diff options
Diffstat (limited to 'target/linux')
-rw-r--r-- | target/linux/ramips/patches-3.10/0202-owrt-USB-adds-dwc_otg.patch | 24517 |
1 files changed, 24517 insertions, 0 deletions
diff --git a/target/linux/ramips/patches-3.10/0202-owrt-USB-adds-dwc_otg.patch b/target/linux/ramips/patches-3.10/0202-owrt-USB-adds-dwc_otg.patch new file mode 100644 index 0000000000..70513be3d7 --- /dev/null +++ b/target/linux/ramips/patches-3.10/0202-owrt-USB-adds-dwc_otg.patch @@ -0,0 +1,24517 @@ +From 1a44a003bdaf917193114d0d40534496c39644ba Mon Sep 17 00:00:00 2001 +From: John Crispin <blogic@openwrt.org> +Date: Fri, 15 Mar 2013 20:58:18 +0100 +Subject: [PATCH 202/208] owrt: USB: adds dwc_otg + +Signed-off-by: John Crispin <blogic@openwrt.org> +--- + drivers/usb/Kconfig | 2 + + drivers/usb/Makefile | 1 + + drivers/usb/dwc_otg/Kconfig | 24 + + drivers/usb/dwc_otg/Makefile | 25 + + drivers/usb/dwc_otg/dummy_audio.c | 1575 +++++++++++++ + drivers/usb/dwc_otg/dwc_otg_attr.c | 966 ++++++++ + drivers/usb/dwc_otg/dwc_otg_attr.h | 67 + + drivers/usb/dwc_otg/dwc_otg_cil.c | 3692 ++++++++++++++++++++++++++++++ + drivers/usb/dwc_otg/dwc_otg_cil.h | 1098 +++++++++ + drivers/usb/dwc_otg/dwc_otg_cil_intr.c | 750 ++++++ + drivers/usb/dwc_otg/dwc_otg_driver.c | 1273 ++++++++++ + drivers/usb/dwc_otg/dwc_otg_driver.h | 83 + + drivers/usb/dwc_otg/dwc_otg_hcd.c | 2852 +++++++++++++++++++++++ + drivers/usb/dwc_otg/dwc_otg_hcd.h | 668 ++++++ + drivers/usb/dwc_otg/dwc_otg_hcd_intr.c | 1873 +++++++++++++++ + drivers/usb/dwc_otg/dwc_otg_hcd_queue.c | 684 ++++++ + drivers/usb/dwc_otg/dwc_otg_pcd.c | 2523 ++++++++++++++++++++ + drivers/usb/dwc_otg/dwc_otg_pcd.h | 248 ++ + drivers/usb/dwc_otg/dwc_otg_pcd_intr.c | 3654 +++++++++++++++++++++++++++++ + drivers/usb/dwc_otg/dwc_otg_regs.h | 2075 +++++++++++++++++ + drivers/usb/dwc_otg/linux/dwc_otg_plat.h | 260 +++ + 21 files changed, 24393 insertions(+) + create mode 100644 drivers/usb/dwc_otg/Kconfig + create mode 100644 drivers/usb/dwc_otg/Makefile + create mode 100644 drivers/usb/dwc_otg/dummy_audio.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_attr.h + create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.h + create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil_intr.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.h + create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.h + create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd.h + create mode 100644 drivers/usb/dwc_otg/dwc_otg_pcd_intr.c + create mode 100644 drivers/usb/dwc_otg/dwc_otg_regs.h + create mode 100644 drivers/usb/dwc_otg/linux/dwc_otg_plat.h + +--- a/drivers/usb/Kconfig ++++ b/drivers/usb/Kconfig +@@ -126,6 +126,8 @@ source "drivers/usb/core/Kconfig" + + source "drivers/usb/dwc3/Kconfig" + ++source "drivers/usb/dwc_otg/Kconfig" ++ + source "drivers/usb/mon/Kconfig" + + source "drivers/usb/wusbcore/Kconfig" +--- a/drivers/usb/Makefile ++++ b/drivers/usb/Makefile +@@ -9,6 +9,7 @@ obj-$(CONFIG_USB) += core/ + obj-$(CONFIG_USB_OTG_UTILS) += otg/ + + obj-$(CONFIG_USB_DWC3) += dwc3/ ++obj-$(CONFIG_DWC_OTG) += dwc_otg/ + + obj-$(CONFIG_USB_MON) += mon/ + +--- /dev/null ++++ b/drivers/usb/dwc_otg/Kconfig +@@ -0,0 +1,24 @@ ++config DWC_OTG ++ tristate "Ralink RT305X DWC_OTG support" ++ depends on SOC_RT305X ++ ---help--- ++ This driver supports Ralink DWC_OTG ++ ++choice ++ prompt "USB Operation Mode" ++ depends on DWC_OTG ++ default DWC_OTG_HOST_ONLY ++ ++config DWC_OTG_HOST_ONLY ++ bool "HOST ONLY MODE" ++ depends on DWC_OTG ++ ++config DWC_OTG_DEVICE_ONLY ++ bool "DEVICE ONLY MODE" ++ depends on DWC_OTG ++ ++endchoice ++ ++config DWC_OTG_DEBUG ++ bool "Enable debug mode" ++ depends on DWC_OTG +--- /dev/null ++++ b/drivers/usb/dwc_otg/Makefile +@@ -0,0 +1,25 @@ ++# ++# Makefile for DWC_otg Highspeed USB controller driver ++# ++ ++ifeq ($(CONFIG_DWC_OTG_DEBUG),y) ++EXTRA_CFLAGS += -DDEBUG ++endif ++ ++# Use one of the following flags to compile the software in host-only or ++# device-only mode. ++ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y) ++EXTRA_CFLAGS += -DDWC_HOST_ONLY ++EXTRA_CFLAGS += -DDWC_EN_ISOC ++endif ++ ++ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y) ++EXTRA_CFLAGS += -DDWC_DEVICE_ONLY ++endif ++ ++obj-$(CONFIG_DWC_OTG) := dwc_otg.o ++ ++dwc_otg-objs := dwc_otg_driver.o dwc_otg_attr.o ++dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o ++dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o ++dwc_otg-objs += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o +--- /dev/null ++++ b/drivers/usb/dwc_otg/dummy_audio.c +@@ -0,0 +1,1575 @@ ++/* ++ * zero.c -- Gadget Zero, for USB development ++ * ++ * Copyright (C) 2003-2004 David Brownell ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions, and the following disclaimer, ++ * without modification. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The names of the above-listed copyright holders may not be used ++ * to endorse or promote products derived from this software without ++ * specific prior written permission. ++ * ++ * ALTERNATIVELY, this software may be distributed under the terms of the ++ * GNU General Public License ("GPL") as published by the Free Software ++ * Foundation, either version 2 of that License or (at your option) any ++ * later version. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ++ * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ++ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ++ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ++ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ++ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ++ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ++ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ */ ++ ++ ++/* ++ * Gadget Zero only needs two bulk endpoints, and is an example of how you ++ * can write a hardware-agnostic gadget driver running inside a USB device. ++ * ++ * Hardware details are visible (see CONFIG_USB_ZERO_* below) but don't ++ * affect most of the driver. ++ * ++ * Use it with the Linux host/master side "usbtest" driver to get a basic ++ * functional test of your device-side usb stack, or with "usb-skeleton". ++ * ++ * It supports two similar configurations. One sinks whatever the usb host ++ * writes, and in return sources zeroes. The other loops whatever the host ++ * writes back, so the host can read it. Module options include: ++ * ++ * buflen=N default N=4096, buffer size used ++ * qlen=N default N=32, how many buffers in the loopback queue ++ * loopdefault default false, list loopback config first ++ * ++ * Many drivers will only have one configuration, letting them be much ++ * simpler if they also don't support high speed operation (like this ++ * driver does). ++ */ ++ ++#include <linux/config.h> ++#include <linux/module.h> ++#include <linux/kernel.h> ++#include <linux/delay.h> ++#include <linux/ioport.h> ++#include <linux/sched.h> ++#include <linux/slab.h> ++#include <linux/smp_lock.h> ++#include <linux/errno.h> ++#include <linux/init.h> ++#include <linux/timer.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/uts.h> ++#include <linux/version.h> ++#include <linux/device.h> ++#include <linux/moduleparam.h> ++#include <linux/proc_fs.h> ++ ++#include <asm/byteorder.h> ++#include <asm/io.h> ++#include <asm/irq.h> ++#include <asm/system.h> ++#include <asm/unaligned.h> ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21) ++# include <linux/usb/ch9.h> ++#else ++# include <linux/usb_ch9.h> ++#endif ++ ++#include <linux/usb_gadget.h> ++ ++ ++/*-------------------------------------------------------------------------*/ ++/*-------------------------------------------------------------------------*/ ++ ++ ++static int utf8_to_utf16le(const char *s, u16 *cp, unsigned len) ++{ ++ int count = 0; ++ u8 c; ++ u16 uchar; ++ ++ /* this insists on correct encodings, though not minimal ones. ++ * BUT it currently rejects legit 4-byte UTF-8 code points, ++ * which need surrogate pairs. (Unicode 3.1 can use them.) ++ */ ++ while (len != 0 && (c = (u8) *s++) != 0) { ++ if (unlikely(c & 0x80)) { ++ // 2-byte sequence: ++ // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx ++ if ((c & 0xe0) == 0xc0) { ++ uchar = (c & 0x1f) << 6; ++ ++ c = (u8) *s++; ++ if ((c & 0xc0) != 0xc0) ++ goto fail; ++ c &= 0x3f; ++ uchar |= c; ++ ++ // 3-byte sequence (most CJKV characters): ++ // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx ++ } else if ((c & 0xf0) == 0xe0) { ++ uchar = (c & 0x0f) << 12; ++ ++ c = (u8) *s++; ++ if ((c & 0xc0) != 0xc0) ++ goto fail; ++ c &= 0x3f; ++ uchar |= c << 6; ++ ++ c = (u8) *s++; ++ if ((c & 0xc0) != 0xc0) ++ goto fail; ++ c &= 0x3f; ++ uchar |= c; ++ ++ /* no bogus surrogates */ ++ if (0xd800 <= uchar && uchar <= 0xdfff) ++ goto fail; ++ ++ // 4-byte sequence (surrogate pairs, currently rare): ++ // 11101110wwwwzzzzyy + 110111yyyyxxxxxx ++ // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx ++ // (uuuuu = wwww + 1) ++ // FIXME accept the surrogate code points (only) ++ ++ } else ++ goto fail; ++ } else ++ uchar = c; ++ put_unaligned (cpu_to_le16 (uchar), cp++); ++ count++; ++ len--; ++ } ++ return count; ++fail: ++ return -1; ++} ++ ++ ++/** ++ * usb_gadget_get_string - fill out a string descriptor ++ * @table: of c strings encoded using UTF-8 ++ * @id: string id, from low byte of wValue in get string descriptor ++ * @buf: at least 256 bytes ++ * ++ * Finds the UTF-8 string matching the ID, and converts it into a ++ * string descriptor in utf16-le. ++ * Returns length of descriptor (always even) or negative errno ++ * ++ * If your driver needs stings in multiple languages, you'll probably ++ * "switch (wIndex) { ... }" in your ep0 string descriptor logic, ++ * using this routine after choosing which set of UTF-8 strings to use. ++ * Note that US-ASCII is a strict subset of UTF-8; any string bytes with ++ * the eighth bit set will be multibyte UTF-8 characters, not ISO-8859/1 ++ * characters (which are also widely used in C strings). ++ */ ++int ++usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf) ++{ ++ struct usb_string *s; ++ int len; ++ ++ /* descriptor 0 has the language id */ ++ if (id == 0) { ++ buf [0] = 4; ++ buf [1] = USB_DT_STRING; ++ buf [2] = (u8) table->language; ++ buf [3] = (u8) (table->language >> 8); ++ return 4; ++ } ++ for (s = table->strings; s && s->s; s++) ++ if (s->id == id) ++ break; ++ ++ /* unrecognized: stall. */ ++ if (!s || !s->s) ++ return -EINVAL; ++ ++ /* string descriptors have length, tag, then UTF16-LE text */ ++ len = min ((size_t) 126, strlen (s->s)); ++ memset (buf + 2, 0, 2 * len); /* zero all the bytes */ ++ len = utf8_to_utf16le(s->s, (u16 *)&buf[2], len); ++ if (len < 0) ++ return -EINVAL; ++ buf [0] = (len + 1) * 2; ++ buf [1] = USB_DT_STRING; ++ return buf [0]; ++} ++ ++ ++/*-------------------------------------------------------------------------*/ ++/*-------------------------------------------------------------------------*/ ++ ++ ++/** ++ * usb_descriptor_fillbuf - fill buffer with descriptors ++ * @buf: Buffer to be filled ++ * @buflen: Size of buf ++ * @src: Array of descriptor pointers, terminated by null pointer. ++ * ++ * Copies descriptors into the buffer, returning the length or a ++ * negative error code if they can't all be copied. Useful when ++ * assembling descriptors for an associated set of interfaces used ++ * as part of configuring a composite device; or in other cases where ++ * sets of descriptors need to be marshaled. ++ */ ++int ++usb_descriptor_fillbuf(void *buf, unsigned buflen, ++ const struct usb_descriptor_header **src) ++{ ++ u8 *dest = buf; ++ ++ if (!src) ++ return -EINVAL; ++ ++ /* fill buffer from src[] until null descriptor ptr */ ++ for (; 0 != *src; src++) { ++ unsigned len = (*src)->bLength; ++ ++ if (len > buflen) ++ return -EINVAL; ++ memcpy(dest, *src, len); ++ buflen -= len; ++ dest += len; ++ } ++ return dest - (u8 *)buf; ++} ++ ++ ++/** ++ * usb_gadget_config_buf - builts a complete configuration descriptor ++ * @config: Header for the descriptor, including characteristics such ++ * as power requirements and number of interfaces. ++ * @desc: Null-terminated vector of pointers to the descriptors (interface, ++ * endpoint, etc) defining all functions in this device configuration. ++ * @buf: Buffer for the resulting configuration descriptor. ++ * @length: Length of buffer. If this is not big enough to hold the ++ * entire configuration descriptor, an error code will be returned. ++ * ++ * This copies descriptors into the response buffer, building a descriptor ++ * for that configuration. It returns the buffer length or a negative ++ * status code. The config.wTotalLength field is set to match the length ++ * of the result, but other descriptor fields (including power usage and ++ * interface count) must be set by the caller. ++ * ++ * Gadget drivers could use this when constructing a config descriptor ++ * in response to USB_REQ_GET_DESCRIPTOR. They will need to patch the ++ * resulting bDescriptorType value if USB_DT_OTHER_SPEED_CONFIG is needed. ++ */ ++int usb_gadget_config_buf( ++ const struct usb_config_descriptor *config, ++ void *buf, ++ unsigned length, ++ const struct usb_descriptor_header **desc ++) ++{ ++ struct usb_config_descriptor *cp = buf; ++ int len; ++ ++ /* config descriptor first */ ++ if (length < USB_DT_CONFIG_SIZE || !desc) ++ return -EINVAL; ++ *cp = *config; ++ ++ /* then interface/endpoint/class/vendor/... */ ++ len = usb_descriptor_fillbuf(USB_DT_CONFIG_SIZE + (u8*)buf, ++ length - USB_DT_CONFIG_SIZE, desc); ++ if (len < 0) ++ return len; ++ len += USB_DT_CONFIG_SIZE; ++ if (len > 0xffff) ++ return -EINVAL; ++ ++ /* patch up the config descriptor */ ++ cp->bLength = USB_DT_CONFIG_SIZE; ++ cp->bDescriptorType = USB_DT_CONFIG; ++ cp->wTotalLength = cpu_to_le16(len); ++ cp->bmAttributes |= USB_CONFIG_ATT_ONE; ++ return len; ++} ++ ++/*-------------------------------------------------------------------------*/ ++/*-------------------------------------------------------------------------*/ ++ ++ ++#define RBUF_LEN (1024*1024) ++static int rbuf_start; ++static int rbuf_len; ++static __u8 rbuf[RBUF_LEN]; ++ ++/*-------------------------------------------------------------------------*/ ++ ++#define DRIVER_VERSION "St Patrick's Day 2004" ++ ++static const char shortname [] = "zero"; ++static const char longname [] = "YAMAHA YST-MS35D USB Speaker "; ++ ++static const char source_sink [] = "source and sink data"; ++static const char loopback [] = "loop input to output"; ++ ++/*-------------------------------------------------------------------------*/ ++ ++/* ++ * driver assumes self-powered hardware, and ++ * has no way for users to trigger remote wakeup. ++ * ++ * this version autoconfigures as much as possible, ++ * which is reasonable for most "bulk-only" drivers. ++ */ ++static const char *EP_IN_NAME; /* source */ ++static const char *EP_OUT_NAME; /* sink */ ++ ++/*-------------------------------------------------------------------------*/ ++ ++/* big enough to hold our biggest descriptor */ ++#define USB_BUFSIZ 512 ++ ++struct zero_dev { ++ spinlock_t lock; ++ struct usb_gadget *gadget; ++ struct usb_request *req; /* for control responses */ ++ ++ /* when configured, we have one of two configs: ++ * - source data (in to host) and sink it (out from host) ++ * - or loop it back (out from host back in to host) ++ */ ++ u8 config; ++ struct usb_ep *in_ep, *out_ep; ++ ++ /* autoresume timer */ ++ struct timer_list resume; ++}; ++ ++#define xprintk(d,level,fmt,args...) \ ++ dev_printk(level , &(d)->gadget->dev , fmt , ## args) ++ ++#ifdef DEBUG ++#define DBG(dev,fmt,args...) \ ++ xprintk(dev , KERN_DEBUG , fmt , ## args) ++#else ++#define DBG(dev,fmt,args...) \ ++ do { } while (0) ++#endif /* DEBUG */ ++ ++#ifdef VERBOSE ++#define VDBG DBG ++#else ++#define VDBG(dev,fmt,args...) \ ++ do { } while (0) ++#endif /* VERBOSE */ ++ ++#define ERROR(dev,fmt,args...) \ ++ xprintk(dev , KERN_ERR , fmt , ## args) ++#define WARN(dev,fmt,args...) \ ++ xprintk(dev , KERN_WARNING , fmt , ## args) ++#define INFO(dev,fmt,args...) \ ++ xprintk(dev , KERN_INFO , fmt , ## args) ++ ++/*-------------------------------------------------------------------------*/ ++ ++static unsigned buflen = 4096; ++static unsigned qlen = 32; ++static unsigned pattern = 0; ++ ++module_param (buflen, uint, S_IRUGO|S_IWUSR); ++module_param (qlen, uint, S_IRUGO|S_IWUSR); ++module_param (pattern, uint, S_IRUGO|S_IWUSR); ++ ++/* ++ * if it's nonzero, autoresume says how many seconds to wait ++ * before trying to wake up the host after suspend. ++ */ ++static unsigned autoresume = 0; ++module_param (autoresume, uint, 0); ++ ++/* ++ * Normally the "loopback" configuration is second (index 1) so ++ * it's not the default. Here's where to change that order, to ++ * work better with hosts where config changes are problematic. ++ * Or controllers (like superh) that only support one config. ++ */ ++static int loopdefault = 0; ++ ++module_param (loopdefault, bool, S_IRUGO|S_IWUSR); ++ ++/*-------------------------------------------------------------------------*/ ++ ++/* Thanks to NetChip Technologies for donating this product ID. ++ * ++ * DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!! ++ * Instead: allocate your own, using normal USB-IF procedures. ++ */ ++#ifndef CONFIG_USB_ZERO_HNPTEST ++#define DRIVER_VENDOR_NUM 0x0525 /* NetChip */ ++#define DRIVER_PRODUCT_NUM 0xa4a0 /* Linux-USB "Gadget Zero" */ ++#else ++#define DRIVER_VENDOR_NUM 0x1a0a /* OTG test device IDs */ ++#define DRIVER_PRODUCT_NUM 0xbadd ++#endif ++ ++/*-------------------------------------------------------------------------*/ ++ ++/* ++ * DESCRIPTORS ... most are static, but strings and (full) ++ * configuration descriptors are built on demand. ++ */ ++ ++/* ++#define STRING_MANUFACTURER 25 ++#define STRING_PRODUCT 42 ++#define STRING_SERIAL 101 ++*/ ++#define STRING_MANUFACTURER 1 ++#define STRING_PRODUCT 2 ++#define STRING_SERIAL 3 ++ ++#define STRING_SOURCE_SINK 250 ++#define STRING_LOOPBACK 251 ++ ++/* ++ * This device advertises two configurations; these numbers work ++ * on a pxa250 as well as more flexible hardware. ++ */ ++#define CONFIG_SOURCE_SINK 3 ++#define CONFIG_LOOPBACK 2 ++ ++/* ++static struct usb_device_descriptor ++device_desc = { ++ .bLength = sizeof device_desc, ++ .bDescriptorType = USB_DT_DEVICE, ++ ++ .bcdUSB = __constant_cpu_to_le16 (0x0200), ++ .bDeviceClass = USB_CLASS_VENDOR_SPEC, ++ ++ .idVendor = __constant_cpu_to_le16 (DRIVER_VENDOR_NUM), ++ .idProduct = __constant_cpu_to_le16 (DRIVER_PRODUCT_NUM), ++ .iManufacturer = STRING_MANUFACTURER, ++ .iProduct = STRING_PRODUCT, ++ .iSerialNumber = STRING_SERIAL, ++ .bNumConfigurations = 2, ++}; ++*/ ++static struct usb_device_descriptor ++device_desc = { ++ .bLength = sizeof device_desc, ++ .bDescriptorType = USB_DT_DEVICE, ++ .bcdUSB = __constant_cpu_to_le16 (0x0100), ++ .bDeviceClass = USB_CLASS_PER_INTERFACE, ++ .bDeviceSubClass = 0, ++ .bDeviceProtocol = 0, ++ .bMaxPacketSize0 = 64, ++ .bcdDevice = __constant_cpu_to_le16 (0x0100), ++ .idVendor = __constant_cpu_to_le16 (0x0499), ++ .idProduct = __constant_cpu_to_le16 (0x3002), ++ .iManufacturer = STRING_MANUFACTURER, ++ .iProduct = STRING_PRODUCT, ++ .iSerialNumber = STRING_SERIAL, ++ .bNumConfigurations = 1, ++}; ++ ++static struct usb_config_descriptor ++z_config = { ++ .bLength = sizeof z_config, ++ .bDescriptorType = USB_DT_CONFIG, ++ ++ /* compute wTotalLength on the fly */ ++ .bNumInterfaces = 2, ++ .bConfigurationValue = 1, ++ .iConfiguration = 0, ++ .bmAttributes = 0x40, ++ .bMaxPower = 0, /* self-powered */ ++}; ++ ++ ++static struct usb_otg_descriptor ++otg_descriptor = { ++ .bLength = sizeof otg_descriptor, ++ .bDescriptorType = USB_DT_OTG, ++ ++ .bmAttributes = USB_OTG_SRP, ++}; ++ ++/* one interface in each configuration */ ++#ifdef CONFIG_USB_GADGET_DUALSPEED ++ ++/* ++ * usb 2.0 devices need to expose both high speed and full speed ++ * descriptors, unless they only run at full speed. ++ * ++ * that means alternate endpoint descriptors (bigger packets) ++ * and a "device qualifier" ... plus more construction options ++ * for the config descriptor. ++ */ ++ ++static struct usb_qualifier_descriptor ++dev_qualifier = { ++ .bLength = sizeof dev_qualifier, ++ .bDescriptorType = USB_DT_DEVICE_QUALIFIER, ++ ++ .bcdUSB = __constant_cpu_to_le16 (0x0200), ++ .bDeviceClass = USB_CLASS_VENDOR_SPEC, ++ ++ .bNumConfigurations = 2, ++}; ++ ++ ++struct usb_cs_as_general_descriptor { ++ __u8 bLength; ++ __u8 bDescriptorType; ++ ++ __u8 bDescriptorSubType; ++ __u8 bTerminalLink; ++ __u8 bDelay; ++ __u16 wFormatTag; ++} __attribute__ ((packed)); ++ ++struct usb_cs_as_format_descriptor { ++ __u8 bLength; ++ __u8 bDescriptorType; ++ ++ __u8 bDescriptorSubType; ++ __u8 bFormatType; ++ __u8 bNrChannels; ++ __u8 bSubframeSize; ++ __u8 bBitResolution; ++ __u8 bSamfreqType; ++ __u8 tLowerSamFreq[3]; ++ __u8 tUpperSamFreq[3]; ++} __attribute__ ((packed)); ++ ++static const struct usb_interface_descriptor ++z_audio_control_if_desc = { ++ .bLength = sizeof z_audio_control_if_desc, ++ .bDescriptorType = USB_DT_INTERFACE, ++ .bInterfaceNumber = 0, ++ .bAlternateSetting = 0, ++ .bNumEndpoints = 0, ++ .bInterfaceClass = USB_CLASS_AUDIO, ++ .bInterfaceSubClass = 0x1, ++ .bInterfaceProtocol = 0, ++ .iInterface = 0, ++}; ++ ++static const struct usb_interface_descriptor ++z_audio_if_desc = { ++ .bLength = sizeof z_audio_if_desc, ++ .bDescriptorType = USB_DT_INTERFACE, ++ .bInterfaceNumber = 1, ++ .bAlternateSetting = 0, ++ .bNumEndpoints = 0, ++ .bInterfaceClass = USB_CLASS_AUDIO, ++ .bInterfaceSubClass = 0x2, ++ .bInterfaceProtocol = 0, ++ .iInterface = 0, ++}; ++ ++static const struct usb_interface_descriptor ++z_audio_if_desc2 = { ++ .bLength = sizeof z_audio_if_desc, ++ .bDescriptorType = USB_DT_INTERFACE, ++ .bInterfaceNumber = 1, ++ .bAlternateSetting = 1, ++ .bNumEndpoints = 1, ++ .bInterfaceClass = USB_CLASS_AUDIO, ++ .bInterfaceSubClass = 0x2, ++ .bInterfaceProtocol = 0, ++ .iInterface = 0, ++}; ++ ++static const struct usb_cs_as_general_descriptor ++z_audio_cs_as_if_desc = { ++ .bLength = 7, ++ .bDescriptorType = 0x24, ++ ++ .bDescriptorSubType = 0x01, ++ .bTerminalLink = 0x01, ++ .bDelay = 0x0, ++ .wFormatTag = __constant_cpu_to_le16 (0x0001) ++}; ++ ++ ++static const struct usb_cs_as_format_descriptor ++z_audio_cs_as_format_desc = { ++ .bLength = 0xe, ++ .bDescriptorType = 0x24, ++ ++ .bDescriptorSubType = 2, ++ .bFormatType = 1, ++ .bNrChannels = 1, ++ .bSubframeSize = 1, ++ .bBitResolution = 8, ++ .bSamfreqType = 0, ++ .tLowerSamFreq = {0x7e, 0x13, 0x00}, ++ .tUpperSamFreq = {0xe2, 0xd6, 0x00}, ++}; ++ ++static const struct usb_endpoint_descriptor ++z_iso_ep = { ++ .bLength = 0x09, ++ .bDescriptorType = 0x05, ++ .bEndpointAddress = 0x04, ++ .bmAttributes = 0x09, ++ .wMaxPacketSize = 0x0038, ++ .bInterval = 0x01, ++ .bRefresh = 0x00, ++ .bSynchAddress = 0x00, ++}; ++ ++static char z_iso_ep2[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++// 9 bytes ++static char z_ac_interface_header_desc[] = ++{ 0x09, 0x24, 0x01, 0x00, 0x01, 0x2b, 0x00, 0x01, 0x01 }; ++ ++// 12 bytes ++static char z_0[] = {0x0c, 0x24, 0x02, 0x01, 0x01, 0x01, 0x00, 0x02, ++ 0x03, 0x00, 0x00, 0x00}; ++// 13 bytes ++static char z_1[] = {0x0d, 0x24, 0x06, 0x02, 0x01, 0x02, 0x15, 0x00, ++ 0x02, 0x00, 0x02, 0x00, 0x00}; ++// 9 bytes ++static char z_2[] = {0x09, 0x24, 0x03, 0x03, 0x01, 0x03, 0x00, 0x02, ++ 0x00}; ++ ++static char za_0[] = {0x09, 0x04, 0x01, 0x02, 0x01, 0x01, 0x02, 0x00, ++ 0x00}; ++ ++static char za_1[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00}; ++ ++static char za_2[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x01, 0x08, 0x00, ++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00}; ++ ++static char za_3[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00, ++ 0x00}; ++ ++static char za_4[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++static char za_5[] = {0x09, 0x04, 0x01, 0x03, 0x01, 0x01, 0x02, 0x00, ++ 0x00}; ++ ++static char za_6[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00}; ++ ++static char za_7[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x02, 0x10, 0x00, ++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00}; ++ ++static char za_8[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00, ++ 0x00}; ++ ++static char za_9[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++static char za_10[] = {0x09, 0x04, 0x01, 0x04, 0x01, 0x01, 0x02, 0x00, ++ 0x00}; ++ ++static char za_11[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00}; ++ ++static char za_12[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x02, 0x10, 0x00, ++ 0x73, 0x13, 0x00, 0xe2, 0xd6, 0x00}; ++ ++static char za_13[] = {0x09, 0x05, 0x04, 0x09, 0xe0, 0x00, 0x01, 0x00, ++ 0x00}; ++ ++static char za_14[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++static char za_15[] = {0x09, 0x04, 0x01, 0x05, 0x01, 0x01, 0x02, 0x00, ++ 0x00}; ++ ++static char za_16[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00}; ++ ++static char za_17[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x03, 0x14, 0x00, ++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00}; ++ ++static char za_18[] = {0x09, 0x05, 0x04, 0x09, 0xa8, 0x00, 0x01, 0x00, ++ 0x00}; ++ ++static char za_19[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++static char za_20[] = {0x09, 0x04, 0x01, 0x06, 0x01, 0x01, 0x02, 0x00, ++ 0x00}; ++ ++static char za_21[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00}; ++ ++static char za_22[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x03, 0x14, 0x00, ++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00}; ++ ++static char za_23[] = {0x09, 0x05, 0x04, 0x09, 0x50, 0x01, 0x01, 0x00, ++ 0x00}; ++ ++static char za_24[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02}; ++ ++ ++ ++static const struct usb_descriptor_header *z_function [] = { ++ (struct usb_descriptor_header *) &z_audio_control_if_desc, ++ (struct usb_descriptor_header *) &z_ac_interface_header_desc, ++ (struct usb_descriptor_header *) &z_0, ++ (struct usb_descriptor_header *) &z_1, ++ (struct usb_descriptor_header *) &z_2, ++ (struct usb_descriptor_header *) &z_audio_if_desc, ++ (struct usb_descriptor_header *) &z_audio_if_desc2, ++ (struct usb_descriptor_header *) &z_audio_cs_as_if_desc, ++ (struct usb_descriptor_header *) &z_audio_cs_as_format_desc, ++ (struct usb_descriptor_header *) &z_iso_ep, ++ (struct usb_descriptor_header *) &z_iso_ep2, ++ (struct usb_descriptor_header *) &za_0, ++ (struct usb_descriptor_header *) &za_1, ++ (struct usb_descriptor_header *) &za_2, ++ (struct usb_descriptor_header *) &za_3, ++ (struct usb_descriptor_header *) &za_4, ++ (struct usb_descriptor_header *) &za_5, ++ (struct usb_descriptor_header *) &za_6, ++ (struct usb_descriptor_header *) &za_7, ++ (struct usb_descriptor_header *) &za_8, ++ (struct usb_descriptor_header *) &za_9, ++ (struct usb_descriptor_header *) &za_10, ++ (struct usb_descriptor_header *) &za_11, ++ (struct usb_descriptor_header *) &za_12, ++ (struct usb_descriptor_header *) &za_13, ++ (struct usb_descriptor_header *) &za_14, ++ (struct usb_descriptor_header *) &za_15, ++ (struct usb_descriptor_header *) &za_16, ++ (struct usb_descriptor_header *) &za_17, ++ (struct usb_descriptor_header *) &za_18, ++ (struct usb_descriptor_header *) &za_19, ++ (struct usb_descriptor_header *) &za_20, ++ (struct usb_descriptor_header *) &za_21, ++ (struct usb_descriptor_header *) &za_22, ++ (struct usb_descriptor_header *) &za_23, ++ (struct usb_descriptor_header *) &za_24, ++ NULL, ++}; ++ ++/* maxpacket and other transfer characteristics vary by speed. */ ++#define ep_desc(g,hs,fs) (((g)->speed==USB_SPEED_HIGH)?(hs):(fs)) ++ ++#else ++ ++/* if there's no high speed support, maxpacket doesn't change. */ ++#define ep_desc(g,hs,fs) fs ++ ++#endif /* !CONFIG_USB_GADGET_DUALSPEED */ ++ ++static char manufacturer [40]; ++//static char serial [40]; ++static char serial [] = "Ser 00 em"; ++ ++/* static strings, in UTF-8 */ ++static struct usb_string strings [] = { ++ { STRING_MANUFACTURER, manufacturer, }, ++ { STRING_PRODUCT, longname, }, ++ { STRING_SERIAL, serial, }, ++ { STRING_LOOPBACK, loopback, }, ++ { STRING_SOURCE_SINK, source_sink, }, ++ { } /* end of list */ ++}; ++ ++static struct usb_gadget_strings stringtab = { ++ .language = 0x0409, /* en-us */ ++ .strings = strings, ++}; ++ ++/* ++ * config descriptors are also handcrafted. these must agree with code ++ * that sets configurations, and with code managing interfaces and their ++ * altsettings. other complexity may come from: ++ * ++ * - high speed support, including "other speed config" rules ++ * - multiple configurations ++ * - interfaces with alternate settings ++ * - embedded class or vendor-specific descriptors ++ * ++ * this handles high speed, and has a second config that could as easily ++ * have been an alternate interface setting (on most hardware). ++ * ++ * NOTE: to demonstrate (and test) more USB capabilities, this driver ++ * should include an altsetting to test interrupt transfers, including ++ * high bandwidth modes at high speed. (Maybe work like Intel's test ++ * device?) ++ */ ++static int ++config_buf (struct usb_gadget *gadget, u8 *buf, u8 type, unsigned index) ++{ ++ int len; ++ const struct usb_descriptor_header **function; ++ ++ function = z_function; ++ len = usb_gadget_config_buf (&z_config, buf, USB_BUFSIZ, function); ++ if (len < 0) ++ return len; ++ ((struct usb_config_descriptor *) buf)->bDescriptorType = type; ++ return len; ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++static struct usb_request * ++alloc_ep_req (struct usb_ep *ep, unsigned length) ++{ ++ struct usb_request *req; ++ ++ req = usb_ep_alloc_request (ep, GFP_ATOMIC); ++ if (req) { ++ req->length = length; ++ req->buf = usb_ep_alloc_buffer (ep, length, ++ &req->dma, GFP_ATOMIC); ++ if (!req->buf) { ++ usb_ep_free_request (ep, req); ++ req = NULL; ++ } ++ } ++ return req; ++} ++ ++static void free_ep_req (struct usb_ep *ep, struct usb_request *req) ++{ ++ if (req->buf) ++ usb_ep_free_buffer (ep, req->buf, req->dma, req->length); ++ usb_ep_free_request (ep, req); ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++/* optionally require specific source/sink data patterns */ ++ ++static int ++check_read_data ( ++ struct zero_dev *dev, ++ struct usb_ep *ep, ++ struct usb_request *req ++) ++{ ++ unsigned i; ++ u8 *buf = req->buf; ++ ++ for (i = 0; i < req->actual; i++, buf++) { ++ switch (pattern) { ++ /* all-zeroes has no synchronization issues */ ++ case 0: ++ if (*buf == 0) ++ continue; ++ break; ++ /* mod63 stays in sync with short-terminated transfers, ++ * or otherwise when host and gadget agree on how large ++ * each usb transfer request should be. resync is done ++ * with set_interface or set_config. ++ */ ++ case 1: ++ if (*buf == (u8)(i % 63)) ++ continue; ++ break; ++ } ++ ERROR (dev, "bad OUT byte, buf [%d] = %d\n", i, *buf); ++ usb_ep_set_halt (ep); ++ return -EINVAL; ++ } ++ return 0; ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++static void zero_reset_config (struct zero_dev *dev) ++{ ++ if (dev->config == 0) ++ return; ++ ++ DBG (dev, "reset config\n"); ++ ++ /* just disable endpoints, forcing completion of pending i/o. ++ * all our completion handlers free their requests in this case. ++ */ ++ if (dev->in_ep) { ++ usb_ep_disable (dev->in_ep); ++ dev->in_ep = NULL; ++ } ++ if (dev->out_ep) { ++ usb_ep_disable (dev->out_ep); ++ dev->out_ep = NULL; ++ } ++ dev->config = 0; ++ del_timer (&dev->resume); ++} ++ ++#define _write(f, buf, sz) (f->f_op->write(f, buf, sz, &f->f_pos)) ++ ++static void ++zero_isoc_complete (struct usb_ep *ep, struct usb_request *req) ++{ ++ struct zero_dev *dev = ep->driver_data; ++ int status = req->status; ++ int i, j; ++ ++ switch (status) { ++ ++ case 0: /* normal completion? */ ++ //printk ("\nzero ---------------> isoc normal completion %d bytes\n", req->actual); ++ for (i=0, j=rbuf_start; i<req->actual; i++) { ++ //printk ("%02x ", ((__u8*)req->buf)[i]); ++ rbuf[j] = ((__u8*)req->buf)[i]; ++ j++; ++ if (j >= RBUF_LEN) j=0; ++ } ++ rbuf_start = j; ++ //printk ("\n\n"); ++ ++ if (rbuf_len < RBUF_LEN) { ++ rbuf_len += req->actual; ++ if (rbuf_len > RBUF_LEN) { ++ rbuf_len = RBUF_LEN; ++ } ++ } ++ ++ break; ++ ++ /* this endpoint is normally active while we're configured */ ++ case -ECONNABORTED: /* hardware forced ep reset */ ++ case -ECONNRESET: /* request dequeued */ ++ case -ESHUTDOWN: /* disconnect from host */ ++ VDBG (dev, "%s gone (%d), %d/%d\n", ep->name, status, ++ req->actual, req->length); ++ if (ep == dev->out_ep) ++ check_read_data (dev, ep, req); ++ free_ep_req (ep, req); ++ return; ++ ++ case -EOVERFLOW: /* buffer overrun on read means that ++ * we didn't provide a big enough ++ * buffer. ++ */ ++ default: ++#if 1 ++ DBG (dev, "%s complete --> %d, %d/%d\n", ep->name, ++ status, req->actual, req->length); ++#endif ++ case -EREMOTEIO: /* short read */ ++ break; ++ } ++ ++ status = usb_ep_queue (ep, req, GFP_ATOMIC); ++ if (status) { ++ ERROR (dev, "kill %s: resubmit %d bytes --> %d\n", ++ ep->name, req->length, status); ++ usb_ep_set_halt (ep); ++ /* FIXME recover later ... somehow */ ++ } ++} ++ ++static struct usb_request * ++zero_start_isoc_ep (struct usb_ep *ep, int gfp_flags) ++{ ++ struct usb_request *req; ++ int status; ++ ++ req = alloc_ep_req (ep, 512); ++ if (!req) ++ return NULL; ++ ++ req->complete = zero_isoc_complete; ++ ++ status = usb_ep_queue (ep, req, gfp_flags); ++ if (status) { ++ struct zero_dev *dev = ep->driver_data; ++ ++ ERROR (dev, "start %s --> %d\n", ep->name, status); ++ free_ep_req (ep, req); ++ req = NULL; ++ } ++ ++ return req; ++} ++ ++/* change our operational config. this code must agree with the code ++ * that returns config descriptors, and altsetting code. ++ * ++ * it's also responsible for power management interactions. some ++ * configurations might not work with our current power sources. ++ * ++ * note that some device controller hardware will constrain what this ++ * code can do, perhaps by disallowing more than one configuration or ++ * by limiting configuration choices (like the pxa2xx). ++ */ ++static int ++zero_set_config (struct zero_dev *dev, unsigned number, int gfp_flags) ++{ ++ int result = 0; ++ struct usb_gadget *gadget = dev->gadget; ++ const struct usb_endpoint_descriptor *d; ++ struct usb_ep *ep; ++ ++ if (number == dev->config) ++ return 0; ++ ++ zero_reset_config (dev); ++ ++ gadget_for_each_ep (ep, gadget) { ++ ++ if (strcmp (ep->name, "ep4") == 0) { ++ ++ d = (struct usb_endpoint_descripter *)&za_23; // isoc ep desc for audio i/f alt setting 6 ++ result = usb_ep_enable (ep, d); ++ ++ if (result == 0) { ++ ep->driver_data = dev; ++ dev->in_ep = ep; ++ ++ if (zero_start_isoc_ep (ep, gfp_flags) != 0) { ++ ++ dev->in_ep = ep; ++ continue; ++ } ++ ++ usb_ep_disable (ep); ++ result = -EIO; ++ } ++ } ++ ++ } ++ ++ dev->config = number; ++ return result; ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++static void zero_setup_complete (struct usb_ep *ep, struct usb_request *req) ++{ ++ if (req->status || req->actual != req->length) ++ DBG ((struct zero_dev *) ep->driver_data, ++ "setup complete --> %d, %d/%d\n", ++ req->status, req->actual, req->length); ++} ++ ++/* ++ * The setup() callback implements all the ep0 functionality that's ++ * not handled lower down, in hardware or the hardware driver (like ++ * device and endpoint feature flags, and their status). It's all ++ * housekeeping for the gadget function we're implementing. Most of ++ * the work is in config-specific setup. ++ */ ++static int ++zero_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) ++{ ++ struct zero_dev *dev = get_gadget_data (gadget); ++ struct usb_request *req = dev->req; ++ int value = -EOPNOTSUPP; ++ ++ /* usually this stores reply data in the pre-allocated ep0 buffer, ++ * but config change events will reconfigure hardware. ++ */ ++ req->zero = 0; ++ switch (ctrl->bRequest) { ++ ++ case USB_REQ_GET_DESCRIPTOR: ++ ++ switch (ctrl->wValue >> 8) { ++ ++ case USB_DT_DEVICE: ++ value = min (ctrl->wLength, (u16) sizeof device_desc); ++ memcpy (req->buf, &device_desc, value); ++ break; ++#ifdef CONFIG_USB_GADGET_DUALSPEED ++ case USB_DT_DEVICE_QUALIFIER: ++ if (!gadget->is_dualspeed) ++ break; ++ value = min (ctrl->wLength, (u16) sizeof dev_qualifier); ++ memcpy (req->buf, &dev_qualifier, value); ++ break; ++ ++ case USB_DT_OTHER_SPEED_CONFIG: ++ if (!gadget->is_dualspeed) ++ break; ++ // FALLTHROUGH ++#endif /* CONFIG_USB_GADGET_DUALSPEED */ ++ case USB_DT_CONFIG: ++ value = config_buf (gadget, req->buf, ++ ctrl->wValue >> 8, ++ ctrl->wValue & 0xff); ++ if (value >= 0) ++ value = min (ctrl->wLength, (u16) value); ++ break; ++ ++ case USB_DT_STRING: ++ /* wIndex == language code. ++ * this driver only handles one language, you can ++ * add string tables for other languages, using ++ * any UTF-8 characters ++ */ ++ value = usb_gadget_get_string (&stringtab, ++ ctrl->wValue & 0xff, req->buf); ++ if (value >= 0) { ++ value = min (ctrl->wLength, (u16) value); ++ } ++ break; ++ } ++ break; ++ ++ /* currently two configs, two speeds */ ++ case USB_REQ_SET_CONFIGURATION: ++ if (ctrl->bRequestType != 0) ++ goto unknown; ++ ++ spin_lock (&dev->lock); ++ value = zero_set_config (dev, ctrl->wValue, GFP_ATOMIC); ++ spin_unlock (&dev->lock); ++ break; ++ case USB_REQ_GET_CONFIGURATION: ++ if (ctrl->bRequestType != USB_DIR_IN) ++ goto unknown; ++ *(u8 *)req->buf = dev->config; ++ value = min (ctrl->wLength, (u16) 1); ++ break; ++ ++ /* until we add altsetting support, or other interfaces, ++ * only 0/0 are possible. pxa2xx only supports 0/0 (poorly) ++ * and already killed pending endpoint I/O. ++ */ ++ case USB_REQ_SET_INTERFACE: ++ ++ if (ctrl->bRequestType != USB_RECIP_INTERFACE) ++ goto unknown; ++ spin_lock (&dev->lock); ++ if (dev->config) { ++ u8 config = dev->config; ++ ++ /* resets interface configuration, forgets about ++ * previous transaction state (queued bufs, etc) ++ * and re-inits endpoint state (toggle etc) ++ * no response queued, just zero status == success. ++ * if we had more than one interface we couldn't ++ * use this "reset the config" shortcut. ++ */ ++ zero_reset_config (dev); ++ zero_set_config (dev, config, GFP_ATOMIC); ++ value = 0; ++ } ++ spin_unlock (&dev->lock); ++ break; ++ case USB_REQ_GET_INTERFACE: ++ if ((ctrl->bRequestType == 0x21) && (ctrl->wIndex == 0x02)) { ++ value = ctrl->wLength; ++ break; ++ } ++ else { ++ if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) ++ goto unknown; ++ if (!dev->config) ++ break; ++ if (ctrl->wIndex != 0) { ++ value = -EDOM; ++ break; ++ } ++ *(u8 *)req->buf = 0; ++ value = min (ctrl->wLength, (u16) 1); ++ } ++ break; ++ ++ /* ++ * These are the same vendor-specific requests supported by ++ * Intel's USB 2.0 compliance test devices. We exceed that ++ * device spec by allowing multiple-packet requests. ++ */ ++ case 0x5b: /* control WRITE test -- fill the buffer */ ++ if (ctrl->bRequestType != (USB_DIR_OUT|USB_TYPE_VENDOR)) ++ goto unknown; ++ if (ctrl->wValue || ctrl->wIndex) ++ break; ++ /* just read that many bytes into the buffer */ ++ if (ctrl->wLength > USB_BUFSIZ) ++ break; ++ value = ctrl->wLength; ++ break; ++ case 0x5c: /* control READ test -- return the buffer */ ++ if (ctrl->bRequestType != (USB_DIR_IN|USB_TYPE_VENDOR)) ++ goto unknown; ++ if (ctrl->wValue || ctrl->wIndex) ++ break; ++ /* expect those bytes are still in the buffer; send back */ ++ if (ctrl->wLength > USB_BUFSIZ ++ || ctrl->wLength != req->length) ++ break; ++ value = ctrl->wLength; ++ break; ++ ++ case 0x01: // SET_CUR ++ case 0x02: ++ case 0x03: ++ case 0x04: ++ case 0x05: ++ value = ctrl->wLength; ++ break; ++ case 0x81: ++ switch (ctrl->wValue) { ++ case 0x0201: ++ case 0x0202: ++ ((u8*)req->buf)[0] = 0x00; ++ ((u8*)req->buf)[1] = 0xe3; ++ break; ++ case 0x0300: ++ case 0x0500: ++ ((u8*)req->buf)[0] = 0x00; ++ break; ++ } ++ //((u8*)req->buf)[0] = 0x81; ++ //((u8*)req->buf)[1] = 0x81; ++ value = ctrl->wLength; ++ break; ++ case 0x82: ++ switch (ctrl->wValue) { ++ case 0x0201: ++ case 0x0202: ++ ((u8*)req->buf)[0] = 0x00; ++ ((u8*)req->buf)[1] = 0xc3; ++ break; ++ case 0x0300: ++ case 0x0500: ++ ((u8*)req->buf)[0] = 0x00; ++ break; ++ } ++ //((u8*)req->buf)[0] = 0x82; ++ //((u8*)req->buf)[1] = 0x82; ++ value = ctrl->wLength; ++ break; ++ case 0x83: ++ switch (ctrl->wValue) { ++ case 0x0201: ++ case 0x0202: ++ ((u8*)req->buf)[0] = 0x00; ++ ((u8*)req->buf)[1] = 0x00; ++ break; ++ case 0x0300: ++ ((u8*)req->buf)[0] = 0x60; ++ break; ++ case 0x0500: ++ ((u8*)req->buf)[0] = 0x18; ++ break; ++ } ++ //((u8*)req->buf)[0] = 0x83; ++ //((u8*)req->buf)[1] = 0x83; ++ value = ctrl->wLength; ++ break; ++ case 0x84: ++ switch (ctrl->wValue) { ++ case 0x0201: ++ case 0x0202: ++ ((u8*)req->buf)[0] = 0x00; ++ ((u8*)req->buf)[1] = 0x01; ++ break; ++ case 0x0300: ++ case 0x0500: ++ ((u8*)req->buf)[0] = 0x08; ++ break; ++ } ++ //((u8*)req->buf)[0] = 0x84; ++ //((u8*)req->buf)[1] = 0x84; ++ value = ctrl->wLength; ++ break; ++ case 0x85: ++ ((u8*)req->buf)[0] = 0x85; ++ ((u8*)req->buf)[1] = 0x85; ++ value = ctrl->wLength; ++ break; ++ ++ ++ default: ++unknown: ++ printk("unknown control req%02x.