aboutsummaryrefslogtreecommitdiffstats
path: root/package/firmware/ipq-wifi/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* ipq40xx: add support for 8devices Habanero DVKRobert Marko2020-03-091-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for the 8devices Habanero development board. Specs are: CPU: QCA IPQ4019 RAM: DDR3L 512MB Storage: 32MB SPI-NOR and optional Parallel SLC NAND(Some boards ship with it and some without) WLAN1: 2.4 GHz built into IPQ4019 (802.11n) 2x2 WLAN2: 5 GHz built into IPO4019 (802.11ac Wawe-2) 2x2 Ethernet: 5x Gbit LAN (QCA 8075) USB: 1x USB 2.0 and 1x USB 3.0 (Both built into IPQ4019) MicroSD slot (Uses SD controller built into IPQ4019) SDIO3.0/EMMC slot (Uses the same SD controller) Mini PCI-E Gen 2.0 slot (Built into IPQ4019) 5x LEDs (4 GPIO controllable) 2x Pushbutton (1 is connected to GPIO, other to SoC reset) LCD ZIF socket (Uses the LCD controller built into IPQ4019 which has no driver support) 1x UART 115200 rate on J18 2x breakout development headers 12V DC Jack for power DIP switch for bootstrap configuration Installation instructions: Since boards ship with vendors fork of OpenWrt sysupgrade can be used. Signed-off-by: Robert Marko <robimarko@gmail.com>
* ipq40xx: add support for EnGenius EAP2200Steven Lin2020-02-281-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4019 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB FLASH: NOR 4 MiB + NAND 128 MiB ETH: Qualcomm Atheros QCA8072 WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2 WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2 INPUT: WPS Button LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE 1. Load Ramdisk via U-Boot To set up the flash memory environment, do the following: a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters: * 115200bps * 8N1 b. Confirm that the PC is connected to the board using one of the Ethernet ports. c. Set a static ip 192.168.99.8 for Ethernet that connects to board. d. The PC must have a TFTP server launched and listening on the interface to which the board is connected. e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown. U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm Signed-off-by: Steven Lin <steven.lin@senao.com> [copied 4.19 dts to 5.4] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: drop deprecated .bin supportChristian Lamparter2020-01-261-3/+1
| | | | | | | | | | This patch converts the Qxwlan E2600AC image away from the deprecated .bin file and to the new .qca4019 method. As a result, we no longer need to carry around the legacy support for handling .bin files. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for EnGenius EMD1Yen-Ting-Shen2020-01-261-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8072 (1 port) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button LEDS: White, Blue, Red, Orange Flash instruction: From EnGenius firmware to OpenWrt firmware: In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emd1-squashfs-factory.bin directly. From OpenWrt firmware to EnGenius firmware: 1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8 Put the EnGenius firmware in the TFTP server directory on your computer. 2. Power up EMD1. Press 4 and then press any key to enter u-boot. 3. Download EnGenius firmware (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emd1-nor-fw-s.img 4. Flash the firmware (IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script 5. Reboot (IPQ40xx) # reset Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com> [removed BOARD_NAME] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: Add support for D-Link DAP-2610Fredrik Olofsson2020-01-261-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications ============== - SOC: IPQ4018 - RAM: DDR3 256MB - Flash: SPI NOR 16MB - WiFi: - 2.4GHz: IPQ4018, 2x2, front end SKY85303-11 - 5GHz: IPQ4018, 2x2, front end SKY85717-21 - Ethernet: 1x 10/100/1000Mbps, POE 802.3af - PHY: QCA8072 - UART: GND, blocked, 3.3V, RX, TX / 115200 8N1 - LED: 1x red / green - Button: 1x reset / factory default - U-Boot bootloader with tftp and "emergency web server" accessible using serial port. Installation ============ Flash factory image from D-Link web UI. Constraints in the D-Link web UI makes the factory image unnecessarily large. Flash again using sysupgrade from inside OpenWrt to reclaim some flash space. Return to stock D-Link firmware =============================== Partition layout is preserved, and it is possible to return to the stock firmware simply by downloading it from D-Link and writing it to the firmware partition. # mtd -r write dap2610-firmware.bin firmware Quirks ====== To be flashable from the D-Link http server, the firmware must be larger then 6MB, and the size in the firmware header must match the actual file size. Also, the boot loader verifies the checksum of the firmware before each boot, thus the jffs2 must be after the checksum covered part. This is solved in the factory image by having the rootfs at the very end of the image (without pad-rootfs). The sysupgrade image which does not have to be flashable from the D-Link web UI may be smaller, and the checksum in the firmware header only covers the kernel part of the image. Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com> [added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux, added emd1's gmac0 config,fix dtc warnings] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for EZVIZ CS-W3-WD1200G EUPTom Brouwer2020-01-121-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware: SOC: Qualcomm IPQ4018 RAM: 128 MB Nanya NT5CC64M16GP-DI FLASH: 16 MB Macronix MX25L12805D ETH: Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN) WLAN: Qualcomm IPQ4018 (2.4 & 5 Ghz) BUTTON: Shared WPS/Reset button LED: RGB Status/Power LED SERIAL: Header J8 (UART, Left side of board). Numbered from top to bottom: (1) GND, (2) TX, (3) RX, (4) VCC (White triangle next to it). 3.3v, 115200, 8N1 Tested/Working: * Ethernet * WiFi (2.4 and 5GHz) * Status LED * Reset Button (See note below) Implementation notes: * The shared WPS/Reset button is implemented as a Reset button * I could not find a original firmware image to reverse engineer, meaning currently it's not possible to flash OpenWrt through the Web GUI. Installation (Through Serial console & TFTP): 1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to one of the LAN ports 2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on your pc, to serve the image 2. Connect to the router through serial (See connection properties above) 3. Hit a key during startup, to pause startup 4. type `setenv serverip 192.168.1.12`, to set the tftp server address 5. type `tftpboot`, to load the image from the laptop through tftp 6. type `bootm` to run the loaded image from memory 6. (If you want to return to stock firmware later, create an full MTD backup, e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup) 7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.: `scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin` 8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin` Revert to stock: To revert to stock, you need the MTD backup from step 6 above: 1. Unpack the MTD backup archive 2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup) 3. On the router, do `mtd write mtd8_firmware.backup firmware` Signed-off-by: Tom Brouwer <tombrouwer@outlook.com> [removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add BDF for Aruba AP-303David Bauer2019-12-201-0/+2
| | | | | | The BDF originates from the vendor-firmware. Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: add AVM FRITZ!Repeater 1200 bdfDavid Bauer2019-10-231-0/+2
| | | | Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: drop upstreamed custom board-2.binChristian Lamparter2019-08-181-14/+0
| | | | | | | | | | | | | | | | | | | | | | The BDFs for the: ALFA Network AP120C-AC ASUS Lyra AVM FRITZ!Box 7530 AVM FRITZ!Repeater 3000 EnGenius EAP1300 EnGenius ENS620EXT Netgear Orbi Pro SRK60 boards were upstreamed to the ath10k-firmware repository and linux-firmware.git. Furthermore the BDFs for the: OpenMesh A42 specific BDFs OpenMesh A62 specific BDFs Linksys EA6350v3 have been updated. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: Add support for Linksys EA8300 (Dallas)Jeff Kletsky2019-05-181-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three, independent radios. NAND provides two, alternate kernel/firmware images with fail-over provided by the OEM U-Boot. Installation: "Factory" images may be installed directly through the OEM GUI. Hardware Highlights: * IPQ4019 at 717 MHz (4 CPUs) * 256 MB NAND (Winbond W29N02GV, 8-bit parallel) * 256 MB RAM * Three, fully-functional radios; `iw phy` reports (FCC/US, -CT): * 2.4 GHz radio at 30 dBm * 5 GHz radio on ch. 36-64 at 23 dBm * 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm #{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1 * All two-stream, MCS 0-9 * 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights * USB3, single port on rear with LED * WPS and reset buttons * Four status lights on top * Serial pads internal (unpopulated) "Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1" Implementation Notes: The OEM flash layout is preserved at this time with 3 MB kernel and ~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and syscfg (56 MB) partitions are untouched, available as read-only. Serial Connectivity: Serial connectivity is *not* required to flash. Serial may be accessed by opening the device and connecting a 3.3-V adapter using 115200, 8n1. U-Boot access is good, including the ability to load images over TFTP and either run or flash them. Looking at the top of the board, from the front of the unit, J3 can be found on the right edge of the board, near the rear | J3 | |-| | |O| | (3.3V seen, open-circuit) |O| | TXD |O| | RXD |O| | |O| | GND |-| | | Unimplemented: * serial1 "ttyQHS0" (serial0 works as console) * Bluetooth; Qualcomm CSR8811 (potentially conected to serial1) Other Notes: https://wikidevi.com/wiki/Linksys_EA8300 states FCC docs also cover the Linksys EA8250. According to the RF Test Report BT BR+EDR, "All models are identical except for the EA8300 supports 256QAM and the EA8250 disable 256QAM." Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
