]: 0x0004cc00 0 0 0 0 ath10k_ahb a800000.wifi: failed to update channel list: -108 ath10k_ahb a800000.wifi: failed to set pdev regdomain: -108 ath10k_ahb a800000.wifi: failed to create WMI vdev 0: -108 ieee80211 phy1: Hardware restart was requested Since no actual solution is known (besides downgrading the ath10k firmware) it seems to be better to disable the nonLinearTxFir for now. [1] https://lore.kernel.org/ath10k/3423718.UToCqzeSYe@ripper/ Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq-wifi: Update Plasma Cloud PA1200 BDFs to firmware 3.5.12Sven Eckelmann2021-09-231-0/+0
| | | | | | | | The official Plasma Cloud firmware adjusted the BDFs to contain new conformance test limits and target power values. These should be imported to avoid emissions outside the allowed limits. Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq-wifi: Drop empty wifi package for Netgear WAC510Sven Eckelmann2021-09-121-2/+0
| | | | | | | | | | The ipq-wifi-netgear_wac510 package is not selected by any device and would be empty anyway. The default board-2.bin from ath10k-board-qca4019 is therefore used for this device and the package doesn't provide any visible features. Fixes: b126d9c3a3d3 ("ipq40xx: add netgear wac510 support") Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq40xx: add netgear wac510 supportRobert Marko2021-06-051-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the Netgear WAC510 Insight Managed Smart Cloud Wireless Access Point, an indoor dual-band, dual-radio 802.11ac business-class wireless AP with integrated omnidirectional antennae and two 10/100/1000 Mbps Ethernet ports. For more information see: <https://www.netgear.com/business/wifi/access-points/wac510> Specifications: SoC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MiB Flash1: 2 MiB Winbond W25Q16JV SPI-NOR Flash2: 128 MiB Winbond W25N01GVZEIG SPI-NAND Ethernet: Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port, WAN port active IEEE 802.3af/at PoE in Wireless1: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae Wireless2: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae Input: (Optional) Barrel 12 V 2.5 A Power, Reset button SW1 LEDs: Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN Serial: Header J2 1 - 3.3 Volt (Do NOT connect!) 2 - TX 3 - RX 4 - Ground WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter! The Serial settings are 115200-8-N-1. Installation via Stock Web Interface: BTW: The default factory console/web interface login user/password are admin/password. In the web interface navigating to Management - Maintenance - Upgrade - 'Firmware Upgrade' will show you what is currently installed e.g.: Manage Firmware Current Firmware Version: V5.0.10.2 Backup Firmware Version: V1.2.5.11 Under 'Upgrade Options' choose Local (alternatively SFTP would be available) then click/select 'Browse File' on the right side, choose openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar and hit the Upgrade button below. After a minute or two your browser should indicate completion printing 'Firmware update complete.' and 'Rebooting AP...'. Note that OpenWrt will use the WAN PoE port as actual WAN port defaulting to DHCP client but NOT allowing LuCI access, use LAN port defaulting to 192.168.1.1/24 to access LuCI. Installation via TFTP Requiring Serial U-Boot Access: Connect to the device's serial port and hit any key to stop autoboot. Upload and boot the initramfs based OpenWrt image as follows: (IPQ40xx) # setenv serverip 192.168.1.1 (IPQ40xx) # setenv ipaddr 192.168.1.2 (IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb (IPQ40xx) # bootm Note: This only runs OpenWrt from RAM and has not installed anything to flash as of yet. One may permanently install OpenWrt as follows: Check the MTD device number of the active partition: root@OpenWrt:/# dmesg | grep 'set to be root filesystem' [ 1.010084] mtd: device 9 (rootfs) set to be root filesystem Upload the factory image ending with .ubi to /tmp (e.g. using scp or tftp). Then flash the image as follows (substituting the 9 in mtd9 below with whatever number reported above): root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi And reboot. Dual Image Configuration: The default U-Boot boot command bootipq uses the U-Boot environment variables primary/secondary to decide which image to boot. E.g. primary=0, secondary=3800000 uses rootfs while primary=3800000, secondary=0 uses rootfs_1. Switching their values changes the active partition. E.g. from within U-Boot: (IPQ40xx) # setenv primary 0 (IPQ40xx) # setenv secondary 3800000 (IPQ40xx) # saveenv Or from a OpenWrt userspace serial/SSH console: fw_setenv primary 0 fw_setenv secondary 3800000 Note that if you install two copies of OpenWrt then each will have its independent configuration not like when switching partitions on the stock firmware. BTW: The kernel log shows which boot partition is active: [ 2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB) vs. [ 2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB) Note: After 3 failed boot attempts it automatically switches partition. Signed-off-by: Robert Marko <robimarko@gmail.com> Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com> [squashed netgear-tar commit into main and rename netgear-tar for now, until it is made generic.] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for MikroTik SXTsq 5 acRoger Pueyo Centelles2021-04-292-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the MikroTik SXTsq 5 ac (RBSXTsqG-5acD), an outdoor 802.11ac wireless CPE with one 10/100/1000 Mbps Ethernet port. Specifications: - SoC: Qualcomm Atheros IPQ4018 - RAM: 256 MB - Storage: 16 MB NOR - Wireless: IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 16 dBi antennae - Ethernet: IPQ4018 (SoC) 1x 10/100/1000 port, 10-28 Vdc PoE in - 1x Ethernet LED (green) - 7x user-controllable LEDs · 1x power (blue) · 1x user (green) · 5x rssi (green) Note: Serial UART is probably available on the board, but it has not been tested. Flashing: Boot via TFTP the initramfs image. Then, upload a sysupgrade image via SSH and flash it normally. More info at the "Common procedures for MikroTik products" page https://openwrt.org/toh/mikrotik/common. Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