%02x v%04x i%04x l%d\n", ++ ctrl->bRequestType, ctrl->bRequest, ++ ctrl->wValue, ctrl->wIndex, ctrl->wLength); ++ } ++ ++ /* respond with data transfer before status phase? */ ++ if (value >= 0) { ++ req->length = value; ++ req->zero = value < ctrl->wLength ++ && (value % gadget->ep0->maxpacket) == 0; ++ value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC); ++ if (value < 0) { ++ DBG (dev, "ep_queue < 0 --> %d\n", value); ++ req->status = 0; ++ zero_setup_complete (gadget->ep0, req); ++ } ++ } ++ ++ /* device either stalls (value < 0) or reports success */ ++ return value; ++} ++ ++static void ++zero_disconnect (struct usb_gadget *gadget) ++{ ++ struct zero_dev *dev = get_gadget_data (gadget); ++ unsigned long flags; ++ ++ spin_lock_irqsave (&dev->lock, flags); ++ zero_reset_config (dev); ++ ++ /* a more significant application might have some non-usb ++ * activities to quiesce here, saving resources like power ++ * or pushing the notification up a network stack. ++ */ ++ spin_unlock_irqrestore (&dev->lock, flags); ++ ++ /* next we may get setup() calls to enumerate new connections; ++ * or an unbind() during shutdown (including removing module). ++ */ ++} ++ ++static void ++zero_autoresume (unsigned long _dev) ++{ ++ struct zero_dev *dev = (struct zero_dev *) _dev; ++ int status; ++ ++ /* normally the host would be woken up for something ++ * more significant than just a timer firing... ++ */ ++ if (dev->gadget->speed != USB_SPEED_UNKNOWN) { ++ status = usb_gadget_wakeup (dev->gadget); ++ DBG (dev, "wakeup --> %d\n", status); ++ } ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++static void ++zero_unbind (struct usb_gadget *gadget) ++{ ++ struct zero_dev *dev = get_gadget_data (gadget); ++ ++ DBG (dev, "unbind\n"); ++ ++ /* we've already been disconnected ... no i/o is active */ ++ if (dev->req) ++ free_ep_req (gadget->ep0, dev->req); ++ del_timer_sync (&dev->resume); ++ kfree (dev); ++ set_gadget_data (gadget, NULL); ++} ++ ++static int ++zero_bind (struct usb_gadget *gadget) ++{ ++ struct zero_dev *dev; ++ //struct usb_ep *ep; ++ ++ printk("binding\n"); ++ /* ++ * DRIVER POLICY CHOICE: you may want to do this differently. ++ * One thing to avoid is reusing a bcdDevice revision code ++ * with different host-visible configurations or behavior ++ * restrictions -- using ep1in/ep2out vs ep1out/ep3in, etc ++ */ ++ //device_desc.bcdDevice = __constant_cpu_to_le16 (0x0201); ++ ++ ++ /* ok, we made sense of the hardware ... */ ++ dev = kmalloc (sizeof *dev, SLAB_KERNEL); ++ if (!dev) ++ return -ENOMEM; ++ memset (dev, 0, sizeof *dev); ++ spin_lock_init (&dev->lock); ++ dev->gadget = gadget; ++ set_gadget_data (gadget, dev); ++ ++ /* preallocate control response and buffer */ ++ dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL); ++ if (!dev->req) ++ goto enomem; ++ dev->req->buf = usb_ep_alloc_buffer (gadget->ep0, USB_BUFSIZ, ++ &dev->req->dma, GFP_KERNEL); ++ if (!dev->req->buf) ++ goto enomem; ++ ++ dev->req->complete = zero_setup_complete; ++ ++ device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket; ++ ++#ifdef CONFIG_USB_GADGET_DUALSPEED ++ /* assume ep0 uses the same value for both speeds ... */ ++ dev_qualifier.bMaxPacketSize0 = device_desc.bMaxPacketSize0; ++ ++ /* and that all endpoints are dual-speed */ ++ //hs_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress; ++ //hs_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress; ++#endif ++ ++ usb_gadget_set_selfpowered (gadget); ++ ++ init_timer (&dev->resume); ++ dev->resume.function = zero_autoresume; ++ dev->resume.data = (unsigned long) dev; ++ ++ gadget->ep0->driver_data = dev; ++ ++ INFO (dev, "%s, version: " DRIVER_VERSION "\n", longname); ++ INFO (dev, "using %s, OUT %s IN %s\n", gadget->name, ++ EP_OUT_NAME, EP_IN_NAME); ++ ++ snprintf (manufacturer, sizeof manufacturer, ++ UTS_SYSNAME " " UTS_RELEASE " with %s", ++ gadget->name); ++ ++ return 0; ++ ++enomem: ++ zero_unbind (gadget); ++ return -ENOMEM; ++} ++ ++/*-------------------------------------------------------------------------*/ ++ ++static void ++zero_suspend (struct usb_gadget *gadget) ++{ ++ struct zero_dev *dev = get_gadget_data (gadget); ++ ++ if (gadget->speed == USB_SPEED_UNKNOWN) ++ return; ++ ++ if (autoresume) { ++ mod_timer (&dev->resume, jiffies + (HZ * autoresume)); ++ DBG (dev, "suspend, wakeup in %d seconds\n", autoresume); ++ } else ++ DBG (dev, "suspend\n"); ++} ++ ++static void ++zero_resume (struct usb_gadget *gadget) ++{ ++ struct zero_dev *dev = get_gadget_data (gadget); ++ ++ DBG (dev, "resume\n"); ++ del_timer (&dev->resume); ++} ++ ++ ++/*-------------------------------------------------------------------------*/ ++ ++static struct usb_gadget_driver zero_driver = { ++#ifdef CONFIG_USB_GADGET_DUALSPEED ++ .speed = USB_SPEED_HIGH, ++#else ++ .speed = USB_SPEED_FULL, ++#endif ++ .function = (char *) longname, ++ .bind = zero_bind, ++ .unbind = zero_unbind, ++ ++ .setup = zero_setup, ++ .disconnect = zero_disconnect, ++ ++ .suspend = zero_suspend, ++ .resume = zero_resume, ++ ++ .driver = { ++ .name = (char *) shortname, ++ // .shutdown = ... ++ // .suspend = ... ++ // .resume = ... ++ }, ++}; ++ ++MODULE_AUTHOR ("David Brownell"); ++MODULE_LICENSE ("Dual BSD/GPL"); ++ ++static struct proc_dir_entry *pdir, *pfile; ++ ++static int isoc_read_data (char *page, char **start, ++ off_t off, int count, ++ int *eof, void *data) ++{ ++ int i; ++ static int c = 0; ++ static int done = 0; ++ static int s = 0; ++ ++/* ++ printk ("\ncount: %d\n", count); ++ printk ("rbuf_start: %d\n", rbuf_start); ++ printk ("rbuf_len: %d\n", rbuf_len); ++ printk ("off: %d\n", off); ++ printk ("start: %p\n\n", *start); ++*/ ++ if (done) { ++ c = 0; ++ done = 0; ++ *eof = 1; ++ return 0; ++ } ++ ++ if (c == 0) { ++ if (rbuf_len == RBUF_LEN) ++ s = rbuf_start; ++ else s = 0; ++ } ++ ++ for (i=0; i<count && c<rbuf_len; i++, c++) { ++ page[i] = rbuf[(c+s) % RBUF_LEN]; ++ } ++ *start = page; ++ ++ if (c >= rbuf_len) { ++ *eof = 1; ++ done = 1; ++ } ++ ++ ++ return i; ++} ++ ++static int __init init (void) ++{ ++ ++ int retval = 0; ++ ++ pdir = proc_mkdir("isoc_test", NULL); ++ if(pdir == NULL) { ++ retval = -ENOMEM; ++ printk("Error creating dir\n"); ++ goto done; ++ } ++ pdir->owner = THIS_MODULE; ++ ++ pfile = create_proc_read_entry("isoc_data", ++ 0444, pdir, ++ isoc_read_data, ++ NULL); ++ if (pfile == NULL) { ++ retval = -ENOMEM; ++ printk("Error creating file\n"); ++ goto no_file; ++ } ++ pfile->owner = THIS_MODULE; ++ ++ return usb_gadget_register_driver (&zero_driver); ++ ++ no_file: ++ remove_proc_entry("isoc_data", NULL); ++ done: ++ return retval; ++} ++module_init (init); ++ ++static void __exit cleanup (void) ++{ ++ ++ usb_gadget_unregister_driver (&zero_driver); ++ ++ remove_proc_entry("isoc_data", pdir); ++ remove_proc_entry("isoc_test", NULL); ++} ++module_exit (cleanup); +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.c +@@ -0,0 +1,966 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. The Linux driver attributes ++ * feature will be used to provide the Linux Diagnostic ++ * Interface. These attributes are accessed through sysfs. ++ */ ++ ++/** @page "Linux Module Attributes" ++ * ++ * The Linux module attributes feature is used to provide the Linux ++ * Diagnostic Interface. These attributes are accessed through sysfs. ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. ++ ++ ++ The following table shows the attributes. ++ <table> ++ <tr> ++ <td><b> Name</b></td> ++ <td><b> Description</b></td> ++ <td><b> Access</b></td> ++ </tr> ++ ++ <tr> ++ <td> mode </td> ++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hnpcapable </td> ++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srpcapable </td> ++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> hnp </td> ++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srp </td> ++ <td> Initiates the Session Request Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> buspower </td> ++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> bussuspend </td> ++ <td> Suspends the USB bus.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> busconnected </td> ++ <td> Gets the connection status of the bus</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> gotgctl </td> ++ <td> Gets or sets the Core Control Status Register.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gusbcfg </td> ++ <td> Gets or sets the Core USB Configuration Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> grxfsiz </td> ++ <td> Gets or sets the Receive FIFO Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gnptxfsiz </td> ++ <td> Gets or sets the non-periodic Transmit Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gpvndctl </td> ++ <td> Gets or sets the PHY Vendor Control Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> ggpio </td> ++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register ++ or sets the upper 16 bits.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> guid </td> ++ <td> Gets or sets the value of the User ID Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gsnpsid </td> ++ <td> Gets the value of the Synopsys ID Regester</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> devspeed </td> ++ <td> Gets or sets the device speed setting in the DCFG register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> enumspeed </td> ++ <td> Gets the device enumeration Speed.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hptxfsiz </td> ++ <td> Gets the value of the Host Periodic Transmit FIFO</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hprt0 </td> ++ <td> Gets or sets the value in the Host Port Control and Status Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regoffset </td> ++ <td> Sets the register offset for the next Register Access</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regvalue </td> ++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> remote_wakeup </td> ++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote ++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote ++ Wakeup signalling bit in the Device Control Register is set for 1 ++ milli-second.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> spramdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcddump </td> ++ <td> Dumps the current HCD state.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcd_frrem </td> ++ <td> Shows the average value of the Frame Remaining ++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt ++ occurs. This can be used to determine the average interrupt latency. Also ++ shows the average Frame Remaining value for start_transfer and the "a" and ++ "b" sample points. The "a" and "b" sample points may be used during debugging ++ bto determine how long it takes to execute a section of the HCD code.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> rd_reg_test </td> ++ <td> Displays the time required to read the GNPTXFSIZ register many times ++ (the output shows the number of times the register is read). ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> wr_reg_test </td> ++ <td> Displays the time required to write the GNPTXFSIZ register many times ++ (the output shows the number of times the register is written). ++ <td> Read</td> ++ </tr> ++ ++ </table> ++ ++ Example usage: ++ To get the current mode: ++ cat /sys/devices/lm0/mode ++ ++ To power down the USB: ++ echo 0 > /sys/devices/lm0/buspower ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/version.h> ++ ++#include <asm/io.h> ++ ++#include "linux/dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#include "dwc_otg_pcd.h" ++#include "dwc_otg_hcd.h" ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++} ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++} ++ ++#else ++ ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++} ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++} ++ ++#endif ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++ ++/** @name Functions for Show/Store of Attributes */ ++/**@{*/ ++ ++/** ++ * Show the register offset of the Register Access. ++ */ ++static ssize_t regoffset_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset); ++} ++ ++/** ++ * Set the register offset for the next Register Access Read/Write ++ */ ++static ssize_t regoffset_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t offset = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x\n", offset); ++ if (offset < 0x00040000 ) { ++ otg_dev->reg_offset = offset; ++ } ++ else { ++ dev_err( _dev, "invalid offset\n" ); ++ } ++ ++ return count; ++} ++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store); ++ ++ ++/** ++ * Show the value of the register at the offset in the reg_offset ++ * attribute. ++ */ ++static ssize_t regvalue_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t val; ++ volatile uint32_t *addr; ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && ++ 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ val = dwc_read_reg32( addr ); ++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1, ++ "Reg@0x%06x = 0x%08x\n", ++ otg_dev->reg_offset, val); ++ } ++ else { ++ dev_err(_dev, "Invalid offset (0x%0x)\n", ++ otg_dev->reg_offset); ++ return sprintf(buf, "invalid offset\n" ); ++ } ++} ++ ++/** ++ * Store the value in the register at the offset in the reg_offset ++ * attribute. ++ * ++ */ ++static ssize_t regvalue_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ volatile uint32_t * addr; ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val); ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ dwc_write_reg32( addr, val ); ++ } ++ else { ++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n", ++ otg_dev->reg_offset); ++ } ++ return count; ++} ++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store); ++ ++/* ++ * Attributes ++ */ ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode"); ++ ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID"); ++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0"); ++ ++ ++/** ++ * @todo Add code to initiate the HNP. ++ */ ++/** ++ * Show the HNP status bit ++ */ ++static ssize_t hnp_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); ++} ++ ++/** ++ * Set the HNP Request bit ++ */ ++static ssize_t hnp_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.hnpreq = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); ++ ++/** ++ * @todo Add code to initiate the SRP. ++ */ ++/** ++ * Show the SRP status bit ++ */ ++static ssize_t srp_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++ ++ ++/** ++ * Set the SRP Request bit ++ */ ++static ssize_t srp_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dwc_otg_pcd_initiate_srp(otg_dev->pcd); ++#endif ++ return count; ++} ++DEVICE_ATTR(srp, 0644, srp_show, srp_store); ++ ++/** ++ * @todo Need to do more for power on/off? ++ */ ++/** ++ * Show the Bus Power status ++ */ ++static ssize_t buspower_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr); ++} ++ ++ ++/** ++ * Set the Bus Power status ++ */ ++static ssize_t buspower_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t on = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtpwr = on; ++ ++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ ++ return count; ++} ++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); ++ ++/** ++ * @todo Need to do more for suspend? ++ */ ++/** ++ * Show the Bus Suspend status ++ */ ++static ssize_t bussuspend_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); ++} ++ ++/** ++ * Set the Bus Suspend status ++ */ ++static ssize_t bussuspend_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtsusp = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); ++ ++/** ++ * Show the status of Remote Wakeup. ++ */ ++static ssize_t remote_wakeup_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dctl_data_t val; ++ val.d32 = ++ dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl); ++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n", ++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++/** ++ * Initiate a remote wakeup of the host. The Device control register ++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable ++ * flag is set. ++ * ++ */ ++static ssize_t remote_wakeup_store( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ if (val&1) { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); ++ } ++ else { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); ++ } ++#endif ++ return count; ++} ++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show, ++ remote_wakeup_store); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t regdump_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dwc_otg_dump_global_registers( otg_dev->core_if); ++ if (dwc_otg_is_host_mode(otg_dev->core_if)) { ++ dwc_otg_dump_host_registers( otg_dev->core_if); ++ } else { ++ dwc_otg_dump_dev_registers( otg_dev->core_if); ++ ++ } ++ return sprintf( buf, "Register Dump\n" ); ++} ++ ++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t spramdump_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dwc_otg_dump_spram( otg_dev->core_if); ++ ++ return sprintf( buf, "SPRAM Dump\n" ); ++} ++ ++DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0); ++ ++/** ++ * Dump the current hcd state. ++ */ ++static ssize_t hcddump_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dwc_otg_hcd_dump_state(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump\n" ); ++} ++ ++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0); ++ ++/** ++ * Dump the average frame remaining at SOF. This can be used to ++ * determine average interrupt latency. Frame remaining is also shown for ++ * start transfer and two additional sample points. ++ */ ++static ssize_t hcd_frrem_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ dwc_otg_hcd_dump_frrem(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump Frame Remaining\n" ); ++} ++ ++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0); ++ ++/** ++ * Displays the time required to read the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is read). ++ */ ++#define RW_REG_COUNT 10000000 ++#define MSEC_PER_JIFFIE 1000/HZ ++static ssize_t rd_reg_test_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ int i; ++ int time; ++ int start_jiffies; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time ); ++} ++ ++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0); ++ ++/** ++ * Displays the time required to write the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is written). ++ */ ++static ssize_t wr_reg_test_show( struct device *_dev, ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct device_attribute *attr, ++#endif ++ char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ uint32_t reg_val; ++ int i; ++ int time; ++ int start_jiffies; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0); ++/**@}*/ ++ ++/** ++ * Create the device files ++ */ ++void dwc_otg_attr_create (struct device *dev) ++{ ++ int error; ++ ++ error = device_create_file(dev, &dev_attr_regoffset); ++ error = device_create_file(dev, &dev_attr_regvalue); ++ error = device_create_file(dev, &dev_attr_mode); ++ error = device_create_file(dev, &dev_attr_hnpcapable); ++ error = device_create_file(dev, &dev_attr_srpcapable); ++ error = device_create_file(dev, &dev_attr_hnp); ++ error = device_create_file(dev, &dev_attr_srp); ++ error = device_create_file(dev, &dev_attr_buspower); ++ error = device_create_file(dev, &dev_attr_bussuspend); ++ error = device_create_file(dev, &dev_attr_busconnected); ++ error = device_create_file(dev, &dev_attr_gotgctl); ++ error = device_create_file(dev, &dev_attr_gusbcfg); ++ error = device_create_file(dev, &dev_attr_grxfsiz); ++ error = device_create_file(dev, &dev_attr_gnptxfsiz); ++ error = device_create_file(dev, &dev_attr_gpvndctl); ++ error = device_create_file(dev, &dev_attr_ggpio); ++ error = device_create_file(dev, &dev_attr_guid); ++ error = device_create_file(dev, &dev_attr_gsnpsid); ++ error = device_create_file(dev, &dev_attr_devspeed); ++ error = device_create_file(dev, &dev_attr_enumspeed); ++ error = device_create_file(dev, &dev_attr_hptxfsiz); ++ error = device_create_file(dev, &dev_attr_hprt0); ++ error = device_create_file(dev, &dev_attr_remote_wakeup); ++ error = device_create_file(dev, &dev_attr_regdump); ++ error = device_create_file(dev, &dev_attr_spramdump); ++ error = device_create_file(dev, &dev_attr_hcddump); ++ error = device_create_file(dev, &dev_attr_hcd_frrem); ++ error = device_create_file(dev, &dev_attr_rd_reg_test); ++ error = device_create_file(dev, &dev_attr_wr_reg_test); ++} ++ ++/** ++ * Remove the device files ++ */ ++void dwc_otg_attr_remove (struct device *dev) ++{ ++ device_remove_file(dev, &dev_attr_regoffset); ++ device_remove_file(dev, &dev_attr_regvalue); ++ device_remove_file(dev, &dev_attr_mode); ++ device_remove_file(dev, &dev_attr_hnpcapable); ++ device_remove_file(dev, &dev_attr_srpcapable); ++ device_remove_file(dev, &dev_attr_hnp); ++ device_remove_file(dev, &dev_attr_srp); ++ device_remove_file(dev, &dev_attr_buspower); ++ device_remove_file(dev, &dev_attr_bussuspend); ++ device_remove_file(dev, &dev_attr_busconnected); ++ device_remove_file(dev, &dev_attr_gotgctl); ++ device_remove_file(dev, &dev_attr_gusbcfg); ++ device_remove_file(dev, &dev_attr_grxfsiz); ++ device_remove_file(dev, &dev_attr_gnptxfsiz); ++ device_remove_file(dev, &dev_attr_gpvndctl); ++ device_remove_file(dev, &dev_attr_ggpio); ++ device_remove_file(dev, &dev_attr_guid); ++ device_remove_file(dev, &dev_attr_gsnpsid); ++ device_remove_file(dev, &dev_attr_devspeed); ++ device_remove_file(dev, &dev_attr_enumspeed); ++ device_remove_file(dev, &dev_attr_hptxfsiz); ++ device_remove_file(dev, &dev_attr_hprt0); ++ device_remove_file(dev, &dev_attr_remote_wakeup); ++ device_remove_file(dev, &dev_attr_regdump); ++ device_remove_file(dev, &dev_attr_spramdump); ++ device_remove_file(dev, &dev_attr_hcddump); ++ device_remove_file(dev, &dev_attr_hcd_frrem); ++ device_remove_file(dev, &dev_attr_rd_reg_test); ++ device_remove_file(dev, &dev_attr_wr_reg_test); ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.h +@@ -0,0 +1,67 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 477051 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_ATTR_H__) ++#define __DWC_OTG_ATTR_H__ ++ ++/** @file ++ * This file contains the interface to the Linux device attributes. ++ */ ++extern struct device_attribute dev_attr_regoffset; ++extern struct device_attribute dev_attr_regvalue; ++ ++extern struct device_attribute dev_attr_mode; ++extern struct device_attribute dev_attr_hnpcapable; ++extern struct device_attribute dev_attr_srpcapable; ++extern struct device_attribute dev_attr_hnp; ++extern struct device_attribute dev_attr_srp; ++extern struct device_attribute dev_attr_buspower; ++extern struct device_attribute dev_attr_bussuspend; ++extern struct device_attribute dev_attr_busconnected; ++extern struct device_attribute dev_attr_gotgctl; ++extern struct device_attribute dev_attr_gusbcfg; ++extern struct device_attribute dev_attr_grxfsiz; ++extern struct device_attribute dev_attr_gnptxfsiz; ++extern struct device_attribute dev_attr_gpvndctl; ++extern struct device_attribute dev_attr_ggpio; ++extern struct device_attribute dev_attr_guid; ++extern struct device_attribute dev_attr_gsnpsid; ++extern struct device_attribute dev_attr_devspeed; ++extern struct device_attribute dev_attr_enumspeed; ++extern struct device_attribute dev_attr_hptxfsiz; ++extern struct device_attribute dev_attr_hprt0; ++ ++void dwc_otg_attr_create (struct device *dev); ++void dwc_otg_attr_remove (struct device *dev); ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.c +@@ -0,0 +1,3692 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $ ++ * $Revision: 1.7 $ ++ * $Date: 2008-12-22 11:43:05 $ ++ * $Change: 1117667 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * The CIL manages the memory map for the core so that the HCD and PCD ++ * don't have to do this separately. It also handles basic tasks like ++ * reading/writing the registers and data FIFOs in the controller. ++ * Some of the data access functions provide encapsulation of several ++ * operations required to perform a task, such as writing multiple ++ * registers to start a transfer. Finally, the CIL performs basic ++ * services that are not specific to either the host or device modes ++ * of operation. These services include management of the OTG Host ++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A ++ * Diagnostic API is also provided to allow testing of the controller ++ * hardware. ++ * ++ * The Core Interface Layer has the following requirements: ++ * - Provides basic controller operations. ++ * - Minimal use of OS services. ++ * - The OS services used will be abstracted by using inline functions ++ * or macros. ++ * ++ */ ++#include <asm/unaligned.h> ++#include <linux/dma-mapping.h> ++#ifdef DEBUG ++#include <linux/jiffies.h> ++#endif ++ ++#include "linux/dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++/* Included only to access hc->qh for non-dword buffer handling ++ * TODO: account it ++ */ ++#include "dwc_otg_hcd.h" ++ ++/** ++ * This function is called to initialize the DWC_otg CSR data ++ * structures. The register addresses in the device and host ++ * structures are initialized from the base address supplied by the ++ * caller. The calling function must make the OS calls to get the ++ * base address of the DWC_otg controller registers. The core_params ++ * argument holds the parameters that specify how the core should be ++ * configured. ++ * ++ * @param[in] reg_base_addr Base address of DWC_otg core registers ++ * @param[in] core_params Pointer to the core configuration parameters ++ * ++ */ ++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr, ++ dwc_otg_core_params_t *core_params) ++{ ++ dwc_otg_core_if_t *core_if = 0; ++ dwc_otg_dev_if_t *dev_if = 0; ++ dwc_otg_host_if_t *host_if = 0; ++ uint8_t *reg_base = (uint8_t *)reg_base_addr; ++ int i = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params); ++ ++ core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL); ++ ++ if (core_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); ++ return 0; ++ } ++ ++ memset(core_if, 0, sizeof(dwc_otg_core_if_t)); ++ ++ core_if->core_params = core_params; ++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; ++ ++ /* ++ * Allocate the Device Mode structures. ++ */ ++ dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL); ++ ++ if (dev_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); ++ kfree(core_if); ++ return 0; ++ } ++ ++ dev_if->dev_global_regs = ++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) ++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ ++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) ++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", ++ i, &dev_if->in_ep_regs[i]->diepctl); ++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", ++ i, &dev_if->out_ep_regs[i]->doepctl); ++ } ++ ++ dev_if->speed = 0; // unknown ++ ++ core_if->dev_if = dev_if; ++ ++ /* ++ * Allocate the Host Mode structures. ++ */ ++ host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL); ++ ++ if (host_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); ++ kfree(dev_if); ++ kfree(core_if); ++ return 0; ++ } ++ ++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *) ++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); ++ ++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) ++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + ++ (i * DWC_OTG_CHAN_REGS_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", ++ i, &host_if->hc_regs[i]->hcchar); ++ } ++ ++ host_if->num_host_channels = MAX_EPS_CHANNELS; ++ core_if->host_if = host_if; ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ core_if->data_fifo[i] = ++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + ++ (i * DWC_OTG_DATA_FIFO_SIZE)); ++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", ++ i, (unsigned)core_if->data_fifo[i]); ++ } ++ ++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); ++ ++ /* ++ * Store the contents of the hardware configuration registers here for ++ * easy access later. ++ */ ++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); ++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); ++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); ++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); ++ ++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); ++ ++ core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); ++ core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ ++ DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32); ++ DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32); ++ ++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); ++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); ++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); ++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); ++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); ++ ++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); ++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); ++ ++ /* ++ * Set the SRP sucess bit for FS-I2c ++ */ ++ core_if->srp_success = 0; ++ core_if->srp_timer_started = 0; ++ ++ ++ /* ++ * Create new workqueue and init works ++ */ ++ core_if->wq_otg = create_singlethread_workqueue("dwc_otg"); ++ if(core_if->wq_otg == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n"); ++ kfree(host_if); ++ kfree(dev_if); ++ kfree(core_if); ++ return 0 * HZ; ++ } ++ ++ ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ ++ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change, core_if); ++ INIT_WORK(&core_if->w_wkp, w_wakeup_detected, core_if); ++ ++#else ++ ++ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change); ++ INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected); ++ ++#endif ++ return core_if; ++} ++ ++/** ++ * This function frees the structures allocated by dwc_otg_cil_init(). ++ * ++ * @param[in] core_if The core interface pointer returned from ++ * dwc_otg_cil_init(). ++ * ++ */ ++void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if) ++{ ++ /* Disable all interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0); ++ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0); ++ ++ if (core_if->wq_otg) { ++ destroy_workqueue(core_if->wq_otg); ++ } ++ if (core_if->dev_if) { ++ kfree(core_if->dev_if); ++ } ++ if (core_if->host_if) { ++ kfree(core_if->host_if); ++ } ++ kfree(core_if); ++} ++ ++/** ++ * This function enables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); ++} ++ ++/** ++ * This function disables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); ++} ++ ++/** ++ * This function initializes the commmon interrupts, used in both ++ * device and host modes. ++ * ++ * @param[in] core_if Programming view of the DWC_otg controller ++ * ++ */ ++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ /* Clear any pending OTG Interrupts */ ++ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* ++ * Enable the interrupts in the GINTMSK. ++ */ ++ intr_mask.b.modemismatch = 1; ++ intr_mask.b.otgintr = 1; ++ ++ if (!core_if->dma_enable) { ++ intr_mask.b.rxstsqlvl = 1; ++ } ++ ++ intr_mask.b.conidstschng = 1; ++ intr_mask.b.wkupintr = 1; ++ intr_mask.b.disconnect = 1; ++ intr_mask.b.usbsuspend = 1; ++ intr_mask.b.sessreqintr = 1; ++ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); ++} ++ ++/** ++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY ++ * type. ++ */ ++static void init_fslspclksel(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t val; ++ hcfg_data_t hcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = DWC_HCFG_48_MHZ; ++ } ++ else { ++ /* High speed PHY running at full speed or high speed */ ++ val = DWC_HCFG_30_60_MHZ; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); ++ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); ++ hcfg.b.fslspclksel = val; ++ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32); ++} ++ ++/** ++ * Initializes the DevSpd field of the DCFG register depending on the PHY type ++ * and the enumeration speed of the device. ++ */ ++static void init_devspd(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t val; ++ dcfg_data_t dcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = 0x3; ++ } ++ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ /* High speed PHY running at full speed */ ++ val = 0x1; ++ } ++ else { ++ /* High speed PHY running at high speed */ ++ val = 0x0; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); ++ ++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ dcfg.b.devspd = val; ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); ++} ++ ++/** ++ * This function calculates the number of IN EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ */ ++static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t num_in_eps = 0; ++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3; ++ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps; ++ int i; ++ ++ ++ for(i = 0; i < num_eps; ++i) ++ { ++ if(!(hwcfg1 & 0x1)) ++ num_in_eps++; ++ ++ hwcfg1 >>= 2; ++ } ++ ++ if(core_if->hwcfg4.b.ded_fifo_en) { ++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; ++ } ++ ++ return num_in_eps; ++} ++ ++ ++/** ++ * This function calculates the number of OUT EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ */ ++static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t num_out_eps = 0; ++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2; ++ int i; ++ ++ for(i = 0; i < num_eps; ++i) ++ { ++ if(!(hwcfg1 & 0x2)) ++ num_out_eps++; ++ ++ hwcfg1 >>= 2; ++ } ++ return num_out_eps; ++} ++/** ++ * This function initializes the DWC_otg controller registers and ++ * prepares the core for device mode or host mode operation. ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ * ++ */ ++void dwc_otg_core_init(dwc_otg_core_if_t *core_if) ++{ ++ int i = 0; ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ gahbcfg_data_t ahbcfg = { .d32 = 0 }; ++ gusbcfg_data_t usbcfg = { .d32 = 0 }; ++ gi2cctl_data_t i2cctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if); ++ ++ /* Common Initialization */ ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++// usbcfg.b.tx_end_delay = 1; ++ /* Program the ULPI External VBUS bit if needed */ ++ usbcfg.b.ulpi_ext_vbus_drv = ++ (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; ++ ++ /* Set external TS Dline pulsing */ ++ usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ ++ /* Reset the Controller */ ++ dwc_otg_core_reset(core_if); ++ ++ /* Initialize parameters from Hardware configuration registers. */ ++ dev_if->num_in_eps = calc_num_in_eps(core_if); ++ dev_if->num_out_eps = calc_num_out_eps(core_if); ++ ++ ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep); ++ ++ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) ++ { ++ dev_if->perio_tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", ++ i, dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++) ++ { ++ dev_if->tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", ++ i, dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth; ++ core_if->rx_fifo_size = ++ dwc_read_reg32(&global_regs->grxfsiz); ++ core_if->nperio_tx_fifo_size = ++ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size); ++ ++ /* This programming sequence needs to happen in FS mode before any other ++ * programming occurs */ ++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* If FS mode with FS PHY */ ++ ++ /* core_init() is now called on every switch so only call the ++ * following for the first time through. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.physel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after a PHY select */ ++ dwc_otg_core_reset(core_if); ++ } ++ ++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also ++ * do this on HNP Dev/Host mode switches (done in dev_init and ++ * host_init). */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ init_fslspclksel(core_if); ++ } ++ else { ++ init_devspd(core_if); ++ } ++ ++ if (core_if->core_params->i2c_enable) { ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); ++ /* Program GUSBCFG.OtgUtmifsSel to I2C */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.otgutmifssel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Program GI2CCTL.I2CEn */ ++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); ++ i2cctl.b.i2cdevaddr = 1; ++ i2cctl.b.i2cen = 0; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ i2cctl.b.i2cen = 1; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ } ++ ++ } /* endif speed == DWC_SPEED_PARAM_FULL */ ++ ++ else { ++ /* High speed PHY. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ /* HS PHY parameters. These parameters are preserved ++ * during soft reset so only program the first time. Do ++ * a soft reset immediately after setting phyif. */ ++ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type; ++ if (usbcfg.b.ulpi_utmi_sel == 1) { ++ /* ULPI interface */ ++ usbcfg.b.phyif = 0; ++ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr; ++ } ++ else { ++ /* UTMI+ interface */ ++ if (core_if->core_params->phy_utmi_width == 16) { ++ usbcfg.b.phyif = 1; ++ } ++ else { ++ usbcfg.b.phyif = 0; ++ } ++ } ++ ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after setting the PHY parameters */ ++ dwc_otg_core_reset(core_if); ++ } ++ } ++ ++ if ((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 1; ++ usbcfg.b.ulpi_clk_sus_m = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ else { ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 0; ++ usbcfg.b.ulpi_clk_sus_m = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ ++ /* Program the GAHBCFG Register.*/ ++ switch (core_if->hwcfg2.b.architecture) { ++ ++ case DWC_SLAVE_ONLY_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); ++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ core_if->dma_enable = 0; ++ core_if->dma_desc_enable = 0; ++ break; ++ ++ case DWC_EXT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); ++ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); ++ break; ++ ++ case DWC_INT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); ++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); ++ break; ++ ++ } ++ ahbcfg.b.dmaenable = core_if->dma_enable; ++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); ++ ++ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en; ++ ++ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0; ++ core_if->multiproc_int_enable = core_if->core_params->mpi_enable; ++ DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled")); ++ DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled")); ++ ++ /* ++ * Program the GUSBCFG register. ++ */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ switch (core_if->hwcfg2.b.op_mode) { ++ case DWC_MODE_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap == ++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_SRP_ONLY_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ } ++ ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Enable common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Do device or host intialization based on mode during PCD ++ * and HCD initialization */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); ++ core_if->op_state = A_HOST; ++ } ++ else { ++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); ++ core_if->op_state = B_PERIPHERAL; ++#ifdef DWC_DEVICE_ONLY ++ dwc_otg_core_dev_init(core_if); ++#endif ++ } ++} ++ ++ ++/** ++ * This function enables the Device mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Enable interrupts */ ++ intr_mask.b.usbreset = 1; ++ intr_mask.b.enumdone = 1; ++ ++ if(!core_if->multiproc_int_enable) { ++ intr_mask.b.inepintr = 1; ++ intr_mask.b.outepintr = 1; ++ } ++ ++ intr_mask.b.erlysuspend = 1; ++ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.epmismatch = 1; ++ } ++ ++ ++#ifdef DWC_EN_ISOC ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable == 0) { ++ if(core_if->pti_enh_enable) { ++ dctl_data_t dctl = { .d32 = 0 }; ++ dctl.b.ifrmnum = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32); ++ } else { ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ } ++ } ++ } else { ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ } ++#endif // DWC_EN_ISOC ++ ++/** @todo NGS: Should this be a module parameter? */ ++#ifdef USE_PERIODIC_EP ++ intr_mask.b.isooutdrop = 1; ++ intr_mask.b.eopframe = 1; ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++#endif ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, ++ dwc_read_reg32(&global_regs->gintmsk)); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * device mode. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_core_params_t *params = core_if->core_params; ++ dcfg_data_t dcfg = { .d32 = 0}; ++ grstctl_t resetctl = { .d32 = 0 }; ++ uint32_t rx_fifo_size; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t txfifosize; ++ dthrctl_data_t dthrctl; ++ fifosize_data_t ptxfifosize; ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Device configuration register */ ++ init_devspd(core_if); ++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); ++ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0; ++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ rx_fifo_size = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); ++ ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /** Set Periodic Tx FIFO Mask all bits 0 */ ++ core_if->p_tx_msk = 0; ++ ++ /** Set Tx FIFO Mask all bits 0 */ ++ core_if->tx_msk = 0; ++ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /**@todo NGS: Fix Periodic FIFO Sizing! */ ++ /* ++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_perio_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz array run from 0 to 14. ++ */ ++ /** @todo Finish debug of this */ ++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) ++ { ++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i], ++ ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ ptxfifosize.b.startaddr += ptxfifosize.b.depth; ++ } ++ } ++ else { ++ /* ++ * Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz_dieptxf array run from 0 to 14. ++ */ ++ ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ /* ++ Modify by kaiker ,for RT3052 device mode config ++ ++ In RT3052,Since the _core_if->hwcfg4.b.num_dev_perio_in_ep is ++ configed to 0 so these TX_FIF0 not config.IN EP will can't ++ more than 1 if not modify it. ++ ++ */ ++#if 1 ++ for (i=1 ; i <= dev_if->num_in_eps; i++) ++#else ++ for (i=1; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) ++#endif ++ { ++ ++ txfifosize.b.depth = params->dev_tx_fifo_size[i]; ++ ++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i-1], ++ txfifosize.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1])); ++ ++ txfifosize.b.startaddr += txfifosize.b.depth; ++ } ++ } ++ } ++ /* Flush the FIFOs */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush the Learning Queue. */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ /* Clear all pending Device Interrupts */ ++ ++ if(core_if->multiproc_int_enable) { ++ } ++ ++ /** @todo - if the condition needed to be checked ++ * or in any case all pending interrutps should be cleared? ++ */ ++ if(core_if->multiproc_int_enable) { ++ for(i = 0; i < core_if->dev_if->num_in_eps; ++i) { ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0); ++ } ++ ++ for(i = 0; i < core_if->dev_if->num_out_eps; ++i) { ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0); ++ } ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF); ++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0); ++ } else { ++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); ++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); ++ } ++ ++ for (i=0; i <= dev_if->num_in_eps; i++) ++ { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } ++ else { ++ depctl.d32 = 0; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); ++ ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); ++ } ++ ++ for (i=0; i <= dev_if->num_out_eps; i++) ++ { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } ++ else { ++ depctl.d32 = 0; ++ } ++ ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); ++ ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); ++ } ++ ++ if(core_if->en_multiple_tx_fifo && core_if->dma_enable) { ++ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1; ++ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1; ++ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1; ++ ++ dev_if->rx_thr_length = params->rx_thr_length; ++ dev_if->tx_thr_length = params->tx_thr_length; ++ ++ dev_if->setup_desc_index = 0; ++ ++ dthrctl.d32 = 0; ++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; ++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; ++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length; ++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en; ++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", ++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len); ++ ++ } ++ ++ dwc_otg_enable_device_interrupts(core_if); ++ ++ { ++ diepmsk_data_t msk = { .d32 = 0 }; ++ msk.b.txfifoundrn = 1; ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32); ++ } ++ } ++ ++ ++ if(core_if->multiproc_int_enable) { ++ /* Set NAK on Babble */ ++ dctl_data_t dctl = { .d32 = 0}; ++ dctl.b.nakonbble = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32); ++ } ++} ++ ++/** ++ * This function enables the Host mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts. */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* ++ * Enable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++} ++ ++/** ++ * This function disables the Host Mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); ++ ++ /* ++ * Disable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ intr_mask.b.ptxfempty = 1; ++ intr_mask.b.nptxfempty = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * host mode. ++ * ++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the ++ * request queues. Host channels are reset to ensure that they are ready for ++ * performing transfers. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = core_if->host_if; ++ dwc_otg_core_params_t *params = core_if->core_params; ++ hprt0_data_t hprt0 = { .d32 = 0 }; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t ptxfifosize; ++ int i; ++ hcchar_data_t hcchar; ++ hcfg_data_t hcfg; ++ dwc_otg_hc_regs_t *hc_regs; ++ int num_channels; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if); ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Initialize Host Configuration Register */ ++ init_fslspclksel(core_if); ++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) ++ { ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ hcfg.b.fslssupp = 1; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); ++ } ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->host_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /* Periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size; ++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ } ++ ++ /* Clear Host Set HNP Enable in the OTG Control Register */ ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); ++ ++ /* Make sure the FIFOs are flushed. */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */); ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush out any leftover queued requests. */ ++ num_channels = core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) ++ { ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ /* Halt all channels to put them into a known state. */ ++ for (i = 0; i < num_channels; i++) ++ { ++ int count = 0; ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); ++ do { ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (++count > 1000) ++ { ++ DWC_ERROR("%s: Unable to clear halt on channel %d\n", ++ __func__, i); ++ break; ++ } ++ } ++ while (hcchar.b.chen); ++ } ++ ++ /* Turn on the vbus power. */ ++ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state); ++ if (core_if->op_state == A_HOST) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); ++ if (hprt0.b.prtpwr == 0) { ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(host_if->hprt0, hprt0.d32); ++ } ++ } ++ ++ dwc_otg_enable_host_interrupts(core_if); ++} ++ ++/** ++ * Prepares a host channel for transferring packets to/from a specific ++ * endpoint. The HCCHARn register is set up with the characteristics specified ++ * in _hc. Host channel interrupts that may need to be serviced while this ++ * transfer is in progress are enabled. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * @param hc Information needed to initialize the host channel ++ */ ++void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ uint32_t intr_enable; ++ hcintmsk_data_t hc_intr_mask; ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ ++ uint8_t hc_num = hc->hc_num; ++ dwc_otg_host_if_t *host_if = core_if->host_if; ++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; ++ ++ /* Clear old interrupt conditions for this host channel. */ ++ hc_intr_mask.d32 = 0xFFFFFFFF; ++ hc_intr_mask.b.reserved = 0; ++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); ++ ++ /* Enable channel interrupts required for this transfer. */ ++ hc_intr_mask.d32 = 0; ++ hc_intr_mask.b.chhltd = 1; ++ if (core_if->dma_enable) { ++ hc_intr_mask.b.ahberr = 1; ++ if (hc->error_state && !hc->do_split && ++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ hc_intr_mask.b.ack = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) { ++ hc_intr_mask.b.nak = 1; ++ } ++ } ++ } ++ } ++ else { ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ else { ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.nyet = 1; ++ if (hc->do_ping) { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (hc->do_split) { ++ hc_intr_mask.b.nak = 1; ++ if (hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ break; ++ case DWC_OTG_EP_TYPE_INTR: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ if (hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ if (hc->do_split) { ++ if (hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ break; ++ case DWC_OTG_EP_TYPE_ISOC: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ hc_intr_mask.b.ack = 1; ++ ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.bblerr = 1; ++ } ++ break; ++ } ++ } ++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); ++ ++// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in) ++// hc->max_packet = 512; ++ /* Enable the top level host channel interrupt. */ ++ intr_enable = (1 << hc_num); ++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); ++ ++ /* Make sure host channel interrupts are enabled. */ ++ gintmsk.b.hcintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32); ++ ++ /* ++ * Program the HCCHARn register with the endpoint characteristics for ++ * the current transfer. ++ */ ++ hcchar.d32 = 0; ++ hcchar.b.devaddr = hc->dev_addr; ++ hcchar.b.epnum = hc->ep_num; ++ hcchar.b.epdir = hc->ep_is_in; ++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW); ++ hcchar.b.eptype = hc->ep_type; ++ hcchar.b.mps = hc->max_packet; ++ ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); ++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); ++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); ++ ++ /* ++ * Program the HCSPLIT register for SPLITs ++ */ ++ hcsplt.d32 = 0; ++ if (hc->do_split) { ++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num, ++ hc->complete_split ? "CSPLIT" : "SSPLIT"); ++ hcsplt.b.compsplt = hc->complete_split; ++ hcsplt.b.xactpos = hc->xact_pos; ++ hcsplt.b.hubaddr = hc->hub_addr; ++ hcsplt.b.prtaddr = hc->port_addr; ++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split); ++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos); ++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr); ++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr); ++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len); ++ } ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); ++ ++} ++ ++/** ++ * Attempts to halt a host channel. This function should only be called in ++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under ++ * normal circumstances in DMA mode, the controller halts the channel when the ++ * transfer is complete or a condition occurs that requires application ++ * intervention. ++ * ++ * In slave mode, checks for a free request queue entry, then sets the Channel ++ * Enable and Channel Disable bits of the Host Channel Characteristics ++ * register of the specified channel to intiate the halt. If there is no free ++ * request queue entry, sets only the Channel Disable bit of the HCCHARn ++ * register to flush requests for this channel. In the latter case, sets a ++ * flag to indicate that the host channel needs to be halted when a request ++ * queue slot is open. ++ * ++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the ++ * HCCHARn register. The controller ensures there is space in the request ++ * queue before submitting the halt request. ++ * ++ * Some time may elapse before the core flushes any posted requests for this ++ * host channel and halts. The Channel Halted interrupt handler completes the ++ * deactivation of the host channel. ++ * ++ * @param core_if Controller register interface. ++ * @param hc Host channel to halt. ++ * @param halt_status Reason for halting the channel. ++ */ ++void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if, ++ dwc_hc_t *hc, ++ dwc_otg_halt_status_e halt_status) ++{ ++ gnptxsts_data_t nptxsts; ++ hptxsts_data_t hptxsts; ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_core_global_regs_t *global_regs; ++ dwc_otg_host_global_regs_t *host_global_regs; ++ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ global_regs = core_if->core_global_regs; ++ host_global_regs = core_if->host_if->host_global_regs; ++ ++ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); ++ ++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Disable all channel interrupts except Ch Halted. The QTD ++ * and QH state associated with this transfer has been cleared ++ * (in the case of URB_DEQUEUE), so the channel needs to be ++ * shut down carefully to prevent crashes. ++ */ ++ hcintmsk_data_t hcintmsk; ++ hcintmsk.d32 = 0; ++ hcintmsk.b.chhltd = 1; ++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); ++ ++ /* ++ * Make sure no other interrupts besides halt are currently ++ * pending. Handling another interrupt could cause a crash due ++ * to the QTD and QH state. ++ */ ++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); ++ ++ /* ++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR ++ * even if the channel was already halted for some other ++ * reason. ++ */ ++ hc->halt_status = halt_status; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen == 0) { ++ /* ++ * The channel is either already halted or it hasn't ++ * started yet. In DMA mode, the transfer may halt if ++ * it finishes normally or a condition occurs that ++ * requires driver intervention. Don't want to halt ++ * the channel again. In either Slave or DMA mode, ++ * it's possible that the transfer has been assigned ++ * to a channel, but not started yet when an URB is ++ * dequeued. Don't want to halt a channel that hasn't ++ * started yet. ++ */ ++ return; ++ } ++ } ++ ++ if (hc->halt_pending) { ++ /* ++ * A halt has already been issued for this channel. This might ++ * happen when a transfer is aborted by a higher level in ++ * the stack. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", ++ __func__, hc->hc_num); ++ ++/* dwc_otg_dump_global_registers(core_if); */ ++/* dwc_otg_dump_host_registers(core_if); */ ++#endif ++ return; ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ ++ if (!core_if->dma_enable) { ++ /* Check for space in the request queue to issue the halt. */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (nptxsts.b.nptxqspcavail == 0) { ++ hcchar.b.chen = 0; ++ } ++ } ++ else { ++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); ++ if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) { ++ hcchar.b.chen = 0; ++ } ++ } ++ } ++ ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->halt_status = halt_status; ++ ++ if (hcchar.b.chen) { ++ hc->halt_pending = 1; ++ hc->halt_on_queue = 0; ++ } ++ else { ++ hc->halt_on_queue = 1; ++ } ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending); ++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status); ++ ++ return; ++} ++ ++/** ++ * Clears the transfer state for a host channel. This function is normally ++ * called after a transfer is done and the host channel is being released. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Identifies the host channel to clean up. ++ */ ++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ dwc_otg_hc_regs_t *hc_regs; ++ ++ hc->xfer_started = 0; ++ ++ /* ++ * Clear channel interrupt enables and any unhandled channel interrupt ++ * conditions. ++ */ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ dwc_write_reg32(&hc_regs->hcintmsk, 0); ++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); ++ ++#ifdef DEBUG ++ del_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++ { ++ hcchar_data_t hcchar; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++ } ++#endif ++} ++ ++/** ++ * Sets the channel property that indicates in which frame a periodic transfer ++ * should occur. This is always set to the _next_ frame. This function has no ++ * effect on non-periodic transfers. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Identifies the host channel to set up and its properties. ++ * @param hcchar Current value of the HCCHAR register for the specified host ++ * channel. ++ */ ++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if, ++ dwc_hc_t *hc, ++ hcchar_data_t *hcchar) ++{ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hfnum_data_t hfnum; ++ hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum); ++ ++ /* 1 if _next_ frame is odd, 0 if it's even */ ++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; ++#ifdef DEBUG ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) { ++ switch (hfnum.b.frnum & 0x7) { ++ case 7: ++ core_if->hfnum_7_samples++; ++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem; ++ break; ++ case 0: ++ core_if->hfnum_0_samples++; ++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem; ++ break; ++ default: ++ core_if->hfnum_other_samples++; ++ core_if->hfnum_other_frrem_accum += hfnum.b.frrem; ++ break; ++ } ++ } ++#endif ++ } ++} ++ ++#ifdef DEBUG ++static void hc_xfer_timeout(unsigned long ptr) ++{ ++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr; ++ int hc_num = xfer_info->hc->hc_num; ++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); ++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); ++} ++#endif ++ ++/* ++ * This function does the setup for a data transfer for a host channel and ++ * starts the transfer. May be called in either Slave mode or DMA mode. In ++ * Slave mode, the caller must ensure that there is sufficient space in the ++ * request queue and Tx Data FIFO. ++ * ++ * For an OUT transfer in Slave mode, it loads a data packet into the ++ * appropriate FIFO. If necessary, additional data packets will be loaded in ++ * the Host ISR. ++ * ++ * For an IN transfer in Slave mode, a data packet is requested. The data ++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, ++ * additional data packets are requested in the Host ISR. ++ * ++ * For a PING transfer in Slave mode, the Do Ping bit is set in the egards, ++ * ++ * Steven ++ * ++ * register along with a packet count of 1 and the channel is enabled. This ++ * causes a single PING transaction to occur. Other fields in HCTSIZ are ++ * simply set to 0 since no data transfer occurs in this case. ++ * ++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with ++ * all the information required to perform the subsequent data transfer. In ++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the ++ * controller performs the entire PING protocol, then starts the data ++ * transfer. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Information needed to initialize the host channel. The xfer_len ++ * value may be reduced to accommodate the max widths of the XferSize and ++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed ++ * to reflect the final xfer_len value. ++ */ ++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ uint16_t num_packets; ++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size; ++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hctsiz.d32 = 0; ++ ++ if (hc->do_ping) { ++ if (!core_if->dma_enable) { ++ dwc_otg_hc_do_ping(core_if, hc); ++ hc->xfer_started = 1; ++ return; ++ } ++ else { ++ hctsiz.b.dopng = 1; ++ } ++ } ++ ++ if (hc->do_split) { ++ num_packets = 1; ++ ++ if (hc->complete_split && !hc->ep_is_in) { ++ /* For CSPLIT OUT Transfer, set the size to 0 so the ++ * core doesn't expect any data written to the FIFO */ ++ hc->xfer_len = 0; ++ } ++ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) { ++ hc->xfer_len = hc->max_packet; ++ } ++ else if (!hc->ep_is_in && (hc->xfer_len > 188)) { ++ hc->xfer_len = 188; ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } ++ else { ++ /* ++ * Ensure that the transfer length and packet count will fit ++ * in the widths allocated for them in the HCTSIZn register. ++ */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure the transfer size is no larger than one ++ * (micro)frame's worth of data. (A check was done ++ * when the periodic transfer was accepted to ensure ++ * that a (micro)frame's worth of data can be ++ * programmed into a channel.) ++ */ ++ uint32_t max_periodic_len = hc->multi_count * hc->max_packet; ++ if (hc->xfer_len > max_periodic_len) { ++ hc->xfer_len = max_periodic_len; ++ } ++ else { ++ } ++ ++ } ++ else if (hc->xfer_len > max_hc_xfer_size) { ++ /* Make sure that xfer_len is a multiple of max packet size. */ ++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1; ++ } ++ ++ if (hc->xfer_len > 0) { ++ num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet; ++ if (num_packets > max_hc_pkt_count) { ++ num_packets = max_hc_pkt_count; ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++ } ++ else { ++ /* Need 1 packet for transfer length of 0. */ ++ num_packets = 1; ++ } ++ ++ if (hc->ep_is_in) { ++ /* Always program an integral # of max packets for IN transfers. */ ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure that the multi_count field matches the ++ * actual transfer length. ++ */ ++ hc->multi_count = num_packets; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* Set up the initial PID for the transfer. */ ++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) { ++ if (hc->ep_is_in) { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ else if (hc->multi_count == 2) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA2; ++ } ++ } ++ else { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_MDATA; ++ } ++ } ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } ++ ++ hc->start_pkt_count = num_packets; ++ hctsiz.b.pktcnt = num_packets; ++ hctsiz.b.pid = hc->data_pid_start; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); ++ ++ if (core_if->dma_enable) { ++#if defined (CONFIG_DWC_OTG_HOST_ONLY) ++ if ((uint32_t)hc->xfer_buff & 0x3) { ++ /* non DWORD-aligned buffer case*/ ++ if(!hc->qh->dw_align_buf) { ++ hc->qh->dw_align_buf = ++ dma_alloc_coherent(NULL, ++ core_if->core_params->max_transfer_size, ++ &hc->qh->dw_align_buf_dma, ++ GFP_ATOMIC | GFP_DMA); ++ if (!hc->qh->dw_align_buf) { ++ ++ DWC_ERROR("%s: Failed to allocate memory to handle " ++ "non-dword aligned buffer case\n", __func__); ++ return; ++ } ++ ++ } ++ if (!hc->ep_is_in) { ++ memcpy(hc->qh->dw_align_buf, phys_to_virt((uint32_t)hc->xfer_buff), hc->xfer_len); ++ } ++ ++ dwc_write_reg32(&hc_regs->hcdma, hc->qh->dw_align_buf_dma); ++ } ++ else ++#endif ++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff); ++ } ++ ++ /* Start the split */ ++ if (hc->do_split) { ++ hcsplt_data_t hcsplt; ++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); ++ hcsplt.b.spltena = 1; ++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.multicnt = hc->multi_count; ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++#ifdef DEBUG ++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32; ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++#endif ++ ++ /* Set host channel enable after all other setup is complete. */ ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->xfer_started = 1; ++ hc->requests++; ++ ++ if (!core_if->dma_enable && ++ !hc->ep_is_in && hc->xfer_len > 0) { ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ } ++ ++#ifdef DEBUG ++ /* Start a timer for this transfer. */ ++ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout; ++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if; ++ core_if->hc_xfer_info[hc->hc_num].hc = hc; ++ core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]); ++ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10); ++ add_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++#endif ++} ++ ++/** ++ * This function continues a data transfer that was started by previous call ++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is ++ * sufficient space in the request queue and Tx Data FIFO. This function ++ * should only be called in Slave mode. In DMA mode, the controller acts ++ * autonomously to complete transfers programmed to a host channel. ++ * ++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO ++ * if there is any data remaining to be queued. For an IN transfer, another ++ * data packet is always requested. For the SETUP phase of a control transfer, ++ * this function does nothing. ++ * ++ * @return 1 if a new request is queued, 0 if no more requests are required ++ * for this transfer. ++ */ ++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ if (hc->do_split) { ++ /* SPLITs always queue just once per channel */ ++ return 0; ++ } ++ else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ /* SETUPs are queued only once since they can't be NAKed. */ ++ return 0; ++ } ++ else if (hc->ep_is_in) { ++ /* ++ * Always queue another request for other IN transfers. If ++ * back-to-back INs are issued and NAKs are received for both, ++ * the driver may still be processing the first NAK when the ++ * second NAK is received. When the interrupt handler clears ++ * the NAK interrupt for the first NAK, the second NAK will ++ * not be seen. So we can't depend on the NAK interrupt ++ * handler to requeue a NAKed request. Instead, IN requests ++ * are issued each time this function is called. When the ++ * transfer completes, the extra requests for the channel will ++ * be flushed. ++ */ ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ hc->requests++; ++ return 1; ++ } ++ else { ++ /* OUT transfers. */ ++ if (hc->xfer_count < hc->xfer_len) { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ } ++ ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ hc->requests++; ++ return 1; ++ } ++ else { ++ return 0; ++ } ++ } ++} ++ ++/** ++ * Starts a PING transfer. This function should only be called in Slave mode. ++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. ++ */ ++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ hctsiz.d32 = 0; ++ hctsiz.b.dopng = 1; ++ hctsiz.b.pktcnt = 1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++} ++ ++/* ++ * This function writes a packet into the Tx FIFO associated with the Host ++ * Channel. For a channel associated with a non-periodic EP, the non-periodic ++ * Tx FIFO is written. For a channel associated with a periodic EP, the ++ * periodic Tx FIFO is written. This function should only be called in Slave ++ * mode. ++ * ++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by ++ * then number of bytes written to the Tx FIFO. ++ */ ++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ uint32_t i; ++ uint32_t remaining_count; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ ++ uint32_t *data_buff = (uint32_t *)(hc->xfer_buff); ++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num]; ++ ++ remaining_count = hc->xfer_len - hc->xfer_count; ++ if (remaining_count > hc->max_packet) { ++ byte_count = hc->max_packet; ++ } ++ else { ++ byte_count = remaining_count; ++ } ++ ++ dword_count = (byte_count + 3) / 4; ++ ++ if ((((unsigned long)data_buff) & 0x3) == 0) { ++ /* xfer_buff is DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ { ++ dwc_write_reg32(data_fifo, *data_buff); ++ } ++ } ++ else { ++ /* xfer_buff is not DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ { ++ dwc_write_reg32(data_fifo, get_unaligned(data_buff)); ++ } ++ } ++ ++ hc->xfer_count += byte_count; ++ hc->xfer_buff += byte_count; ++} ++ ++/** ++ * Gets the current USB frame number. This is the frame number from the last ++ * SOF packet. ++ */ ++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ /* read current frame/microframe number from DSTS register */ ++ return dsts.b.soffn; ++} ++ ++/** ++ * This function reads a setup packet from the Rx FIFO into the destination ++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) ++ * Interrupt routine when a SETUP packet has been received in Slave mode. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dest Destination buffer for packet data. ++ */ ++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest) ++{ ++ /* Get the 8 bytes of a setup transaction data */ ++ ++ /* Pop 2 DWORDS off the receive data FIFO into memory */ ++ dest[0] = dwc_read_reg32(core_if->data_fifo[0]); ++ dest[1] = dwc_read_reg32(core_if->data_fifo[0]); ++} ++ ++ ++/** ++ * This function enables EP0 OUT to receive SETUP packets and configures EP0 ++ * IN for transmitting packets. It is normally called when the ++ * "Enumeration Done" interrupt occurs. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dsts_data_t dsts; ++ depctl_data_t diepctl; ++ depctl_data_t doepctl; ++ dctl_data_t dctl = { .d32 = 0 }; ++ ++ /* Read the Device Status and Endpoint 0 Control registers */ ++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); ++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); ++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); ++ ++ /* Set the MPS of the IN EP based on the enumeration speed */ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_64; ++ break; ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_8; ++ break; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); ++ ++ /* Enable OUT EP for receive */ ++ doepctl.b.epena = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++ dctl.b.cgnpinnak = 1; ++ ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->dctl)); ++} ++ ++/** ++ * This function activates an EP. The Device EP control register for ++ * the EP is configured as defined in the ep structure. Note: This ++ * function is not used for EP0. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to activate. ++ */ ++void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ depctl_data_t depctl; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1<<ep->num; ++ } ++ else { ++ addr = &dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1<<ep->num; ++ } ++ ++ /* If the EP is already active don't change the EP Control ++ * register. */ ++ depctl.d32 = dwc_read_reg32(addr); ++ if (!depctl.b.usbactep) { ++ depctl.b.mps = ep->maxpacket; ++ depctl.b.eptype = ep->type; ++ depctl.b.txfnum = ep->tx_fifo_num; ++ ++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ depctl.b.setd0pid = 1; // ??? ++ } ++ else { ++ depctl.b.setd0pid = 1; ++ } ++ depctl.b.usbactep = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr)); ++ } ++ ++ /* Enable the Interrupt for this EP */ ++ if(core_if->multiproc_int_enable) { ++ if (ep->is_in == 1) { ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ diepmsk.b.txfifoundrn = 1; //????? ++ ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++/* ++ if(core_if->dma_enable) { ++ doepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32); ++ ++ } else { ++ doepmsk_data_t doepmsk = { .d32 = 0}; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ doepmsk.b.nak = 1; ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32); ++ } ++ dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk, ++ 0, daintmsk.d32); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, ++ 0, daintmsk.