* firmware/ipq-wifi: Extend for multi-chip boardsJeff Kletsky2019-05-181-19/+60
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This package provides board-specific reference ("cal") data on an interim basis until included in the upstream distros While originally conceived for IPQ4019-based boards, similar needs are appearing with three-radio devices. For some of these devices, both a board-2.bin file needs to be supplied both for the IPQ4019 as well as for the other radio on the board. This patch allows new or multiple overrides to be specified by: * Adding board name to ALLWIFIBOARDS * Placing file(s) in this directory named as board-<devicename>.<qca4019|qca9888|qca9984> * Adding $(eval $(call generate-ipq-wifi-package,<device>,<display name>)) (along with suitable package selection for the board) At this time, QCA4019, QCA9888, and QCA9984 are supported. Extension to other chips should be straightforward. The existing files, board-*.bin, are "grandfathered" as QCA4019. The package name has been retained for compatability reasons. At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility. Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac, avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300, engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2 Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
* ipq40xx: add support for EnGenius ENS620EXTSteve Glennon2019-03-211-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4018 RAM: 256M FLASH: 32M SPI NOR W25Q256 ETH: QCA8075 WiFi2: IPQ4018 2T2R 2SS b/g/n WiFi5: IPQ4018 2T2R 2SS n/ac LED: - Power amber - LAN1(PoE) green - LAN2 green - Wi-Fi 2.4GHz green - Wi-Fi 5GHz green BTN: - WPS UART: 115200n8 3.3V J1 VCC(1) - GND(2) - TX(3) - RX(4) Added basic support to get the device up and running for a sysupgrade image only. There is currently no way back to factory firmware, so this is a one-way street to OpenWRT. Install from factory condition is convoluted, and may brick your device: 1) Enable SSH and disable the CLI on the factory device from the web user interface (Management->Advanced) 2) Reboot the device 3) Override the default, limited SSH shell: a) Get into the ssh shell: ssh admin@192.168.1.1 /bin/sh --login b) Change the dropbear script to disable the limited shell. At the empty command prompt type: sed -i '/login_ssh/s/^/#/g’ dropbear /etc/init.d/dropbear restart exit 4) ssh in to a (now-) normal OpenWRT SSH session 5) Flash your built image a) scp openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin admin@192.168.1.1:/tmp/ b) ssh admin@192.168.1.1 c) sysupgrade -n /tmp/openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin 6) After flash completes (it may say "Upgrade failed" followed by "Upgrade completed") and device reboots, log in to newly flashed system. Note you will now need to ssh as root rather than admin. Signed-off-by: Steve Glennon <s.glennon@cablelabs.com> [whitespace fixes, reordered partitions, removed rng node from 4.14, fixed 901-arm-boot-add-dts-files.patch] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for AVM FRITZ!Repeater 3000David Bauer2019-03-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4019 RAM: 256M (NANYA NT5CC128M16JR-EK) FLASH: 128M NAND (Macronix MX30LF1G18AC-XKI) ETH: Qualcomm QCA8072 WiFi2: IPQ4019 2T2R 2SS b/g/n WiFi5: IPQ4019 2T2R 2SS n/ac WiFi5: QCA9984 4T4R 4SS n/ac LED: - Connect green/blue/red - Power green BTN: WPS/Connect UART: 115200n8 3.3V VCC - RX - TX - GND (Square is VCC) Installation ------------ 1. Grab the uboot for the Device from the 'u-boot-fritz3000' subdirectory. Place it in the same directory as the 'eva_ramboot.py' script. It is located in the 'scripts/flashing' subdirectory of the OpenWRT tree. 2. Assign yourself the IP address 192.168.178.10/24. Connect your Computer to one of the boxes LAN ports. 3. Connect Power to the Box. As soon as the LAN port of your computer shows link, load the U-Boot to the box using following command. > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz3000.bin 4. The U-Boot will now start. Now assign yourself the IP address 192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP server root directory and rename it to 'FRITZ3000.bin'. 5. The Box will now boot OpenWRT from RAM. This can take up to two minutes. 