aboutsummaryrefslogtreecommitdiffstats
path: root/package/boot/uboot-envtools/files/ath79
Commit message (Collapse)AuthorAgeFilesLines
* ath79: add support for Sophos AP100/AP55 familyAndrew Powers-Holmes2022-04-191-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access points based on the Qualcomm QCA9558 SoC. They share PCB designs with several devices that already have partial or full support, most notably the Devolo DVL1750i/e. The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however the 55 models' ART does not contain calibration data for their third chain despite it being present on the PCB. Specifications common to all models: - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor) - 128 MB RAM - 16 MB SPI flash - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in - Green and Red status LEDs sharing a single external light-pipe - Reset button on PCB[1] - Piezo beeper on PCB[2] - Serial UART header on PCB - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC Unique to AP100 and AP100C: - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express) AP55 and AP55C: - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express) AP100 and AP55: - External RJ45 serial console port[3] - USB 2.0 Type A port, power controlled via GPIO 11 Flashing instructions: This firmware can be flashed either via a compatible Sophos SG or XG firewall appliance, which does not require disassembling the device, or via the U-Boot console available on the internal UART header. To flash via XG appliance: - Register on Sophos' website for a no-cost Home Use XG firewall license - Download and install the XG software on a compatible PC or virtual machine, complete initial appliance setup, and enable SSH console access - Connect the target AP device to the XG appliance's LAN interface - Approve the AP from the XG Web UI and wait until it shows as Active (this can take 3-5 minutes) - Connect to the XG appliance over SSH and access the Advanced Console (Menu option 5, then menu option 3) - Run `sudo awetool` and select the menu option to connect to an AP via SSH. When prompted to enable SSH on the target AP, select Yes. - Wait 2-3 minutes, then select the AP from the awetool menu again. This will connect you to a root shell on the target AP. - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc - Run `mtd -r write /tmp/openwrt.bin astaro_image` - When complete, the access point will reboot to OpenWRT. To flash via U-Boot serial console: - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with netmask 255.255.255.0 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C' - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4] - Connect the AP ethernet to your PC's ethernet port - Connect a terminal to the UART at 115200 8/N/1 as usual - Power on the AP and press a key to cancel autoboot when prompted - Run the following commands at the U-Boot console: - `tftpboot` - `cp.b $fileaddr 0x9f070000 $filesize` - `boot` - The access point will boot to OpenWRT. MAC addresses as verified by OEM firmware: use address source LAN label config 0x201a (label) 2g label + 1 art 0x1002 (also found at config 0x2004) 5g label + 9 art 0x5006 Increments confirmed across three AP55C, two AP55, and one AP100C. These changes have been tested to function on both current master and 21.02.0 without any obvious issues. [1] Button is present but does not alter state of any GPIO on SoC [2] Buzzer and driver circuitry is present on PCB but is not connected to any GPIO. Shorting an unpopulated resistor next to the driver circuitry should connect the buzzer to GPIO 4, but this is unconfirmed. [3] This external RJ45 serial port is disabled in the OEM firmware, but works in OpenWRT without additional configuration, at least on my three test units. [4] On AP100/AP55 models the UART header is accessible after removing the device's top cover. On AP100C/AP55C models, the PCB must be removed for access; three screws secure it to the case. Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net> (cherry picked from commit 6f1efb28983758116a8ecaf9c93e1d875bb70af7)
* ath79: add support for Yuncore A930Thibaut VARÈNE2022-04-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR - 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN) - 2T2R 802.11b/g/n 2.4GHz Flash instructions: If your device comes with generic QSDK based firmware, you can login over telnet (login: root, empty password, default IP: 192.168.188.253), issue first (important!) 'fw_setenv' command and then perform regular upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download image to the device, SSH server is not available): fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin In case your device runs firmware with YunCore custom GUI, you can use U-Boot recovery mode: 1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with 'tftp' image renamed to 'upgrade.bin' 2. Power the device with reset button pressed and release it after 5-7 seconds, recovery mode should start downloading image from server (unfortunately, there is no visible indication that recovery got enabled - in case of problems check TFTP server logs) Signed-off-by: Clemens Hopfer <openwrt@wireloss.net> Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> (cherry picked from commit a05dcb07241aa83a4416b56201e31b4af8518981)
* ath79: add support for Yuncore XD3200Thibaut VARÈNE2022-04-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specification: - QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR - 2T2R 802.11b/g/n 2.4GHz - 2T2R 802.11n/ac 5GHz - 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port) LED for 5 GHz WLAN is currently not supported as it is connected directly to the QCA9882 radio chip. Flash instructions: If your device comes with generic QSDK based firmware, you can login over telnet (login: root, empty password, default IP: 192.168.188.253), issue first (important!) 'fw_setenv' command and then perform regular upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download image to the device, SSH server is not available): fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin In case your device runs firmware with YunCore custom GUI, you can use U-Boot recovery mode: 1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with 'tftp' image renamed to 'upgrade.bin' 2. Power the device with reset button pressed and release it after 5-7 seconds, recovery mode should start downloading image from server (unfortunately, there is no visible indication that recovery got enabled - in case of problems check TFTP server logs) Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org> (cherry picked from commit c91df224f54fdd44c9c0487a8c91876f5d273164)