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); ++ ++ ep->stall_clear_flag = 0; ++ return; ++} ++ ++/** ++ * This function deactivates an EP. This is done by clearing the USB Active ++ * EP bit in the Device EP control register. Note: This function is not used ++ * for EP0. EP0 cannot be deactivated. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to deactivate. ++ */ ++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = { .d32 = 0}; ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1<<ep->num; ++ } ++ else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1<<ep->num; ++ } ++ ++ depctl.b.usbactep = 0; ++ ++ if(core_if->dma_desc_enable) ++ depctl.b.epdis = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ ++ /* Disable the Interrupt for this EP */ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk, ++ daintmsk.d32, 0); ++ ++ if (ep->is_in == 1) { ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0); ++ } else { ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0); ++ } ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk, ++ daintmsk.d32, 0); ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dma_desc_t* dma_desc; ++ uint32_t offset; ++ uint32_t xfer_est; ++ int i; ++ ++ ep->desc_cnt = ( ep->total_len / ep->maxxfer) + ++ ((ep->total_len % ep->maxxfer) ? 1 : 0); ++ if(!ep->desc_cnt) ++ ep->desc_cnt = 1; ++ ++ dma_desc = ep->desc_addr; ++ xfer_est = ep->total_len; ++ offset = 0; ++ for( i = 0; i < ep->desc_cnt; ++i) { ++ /** DMA Descriptor Setup */ ++ if(xfer_est > ep->maxxfer) { ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 0; ++ dma_desc->status.b.ioc = 0; ++ dma_desc->status.b.sp = 0; ++ dma_desc->status.b.bytes = ep->maxxfer; ++ dma_desc->buf = ep->dma_addr + offset; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ xfer_est -= ep->maxxfer; ++ offset += ep->maxxfer; ++ } else { ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ if(ep->is_in) { ++ dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ? ++ 1 : ((ep->sent_zlp) ? 1 : 0); ++ dma_desc->status.b.bytes = xfer_est; ++ } else { ++ dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ; ++ } ++ ++ dma_desc->buf = ep->dma_addr + offset; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ } ++ dma_desc ++; ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ ++ gnptxsts_data_t gtxstatus; ++ ++ gtxstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ ++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); ++#endif ++ return; ++ } ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? ++ ep->maxxfer : (ep->total_len - ep->xfer_len); ++ ++ /* Zero Length Packet? */ ++ if ((ep->xfer_len - ep->xfer_count) == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ } ++ ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if (core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ init_dma_desc_chain(core_if, ep); ++ /** DIEPDMAn Register write */ ++ dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ if(ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ ++ } ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = ep->num; ++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? ++ ep->maxxfer : (ep->total_len - ep->xfer_len); ++ ++ /* Program the transfer size and packet count as follows: ++ * ++ * pktcnt = N ++ * xfersize = N * maxpacket ++ */ ++ if ((ep->xfer_len - ep->xfer_count) == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count; ++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", ++ ep->num, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ if (!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ init_dma_desc_chain(core_if, ep); ++ ++ /** DOEPDMAn Register write */ ++ dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ } ++} ++ ++/** ++ * This function setup a zero length transfer in Buffer DMA and ++ * Slave modes for usb requests with zero field set ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if (core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = ep->num; ++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ if (core_if->dma_enable) { ++ if (!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for EP0 and starts ++ * the transfer. For an IN transfer, the packets will be loaded into ++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are ++ * unloaded from the Rx FIFO in the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p \n", ++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); ++ ++ ep->total_len = ep->xfer_len; ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ ++ gnptxsts_data_t gtxstatus; ++ ++ gtxstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ ++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", ++ dwc_read_reg32(&in_regs->diepctl)); ++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", ++ deptsiz.d32, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", ++ gtxstatus.d32); ++#endif ++ return; ++ } ++ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Zero Length Packet? */ ++ if (ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ if (ep->xfer_len > ep->maxpacket) { ++ ep->xfer_len = ep->maxpacket; ++ deptsiz.b.xfersize = ep->maxpacket; ++ } ++ else { ++ deptsiz.b.xfersize = ep->xfer_len; ++ } ++ deptsiz.b.pktcnt = 1; ++ ++ } ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if(core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ dma_desc = core_if->dev_if->in_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; ++ dma_desc->status.b.bytes = ep->xfer_len; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DIEPDMA0 Register write */ ++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[0]; ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count as follows: ++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) ++ * pktcnt = N */ ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ if(!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ dma_desc = core_if->dev_if->out_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = ep->maxpacket; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); ++ } ++} ++ ++/** ++ * This function continues control IN transfers started by ++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a ++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one ++ * bit for the packet count. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t tx_status = { .d32 = 0 }; ++ ++ tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ /** @todo Should there be check for room in the Tx ++ * Status Queue. If not remove the code above this comment. */ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ ++ ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : ++ (ep->total_len - ep->xfer_count); ++ deptsiz.b.pktcnt = 1; ++ if(core_if->dma_enable == 0) { ++ ep->xfer_len += deptsiz.b.xfersize; ++ } else { ++ ep->xfer_len = deptsiz.b.xfersize; ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ } ++ else { ++ ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : ++ (ep->total_len - ep->xfer_count); ++ ++ dma_desc = core_if->dev_if->in_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; ++ dma_desc->status.b.bytes = ep->xfer_len; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DIEPDMA0 Register write */ ++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ if(core_if->dma_desc_enable == 0) ++ dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ if(core_if->en_multiple_tx_fifo == 0) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ } ++ else { ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[0]; ++ ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ ++ if(core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ else { ++ dma_desc = core_if->dev_if->out_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = ep->maxpacket; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ if(core_if->dma_desc_enable == 0) ++ dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ } ++} ++ ++#ifdef DEBUG ++void dump_msg(const u8 *buf, unsigned int length) ++{ ++ unsigned int start, num, i; ++ char line[52], *p; ++ ++ if (length >= 512) ++ return; ++ start = 0; ++ while (length > 0) { ++ num = min(length, 16u); ++ p = line; ++ for (i = 0; i < num; ++i) ++ { ++ if (i == 8) ++ *p++ = ' '; ++ sprintf(p, " %02x", buf[i]); ++ p += 3; ++ } ++ *p = 0; ++ DWC_PRINT("%6x: %s\n", start, line); ++ buf += num; ++ start += num; ++ length -= num; ++ } ++} ++#else ++static inline void dump_msg(const u8 *buf, unsigned int length) ++{ ++} ++#endif ++ ++/** ++ * This function writes a packet into the Tx FIFO associated with the ++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For ++ * periodic EPs the periodic Tx FIFO associated with the EP is written ++ * with all packets for the next micro-frame. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to write packet for. ++ * @param dma Indicates if DMA is being used. ++ */ ++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma) ++{ ++ /** ++ * The buffer is padded to DWORD on a per packet basis in ++ * slave/dma mode if the MPS is not DWORD aligned. The last ++ * packet, if short, is also padded to a multiple of DWORD. ++ * ++ * ep->xfer_buff always starts DWORD aligned in memory and is a ++ * multiple of DWORD in length ++ * ++ * ep->xfer_len can be any number of bytes ++ * ++ * ep->xfer_count is a multiple of ep->maxpacket until the last ++ * packet ++ * ++ * FIFO access is DWORD */ ++ ++ uint32_t i; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ uint32_t *fifo; ++ uint32_t *data_buff = (uint32_t *)ep->xfer_buff; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep); ++ if (ep->xfer_count >= ep->xfer_len) { ++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num); ++ return; ++ } ++ ++ /* Find the byte length of the packet either short packet or MPS */ ++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) { ++ byte_count = ep->xfer_len - ep->xfer_count; ++ } ++ else { ++ byte_count = ep->maxpacket; ++ } ++ ++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS ++ * is not a multiple of DWORD */ ++ dword_count = (byte_count + 3) / 4; ++ ++#ifdef VERBOSE ++ dump_msg(ep->xfer_buff, byte_count); ++#endif ++ ++ /**@todo NGS Where are the Periodic Tx FIFO addresses ++ * intialized? What should this be? */ ++ ++ fifo = core_if->data_fifo[ep->num]; ++ ++ ++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count); ++ ++ if (!dma) { ++ for (i=0; i<dword_count; i++, data_buff++) { ++ dwc_write_reg32(fifo, *data_buff); ++ } ++ } ++ ++ ep->xfer_count += byte_count; ++ ep->xfer_buff += byte_count; ++ ep->dma_addr += byte_count; ++} ++ ++/** ++ * Set the EP STALL. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to set the stall on. ++ */ ++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ DWC_PRINT("%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in?"in":"out")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ else { ++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the stall bit */ ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ ++ return; ++} ++ ++/** ++ * Clear the EP STALL. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to clear stall from. ++ */ ++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ } ++ else { ++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ } ++ ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* clear the stall bits */ ++ depctl.b.stall = 0; ++ ++ /* ++ * USB Spec 9.4.5: For endpoints using data toggle, regardless ++ * of whether an endpoint has the Halt feature set, a ++ * ClearFeature(ENDPOINT_HALT) request always results in the ++ * data toggle being reinitialized to DATA0. ++ */ ++ if (ep->type == DWC_OTG_EP_TYPE_INTR || ++ ep->type == DWC_OTG_EP_TYPE_BULK) { ++ depctl.b.setd0pid = 1; /* DATA0 */ ++ } ++ ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * This function reads a packet from the Rx FIFO into the destination ++ * buffer. To read SETUP data use dwc_otg_read_setup_packet. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dest Destination buffer for the packet. ++ * @param bytes Number of bytes to copy to the destination. ++ */ ++void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes) ++{ ++ int i; ++ int word_count = (bytes + 3) / 4; ++ ++ volatile uint32_t *fifo = core_if->data_fifo[0]; ++ uint32_t *data_buff = (uint32_t *)dest; ++ ++ /** ++ * @todo Account for the case where _dest is not dword aligned. This ++ * requires reading data from the FIFO into a uint32_t temp buffer, ++ * then moving it into the data buffer. ++ */ ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, ++ core_if, dest, bytes); ++ ++ for (i=0; i<word_count; i++, data_buff++) ++ { ++ *data_buff = dwc_read_reg32(fifo); ++ } ++ ++ return; ++} ++ ++ ++ ++/** ++ * This functions reads the device registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Device Global Registers\n"); ++ addr=&core_if->dev_if->dev_global_regs->dcfg; ++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dctl; ++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dsts; ++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->diepmsk; ++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->doepmsk; ++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->daint; ++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->daintmsk; ++ DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dtknqr1; ++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr2; ++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ addr=&core_if->dev_if->dev_global_regs->dvbusdis; ++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ addr=&core_if->dev_if->dev_global_regs->dvbuspulse; ++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ ++ if (core_if->hwcfg2.b.dev_token_q_depth > 14) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; ++ DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++/* ++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++*/ ++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr)); ++ ++ addr=&core_if->dev_if->dev_global_regs->deachint; ++ DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->deachintmsk; ++ DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) { ++ addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i]; ++ DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ ++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) { ++ addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i]; ++ DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) { ++ DWC_PRINT("Device IN EP %d Registers\n", i); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepctl; ++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepint; ++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz; ++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepdma; ++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts; ++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepdmab; ++ DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ ++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) { ++ DWC_PRINT("Device OUT EP %d Registers\n", i); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepctl; ++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepfn; ++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepint; ++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz; ++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepdma; ++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepdmab; ++ DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ } ++ ++ ++ ++ return; ++} ++ ++/** ++ * This functions reads the SPRAM and prints its content ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if) ++{ ++ volatile uint8_t *addr, *start_addr, *end_addr; ++ ++ DWC_PRINT("SPRAM Data:\n"); ++ start_addr = (void*)core_if->core_global_regs; ++ DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr); ++ start_addr += 0x00028000; ++ end_addr=(void*)core_if->core_global_regs; ++ end_addr += 0x000280e0; ++ ++ for(addr = start_addr; addr < end_addr; addr+=16) ++ { ++ DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr, ++ addr[0], ++ addr[1], ++ addr[2], ++ addr[3], ++ addr[4], ++ addr[5], ++ addr[6], ++ addr[7], ++ addr[8], ++ addr[9], ++ addr[10], ++ addr[11], ++ addr[12], ++ addr[13], ++ addr[14], ++ addr[15] ++ ); ++ } ++ ++ return; ++} ++/** ++ * This function reads the host registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Host Global Registers\n"); ++ addr=&core_if->host_if->host_global_regs->hcfg; ++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hfir; ++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hfnum; ++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hptxsts; ++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->haint; ++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->haintmsk; ++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=core_if->host_if->hprt0; ++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<core_if->core_params->host_channels; i++) ++ { ++ DWC_PRINT("Host Channel %d Specific Registers\n", i); ++ addr=&core_if->host_if->hc_regs[i]->hcchar; ++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcsplt; ++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcint; ++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcintmsk; ++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hctsiz; ++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcdma; ++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ return; ++} ++ ++/** ++ * This function reads the core global registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Core Global Registers\n"); ++ addr=&core_if->core_global_regs->gotgctl; ++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gotgint; ++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gahbcfg; ++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gusbcfg; ++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grstctl; ++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gintsts; ++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gintmsk; ++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grxstsr; ++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ //addr=&core_if->core_global_regs->grxstsp; ++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grxfsiz; ++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gnptxfsiz; ++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gnptxsts; ++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gi2cctl; ++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gpvndctl; ++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ggpio; ++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->guid; ++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gsnpsid; ++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg1; ++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg2; ++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg3; ++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg4; ++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->hptxfsiz; ++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<core_if->hwcfg4.b.num_dev_perio_in_ep; i++) ++ { ++ addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i]; ++ DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++} ++ ++/** ++ * Flush a Tx FIFO. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param num Tx FIFO to flush. ++ */ ++void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if, ++ const int num) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num); ++ ++ greset.b.txfflsh = 1; ++ greset.b.txfnum = num; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", ++ __func__, greset.d32, ++ dwc_read_reg32(&global_regs->gnptxsts)); ++ break; ++ } ++ } ++ while (greset.b.txfflsh == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Flush Rx FIFO. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); ++ /* ++ * ++ */ ++ greset.b.rxfflsh = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } ++ while (greset.b.rxfflsh == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Do core a soft reset of the core. Be careful with this because it ++ * resets all the internal state machines of the core. ++ */ ++void dwc_otg_core_reset(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); ++ /* Wait for AHB master IDLE state. */ ++ do { ++ UDELAY(10); ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 100000) { ++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ return; ++ } ++ } ++ while (greset.b.ahbidle == 0); ++ ++ /* Core Soft Reset */ ++ count = 0; ++ greset.b.csftrst = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } ++ while (greset.b.csftrst == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ MDELAY(100); ++} ++ ++ ++ ++/** ++ * Register HCD callbacks. The callbacks are used to start and stop ++ * the HCD for interrupt processing. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param cb the HCD callback structure. ++ * @param p pointer to be passed to callback function (usb_hcd*). ++ */ ++void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if, ++ dwc_otg_cil_callbacks_t *cb, ++ void *p) ++{ ++ core_if->hcd_cb = cb; ++ cb->p = p; ++} ++ ++/** ++ * Register PCD callbacks. The callbacks are used to start and stop ++ * the PCD for interrupt processing. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param cb the PCD callback structure. ++ * @param p pointer to be passed to callback function (pcd*). ++ */ ++void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if, ++ dwc_otg_cil_callbacks_t *cb, ++ void *p) ++{ ++ core_if->pcd_cb = cb; ++ cb->p = p; ++} ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function writes isoc data per 1 (micro)frame into tx fifo ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ dtxfsts_data_t txstatus = {.d32 = 0}; ++ uint32_t len = 0; ++ uint32_t dwords; ++ ++ ep->xfer_len = ep->data_per_frame; ++ ep->xfer_count = 0; ++ ++ ep_regs = core_if->dev_if->in_ep_regs[ep->num]; ++ ++ len = ep->xfer_len - ep->xfer_count; ++ ++ if (len > ep->maxpacket) { ++ len = ep->maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32); ++ ++ while (txstatus.b.txfspcavail > dwords && ++ ep->xfer_count < ep->xfer_len && ++ ep->xfer_len != 0) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, ep, 0); ++ ++ len = ep->xfer_len - ep->xfer_count; ++ if (len > ep->maxpacket) { ++ len = ep->maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32); ++ } ++} ++ ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ depctl_data_t depctl = { .d32 = 0 }; ++ dsts_data_t dsts = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ if(ep->is_in) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ ep->xfer_len = ep->data_per_frame; ++ ep->xfer_count = 0; ++ ep->xfer_buff = ep->cur_pkt_addr; ++ ep->dma_addr = ep->cur_pkt_dma_addr; ++ ++ if(ep->is_in) { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->xfer_len; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ deptsiz.b.mc = deptsiz.b.pktcnt; ++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr); ++ } ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32); ++ ++ if (core_if->dma_enable) { ++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ ++ ++ /** Enable endpoint, clear nak */ ++ ++ depctl.d32 = 0; ++ if(ep->bInterval == 1) { ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ep->next_frame = dsts.b.soffn + ep->bInterval; ++ ++ if(ep->next_frame & 0x1) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } else { ++ ep->next_frame += ep->bInterval; ++ ++ if(ep->next_frame & 0x1) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, 0, depctl.d32); ++ depctl.d32 = dwc_read_reg32(addr); ++ ++ if(ep->is_in && core_if->dma_enable == 0) { ++ write_isoc_frame_data(core_if, ep); ++ } ++ ++} ++ ++#endif //DWC_EN_ISOC +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.h +@@ -0,0 +1,1098 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1099526 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_CIL_H__) ++#define __DWC_CIL_H__ ++ ++#include <linux/workqueue.h> ++#include <linux/version.h> ++#include <asm/param.h> ++ ++#include "linux/dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#ifdef DEBUG ++#include "linux/timer.h" ++#endif ++ ++/** ++ * @file ++ * This file contains the interface to the Core Interface Layer. ++ */ ++ ++ ++/** Macros defined for DWC OTG HW Release verison */ ++#define OTG_CORE_REV_2_00 0x4F542000 ++#define OTG_CORE_REV_2_60a 0x4F54260A ++#define OTG_CORE_REV_2_71a 0x4F54271A ++#define OTG_CORE_REV_2_72a 0x4F54272A ++ ++/** ++*/ ++typedef struct iso_pkt_info ++{ ++ uint32_t offset; ++ uint32_t length; ++ int32_t status; ++} iso_pkt_info_t; ++/** ++ * The <code>dwc_ep</code> structure represents the state of a single ++ * endpoint when acting in device mode. It contains the data items ++ * needed for an endpoint to be activated and transfer packets. ++ */ ++typedef struct dwc_ep ++{ ++ /** EP number used for register address lookup */ ++ uint8_t num; ++ /** EP direction 0 = OUT */ ++ unsigned is_in : 1; ++ /** EP active. */ ++ unsigned active : 1; ++ ++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO ++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/ ++ unsigned tx_fifo_num : 4; ++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ ++ unsigned type : 2; ++#define DWC_OTG_EP_TYPE_CONTROL 0 ++#define DWC_OTG_EP_TYPE_ISOC 1 ++#define DWC_OTG_EP_TYPE_BULK 2 ++#define DWC_OTG_EP_TYPE_INTR 3 ++ ++ /** DATA start PID for INTR and BULK EP */ ++ unsigned data_pid_start : 1; ++ /** Frame (even/odd) for ISOC EP */ ++ unsigned even_odd_frame : 1; ++ /** Max Packet bytes */ ++ unsigned maxpacket : 11; ++ ++ /** Max Transfer size */ ++ unsigned maxxfer : 16; ++ ++ /** @name Transfer state */ ++ /** @{ */ ++ ++ /** ++ * Pointer to the beginning of the transfer buffer -- do not modify ++ * during transfer. ++ */ ++ ++ uint32_t dma_addr; ++ ++ uint32_t dma_desc_addr; ++ dwc_otg_dma_desc_t* desc_addr; ++ ++ ++ uint8_t *start_xfer_buff; ++ /** pointer to the transfer buffer */ ++ uint8_t *xfer_buff; ++ /** Number of bytes to transfer */ ++ unsigned xfer_len : 19; ++ /** Number of bytes transferred. */ ++ unsigned xfer_count : 19; ++ /** Sent ZLP */ ++ unsigned sent_zlp : 1; ++ /** Total len for control transfer */ ++ unsigned total_len : 19; ++ ++ /** stall clear flag */ ++ unsigned stall_clear_flag : 1; ++ ++ /** Allocated DMA Desc count */ ++ uint32_t desc_cnt; ++ ++#ifdef DWC_EN_ISOC ++ /** ++ * Variables specific for ISOC EPs ++ * ++ */ ++ /** DMA addresses of ISOC buffers */ ++ uint32_t dma_addr0; ++ uint32_t dma_addr1; ++ ++ uint32_t iso_dma_desc_addr; ++ dwc_otg_dma_desc_t* iso_desc_addr; ++ ++ /** pointer to the transfer buffers */ ++ uint8_t *xfer_buff0; ++ uint8_t *xfer_buff1; ++ ++ /** number of ISOC Buffer is processing */ ++ uint32_t proc_buf_num; ++ /** Interval of ISOC Buffer processing */ ++ uint32_t buf_proc_intrvl; ++ /** Data size for regular frame */ ++ uint32_t data_per_frame; ++ ++ /* todo - pattern data support is to be implemented in the future */ ++ /** Data size for pattern frame */ ++ uint32_t data_pattern_frame; ++ /** Frame number of pattern data */ ++ uint32_t sync_frame; ++ ++ /** bInterval */ ++ uint32_t bInterval; ++ /** ISO Packet number per frame */ ++ uint32_t pkt_per_frm; ++ /** Next frame num for which will be setup DMA Desc */ ++ uint32_t next_frame; ++ /** Number of packets per buffer processing */ ++ uint32_t pkt_cnt; ++ /** Info for all isoc packets */ ++ iso_pkt_info_t *pkt_info; ++ /** current pkt number */ ++ uint32_t cur_pkt; ++ /** current pkt number */ ++ uint8_t *cur_pkt_addr; ++ /** current pkt number */ ++ uint32_t cur_pkt_dma_addr; ++#endif //DWC_EN_ISOC ++/** @} */ ++} dwc_ep_t; ++ ++/* ++ * Reasons for halting a host channel. ++ */ ++typedef enum dwc_otg_halt_status ++{ ++ DWC_OTG_HC_XFER_NO_HALT_STATUS, ++ DWC_OTG_HC_XFER_COMPLETE, ++ DWC_OTG_HC_XFER_URB_COMPLETE, ++ DWC_OTG_HC_XFER_ACK, ++ DWC_OTG_HC_XFER_NAK, ++ DWC_OTG_HC_XFER_NYET, ++ DWC_OTG_HC_XFER_STALL, ++ DWC_OTG_HC_XFER_XACT_ERR, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN, ++ DWC_OTG_HC_XFER_BABBLE_ERR, ++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, ++ DWC_OTG_HC_XFER_AHB_ERR, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, ++ DWC_OTG_HC_XFER_URB_DEQUEUE ++} dwc_otg_halt_status_e; ++ ++/** ++ * Host channel descriptor. This structure represents the state of a single ++ * host channel when acting in host mode. It contains the data items needed to ++ * transfer packets to an endpoint via a host channel. ++ */ ++typedef struct dwc_hc ++{ ++ /** Host channel number used for register address lookup */ ++ uint8_t hc_num; ++ ++ /** Device to access */ ++ unsigned dev_addr : 7; ++ ++ /** EP to access */ ++ unsigned ep_num : 4; ++ ++ /** EP direction. 0: OUT, 1: IN */ ++ unsigned ep_is_in : 1; ++ ++ /** ++ * EP speed. ++ * One of the following values: ++ * - DWC_OTG_EP_SPEED_LOW ++ * - DWC_OTG_EP_SPEED_FULL ++ * - DWC_OTG_EP_SPEED_HIGH ++ */ ++ unsigned speed : 2; ++#define DWC_OTG_EP_SPEED_LOW 0 ++#define DWC_OTG_EP_SPEED_FULL 1 ++#define DWC_OTG_EP_SPEED_HIGH 2 ++ ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - DWC_OTG_EP_TYPE_CONTROL: 0 ++ * - DWC_OTG_EP_TYPE_ISOC: 1 ++ * - DWC_OTG_EP_TYPE_BULK: 2 ++ * - DWC_OTG_EP_TYPE_INTR: 3 ++ */ ++ unsigned ep_type : 2; ++ ++ /** Max packet size in bytes */ ++ unsigned max_packet : 11; ++ ++ /** ++ * PID for initial transaction. ++ * 0: DATA0,<br> ++ * 1: DATA2,<br> ++ * 2: DATA1,<br> ++ * 3: MDATA (non-Control EP), ++ * SETUP (Control EP) ++ */ ++ unsigned data_pid_start : 2; ++#define DWC_OTG_HC_PID_DATA0 0 ++#define DWC_OTG_HC_PID_DATA2 1 ++#define DWC_OTG_HC_PID_DATA1 2 ++#define DWC_OTG_HC_PID_MDATA 3 ++#define DWC_OTG_HC_PID_SETUP 3 ++ ++ /** Number of periodic transactions per (micro)frame */ ++ unsigned multi_count: 2; ++ ++ /** @name Transfer State */ ++ /** @{ */ ++ ++ /** Pointer to the current transfer buffer position. */ ++ uint8_t *xfer_buff; ++ /** Total number of bytes to transfer. */ ++ uint32_t xfer_len; ++ /** Number of bytes transferred so far. */ ++ uint32_t xfer_count; ++ /** Packet count at start of transfer.*/ ++ uint16_t start_pkt_count; ++ ++ /** ++ * Flag to indicate whether the transfer has been started. Set to 1 if ++ * it has been started, 0 otherwise. ++ */ ++ uint8_t xfer_started; ++ ++ /** ++ * Set to 1 to indicate that a PING request should be issued on this ++ * channel. If 0, process normally. ++ */ ++ uint8_t do_ping; ++ ++ /** ++ * Set to 1 to indicate that the error count for this transaction is ++ * non-zero. Set to 0 if the error count is 0. ++ */ ++ uint8_t error_state; ++ ++ /** ++ * Set to 1 to indicate that this channel should be halted the next ++ * time a request is queued for the channel. This is necessary in ++ * slave mode if no request queue space is available when an attempt ++ * is made to halt the channel. ++ */ ++ uint8_t halt_on_queue; ++ ++ /** ++ * Set to 1 if the host channel has been halted, but the core is not ++ * finished flushing queued requests. Otherwise 0. ++ */ ++ uint8_t halt_pending; ++ ++ /** ++ * Reason for halting the host channel. ++ */ ++ dwc_otg_halt_status_e halt_status; ++ ++ /* ++ * Split settings for the host channel ++ */ ++ uint8_t do_split; /**< Enable split for the channel */ ++ uint8_t complete_split; /**< Enable complete split */ ++ uint8_t hub_addr; /**< Address of high speed hub */ ++ ++ uint8_t port_addr; /**< Port of the low/full speed device */ ++ /** Split transaction position ++ * One of the following values: ++ * - DWC_HCSPLIT_XACTPOS_MID ++ * - DWC_HCSPLIT_XACTPOS_BEGIN ++ * - DWC_HCSPLIT_XACTPOS_END ++ * - DWC_HCSPLIT_XACTPOS_ALL */ ++ uint8_t xact_pos; ++ ++ /** Set when the host channel does a short read. */ ++ uint8_t short_read; ++ ++ /** ++ * Number of requests issued for this channel since it was assigned to ++ * the current transfer (not counting PINGs). ++ */ ++ uint8_t requests; ++ ++ /** ++ * Queue Head for the transfer being processed by this channel. ++ */ ++ struct dwc_otg_qh *qh; ++ ++ /** @} */ ++ ++ /** Entry in list of host channels. */ ++ struct list_head hc_list_entry; ++} dwc_hc_t; ++ ++/** ++ * The following parameters may be specified when starting the module. These ++ * parameters define how the DWC_otg controller should be configured. ++ * Parameter values are passed to the CIL initialization function ++ * dwc_otg_cil_init. ++ */ ++typedef struct dwc_otg_core_params ++{ ++ int32_t opt; ++#define dwc_param_opt_default 1 ++ ++ /** ++ * Specifies the OTG capabilities. The driver will automatically ++ * detect the value for this parameter if none is specified. ++ * 0 - HNP and SRP capable (default) ++ * 1 - SRP Only capable ++ * 2 - No HNP/SRP capable ++ */ ++ int32_t otg_cap; ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ++ ++ /** ++ * Specifies whether to use slave or DMA mode for accessing the data ++ * FIFOs. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - Slave ++ * 1 - DMA (default, if available) ++ */ ++ int32_t dma_enable; ++#define dwc_param_dma_enable_default 1 ++ ++ /** ++ * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data ++ * FIFOs in device mode. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - address DMA ++ * 1 - DMA Descriptor(default, if available) ++ */ ++ int32_t dma_desc_enable; ++#define dwc_param_dma_desc_enable_default 0 ++ /** The DMA Burst size (applicable only for External DMA ++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ */ ++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */ ++#define dwc_param_dma_burst_size_default 32 ++ ++ /** ++ * Specifies the maximum speed of operation in host and device mode. ++ * The actual speed depends on the speed of the attached device and ++ * the value of phy_type. The actual speed depends on the speed of the ++ * attached device. ++ * 0 - High Speed (default) ++ * 1 - Full Speed ++ */ ++ int32_t speed; ++#define dwc_param_speed_default 0 ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++ ++ /** Specifies whether low power mode is supported when attached ++ * to a Full Speed or Low Speed device in host mode. ++ * 0 - Don't support low power mode (default) ++ * 1 - Support low power mode ++ */ ++ int32_t host_support_fs_ls_low_power; ++#define dwc_param_host_support_fs_ls_low_power_default 0 ++ ++ /** Specifies the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. This parameter is applicable only if ++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS ++ * then defaults to 6 MHZ otherwise 48 MHZ. ++ * ++ * 0 - 48 MHz ++ * 1 - 6 MHz ++ */ ++ int32_t host_ls_low_power_phy_clk; ++#define dwc_param_host_ls_low_power_phy_clk_default 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++ ++ /** ++ * 0 - Use cC FIFO size parameters ++ * 1 - Allow dynamic FIFO sizing (default) ++ */ ++ int32_t enable_dynamic_fifo; ++#define dwc_param_enable_dynamic_fifo_default 1 ++ ++ /** Total number of 4-byte words in the data FIFO memory. This ++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic ++ * Tx FIFOs. ++ * 32 to 32768 (default 8192) ++ * Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ */ ++ int32_t data_fifo_size; ++#define dwc_param_data_fifo_size_default 8192 ++ ++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1064) ++ */ ++ int32_t dev_rx_fifo_size; ++#define dwc_param_dev_rx_fifo_size_default 1064 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode ++ * when dynamic FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t dev_nperio_tx_fifo_size; ++#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++ ++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++#define dwc_param_dev_perio_tx_fifo_size_default 256 ++ ++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_rx_fifo_size; ++#define dwc_param_host_rx_fifo_size_default 1024 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode ++ * when Dynamic FIFO sizing is enabled in the core. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_nperio_tx_fifo_size; ++#define dwc_param_host_nperio_tx_fifo_size_default 1024 ++ ++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_perio_tx_fifo_size; ++#define dwc_param_host_perio_tx_fifo_size_default 1024 ++ ++ /** The maximum transfer size supported in bytes. ++ * 2047 to 65,535 (default 65,535) ++ */ ++ int32_t max_transfer_size; ++#define dwc_param_max_transfer_size_default 65535 ++ ++ /** The maximum number of packets in a transfer. ++ * 15 to 511 (default 511) ++ */ ++ int32_t max_packet_count; ++#define dwc_param_max_packet_count_default 511 ++ ++ /** The number of host channel registers to use. ++ * 1 to 16 (default 12) ++ * Note: The FPGA configuration supports a maximum of 12 host channels. ++ */ ++ int32_t host_channels; ++#define dwc_param_host_channels_default 12 ++ ++ /** The number of endpoints in addition to EP0 available for device ++ * mode operations. ++ * 1 to 15 (default 6 IN and OUT) ++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT ++ * endpoints in addition to EP0. ++ */ ++ int32_t dev_endpoints; ++#define dwc_param_dev_endpoints_default 6 ++ ++ /** ++ * Specifies the type of PHY interface to use. By default, the driver ++ * will automatically detect the phy_type. ++ * ++ * 0 - Full Speed PHY ++ * 1 - UTMI+ (default) ++ * 2 - ULPI ++ */ ++ int32_t phy_type; ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++ ++ /** ++ * Specifies the UTMI+ Data Width. This parameter is ++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI ++ * PHY_TYPE, this parameter indicates the data width between ++ * the MAC and the ULPI Wrapper.) Also, this parameter is ++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set ++ * to "8 and 16 bits", meaning that the core has been ++ * configured to work at either data path width. ++ * ++ * 8 or 16 bits (default 16) ++ */ ++ int32_t phy_utmi_width; ++#define dwc_param_phy_utmi_width_default 16 ++ ++ /** ++ * Specifies whether the ULPI operates at double or single ++ * data rate. This parameter is only applicable if PHY_TYPE is ++ * ULPI. ++ * ++ * 0 - single data rate ULPI interface with 8 bit wide data ++ * bus (default) ++ * 1 - double data rate ULPI interface with 4 bit wide data ++ * bus ++ */ ++ int32_t phy_ulpi_ddr; ++#define dwc_param_phy_ulpi_ddr_default 0 ++ ++ /** ++ * Specifies whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. ++ */ ++ int32_t phy_ulpi_ext_vbus; ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++ ++ /** ++ * Specifies whether to use the I2Cinterface for full speed PHY. This ++ * parameter is only applicable if PHY_TYPE is FS. ++ * 0 - No (default) ++ * 1 - Yes ++ */ ++ int32_t i2c_enable; ++#define dwc_param_i2c_enable_default 0 ++ ++ int32_t ulpi_fs_ls; ++#define dwc_param_ulpi_fs_ls_default 0 ++ ++ int32_t ts_dline; ++#define dwc_param_ts_dline_default 0 ++ ++ /** ++ * Specifies whether dedicated transmit FIFOs are ++ * enabled for non periodic IN endpoints in device mode ++ * 0 - No ++ * 1 - Yes ++ */ ++ int32_t en_multiple_tx_fifo; ++#define dwc_param_en_multiple_tx_fifo_default 1 ++ ++ /** Number of 4-byte words in each of the Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS]; ++#define dwc_param_dev_tx_fifo_size_default 256 ++ ++ /** Thresholding enable flag- ++ * bit 0 - enable non-ISO Tx thresholding ++ * bit 1 - enable ISO Tx thresholding ++ * bit 2 - enable Rx thresholding ++ */ ++ uint32_t thr_ctl; ++#define dwc_param_thr_ctl_default 0 ++ ++ /** Thresholding length for Tx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t tx_thr_length; ++#define dwc_param_tx_thr_length_default 64 ++ ++ /** Thresholding length for Rx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t rx_thr_length; ++#define dwc_param_rx_thr_length_default 64 ++ ++ /** Per Transfer Interrupt ++ * mode enable flag ++ * 1 - Enabled ++ * 0 - Disabled ++ */ ++ uint32_t pti_enable; ++#define dwc_param_pti_enable_default 0 ++ ++ /** Molti Processor Interrupt ++ * mode enable flag ++ * 1 - Enabled ++ * 0 - Disabled ++ */ ++ uint32_t mpi_enable; ++#define dwc_param_mpi_enable_default 0 ++ ++} dwc_otg_core_params_t; ++ ++#ifdef DEBUG ++struct dwc_otg_core_if; ++typedef struct hc_xfer_info ++{ ++ struct dwc_otg_core_if *core_if; ++ dwc_hc_t *hc; ++} hc_xfer_info_t; ++#endif ++ ++/** ++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage ++ * the DWC_otg controller acting in either host or device mode. It ++ * represents the programming view of the controller as a whole. ++ */ ++typedef struct dwc_otg_core_if ++{ ++ /** Parameters that define how the core should be configured.*/ ++ dwc_otg_core_params_t *core_params; ++ ++ /** Core Global registers starting at offset 000h. */ ++ dwc_otg_core_global_regs_t *core_global_regs; ++ ++ /** Device-specific information */ ++ dwc_otg_dev_if_t *dev_if; ++ /** Host-specific information */ ++ dwc_otg_host_if_t *host_if; ++ ++ /** Value from SNPSID register */ ++ uint32_t snpsid; ++ ++ /* ++ * Set to 1 if the core PHY interface bits in USBCFG have been ++ * initialized. ++ */ ++ uint8_t phy_init_done; ++ ++ /* ++ * SRP Success flag, set by srp success interrupt in FS I2C mode ++ */ ++ uint8_t srp_success; ++ uint8_t srp_timer_started; ++ ++ /* Common configuration information */ ++ /** Power and Clock Gating Control Register */ ++ volatile uint32_t *pcgcctl; ++#define DWC_OTG_PCGCCTL_OFFSET 0xE00 ++ ++ /** Push/pop addresses for endpoints or host channels.*/ ++ uint32_t *data_fifo[MAX_EPS_CHANNELS]; ++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 ++#define DWC_OTG_DATA_FIFO_SIZE 0x1000 ++ ++ /** Total RAM for FIFOs (Bytes) */ ++ uint16_t total_fifo_size; ++ /** Size of Rx FIFO (Bytes) */ ++ uint16_t rx_fifo_size; ++ /** Size of Non-periodic Tx FIFO (Bytes) */ ++ uint16_t nperio_tx_fifo_size; ++ ++ ++ /** 1 if DMA is enabled, 0 otherwise. */ ++ uint8_t dma_enable; ++ ++ /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */ ++ uint8_t dma_desc_enable; ++ ++ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */ ++ uint8_t pti_enh_enable; ++ ++ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */ ++ uint8_t multiproc_int_enable; ++ ++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */ ++ uint8_t en_multiple_tx_fifo; ++ ++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in ++ * process of being queued */ ++ uint8_t queuing_high_bandwidth; ++ ++ /** Hardware Configuration -- stored here for convenience.*/ ++ hwcfg1_data_t hwcfg1; ++ hwcfg2_data_t hwcfg2; ++ hwcfg3_data_t hwcfg3; ++ hwcfg4_data_t hwcfg4; ++ ++ /** Host and Device Configuration -- stored here for convenience.*/ ++ hcfg_data_t hcfg; ++ dcfg_data_t dcfg; ++ ++ /** The operational State, during transations ++ * (a_host>>a_peripherial and b_device=>b_host) this may not ++ * match the core but allows the software to determine ++ * transitions. ++ */ ++ uint8_t op_state; ++ ++ /** ++ * Set to 1 if the HCD needs to be restarted on a session request ++ * interrupt. This is required if no connector ID status change has ++ * occurred since the HCD was last disconnected. ++ */ ++ uint8_t restart_hcd_on_session_req; ++ ++ /** HCD callbacks */ ++ /** A-Device is a_host */ ++#define A_HOST (1) ++ /** A-Device is a_suspend */ ++#define A_SUSPEND (2) ++ /** A-Device is a_peripherial */ ++#define A_PERIPHERAL (3) ++ /** B-Device is operating as a Peripheral. */ ++#define B_PERIPHERAL (4) ++ /** B-Device is operating as a Host. */ ++#define B_HOST (5) ++ ++ /** HCD callbacks */ ++ struct dwc_otg_cil_callbacks *hcd_cb; ++ /** PCD callbacks */ ++ struct dwc_otg_cil_callbacks *pcd_cb; ++ ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t p_tx_msk; ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t tx_msk; ++ ++ /** Workqueue object used for handling several interrupts */ ++ struct workqueue_struct *wq_otg; ++ ++ /** Work object used for handling "Connector ID Status Change" Interrupt */ ++ struct work_struct w_conn_id; ++ ++ /** Work object used for handling "Wakeup Detected" Interrupt */ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ struct work_struct w_wkp; ++#else ++ struct delayed_work w_wkp; ++#endif ++ ++#ifdef DEBUG ++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; ++ ++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS]; ++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; ++ ++ uint32_t hfnum_7_samples; ++ uint64_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint64_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint64_t hfnum_other_frrem_accum; ++#endif ++ ++ ++} dwc_otg_core_if_t; ++ ++/*We must clear S3C24XX_EINTPEND external interrupt register ++ * because after clearing in this register trigerred IRQ from ++ * H/W core in kernel interrupt can be occured again before OTG ++ * handlers clear all IRQ sources of Core registers because of ++ * timing latencies and Low Level IRQ Type. ++ */ ++ ++#ifdef CONFIG_MACH_IPMATE ++#define S3C2410X_CLEAR_EINTPEND() \ ++do { \ ++ if (!dwc_otg_read_core_intr(core_if)) { \ ++ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \ ++ } \ ++} while (0) ++#else ++#define S3C2410X_CLEAR_EINTPEND() do { } while (0) ++#endif ++ ++/* ++ * The following functions are functions for works ++ * using during handling some interrupts ++ */ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ ++extern void w_conn_id_status_change(void *p); ++extern void w_wakeup_detected(void *p); ++ ++#else ++ ++extern void w_conn_id_status_change(struct work_struct *p); ++extern void w_wakeup_detected(struct work_struct *p); ++ ++#endif ++ ++ ++/* ++ * The following functions support initialization of the CIL driver component ++ * and the DWC_otg controller. ++ */ ++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params); ++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++ ++/** @name Device CIL Functions ++ * The following functions support managing the DWC_otg controller in device ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest); ++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma); ++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if); ++#ifdef DWC_EN_ISOC ++extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep); ++extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep); ++#endif //DWC_EN_ISOC ++/**@}*/ ++ ++/** @name Host CIL Functions ++ * The following functions support managing the DWC_otg controller in host ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status); ++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if); ++ ++/** ++ * This function Reads HPRT0 in preparation to modify. It keeps the ++ * WC bits 0 so that if they are read as 1, they won't clear when you ++ * write it back ++ */ ++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if) ++{ ++ hprt0_data_t hprt0; ++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0); ++ hprt0.b.prtena = 0; ++ hprt0.b.prtconndet = 0; ++ hprt0.b.prtenchng = 0; ++ hprt0.b.prtovrcurrchng = 0; ++ return hprt0.d32; ++} ++ ++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Common CIL Functions ++ * The following functions support managing the DWC_otg controller in either ++ * device or host mode. ++ */ ++/**@{*/ ++ ++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes); ++ ++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if); ++ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ); ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if ); ++ ++extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count); ++extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count); ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) & ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++} ++ ++/** ++ * This function returns the OTG Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint)); ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the IN endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t v; ++ ++ if(core_if->multiproc_int_enable) { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk); ++ } else { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ } ++ return (v & 0xffff); ++ ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the OUT endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t v; ++ ++ if(core_if->multiproc_int_enable) { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk); ++ } else { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ } ++ ++ return ((v & 0xffff0000) >> 16); ++} ++ ++/** ++ * This function returns the Device IN EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if, ++ dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ uint32_t v, msk, emp; ++ ++ if(core_if->multiproc_int_enable) { ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk; ++ } else { ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk; ++ } ++ ++ ++ return v; ++} ++/** ++ * This function returns the Device OUT EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ doepmsk_data_t msk = { .d32 = 0 }; ++ ++ if(_core_if->multiproc_int_enable) { ++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]); ++ if(_core_if->pti_enh_enable) { ++ msk.b.pktdrpsts = 1; ++ } ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32; ++ } else { ++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk); ++ if(_core_if->pti_enh_enable) { ++ msk.b.pktdrpsts = 1; ++ } ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32; ++ } ++ return v; ++} ++ ++/** ++ * This function returns the Host All Channel Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint)); ++} ++ ++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint)); ++} ++ ++ ++/** ++ * This function returns the mode of the operation, host or device. ++ * ++ * @return 0 - Device Mode, 1 - Host Mode ++ */ ++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1); ++} ++ ++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE); ++} ++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE); ++} ++ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ); ++ ++ ++/**@}*/ ++ ++/** ++ * DWC_otg CIL callback structure. This structure allows the HCD and ++ * PCD to register functions used for starting and stopping the PCD ++ * and HCD for role change on for a DRD. ++ */ ++typedef struct dwc_otg_cil_callbacks ++{ ++ /** Start function for role change */ ++ int (*start) (void *_p); ++ /** Stop Function for role change */ ++ int (*stop) (void *_p); ++ /** Disconnect Function for role change */ ++ int (*disconnect) (void *_p); ++ /** Resume/Remote wakeup Function */ ++ int (*resume_wakeup) (void *_p); ++ /** Suspend function */ ++ int (*suspend) (void *_p); ++ /** Session Start (SRP) */ ++ int (*session_start) (void *_p); ++ /** Pointer passed to start() and stop() */ ++ void *p; ++} dwc_otg_cil_callbacks_t; ++ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++ ++#endif ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c +@@ -0,0 +1,750 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1065567 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * This file contains the Common Interrupt handlers. ++ */ ++#include "linux/dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++#ifdef DEBUG ++inline const char *op_state_str(dwc_otg_core_if_t *core_if) ++{ ++ return (core_if->op_state==A_HOST?"a_host": ++ (core_if->op_state==A_SUSPEND?"a_suspend": ++ (core_if->op_state==A_PERIPHERAL?"a_peripheral": ++ (core_if->op_state==B_PERIPHERAL?"b_peripheral": ++ (core_if->op_state==B_HOST?"b_host": ++ "unknown"))))); ++} ++#endif ++ ++/** This function will log a debug message ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", ++ dwc_otg_mode(core_if) ? "Host" : "Device"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.modemismatch = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** Start the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->start) { ++ core_if->hcd_cb->start(core_if->hcd_cb->p); ++ } ++} ++/** Stop the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_stop(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->stop) { ++ core_if->hcd_cb->stop(core_if->hcd_cb->p); ++ } ++} ++/** Disconnect the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_disconnect(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) { ++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p); ++ } ++} ++/** Inform the HCD the a New Session has begun. Helper function for ++ * using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_session_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->session_start) { ++ core_if->hcd_cb->session_start(core_if->hcd_cb->p); ++ } ++} ++ ++/** Start the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->start) { ++ core_if->pcd_cb->start(core_if->pcd_cb->p); ++ } ++} ++/** Stop the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_stop(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->stop) { ++ core_if->pcd_cb->stop(core_if->pcd_cb->p); ++ } ++} ++/** Suspend the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_suspend(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->suspend) { ++ core_if->pcd_cb->suspend(core_if->pcd_cb->p); ++ } ++} ++/** Resume the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_resume(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++} ++ ++/** ++ * This function handles the OTG Interrupts. It reads the OTG ++ * Interrupt Register (GOTGINT) to determine what interrupt has ++ * occurred. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gotgint_data_t gotgint; ++ gotgctl_data_t gotgctl; ++ gintmsk_data_t gintmsk; ++ ++ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32); ++ ++ if (gotgint.b.sesenddet) { ++ DWC_DEBUGPL(DBG_ANY, "OTG Interrupt: " ++ "Session End Detected++ (%s)\n", ++ op_state_str(core_if)); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ ++ if (core_if->op_state == B_HOST) { ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ /* If not B_HOST and Device HNP still set. HNP ++ * Did not succeed!*/ ++ if (gotgctl.b.devhnpen) { ++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); ++ DWC_ERROR("Device Not Connected/Responding!\n"); ++ } ++ ++ /* If Session End Detected the B-Cable has ++ * been disconnected. */ ++ /* Reset PCD and Gadget driver to a ++ * clean state. */ ++ pcd_stop(core_if); ++ } ++ gotgctl.d32 = 0; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ if (gotgint.b.sesreqsucstschng) { ++ DWC_DEBUGPL(DBG_ANY, " OTG Interrupt: " ++ "Session Reqeust Success Status Change++\n"); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.sesreqscs) { ++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->core_params->i2c_enable)) { ++ core_if->srp_success = 1; ++ } ++ else { ++ pcd_resume(core_if); ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ } ++ } ++ if (gotgint.b.hstnegsucstschng) { ++ /* Print statements during the HNP interrupt handling ++ * can cause it to fail.*/ ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.hstnegscs) { ++ if (dwc_otg_is_host_mode(core_if)) { ++ core_if->op_state = B_HOST; ++ /* ++ * Need to disable SOF interrupt immediately. ++ * When switching from device to host, the PCD ++ * interrupt handler won't handle the ++ * interrupt if host mode is already set. The ++ * HCD interrupt handler won't get called if ++ * the HCD state is HALT. This means that the ++ * interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop(core_if); ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ hcd_start(core_if); ++ core_if->op_state = B_HOST; ++ } ++ } else { ++ gotgctl.d32 = 0; ++ gotgctl.b.hnpreq = 1; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++ } ++ } ++ if (gotgint.b.hstnegdet) { ++ /* The disconnect interrupt is set at the same time as ++ * Host Negotiation Detected. During the mode ++ * switch all interrupts are cleared so the disconnect ++ * interrupt handler will not get executed. ++ */ ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Host Negotiation Detected++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device")); ++ if (dwc_otg_is_device_mode(core_if)){ ++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state); ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = A_PERIPHERAL; ++ } else { ++ /* ++ * Need to disable SOF interrupt immediately. When ++ * switching from device to host, the PCD interrupt ++ * handler won't handle the interrupt if host mode is ++ * already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that ++ * the interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop(core_if); ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ if (gotgint.b.adevtoutchng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "A-Device Timeout Change++\n"); ++ } ++ if (gotgint.b.debdone) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Debounce Done++\n"); ++ } ++ ++ /* Clear GOTGINT */ ++ dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32); ++ ++ return 1; ++} ++ ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ ++void w_conn_id_status_change(void *p) ++{ ++ dwc_otg_core_if_t *core_if = p; ++ ++#else ++ ++void w_conn_id_status_change(struct work_struct *p) ++{ ++ dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id); ++ ++#endif ++ ++ ++ uint32_t count = 0; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); ++ ++ /* B-Device connector (Device Mode) */ ++ if (gotgctl.b.conidsts) { ++ /* Wait for switch to device mode. */ ++ while (!dwc_otg_is_device_mode(core_if)){ ++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ core_if->op_state = B_PERIPHERAL; ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ pcd_start(core_if); ++ } else { ++ /* A-Device connector (Host Mode) */ ++ while (!dwc_otg_is_host_mode(core_if)) { ++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ core_if->op_state = A_HOST; ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ hcd_start(core_if); ++ } ++} ++ ++ ++/** ++ * This function handles the Connector ID Status Change Interrupt. It ++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this ++ * is a Device to Host Mode transition or a Host Mode to Device ++ * Transition. ++ * ++ * This only occurs when the cable is connected/removed from the PHY ++ * connector. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if) ++{ ++ ++ /* ++ * Need to disable SOF interrupt immediately. If switching from device ++ * to host, the PCD interrupt handler won't handle the interrupt if ++ * host mode is already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that the interrupt does ++ * not get handled and Linux complains loudly. ++ */ ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ gintsts_data_t gintsts = { .d32 = 0 }; ++ ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ ++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device")); ++ ++ /* ++ * Need to schedule a work, as there are possible DELAY function calls ++ */ ++ queue_work(core_if->wq_otg, &core_if->w_conn_id); ++ ++ /* Set flag and clear interrupt */ ++ gintsts.b.conidstschng = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device is initiating the Session ++ * Request Protocol to request the host to turn on bus power so a new ++ * session can begin. The handler responds by turning on bus power. If ++ * the DWC_otg controller is in low power mode, the handler brings the ++ * controller out of low power mode before turning on bus power. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ ++#ifndef DWC_HOST_ONLY ++ hprt0_data_t hprt0; ++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ DWC_PRINT("SRP: Device mode\n"); ++ } else { ++ DWC_PRINT("SRP: Host mode\n"); ++ ++ /* Turn on the port power bit. */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Start the Connection timer. So a message can be displayed ++ * if connect does not occur within 10 seconds. */ ++ hcd_session_start(core_if); ++ } ++#endif ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sessreqintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++void w_wakeup_detected(void *p) ++{ ++ dwc_otg_core_if_t* core_if = p; ++ ++#else ++ ++void w_wakeup_detected(struct work_struct *p) ++{ ++ struct delayed_work *dw = container_of(p, struct delayed_work, work); ++ dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp); ++ ++#endif ++ /* ++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms ++ * so that OPT tests pass with all PHYs). ++ */ ++ hprt0_data_t hprt0 = {.d32=0}; ++#if 0 ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0); ++ UDELAY(10); ++#endif //0 ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32); ++// MDELAY(70); ++ hprt0.b.prtres = 0; /* Resume */ ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0)); ++} ++/** ++ * This interrupt indicates that the DWC_otg controller has detected a ++ * resume or remote wakeup sequence. If the DWC_otg controller is in ++ * low power mode, the handler must brings the controller out of low ++ * power mode. The controller automatically begins resume ++ * signaling. The handler schedules a time to stop resume signaling. ++ */ ++int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ dctl_data_t dctl = {.d32=0}; ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts)); ++#ifdef PARTIAL_POWER_DOWN ++ if (core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ ++ power.d32 = dwc_read_reg32(core_if->pcgcctl); ++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); ++ ++ power.b.stoppclk = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.pwrclmp = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ } ++#endif ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++ ++ } else { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0); ++ ++ queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1)); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.wkupintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device has been disconnected from ++ * the root port. ++ */ ++int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device"), ++ op_state_str(core_if)); ++ ++/** @todo Consolidate this if statement. */ ++#ifndef DWC_HOST_ONLY ++ if (core_if->op_state == B_HOST) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else if (dwc_otg_is_device_mode(core_if)) { ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ if (gotgctl.b.hstsethnpen==1) { ++ /* Do nothing, if HNP in process the OTG ++ * interrupt "Host Negotiation Detected" ++ * interrupt will do the mode switch. ++ */ ++ } else if (gotgctl.b.devhnpen == 0) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n"); ++ } ++ } else { ++ if (core_if->op_state == A_HOST) { ++ /* A-Cable still connected but device disconnected. */ ++ hcd_disconnect(core_if); ++ } ++ } ++#endif ++ ++ gintsts.d32 = 0; ++ gintsts.b.disconnect = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++/** ++ * This interrupt indicates that SUSPEND state has been detected on ++ * the USB. ++ * ++ * For HNP the USB Suspend interrupt signals the change from ++ * "a_peripheral" to "a_host". ++ * ++ * When power management is enabled the core will be put in low power ++ * mode. ++ */ ++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ /* Check the Device status register to determine if the Suspend ++ * state is active. */ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); ++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " ++ "HWCFG4.power Optimize=%d\n", ++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz); ++ ++ ++#ifdef PARTIAL_POWER_DOWN ++/** @todo Add a module parameter for power management. */ ++ ++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ DWC_DEBUGPL(DBG_CIL, "suspend\n"); ++ ++ power.b.pwrclmp = 1; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ ++ power.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n"); ++ } ++#endif ++ /* PCD callback for suspend. */ ++ pcd_suspend(core_if); ++ } else { ++ if (core_if->op_state == A_PERIPHERAL) { ++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n"); ++ /* Clear the a_peripheral flag, back to a_host. */ ++ pcd_stop(core_if); ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbsuspend = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ gintmsk_data_t gintmsk; ++ gintmsk_data_t gintmsk_common = {.d32=0}; ++ gintmsk_common.b.wkupintr = 1; ++ gintmsk_common.b.sessreqintr = 1; ++ gintmsk_common.b.conidstschng = 1; ++ gintmsk_common.b.otgintr = 1; ++ gintmsk_common.b.modemismatch = 1; ++ gintmsk_common.b.disconnect = 1; ++ gintmsk_common.b.usbsuspend = 1; ++ /** @todo: The port interrupt occurs while in device ++ * mode. Added code to CIL to clear the interrupt for now! ++ */ ++ gintmsk_common.b.portintr = 1; ++ ++ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts); ++ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk); ++#ifdef DEBUG ++ /* if any common interrupts set */ ++ if (gintsts.d32 & gintmsk_common.d32) { ++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", ++ gintsts.d32, gintmsk.d32); ++ } ++#endif ++ ++ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32); ++ ++} ++ ++/** ++ * Common interrupt handler. ++ * ++ * The common interrupts are those that occur in both Host and Device mode. ++ * This handler handles the following interrupts: ++ * - Mode Mismatch Interrupt ++ * - Disconnect Interrupt ++ * - OTG Interrupt ++ * - Connector ID Status Change Interrupt ++ * - Session Request Interrupt. ++ * - Resume / Remote Wakeup Detected Interrupt. ++ * ++ */ ++int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if) ++{ ++ int retval = 0; ++ gintsts_data_t gintsts; ++ ++ gintsts.d32 = dwc_otg_read_common_intr(core_if); ++ ++ if (gintsts.b.modemismatch) { ++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if); ++ } ++ if (gintsts.b.otgintr) { ++ retval |= dwc_otg_handle_otg_intr(core_if); ++ } ++ if (gintsts.b.conidstschng) { ++ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if); ++ } ++ if (gintsts.b.disconnect) { ++ retval |= dwc_otg_handle_disconnect_intr(core_if); ++ } ++ if (gintsts.b.sessreqintr) { ++ retval |= dwc_otg_handle_session_req_intr(core_if); ++ } ++ if (gintsts.b.wkupintr) { ++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if); ++ } ++ if (gintsts.b.usbsuspend) { ++ retval |= dwc_otg_handle_usb_suspend_intr(core_if); ++ } ++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) { ++ /* The port interrupt occurs while in device mode with HPRT0 ++ * Port Enable/Disable. ++ */ ++ gintsts.d32 = 0; ++ gintsts.b.portintr = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, ++ gintsts.d32); ++ retval |= 1; ++ ++ } ++ ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.c +@@ -0,0 +1,1273 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $ ++ * $Revision: 1.7 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 791271 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * The dwc_otg_driver module provides the initialization and cleanup entry ++ * points for the DWC_otg driver. This module will be dynamically installed ++ * after Linux is booted using the insmod command. When the module is ++ * installed, the dwc_otg_driver_init function is called. When the module is ++ * removed (using rmmod), the dwc_otg_driver_cleanup function is called. ++ * ++ * This module also defines a data structure for the dwc_otg_driver, which is ++ * used in conjunction with the standard ARM platform_device structure. These ++ * structures allow the OTG driver to comply with the standard Linux driver ++ * model in which devices and drivers are registered with a bus driver. This ++ * has the benefit that Linux can expose attributes of the driver and device ++ * in its special sysfs file system. Users can then read or write files in ++ * this file system to perform diagnostics on the driver components or the ++ * device. ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/version.h> ++#include <linux/platform_device.h> ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++# include <linux/irq.h> ++#endif ++ ++#include <asm/io.h> ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++# include <asm/irq.h> ++#endif ++ ++#include "linux/dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#include "dwc_otg_cil.h" ++#include "dwc_otg_pcd.h" ++#include "dwc_otg_hcd.h" ++ ++#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008" ++#define DWC_DRIVER_DESC "HS OTG USB Controller driver" ++ ++static const char dwc_driver_name[] = "dwc_otg"; ++ ++/*-------------------------------------------------------------------------*/ ++/* Encapsulate the module parameter settings */ ++ ++static dwc_otg_core_params_t dwc_otg_module_params = { ++ .opt = -1, ++ .otg_cap = -1, ++ .dma_enable = -1, ++ .dma_desc_enable = -1, ++ .dma_burst_size = -1, ++ .speed = -1, ++ .host_support_fs_ls_low_power = -1, ++ .host_ls_low_power_phy_clk = -1, ++ .enable_dynamic_fifo = -1, ++ .data_fifo_size = -1, ++ .dev_rx_fifo_size = -1, ++ .dev_nperio_tx_fifo_size = -1, ++ .dev_perio_tx_fifo_size = { ++ /* dev_perio_tx_fifo_size_1 */ ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1 ++ /* 15 */ ++ }, ++ .host_rx_fifo_size = -1, ++ .host_nperio_tx_fifo_size = -1, ++ .host_perio_tx_fifo_size = -1, ++ .max_transfer_size = -1, ++ .max_packet_count = -1, ++ .host_channels = -1, ++ .dev_endpoints = -1, ++ .phy_type = -1, ++ .phy_utmi_width = -1, ++ .phy_ulpi_ddr = -1, ++ .phy_ulpi_ext_vbus = -1, ++ .i2c_enable = -1, ++ .ulpi_fs_ls = -1, ++ .ts_dline = -1, ++ .en_multiple_tx_fifo = -1, ++ .dev_tx_fifo_size = { ++ /* dev_tx_fifo_size */ ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1 ++ /* 15 */ ++ }, ++ .thr_ctl = -1, ++ .tx_thr_length = -1, ++ .rx_thr_length = -1, ++ .pti_enable = -1, ++ .mpi_enable = -1, ++}; ++ ++/** ++ * This function shows the Driver Version. ++ */ ++static ssize_t version_show(struct device_driver *dev, char *buf) ++{ ++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2, "%s\n", ++ DWC_DRIVER_VERSION); ++} ++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); ++ ++/** ++ * Global Debug Level Mask. ++ */ ++uint32_t g_dbg_lvl = 0; /* OFF */ ++ ++/** ++ * This function shows the driver Debug Level. ++ */ ++static ssize_t dbg_level_show(struct device_driver *drv, char *buf) ++{ ++ return sprintf(buf, "0x%0x\n", g_dbg_lvl); ++} ++ ++/** ++ * This function stores the driver Debug Level. ++ */ ++static ssize_t dbg_level_store(struct device_driver *drv, const char *buf, ++ size_t count) ++{ ++ g_dbg_lvl = simple_strtoul(buf, NULL, 16); ++ return count; ++} ++static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store); ++ ++/** ++ * This function is called during module intialization to verify that ++ * the module parameters are in a valid state. ++ */ ++static int check_parameters(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ int retval = 0; ++ ++/* Checks if the parameter is outside of its valid range of values */ ++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \ ++ ((dwc_otg_module_params._param_ < (_low_)) || \ ++ (dwc_otg_module_params._param_ > (_high_))) ++ ++/* If the parameter has been set by the user, check that the parameter value is ++ * within the value range of values. If not, report a module error. */ ++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \ ++ do { \ ++ if (dwc_otg_module_params._param_ != -1) { \ ++ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \ ++ dwc_otg_module_params._param_, _string_); \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ retval++; \ ++ } \ ++ } \ ++ } while (0) ++ ++ DWC_OTG_PARAM_ERR(opt,0,1,"opt"); ++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap"); ++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable"); ++ DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable"); ++ DWC_OTG_PARAM_ERR(speed,0,1,"speed"); ++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power"); ++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk"); ++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo"); ++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size"); ++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count"); ++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels"); ++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints"); ++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus"); ++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable"); ++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls"); ++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline"); ++ ++ if (dwc_otg_module_params.dma_burst_size != -1) { ++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) { ++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n", ++ dwc_otg_module_params.dma_burst_size); ++ dwc_otg_module_params.dma_burst_size = 32; ++ retval++; ++ } ++ ++ { ++ uint8_t brst_sz = 0; ++ while(dwc_otg_module_params.dma_burst_size > 1) { ++ brst_sz ++; ++ dwc_otg_module_params.dma_burst_size >>= 1; ++ } ++ dwc_otg_module_params.dma_burst_size = brst_sz; ++ } ++ } ++ ++ if (dwc_otg_module_params.phy_utmi_width != -1) { ++ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) && ++ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) { ++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n", ++ dwc_otg_module_params.phy_utmi_width); ++ dwc_otg_module_params.phy_utmi_width = 16; ++ retval++; ++ } ++ } ++ ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i); ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo"); ++ ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i); ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl"); ++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length"); ++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length"); ++ ++ DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable"); ++ DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable"); ++ ++ /* At this point, all module parameters that have been set by the user ++ * are valid, and those that have not are left unset. Now set their ++ * default values and/or check the parameters against the hardware ++ * configurations of the OTG core. */ ++ ++/* This sets the parameter to the default value if it has not been set by the ++ * user */ ++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \ ++ ({ \ ++ int changed = 1; \ ++ if (dwc_otg_module_params._param_ == -1) { \ ++ changed = 0; \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ } \ ++ changed; \ ++ }) ++ ++/* This checks the macro agains the hardware configuration to see if it is ++ * valid. It is possible that the default value could be invalid. In this ++ * case, it will report a module error if the user touched the parameter. ++ * Otherwise it will adjust the value without any error. */ ++#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \ ++ ({ \ ++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \ ++ int error = 0; \ ++ if (!