6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using scp. SSH into the Box and first write the Bootloader to both previous kernel partitions. > mtd write /path/to/uboot-fritz3000.bin uboot0 > mtd write /path/to/uboot-fritz3000.bin uboot1 7. Remove the AVM filesystem partitions to make room for our kernel + rootfs + overlayfs. > ubirmvol /dev/ubi0 --name=avm_filesys_0 > ubirmvol /dev/ubi0 --name=avm_filesys_1 8. Flash OpenWRT peristently using sysupgrade. > sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq40xx: add support for FritzBox 7530David Bauer2019-02-281-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm IPQ4019 RAM: 256M FLASH: 128M NAND ETH: QCA8075 VDSL: Intel/Lantiq VRX518 PCIe attached currently not supported DECT: Dialog SC14448 currently not supported WiFi2: IPQ4019 2T2R 2SS b/g/n WiFi5: IPQ4019 2T2R 2SS n/ac LED: - Power/DSL green - WLAN green - FON/DECT green - Connect/WPS green - Info green - Info red BTN: - WLAN - FON - WPS/Connect UART: 115200n8 3.3V (located under the Dialog chip) VCC - RX - TX - GND (Square is VCC) Installation ------------ 1. Grab the uboot for the Device from the 'u-boot-fritz7530' subdirectory. Place it in the same directory as the 'eva_ramboot.py' script. It is located in the 'scripts/flashing' subdirectory of the OpenWRT tree. 2. Assign yourself the IP address 192.168.178.10/24. Connect your Computer to one of the boxes LAN ports. 3. Connect Power to the Box. As soon as the LAN port of your computer shows link, load the U-Boot to the box using following command. > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin 4. The U-Boot will now start. Now assign yourself the IP address 192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP server root directory and rename it to 'FRITZ7530.bin'. 5. The Box will now boot OpenWRT from RAM. This can take up to two minutes. 6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using scp. SSH into the Box and first write the Bootloader to both previous kernel partitions. > mtd write /path/to/uboot-fritz7530.bin uboot0 > mtd write /path/to/uboot-fritz7530.bin uboot1 7. Remove the AVM filesystem partitions to make room for our kernel + rootfs + overlayfs. > ubirmvol /dev/ubi0 --name=avm_filesys_0 > ubirmvol /dev/ubi0 --name=avm_filesys_1 8. Flash OpenWRT peristently using sysupgrade. > sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: David Bauer <mail@david-bauer.net> [removed pcie-dts range node, refreshed on top of AP120-AC/E2600AC] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for Qxwlan E2600AC C1 and C2张鹏2019-02-281-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Qxwlan E2600AC C1 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB FLASH: 32 MiB Winbond W25Q256 ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power ,6 driven by gpio SERIAL: UART (J5) UUSB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "sysupgrade" filename to "firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "sysupgrade" image and click the upgrade button. Qxwlan E2600AC C2 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB NOR: 16 MiB Winbond W25Q128 NAND: 128MiB Micron MT29F1G08ABAEAWP ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power, 6 driven by gpio SERIAL: UART (J5) USB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "ubi" filename to "ubi-firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "ubi" image and click the upgrade button. Signed-off-by: 张鹏 <sd20@qxwlan.com> [ added rng node. whitespace fixes, ported 02_network, ipq-wifi Makefile, misc dts fixes, trivial message changes ] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add board-2.bin for ALFA Network AP120C-ACPiotr Dymacz2019-02-261-1/+2
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* firmware: ipq-wifi: mark packages as nonsharedChristian Lamparter2019-02-201-0/+1
| | | | | | | | | | | The board-files are specific to the target and device. Hence they need to be set as nonshared. Otherwise they do not show up on the package repository. This causes problems for imagebuilder, if it needs to build a image for a specific device that hasn't had the time to have get its boardfile upstream. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for ASUS LyraMarius Genheimer2019-02-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SoC: Qualcomm IPQ4019 (Dakota) 717 MHz, 4 cores RAM: 256 MiB (Nanya NT5CC128M16IP-DI) FLASH: 128 MiB (Macronix NAND) WiFi0: Qualcomm IPQ4019 b/g/n 2x2 WiFi1: Qualcomm IPQ4019 a/n/ac 2x2 WiFi2: Qualcomm Atheros QCA9886 a/n/ac BT: Atheros AR3012 IN: WPS Button, Reset Button OUT: RGB-LED via TI LP5523 9-channel Controller UART: Front of Device - 115200 N-8 Pinout 3.3v - RX - TX - GND (Square is VCC) Installation: 1. Transfer OpenWRT-initramfs image to the device via SSH to /tmp. Login credentials are identical to the Web UI. 2. Login to the device via SSH. 3. Flash the initramfs image using > mtd-write -d linux -i openwrt-image-file 4. Power-cycle the device and wait for OpenWRT to boot. 5. From there flash the OpenWRT-sysupgrade image. Ethernet-Ports: Although labeled identically, the port next to the power socket is the LAN port and the other one is WAN. This is the same behavior as in the stock firmware. Signed-off-by: Marius Genheimer <mail@f0wl.cc> [Dropped setup_mac 02_network in favour of 05_set_iface_mac_ipq40xx.sh, reorderd 02_network entries, added board.bin WA for the QCA9886 from ath79, minor dts touchup, added rng to 4.19 dts] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add support for Linksys EA6350v3Oever González2019-01-261-1/+2