* ath79: add support for Araknis AN-700-AP-I-ACMichael Pratt2022-03-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: 2AG6R-AN700APIAC Araknis AN-700-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:xb art 0x0 phy1 2.4G *:xc --- phy0 5GHz *:xd --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Araknis AN-500-AP-I-ACMichael Pratt2022-03-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: 2AG6R-AN500APIAC Araknis AN-500-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1200 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:e1 art 0x0 phy1 2.4G *:e2 --- phy0 5GHz *:e3 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Araknis AN-300-AP-I-NMichael Pratt2022-03-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-AN300APIN Araknis AN-300-AP-I-N is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EWS310AP the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2 - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM 1839ZFG V59C1512164QFJ25 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:7d art 0x0 phy1 2.4G *:7e --- phy0 5GHz *:7f --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* uboot-envtools: ath79: add support for ALFA Network Tube-2HQPiotr Dymacz2022-02-271-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: support ZTE MF286A/RLech Perczak2022-02-261-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit Ethernet switch, FXS and external USB 2.0 port. Hardware highlights: - CPU: QCA9563 SoC at 775MHz, - RAM: 128MB DDR2, - NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only, - NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data, - Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio, - WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio, - Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port, - WWAN: [MF286A] MDM9230-based category 6 internal LTE modem [MF286R] PXA1826-based category 7 internal LTE modem in extended mini-PCIE form factor, with 3 internal antennas and 2 external antenna connections, single mini-SIM slot. - FXS: one external ATA port (handled entirely by modem part) with two physical connections in parallel, - USB: Single external USB 2.0 port, - Switches: power switch, WPS, Wi-Fi and reset buttons, - LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery, Signal state) handled entirely by modem. 4 link status LEDs handled by the switch on the backside. - Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and monitoring handled by modem. - Label MAC device: eth0 The device shares many components with previous model, MF286, differing mostly by a Wave2 5GHz radio, flash layout and internal LED color. In case of MF286A, the modem is the same as in MF286. MF286R uses a different modem based on Marvell PXA1826 chip. Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully supported, but it is expected to use comgt-ncm for connection, as it uses standard 3GPP AT commands for connection establishment. Console connection: connector X2 is the console port, with the following pinout, starting from pin 1, which is the topmost pin when the board is upright: - VCC (3.3V). Do not use unless you need to source power for the converer from it. - TX - RX - GND Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1. Installation: Due to different flash layout from stock firmware, sysupgrade from within stock firmware is impossible, despite it's based on QSDK which itself is based on OpenWrt. STEP 0: Stock firmware update: As installing OpenWrt cuts you off from official firmware updates for the modem part, it is recommended to update the stock firmware to latest version before installation, to have built-in modem at the latest firmware version. STEP 1: gaining root shell: Method 1: This works if busybox has telnetd compiled in the binary. If this does not work, try method 2. Using well-known exploit to start telnetd on your router - works only if Busybox on stock firmware has telnetd included: - Open stock firmware web interface - Navigate to "URL filtering" section by going to "Advanced settings", then "Firewall" and finally "URL filter". - Add an entry ending with "&&telnetd&&", for example "http://hostname/&&telnetd&&". - telnetd will immediately listen on port 4719. - After connecting to telnetd use "admin/admin" as credentials. Method 2: This works if busybox does not have telnetd compiled in. Notably, this is the case in DNA.fi firmware. If this does not work, try method 3. - Set IP of your computer to 192.168.0.22. (or appropriate subnet if changed) - Have a TFTP server running at that address - Download MIPS build of busybox including telnetd, for example from: https://busybox.net/downloads/binaries/1.21.1/busybox-mips and put it in it's root directory. Rename it as "telnetd". - As previously, login to router's web UI and navigate to "URL filtering" - Using "Inspect" feature, extend "maxlength" property of the input field named "addURLFilter", so it looks like this: <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332" class="required form-control"> - Stay on the page - do not navigate anywhere - Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter. - Save the settings. This will download the telnetd binary over tftp and execute it. You should be able to log in at port 23, using "admin/admin" as credentials. Method 3: If the above doesn't work, use the serial console - it exposes root shell directly without need for login. Some stock firmwares, notably one from finnish DNA operator lack telnetd in their builds. STEP 2: Backing up original software: As the stock firmware may be customized by the carrier and is not officially available in the Internet, IT IS IMPERATIVE to back up the stock firmware, if you ever plan to returning to stock firmware. It is highly recommended to perform backup using both methods, to avoid hassle of reassembling firmware images in future, if a restore is needed. Method 1: after booting OpenWrt initramfs image via TFTP: PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION. - Dump stock firmware located on stock kernel and ubi partitions: ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin And keep them in a safe place, should a restore be needed in future. Method 2: using stock firmware: - Connect an external USB drive formatted with FAT or ext4 to the USB port. - The drive will be auto-mounted to /var/usb_disk - Check the flash layout of the device: cat /proc/mtd It should show the following: mtd0: 000a0000 00010000 "u-boot" mtd1: 00020000 00010000 "u-boot-env" mtd2: 00140000 00010000 "reserved1" mtd3: 000a0000 00020000 "fota-flag" mtd4: 00080000 00020000 "art" mtd5: 00080000 00020000 "mac" mtd6: 000c0000 00020000 "reserved2" mtd7: 00400000 00020000 "cfg-param" mtd8: 00400000 00020000 "log" mtd9: 000a0000 00020000 "oops" mtd10: 00500000 00020000 "reserved3" mtd11: 00800000 00020000 "web" mtd12: 00300000 00020000 "kernel" mtd13: 01a00000 00020000 "rootfs" mtd14: 01900000 00020000 "data" mtd15: 03200000 00020000 "fota" mtd16: 01d00000 00020000 "firmware" Differences might indicate that this is NOT a MF286A device but one of other variants. - Copy over all MTD partitions, for example by executing the following: for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \ /var/usb_disk/mtd$i; done "Firmware" partition can be skipped, it is a concatenation of "kernel" and "rootfs". - If the count of MTD partitions is different, this might indicate that this is not a MF286A device, but one of its other variants. - (optionally) rename the files according to MTD partition names from /proc/mtd - Unmount the filesystem: umount /var/usb_disk; sync and then remove the drive. - Store the files in safe place if you ever plan to return to stock firmware. This is especially important, because stock firmware for this device is not available officially, and is usually customized by the mobile providers. STEP 3: Booting initramfs image: Method 1: using serial console (RECOMMENDED): - Have TFTP server running, exposing the OpenWrt initramfs image, and set your computer's IP address as 192.168.0.22. This is the default expected by U-boot. You may wish to change that, and alter later commands accordingly. - Connect the serial console if you haven't done so already, - Interrupt boot sequence by pressing any key in U-boot when prompted - Use the following commands to boot OpenWrt initramfs through TFTP: setenv serverip 192.168.0.22 setenv ipaddr 192.168.0.1 tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin bootm 0x81000000 (Replace server IP and router IP as needed). There is no emergency TFTP boot sequence triggered by buttons, contrary to MF283+. - When OpenWrt initramfs finishes booting, proceed to actual installation. Method 2: using initramfs image as temporary boot kernel This exploits the fact, that kernel and rootfs MTD devices are consecutive on NAND flash, so from within stock image, an initramfs can be written to this area and booted by U-boot on next reboot, because it uses "nboot" command which isn't limited by kernel partition size. - Download the initramfs-kernel.bin image - After backing up the previous MTD contents, write the images to the "firmware" MTD device, which conveniently concatenates "kernel" and "rootfs" partitions that can fit the initramfs image: nandwrite -p /dev/<firmware-mtd> \ /var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin - If write is OK, reboot the device, it will reboot to OpenWrt initramfs: reboot -f - After rebooting, SSH into the device and use sysupgrade to perform proper installation. Method 3: using built-in TFTP recovery (LAST RESORT): - With that method, ensure you have complete backup of system's NAND flash first. It involves deliberately erasing the kernel. - Download "-initramfs-kernel.bin" image for the device. - Prepare the recovery image by prepending 8MB of zeroes to the image, and name it root_uImage: dd if=/dev/zero of=padding.bin bs=8M count=1 cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin > root_uImage - Set up a TFTP server at 192.0.0.1/8. Router will use random address from that range. - Put the previously generated "root_uImage" into TFTP server root directory. - Deliberately erase "kernel" partition" using stock firmware after taking backup. THIS IS POINT OF NO RETURN. - Restart the device. U-boot will attempt flashing the recovery initramfs image, which will let you perform actual installation using sysupgrade. This might take a considerable time, sometimes the router doesn't establish Ethernet link properly right after booting. Be patient. - After U-boot finishes flashing, the LEDs of switch ports will all light up. At this moment, perform power-on reset, and wait for OpenWrt initramfs to finish booting. Then proceed to actual installation. STEP 4: Actual installation: - Set your computer IP to 192.168.1.22/24 - scp the sysupgrade image to the device: scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \ root@192.168.1.1:/tmp/ - ssh into the device and execute sysupgrade: sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin - Wait for router to reboot to full OpenWrt. STEP 5: WAN connection establishment Since the router is equipped with LTE modem as its main WAN interface, it might be useful to connect to the Internet right away after installation. To do so, please put the following entries in /etc/config/network, replacing the specific configuration entries with one needed for your ISP: config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth '<auth>' # As required, usually 'none' option pincode '<pin>' # If required by SIM option apn '<apn>' # As required by ISP option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6' For example, the following works for most polish ISPs config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth 'none' option apn 'internet' option pdptype 'ipv4' The required minimum is: config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' In this case, the modem will use last configured APN from stock firmware - this should work out of the box, unless your SIM requires PIN which can't be switched off. If you have build with LuCI, installing luci-proto-qmi helps with this task. Restoring the stock firmware: Preparation: If you took your backup using stock firmware, you will need to reassemble the partitions into images to be restored onto the flash. The layout might differ from ISP to ISP, this example is based on generic stock firmware The only partitions you really care about are "web", "kernel", and "rootfs". These are required to restore the stock firmware through factory TFTP recovery. Because kernel partition was enlarged, compared to stock firmware, the kernel and rootfs MTDs don't align anymore, and you need to carve out required data if you only have backup from stock FW: - Prepare kernel image cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin truncate -s 4M owrt_kernel_restore.bin - Cut off first 1MB from rootfs dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1 - Prepare image to write to "ubi" meta-partition: cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \ mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \ owrt_ubi_ubi_restore.bin You can skip the "fota" partition altogether, it is used only for stock firmware update purposes and can be overwritten safely anyway. The same is true for "data" partition which on my device was found to be unused at all. Restoring mtd5_cfg-param.bin will restore the stock firmware configuration you had before. Method 1: Using initramfs: This method is recmmended if you took your backup from within OpenWrt initramfs, as the reassembly is not needed. - Boot to initramfs as in step 3: - Completely detach ubi0 partition using ubidetach /dev/ubi0_0 - Look up the kernel and ubi partitions in /proc/mtd - Copy over the stock kernel image using scp to /tmp - Erase kernel and restore stock kernel: (scp mtd4_kernel.bin root@192.168.1.1:/tmp/) mtd write <kernel_mtd> mtd4_kernel.bin rm mtd4_kernel.bin - Copy over the stock partition backups one-by-one using scp to /tmp, and restore them individually. Otherwise you might run out of space in tmpfs: (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin rm mtd3_ubiconcat0.bin (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin rm mtd5_ubiconcat1.bin - If the write was correct, force a device reboot with reboot -f Method 2: Using live OpenWrt system (NOT RECOMMENDED): - Prepare a USB flash drive contatining MTD backup files - Ensure you have kmod-usb-storage and filesystem driver installed for your drive - Mount your flash drive mkdir /tmp/usb mount /dev/sda1 /tmp/usb - Remount your UBI volume at /overlay to R/O mount -o remount,ro /overlay - Write back the kernel and ubi partitions from USB drive cd /tmp/usb mtd write mtd4_kernel.bin /dev/<kernel_mtd> mtd write mtd9_ubi.bin /dev/<kernel_ubi> - If everything went well, force a device reboot with reboot -f Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota" MTD partition which may be safely erased after reboot anyway. Method 3: using built-in TFTP recovery: This method is recommended if you took backups using stock firmware. - Assemble a recovery rootfs image from backup of stock partitions by concatenating "web", "kernel", "rootfs" images dumped from the device, as "root_uImage" - Use it in place of "root_uImage" recovery initramfs image as in the TFTP pre-installation method. Quirks and known issuesa - It was observed, that CH340-based USB-UART converters output garbage during U-boot phase of system boot. At least CP2102 is known to work properly. - Kernel partition size is increased to 4MB compared to stock 3MB, to accomodate future kernel updates - at this moment OpenWrt 5.10 kernel image is at 2.5MB which is dangerously close to the limit. This has no effect on booting the system - but keep that in mind when reassembling an image to restore stock firmware. - uqmi seems to be unable to change APN manually, so please use the one you used before in stock firmware first. If you need to change it, please use