(_is_valid_)) { \ ++ if (changed) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \ ++ error = 1; \ ++ } \ ++ dwc_otg_module_params._param_ = (_set_valid_); \ ++ } \ ++ error; \ ++ }) ++ ++ /* OTG Cap */ ++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap", ++ ({ ++ int valid; ++ valid = 1; ++ switch (dwc_otg_module_params.otg_cap) { ++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: ++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ++ valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: ++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { ++ valid = 0; ++ } ++ break; ++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: ++ /* always valid */ ++ break; ++ } ++ valid; ++ }), ++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ? ++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable", ++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable", ++ ((dwc_otg_module_params.dma_desc_enable == 1) && ++ ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power, ++ "host_support_fs_ls_low_power", ++ 1, 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo, ++ "enable_dynamic_fifo", ++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) || ++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, ++ "data_fifo_size", ++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth), ++ core_if->hwcfg3.b.dfifo_depth); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size, ++ "dev_rx_fifo_size", ++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, ++ "dev_nperio_tx_fifo_size", ++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size, ++ "host_rx_fifo_size", ++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size, ++ "host_nperio_tx_fifo_size", ++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size, ++ "host_perio_tx_fifo_size", ++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))), ++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size, ++ "max_transfer_size", ++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))), ++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count, ++ "max_packet_count", ++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))), ++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, ++ "host_channels", ++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)), ++ (core_if->hwcfg2.b.num_host_chan + 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, ++ "dev_endpoints", ++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)), ++ core_if->hwcfg2.b.num_dev_ep); ++ ++/* ++ * Define the following to disable the FS PHY Hardware checking. This is for ++ * internal testing only. ++ * ++ * #define NO_FS_PHY_HW_CHECKS ++ */ ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", ++ ({ ++ int valid = 0; ++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 1) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 2) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->hwcfg2.b.fs_phy_type == 1)) { ++ valid = 1; ++ } ++ valid; ++ }), ++ ({ ++ int set = DWC_PHY_TYPE_PARAM_FS; ++ if (core_if->hwcfg2.b.hs_phy_type) { ++ if ((core_if->hwcfg2.b.hs_phy_type == 3) || ++ (core_if->hwcfg2.b.hs_phy_type == 1)) { ++ set = DWC_PHY_TYPE_PARAM_UTMI; ++ } ++ else { ++ set = DWC_PHY_TYPE_PARAM_ULPI; ++ } ++ } ++ set; ++ })); ++#endif ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed", ++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk, ++ "host_ls_low_power_phy_clk", ++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1), ++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width); ++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls); ++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline); ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", ++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, ++ 0); ++#endif ++ ++ for (i = 0; i < 15; i++) { ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo", ++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, ++ 0); ++ ++ for (i = 0; i < 15; i++) { ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl", ++ ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1, ++ 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length); ++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable", ++ ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable", ++ ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0, ++ 0); ++ return retval; ++} ++ ++/** ++ * This function is the top level interrupt handler for the Common ++ * (Device and host modes) interrupts. ++ */ ++static irqreturn_t dwc_otg_common_irq(int irq, void *dev ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ++ , struct pt_regs *r ++#endif ++ ) ++{ ++ dwc_otg_device_t *otg_dev = dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_handle_common_intr(otg_dev->core_if); ++ return IRQ_RETVAL(retval); ++} ++ ++/** ++ * This function is called when a platform_device is unregistered with the ++ * dwc_otg_driver. This happens, for example, when the rmmod command is ++ * executed. The device may or may not be electrically present. If it is ++ * present, the driver stops device processing. Any resources used on behalf ++ * of this device are freed. ++ * ++ * @param[in] pdev ++ */ ++static int dwc_otg_driver_remove(struct platform_device *pdev) ++{ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev); ++ ++ if (!otg_dev) { ++ /* Memory allocation for the dwc_otg_device failed. */ ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__); ++ return 0; ++ } ++ ++ /* ++ * Free the IRQ ++ */ ++ if (otg_dev->common_irq_installed) { ++ free_irq(otg_dev->irq, otg_dev); ++ } ++ ++#ifndef DWC_DEVICE_ONLY ++ if (otg_dev->hcd) { ++ dwc_otg_hcd_remove(&pdev->dev); ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__); ++ return 0; ++ } ++#endif ++ ++#ifndef DWC_HOST_ONLY ++ if (otg_dev->pcd) { ++ dwc_otg_pcd_remove(&pdev->dev); ++ } ++#endif ++ if (otg_dev->core_if) { ++ dwc_otg_cil_remove(otg_dev->core_if); ++ } ++ ++ /* ++ * Remove the device attributes ++ */ ++ dwc_otg_attr_remove(otg_dev->parent); ++ ++ /* Disable USB port */ ++ dwc_write_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0xe00), 0xf); ++ ++ /* ++ * Return the memory. ++ */ ++ if (otg_dev->base) { ++ iounmap(otg_dev->base); ++ } ++ ++ if (otg_dev->phys_addr != 0) { ++ release_mem_region(otg_dev->phys_addr, otg_dev->base_len); ++ } ++ ++ kfree(otg_dev); ++ ++ /* ++ * Clear the drvdata pointer. ++ */ ++ platform_set_drvdata(pdev, NULL); ++ ++ return 0; ++} ++ ++/** ++ * This function is called when an platform_device is bound to a ++ * dwc_otg_driver. It creates the driver components required to ++ * control the device (CIL, HCD, and PCD) and it initializes the ++ * device. The driver components are stored in a dwc_otg_device ++ * structure. A reference to the dwc_otg_device is saved in the ++ * platform_device. This allows the driver to access the dwc_otg_device ++ * structure on subsequent calls to driver methods for this device. ++ * ++ * @param[in] pdev platform_device definition ++ */ ++static int dwc_otg_driver_probe(struct platform_device *pdev) ++{ ++ int retval = 0; ++ uint32_t snpsid; ++ dwc_otg_device_t *otg_dev; ++ struct resource *res; ++ ++ dev_dbg(&pdev->dev, "dwc_otg_driver_probe(%p)\n", pdev); ++ ++ otg_dev= kzalloc(sizeof(dwc_otg_device_t), GFP_KERNEL); ++ if (!otg_dev) { ++ dev_err(&pdev->dev, "kmalloc of dwc_otg_device failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ otg_dev->reg_offset = 0xFFFFFFFF; ++ ++ /* ++ * Retrieve the memory and IRQ resources. ++ */ ++ otg_dev->irq = platform_get_irq(pdev, 0); ++ if (otg_dev->irq <= 0) { ++ dev_err(&pdev->dev, "no device irq\n"); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (res == NULL) { ++ dev_err(&pdev->dev, "no CSR address\n"); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ otg_dev->parent = &pdev->dev; ++ otg_dev->phys_addr = res->start; ++ otg_dev->base_len = res->end - res->start + 1; ++ if (request_mem_region(otg_dev->phys_addr, ++ otg_dev->base_len, ++ dwc_driver_name) == NULL) { ++ dev_err(&pdev->dev, "request_mem_region failed\n"); ++ retval = -EBUSY; ++ goto fail; ++ } ++ ++ /* ++ * Map the DWC_otg Core memory into virtual address space. ++ */ ++ otg_dev->base = ioremap(otg_dev->phys_addr, otg_dev->base_len); ++ if (!otg_dev->base) { ++ dev_err(&pdev->dev, "ioremap() failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ dev_dbg(&pdev->dev, "mapped base=0x%08x\n", (unsigned) otg_dev->base); ++ ++ /* Enable USB Port */ ++ dwc_write_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0xe00), 0); ++ ++ /* ++ * Attempt to ensure this device is really a DWC_otg Controller. ++ * Read and verify the SNPSID register contents. The value should be ++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". ++ */ ++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)otg_dev->base + 0x40)); ++ ++ if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) { ++ dev_err(&pdev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ DWC_PRINT("Core Release: %x.%x%x%x\n", ++ (snpsid >> 12 & 0xF), ++ (snpsid >> 8 & 0xF), ++ (snpsid >> 4 & 0xF), ++ (snpsid & 0xF)); ++ ++ /* ++ * Initialize driver data to point to the global DWC_otg ++ * Device structure. ++ */ ++ platform_set_drvdata(pdev, otg_dev); ++ dev_dbg(&pdev->dev, "dwc_otg_device=0x%p\n", otg_dev); ++ ++ ++ otg_dev->core_if = dwc_otg_cil_init(otg_dev->base, ++ &dwc_otg_module_params); ++ ++ otg_dev->core_if->snpsid = snpsid; ++ ++ if (!otg_dev->core_if) { ++ dev_err(&pdev->dev, "CIL initialization failed!\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ /* ++ * Validate parameter values. ++ */ ++ if (check_parameters(otg_dev->core_if)) { ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* ++ * Create Device Attributes in sysfs ++ */ ++ //dwc_otg_attr_create(&pdev->dev); ++ ++ /* ++ * Disable the global interrupt until all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_disable_global_interrupts(otg_dev->core_if); ++ ++ /* ++ * Install the interrupt handler for the common interrupts before ++ * enabling common interrupts in core_init below. ++ */ ++ DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", ++ otg_dev->irq); ++ retval = request_irq(otg_dev->irq, dwc_otg_common_irq, ++ IRQF_SHARED, "dwc_otg", otg_dev); ++ if (retval) { ++ DWC_ERROR("request of irq%d failed\n", otg_dev->irq); ++ retval = -EBUSY; ++ goto fail; ++ } else { ++ otg_dev->common_irq_installed = 1; ++ } ++ ++ /* ++ * Initialize the DWC_otg core. ++ */ ++ dwc_otg_core_init(otg_dev->core_if); ++ ++#ifndef DWC_HOST_ONLY ++ /* ++ * Initialize the PCD ++ */ ++ retval = dwc_otg_pcd_init(&pdev->dev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_pcd_init failed\n"); ++ otg_dev->pcd = NULL; ++ goto fail; ++ } ++#endif ++#ifndef DWC_DEVICE_ONLY ++ /* ++ * Initialize the HCD ++ */ ++ retval = dwc_otg_hcd_init(&pdev->dev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_hcd_init failed\n"); ++ otg_dev->hcd = NULL; ++ goto fail; ++ } ++#endif ++ ++ /* ++ * Enable the global interrupt after all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_enable_global_interrupts(otg_dev->core_if); ++ ++ return 0; ++ ++ fail: ++ dwc_otg_driver_remove(pdev); ++ return retval; ++} ++ ++/** ++ * This structure defines the methods to be called by a bus driver ++ * during the lifecycle of a device on that bus. Both drivers and ++ * devices are registered with a bus driver. The bus driver matches ++ * devices to drivers based on information in the device and driver ++ * structures. ++ * ++ * The probe function is called when the bus driver matches a device ++ * to this driver. The remove function is called when a device is ++ * unregistered with the bus driver. ++ */ ++ ++static const struct of_device_id ralink_otg_match[] = { ++ { .compatible = "ralink,rt3050-otg" }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, ralink_otg_match); ++ ++static struct platform_driver dwc_otg_driver = { ++ .driver = { ++ .name = (char *)dwc_driver_name, ++ .of_match_table = ralink_otg_match, ++ }, ++ .probe = dwc_otg_driver_probe, ++ .remove = dwc_otg_driver_remove, ++}; ++ ++/** ++ * This function is called when the dwc_otg_driver is installed with the ++ * insmod command. It registers the dwc_otg_driver structure with the ++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function ++ * to be called. In addition, the bus driver will automatically expose ++ * attributes defined for the device and driver in the special sysfs file ++ * system. ++ * ++ * @return ++ */ ++static int __init dwc_otg_driver_init(void) ++{ ++ int retval = 0; ++ int error; ++ ++ printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION); ++ ++ retval = platform_driver_register(&dwc_otg_driver); ++ if (retval) { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ return retval; ++ } ++ ++ error = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version); ++ error = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ ++ return retval; ++} ++module_init(dwc_otg_driver_init); ++ ++/** ++ * This function is called when the driver is removed from the kernel ++ * with the rmmod command. The driver unregisters itself with its bus ++ * driver. ++ * ++ */ ++static void __exit dwc_otg_driver_cleanup(void) ++{ ++ printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n"); ++ ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++ ++ platform_driver_unregister(&dwc_otg_driver); ++ ++ printk(KERN_INFO "%s module removed\n", dwc_driver_name); ++} ++module_exit(dwc_otg_driver_cleanup); ++ ++MODULE_DESCRIPTION(DWC_DRIVER_DESC); ++MODULE_AUTHOR("Synopsys Inc."); ++MODULE_LICENSE("GPL"); ++ ++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); ++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); ++module_param_named(opt, dwc_otg_module_params.opt, int, 0444); ++MODULE_PARM_DESC(opt, "OPT Mode"); ++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); ++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); ++ ++module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444); ++MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled"); ++ ++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444); ++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); ++module_param_named(speed, dwc_otg_module_params.speed, int, 0444); ++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); ++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444); ++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support"); ++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); ++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); ++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444); ++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); ++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444); ++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768"); ++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768"); ++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444); ++/** @todo Set the max to 512K, modify checks */ ++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535"); ++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444); ++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511"); ++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444); ++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16"); ++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444); ++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15"); ++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); ++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); ++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444); ++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); ++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double"); ++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal"); ++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); ++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); ++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); ++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); ++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); ++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); ++module_param_named(debug, g_dbg_lvl, int, 0444); ++MODULE_PARM_DESC(debug, ""); ++ ++module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444); ++MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled"); ++module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768"); ++ ++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444); ++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled"); ++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444); ++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs"); ++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444); ++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs"); ++ ++module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444); ++MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled"); ++ ++module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444); ++MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled"); ++ ++/** @page "Module Parameters" ++ * ++ * The following parameters may be specified when starting the module. ++ * These parameters define how the DWC_otg controller should be ++ * configured. Parameter values are passed to the CIL initialization ++ * function dwc_otg_cil_init ++ * ++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code> ++ * ++ ++ <table> ++ <tr><td>Parameter Name</td><td>Meaning</td></tr> ++ ++ <tr> ++ <td>otg_cap</td> ++ <td>Specifies the OTG capabilities. The driver will automatically detect the ++ value for this parameter if none is specified. ++ - 0: HNP and SRP capable (default, if available) ++ - 1: SRP Only capable ++ - 2: No HNP/SRP capable ++ </td></tr> ++ ++ <tr> ++ <td>dma_enable</td> ++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Slave ++ - 1: DMA (default, if available) ++ </td></tr> ++ ++ <tr> ++ <td>dma_burst_size</td> ++ <td>The DMA Burst size (applicable only for External DMA Mode). ++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ </td></tr> ++ ++ <tr> ++ <td>speed</td> ++ <td>Specifies the maximum speed of operation in host and device mode. The ++ actual speed depends on the speed of the attached device and the value of ++ phy_type. ++ - 0: High Speed (default) ++ - 1: Full Speed ++ </td></tr> ++ ++ <tr> ++ <td>host_support_fs_ls_low_power</td> ++ <td>Specifies whether low power mode is supported when attached to a Full ++ Speed or Low Speed device in host mode. ++ - 0: Don't support low power mode (default) ++ - 1: Support low power mode ++ </td></tr> ++ ++ <tr> ++ <td>host_ls_low_power_phy_clk</td> ++ <td>Specifies the PHY clock rate in low power mode when connected to a Low ++ Speed device in host mode. This parameter is applicable only if ++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled. ++ - 0: 48 MHz (default) ++ - 1: 6 MHz ++ </td></tr> ++ ++ <tr> ++ <td>enable_dynamic_fifo</td> ++ <td> Specifies whether FIFOs may be resized by the driver software. ++ - 0: Use cC FIFO size parameters ++ - 1: Allow dynamic FIFO sizing (default) ++ </td></tr> ++ ++ <tr> ++ <td>data_fifo_size</td> ++ <td>Total number of 4-byte words in the data FIFO memory. This memory ++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. ++ - Values: 32 to 32768 (default 8192) ++ ++ Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ </td></tr> ++ ++ <tr> ++ <td>dev_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1064) ++ </td></tr> ++ ++ <tr> ++ <td>dev_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when ++ dynamic FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td> ++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++ </td></tr> ++ ++ <tr> ++ <td>host_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when ++ dynamic FIFO sizing is enabled in the core. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_perio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>max_transfer_size</td> ++ <td>The maximum transfer size supported in bytes. ++ - Values: 2047 to 65,535 (default 65,535) ++ </td></tr> ++ ++ <tr> ++ <td>max_packet_count</td> ++ <td>The maximum number of packets in a transfer. ++ - Values: 15 to 511 (default 511) ++ </td></tr> ++ ++ <tr> ++ <td>host_channels</td> ++ <td>The number of host channel registers to use. ++ - Values: 1 to 16 (default 12) ++ ++ Note: The FPGA configuration supports a maximum of 12 host channels. ++ </td></tr> ++ ++ <tr> ++ <td>dev_endpoints</td> ++ <td>The number of endpoints in addition to EP0 available for device mode ++ operations. ++ - Values: 1 to 15 (default 6 IN and OUT) ++ ++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in ++ addition to EP0. ++ </td></tr> ++ ++ <tr> ++ <td>phy_type</td> ++ <td>Specifies the type of PHY interface to use. By default, the driver will ++ automatically detect the phy_type. ++ - 0: Full Speed ++ - 1: UTMI+ (default, if available) ++ - 2: ULPI ++ </td></tr> ++ ++ <tr> ++ <td>phy_utmi_width</td> ++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a ++ phy_type of UTMI+. Also, this parameter is applicable only if the ++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the ++ core has been configured to work at either data path width. ++ - Values: 8 or 16 bits (default 16) ++ </td></tr> ++ ++ <tr> ++ <td>phy_ulpi_ddr</td> ++ <td>Specifies whether the ULPI operates at double or single data rate. This ++ parameter is only applicable if phy_type is ULPI. ++ - 0: single data rate ULPI interface with 8 bit wide data bus (default) ++ - 1: double data rate ULPI interface with 4 bit wide data bus ++ </td></tr> ++ ++ <tr> ++ <td>i2c_enable</td> ++ <td>Specifies whether to use the I2C interface for full speed PHY. This ++ parameter is only applicable if PHY_TYPE is FS. ++ - 0: Disabled (default) ++ - 1: Enabled ++ </td></tr> ++ ++ <tr> ++ <td>otg_en_multiple_tx_fifo</td> ++ <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Disabled ++ - 1: Enabled (default, if available) ++ </td></tr> ++ ++ <tr> ++ <td>dev_tx_fifo_size_n (n = 1 to 15)</td> ++ <td>Number of 4-byte words in each of the Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++ </td></tr> ++ ++*/ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.h +@@ -0,0 +1,83 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_DRIVER_H__ ++#define __DWC_OTG_DRIVER_H__ ++ ++/** @file ++ * This file contains the interface to the Linux driver. ++ */ ++#include "dwc_otg_cil.h" ++ ++/* Type declarations */ ++struct dwc_otg_pcd; ++struct dwc_otg_hcd; ++ ++/** ++ * This structure is a wrapper that encapsulates the driver components used to ++ * manage a single DWC_otg controller. ++ */ ++typedef struct dwc_otg_device { ++ /** Base address returned from ioremap() */ ++ void *base; ++ ++ struct device *parent; ++ ++ /** Pointer to the core interface structure. */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Register offset for Diagnostic API. */ ++ uint32_t reg_offset; ++ ++ /** Pointer to the PCD structure. */ ++ struct dwc_otg_pcd *pcd; ++ ++ /** Pointer to the HCD structure. */ ++ struct dwc_otg_hcd *hcd; ++ ++ /** Flag to indicate whether the common IRQ handler is installed. */ ++ uint8_t common_irq_installed; ++ ++ /* Interrupt request number. */ ++ unsigned int irq; ++ ++ /* Physical address of Control and Status registers, used by ++ * release_mem_region(). ++ */ ++ resource_size_t phys_addr; ++ ++ /* Length of memory region, used by release_mem_region(). */ ++ unsigned long base_len; ++} dwc_otg_device_t; ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c +@@ -0,0 +1,2852 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $ ++ * $Revision: 1.4 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1064940 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the implementation of the HCD. In Linux, the HCD ++ * implements the hc_driver API. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++static const char dwc_otg_hcd_name[] = "dwc_otg"; ++ ++static const struct hc_driver dwc_otg_hc_driver = { ++ ++ .description = dwc_otg_hcd_name, ++ .product_desc = "DWC OTG Controller", ++ .hcd_priv_size = sizeof(dwc_otg_hcd_t), ++ ++ .irq = dwc_otg_hcd_irq, ++ ++ .flags = HCD_MEMORY | HCD_USB2, ++ ++ //.reset = ++ .start = dwc_otg_hcd_start, ++ //.suspend = ++ //.resume = ++ .stop = dwc_otg_hcd_stop, ++ ++ .urb_enqueue = dwc_otg_hcd_urb_enqueue, ++ .urb_dequeue = dwc_otg_hcd_urb_dequeue, ++ .endpoint_disable = dwc_otg_hcd_endpoint_disable, ++ ++ .get_frame_number = dwc_otg_hcd_get_frame_number, ++ ++ .hub_status_data = dwc_otg_hcd_hub_status_data, ++ .hub_control = dwc_otg_hcd_hub_control, ++ //.hub_suspend = ++ //.hub_resume = ++}; ++ ++/** ++ * Work queue function for starting the HCD when A-Cable is connected. ++ * The dwc_otg_hcd_start() must be called in a process context. ++ */ ++static void hcd_start_func( ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ void *_vp ++#else ++ struct work_struct *_work ++#endif ++ ) ++{ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp; ++#else ++ struct delayed_work *dw = container_of(_work, struct delayed_work, work); ++ struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work); ++ struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv); ++#endif ++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); ++ if (usb_hcd) { ++ dwc_otg_hcd_start(usb_hcd); ++ } ++} ++ ++/** ++ * HCD Callback function for starting the HCD when A-Cable is ++ * connected. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_start_cb(void *p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ if (core_if->op_state == B_HOST) { ++ /* ++ * Reset the port. During a HNP mode switch the reset ++ * needs to occur within 1ms and have a duration of at ++ * least 50ms. ++ */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ((struct usb_hcd *)p)->self.is_b_host = 1; ++ } else { ++ ((struct usb_hcd *)p)->self.is_b_host = 0; ++ } ++ ++ /* Need to start the HCD in a non-interrupt context. */ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func, p); ++// INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func, p); ++#else ++// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++ INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++#endif ++// schedule_work(&dwc_otg_hcd->start_work); ++ queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000); ++ ++ return 1; ++} ++ ++/** ++ * HCD Callback function for stopping the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_stop_cb(void *p) ++{ ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)p; ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ dwc_otg_hcd_stop(usb_hcd); ++ return 1; ++} ++ ++static void del_xfer_timers(dwc_otg_hcd_t *hcd) ++{ ++#ifdef DEBUG ++ int i; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ del_timer(&hcd->core_if->hc_xfer_timer[i]); ++ } ++#endif ++} ++ ++static void del_timers(dwc_otg_hcd_t *hcd) ++{ ++ del_xfer_timers(hcd); ++ del_timer(&hcd->conn_timer); ++} ++ ++/** ++ * Processes all the URBs in a single list of QHs. Completes them with ++ * -ETIMEDOUT and frees the QTD. ++ */ ++static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list) ++{ ++ struct list_head *qh_item; ++ dwc_otg_qh_t *qh; ++ struct list_head *qtd_item; ++ dwc_otg_qtd_t *qtd; ++ ++ list_for_each(qh_item, qh_list) { ++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry); ++ for (qtd_item = qh->qtd_list.next; ++ qtd_item != &qh->qtd_list; ++ qtd_item = qh->qtd_list.next) { ++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry); ++ if (qtd->urb != NULL) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, ++ -ETIMEDOUT); ++ } ++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd); ++ } ++ } ++} ++ ++/** ++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic ++ * and periodic schedules. The QTD associated with each URB is removed from ++ * the schedule and freed. This function may be called when a disconnect is ++ * detected or when the HCD is being stopped. ++ */ ++static void kill_all_urbs(dwc_otg_hcd_t *hcd) ++{ ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_disconnect_cb(void *p) ++{ ++ gintsts_data_t intr; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ ++ //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ ++ /* ++ * Set status flags for the hub driver. ++ */ ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 0; ++ ++ /* ++ * Shutdown any transfers in process by clearing the Tx FIFO Empty ++ * interrupt mask and status bits and disabling subsequent host ++ * channel interrupts. ++ */ ++ intr.d32 = 0; ++ intr.b.nptxfempty = 1; ++ intr.b.ptxfempty = 1; ++ intr.b.hcintr = 1; ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* ++ * Turn off the vbus power only if the core has transitioned to device ++ * mode. If still in host mode, need to keep power on to detect a ++ * reconnection. ++ */ ++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { ++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { ++ hprt0_data_t hprt0 = { .d32=0 }; ++ DWC_PRINT("Disconnect: PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ } ++ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ } ++ ++ /* Respond with an error status to all URBs in the schedule. */ ++ kill_all_urbs(dwc_otg_hcd); ++ ++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { ++ /* Clean up any host channels that were in use. */ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ /* Flush out any channel requests in slave mode. */ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ } ++ } ++ } ++ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ /* Halt the channel. */ ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel); ++ list_add_tail(&channel->hc_list_entry, ++ &dwc_otg_hcd->free_hc_list); ++ } ++ } ++ } ++ ++ /* A disconnect will end the session so the B-Device is no ++ * longer a B-host. */ ++ ((struct usb_hcd *)p)->self.is_b_host = 0; ++ return 1; ++} ++ ++/** ++ * Connection timeout function. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. ++ */ ++void dwc_otg_hcd_connect_timeout(unsigned long ptr) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr); ++ DWC_PRINT("Connect Timeout\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++} ++ ++/** ++ * Start the connection timer. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. The ++ * timer is deleted if a port connect interrupt occurs before the ++ * timer expires. ++ */ ++static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd) ++{ ++ init_timer(&hcd->conn_timer); ++ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; ++ hcd->conn_timer.data = 0; ++ hcd->conn_timer.expires = jiffies + (HZ * 10); ++ add_timer(&hcd->conn_timer); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_session_start_cb(void *p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd); ++ return 1; ++} ++ ++/** ++ * HCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = { ++ .start = dwc_otg_hcd_start_cb, ++ .stop = dwc_otg_hcd_stop_cb, ++ .disconnect = dwc_otg_hcd_disconnect_cb, ++ .session_start = dwc_otg_hcd_session_start_cb, ++ .p = 0, ++}; ++ ++/** ++ * Reset tasklet function ++ */ ++static void reset_tasklet_func(unsigned long data) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data; ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); ++ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(60); ++ ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++} ++ ++static struct tasklet_struct reset_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = reset_tasklet_func, ++ .data = 0, ++}; ++ ++/** ++ * Initializes the HCD. This function allocates memory for and initializes the ++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the ++ * USB bus with the core and calls the hc_driver->start() function. It returns ++ * a negative error on failure. ++ */ ++int dwc_otg_hcd_init(struct device *dev) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(dev); ++ struct usb_hcd *hcd = NULL; ++ dwc_otg_hcd_t *dwc_otg_hcd = NULL; ++ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ int retval = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ /* 2.6.20+ requires dev.dma_mask to be set prior to calling usb_create_hcd() */ ++ ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ dev->dma_mask = (void *)~0; ++ dev->coherent_dma_mask = ~0; ++ ++ if (otg_dev->core_if->dma_desc_enable) { ++ DWC_PRINT("Device using Descriptor DMA mode\n"); ++ } else { ++ DWC_PRINT("Device using Buffer DMA mode\n"); ++ } ++ } else { ++ DWC_PRINT("Using Slave mode\n"); ++ dev->dma_mask = (void *)0; ++ dev->coherent_dma_mask = 0; ++ } ++#endif ++ /* ++ * Allocate memory for the base HCD plus the DWC OTG HCD. ++ * Initialize the base HCD. ++ */ ++ hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev)); ++ if (!hcd) { ++ retval = -ENOMEM; ++ goto error1; ++ } ++ ++ dev_set_drvdata(dev, otg_dev); ++ hcd->regs = otg_dev->base; ++ hcd->rsrc_start = otg_dev->phys_addr; ++ hcd->rsrc_len = otg_dev->base_len; ++ hcd->self.otg_port = 1; ++ hcd->has_tt = 1; ++ ++ /* Initialize the DWC OTG HCD. */ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_hcd->core_if = otg_dev->core_if; ++ otg_dev->hcd = dwc_otg_hcd; ++ ++ /* */ ++ spin_lock_init(&dwc_otg_hcd->lock); ++ ++ /* Register the HCD CIL Callbacks */ ++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, ++ &hcd_cil_callbacks, hcd); ++ ++ /* Initialize the non-periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); ++ ++ /* Initialize the periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); ++ ++ /* ++ * Create a host channel descriptor for each host channel implemented ++ * in the controller. Initialize the channel descriptor array. ++ */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array)); ++ for (i = 0; i < num_channels; i++) { ++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL); ++ if (channel == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: host channel allocation failed\n", __func__); ++ goto error2; ++ } ++ memset(channel, 0, sizeof(dwc_hc_t)); ++ channel->hc_num = i; ++ dwc_otg_hcd->hc_ptr_array[i] = channel; ++#ifdef DEBUG ++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); ++#endif ++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel); ++ } ++ ++ /* Initialize the Connection timeout timer. */ ++ init_timer(&dwc_otg_hcd->conn_timer); ++ ++ /* Initialize reset tasklet. */ ++ reset_tasklet.data = (unsigned long) dwc_otg_hcd; ++ dwc_otg_hcd->reset_tasklet = &reset_tasklet; ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ dev->dma_mask = (void *)~0; ++ dev->coherent_dma_mask = ~0; ++ ++ if (otg_dev->core_if->dma_desc_enable){ ++ DWC_PRINT("Device using Descriptor DMA mode\n"); ++ } else { ++ DWC_PRINT("Device using Buffer DMA mode\n"); ++ } ++ } else { ++ DWC_PRINT("Using Slave mode\n"); ++ dev->dma_mask = (void *)0; ++ dev->dev.coherent_dma_mask = 0; ++ } ++#endif ++ /* ++ * Finish generic HCD initialization and start the HCD. This function ++ * allocates the DMA buffer pool, registers the USB bus, requests the ++ * IRQ line, and calls dwc_otg_hcd_start method. ++ */ ++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED); ++ if (retval < 0) { ++ goto error2; ++ } ++ ++ /* ++ * Allocate space for storing data on status transactions. Normally no ++ * data is sent, but this space acts as a bit bucket. This must be ++ * done after usb_add_hcd since that function allocates the DMA buffer ++ * pool. ++ */ ++ if (otg_dev->core_if->dma_enable) { ++ dwc_otg_hcd->status_buf = ++ dma_alloc_coherent(dev, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ &dwc_otg_hcd->status_buf_dma, ++ GFP_KERNEL | GFP_DMA); ++ } else { ++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, ++ GFP_KERNEL); ++ } ++ if (!dwc_otg_hcd->status_buf) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: status_buf allocation failed\n", __func__); ++ goto error3; ++ } ++ ++ dwc_otg_hcd->otg_dev = otg_dev; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n", ++ dev_name(dev), hcd->self.busnum); ++ ++ return 0; ++ ++ /* Error conditions */ ++ error3: ++ usb_remove_hcd(hcd); ++ error2: ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++ ++ /* FIXME: 2008/05/03 by Steven ++ * write back to device: ++ * dwc_otg_hcd has already been released by dwc_otg_hcd_free() ++ */ ++ dev_set_drvdata(dev, otg_dev); ++ ++ error1: ++ return retval; ++} ++ ++/** ++ * Removes the HCD. ++ * Frees memory and resources associated with the HCD and deregisters the bus. ++ */ ++void dwc_otg_hcd_remove(struct device *dev) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(dev); ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ struct usb_hcd *hcd; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); ++ ++ if (!otg_dev) { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__); ++ return; ++ } ++ ++ dwc_otg_hcd = otg_dev->hcd; ++ ++ if (!dwc_otg_hcd) { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__); ++ return; ++ } ++ ++ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); ++ ++ if (!hcd) { ++ DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__); ++ return; ++ } ++ ++ /* Turn off all interrupts */ ++ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0); ++ ++ usb_remove_hcd(hcd); ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++} ++ ++/* ========================================================================= ++ * Linux HC Driver Functions ++ * ========================================================================= */ ++ ++/** ++ * Initializes dynamic portions of the DWC_otg HCD state. ++ */ ++static void hcd_reinit(dwc_otg_hcd_t *hcd) ++{ ++ struct list_head *item; ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ hcd->flags.d32 = 0; ++ ++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active; ++ hcd->non_periodic_channels = 0; ++ hcd->periodic_channels = 0; ++ ++ /* ++ * Put all channels in the free channel list and clean up channel ++ * states. ++ */ ++ item = hcd->free_hc_list.next; ++ while (item != &hcd->free_hc_list) { ++ list_del(item); ++ item = hcd->free_hc_list.next; ++ } ++ num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = hcd->hc_ptr_array[i]; ++ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list); ++ dwc_otg_hc_cleanup(hcd->core_if, channel); ++ } ++ ++ /* Initialize the DWC core for host mode operation. */ ++ dwc_otg_core_host_init(hcd->core_if); ++} ++ ++/** Initializes the DWC_otg