| | | | | | | | | | | | This commit adds support for the Linksys EA6350v3 device in the ipq-wifi target. Without this patch, the Linksys EA6350v3 won't be hable to have fully functional wireless interfaces. This is not permanent: the board data has already been sent to ath10k _at_ lists _dot_ infradead _dot_ org Signed-off-by: Ryan Pannell <ryan@osukl.com> Signed-off-by: Oever González <notengobattery@gmail.com>
* ipq40xx: add support for EnGenius EAP1300Steven Lin2018-12-051-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button LEDS: Power, LAN, MESH, WLAN 2.4GHz, WLAN 5GHz 1. Load Ramdisk via U-Boot To set up the flash memory environment, do the following: a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters: * 115200bps * 8N1 b. Confirm that the PC is connected to the board using one of the Ethernet ports. Set a static ip 192.168.99.8 for Ethernet that connects to board. The PC must have a TFTP server launched and listening on the interface to which the board is connected. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown. U-BOOT> set serverip 192.168.99.8 && set ipaddr 192.168.99.9 && tftpboot 0x84000000 openwrt.itb && bootm 2. Load image via GUI a. Upgrade EAP1300 to FW v3.5.3.2 In the GUI, System Manager > Firmware > Firmware Upgrade, to do upgrade. b. Transfer to OpenWrt from EnGenius. In Firmware Upgrade page, to upgrade yours openwrt-ipq40xx-engenius_eap1300-squashfs-sysupgrade.bin. 3. Revert to EnGenius EAP1300 To flash openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin by using sysupgrade command and "DO NOT" keep configuration. $ sysupgrade –n openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin Signed-off-by: Steven Lin <steven.lin@senao.com>
* ipq-wifi: drop custom board-2.binsChristian Lamparter2018-11-011-3/+1
| | | | | | | | | | | | | The BDFs for all boards were upstreamed to the ath10k-firmware repository and linux-firmware.git. We switched to the upstream board-2.bin, hence the files can be removed here. Keep the ipq-wifi package in case new boards are added. It might take some time till board-2.bins send upstream are merged. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add a note / reminder about upstreaming new board filesChristian Lamparter2018-07-301-0/+3
| | | | | | | | |Please send a mail with your device-specific board files upstream. |You can find instructions and examples on the linux-wireless wiki: |<https://wireless.wiki.kernel.org/en/users/drivers/ath10k/boardfiles> Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for the ZyXEL NBG6617Christian Lamparter2018-06-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for ZyXEL NBG6617 Hardware highlights: SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz NOR: 32 MiB Macronix MX25L25635F ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS Serial: WARNING: The serial port needs a TTL/RS-232 3.3v level converter! The Serial setting is 115200-8-N-1. The 1x4 .1" header comes pre-soldered. Pinout: 1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX first install / debricking / restore stock: 0. Have a PC running a tftp-server @ 192.168.1.99/24 1. connect the PC to any LAN-Ports 2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file into the tftp-server root directory and rename it to just "ras.bin". 3. power-cycle the router and hold down the the WPS button (for 30sek) 4. Wait (for a long time - the serial console provides some progress reports. The u-boot says it best: "Please be patient". 5. Once the power LED starts to flashes slowly and the USB + WPS LEDs flashes fast at the same time. You have to reboot the device and it should then come right up. Installation via Web-UI: 0. Connect a PC to the powered-on router. It will assign your PC a IP-address via DHCP 1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234) 2. Go to the "Expert Mode" 3. Under "Maintenance", select "Firmware-Upgrade" 4. Upload the OpenWRT factory image 5. Wait for the Device to finish. It will reboot into OpenWRT without any additional actions needed. To open the ZyXEL NBG6617: 0. remove the four rubber feet glued on the backside 1. remove the four philips screws and pry open the top cover (by applying force between the plastic top housing from the backside/lan-port side) Access the real u-boot shell: ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02" When the device is starting up, the user can enter the the loader shell by simply pressing a key within the 3 seconds once the following string appears on the serial console: | Hit any key to stop autoboot: 3 The user is then dropped to a locked shell. |NBG6617> HELP |ATEN x[,y] set BootExtension Debug Flag (y=password) |ATSE x show the seed of password generator |ATSH dump manufacturer related data in ROM |ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations) |ATGO boot up whole system |ATUR x upgrade RAS image (filename) |NBG6617> In order to escape/unlock a password challenge has to be passed. Note: the value is dynamic! you have to calculate your own! First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env) to get the challange