protocok '3g' to establish connection once, or use the following command to change APN (and optionally IP type) manually: echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0 - The only usable LED as a "system LED" is the blue debug LED hidden inside the case. All other LEDs are controlled by modem, on which the router part has some influence only on Wi-Fi LED. - Wi-Fi LED currently doesn't work while under OpenWrt, despite having correct GPIO mapping. All other LEDs are controlled by modem, including this one in stock firmware. GPIO19, mapped there only acts as a gate, while the actual signal source seems to be 5GHz Wi-Fi radio, however it seems it is not the LED exposed by ath10k as ath10k-phy0. - GPIO5 used for modem reset is a suicide switch, causing a hardware reset of whole board, not only the modem. It is attached to gpio-restart driver, to restart the modem on reboot as well, to ensure QMI connectivity after reboot, which tends to fail otherwise. - Modem, as in MF283+, exposes root shell over ADB - while not needed for OpenWrt operation at all - have fun lurking around. The same modem module is used as in older MF286. Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: uboot-envtools: fix partition for ZTE MF286Lech Perczak2022-02-201-1/+1
| | | | | | | | | | | | | | | | | | | By mistake, a wrong partition for U-boot environment was introduced for ZTE MF286 while adding support, when flash layout wasn't finalized. Fix that, according to the actual flash layout: dev: size erasesize name mtd0: 00140000 00020000 "fota-flag" mtd1: 00140000 00020000 "caldata" mtd2: 00140000 00020000 "mac" mtd3: 00f40000 00020000 "ubiconcat0" mtd4: 00400000 00020000 "kernel" mtd5: 06900000 00020000 "ubiconcat1" mtd6: 00080000 00010000 "u-boot" mtd7: 00020000 00010000 "u-boot-env" mtd8: 07840000 00020000 "ubi" Fixes: 8c78a13bfc1f ("ath79: support ZTE MF286") Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: add partial support for Netgear EX7300v2Wenli Looi2022-02-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- SoC: QCN5502 Flash: 16 MiB RAM: 128 MiB Ethernet: 1 gigabit port Wireless No1: QCN5502 on-chip 2.4GHz 4x4 Wireless No2: QCA9984 pcie 5GHz 4x4 USB: none Installation ------------ Flash the factory image using the stock web interface or TFTP the factory image to the bootloader. What works ---------- - LEDs - Ethernet port - 5GHz wifi (QCA9984 pcie) What doesn't work ----------------- - 2.4GHz wifi (QCN5502 on-chip) (I was not able to make this work, probably because ath9k requires some changes to support QCN5502.) Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
* ath79: support ZTE MF286Lech Perczak2022-02-051-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit Ethernet switch, FXS and external USB 2.0 port. Hardware highlights: - CPU: QCA9563 SoC at 775MHz, - RAM: 128MB DDR2, - NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only, - NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data, - Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio, - WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio, - Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port, - WWAN: MDM9230-based category 6 internal LTE modem in extended mini-PCIE form factor, with 3 internal antennas and 2 external antenna connections, single mini-SIM slot. Modem model identified as MF270, - FXS: one external ATA port (handled entirely by modem part) with two physical connections in parallel, - USB: Single external USB 2.0 port, - Switches: power switch, WPS, Wi-Fi and reset buttons, - LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery, Signal state) handled entirely by modem. 4 link status LEDs handled by the switch on the backside. - Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and monitoring handled by modem. - Label MAC device: eth0 Console connection: connector X2 is the console port, with the following pinout, starting from pin 1, which is the topmost pin when the board is upright: - VCC (3.3V). Do not use unless you need to source power for the converer from it. - TX - RX - GND Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1. Installation: Due to different flash layout from stock firmware, sysupgrade from within stock firmware is impossible, despite it's based on QSDK which itself is based on OpenWrt. STEP 0: Stock firmware update: As installing OpenWrt cuts you off from official firmware updates for the modem part, it is recommended to update the stock firmware to latest version before installation, to have built-in modem at the latest firmware version. STEP 1: gaining root shell: Method 1: This works if busybox has telnetd compiled in the binary. If this does not work, try method 2. Using well-known exploit to start telnetd on your router - works only if Busybox on stock firmware has telnetd included: - Open stock firmware web interface - Navigate to "URL filtering" section by going to "Advanced settings", then "Firewall" and finally "URL filter". - Add an entry ending with "&&telnetd&&", for example "http://hostname/&&telnetd&&". - telnetd will immediately listen on port 4719. - After connecting to telnetd use "admin/admin" as credentials. Method 2: This works if busybox does not have telnetd compiled in. Notably, this is the case in DNA.fi firmware. If this does not work, try method 3. - Set IP of your computer to 192.168.1.22. - Have a TFTP server running at that address - Download MIPS build of busybox including telnetd, for example from: https://busybox.net/downloads/binaries/1.21.1/busybox-mips and put it in it's root directory. Rename it as "telnetd". - As previously, login to router's web UI and navigate to "URL filtering" - Using "Inspect" feature, extend "maxlength" property of the input field named "addURLFilter", so it looks like this: <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332" class="required form-control"> - Stay on the page - do not navigate anywhere - Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter. - Save the settings. This will download the telnetd binary over tftp and execute it. You should be able to log in at port 23, using "admin/admin" as credentials. Method 3: If the above doesn't work, use the serial console - it exposes root shell directly without need for login. Some stock firmwares, notably one from finnish DNA operator lack telnetd in their builds. STEP 2: Backing up original software: As the stock firmware may be customized by the carrier and is not officially available in the Internet, IT IS IMPERATIVE to back up the stock firmware, if you ever plan to returning to stock firmware. Method 1: after booting OpenWrt initramfs image via TFTP: PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION. - Dump stock firmware located on stock kernel and ubi partitions: ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin And keep them in a safe place, should a restore be needed in future. Method 2: using stock firmware: - Connect an external USB drive formatted with FAT or ext4 to the USB port. - The drive will be auto-mounted to /var/usb_disk - Check the flash layout of the device: cat /proc/mtd It should show the following: mtd0: 00080000 00010000 "uboot" mtd1: 00020000 00010000 "uboot-env" mtd2: 00140000 00020000 "fota-flag" mtd3: 00140000 00020000 "caldata" mtd4: 00140000 00020000 "mac" mtd5: 00600000 00020000 "cfg-param" mtd6: 00140000 00020000 "oops" mtd7: 00800000 00020000 "web" mtd8: 00300000 00020000 "kernel" mtd9: 01f00000 00020000 "rootfs" mtd10: 01900000 00020000 "data" mtd11: 03200000 00020000 "fota" Differences might indicate that