* ipq40xx: add MikroTik hAP ac2 supportRobert Marko2021-04-052-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for the MikroTik RouterBOARD RBD52G-5HacD2HnD-TC (hAP ac²), a indoor dual band, dual-radio 802.11ac wireless AP with integrated omnidirectional antennae, USB port and five 10/100/1000 Mbps Ethernet ports. See https://mikrotik.com/product/hap_ac2 for more info. Specifications: - SoC: Qualcomm Atheros IPQ4018 - RAM: 128 MB - Storage: 16 MB NOR - Wireless: · Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae · Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae - Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 5x 1000/100/10 port, passive PoE in - 1x USB Type A port Installation: Boot the initramfs image via TFTP and then flash the sysupgrade image using "sysupgrade -n" Signed-off-by: Robert Marko <robimarko@gmail.com>
* ipq40xx: add support for GL.iNet GL-AP1300Dongming Han2020-12-252-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MiB FLASH1: 4 MiB NOR FLASH2: 128 MiB NAND ETH: Qualcomm QCA8075 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2 INPUT: Reset LED: Power, Internet UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1 OTHER: On board with BLE module - by cp210x USB serial chip On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed Install via uboot tftp or uboot web failsafe. By uboot tftp: (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi (IPQ40xx) # run lf By uboot web failsafe: Push the reset button for 10 seconds util the power led flash faster, then use broswer to access http://192.168.1.1 Afterwards upgrade can use sysupgrade image. Signed-off-by: Dongming Han <handongming@gl-inet.com>
* ipq806x: add support for NEC Platforms Aterm WG2600HP3Yanase Yuki2020-12-252-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NEC Platforms Aterm WG2600HP3 is a dual-band router based on Qualcomm IPQ8062. Specification ------------- - SoC: Qualcomm IPQ8062 - RAM: 512MiB - Flash memory: SPI-NOR 32MiB (Cypress S25FL256S) - Wi-Fi: Qualcomm QCA9984 (2.4GHz, 1ch - 13ch) - Wi-Fi: Qualcomm QCA9984 (5GHz, 36ch - 64ch, 100ch - 140ch) - Ethernet: 4x 100/1000 Mbps (1x WAN, 4x LAN) - LED: 6x green LED, 6x red LED - Input: 2x tactile switch, 1x SP3T slide switch - Serial console: 115200bps, through-hole J3 - [ ] [GND] [ ] [TX] [RX] ----> DC jack - Power: DC 12V 1.5A This device does not support VHT160 and VHT80+80. Custom BDFs are required to limit VHT capabilities. Flash instructions ------------------ 1. Setup TFTP server (IP address: 192.168.1.2) 2. Put initramfs image into TFTP server directory 3. Connect WG2600HP3 lan port and computer that runs TFTP server 4. Connect to the serial console 5. Interrupt booting by Esc key (password: chiron) 6. Execute the following commands # setenv bootcmd "nboot 0x44000000 1 0x860000" # saveenv # setenv ipaddr 192.168.1.1 # setenv serverip 192.168.1.2 # tftpboot 0x44000000 openwrt-ipq806x-generic-nec_wg2600hp3-initramfs-uImage 7. After booting OpenWrt initramfs image, backup SPI-NOR flash memory 8. Erase firmware partition # mtd erase firmware 9. Run sysupgrade Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
* ipq-wifi: Fix suffix for Plasma Cloud PA2200 QCA4019 board-2.binSven Eckelmann2020-12-251-0/+0
| | | | | | | | | | | | | The Makefile is rejecting all files with for a given prefix (here "board-plasmacloud_pa2200") when it didn't match a known suffix. Instead it stops the build with an error like: Makefile:135: *** Unrecognized board-file suffix '.ipq4019' for 'board-plasmacloud_pa2200.ipq4019'. Stop. The correct suffix for the QCA4019/hw1.0 is qca4019 and not ipq4019. Fixes: 4871fd2616ac ("ipq40xx: add support for Plasma Cloud PA2200") Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq-wifi: Fix suffix for Plasma Cloud PA1200 QCA4019 board-2.binSven Eckelmann2020-12-251-0/+0
| | | | | | | | | | | | | The Makefile is rejecting all files with for a given prefix (here "board-plasmacloud_pa1200") when it didn't match a known suffix. Instead it stops the build with an error like: Makefile:135: *** Unrecognized board-file suffix '.ipq4019' for 'board-plasmacloud_pa1200.ipq4019'. Stop. The correct suffix for the QCA4019/hw1.0 is qca4019 and not ipq4019. Fixes: ea5bb6bbfee0 ("ipq40xx: add support for Plasma Cloud PA1200") Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq40xx: add support for devolo Magic 2 WiFi nextStefan Schake2020-12-222-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8075 (2 ports) PLC: MaxLinear G.hn 88LX5152 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET, WiFi, PLC Button LEDS: red/white home, white WiFi To modify a retail device to run OpenWRT firmware: 1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'. 2) Power on the device while pressing the recessed reset button next to the Ethernet ports. This causes the bootloader to retrieve and start the initramfs. 3) Once the initramfs is booted, the device will come up with IP 192.168.1.1. You can then connect through SSH (allow some time for the first connection). 4) On the device shell, run 'fw_printenv' to show the U-boot environment. Backup this information since it contains device unique factory data. 5) Change the boot command to support booting OpenWRT: # fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm' 6) Change directory to /tmp, download the sysupgrade (e.g. through wget) and install it with sysupgrade. The device will reboot into OpenWRT. Notice that there is currently no support for booting the G.hn chip. This requires userland software we lack the rights to share right now. Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