value/seed. |NBG6617> ATSE NBG6617 |012345678901 This seed/value can be converted to the password with the help of this bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors): - tool.sh - ror32() { echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) )) } v="0x$1" a="0x${v:2:6}" b=$(( $a + 0x10F0A563)) c=$(( 0x${v:12:14} & 7 )) p=$(( $(ror32 $b $c) ^ $a )) printf "ATEN 1,%X\n" $p - end of tool.sh - |# bash ./tool.sh 012345678901 | |ATEN 1,879C711 copy and paste the result into the shell to unlock zloader. |NBG6617> ATEN 1,0046B0017430 If the entered code was correct the shell will change to use the ATGU command to enter the real u-boot shell. |NBG6617> ATGU |NBG6617# Co-authored-by: David Bauer <mail@david-bauer.net> Signed-off-by: Christian Lamparter <chunkeey@googlemail.com> Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq40xx: add support for ZyXEL WRE6606Magnus Frühling2018-06-181-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 128 MB Nanya NT5CC64M16GP-DI FLASH: 16 MiB Macronix MX25L12845EMI-12G ETH: Qualcomm QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2 INPUT: WPS, Mode-toggle-switch LED: Power, WLAN 2.4GHz, WLAN 5GHz, LAN, WPS (LAN not controllable by software) (WLAN each green / red) SERIAL: Header next to eth-phy. VCC, TX, GND, RX (Square hole is VCC) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet (Correct MAC-address) - 2.4 GHz WiFi (Correct MAC-address) - 5 GHz WiFi (Correct MAC-address) - Factory installation from tftp - OpenWRT sysupgrade - LEDs - WPS Button Not Working: - Mode-toggle-switch Install via TFTP: Connect to the devices serial. Hit Enter-Key in bootloader to stop autobooting. Command `tftpboot` will pull an initramfs image named `C0A86302.img` from a tftp server at `192.168.99.08/24`. After successfull transfer, boot the image with `bootm`. To persistently write the firmware, flash an openwrt sysupgrade image from inside the initramfs, for example transfer via `scp <sysupgrade> root@192.168.1.1:/tmp` and flash on the device with `sysupgrade -n /tmp/<sysupgrade>`. append-cmdline patch taken from chunkeeys work on the NBG6617. Signed-off-by: Magnus Frühling <skorpy@frankfurt.ccc.de> Co-authored-by: David Bauer <mail@david-bauer.net> Co-authored-by: Christian Lamparter <chunkeey@googlemail.com>
* ipq-wifi: drop custom board-2.binsSven Eckelmann2018-04-231-7/+3
| | | | | | | | | | | | | The BDFs for all boards were upstreamed to the ath10k-firmware repository and are now part of ath10k-firmware 2018-04-19. We switched to the upstream board-2.bin, hence the files can be removed here. Keep the ipq-wifi package in case new boards are added. It might take some time till board-2.bins send upstream are merged. Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
* ipq40xx: unbundle firmware and board fileMathias Kresin2018-04-131-1/+1
| | | | | | | | | | | Don't select the firmware with the board file, it prevents an easy use of the -ct ath10k firmware. Select the firmware within the default packages instead. Remove the per device selection of the firmware now that it the firmware is selected by default. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ipq40xx: add support for Netgear EX6100v2/EX6150v2David Bauer2018-04-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MB Winbond W632GU6KB12J FLASH: 16 MiB Macronix MX25L12805D ETH: Qualcomm QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n/ac 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac 1x1 (EX6100) 2x2 (EX6150) INPUT: Power, WPS, reset button AP / Range-extender toggle LED: Power, Router, Extender (dual), WPS, Left-/Right-arrow SERIAL: Header next to QCA8072 chip. VCC, TX, RX, GND (Square hole is VCC) WARNING: The serial port needs a TTL/RS-232 v3.3 level converter! The Serial setting is 115200-8-N-1. Tested and working: - Ethernet - 2.4 GHz WiFi (Correct MAC-address) - 5 GHz WiFi (Correct MAC-address) - Factory installation from WebIF - Factory installation from tftp - OpenWRT sysupgrade (Preserving and non-preserving) - LEDs - Buttons Not Working: - AP/Extender toggle-switch Untested: - Support on EX6100v2. They share the same GPL-Code and vendor-images. The 6100v2 seems to lack one 5GHz stream and differs in the 5GHz board-blob. I only own a EX6150v2, therefore i am only able to verify functionality on this device. Install via Web-Interface: Upload the factory image to the device to the Netgear Web-Interface. The device might asks you to confirm the update a second time due to detecting the OpenWRT firmware as older. The device will automatically reboot after the image is written to flash. Install via TFTP: Connect to the devices serial. Hit Enter-Key in bootloader to stop autobooting. Command "fw_recovery" will start a tftp server, waiting for a DNI image to be pushed. Assign your computer the IP-address 192.168.1.10/24. Push image with tftp -4 -v -m binary 192.168.1.1 -c put <OPENWRT_FACTORY> Device will erase factory-partition first, then writes the pushed image to flash and reboots. Parts of this commit are based on Thomas Hebb's work on the openwrt-devel mailinglist. See https://lists.openwrt.org/pipermail/openwrt-devel/2018-January/043418.html Signed-off-by: David Bauer <mail@david-bauer.net>
