aboutsummaryrefslogtreecommitdiffstats
Commit message (Collapse)AuthorAgeFilesLines
* maccalc: remove packageAdrian Schmutzler2021-01-233-313/+0
| | | | | | | | | | | This is a helpful utility, but it does not have any dependencies in this repository. Move it to packages feed. The package does not seem to have a maintainer. Cc: Jo-Philipp Wich <jo@mein.io> Cc: Nick Hainke <vincent@systemli.org> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* owipcalc: remove packageAdrian Schmutzler2021-01-232-994/+0
| | | | | | | | | This is a helpful utility, but it does not have any dependencies in this repository. Move it to packages feed. Cc: Jo-Philipp Wich <jo@mein.io> Cc: Nick Hainke <vincent@systemli.org> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* uboot-envtools: use $(AUTORELEASE) for PKG_RELEASEPaul Spooren2021-01-221-1/+1
| | | | | | | Use `$(AUTORELEASE)` variable rather than setting a PKG_RELEASE on every commit manually. Signed-off-by: Paul Spooren <mail@aparcar.org>
* base-files: use $(COMMITCOUNT) in PKG_RELEASEPaul Spooren2021-01-221-1/+1
| | | | | | | | | The newly added `$(COMMITCOUNT)` varialbe allows automatic versioning based on the number of Git commits of a package. Replace *tedious to bump* and *merge conflict causing* `PKG_RELEASE` and replace it with `$(COMMITCOUNT)`. Signed-off-by: Paul Spooren <mail@aparcar.org>
* rules: add AUTORELEASE and COMMITCOUNT variablesPaul Spooren2021-01-221-0/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The lack of bumped PKG_RELEASE variables is a recurring theme on the mailing list and in GitHub comments. This costs precious review time, a rare good within the OpenWrt project. Instead of relying on a manually set PKG_RELEASE this commit adds a `commitcount` function that uses the number of Git commits to determine the release. The function is called via the variables `$(AUTORELEASE)` or `$(COMMITCOUNT)`. The `PKG_RELEASE` variable can be set to either of the two. - $(AUTORELEASE): Release is automagically set to the number of commits since the last commit containing either ": update to " or ": bump to ". Example below: $ git log packages/foobar/ foobar: fixup file location foobar: disable docs foobar: bump to 5.3.2 foobar: fixup copyright Resulting package name: foobar_5.3.2-3_all.ipk, two package changes since the last upstream version change, using a 1 based counter. - $(COMMITCOUNT): For non-traditional versioning (x.y.z), most prominent `base-files`, this variable contains the total number of package commits. The new functionality can also be used by other feeds like packages.git. In case no build information is available, e.g. when using release tarballs, the SOURCE_DATE_EPOCH is used to have a reproducible release identifier. Suggested-by: Daniel Golle <daniel@makrotopia.org> Signed-off-by: Paul Spooren <mail@aparcar.org>
* iperf3: removeFlorian Eckert2021-01-221-83/+0
| | | | | | | This package is not needed in base. It will be imported in the packages feed. Signed-off-by: Florian Eckert <fe@dev.tdt.de>
* iperf: removeFlorian Eckert2021-01-223-100/+0
| | | | | | | This package is not needed in base. It will be imported in the packages feed. Signed-off-by: Florian Eckert <fe@dev.tdt.de>
* kernel: mtdsplit_uimage: replace "edimax, uimage" parserBjørn Mork2021-01-229-106/+60
| | | | | | | | The "edimax,uimage"" parser can be replaced by the generic parser using device specific openwrt,partition-magic and openwrt,offset properties. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: add "openwrt, offset" and "openwrt, partition-magic"Bjørn Mork2021-01-221-12/+28
| | | | | | | | Some devices prepend a standard U-Boot Image with a vendor specific header, having its own magic. Adding two new properties will support validation of such images, including the additional magic. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: replace "netgear, uimage" parserBjørn Mork2021-01-2216-80/+44