controller and its root hub and prepares it for host ++ * mode operation. Activates the root port. Returns 0 on success and a negative ++ * error code on failure. */ ++int dwc_otg_hcd_start(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ struct usb_bus *bus; ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ struct usb_device *udev; ++ int retval; ++#endif ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); ++ ++ bus = hcd_to_bus(hcd); ++ ++ /* Initialize the bus state. If the core is in Device Mode ++ * HALT the USB bus and return. */ ++ if (dwc_otg_is_device_mode(core_if)) { ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ hcd->state = HC_STATE_HALT; ++#else ++ hcd->state = HC_STATE_RUNNING; ++#endif ++ return 0; ++ } ++ hcd->state = HC_STATE_RUNNING; ++ ++ /* Initialize and connect root hub if one is not already attached */ ++ if (bus->root_hub) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n"); ++ /* Inform the HUB driver to resume. */ ++ usb_hcd_resume_root_hub(hcd); ++ } ++ else { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n"); ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ udev = usb_alloc_dev(NULL, bus, 0); ++ udev->speed = USB_SPEED_HIGH; ++ if (!udev) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); ++ return -ENODEV; ++ } ++ if ((retval = usb_hcd_register_root_hub(udev, hcd)) != 0) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval); ++ return -ENODEV; ++ } ++#endif ++ } ++ ++ hcd_reinit(dwc_otg_hcd); ++ ++ return 0; ++} ++ ++static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list) ++{ ++ struct list_head *item; ++ dwc_otg_qh_t *qh; ++ ++ if (!qh_list->next) { ++ /* The list hasn't been initialized yet. */ ++ return; ++ } ++ ++ /* Ensure there are no QTDs or URBs left. */ ++ kill_urbs_in_qh_list(hcd, qh_list); ++ ++ for (item = qh_list->next; item != qh_list; item = qh_list->next) { ++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ dwc_otg_hcd_qh_remove_and_free(hcd, qh); ++ } ++} ++ ++/** ++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are ++ * stopped. ++ */ ++void dwc_otg_hcd_stop(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ hprt0_data_t hprt0 = { .d32=0 }; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); ++ ++ /* Turn off all host-specific interrupts. */ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ ++ /* ++ * The root hub should be disconnected before this function is called. ++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) ++ * and the QH lists (via ..._hcd_endpoint_disable). ++ */ ++ ++ /* Turn off the vbus power */ ++ DWC_PRINT("PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++} ++ ++/** Returns the current frame number. */ ++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ hfnum_data_t hfnum; ++ ++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if-> ++ host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum); ++#endif ++ return hfnum.b.frnum; ++} ++ ++/** ++ * Frees secondary storage associated with the dwc_otg_hcd structure contained ++ * in the struct usb_hcd field. ++ */ ++void dwc_otg_hcd_free(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ int i; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* Free memory for QH/QTD lists */ ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); ++ ++ /* Free memory for the host channels. */ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i]; ++ if (hc != NULL) { ++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc); ++ kfree(hc); ++ } ++ } ++ ++ if (dwc_otg_hcd->core_if->dma_enable) { ++ if (dwc_otg_hcd->status_buf_dma) { ++ dma_free_coherent(hcd->self.controller, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ dwc_otg_hcd->status_buf, ++ dwc_otg_hcd->status_buf_dma); ++ } ++ } else if (dwc_otg_hcd->status_buf != NULL) { ++ kfree(dwc_otg_hcd->status_buf); ++ } ++} ++ ++#ifdef DEBUG ++static void dump_urb_info(struct urb *urb, char* fn_name) ++{ ++ DWC_PRINT("%s, urb %p\n", fn_name, urb); ++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_PRINT(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_PRINT(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)urb->transfer_dma); ++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)urb->setup_dma); ++ DWC_PRINT(" Interval: %d\n", urb->interval); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d:\n", i); ++ DWC_PRINT(" offset: %d, length %d\n", ++ urb->iso_frame_desc[i].offset, ++ urb->iso_frame_desc[i].length); ++ } ++ } ++} ++ ++static void dump_channel_info(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh) ++{ ++ if (qh->channel != NULL) { ++ dwc_hc_t *hc = qh->channel; ++ struct list_head *item; ++ dwc_otg_qh_t *qh_item; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ int i; ++ ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ ++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_PRINT(" Assigned to channel %p:\n", hc); ++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ DWC_PRINT(" NP inactive sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_inactive) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" NP active sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_active) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" Channels: \n"); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" %2d: %p\n", i, hc); ++ } ++ } ++} ++#endif ++ ++/** Starts processing a USB transfer request specified by a USB Request Block ++ * (URB). mem_flags indicates the type of memory allocation to use while ++ * processing this URB. */ ++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int mem_flags ++#else ++ gfp_t mem_flags ++#endif ++ ) ++{ ++ int retval = 0; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_qtd_t *qtd; ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue"); ++ } ++#endif ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* No longer connected. */ ++ return -ENODEV; ++ } ++ ++ qtd = dwc_otg_hcd_qtd_create(urb); ++ if (qtd == NULL) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); ++ return -ENOMEM; ++ } ++ ++ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd); ++ if (retval < 0) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " ++ "Error status %d\n", retval); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ ++ return retval; ++} ++ ++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate ++ * success. */ ++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, ++ int status) ++{ ++ unsigned long flags; ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ dwc_otg_qtd_t *urb_qtd; ++ dwc_otg_qh_t *qh; ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); ++#endif ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); ++ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ ++ urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv; ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue"); ++ if (urb_qtd == qh->qtd_in_process) { ++ dump_channel_info(dwc_otg_hcd, qh); ++ } ++ } ++#endif ++ ++ if (urb_qtd == qh->qtd_in_process) { ++ /* The QTD is in process (it has been assigned to a channel). */ ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * If still connected (i.e. in host mode), halt the ++ * channel so it can be used for other transfers. If ++ * no longer connected, the host registers can't be ++ * written to halt the channel since the core is in ++ * device mode. ++ */ ++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel, ++ DWC_OTG_HC_XFER_URB_DEQUEUE); ++ } ++ } ++ ++ /* ++ * Free the QTD and clean up the associated QH. Leave the QH in the ++ * schedule if it has any remaining QTDs. ++ */ ++ dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd); ++ if (urb_qtd == qh->qtd_in_process) { ++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0); ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ } else if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh); ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++ urb->hcpriv = NULL; ++ ++ /* Higher layer software sets URB status. */ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ usb_hcd_giveback_urb(hcd, urb, status); ++#else ++ usb_hcd_giveback_urb(hcd, urb, NULL); ++#endif ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("Called usb_hcd_giveback_urb()\n"); ++ DWC_PRINT(" urb->status = %d\n", urb->status); ++ } ++ ++ return 0; ++} ++ ++/** Frees resources in the DWC_otg controller related to a given endpoint. Also ++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint ++ * must already be dequeued. */ ++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_qh_t *qh; ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ unsigned long flags; ++ int retry = 0; ++#endif ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " ++ "endpoint=%d\n", ep->desc.bEndpointAddress, ++ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress)); ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++rescan: ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ qh = (dwc_otg_qh_t *)(ep->hcpriv); ++ if (!qh) ++ goto done; ++ ++ /** Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ if (retry++ < 250) { ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ schedule_timeout_uninterruptible(1); ++ goto rescan; ++ } ++ ++ DWC_WARN("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } ++ ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ ep->hcpriv = NULL; ++done: ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++#else // LINUX_VERSION_CODE ++ ++ qh = (dwc_otg_qh_t *)(ep->hcpriv); ++ if (qh != NULL) { ++#ifdef DEBUG ++ /** Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ DWC_WARN("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } ++#endif ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ ep->hcpriv = NULL; ++ } ++#endif // LINUX_VERSION_CODE ++} ++ ++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if ++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid ++ * interrupt. ++ * ++ * This function is called by the USB core when an interrupt occurs */ ++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ++ , struct pt_regs *regs ++#endif ++ ) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); ++} ++ ++/** Creates Status Change bitmap for the root hub and root port. The bitmap is ++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 ++ * is the status change indicator for the single root port. Returns 1 if either ++ * change indicator is 1, otherwise returns 0. */ ++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ buf[0] = 0; ++ buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || ++ dwc_otg_hcd->flags.b.port_reset_change || ++ dwc_otg_hcd->flags.b.port_enable_change || ++ dwc_otg_hcd->flags.b.port_suspend_change || ++ dwc_otg_hcd->flags.b.port_over_current_change) << 1; ++ ++#ifdef DEBUG ++ if (buf[0]) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" ++ " Root port status changed\n"); ++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", ++ dwc_otg_hcd->flags.b.port_connect_status_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", ++ dwc_otg_hcd->flags.b.port_reset_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", ++ dwc_otg_hcd->flags.b.port_enable_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", ++ dwc_otg_hcd->flags.b.port_suspend_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", ++ dwc_otg_hcd->flags.b.port_over_current_change); ++ } ++#endif ++ return (buf[0] != 0); ++} ++ ++#ifdef DWC_HS_ELECT_TST ++/* ++ * Quick and dirty hack to implement the HS Electrical Test ++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. ++ * ++ * This code was copied from our userspace app "hset". It sends a ++ * Get Device Descriptor control sequence in two parts, first the ++ * Setup packet by itself, followed some time later by the In and ++ * Ack packets. Rather than trying to figure out how to add this ++ * functionality to the normal driver code, we just hijack the ++ * hardware, using these two function to drive the hardware ++ * directly. ++ */ ++ ++dwc_otg_core_global_regs_t *global_regs; ++dwc_otg_host_global_regs_t *hc_global_regs; ++dwc_otg_hc_regs_t *hc_regs; ++uint32_t *data_fifo; ++ ++static void do_setup(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Send Setup packet (Get Device Descriptor) ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++// hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ /* Fill FIFO with Setup data for Get Device Descriptor */ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ dwc_write_reg32(data_fifo++, 0x01000680); ++ dwc_write_reg32(data_fifo++, 0x00080000); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++ ++static void do_in_ack(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ host_grxsts_data_t grxsts; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Receive Control In packet ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 1; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer */ ++ if (grxsts.b.bcnt > 0) { ++ int i; ++ int word_count = (grxsts.b.bcnt + 3) / 4; ++ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ for (i = 0; i < word_count; i++) { ++ (void)dwc_read_reg32(data_fifo++); ++ } ++ } ++ ++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt); ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++// usleep(100000); ++// mdelay(100); ++ mdelay(1); ++ ++ /* ++ * Send handshake packet ++ */ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 0; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++#endif /* DWC_HS_ELECT_TST */ ++ ++/** Handles hub class-specific requests. */ ++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength) ++{ ++ int retval = 0; ++ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if; ++ struct usb_hub_descriptor *desc; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ ++ uint32_t port_status; ++ ++ switch (typeReq) { ++ case ClearHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearHubFeature 0x%x\n", wValue); ++ switch (wValue) { ++ case C_HUB_LOCAL_POWER: ++ case C_HUB_OVER_CURRENT: ++ /* Nothing required here */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearHubFeature request %xh unknown\n", wValue); ++ } ++ break; ++ case ClearPortFeature: ++ if (!wIndex || wIndex > 1) ++ goto error; ++ ++ switch (wValue) { ++ case USB_PORT_FEAT_ENABLE: ++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtena = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Clear Resume bit */ ++ mdelay(100); ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); ++ /* Port inidicator not supported */ ++ break; ++ case USB_PORT_FEAT_C_CONNECTION: ++ /* Clears drivers internal connect status change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 0; ++ break; ++ case USB_PORT_FEAT_C_RESET: ++ /* Clears the driver's internal Port Reset Change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); ++ dwc_otg_hcd->flags.b.port_reset_change = 0; ++ break; ++ case USB_PORT_FEAT_C_ENABLE: ++ /* Clears the driver's internal Port ++ * Enable/Disable Change flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); ++ dwc_otg_hcd->flags.b.port_enable_change = 0; ++ break; ++ case USB_PORT_FEAT_C_SUSPEND: ++ /* Clears the driver's internal Port Suspend ++ * Change flag, which is set when resume signaling on ++ * the host port is complete */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); ++ dwc_otg_hcd->flags.b.port_suspend_change = 0; ++ break; ++ case USB_PORT_FEAT_C_OVER_CURRENT: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); ++ dwc_otg_hcd->flags.b.port_over_current_change = 0; ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearPortFeature request %xh " ++ "unknown or unsupported\n", wValue); ++ } ++ break; ++ case GetHubDescriptor: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubDescriptor\n"); ++ desc = (struct usb_hub_descriptor *)buf; ++ desc->bDescLength = 9; ++ desc->bDescriptorType = 0x29; ++ desc->bNbrPorts = 1; ++ desc->wHubCharacteristics = 0x08; ++ desc->bPwrOn2PwrGood = 1; ++ desc->bHubContrCurrent = 0; ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,39) ++ desc->u.hs.DeviceRemovable[0] = 0; ++ desc->u.hs.DeviceRemovable[1] = 0xff; ++#endif ++ break; ++ case GetHubStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubStatus\n"); ++ memset(buf, 0, 4); ++ break; ++ case GetPortStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetPortStatus\n"); ++ ++ if (!wIndex || wIndex > 1) ++ goto error; ++ ++ port_status = 0; ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status_change) ++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); ++ ++ if (dwc_otg_hcd->flags.b.port_enable_change) ++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE); ++ ++ if (dwc_otg_hcd->flags.b.port_suspend_change) ++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); ++ ++ if (dwc_otg_hcd->flags.b.port_reset_change) ++ port_status |= (1 << USB_PORT_FEAT_C_RESET); ++ ++ if (dwc_otg_hcd->flags.b.port_over_current_change) { ++ DWC_ERROR("Device Not Supported\n"); ++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); ++ } ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return 0's for the remainder of the port status ++ * since the port register can't be read if the core ++ * is in device mode. ++ */ ++ *((__le32 *) buf) = cpu_to_le32(port_status); ++ break; ++ } ++ ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); ++ ++ if (hprt0.b.prtconnsts) ++ port_status |= (1 << USB_PORT_FEAT_CONNECTION); ++ ++ if (hprt0.b.prtena) ++ port_status |= (1 << USB_PORT_FEAT_ENABLE); ++ ++ if (hprt0.b.prtsusp) ++ port_status |= (1 << USB_PORT_FEAT_SUSPEND); ++ ++ if (hprt0.b.prtovrcurract) ++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); ++ ++ if (hprt0.b.prtrst) ++ port_status |= (1 << USB_PORT_FEAT_RESET); ++ ++ if (hprt0.b.prtpwr) ++ port_status |= (1 << USB_PORT_FEAT_POWER); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) ++ port_status |= USB_PORT_STAT_HIGH_SPEED; ++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ port_status |= USB_PORT_STAT_LOW_SPEED; ++ ++ if (hprt0.b.prttstctl) ++ port_status |= (1 << USB_PORT_FEAT_TEST); ++ ++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ ++ ++ *((__le32 *) buf) = cpu_to_le32(port_status); ++ ++ break; ++ case SetHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetHubFeature\n"); ++ /* No HUB features supported */ ++ break; ++ case SetPortFeature: ++ if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1)) ++ goto error; ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return without doing anything since the port ++ * register can't be written if the core is in device ++ * mode. ++ */ ++ break; ++ } ++ ++ switch (wValue) { ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); ++ if (hcd->self.otg_port == wIndex && ++ hcd->self.b_hnp_enable) { ++ gotgctl_data_t gotgctl = {.d32=0}; ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl, ++ 0, gotgctl.d32); ++ core_if->op_state = A_SUSPEND; ++ } ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32); ++ /* Suspend the Phy Clock */ ++ { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ pcgcctl.b.stoppclk = 1; ++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); ++ } ++ ++ /* For HNP the bus must be suspended for at least 200ms. */ ++ if (hcd->self.b_hnp_enable) { ++ mdelay(200); ++ //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state); ++ } ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_RESET: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_RESET\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ /* When B-Host the Port reset bit is set in ++ * the Start HCD Callback function, so that ++ * the reset is started within 1ms of the HNP ++ * success interrupt. */ ++ if (!hcd->self.is_b_host) { ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } ++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ ++ MDELAY(60); ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ ++#ifdef DWC_HS_ELECT_TST ++ case USB_PORT_FEAT_TEST: ++ { ++ uint32_t t; ++ gintmsk_data_t gintmsk; ++ ++ t = (wIndex >> 8); /* MSB wIndex USB */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); ++ warn("USB_PORT_FEAT_TEST %d\n", t); ++ if (t < 6) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prttstctl = t; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } else { ++ /* Setup global vars with reg addresses (quick and ++ * dirty hack, should be cleaned up) ++ */ ++ global_regs = core_if->core_global_regs; ++ hc_global_regs = core_if->host_if->host_global_regs; ++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500); ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive suspend on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive resume on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 0; ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(100); ++ ++ /* Clear the resume bit */ ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Send the In and Ack packets */ ++ do_in_ack(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } ++ } ++ break; ++ } ++#endif /* DWC_HS_ELECT_TST */ ++ ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); ++ /* Not supported */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "SetPortFeature request %xh " ++ "unknown or unsupported\n", wValue); ++ break; ++ } ++ break; ++ default: ++ error: ++ retval = -EINVAL; ++ DWC_WARN("DWC OTG HCD - " ++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n", ++ typeReq, wIndex, wValue); ++ break; ++ } ++ ++ return retval; ++} ++ ++/** ++ * Assigns transactions from a QTD to a free host channel and initializes the ++ * host channel to perform the transactions. The host channel is removed from ++ * the free list. ++ * ++ * @param hcd The HCD state structure. ++ * @param qh Transactions from the first QTD for this QH are selected and ++ * assigned to a free host channel. ++ */ ++static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ dwc_hc_t *hc; ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh); ++ ++ hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry); ++ ++ /* Remove the host channel from the free list. */ ++ list_del_init(&hc->hc_list_entry); ++ ++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ urb = qtd->urb; ++ qh->channel = hc; ++ qh->qtd_in_process = qtd; ++ ++ /* ++ * Use usb_pipedevice to determine device address. This address is ++ * 0 before the SET_ADDRESS command and the correct address afterward. ++ */ ++ hc->dev_addr = usb_pipedevice(urb->pipe); ++ hc->ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (urb->dev->speed == USB_SPEED_LOW) { ++ hc->speed = DWC_OTG_EP_SPEED_LOW; ++ } else if (urb->dev->speed == USB_SPEED_FULL) { ++ hc->speed = DWC_OTG_EP_SPEED_FULL; ++ } else { ++ hc->speed = DWC_OTG_EP_SPEED_HIGH; ++ } ++ ++ hc->max_packet = dwc_max_packet(qh->maxp); ++ ++ hc->xfer_started = 0; ++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; ++ hc->error_state = (qtd->error_count > 0); ++ hc->halt_on_queue = 0; ++ hc->halt_pending = 0; ++ hc->requests = 0; ++ ++ /* ++ * The following values may be modified in the transfer type section ++ * below. The xfer_len value may be reduced when the transfer is ++ * started to accommodate the max widths of the XferSize and PktCnt ++ * fields in the HCTSIZn register. ++ */ ++ hc->do_ping = qh->ping_state; ++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0); ++ hc->data_pid_start = qh->data_toggle; ++ hc->multi_count = 1; ++ ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length; ++ } ++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; ++ hc->xfer_count = 0; ++ ++ /* ++ * Set the split attributes ++ */ ++ hc->do_split = 0; ++ if (qh->do_split) { ++ hc->do_split = 1; ++ hc->xact_pos = qtd->isoc_split_pos; ++ hc->complete_split = qtd->complete_split; ++ hc->hub_addr = urb->dev->tt->hub->devnum; ++ hc->port_addr = urb->dev->ttport; ++ } ++ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); ++ hc->do_ping = 0; ++ hc->ep_is_in = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->setup_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->setup_packet; ++ } ++ hc->xfer_len = 8; ++ break; ++ case DWC_OTG_CONTROL_DATA: ++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); ++ hc->data_pid_start = qtd->data_toggle; ++ break; ++ case DWC_OTG_CONTROL_STATUS: ++ /* ++ * Direction is opposite of data direction or IN if no ++ * data. ++ */ ++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); ++ if (urb->transfer_buffer_length == 0) { ++ hc->ep_is_in = 1; ++ } else { ++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN); ++ } ++ if (hc->ep_is_in) { ++ hc->do_ping = 0; ++ } ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ hc->xfer_len = 0; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)hcd->status_buf_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)hcd->status_buf; ++ } ++ break; ++ } ++ break; ++ case PIPE_BULK: ++ hc->ep_type = DWC_OTG_EP_TYPE_BULK; ++ break; ++ case PIPE_INTERRUPT: ++ hc->ep_type = DWC_OTG_EP_TYPE_INTR; ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->transfer_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer; ++ } ++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset; ++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset; ++ ++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ if (hc->xfer_len <= 188) { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ } ++ else { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN; ++ } ++ } ++ } ++ break; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This value may be modified when the transfer is started to ++ * reflect the actual transfer length. ++ */ ++ hc->multi_count = dwc_hb_mult(qh->maxp); ++ } ++ ++ dwc_otg_hc_init(hcd->core_if, hc); ++ hc->qh = qh; ++} ++ ++/** ++ * This function selects transactions from the HCD transfer schedule and ++ * assigns them to available host channels. It is called from HCD interrupt ++ * handler functions. ++ * ++ * @param hcd The HCD state structure. ++ * ++ * @return The types of new transactions that were assigned to host channels. ++ */ ++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd) ++{ ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int num_channels; ++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE; ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); ++#endif ++ ++ /* Process entries in the periodic ready list. */ ++ qh_ptr = hcd->periodic_sched_ready.next; ++ while (qh_ptr != &hcd->periodic_sched_ready && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the periodic ready schedule to the ++ * periodic assigned schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned); ++ ++ ret_val = DWC_OTG_TRANSACTION_PERIODIC; ++ } ++ ++ /* ++ * Process entries in the inactive portion of the non-periodic ++ * schedule. Some free host channels may not be used if they are ++ * reserved for periodic transfers. ++ */ ++ qh_ptr = hcd->non_periodic_sched_inactive.next; ++ num_channels = hcd->core_if->core_params->host_channels; ++ while (qh_ptr != &hcd->non_periodic_sched_inactive && ++ (hcd->non_periodic_channels < ++ num_channels - hcd->periodic_channels) && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the non-periodic inactive schedule to the ++ * non-periodic active schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active); ++ ++ if (ret_val == DWC_OTG_TRANSACTION_NONE) { ++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; ++ } else { ++ ret_val = DWC_OTG_TRANSACTION_ALL; ++ } ++ ++ hcd->non_periodic_channels++; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Attempts to queue a single transaction request for a host channel ++ * associated with either a periodic or non-periodic transfer. This function ++ * assumes that there is space available in the appropriate request queue. For ++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space ++ * is available in the appropriate Tx FIFO. ++ * ++ * @param hcd The HCD state structure. ++ * @param hc Host channel descriptor associated with either a periodic or ++ * non-periodic transfer. ++ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx ++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic ++ * transfers. ++ * ++ * @return 1 if a request is queued and more requests may be needed to ++ * complete the transfer, 0 if no more requests are required for this ++ * transfer, -1 if there is insufficient space in the Tx FIFO. ++ */ ++static int queue_transaction(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ uint16_t fifo_dwords_avail) ++{ ++ int retval; ++ ++ if (hcd->core_if->dma_enable) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ hc->qh->ping_state = 0; ++ } ++ retval = 0; ++ } else if (hc->halt_pending) { ++ /* Don't queue a request if the channel has been halted. */ ++ retval = 0; ++ } else if (hc->halt_on_queue) { ++ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status); ++ retval = 0; ++ } else if (hc->do_ping) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ } ++ retval = 0; ++ } else if (!hc->ep_is_in || ++ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ if ((fifo_dwords_avail * 4) >= hc->max_packet) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc); ++ } ++ } else { ++ retval = -1; ++ } ++ } else { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc); ++ } ++ } ++ ++ return retval; ++} ++ ++/** ++ * Processes active non-periodic channels and queues transactions for these ++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx ++ * FIFO Empty interrupt is enabled if there are more transactions to queue as ++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx ++ * FIFO Empty interrupt is disabled. ++ */ ++static void process_non_periodic_channels(dwc_otg_hcd_t *hcd) ++{ ++ gnptxsts_data_t tx_status; ++ struct list_head *orig_qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ int more_to_do = 0; ++ ++ dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ /* ++ * Keep track of the starting point. Skip over the start-of-list ++ * entry. ++ */ ++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ orig_qh_ptr = hcd->non_periodic_qh_ptr; ++ ++ /* ++ * Process once through the active list or until no more space is ++ * available in the request queue or the Tx FIFO. ++ */ ++ do { ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail); ++ ++ if (status > 0) { ++ more_to_do = 1; ++ } else if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* Advance to next QH, skipping start-of-list entry. */ ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ ++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr); ++ ++ if (!hcd->core_if->dma_enable) { ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ intr_mask.b.nptxfempty = 1; ++ ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ if (more_to_do || no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the non-periodic ++ * Tx FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Processes periodic channels for the next frame and queues transactions for ++ * these channels to the DWC_otg controller. After queueing transactions, the ++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions ++ * to queue as Periodic Tx FIFO or request queue space becomes available. ++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. ++ */ ++static void process_periodic_channels(dwc_otg_hcd_t *hcd) ++{ ++ hptxsts_data_t tx_status; ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ ++ dwc_otg_host_global_regs_t *host_regs; ++ host_regs = hcd->core_if->host_if->host_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ ++ qh_ptr = hcd->periodic_sched_assigned.next; ++ while (qh_ptr != &hcd->periodic_sched_assigned) { ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ if (tx_status.b.ptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ ++ /* ++ * Set a flag if we're queuing high-bandwidth in slave mode. ++ * The flag prevents any halts to get into the request queue in ++ * the middle of multiple high-bandwidth packets getting queued. ++ */ ++ if (!hcd->core_if->dma_enable && ++ qh->channel->multi_count > 1) ++ { ++ hcd->core_if->queuing_high_bandwidth = 1; ++ } ++ ++ status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail); ++ if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* ++ * In Slave mode, stay on the current transfer until there is ++ * nothing more to do or the high-bandwidth request count is ++ * reached. In DMA mode, only need to queue one request. The ++ * controller automatically handles multiple packets for ++ * high-bandwidth transfers. ++ */ ++ if (hcd->core_if->dma_enable || status == 0 || ++ qh->channel->requests == qh->channel->multi_count) { ++ qh_ptr = qh_ptr->next; ++ /* ++ * Move the QH from the periodic assigned schedule to ++ * the periodic queued schedule. ++ */ ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued); ++ ++ /* done queuing high bandwidth */ ++ hcd->core_if->queuing_high_bandwidth = 0; ++ } ++ } ++ ++ if (!hcd->core_if->dma_enable) { ++ dwc_otg_core_global_regs_t *global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ global_regs = hcd->core_if->core_global_regs; ++ intr_mask.b.ptxfempty = 1; ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ if (!list_empty(&hcd->periodic_sched_assigned) || ++ no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the periodic Tx ++ * FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * This function processes the currently active host channels and queues ++ * transactions for these channels to the DWC_otg controller. It is called ++ * from HCD interrupt handler functions. ++ * ++ * @param hcd The HCD state structure. ++ * @param tr_type The type(s) of transactions to queue (non-periodic, ++ * periodic, or both). ++ */ ++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd, ++ dwc_otg_transaction_type_e tr_type) ++{ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); ++#endif ++ /* Process host channels associated with periodic transfers. */ ++ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC || ++ tr_type == DWC_OTG_TRANSACTION_ALL) && ++ !list_empty(&hcd->periodic_sched_assigned)) { ++ ++ process_periodic_channels(hcd); ++ } ++ ++ /* Process host channels associated with non-periodic transfers. */ ++ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || ++ tr_type == DWC_OTG_TRANSACTION_ALL) { ++ if (!list_empty(&hcd->non_periodic_sched_active)) { ++ process_non_periodic_channels(hcd); ++ } else { ++ /* ++ * Ensure NP Tx FIFO empty interrupt is disabled when ++ * there are no non-periodic transfers to process. ++ */ ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk, ++ gintmsk.