* ipq-wifi: Add 8devices JalapenoRobert Marko2018-04-131-1/+2
| | | | | | | Add custom board-2.bin for 8devices Jalapeno. Upstreaming is in progress. Signed-off-by: Robert Marko <robimarko@gmail.com>
* ipq40xx: add Cisco Meraki MR33 SupportChris Blake2018-03-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for Cisco Meraki MR33 hardware highlights: SOC: IPQ4029 Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB DDR3L-1600 @ 627 MHz Micron MT41K128M16JT-125IT NAND: 128 MiB SLC NAND Spansion S34ML01G200TFV00 (106 MiB usable) ETH: Qualcomm Atheros AR8035 Gigabit PHY (1 x LAN/WAN) + PoE WLAN1: QCA9887 (168c:0050) PCIe 1x1:1 802.11abgn ac Dualband VHT80 WLAN2: Qualcomm Atheros QCA4029 2.4GHz 802.11bgn 2:2x2 WLAN3: Qualcomm Atheros QCA4029 5GHz 802.11a/n/ac 2:2x2 VHT80 LEDS: 1 x Programmable RGB+White Status LED (driven by Ti LP5562 on i2c-1) 1 x Orange LED Fault Indicator (shared with LP5562) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: Bluetooth LE Ti cc2650 PG2.3 4x4mm - BL_CONFIG at 0x0001FFD8 AT24C64 8KiB EEPROM Kensington Lock Serial: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated 1x4 0.1" header with half-height/low profile pins. The pinout is: VCC (little white arrow), RX, TX, GND. Flashing needs a serial adaptor, as well as patched ubootwrite utility (needs Little-Endian support). And a modified u-boot (enabled Ethernet). Meraki's original u-boot source can be found in: <https://github.com/riptidewave93/meraki-uboot/tree/mr33-20170427> Add images to do an installation via bootloader: 0. open up the MR33 and connect the serial console. 1. start the 2nd stage bootloader transfer from client pc: # ubootwrite.py --write=mr33-uboot.bin (The ubootwrite tool will interrupt the boot-process and hence it needs to listen for cues. If the connection is bad (due to the low-profile pins), the tool can fail multiple times and in weird ways. If you are not sure, just use a terminal program and see what the device is doing there. 2. power on the MR33 (with ethernet + serial cables attached) Warning: Make sure you do this in a private LAN that has no connection to the internet. - let it upload the u-boot this can take 250-300 seconds - 3. use a tftp client (in binary mode!) on your PC to upload the sysupgrade.bin (the u-boot is listening on 192.168.1.1) # tftp 192.168.1.1 binary put openwrt-ipq40xx-meraki_mr33-squashfs-sysupgrade.bin 4. wait for it to reboot 5. connect to your MR33 via ssh on 192.168.1.1 For more detailed instructions, please take a look at the: "Flashing Instructions for the MR33" PDF. This can be found on the wiki: <https://openwrt.org/toh/meraki/mr33> (A link to the mr33-uboot.bin + the modified ubootwrite is also there) Thanks to Jerome C. for sending an MR33 to Chris. Signed-off-by: Chris Blake <chrisrblake93@gmail.com> Signed-off-by: Mathias Kresin <dev@kresin.me> Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13Christian Lamparter2018-03-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for ASUS RT-AC58U/RT-ACRH13. hardware highlights: SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE) NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI) ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: one Reset and one WPS button LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each) Serial: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has an unpopulated 1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the PCB right next to the connector. U-Boot Note: The ethernet driver isn't always reliable and can sometime time out... Don't worry, just retry. Access via the serial console is required. As well as a working TFTP-server setup and the initramfs image. (If not provided, it has to be built from the OpenWrt source. Make sure to enable LZMA as the compression for the INITRAMFS!) To install the image permanently, you have to do the following steps in the listed order. 1. Open up the router. There are four phillips screws hiding behind the four plastic feets on the underside. 2. Connect the serial cable (See notes above) 3. Connect your router via one of the four LAN-ports (yellow) to a PC which can set the IP-Address and ssh and scp from. If possible set your PC's IPv4 Address to 192.168.1.70 (As this is the IP-Address the Router's bootloader expects for the tftp server) 4. power up the router and enter the u-boot choose option 1 to upload the initramfs image. And follow through the ipv4 setup. Wait for your router's status LED to stop blinking rapidly and glow just blue. (The LAN LED should also be glowing blue). 3. Connect to the OpenWrt running in RAM The default IPv4-Address of your router will be 192.168.1.1. 1. Copy over the openwrt-sysupgrade.bin image to your router's temporary directory # scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp 2. ssh from your PC into your router as root. # ssh root@192.168.1.1 The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key. Once connected...: run the following commands on your temporary installation 3. delete the "jffs2" ubi partition to make room for your new root partition # ubirmvol /dev/ubi0 --name=jffs2 4. install OpenWrt on the NAND Flash. # sysupgrade -v /tmp/openwrt-sysupgrade.bin - This will will automatically reboot the router - Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq40xx: add targetJohn Crispin2018-03-141-1/+1