| | | | | | | | | | | | | | | | | | | The "netgear,uimage" parser can be replaced by the generic parser using device specific openwrt,ih-magic and openwrt,ih-type properties. Device tree properties for the following devices have not been set, as they have been dropped from OpenWrt with the removal of the ar71xx target: FW_MAGIC_WNR2000V1 0x32303031 FW_MAGIC_WNR2000V4 0x32303034 FW_MAGIC_WNR1000V2_VC 0x31303030 FW_MAGIC_WPN824N 0x31313030 Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2 Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1 Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: add "openwrt, ih-type" device-tree propertyBjørn Mork2021-01-221-10/+14
| | | | | | | Some devices use uimage headers with a non-default ih_type. Add support for overriding this in device tree. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: replace "allnet, uimage" parserBjørn Mork2021-01-222-50/+2
| | | | | | | Convert users to the generic "openwrt,uimage" using device specific "openwrt,ih-magic" properties, and remove "allnet,uimage". Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: replace "openwrt, okli" parserBjørn Mork2021-01-2212-63/+35
| | | | | | | | | The only difference between the "openwrt,okli" and the generic parser is the magic. Set this in device tree for all affected devices and remove the "openwrt,okli" parser. Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202 Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: add "openwrt, ih-magic" device-tree propertyBjørn Mork2021-01-221-18/+23
| | | | | | | Many devices use uimages with non-standard magic values. Let device tree override the default magic. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: replace "fonfxc" and "sge" parsersBjørn Mork2021-01-224-89/+16
| | | | | | | | Convert users of the "fonfxc" and "sge" parsers to the generic "openwrt,uimage", using device specific "openwrt,padding" properties. Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1] Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: mtdsplit_uimage: read extralen from device treeBjørn Mork2021-01-221-10/+14
| | | | | | | An "openwrt,padding" property in device tree can replace two device specific parsers. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* dt-bindings: mtd: partitions: add OpenWrt defined U-Boot ImageBjørn Mork2021-01-222-0/+282
| | | | | | | Add devicetree bindings for vendor specific variants of U-Boot Images, as defined by OpenWrt. Signed-off-by: Bjørn Mork <bjorn@mork.no>
* kernel: add parser finding rootfs after CFE bootfsRafał Miłecki2021-01-224-1/+101
| | | | | | | | | | | | | | It's required for BCM4908. It cannot use "bcm-wfi-fw" parser because that one requires *two* JFFS2 partitions which is untested / unsupported on the BCM4908 architecture. With a single JFFS2 partition "bcm-wfi-fw" parser will: 1. Fail to find "vmlinux.lz" as it doesn't follow "1-openwrt" file 2. Create partitions that don't precisely match bootfs layout The new parser is described in details in the MTD_SPLIT_CFE_BOOTFS symbol help message. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: build valid Asus GT-AC5300 firmware imageRafał Miłecki2021-01-221-1/+11
| | | | | | Insert Asus specific tail that is required for image identification. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* firmware-utils: bcm4908asus: tool inserting Asus tail into BCM4908 imageRafał Miłecki2021-01-222-0/+445
| | | | | | | | | | | Asus looks for an extra data at the end of BCM4908 image, right before the BCM4908 tail. It needs to be properly filled to make Asus accept firmware image. This tool constructs such a tail, writes it and updates CRC32 in BCM4908 tail accordingly. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm63xx: sync ethernet driver with net-nextSieng Piaw Liew2021-01-2215-191/+703
| | | | | | | | | | | | | | Sync ethernet driver code with upstream Linux kernel: -Reduce xmit_more code changes. -Combine rx cleanup code into a function. -Convert to build_skb. -Improve rx loop by optimizing loop tracking. https://lore.kernel.org/netdev/20210106144208.1935-1-liew.s.piaw@gmail.com/ Signed-off-by: Sieng Piaw Liew <liew.s.piaw@gmail.com> [Amend commit description, move patches to the top since they are going to be upstreamed] Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