* ipq40xx: add support for Plasma Cloud PA2200Marek Lindner2020-12-223-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: * QCA IPQ4019 * 256 MB of RAM * 32 MB of SPI NOR flash (w25q256) - 2x 15 MB available; but one of the 15 MB regions is the recovery image * 2T2R 2.4 GHz - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200 * 2T2R 5 GHz (channel 36-64) - QCA9888 hw2.0 (PCI) - requires special BDF in QCA9888/hw2.0/board-2.bin bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200 * 2T2R 5 GHz (channel 100-165) - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200 * GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE * GPIO-LEDs for power (orange) and status (blue) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x gigabit ethernet - phy@mdio3: + Label: Ethernet 1 + gmac0 (ethaddr) in original firmware + used as LAN interface - phy@mdio4: + Label: Ethernet 2 + gmac1 (eth1addr) in original firmware + 802.3at POE+ + used as WAN interface * 12V 2A DC Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai> [sven@narfation.org: prepare commit message, rebase, use all LEDs, switch to dualboot_datachk upgrade script, use eth1 as designated WAN interface] Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq40xx: add support for Plasma Cloud PA1200Marek Lindner2020-12-222-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: * QCA IPQ4018 * 256 MB of RAM * 32 MB of SPI NOR flash (w25q256) - 2x 15 MB available; but one of the 15 MB regions is the recovery image * 2T2R 2.4 GHz - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200 * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200 * 3x GPIO-LEDs for status (cyan, purple, yellow) * 1x GPIO-button (reset) * 1x USB (xHCI) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x gigabit ethernet - phy@mdio4: + Label: Ethernet 1 + gmac0 (ethaddr) in original firmware + used as LAN interface - phy@mdio3: + Label: Ethernet 2 + gmac1 (eth1addr) in original firmware + 802.3af/at POE(+) + used as WAN interface * 12V/24V 1A DC Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai> [sven@narfation.org: prepare commit message, rebase, use all LEDs, switch to dualboot_datachk upgrade script, use eth1 as designated WAN interface] Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ipq40xx: improve support for Edgecore ECW5211Sungbo Eo2020-10-072-2/+0
| | | | | | | | | | | | | | | | | | | This adds several stylistic and functional improvements of the recently added Edgecore ECW5211, especially: * Drop the local BDFs as those are already in the upstream under different names * Add SPDX tag to DTS * Add label MAC address * Move LED trigger to DTS * Remove unnecessary status="okay" * Disable unused SS USB phy as the USB port only supports USB 2.0 * Make uboot-env partition writable * Remove qcom,poll_required_dynamic property as the driver does not use it * Tidy up the device recipe Fixes: 4488b260a02e ("ipq40xx: add Edgecore ECW5211 support") Signed-off-by: Sungbo Eo <mans0n@gorani.run> Acked-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: Add support for Linksys MR8300 (Dallas)Hans Geiblinger2020-09-253-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Linksys MR8300 is based on QCA4019 and QCA9888 and provides three, independent radios. NAND provides two, alternate kernel/firmware images with fail-over provided by the OEM U-Boot. Hardware Highlights: SoC: IPQ4019 at 717 MHz (4 CPUs) RAM: 512MB RAM SoC: Qualcomm IPQ4019 at 717 MHz (4 CPUs) RAM: 512M DDR3 FLASH: 256 MB NAND (Winbond W29N02GV, 8-bit parallel) ETH: Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks) BTN: Reset and WPS USB: USB3.0, single port on rear with LED SERIAL: Serial pads internal (unpopulated) LED: Four status lights on top + USB LED WIFI1: 2x2:2 QCA4019 2.4 GHz radio on ch. 1-14 WIFI2: 2x2:2 QCA4019 5 GHz radio on ch. 36-64 WIFI3: 2x2:2 QCA9888 5 GHz radio on ch. 100-165 Support is based on the already supported EA8300. Key differences: EA8300 has 256MB RAM where MR8300 has 512MB RAM. MR8300 has a revised top panel LED setup. Installation: "Factory" images may be installed directly through the OEM GUI using URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1) Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com> [copied Hardware-highlights from EA8300. Fixed alphabetical order. fixed commit subject, removed bogus unit-address of keys, fixed author (used Signed-off-By to From:) ] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for Luma Home WRTQ-329ACNTomasz Maciej Nowak2020-09-252-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band wireless access point. Specification SoC: Qualcomm Atheros IPQ4018 RAM: 256 MB DDR3 Flash: 2 MB SPI NOR 128 MB SPI NAND WIFI: 2.4 GHz 2T2R integrated 5 GHz 2T2R integrated Ethernet: 2x 10/100/1000 Mbps QCA8075 USB: 1x 2.0 Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU Buttons: 1x GPIO controlled EEPROM: 16 Kbit, compatible with AT24C16 UART: row of 4 holes marked on PCB as J19, starting count from the side of J19 marking on PCB 1. GND, 2. RX, 3. TX, 4. 3.3V baud: 115200, parity: none, flow control: none The device supports OTA or USB flash drive updates, unfotunately they are signed. Until the signing key is known, the UART access is mandatory for installation. The difficult part is disassembling the casing, there are a lot of latches holding it together. Teardown Prepare three thin, but sturdy, prying tools. Place the device with back of it facing upwards. Start with the wall having a small notch. Insert first tool, until You'll feel resistance and keep it there. Repeat the procedure for neighbouring walls. With applying a pressure, one edge of the back cover should pop up. Now carefully slide one of the tools to free the rest of the latches. There's no need to solder pins to the UART holes, You can use hook clips, but wiring them outside the casing, will ease debuging and recovery if problems occur. Installation 1. Prepare TFTP server with OpenWrt initramfs image. 2. Connect to UART port (don't connect the voltage pin). 3. Connect to LAN port. 4. Power on the device, carefully observe the console output and when asked quickly enter the failsafe mode. 5. Invoke 'mount_root'. 6. After the overlayfs is mounted run: fw_setenv bootdelay 3 This will allow to access U-Boot shell. 7. Reboot the device and when prompted to stop autoboot, hit any key. 8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use 'setenv' to do that, then run following commands: tftpboot 0x84000000 <openwrt_initramfs_image_name> bootm 0x84000000 and wait till OpenWrt boots. 9. In OpenWrt command line run following commands: fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000" fw_setenv bootcmd "run openwrt" 10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it with: ubirmvol /dev/ubi0 -N ubi_rootfs sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name> 11. After flashing, the access point will reboot to OpenWrt, then it's ready for configuration. Reverting to OEM firmware 1. Execute installation guide steps: 1, 2, 3, 7, 8. 