this is NOT a vanilla MF286 device but one of its later derivatives. - Copy over all MTD partitions, for example by executing the following: for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \ /var/usb_disk/mtd$i; done - If the count of MTD partitions is different, this might indicate that this is not a standard MF286 device, but one of its later derivatives. - (optionally) rename the files according to MTD partition names from /proc/mtd - Unmount the filesystem: umount /var/usb_disk; sync and then remove the drive. - Store the files in safe place if you ever plan to return to stock firmware. This is especially important, because stock firmware for this device is not available officially, and is usually customized by the mobile providers. STEP 3: Booting initramfs image: Method 1: using serial console (RECOMMENDED): - Have TFTP server running, exposing the OpenWrt initramfs image, and set your computer's IP address as 192.168.1.22. This is the default expected by U-boot. You may wish to change that, and alter later commands accordingly. - Connect the serial console if you haven't done so already, - Interrupt boot sequence by pressing any key in U-boot when prompted - Use the following commands to boot OpenWrt initramfs through TFTP: setenv serverip 192.168.1.22 setenv ipaddr 192.168.1.1 tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin bootm 0x81000000 (Replace server IP and router IP as needed). There is no emergency TFTP boot sequence triggered by buttons, contrary to MF283+. - When OpenWrt initramfs finishes booting, proceed to actual installation. Method 2: using initramfs image as temporary boot kernel This exploits the fact, that kernel and rootfs MTD devices are consecutive on NAND flash, so from within stock image, an initramfs can be written to this area and booted by U-boot on next reboot, because it uses "nboot" command which isn't limited by kernel partition size. - Download the initramfs-kernel.bin image - Split the image into two parts on 3MB partition size boundary, which is the size of kernel partition. Pad the output of second file to eraseblock size: dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \ bs=128k count=24 \ of=openwrt-ath79-zte_mf286-intermediate-kernel.bin dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \ bs=128k skip=24 conv=sync \ of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin - Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to /tmp. This is CRITICAL for installation, as erasing rootfs will cut you off from those tools on flash! - After backing up the previous MTD contents, write the images to the respective MTD devices: /tmp/flash_eraseall /dev/<kernel-mtd> /tmp/nandwrite /dev/<kernel-mtd> \ /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin /tmp/flash_eraseall /dev/<kernel-mtd> /tmp/nandwrite /dev/<rootfs-mtd> \ /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin - Ensure that no bad blocks were present on the devices while writing. If they were present, you may need to vary the split between kernel and rootfs parts, so U-boot reads a valid uImage after skipping the bad blocks. If it fails, you will be left with method 3 (below). - If write is OK, reboot the device, it will reboot to OpenWrt initramfs: reboot -f - After rebooting, SSH into the device and use sysupgrade to perform proper installation. Method 3: using built-in TFTP recovery (LAST RESORT): - With that method, ensure you have complete backup of system's NAND flash first. It involves deliberately erasing the kernel. - Download "-initramfs-kernel.bin" image for the device. - Prepare the recovery image by prepending 8MB of zeroes to the image, and name it root_uImage: dd if=/dev/zero of=padding.bin bs=8M count=1 cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin > root_uImage - Set up a TFTP server at 192.0.0.1/8. Router will use random address from that range. - Put the previously generated "root_uImage" into TFTP server root directory. - Deliberately erase "kernel" partition" using stock firmware after taking backup. THIS IS POINT OF NO RETURN. - Restart the device. U-boot will attempt flashing the recovery initramfs image, which will let you perform actual installation using sysupgrade. This might take a considerable time, sometimes the router doesn't establish Ethernet link properly right after booting. Be patient. - After U-boot finishes flashing, the LEDs of switch ports will all light up. At this moment, perform power-on reset, and wait for OpenWrt initramfs to finish booting. Then proceed to actual installation. STEP 4: Actual installation: - scp the sysupgrade image to the device: scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \ root@192.168.1.1:/tmp/ - ssh into the device and execute sysupgrade: sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin - Wait for router to reboot to full OpenWrt. STEP 5: WAN connection establishment Since the router is equipped with LTE modem as its main WAN interface, it might be useful to connect to the Internet right away after installation. To do so, please put the following entries in /etc/config/network, replacing the specific configuration entries with one needed for your ISP: config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth '<auth>' # As required, usually 'none' option pincode '<pin>' # If required by SIM option apn '<apn>' # As required by ISP option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6' For example, the following works for most polish ISPs config interface 'wan' option proto 'qmi' option device '/dev/cdc-wdm0' option auth 'none' option apn 'internet' option pdptype 'ipv4' If you have build with LuCI, installing luci-proto-qmi helps with this task. Restoring the stock firmware: Preparation: If you took your backup using stock firmware, you will need to reassemble the partitions into images to be restored onto the flash. The layout might differ from ISP to ISP, this example is based on generic stock firmware. The only partitions you really care about are "web", "kernel", and "rootfs". For easy padding and possibly restoring configuration, you can concatenate most of them into images written into "ubi" meta-partition in OpenWrt. To do so, execute something like: cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \ mtd8-ubi_restore.bin You can skip the "fota" partition altogether, it is used only for stock firmware update purposes and can be overwritten safely anyway. The same is true for "data" partition which on my device was found to be unused at all. Restoring mtd5_cfg-param.bin will restore the stock firmware configuration you had before. Method 1: Using initramfs: - Boot to initramfs as in step 3: - Completely detach ubi0 partition using ubidetach /dev/ubi0_0 - Look up the kernel and ubi partitions in /proc/mtd - Copy over the stock kernel image using scp to /tmp - Erase kernel and restore stock kernel: (scp mtd4_kernel.bin root@192.168.1.1:/tmp/) mtd write <kernel_mtd> mtd4_kernel.bin rm mtd4_kernel.bin - Copy over the stock partition backups one-by-one using scp to /tmp, and restore them individually. Otherwise you might run out of space in tmpfs: (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin rm mtd3_ubiconcat0.bin (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/) mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin rm mtd5_ubiconcat1.bin - If the write was correct, force a device reboot with reboot -f Method 2: Using live OpenWrt system (NOT RECOMMENDED): - Prepare a USB flash drive contatining MTD backup files - Ensure you have kmod-usb-storage and