* bcm63xx: nand: fix OOB R/W for non Hamming ECCÁlvaro Fernández Rojas2021-01-222-11/+34
| | | | | | | | Hamming ECC devices do not cover OOB data, as opposed to BCH ECC devices. Therefore, disabling ECC for all devices is preventing BCH devices from correctly reading and writing the OOB data. Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
* ramips: fix port labels for Xiaomi Mi Router 4Adrian Schmutzler2021-01-211-2/+2
| | | | | | | | The OEM assignment of LAN ports is swapped. Fixes: c2a7bb520a0f ("ramips: mt7621: add support for Xiaomi Mi Router 4") Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: add support for Xiaomi Mi Router 4Dmytro Oz2021-01-215-0/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for the RAM (256Mib→128Mib), LEDs and gpio (MiNet button). Specifications: Power: 12 VDC, 1 A Connector type: barrel CPU1: MediaTek MT7621A (880 MHz, 4 cores) FLA1: 128 MiB (ESMT F59L1G81MA) RAM1: 128 MiB (ESMT M15T1G1664A) WI1 chip1: MediaTek MT7603EN WI1 802dot11 protocols: bgn WI1 MIMO config: 2x2:2 WI1 antenna connector: U.FL WI2 chip1: MediaTek MT7612EN WI2 802dot11 protocols: an+ac WI2 MIMO config: 2x2:2 WI2 antenna connector: U.FL ETH chip1: MediaTek MT7621A Switch: MediaTek MT7621A UART Serial [o] TX [o] GND [o] RX [ ] VCC - Do not connect it MAC addresses as verified by OEM firmware: use address source LAN *:c2 factory 0xe000 (label) WAN *:c3 factory 0xe006 2g *:c4 factory 0x0000 5g *:c5 factory 0x8000 Flashing instructions: 1.Create a simple http server (nginx etc) 2.set uart enable To enable writing to the console, you must reset to factory settings Then you see uboot boot, press the keyboard 4 button (enter uboot command line) If it is not successful, repeat the above operation of restoring the factory settings. After entering the uboot command line, type: setenv uart_en 1 saveenv boot 3.use shell in uart cd /tmp wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1 mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0 nvram set flag_try_sys1_failed=1 nvram commit reboot 4.login to the router http://192.168.1.1/ Installation via Software exploit Find the instructions in the https://github.com/acecilia/OpenWRTInvasion Signed-off-by: Dmytro Oz <sequentiality@gmail.com> [commit message facelift, rebase onto shared DTSI/common device definition, bump uboot-envtools] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: create DTSI for Xiaomi NAND devicesAdrian Schmutzler2021-01-213-189/+111
| | | | | | | | | | | | This creates a DTSI for Xiaomi devices with 128M NAND. This allows to consolidate the partitions and a few other nodes for AC2100 family and Mi Router 3G. Note that the Mi Router 3 Pro has 256M NAND and differently sized partitions. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ramips: mt7621: reorganize shared device definitions for XiaomiAdrian Schmutzler2021-01-211-21/+13
| | | | | | | | | | This creates a shared device definition for Xiaomi devices with NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin. This allows to consolidate similar/duplicate code for AC2100 family and Mi Router 3G. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ipq40xx: fix boards being shown twiceRobert Marko2021-01-211-2/+0
| | | | | | | | | | | | | | | | Since generic images have been split to their own Makefile boards are showing up twice in menuconfig as $(eval $(call BuildImage)) was not dropped from the new generic.mk. Hence $(eval $(call BuildImage)) was being called twice. So, lets simply drop it from generic.mk. Fixes: 378c7ff28210 ("ipq40xx: split generic images into own file") Signed-off-by: Robert Marko <robert.marko@sartura.hr>
* bcm4908: workaround NAND controller #WP issueRafał Miłecki2021-01-211-0/+34
| | | | | | | There seems to be a problem with setting #WP. On the other hand ignoring the #WP seems to work. rootfs_data UBI volume seems to persist changes. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: append UBI with rootfs to device imagesRafał Miłecki2021-01-212-3/+29
| | | | | | Also enable UBI kernel support. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: build flashable & bootable firmware imagesRafał Miłecki2021-01-215-0/+23