2. In OpenWrt command line run following commands: ubirmvol /dev/ubi0 -N rootfs_data ubirmvol /dev/ubi0 -N rootfs ubirmvol /dev/ubi0 -N kernel ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs ubimkvol /dev/ubi0 -S 34 -N kernel1 ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1 ubimkvol /dev/ubi0 -S 264 -N rootfs_data fw_setenv bootcmd bootipq 3. Reboot. Known issues The LEDs ring doesn't have any dedicated driver or application to control it, the only available option atm is to manipulate it with 'i2cset' command. The default action after applying power to device is spinning blue light. This light will stay active at all time. To disable it install 'i2c-tools' with opkg and run: i2cset -y 2 0x48 3 1 0 0 i The light will stay off until next cold boot. Additional information After completing 5. step from installation guide, one can disable asking for root password on OEM firmware by running: sed -e 's/root:x:/root::/' -i /etc/passwd This is useful for investigating the OEM firmware. One can look at the communication between the stock firmware and the vendor's cloud servers or as a way of making a backup of both flash chips. The root password seems to be constant across all sold devices. This is output of 'led_ctl' from OEM firmware to illustrate possibilities of LEDs ring: Usage: led_ctl [status | upgrade | force_upgrade | version] led_ctl solid COLOR <brightness> led_ctl single COLOR INDEX <brightness 0 - 15> led_ctl spinning COLOR <period 1 - 16 (lower = faster)> led_ctl fill COLOR <period 1 - 16 (lower = faster)> ( default is 5 ) led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128> (default is 34) ( default is 34 ) led_ctl pulsing COLOR COLOR: red, green, blue, yellow, purple, cyan, white Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl> [squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit, changed ubi volumes for easier integration, slightly reworded commit message, changed ubi volume layout to use standard names all around] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add Edgecore OAP-100 supportJohn Crispin2020-09-172-0/+2
| | | | | | | | | | | | | | | | flashing the unit * first update to latest edcore FW as per the PDF instructions * boot the initramfs - tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm * inside the initramfs call the following commiands - ubiattach -p /dev/mtd0 - ubirmvol /dev/ubi0 -n0 - ubirmvol /dev/ubi0 -n1 - ubirmvol /dev/ubi0 -n2 * scp the sysupgrade image to the board and call - sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin Signed-off-by: John Crispin <john@phrozen.org>
* ipq40xx: add Edgecore ECW5211 supportRobert Marko2020-09-172-0/+2
| | | | | | | | | | | | | | | | | This patch adds support for the Edgecore ECW5211 indoor AP. Specification: - SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7 - RAM: 256MB DDR3 - NOR Flash: 16MB SPI NOR - NAND Flash: 128MB MX35LFxGE4AB SPI-NAND - Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0) - USB: 1 x USB 3.0 SuperSpeed - WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn) - CC2540 BLE connected to USB 2.0 port - Atmel AT97SC3205T I2C TPM Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq806x: add Edgecore ECW5410 supportRobert Marko2020-09-172-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the Edgecore ECW5410 indoor AP. Specification: - SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15 - RAM: 256MB(225 usable) DDR3 - NOR Flash: 16MB SPI NOR - NAND Flash: 128MB S34MS01G2 Parallel NAND - Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0) - USB: 1 x USB 3.0 SuperSpeed - WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn) - CC2540 BLE - UART console on RJ45 next to ethernet ports exposed. Its Cisco pin compatible, 115200 8n1 baud. Installation instructions: Through stock firmware or initramfs. 1.Connect to console 2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe. 3. Transfer factory image 4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path> This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0 Note Initramfs: 1. Connect to console 2. Transfer the image from TFTP server with tftpboot, or by using DHCP advertised image with dhcp command. 3. bootm 4. Run ubiformat /dev/mtd1 You need to interrupt the bootloader after rebooting and run: run altbootcmd This will switch your active rootfs partition to one you wrote to and boot from it. So if rootfs1 is active, then it will change it to rootfs2. This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0 If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those. This will result in wrong ordering and OpenWrt will panic on boot. 5. Transfer sysupgrade image 6. Flash with sysupgrade -n. Note that sysupgrade will write the image to rootfs partition that is not currently in use. Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* firmware: ipq-wifi: enable use on IPQ806xRobert Marko2020-09-171-1/+1
| | | | | | | | | This enables the ipq-wifi package to be used on IPQ806x target. Its needed for boards using a different BDF than one shipped in the upstream board-2.bin. Currently needed for Edgecore ECW5410. Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* ipq40xx: add support for Buffalo WTR-M2133HPYanase Yuki2020-07-083-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019. Specification ------------- - SoC: Qualcomm IPQ4019 - RAM: 512MiB - Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC) - Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch) - Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch) - Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch) - Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN) - LED: 4x white LED, 4x orange LED, 1x blue LED - USB: 1x USB 3.0 port - Input: 2x tactile switch, 2x slide switch (2x SP3T) - Serial console: 115200bps, pinheader JP5 on PCB - Power: DC 12V 2A Flash instruction ----------------- 1. Set up a TFTP server (IP address: 192.168.11.10) 2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage" and put it into the TFTP server directory. 3. Connect the TFTP server and WTR-M2133HP. 4. Hold down the AOSS button, then power on the router. 5. After booting OpenWrt initramfs image, connect to the router by SSH. 6. Transfer "squashfs-nand-factory.ubi" to the router. 7. Execute the following commands. # ubidetach -p /dev/mtd15 # ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi # fw_setenv bootcmd bootipq 8. Perform reboot. Recover to stock firmware ------------------------- 1. Execute the following command. # fw_setenv bootcmd bootbf 2. Reboot and wait several minutes. Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