filesystem driver installed for your drive - Mount your flash drive mkdir /tmp/usb mount /dev/sda1 /tmp/usb - Remount your UBI volume at /overlay to R/O mount -o remount,ro /overlay - Write back the kernel and ubi partitions from USB drive cd /tmp/usb mtd write mtd4_kernel.bin /dev/<kernel_mtd> mtd write mtd8_ubi.bin /dev/<kernel_ubi> - If everything went well, force a device reboot with reboot -f Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota" MTD partition which may be safely erased after reboot anyway. Method 3: using built-in TFTP recovery (LAST RESORT): - Assemble a recovery rootfs image from backup of stock partitions by concatenating "web", "kernel", "rootfs" images dumped from the device, as "root_uImage" - Use it in place of "root_uImage" recovery initramfs image as in the TFTP pre-installation method. Quirks and known issues - Kernel partition size is increased to 4MB compared to stock 3MB, to accomodate future kernel updates - at this moment OpenWrt 5.10 kernel image is at 2.5MB which is dangerously close to the limit. This has no effect on booting the system - but keep that in mind when reassembling an image to restore stock firmware. - uqmi seems to be unable to change APN manually, so please use the one you used before in stock firmware first. If you need to change it, please use protocok '3g' to establish connection once, or use the following command to change APN (and optionally IP type) manually: echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0 - The only usable LED as a "system LED" is the green debug LED hidden inside the case. All other LEDs are controlled by modem, on which the router part has some influence only on Wi-Fi LED. - Wi-Fi LED currently doesn't work while under OpenWrt, despite having correct GPIO mapping. All other LEDs are controlled by modem, including this one in stock firmware. GPIO19, mapped there only acts as a gate, while the actual signal source seems to be 5GHz Wi-Fi radio, however it seems it is not the LED exposed by ath10k as ath10k-phy0. - GPIO5 used for modem reset is a suicide switch, causing a hardware reset of whole board, not only the modem. It is attached to gpio-restart driver, to restart the modem on reboot as well, to ensure QMI connectivity after reboot, which tends to fail otherwise. - Modem, as in MF283+, exposes root shell over ADB - while not needed for OpenWrt operation at all - have fun lurking around. - MAC address shift for 5GHz Wi-Fi used in stock firmware is 0x320000000000, which is impossible to encode in the device tree, so I took the liberty of using MAC address increment of 1 for it, to ensure different BSSID for both Wi-Fi interfaces. Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: Add support for OpenMesh OM2P v1Sven Eckelmann2022-01-161-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR7240 rev 2 * 350/350/175 MHz (CPU/DDR/AHB) * 32 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 18-24V passive POE (mode B) + used as WAN interface - eth1 + builtin switch port 4 + used as LAN interface * 12-24V 1A DC * external antenna The device itself requires the mtdparts from the uboot arguments to properly boot the flashed image and to support dual-boot (primary + recovery image). Unfortunately, the name of the mtd device in mtdparts is still using the legacy name "ar7240-nor0" which must be supplied using the Linux-specfic DT parameter linux,mtd-name to overwrite the generic name "spi0.0". Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM5P-AC v1Sven Eckelmann2022-01-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM5P-ANSven Eckelmann2022-01-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 1T1R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + 10/100 Mbps Ethernet + builtin switch port 1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for Dongwon T&I DW02-412HJihoon Han2021-10-311-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dongwon T&I DW02-412H is a 2.4/5GHz band 11ac (WiFi-5) router, based on Qualcomm Atheros QCA9557. Specifications -------------- - SoC: Qualcomm Atheros QCA9557-AT4A - RAM: DDR2 128MB - Flash: SPI NOR 2MB (Winbond W25Q16DVSSIG / ESMT F25L16PA(2S)) + NAND 64/128MB - WiFi: - 2.4GHz: QCA9557 WMAC - 5GHz: QCA9882-BR4A - Ethernet: 5x 10/100/1000Mbps - Switch: QCA8337N-AL3C - USB: 1x USB 2.0 - UART: - JP2: 3.3V, TX, RX, GND (3.3V is the square pad) / 115200 8N1 Installation -------------- 1. Connect a serial interface to UART header and interrupt the autostart of kernel. 2. Transfer the factory image via TFTP and write it to the NAND flash. 3. Update U-Boot environment variable. > tftpboot 0x81000000 <your image>-factory.img > nand erase 0x1000000 > nand write 0x81000000 0x1000000 ${filesize} > setenv bootpart 2 > saveenv Revert to stock firmware -------------- 1. Revert to stock U-Boot environment variable. > setenv bootpart 1 > saveenv MAC addresses as verified by OEM firmware -------------- WAN: *:XX (label) LAN: *:XX + 1 2.4G: *:XX + 3 5G: *:XX + 4 The label MAC address was found in art 0x0. Credits -------------- Credit goes to the @manatails who first developed how to port OpenWRT to this device and had a significant impact on this patch. And thanks to @adschm and @mans0n for guiding me to revise the code in many ways. Signed-off-by: Jihoon Han <rapid_renard@renard.ga> Reviewed-by: Sungbo Eo <mans0n@gorani.run> Tested-by: Sungbo Eo <mans0n@gorani.run>
* ath79: Add support for OpenMesh A40Sven Eckelmann2021-06-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh A60Sven Eckelmann2021-06-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8031 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for ZiKing CPE46BGiulio Lorenzo2021-05-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ZiKing CPE46B is a POE outdoor 2.4ghz device with an integrated directional antenna. It is low cost and mostly available via Aliexpress, references can be found at: - https://forum.openwrt.org/t/anddear-ziking-cpe46b-ar9331-ap121/60383 - https://git.lsd.cat/g/openwrt-cpe46b Specifications: - Atheros AR9330 - 32MB of RAM - 8MB of flash (SPI NOR) - 1 * 2.4ghz integrated antenna - 2 * 10/100/1000 ethernet ports (1 POE) - 3 * Green LEDs controlled by the SoC - 3 * Green LEDs controlled via GPIO - 1 * Reset Button controlled via GPIO - 1 * 4 pin serial header on the PCB - Outdoor packaging Flashing instruction: You can use sysupgrade image directly in vendor firmware which is based on OpenWrt/LEDE. In case of issues with the vendor GUI, the vendor Telnet console is vulnerable to command injection and can be used to gain a shell directly on the OEM OpenWrt distribution. Signed-off-by: Giulio Lorenzo <salveenee@mortemale.org> [fix whitespaces, drop redundant uart status and serial0, drop num-chipselects, drop 0x1002 MAC address for wmac] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* uboot-envtools: add support for Buffalo WZR-HP-G300NHMauri Sandberg2021-04-301-0/+4
| | | | | | This adds an entries for wzr-hp-g300nh-rb and wzr-hp-g300nh-s. Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
* uboot-envtools: drop shebang from uci-defaults and lib filesPiotr Dymacz2021-04-101-1/+0