| | | | | | Signed-off-by: Christian Lamparter <chunkeey@gmail.com> Signed-off-by: Mathias Kresin <dev@kresin.me> Signed-off-by: John Crispin <john@phrozen.org>
* ipq806x: add support for GL.iNet GL-B1300Dongming Han2018-02-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for GL.iNet GL-B1300 Specification: - SOC: IPQ4028 / QCA Dakota - RAM: 256 MiB - FLASH: 32 MiB - ETH: Qualcomm Atheros QCA8075 Gigabit Switch (2 x LAN, 1 x WAN) - USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) - WLAN1: Qualcomm Atheros QCA4028 2.4GHz 802.11bgn 2:2x2 - WLAN2: Qualcomm Atheros QCA4028 5GHz 802.11a/n/ac 2:2x2 - INPUT: one reset and one WPS button - LEDS: 3 leds: Power, WIFI(only for 2.4G currently), and one reserved - UART: 1 x UART on PCB (3.3V, TX, RX, GND) - 115200 8N1 Installation: Method 1: - use serial port to stop uboot - uboot command: run lf Method 2: - push down reset button and power on - wait until three leds constantly on then release - upgrade by uboot web at http://192.168.1.1 Note: - the sysupgrade image need to be renamed to lede-gl-b1300.bin in both method. - the sysupgrade image can be automatically downloaded if tftp server at 192.168.1.2 have that file. - the wifi led will be flashing when writing image. Signed-off-by: Dongming Han <handongming@gl-inet.com>
* ipq-wifi: drop OpenMesh A42 board-2.binSven Eckelmann2018-02-111-2/+1
| | | | | | | | | | | The BDFs for OpenMesh A42 were upstreamed [1] to the ath10k-firmware repository and are now part of ath10k-firmware 2018-01-26. The ipq-wifi-openmesh_a42 package can now be dropped because OpenWrt already ships the QCA4019 board-2.bin from this version. [1] https://wireless.wiki.kernel.org/en/users/drivers/ath10k/boardfiles Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
* ipq-wifi: align AVM FRITZ!Box 4040's board-2.bin packageChristian Lamparter2018-01-181-2/+2
| | | | | | | This patch renames the AVM FRITZ!Box 4040's board-2.bin file and package to match the 'vendor_product' format. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ipq-wifi: add board-2.bin for OpenMesh A42Sven Eckelmann2018-01-131-1/+2
| | | | Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
* ipq806x: drop partitial supported boardsMathias Kresin2018-01-131-3/+1
| | | | | | | | | There are only artifacts for these boards in our tree and not even partial support. Drop teh stale files. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ipq-wifi: fix missing define of PKG_NAMEChen Minqiang2017-09-201-0/+1
| | | | Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
* firmware: add custom IPQ wifi board definitionsChristian Lamparter2017-03-221-0/+53
On the ath10k-devel ML Michael Kazior stated: "board-2 is a key-value store of actual board files. Some devices, notably qca61x4 hw3+ and qca4019 need distinct board files to be uploaded. Otherwise they fail in various ways." [0]. Later on Rajkumar Manoharan explained: "In QCA4019 platform, only radio specific calibration (pre-cal-data) is stored in flash. Board specific contents are read from board-2.bin. For each radio appropriate board data should be loaded. To fetch correct board data from board-2.bin bundle, pre-cal/radio specific caldata should be loaded first to get proper board id. |My understanding until now was that: | | * pre-cal data + board-2.bin info == actual calibration data Correct." [1]. The standard board-2.bin from the ath10k-firmware-qca4019 barely works on the RT-AC58U. Especially 5GHz clients fail to connect at all and if they do, they have very low throughput even right next to the router. Currently, the solution for this problem is to supply a custom board-2.bin for every device. To implement this feature, this method makes use of: Rafał Miłecki's "base-files: add support for overlaying rootfs content". This comes with a few limitations: 1. Since there can only be one board-2.bin at the right location, there can only one board overwrite installed at any time. (All packages CONFLICT with each other. It's also not possible to "builtin" multiple package.) 2. updating ath10k-firmware-qca4019 will also replace the board-2.bin. For this cases the user needs to manually reinstall the wifi-board package once the ath10k-firmware-qca4019 is updated. To create the individual board-2.bin: Use the ath10k-bdencoder utility from the qca-swiss-army-knife repository: <https://github.com/qca/qca-swiss-army-knife> The raw board.bin files have to be extracted from the vendor's source GPL.tar archieves. Signed-off-by: Alexis Green <agreen@cococorp.com> Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>