* ipq40xx: add support for GL.iNet GL-S1300Dongming Han2020-07-082-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core RAM: 512 MiB FLASH1: 16 MiB NOR - SPI0 FLASH2: 8 GiB eMMC ETH: Qualcomm QCA8075 WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2 INPUT: Reset, WPS LED: Power, Mesh, WLAN UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1 UART2: On board with BLE module SPI1: On board socket for Zigbee module Install via tftp - NB: need to flash transition image firstly Firstly install transition image: (IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img (IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script Secondly install openwrt sysupgrade bin: (IPQ40xx) # run lf Revert to factory image: (IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img (IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script The kernel and rootfs of factory firmware are on eMMC, and openwrt firmware is on NOR flash. The transition image includes U-boot and partition table, which decides where to load kernel and rootfs. After you firstly install openwrt image, you can switch between factory and openwrt firmware by flashing transition image. Signed-off-by: Dongming Han <handongming@gl-inet.com>
* ipq40xx: add support for EnGenius EMR3500Yen-Ting-Shen2020-06-132-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8072 (2 ports) USB: 1 x 2.0 (Host controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button LEDS: White, Blue, Red, Orange Flash instruction: From EnGenius firmware to OpenWrt firmware: In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emr3500-squashfs-factory.bin directly. From OpenWrt firmware to EnGenius firmware: 1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8 Put the EnGenius firmware in the TFTP server directory on your computer. 2. Power up EMR3500. Press 4 and then press any key to enter u-boot. 3. Download EnGenius firmware (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emr3500-nor-fw-s.img 4. Flash the firmware (IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script 5. Reboot (IPQ40xx) # reset Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com> [squashed update patch, updated to 5.4, dropped BOARD_NAME, migrated to SOC] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for Cell C RTL30VWPawel Dembicki2020-04-102-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cell C RTL30VW is a LTE router with tho gigabit ethernets and integrated QMI mPCIE modem. This is stripped version of ASKEY RTL0030VW. Hardware: Specification: -CPU: IPQ4019 -RAM: 256MB -Flash: NAND 128MB + NOR 16MB -WiFi: Integrated bgn/ac -LTE: mPCIe card (Modem chipset MDM9230) -LAN: 2 Gigabit Ports -USB: 2x USB2.0 -Serial console: RJ-45 115200 8n1 -Unsupported VoIP Known issues: None so far. Instruction install: There are two methods: Factory web-gui and serial + tftp. Web-gui: 1. Apply factory image via stock web-gui. Serial + initramfs: 1. Rename OpenWrt initramfs image to "image" 2. Connect serial console (115200,8n1) 3. Set IP to different than 192.168.1.11, but 24 bit mask, eg. 192.168.1.4. 4. U-Boot commands: sf probe && sf read 0x80000000 0x180000 0x10000 setenv serverip 192.168.1.4 set fdt_high 0x85000000 tftpboot 0x84000000 image bootm 0x84000000 5. Install sysupgrade image via "sysupgrade -n" Back to stock: All is needed is swap 0x4c byte in mtd8 from 0 to 1 or 1 to 0, do firstboot and factory reset with OFW: 1. read mtd8: dd if=/dev/mtd8 of=/tmp/mtd8 2. go to tmp: cd /tmp/ 3. write first part of partition: dd if=mtd8 of=mtd8.new bs=1 count=76 4. check which layout uses bootloader: cat /proc/mtd 5a. If first are kernel_1 and rootfs_1 write 0: echo -n -e '\x00' >> mtd8.new 5b. If first are kernel and rootfs write 1: echo -n -e '\x01' >> mtd8.new 6. fill with rest of data: dd if=mtd8 bs=1 skip=77 >> mtd8.new 7. CHECK IF mtd8.new HAVE CHANGED ONLY ONE BYTE! e.g with: hexdump mtd8.new 8. write new mtd8 to flash: mtd write mtd8.new /dev/mtd8 9. do firstboot 10.reboot 11. Do back to factory defaults in OFW GUI. Based on work: Cezary Jackiewicz <cezary@eko.one.pl> Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
* ipq40xx: add support for MobiPromo CM520-79FDENG Qingfang2020-04-102-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019 Specification: SoC/Wireless: QCA IPQ4019 RAM: 512MiB Flash: 128MiB SLC NAND Ethernet PHY: QCA8075 Ethernet ports: 1x WAN, 2x LAN LEDs: 7 LEDs 2 (USB, CAN) are GPIO other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register Button: Reset Flash instruction: Disassemble the router, connect UART pins like this: GND TX RX [x x . . x .] [. . . . . .] (QCA8075 and IPQ4019 below) Baud-rate: 115200 Set up TFTP server: IP 192.168.1.188/24 Power on the router and interrupt the booting with UART console env backup (in case you want to go back to stock and need it there): printenv (Copy the output to somewhere save) Set bootenv: setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs' setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1' setenv cm520_boot 'run set_ubi; run bootkernel' setenv bootcmd 'run cm520_boot' setenv bootargs saveenv Boot initramfs from TFTP: tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb bootm After initramfs image is booted, backup rootfs partition in case of reverting to stock image cat /dev/mtd12 > /tmp/mtd12.bin Then fetch it via SCP Upload nand-factory.ubi to /tmp via SCP, then run mtd erase rootfs mtd write /tmp/*nand-factory.ubi rootfs reboot To revert to stock image, restore default bootenv in uboot UART console setenv bootcmd 'bootipq' printenv use the saved dump you did back when you installed OpenWrt to verify that there are no other differences from back in the day. saveenv upload the backed up mtd12.bin and run tftpboot mtd12.bin nand erase 0xb80000 0x7480000 nand write 0x84000000 0xb80000 0x7480000 