| | | | | | These files are sourced and non-executable, a shebang is redundant. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ath79: add support for Senao Engenius EAP1200HMichael Pratt2021-01-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP1200H Engenius EAP1200H is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ **Specification:** - QCA9557 SOC - QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 populated - 4 internal antenna plates (5 dbi, omni-directional) - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset) **MAC addresses:** MAC addresses are labeled as ETH, 2.4G, and 5GHz Only one Vendor MAC address in flash eth0 ETH *:a2 art 0x0 phy1 2.4G *:a3 --- phy0 5GHz *:a4 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** 2 ways to flash factory.bin from OEM: Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware Upgrade" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will brick the device DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board, interrupt boot execute tftpboot and bootm 0x81000000 NOTE: TFTP is not reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of EAP1200H is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin openwrt-ar71xx-generic-eap1200h-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: Add support for OpenMesh MR1750 v2Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR1750 v1Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, apply shared DTSI/device node, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR900 v2Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR900 v1Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR600 v2Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 8x GPIO-LEDs (6x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR600 v1Sven Eckelmann2021-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 4x GPIO-LEDs (2x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, make WLAN LEDs consistent, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM5PSven Eckelmann2020-12-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here. Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [add LED swap comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM2P v2Sven Eckelmann2020-12-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P-LCSven Eckelmann2020-12-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9330 rev 1 * 400/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v3Sven Eckelmann2020-12-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v2Sven Eckelmann2020-12-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for OpenMesh OM2P-HS v1Sven Eckelmann2020-12-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9341 rev 1 * 535/400/200 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 802.3af POE + builtin switch port 1 + used as LAN interface - eth1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [drop redundant status from eth1] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh OM2P-HS v4Sven Eckelmann2020-12-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 24V passive POE (mode B) + used as WAN interface - eth1 + 802.3af POE + builtin switch port 1 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh OM2P v4Sven Eckelmann2020-12-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 1 * 12-24V 1A DC * external antenna Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [wrap two very long lines, fix typo in comment] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: add support for Senao Engenius EAP350 v1Michael Pratt2020-12-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-EAP350 Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port, 2.4 GHz wireless, external ethernet switch, and 2 internal antennas. Specification: - AR7242 SOC - AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 8 MB FLASH MX25L6406E - 32 MB RAM EM6AA160TSA-5G - UART at J2 (populated) - 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset) - 2 internal antennas MAC addresses: MAC address is labeled as "MAC" Only 1 address on label and in flash The OEM software reports these MACs for the ifconfig eth0 MAC *:0c art 0x0 phy0 --- *:0d --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.10.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP350 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap350-uImage-lzma.bin openwrt-senao-eap350-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1024k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. uboot did not have a good value for 1 GBps so it was taken from other similar DTS file. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EAP600Michael Pratt2020-12-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP600 Engenius EAP600 is a wireless access point with 1 gigabit ethernet port, dual-band wireless, external ethernet switch, 4 internal antennas and 802.3af PoE. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset) - 4 internal antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig eth0 MAC 1 *:5e --- phy1 MAC 2 *:5f --- (2.4 GHz) phy0 ----- *:60 art 0x0 (5 GHz) Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of EAP600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-eap600-uImage-lzma.bin openwrt-senao-eap600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the EAP series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ECB600Michael Pratt2020-12-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ECB600 Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port, dual-band wireless, external ethernet switch, and 4 external antennas. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset) - 4 external antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig phy1 MAC 1 *:52 --- (2.4 GHz) phy0 MAC 2 *:53 --- (5 GHz) eth0 ----- *:54 art 0x0 Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ECB600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-ecb600-uImage-lzma.bin openwrt-senao-ecb600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the ECB series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EnStationAC v1Michael Pratt2020-12-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ENSTAC Engenius EnStationAC v1 is an outdoor wireless access point/bridge with 2 gigabit ethernet ports on 2 external ethernet switches, 5 GHz only wireless, internal antenna plates, and proprietery PoE. Specification: - QCA9557 SOC - QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm) - AR8035-A switch (RGMII GbE with PoE+ IN) - AR8031 switch (SGMII GbE with PoE OUT) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16FG - UART at J10 (unpopulated) - internal antenna plates (19 dbi, directional) - 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset) MAC addresses: MAC addresses are labeled as ETH and 5GHz Vendor MAC addresses in flash are duplicate eth0 ETH *:d3 art 0x0/0x6 eth1 ---- *:d4 --- phy0 5GHz *:d5 --- Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade TFTP recovery: rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board hold or press reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times Format of OEM firmware image: The OEM software of EnStationAC is a heavily modified version of Openwrt Altitude Adjustment 12.09. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-ar71xx-enstationac-uImage-lzma.bin openwrt-ar71xx-enstationac-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. Newer EnGenius software requires more checks but their script includes a way to skip them, otherwise the tar must include a text file with the version and md5sums in a deprecated format. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8033 switch between the SOC and the ethernet PHY chips. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. For eth0 at 1000 speed, the value returned was ae000000 but that didn't work, so following the logical pattern from the rest of the values, the guessed value of a3000000 works better. later discovered that delay can be placed on the PHY end only with phy-mode as 'rgmii-id' and set register to 0x82... Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> [fixed SoB to match From:] Signed-off-by: Petr Štetiar <ynezz@true.cz>