| | | | | | | | | | | | | BCM4908 bootloader requires firmware with JFFS2 image containing: 1. cferam.000 2. 94908.dtb 3. vmlinux.lz 4. device custom files cferam.000 can be obtained from the bcm63xx-cfe repository. device custom files are stored in images dir. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: set console in the CONFIG_CMDLINERafał Miłecki2021-01-211-1/+1
| | | | | | | | procd doesn't work with just serial specified in the DT (using chosen & stdout-path). It requires tty device to be explicitly specified in the cmdline. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: add DTS patches for USB PHY and partitionsRafał Miłecki2021-01-202-0/+201
| | | | Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: use backported brcmstb soc stubs patchRafał Miłecki2021-01-201-8/+21
| | | | | | Final version differs slightly - uses IS_ENABLED() Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: use backported switch & PMB DTS patchesRafał Miłecki2021-01-202-10/+8
| | | | | | Final versions differ slightly from what was used initially. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* bcm4908: add pending mtd patches for BCM4908 partitioningRafał Miłecki2021-01-203-0/+393
| | | | | | | BCM4908 can have multiple firmware partitions. MTD needs to detect which one is currently used. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* kernel: backport mtd commit converting partitions doc syntaxRafał Miłecki2021-01-202-0/+352
| | | | | | | 1. It's useful for developing & validating DTS files inside OpenWrt 2. This will allow backporting later changes that depend on it Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* kernel: bump 5.4 to 5.4.91John Audia2021-01-202-4/+4
| | | | | | | | | | | | | | All modification made by update_kernel.sh in a fresh clone without existing toolchains. Build system: x86_64 Build-tested: ipq806x/R7800, bcm27xx/bcm2711 Run-tested: ipq806x/R7800 No dmesg regressions, everything functional Signed-off-by: John Audia <graysky@archlinux.us> Tested-by: Curtis Deptuck <curtdept@me.com> [x86/64]
* ath79: Add support for OpenMesh MR1750 v2Sven Eckelmann2021-01-199-4/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR1750 v1Sven Eckelmann2021-01-198-2/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, apply shared DTSI/device node, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: make OpenMesh MR900 DTSI more generalAdrian Schmutzler2021-01-193-13/+38
| | | | | | | | The OpenMesh MR900 and to-be-added MR1750 family are very similar. Make the existing MR900 DTSI more general so it can be used for the MR1750 devices as well. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: consolidate common definitions for OpenMesh devicesAdrian Schmutzler2021-01-191-51/+48
| | | | | | | | | | | | The shared image definitions for OpenMesh devices are currently organized based on device families. This introduces some duplicate code, as the image creation code is mostly the same for those. This patch thus derives two basic shared definitions that work for all devices and only requires a few variables to be moved back to the device definitions. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: apply Engenius ECB1750 style to OpenMesh MR900 RGMII cfgSven Eckelmann2021-01-191-6/+2
| | | | | | | | | | | | | | | The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family. These devices are shipped with an AR803x PHY and had various problems with the delay configuration in ar71xx. These problems are now in the past [1] and parts of the delay configuration should now be done in the PHY only. Just switch to the configuration of the ECB1750 to have an already well tested configuration for ath79 with the newer kernel versions. [1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292 Reported-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh MR900 v2Sven Eckelmann2021-01-198-3/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR900 v1Sven Eckelmann2021-01-198-1/+218
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi * 3T3R 5 GHz Wi-Fi * 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: apply Engenius EAP600 style to OpenMesh MR600 RGMII cfgSven Eckelmann2021-01-191-2/+4