The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead In case of this, set it back to rootfs: cd /tmp cat /dev/mtd7 > mtd7.bin echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4 for i in 28 48 68 108; do dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i done mtd write mtd7.bin BOOTCONFIG mtd write mtd7.bin BOOTCONFIG1 Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn> [renamed volume to ubi to support autoboot, as per David Lam's test in PR#2432] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for 8devices Habanero DVKRobert Marko2020-03-092-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the 8devices Habanero development board. Specs are: CPU: QCA IPQ4019 RAM: DDR3L 512MB Storage: 32MB SPI-NOR and optional Parallel SLC NAND(Some boards ship with it and some without) WLAN1: 2.4 GHz built into IPQ4019 (802.11n) 2x2 WLAN2: 5 GHz built into IPO4019 (802.11ac Wawe-2) 2x2 Ethernet: 5x Gbit LAN (QCA 8075) USB: 1x USB 2.0 and 1x USB 3.0 (Both built into IPQ4019) MicroSD slot (Uses SD controller built into IPQ4019) SDIO3.0/EMMC slot (Uses the same SD controller) Mini PCI-E Gen 2.0 slot (Built into IPQ4019) 5x LEDs (4 GPIO controllable) 2x Pushbutton (1 is connected to GPIO, other to SoC reset) LCD ZIF socket (Uses the LCD controller built into IPQ4019 which has no driver support) 1x UART 115200 rate on J18 2x breakout development headers 12V DC Jack for power DIP switch for bootstrap configuration Installation instructions: Since boards ship with vendors fork of OpenWrt sysupgrade can be used. Signed-off-by: Robert Marko <robimarko@gmail.com>
* ipq40xx: add support for EnGenius EAP2200Steven Lin2020-02-283-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4019 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB FLASH: NOR 4 MiB + NAND 128 MiB ETH: Qualcomm Atheros QCA8072 WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2 WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2 INPUT: WPS Button LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE 1. Load Ramdisk via U-Boot To set up the flash memory environment, do the following: a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters: * 115200bps * 8N1 b. Confirm that the PC is connected to the board using one of the Ethernet ports. c. Set a static ip 192.168.99.8 for Ethernet that connects to board. d. The PC must have a TFTP server launched and listening on the interface to which the board is connected. e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown. U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm Signed-off-by: Steven Lin <steven.lin@senao.com> [copied 4.19 dts to 5.4] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: drop deprecated .bin supportChristian Lamparter2020-01-263-4/+1
| | | | | | | | | | This patch converts the Qxwlan E2600AC image away from the deprecated .bin file and to the new .qca4019 method. As a result, we no longer need to carry around the legacy support for handling .bin files. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for EnGenius EMD1Yen-Ting-Shen2020-01-262-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8072 (1 port) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button LEDS: White, Blue, Red, Orange Flash instruction: From EnGenius firmware to OpenWrt firmware: In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emd1-squashfs-factory.bin directly. From OpenWrt firmware to EnGenius firmware: 1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8 Put the EnGenius firmware in the TFTP server directory on your computer. 2. Power up EMD1. Press 4 and then press any key to enter u-boot. 3. Download EnGenius firmware (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emd1-nor-fw-s.img 4. Flash the firmware (IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script 5. Reboot (IPQ40xx) # reset Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com> [removed BOARD_NAME] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: Add support for D-Link DAP-2610Fredrik Olofsson2020-01-262-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications ============== - SOC: IPQ4018 - RAM: DDR3 256MB - Flash: SPI NOR 16MB - WiFi: - 2.4GHz: IPQ4018, 2x2, front end SKY85303-11 - 5GHz: IPQ4018, 2x2, front end SKY85717-21 - Ethernet: 1x 10/100/1000Mbps, POE 802.3af - PHY: QCA8072 - UART: GND, blocked, 3.3V, RX, TX / 115200 8N1 - LED: 1x red / green - Button: 1x reset / factory default - U-Boot bootloader with tftp and "emergency web server" accessible using serial port. Installation ============ Flash factory image from D-Link web UI. Constraints in the D-Link web UI makes the factory image unnecessarily large. Flash again using sysupgrade from inside OpenWrt to reclaim some flash space. Return to stock D-Link firmware =============================== Partition layout is preserved, and it is possible to return to the stock firmware simply by downloading it from D-Link and writing it to the firmware partition. # mtd -r write dap2610-firmware.bin firmware Quirks ====== To be flashable from the D-Link http server, the firmware must be larger then 6MB, and the size in the firmware header must match the actual file size. Also, the boot loader verifies the checksum of the firmware before each boot, thus the jffs2 must be after the checksum covered part. This is solved in the factory image by having the rootfs at the very end of the image (without pad-rootfs). The sysupgrade image which does not have to be flashable from the D-Link web UI may be smaller, and the checksum in the firmware header only covers the kernel part of the image. Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com> [added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux, added emd1's gmac0 config,fix dtc warnings] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for EZVIZ CS-W3-WD1200G EUPTom Brouwer2020-01-122-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware: SOC: Qualcomm IPQ4018 RAM: 128 MB Nanya NT5CC64M16GP-DI FLASH: 16 MB Macronix MX25L12805D ETH: Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN) WLAN: Qualcomm IPQ4018 (2.4 & 5 Ghz) BUTTON: Shared WPS/Reset button LED: RGB Status/Power LED SERIAL: Header J8 (UART, Left side of board). Numbered from top to bottom: (1) GND, (2) TX, (3) RX, (4) VCC (White triangle next to it). 