* ath79: Add support for Plasma Cloud PA300ESven Eckelmann2020-12-221-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash (mx25l12805d) - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) + used as WAN interface - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 2 + used as LAN interface * 12-24V 1A DC * external antennas Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for Plasma Cloud PA300Sven Eckelmann2020-12-221-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash (mx25l12805d) - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) + used as WAN interface - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 2 + used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: add support for Senao Engenius ECB350 v1Michael Pratt2020-12-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ECB350 Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port, 2.4 GHz wireless, external antennas, and PoE. **Specification:** - AR7242 SOC - AR9283 WLAN 2.4 GHz (2x2), PCIe on-board - AR8035-A switch RGMII, GbE with 802.3af PoE - 40 MHz reference clock - 8 MB FLASH 25L6406EM2I-12G - 32 MB RAM - UART at J2 (populated) - 2 external antennas - 3 LEDs, 1 button (power, lan, wlan) (reset) **MAC addresses:** MACs are labeled as WLAN and WAN vendor MAC addresses in flash are duplicate phy0 WLAN *:b8 --- eth0 WAN *:b9 art 0x0/0x6 **Installation:** - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9f670000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery** (unstable / not reliable): rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board while holding or pressing reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of ECB350 v1 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel size to be no greater than 1536k and otherwise the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. The factory upgrade script follows the original mtd partitions. **Note on PLL-data cells:** The default PLL register values will not work because of the AR8035 switch between the SOC and the ethernet port. For AR724x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from u-boot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1` However the registers that u-boot sets are not ideal and sometimes wrong... the at803x driver supports setting the RGMII clock/data delay on the PHY side. This way the pll-data register only needs to handle invert and phase. for this board no extra adjustements are needed on the MAC side all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ECB1200Michael Pratt2020-12-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ECB1200 Engenius ECB1200 is an indoor wireless access point with a GbE port, 2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE. **Specification:** - QCA9557 SOC MIPS, 2.4 GHz (2x2) - QCA9882 WLAN PCIe card, 5 GHz (2x2) - AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock - 40 MHz reference clock - 16 MB FLASH 25L12845EMI-10G - 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25 - UART at JP1 (unpopulated, RX shorted to ground) - 4 external antennas - 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset) **MAC addresses:** MAC Addresses are labeled as ETH and 5GHZ U-boot environment has the vendor MAC addresses MAC addresses in ART do not match vendor eth0 ETH *:5c u-boot-env ethaddr phy0 5GHZ *:5d u-boot-env athaddr ---- ---- ???? art 0x0/0x6 **Installation:** Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly (see TFTP recovery) perform a sysupgrade **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART pinout at JP1 **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions Unlike most Engenius boards, this does not have a 'failsafe' image the only way to return to OEM is TFTP or serial access to u-boot **TFTP recovery:** Unlike most Engenius boards, TFTP is reliable here rename initramfs-kernel.bin to 'ap.bin' make the file available on a TFTP server at 192.168.1.10 power board while holding or pressing reset button repeatedly or with serial access: run `tftpboot` or `run factory_boot` with initramfs-kernel.bin then `bootm` with the load address **Format of OEM firmware image:** The OEM software of ECB1200 is a heavily modified version of Openwrt Altitude Adjustment 12.09. This Engenius board, like ECB1750, uses a proprietary header with a unique Product ID. The header for factory.bin is generated by the mksenaofw program included in openwrt. **Note on PLL-data cells:** The default PLL register values will not work because of the AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. However the registers that u-boot sets are not ideal and sometimes wrong... the at803x driver supports setting the RGMII clock/data delay on the PHY side. This way the pll-data register only needs to handle invert and phase. for this board clock invert is needed on the MAC side all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius EAP300 v2Michael Pratt2020-11-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-EAP300A Engenius EAP300 v2 is an indoor wireless access point with a 100/10-BaseT ethernet port, 2.4 GHz wireless, internal antennas, and 802.3af PoE. **Specification:** - AR9341 - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 64 MB RAM - UART at J1 (populated) - Ethernet port with POE - internal antennas - 3 LEDs, 1 button (power, eth, wlan) (reset) **MAC addresses:** phy0 *:d3 art 0x1002 (label) eth0 *:d4 art 0x0/0x6 **Installation:** - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** If you have a serial cable, see Serial Failsafe instructions *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, can cause kernel loop or halt The easiest way to return to the OEM software is the Failsafe image If you dont have a serial cable, you can ssh into openwrt and run `mtd -r erase fakeroot` Wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade **TFTP recovery** (unstable / not reliable): rename initramfs to 'vmlinux-art-ramdisk' make available on TFTP server at 192.168.1.101 power board while holding or pressing reset button repeatedly NOTE: for some Engenius boards TFTP is not reliable try setting MTU to 600 and try many times **Format of OEM firmware image:** The OEM software of EAP300 v2 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh. OKLI kernel loader is required because the OEM software expects the kernel size to be no greater than 1536k and otherwise the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Signed-off-by: Michael Pratt <mcpratt@pm.me> [clarify MAC address section, bump PKG_RELEASE for uboot-envtools] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* uboot-envtools: ath79: add support for ALFA Network Pi-WiFi4Piotr Dymacz2020-11-181-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* uboot-envtools: ath79: add support for ALFA Network N5QPiotr Dymacz2020-09-281-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* uboot-envtools: ath79: add support for ALFA Network N2QPiotr Dymacz2020-09-281-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* uboot-envtools: ath79: add support for ALFA Network R36APiotr Dymacz2020-09-281-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* uboot-envtools: ath79: add support for Samsung WAM250Piotr Dymacz2020-09-281-0/+1
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* uboot-envtools: ath79: add support for Wallys DR531Piotr Dymacz2020-09-281-0/+3
| | | | Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>