| | | | | | | | | | | | | | | The OpenMesh MR600 is a modified version of the EAP600 family. These devices are shipped with an AR803x PHY and had various problems with the delay configuration in ar71xx. These problems are now in the past [1] and parts of the delay configuration should now be done in the PHY only. Just switch to the configuration of the EAP600 to have an already well tested configuration for ath79 with the newer kernel versions. [1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292 Reported-by: Michael Pratt <mcpratt@pm.me> Signed-off-by: Sven Eckelmann <sven@narfation.org>
* ath79: Add support for OpenMesh MR600 v2Sven Eckelmann2021-01-198-2/+87
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 8x GPIO-LEDs (6x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* ath79: Add support for OpenMesh MR600 v1Sven Eckelmann2021-01-198-0/+208
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 4x GPIO-LEDs (2x wifi, 1x wps, 1x power) * 1x GPIO-button (reset) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 1x ethernet - AR8035 ethernet PHY (RGMII) - 10/100/1000 Mbps Ethernet - 802.3af POE - used as LAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> [rebase, make WLAN LEDs consistent, add LED migration] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* owipcalc: remove clone in cidr_contains6Nick Hainke2021-01-192-6/+5
| | | | | | | | | | The "cidr_contains6" functions clones the given cidr. The contains4 does not clone the cidr. Both functions do not behave the same. I see no reason to push the cidr. I think that we get only a negligible performance gain, but it makes ipv4 and ipv6 equal again. Signed-off-by: Nick Hainke <vincent@systemli.org>
* kernel: bump 5.4 to 5.4.90John Audia2021-01-194-5/+5
| | | | | | | | | | | | | | All modification made by update_kernel.sh in a fresh clone without existing toolchains. Build system: x86_64 Build-tested: ipq806x/R7800, bcm27xx/bcm2711 Run-tested: ipq806x/R7800 No dmesg regressions, everything functional Signed-off-by: John Audia <graysky@archlinux.us> Tested-by: Curtis Deptuck <curtdept@me.com> [x86/64]
* dnsmasq: Update to version 2.83Hauke Mehrtens2021-01-192-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes the following security problems in dnsmasq: * CVE-2020-25681: Dnsmasq versions before 2.83 is susceptible to a heap-based buffer overflow in sort_rrset() when DNSSEC is used. This can allow a remote attacker to write arbitrary data into target device's memory that can lead to memory corruption and other unexpected behaviors on the target device. * CVE-2020-25682: Dnsmasq versions before 2.83 is susceptible to buffer overflow in extract_name() function due to missing length check, when DNSSEC is enabled. This can allow a remote attacker to cause memory corruption on the target device. * CVE-2020-25683: Dnsmasq version before 2.83 is susceptible to a heap-based buffer overflow when DNSSEC is enabled. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap- allocated memory. This flaw is caused by the lack of length checks in rtc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in Dnsmasq, resulting in a Denial of Service. * CVE-2020-25684: A lack of proper address/port check implemented in Dnsmasq version < 2.83 reply_query function makes forging replies easier to an off-path attacker. * CVE-2020-25685: A lack of query resource name (RRNAME) checks implemented in Dnsmasq's versions before 2.83 reply_query function allows remote attackers to spoof DNS traffic that can lead to DNS cache poisoning. * CVE-2020-25686: Multiple DNS query requests for the same resource name (RRNAME) by Dnsmasq versions before 2.83 allows for remote attackers to spoof DNS traffic, using a birthday attack (RFC 5452), that can lead to DNS cache poisoning. * CVE-2020-25687: Dnsmasq versions before 2.83 is vulnerable to a heap-based buffer overflow with large memcpy in sort_rrset() when DNSSEC is enabled. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rtc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a Denial of Service. Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>