3.3v, 115200, 8N1 Tested/Working: * Ethernet * WiFi (2.4 and 5GHz) * Status LED * Reset Button (See note below) Implementation notes: * The shared WPS/Reset button is implemented as a Reset button * I could not find a original firmware image to reverse engineer, meaning currently it's not possible to flash OpenWrt through the Web GUI. Installation (Through Serial console & TFTP): 1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to one of the LAN ports 2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on your pc, to serve the image 2. Connect to the router through serial (See connection properties above) 3. Hit a key during startup, to pause startup 4. type `setenv serverip 192.168.1.12`, to set the tftp server address 5. type `tftpboot`, to load the image from the laptop through tftp 6. type `bootm` to run the loaded image from memory 6. (If you want to return to stock firmware later, create an full MTD backup, e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup) 7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.: `scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin` 8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin` Revert to stock: To revert to stock, you need the MTD backup from step 6 above: 1. Unpack the MTD backup archive 2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup) 3. On the router, do `mtd write mtd8_firmware.backup firmware` Signed-off-by: Tom Brouwer <tombrouwer@outlook.com> [removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add BDF for Aruba AP-303David Bauer2019-12-202-0/+2
| | | | | | The BDF originates from the vendor-firmware. Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: add AVM FRITZ!Repeater 1200 bdfDavid Bauer2019-10-232-0/+2
| | | | Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: drop upstreamed custom board-2.binChristian Lamparter2019-08-189-15/+0
| | | | | | | | | | | | | | | | | | | | | | The BDFs for the: ALFA Network AP120C-AC ASUS Lyra AVM FRITZ!Box 7530 AVM FRITZ!Repeater 3000 EnGenius EAP1300 EnGenius ENS620EXT Netgear Orbi Pro SRK60 boards were upstreamed to the ath10k-firmware repository and linux-firmware.git. Furthermore the BDFs for the: OpenMesh A42 specific BDFs OpenMesh A62 specific BDFs Linksys EA6350v3 have been updated. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: Add support for Linksys EA8300 (Dallas)Jeff Kletsky2019-05-183-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three, independent radios. NAND provides two, alternate kernel/firmware images with fail-over provided by the OEM U-Boot. Installation: "Factory" images may be installed directly through the OEM GUI. Hardware Highlights: * IPQ4019 at 717 MHz (4 CPUs) * 256 MB NAND (Winbond W29N02GV, 8-bit parallel) * 256 MB RAM * Three, fully-functional radios; `iw phy` reports (FCC/US, -CT): * 2.4 GHz radio at 30 dBm * 5 GHz radio on ch. 36-64 at 23 dBm * 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm #{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1 * All two-stream, MCS 0-9 * 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights * USB3, single port on rear with LED * WPS and reset buttons * Four status lights on top * Serial pads internal (unpopulated) "Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1" Implementation Notes: The OEM flash layout is preserved at this time with 3 MB kernel and ~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and syscfg (56 MB) partitions are untouched, available as read-only. Serial Connectivity: Serial connectivity is *not* required to flash. Serial may be accessed by opening the device and connecting a 3.3-V adapter using 115200, 8n1. U-Boot access is good, including the ability to load images over TFTP and either run or flash them. Looking at the top of the board, from the front of the unit, J3 can be found on the right edge of the board, near the rear | J3 | |-| | |O| | (3.3V seen, open-circuit) |O| | TXD |O| | RXD |O| | |O| | GND |-| | | Unimplemented: * serial1 "ttyQHS0" (serial0 works as console) * Bluetooth; Qualcomm CSR8811 (potentially conected to serial1) Other Notes: https://wikidevi.com/wiki/Linksys_EA8300 states FCC docs also cover the Linksys EA8250. According to the RF Test Report BT BR+EDR, "All models are identical except for the EA8300 supports 256QAM and the EA8250 disable 256QAM." Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
* firmware/ipq-wifi: Extend for multi-chip boardsJeff Kletsky2019-05-183-19/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This package provides board-specific reference ("cal") data on an interim basis until included in the upstream distros While originally conceived for IPQ4019-based boards, similar needs are appearing with three-radio devices. For some of these devices, both a board-2.bin file needs to be supplied both for the IPQ4019 as well as for the other radio on the board. This patch allows new or multiple overrides to be specified by: * Adding board name to ALLWIFIBOARDS * Placing file(s) in this directory named as board-<devicename>.<qca4019|qca9888|qca9984> * Adding $(eval $(call generate-ipq-wifi-package,<device>,<display name>)) (along with suitable package selection for the board) At this time, QCA4019, QCA9888, and QCA9984 are supported. Extension to other chips should be straightforward. The existing files, board-*.bin, are "grandfathered" as QCA4019. The package name has been retained for compatability reasons. At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility. Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac, avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300, engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2 Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
* ipq40xx: add support for EnGenius ENS620EXTSteve Glennon2019-03-212-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4018 RAM: 256M FLASH: 32M SPI NOR W25Q256 ETH: QCA8075 WiFi2: IPQ4018 2T2R 2SS b/g/n WiFi5: IPQ4018 2T2R 2SS n/ac LED: - Power amber - LAN1(PoE) green - LAN2 green - Wi-Fi 2.4GHz green - Wi-Fi 5GHz green BTN: - WPS UART: 115200n8 3.3V J1 VCC(1) - GND(2) - TX(3) - RX(4) Added basic support to get the device up and running for a sysupgrade image only. There is currently no way back to factory firmware, so this is a one-way street to OpenWRT. Install from factory condition is convoluted, and may brick your device: 1) Enable SSH and disable the CLI on the factory device from the web user interface (Management->Advanced) 2) Reboot the device 3) Override the default, limited SSH shell: a) Get into the ssh shell: ssh admin@192.168.1.1 /bin/sh --login b) Change the dropbear script to disable the limited shell. At the empty command prompt type: sed -i '/login_ssh/s/^/#/g’ dropbear /etc/init.d/dropbear restart exit 4) ssh in to a (now-) normal OpenWRT SSH session 5) Flash your built image a) scp openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin admin@192.168.1.1:/tmp/ b) ssh admin@192.168.1.1 c) sysupgrade -n /tmp/openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin 6) After flash completes (it may say "Upgrade failed" followed by "Upgrade completed") and device reboots, log in to newly flashed system. Note you will now need to ssh as root rather than admin. Signed-off-by: Steve Glennon <s.glennon@cablelabs.com> [whitespace fixes, reordered partitions, removed rng node from 4.14, fixed 901-arm-boot-add-dts-files.patch] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for AVM FRITZ!Repeater 3000David Bauer2019-03-132-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4019 RAM: 256M (NANYA NT5CC128M16JR-EK) FLASH: 128M NAND (Macronix MX30LF1G18AC-XKI) ETH: Qualcomm QCA8072 WiFi2: IPQ4019 2T2R 2SS b/g/n WiFi5: IPQ4019 2T2R 2SS n/ac WiFi5: QCA9984 4T4R 4SS n/ac LED: - Connect green/blue/red - Power green BTN: WPS/Connect UART: 115200n8 3.3V VCC - RX - TX - GND (Square is VCC) Installation ------------ 1. Grab the uboot for the Device from the 'u-boot-fritz3000' subdirectory. Place it in the same directory as the 'eva_ramboot.py' script. It is located in the 'scripts/flashing' subdirectory of the OpenWRT tree. 2. Assign yourself the IP address 192.168.178.10/24. Connect your Computer to one of the boxes LAN ports. 3. Connect Power to the Box. As soon as the LAN port of your computer shows link, load the U-Boot to the box using following command. > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz3000.bin 4. The U-Boot will now start. Now assign yourself the IP address 192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP server root directory and rename it to 'FRITZ3000.bin'. 5. The Box will now boot OpenWRT from RAM. This can take up to two minutes. 6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using scp. SSH into the Box and first write the Bootloader to both previous kernel partitions. > mtd write /path/to/uboot-fritz3000.bin uboot0 > mtd write /path/to/uboot-fritz3000.bin uboot1 7. Remove the AVM filesystem partitions to make room for our kernel + rootfs + overlayfs. > ubirmvol /dev/ubi0 --name=avm_filesys_0 > ubirmvol /dev/ubi0 --name=avm_filesys_1 8. Flash OpenWRT peristently using sysupgrade. > sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: update ALFA Network AP120C-AC board-2.binPiotr Dymacz2019-03-081-0/+0
| | | | | | | Add specific 'variant' for 'bus=ahb,bmi-chip-id=0,bmi-board-id=25' BDF. Use the same value ('ALFA-Network-AP120C-AC') as sent upstream. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ipq40xx: add support for FritzBox 7530David Bauer2019-02-282-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4019 RAM: 256M FLASH: 128M NAND ETH: QCA8075 VDSL: Intel/Lantiq VRX518 PCIe attached currently not supported DECT: Dialog SC14448 currently not supported WiFi2: IPQ4019 2T2R 2SS b/g/n WiFi5: IPQ4019 2T2R 2SS n/ac LED: - Power/DSL green - WLAN green - FON/DECT green - Connect/WPS green - Info green - Info red BTN: - WLAN - FON - WPS/Connect UART: 115200n8 3.3V (located under the Dialog chip) VCC - RX - TX - GND (Square is VCC) Installation ------------ 1. Grab the uboot for the Device from the 'u-boot-fritz7530' subdirectory. Place it in the same directory as the 'eva_ramboot.py' script. It is located in the 'scripts/flashing' subdirectory of the OpenWRT tree. 2. Assign yourself the IP address 192.168.178.10/24. Connect your Computer to one of the boxes LAN ports. 3. Connect Power to the Box. As soon as the LAN port of your computer shows link, load the U-Boot to the box using following command. > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin 4. The U-Boot will now start. Now assign yourself the IP address 192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP server root directory and rename it to 'FRITZ7530.bin'. 5. The Box will now boot OpenWRT from RAM. This can take up to two minutes. 6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using scp. SSH into the Box and first write the Bootloader to both previous kernel partitions. > mtd write /path/to/uboot-fritz7530.bin uboot0 > mtd write /path/to/uboot-fritz7530.bin uboot1 7. Remove the AVM filesystem partitions to make room for our kernel + rootfs + overlayfs. > ubirmvol /dev/ubi0 --name=avm_filesys_0 > ubirmvol /dev/ubi0 --name=avm_filesys_1 8. Flash OpenWRT peristently using sysupgrade. > sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: David Bauer <mail@david-bauer.net> [removed pcie-dts range node, refreshed on top of AP120-AC/E2600AC] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for Qxwlan E2600AC C1 and C2张鹏2019-02-282-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Qxwlan E2600AC C1 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB FLASH: 32 MiB Winbond W25Q256 ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power ,6 driven by gpio SERIAL: UART (J5) UUSB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "sysupgrade" filename to "firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "sysupgrade" image and click the upgrade button. Qxwlan E2600AC C2 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB NOR: 16 MiB Winbond W25Q128 NAND: 128MiB Micron MT29F1G08ABAEAWP ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power, 6 driven by gpio SERIAL: UART (J5) USB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "ubi" filename to "ubi-firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "ubi" image and click the upgrade button. Signed-off-by: 张鹏 <sd20@qxwlan.com> [ added rng node. whitespace fixes, ported 02_network, ipq-wifi Makefile, misc dts fixes, trivial message changes ] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>