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Sets the final status of an URB and returns it to the device driver. Any ++ * required cleanup of the URB is performed. ++ */ ++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status) ++{ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", ++ __func__, urb, usb_pipedevice(urb->pipe), ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT", status); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d status: %d\n", ++ i, urb->iso_frame_desc[i].status); ++ } ++ } ++ } ++#endif ++ ++ urb->status = status; ++ urb->hcpriv = NULL; ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status); ++#else ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, NULL); ++#endif ++} ++ ++/* ++ * Returns the Queue Head for an URB. ++ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb) ++{ ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); ++ return (dwc_otg_qh_t *)ep->hcpriv; ++} ++ ++#ifdef DEBUG ++void dwc_print_setup_data(uint8_t *setup) ++{ ++ int i; ++ if (CHK_DEBUG_LEVEL(DBG_HCD)){ ++ DWC_PRINT("Setup Data = MSB "); ++ for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]); ++ DWC_PRINT("\n"); ++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device"); ++ DWC_PRINT(" bmRequestType Type = "); ++ switch ((setup[0] & 0x60) >> 5) { ++ case 0: DWC_PRINT("Standard\n"); break; ++ case 1: DWC_PRINT("Class\n"); break; ++ case 2: DWC_PRINT("Vendor\n"); break; ++ case 3: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bmRequestType Recipient = "); ++ switch (setup[0] & 0x1f) { ++ case 0: DWC_PRINT("Device\n"); break; ++ case 1: DWC_PRINT("Interface\n"); break; ++ case 2: DWC_PRINT("Endpoint\n"); break; ++ case 3: DWC_PRINT("Other\n"); break; ++ default: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); ++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2])); ++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4])); ++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6])); ++ } ++} ++#endif ++ ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) { ++#if defined(DEBUG) && LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ DWC_PRINT("Frame remaining at SOF:\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->frrem_samples, hcd->frrem_accum, ++ (hcd->frrem_samples > 0) ? ++ hcd->frrem_accum/hcd->frrem_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->core_if->hfnum_7_samples, hcd->core_if->hfnum_7_frrem_accum, ++ (hcd->core_if->hfnum_7_samples > 0) ? ++ hcd->core_if->hfnum_7_frrem_accum/hcd->core_if->hfnum_7_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->core_if->hfnum_0_samples, hcd->core_if->hfnum_0_frrem_accum, ++ (hcd->core_if->hfnum_0_samples > 0) ? ++ hcd->core_if->hfnum_0_frrem_accum/hcd->core_if->hfnum_0_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->core_if->hfnum_other_samples, hcd->core_if->hfnum_other_frrem_accum, ++ (hcd->core_if->hfnum_other_samples > 0) ? ++ hcd->core_if->hfnum_other_frrem_accum/hcd->core_if->hfnum_other_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a, ++ (hcd->hfnum_7_samples_a > 0) ? ++ hcd->hfnum_7_frrem_accum_a/hcd->hfnum_7_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a, ++ (hcd->hfnum_0_samples_a > 0) ? ++ hcd->hfnum_0_frrem_accum_a/hcd->hfnum_0_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a, ++ (hcd->hfnum_other_samples_a > 0) ? ++ hcd->hfnum_other_frrem_accum_a/hcd->hfnum_other_samples_a : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b, ++ (hcd->hfnum_7_samples_b > 0) ? ++ hcd->hfnum_7_frrem_accum_b/hcd->hfnum_7_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b, ++ (hcd->hfnum_0_samples_b > 0) ? ++ hcd->hfnum_0_frrem_accum_b/hcd->hfnum_0_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b, ++ (hcd->hfnum_other_samples_b > 0) ? ++ hcd->hfnum_other_frrem_accum_b/hcd->hfnum_other_samples_b : 0); ++#endif ++} ++ ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd) ++{ ++#ifdef DEBUG ++ int num_channels; ++ int i; ++ gnptxsts_data_t np_tx_status; ++ hptxsts_data_t p_tx_status; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ DWC_PRINT("\n"); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("HCD State:\n"); ++ DWC_PRINT(" Num channels: %d\n", num_channels); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" Channel %d:\n", i); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" speed: %d\n", hc->speed); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" multi_count: %d\n", hc->multi_count); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); ++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" do_split: %d\n", hc->do_split); ++ DWC_PRINT(" complete_split: %d\n", hc->complete_split); ++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); ++ DWC_PRINT(" port_addr: %d\n", hc->port_addr); ++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); ++ DWC_PRINT(" requests: %d\n", hc->requests); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ if (hc->xfer_started) { ++ hfnum_data_t hfnum; ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); ++ hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz); ++ hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk); ++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); ++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); ++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); ++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); ++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); ++ } ++ if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) { ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ qtd = hc->qh->qtd_in_process; ++ urb = qtd->urb; ++ DWC_PRINT(" URB Info:\n"); ++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); ++ if (urb) { ++ DWC_PRINT(" Dev: %d, EP: %d %s\n", ++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT"); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer); ++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma); ++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" actual_length: %d\n", urb->actual_length); ++ } ++ } ++ } ++ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels); ++ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels); ++ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs); ++ np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts); ++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail); ++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail); ++ p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts); ++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail); ++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); ++ dwc_otg_hcd_dump_frrem(hcd); ++ dwc_otg_dump_global_registers(hcd->core_if); ++ dwc_otg_dump_host_registers(hcd->core_if); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("\n"); ++#endif ++} ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h +@@ -0,0 +1,668 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $ ++ * $Revision: 1.3 $ ++ * $Date: 2008-12-15 06:51:32 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++#ifndef __DWC_HCD_H__ ++#define __DWC_HCD_H__ ++ ++#include <linux/list.h> ++#include <linux/usb.h> ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35) ++#include <linux/usb/hcd.h> ++#else ++#include <../drivers/usb/core/hcd.h> ++#endif ++ ++struct dwc_otg_device; ++ ++#include "dwc_otg_cil.h" ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Host Contoller Driver (HCD). ++ * ++ * The Host Controller Driver (HCD) is responsible for translating requests ++ * from the USB Driver into the appropriate actions on the DWC_otg controller. ++ * It isolates the USBD from the specifics of the controller by providing an ++ * API to the USBD. ++ */ ++ ++/** ++ * Phases for control transfers. ++ */ ++typedef enum dwc_otg_control_phase { ++ DWC_OTG_CONTROL_SETUP, ++ DWC_OTG_CONTROL_DATA, ++ DWC_OTG_CONTROL_STATUS ++} dwc_otg_control_phase_e; ++ ++/** Transaction types. */ ++typedef enum dwc_otg_transaction_type { ++ DWC_OTG_TRANSACTION_NONE, ++ DWC_OTG_TRANSACTION_PERIODIC, ++ DWC_OTG_TRANSACTION_NON_PERIODIC, ++ DWC_OTG_TRANSACTION_ALL ++} dwc_otg_transaction_type_e; ++ ++/** ++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, ++ * interrupt, or isochronous transfer. A single QTD is created for each URB ++ * (of one of these types) submitted to the HCD. The transfer associated with ++ * a QTD may require one or multiple transactions. ++ * ++ * A QTD is linked to a Queue Head, which is entered in either the ++ * non-periodic or periodic schedule for execution. When a QTD is chosen for ++ * execution, some or all of its transactions may be executed. After ++ * execution, the state of the QTD is updated. The QTD may be retired if all ++ * its transactions are complete or if an error occurred. Otherwise, it ++ * remains in the schedule so more transactions can be executed later. ++ */ ++typedef struct dwc_otg_qtd { ++ /** ++ * Determines the PID of the next data packet for the data phase of ++ * control transfers. Ignored for other transfer types.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Current phase for control transfers (Setup, Data, or Status). */ ++ dwc_otg_control_phase_e control_phase; ++ ++ /** Keep track of the current split type ++ * for FS/LS endpoints on a HS Hub */ ++ uint8_t complete_split; ++ ++ /** How many bytes transferred during SSPLIT OUT */ ++ uint32_t ssplit_out_xfer_count; ++ ++ /** ++ * Holds the number of bus errors that have occurred for a transaction ++ * within this transfer. ++ */ ++ uint8_t error_count; ++ ++ /** ++ * Index of the next frame descriptor for an isochronous transfer. A ++ * frame descriptor describes the buffer position and length of the ++ * data to be transferred in the next scheduled (micro)frame of an ++ * isochronous transfer. It also holds status for that transaction. ++ * The frame index starts at 0. ++ */ ++ int isoc_frame_index; ++ ++ /** Position of the ISOC split on full/low speed */ ++ uint8_t isoc_split_pos; ++ ++ /** Position of the ISOC split in the buffer for the current frame */ ++ uint16_t isoc_split_offset; ++ ++ /** URB for this transfer */ ++ struct urb *urb; ++ ++ /** This list of QTDs */ ++ struct list_head qtd_list_entry; ++ ++} dwc_otg_qtd_t; ++ ++/** ++ * A Queue Head (QH) holds the static characteristics of an endpoint and ++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may ++ * be entered in either the non-periodic or periodic schedule. ++ */ ++typedef struct dwc_otg_qh { ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - USB_ENDPOINT_XFER_CONTROL ++ * - USB_ENDPOINT_XFER_ISOC ++ * - USB_ENDPOINT_XFER_BULK ++ * - USB_ENDPOINT_XFER_INT ++ */ ++ uint8_t ep_type; ++ uint8_t ep_is_in; ++ ++ /** wMaxPacketSize Field of Endpoint Descriptor. */ ++ uint16_t maxp; ++ ++ /** ++ * Determines the PID of the next data packet for non-control ++ * transfers. Ignored for control transfers.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Ping state if 1. */ ++ uint8_t ping_state; ++ ++ /** ++ * List of QTDs for this QH. ++ */ ++ struct list_head qtd_list; ++ ++ /** Host channel currently processing transfers for this QH. */ ++ dwc_hc_t *channel; ++ ++ /** QTD currently assigned to a host channel for this QH. */ ++ dwc_otg_qtd_t *qtd_in_process; ++ ++ /** Full/low speed endpoint on high-speed hub requires split. */ ++ uint8_t do_split; ++ ++ /** @name Periodic schedule information */ ++ /** @{ */ ++ ++ /** Bandwidth in microseconds per (micro)frame. */ ++ uint8_t usecs; ++ ++ /** Interval between transfers in (micro)frames. */ ++ uint16_t interval; ++ ++ /** ++ * (micro)frame to initialize a periodic transfer. The transfer ++ * executes in the following (micro)frame. ++ */ ++ uint16_t sched_frame; ++ ++ /** (micro)frame at which last start split was initialized. */ ++ uint16_t start_split_frame; ++ ++ /** @} */ ++ ++ /** Entry for QH in either the periodic or non-periodic schedule. */ ++ struct list_head qh_list_entry; ++ ++ /* For non-dword aligned buffer support */ ++ uint8_t *dw_align_buf; ++ dma_addr_t dw_align_buf_dma; ++} dwc_otg_qh_t; ++ ++/** ++ * This structure holds the state of the HCD, including the non-periodic and ++ * periodic schedules. ++ */ ++typedef struct dwc_otg_hcd { ++ /** The DWC otg device pointer */ ++ struct dwc_otg_device *otg_dev; ++ ++ /** DWC OTG Core Interface Layer */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Internal DWC HCD Flags */ ++ volatile union dwc_otg_hcd_internal_flags { ++ uint32_t d32; ++ struct { ++ unsigned port_connect_status_change : 1; ++ unsigned port_connect_status : 1; ++ unsigned port_reset_change : 1; ++ unsigned port_enable_change : 1; ++ unsigned port_suspend_change : 1; ++ unsigned port_over_current_change : 1; ++ unsigned reserved : 27; ++ } b; ++ } flags; ++ ++ /** ++ * Inactive items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_inactive; ++ ++ /** ++ * Active items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_active; ++ ++ /** ++ * Pointer to the next Queue Head to process in the active ++ * non-periodic schedule. ++ */ ++ struct list_head *non_periodic_qh_ptr; ++ ++ /** ++ * Inactive items in the periodic schedule. This is a list of QHs for ++ * periodic transfers that are _not_ scheduled for the next frame. ++ * Each QH in the list has an interval counter that determines when it ++ * needs to be scheduled for execution. This scheduling mechanism ++ * allows only a simple calculation for periodic bandwidth used (i.e. ++ * must assume that all periodic transfers may need to execute in the ++ * same frame). However, it greatly simplifies scheduling and should ++ * be sufficient for the vast majority of OTG hosts, which need to ++ * connect to a small number of peripherals at one time. ++ * ++ * Items move from this list to periodic_sched_ready when the QH ++ * interval counter is 0 at SOF. ++ */ ++ struct list_head periodic_sched_inactive; ++ ++ /** ++ * List of periodic QHs that are ready for execution in the next ++ * frame, but have not yet been assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_assigned as host ++ * channels become available during the current frame. ++ */ ++ struct list_head periodic_sched_ready; ++ ++ /** ++ * List of periodic QHs to be executed in the next frame that are ++ * assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_queued as the ++ * transactions for the QH are queued to the DWC_otg controller. ++ */ ++ struct list_head periodic_sched_assigned; ++ ++ /** ++ * List of periodic QHs that have been queued for execution. ++ * ++ * Items move from this list to either periodic_sched_inactive or ++ * periodic_sched_ready when the channel associated with the transfer ++ * is released. If the interval for the QH is 1, the item moves to ++ * periodic_sched_ready because it must be rescheduled for the next ++ * frame. Otherwise, the item moves to periodic_sched_inactive. ++ */ ++ struct list_head periodic_sched_queued; ++ ++ /** ++ * Total bandwidth claimed so far for periodic transfers. This value ++ * is in microseconds per (micro)frame. The assumption is that all ++ * periodic transfers may occur in the same (micro)frame. ++ */ ++ uint16_t periodic_usecs; ++ ++ /** ++ * Frame number read from the core at SOF. The value ranges from 0 to ++ * DWC_HFNUM_MAX_FRNUM. ++ */ ++ uint16_t frame_number; ++ ++ /** ++ * Free host channels in the controller. This is a list of ++ * dwc_hc_t items. ++ */ ++ struct list_head free_hc_list; ++ ++ /** ++ * Number of host channels assigned to periodic transfers. Currently ++ * assuming that there is a dedicated host channel for each periodic ++ * transaction and at least one host channel available for ++ * non-periodic transactions. ++ */ ++ int periodic_channels; ++ ++ /** ++ * Number of host channels assigned to non-periodic transfers. ++ */ ++ int non_periodic_channels; ++ ++ /** ++ * Array of pointers to the host channel descriptors. Allows accessing ++ * a host channel descriptor given the host channel number. This is ++ * useful in interrupt handlers. ++ */ ++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; ++ ++ /** ++ * Buffer to use for any data received during the status phase of a ++ * control transfer. Normally no data is transferred during the status ++ * phase. This buffer is used as a bit bucket. ++ */ ++ uint8_t *status_buf; ++ ++ /** ++ * DMA address for status_buf. ++ */ ++ dma_addr_t status_buf_dma; ++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 ++ ++ /** ++ * Structure to allow starting the HCD in a non-interrupt context ++ * during an OTG role change. ++ */ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ struct work_struct start_work; ++#else ++ struct delayed_work start_work; ++#endif ++ ++ /** ++ * Connection timer. An OTG host must display a message if the device ++ * does not connect. Started when the VBus power is turned on via ++ * sysfs attribute "buspower". ++ */ ++ struct timer_list conn_timer; ++ ++ /* Tasket to do a reset */ ++ struct tasklet_struct *reset_tasklet; ++ ++ /* */ ++ spinlock_t lock; ++ ++#ifdef DEBUG ++ uint32_t frrem_samples; ++ uint64_t frrem_accum; ++ ++ uint32_t hfnum_7_samples_a; ++ uint64_t hfnum_7_frrem_accum_a; ++ uint32_t hfnum_0_samples_a; ++ uint64_t hfnum_0_frrem_accum_a; ++ uint32_t hfnum_other_samples_a; ++ uint64_t hfnum_other_frrem_accum_a; ++ ++ uint32_t hfnum_7_samples_b; ++ uint64_t hfnum_7_frrem_accum_b; ++ uint32_t hfnum_0_samples_b; ++ uint64_t hfnum_0_frrem_accum_b; ++ uint32_t hfnum_other_samples_b; ++ uint64_t hfnum_other_frrem_accum_b; ++#endif ++} dwc_otg_hcd_t; ++ ++/** Gets the dwc_otg_hcd from a struct usb_hcd */ ++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) ++{ ++ return (dwc_otg_hcd_t *)(hcd->hcd_priv); ++} ++ ++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ ++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); ++} ++ ++/** @name HCD Create/Destroy Functions */ ++/** @{ */ ++extern int dwc_otg_hcd_init(struct device *dev); ++extern void dwc_otg_hcd_remove(struct device *dev); ++/** @} */ ++ ++/** @name Linux HC Driver API Functions */ ++/** @{ */ ++ ++extern int dwc_otg_hcd_start(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_free(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int mem_flags ++#else ++ gfp_t mem_flags ++#endif ++ ); ++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++#endif ++ struct urb *urb, int status); ++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep); ++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ , struct pt_regs *regs ++#endif ++ ); ++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, ++ char *buf); ++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength); ++ ++/** @} */ ++ ++/** @name Transaction Execution Functions */ ++/** @{ */ ++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd); ++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd, ++ dwc_otg_transaction_type_e tr_type); ++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb, ++ int status); ++/** @} */ ++ ++/** @name Interrupt Handler Functions */ ++/** @{ */ ++extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num); ++extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++/** @} */ ++ ++ ++/** @name Schedule Queue Functions */ ++/** @{ */ ++ ++/* Implemented in dwc_otg_hcd_queue.c */ ++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb); ++extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb); ++extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit); ++ ++/** Remove and free a QH */ ++static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh) ++{ ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ dwc_otg_hcd_qh_free(hcd, qh); ++} ++ ++/** Allocates memory for a QH structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void) ++{ ++ return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL); ++} ++ ++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb); ++extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb); ++extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); ++ ++/** Allocates memory for a QTD structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void) ++{ ++ return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL); ++} ++ ++/** Frees the memory for a QTD structure. QTD should already be removed from ++ * list. ++ * @param[in] qtd QTD to free.*/ ++static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd) ++{ ++ kfree(qtd); ++} ++ ++/** Removes a QTD from list. ++ * @param[in] hcd HCD instance. ++ * @param[in] qtd QTD to remove from list. */ ++static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd) ++{ ++ unsigned long flags; ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ list_del(&qtd->qtd_list_entry); ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags); ++} ++ ++/** Remove and free a QTD */ ++static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd) ++{ ++ dwc_otg_hcd_qtd_remove(hcd, qtd); ++ dwc_otg_hcd_qtd_free(qtd); ++} ++ ++/** @} */ ++ ++ ++/** @name Internal Functions */ ++/** @{ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb); ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd); ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd); ++/** @} */ ++ ++/** Gets the usb_host_endpoint associated with an URB. */ ++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb) ++{ ++ struct usb_device *dev = urb->dev; ++ int ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (usb_pipein(urb->pipe)) ++ return dev->ep_in[ep_num]; ++ else ++ return dev->ep_out[ep_num]; ++} ++ ++/** ++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is ++ * qualified with its direction (possible 32 endpoints per device). ++ */ ++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) ++ ++/** Gets the QH that contains the list_head */ ++#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry) ++ ++/** Gets the QTD that contains the list_head */ ++#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry) ++ ++/** Check if QH is non-periodic */ ++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ ++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) ++ ++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ ++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) ++ ++/** Packet size for any kind of endpoint descriptor */ ++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) ++ ++/** ++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is ++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the ++ * frame number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2) ++{ ++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <= ++ (DWC_HFNUM_MAX_FRNUM >> 1); ++} ++ ++/** ++ * Returns true if _frame1 is greater than _frame2. The comparison is done ++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame ++ * number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2) ++{ ++ return (frame1 != frame2) && ++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) < ++ (DWC_HFNUM_MAX_FRNUM >> 1)); ++} ++ ++/** ++ * Increments _frame by the amount specified by _inc. The addition is done ++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. ++ */ ++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc) ++{ ++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM; ++} ++ ++static inline uint16_t dwc_full_frame_num(uint16_t frame) ++{ ++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3; ++} ++ ++static inline uint16_t dwc_micro_frame_num(uint16_t frame) ++{ ++ return frame & 0x7; ++} ++ ++#ifdef DEBUG ++/** ++ * Macro to sample the remaining PHY clocks left in the current frame. This ++ * may be used during debugging to determine the average time it takes to ++ * execute sections of code. There are two possible sample points, "a" and ++ * "b", so the _letter argument must be one of these values. ++ * ++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For ++ * example, "cat /sys/devices/lm0/hcd_frrem". ++ */ ++#define dwc_sample_frrem(_hcd, _qh, _letter) \ ++{ \ ++ hfnum_data_t hfnum; \ ++ dwc_otg_qtd_t *qtd; \ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ ++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ ++ switch (hfnum.b.frnum & 0x7) { \ ++ case 7: \ ++ _hcd->hfnum_7_samples_##_letter++; \ ++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ case 0: \ ++ _hcd->hfnum_0_samples_##_letter++; \ ++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ default: \ ++ _hcd->hfnum_other_samples_##_letter++; \ ++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ } \ ++ } \ ++} ++#else ++#define dwc_sample_frrem(_hcd, _qh, _letter) ++#endif ++#endif ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c +@@ -0,0 +1,1873 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $ ++ * $Revision: 1.6.2.1 $ ++ * $Date: 2009-04-22 03:48:22 $ ++ * $Change: 1117667 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++#include <linux/version.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/** @file ++ * This file contains the implementation of the HCD Interrupt handlers. ++ */ ++ ++/** This function handles interrupts for the HCD. */ ++int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int retval = 0; ++ ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++#endif ++ ++ /* Check if HOST Mode */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ gintsts.d32 = dwc_otg_read_core_intr(core_if); ++ if (!gintsts.d32) { ++ return 0; ++ } ++ ++#ifdef DEBUG ++ /* Don't print debug message in the interrupt handler on SOF */ ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); ++#endif ++ if (gintsts.b.usbreset) { ++ DWC_PRINT("Usb Reset In Host Mode\n"); ++ } ++ ++ ++ if (gintsts.b.sofintr) { ++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.rxstsqlvl) { ++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.nptxfempty) { ++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.i2cintr) { ++ /** @todo Implement i2cintr handler. */ ++ } ++ if (gintsts.b.portintr) { ++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.hcintr) { ++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.ptxfempty) { ++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd); ++ } ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintmsk)); ++ } ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++ } ++ ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++#warning Compiling code to track missed SOFs ++#define FRAME_NUM_ARRAY_SIZE 1000 ++/** ++ * This function is for debug only. ++ */ ++static inline void track_missed_sofs(uint16_t curr_frame_number) ++{ ++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static int frame_num_idx = 0; ++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; ++ static int dumped_frame_num_array = 0; ++ ++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { ++ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) { ++ frame_num_array[frame_num_idx] = curr_frame_number; ++ last_frame_num_array[frame_num_idx++] = last_frame_num; ++ } ++ } else if (!dumped_frame_num_array) { ++ int i; ++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); ++ printk(KERN_EMERG USB_DWC "----- ----------\n"); ++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { ++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", ++ frame_num_array[i], last_frame_num_array[i]); ++ } ++ dumped_frame_num_array = 1; ++ } ++ last_frame_num = curr_frame_number; ++} ++#endif ++ ++/** ++ * Handles the start-of-frame interrupt in host mode. Non-periodic ++ * transactions may be queued to the DWC_otg controller for the current ++ * (micro)frame. Periodic transactions may be queued to the controller for the ++ * next (micro)frame. ++ */ ++int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd) ++{ ++ hfnum_data_t hfnum; ++ struct list_head *qh_entry; ++ dwc_otg_qh_t *qh; ++ dwc_otg_transaction_type_e tr_type; ++ gintsts_data_t gintsts = {.d32 = 0}; ++ ++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); ++#endif ++ hcd->frame_number = hfnum.b.frnum; ++ ++#ifdef DEBUG ++ hcd->frrem_accum += hfnum.b.frrem; ++ hcd->frrem_samples++; ++#endif ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++ track_missed_sofs(hcd->frame_number); ++#endif ++ ++ /* Determine whether any periodic QHs should be executed. */ ++ qh_entry = hcd->periodic_sched_inactive.next; ++ while (qh_entry != &hcd->periodic_sched_inactive) { ++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); ++ qh_entry = qh_entry->next; ++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) { ++ /* ++ * Move QH to the ready list to be executed next ++ * (micro)frame. ++ */ ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready); ++ } ++ } ++ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at ++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to ++ * memory if the DWC_otg controller is operating in Slave mode. */ ++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ host_grxsts_data_t grxsts; ++ dwc_hc_t *hc = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); ++ ++ grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; ++ ++ /* Packet Status */ ++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); ++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); ++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); ++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer. */ ++ if (grxsts.b.bcnt > 0) { ++ dwc_otg_read_packet(dwc_otg_hcd->core_if, ++ hc->xfer_buff, ++ grxsts.b.bcnt); ++ ++ /* Update the HC fields for the next packet received. */ ++ hc->xfer_count += grxsts.b.bcnt; ++ hc->xfer_buff += grxsts.b.bcnt; ++ } ++ ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: ++ case DWC_GRXSTS_PKTSTS_CH_HALTED: ++ /* Handled in interrupt, just ignore data */ ++ break; ++ default: ++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); ++ break; ++ } ++ ++ return 1; ++} ++ ++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More ++ * data packets may be written to the FIFO for OUT transfers. More requests ++ * may be written to the non-periodic request queue for IN transfers. This ++ * interrupt is enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_NON_PERIODIC); ++ return 1; ++} ++ ++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data ++ * packets may be written to the FIFO for OUT transfers. More requests may be ++ * written to the periodic request queue for IN transfers. This interrupt is ++ * enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_PERIODIC); ++ return 1; ++} ++ ++/** There are multiple conditions that can cause a port interrupt. This function ++ * determines which interrupt conditions have occurred and handles them ++ * appropriately. */ ++int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int retval = 0; ++ hprt0_data_t hprt0; ++ hprt0_data_t hprt0_modify; ++ ++ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ ++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in ++ * GINTSTS */ ++ ++ hprt0_modify.b.prtena = 0; ++ hprt0_modify.b.prtconndet = 0; ++ hprt0_modify.b.prtenchng = 0; ++ hprt0_modify.b.prtovrcurrchng = 0; ++ ++ /* Port Connect Detected ++ * Set flag and clear if detected */ ++ if (hprt0.b.prtconndet) { ++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " ++ "Port Connect Detected--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 1; ++ hprt0_modify.b.prtconndet = 1; ++ ++ /* B-Device has connected, Delete the connection timer. */ ++ del_timer( &dwc_otg_hcd->conn_timer ); ++ ++ /* The Hub driver asserts a reset when it sees port connect ++ * status change flag */ ++ retval |= 1; ++ } ++ ++ /* Port Enable Changed ++ * Clear if detected - Set internal flag if disabled */ ++ if (hprt0.b.prtenchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Enable Changed--\n", hprt0.d32); ++ hprt0_modify.b.prtenchng = 1; ++ if (hprt0.b.prtena == 1) { ++ int do_reset = 0; ++ dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params; ++ dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if; ++ ++ /* Check if we need to adjust the PHY clock speed for ++ * low power and adjust it */ ++ if (params->host_support_fs_ls_low_power) { ++ gusbcfg_data_t usbcfg; ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED || ++ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) { ++ /* ++ * Low power ++ */ ++ hcfg_data_t hcfg; ++ if (usbcfg.b.phylpwrclksel == 0) { ++ /* Set PHY low power clock select for FS/LS devices */ ++ usbcfg.b.phylpwrclksel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED && ++ params->host_ls_low_power_phy_clk == ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) { ++ /* 6 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } else { ++ /* 48 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ } else { ++ /* ++ * Not low power ++ */ ++ if (usbcfg.b.phylpwrclksel == 1) { ++ usbcfg.b.phylpwrclksel = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ } ++ ++ if (do_reset) { ++ tasklet_schedule(dwc_otg_hcd->reset_tasklet); ++ } ++ } ++ ++ if (!do_reset) { ++ /* Port has been enabled set the reset change flag */ ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ } ++ } else { ++ dwc_otg_hcd->flags.b.port_enable_change = 1; ++ } ++ retval |= 1; ++ } ++ ++ /** Overcurrent Change Interrupt */ ++ if (hprt0.b.prtovrcurrchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Overcurrent Changed--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_over_current_change = 1; ++ hprt0_modify.b.prtovrcurrchng = 1; ++ retval |= 1; ++ } ++ ++ /* Clear Port Interrupts */ ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); ++ ++ return retval; ++} ++ ++/** This interrupt indicates that one or more host channels has a pending ++ * interrupt. There are multiple conditions that can cause each host channel ++ * interrupt. This function determines which conditions have occurred for each ++ * host channel interrupt and handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int i; ++ int retval = 0; ++ haint_data_t haint; ++ ++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in ++ * GINTSTS */ ++ ++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if); ++ ++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) { ++ if (haint.b2.chint & (1 << i)) { ++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i); ++ } ++ } ++ ++ return retval; ++} ++ ++/* Macro used to clear one channel interrupt */ ++#define clear_hc_int(_hc_regs_, _intr_) \ ++do { \ ++ hcint_data_t hcint_clear = {.d32 = 0}; \ ++ hcint_clear.b._intr_ = 1; \ ++ dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \ ++} while (0) ++ ++/* ++ * Macro used to disable one channel interrupt. Channel interrupts are ++ * disabled when the channel is halted or released by the interrupt handler. ++ * There is no need to handle further interrupts of that type until the ++ * channel is re-assigned. In fact, subsequent handling may cause crashes ++ * because the channel structures are cleaned up when the channel is released. ++ */ ++#define disable_hc_int(_hc_regs_, _intr_) \ ++do { \ ++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \ ++ hcintmsk.b._intr_ = 1; \ ++ dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \ ++} while (0) ++ ++/** ++ * Gets the actual length of a transfer after the transfer halts. _halt_status ++ * holds the reason for the halt. ++ * ++ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, ++ * *short_read is set to 1 upon return if less than the requested ++ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon ++ * return. short_read may also be NULL on entry, in which case it remains ++ * unchanged. ++ */ ++static uint32_t get_actual_xfer_length(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status, ++ int *short_read) ++{ ++ hctsiz_data_t hctsiz; ++ uint32_t length; ++ ++ if (short_read != NULL) { ++ *short_read = 0; ++ } ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) { ++ if (hc->ep_is_in) { ++ length = hc->xfer_len - hctsiz.b.xfersize; ++ if (short_read != NULL) { ++ *short_read = (hctsiz.b.xfersize != 0); ++ } ++ } else if (hc->qh->do_split) { ++ length = qtd->ssplit_out_xfer_count; ++ } else { ++ length = hc->xfer_len; ++ } ++ } else { ++ /* ++ * Must use the hctsiz.pktcnt field to determine how much data ++ * has been transferred. This field reflects the number of ++ * packets that have been transferred via the USB. This is ++ * always an integral number of packets if the transfer was ++ * halted before its normal completion. (Can't use the ++ * hctsiz.xfersize field because that reflects the number of ++ * bytes transferred via the AHB, not the USB). ++ */ ++ length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet; ++ } ++ ++ return length; ++} ++ ++/** ++ * Updates the state of the URB after a Transfer Complete interrupt on the ++ * host channel. Updates the actual_length field of the URB based on the ++ * number of bytes transferred via the host channel. Sets the URB status ++ * if the data transfer is finished. ++ * ++ * @return 1 if the data transfer specified by the URB is completely finished, ++ * 0 otherwise. ++ */ ++static int update_urb_state_xfer_comp(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ struct urb *urb, ++ dwc_otg_qtd_t *qtd) ++{ ++ int xfer_done = 0; ++ int short_read = 0; ++ int overflow_read=0; ++ uint32_t len = 0; ++ int max_packet; ++ ++ len = get_actual_xfer_length(hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE, ++ &short_read); ++ ++ /* Data overflow case: by Steven */ ++ if (len > urb->transfer_buffer_length) { ++ len = urb->transfer_buffer_length; ++ overflow_read = 1; ++ } ++ ++ /* non DWORD-aligned buffer case handling. */ ++ if (((uint32_t)hc->xfer_buff & 0x3) && len && hc->qh->dw_align_buf && hc->ep_is_in) { ++ memcpy(urb->transfer_buffer + urb->actual_length, hc->qh->dw_align_buf, len); ++ } ++ urb->actual_length +=len; ++ ++ max_packet = usb_maxpacket(urb->dev, urb->pipe, !usb_pipein(urb->pipe)); ++ if((len) && usb_pipebulk(urb->pipe) && ++ (urb->transfer_flags & URB_ZERO_PACKET) && ++ (urb->actual_length == urb->transfer_buffer_length) && ++ (!(urb->transfer_buffer_length % max_packet))) { ++ } else if (short_read || urb->actual_length == urb->transfer_buffer_length) { ++ xfer_done = 1; ++ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) { ++ urb->status = -EREMOTEIO; ++ } else if (overflow_read) { ++ urb->status = -EOVERFLOW; ++ } else { ++ urb->status = 0; ++ } ++ } ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", ++ short_read, xfer_done); ++ } ++#endif ++ ++ return xfer_done; ++} ++ ++/* ++ * Save the starting data toggle for the next transfer. The data toggle is ++ * saved in the QH for non-control transfers and it's saved in the QTD for ++ * control transfers. ++ */ ++static void save_data_toggle(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { ++ dwc_otg_qh_t *qh = hc->qh; ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } else { ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } ++} ++ ++/** ++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic ++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are ++ * still linked to the QH, the QH is added to the end of the inactive ++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic ++ * schedule if no more QTDs are linked to the QH. ++ */ ++static void deactivate_qh(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh, ++ int free_qtd) ++{ ++ int continue_split = 0; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd); ++ ++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ if (qtd->complete_split) { ++ continue_split = 1; ++ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID || ++ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) { ++ continue_split = 1; ++ } ++ ++ if (free_qtd) { ++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd); ++ continue_split = 0; ++ } ++ ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); ++} ++ ++/** ++ * Updates the state of an Isochronous URB when the transfer is stopped for ++ * any reason. The fields of the current entry in the frame descriptor array ++ * are set based on the transfer state and the input _halt_status. Completes ++ * the Isochronous URB if all the URB frames have been completed. ++ * ++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be ++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. ++ */ ++static dwc_otg_halt_status_e ++update_isoc_urb_state(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ struct urb *urb = qtd->urb; ++ dwc_otg_halt_status_e ret_val = halt_status; ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_COMPLETE: ++ frame_desc->status = 0; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ ++ /* non DWORD-aligned buffer case handling. */ ++ if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) && ++ hc->qh->dw_align_buf && hc->ep_is_in) { ++ memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset, ++ hc->qh->dw_align_buf, frame_desc->actual_length); ++ ++ } ++ ++ break; ++ case DWC_OTG_HC_XFER_FRAME_OVERRUN: ++ printk("DWC_OTG_HC_XFER_FRAME_OVERRUN: %d\n", halt_status); ++ urb->error_count++; ++ if (hc->ep_is_in) { ++ frame_desc->status = -ENOSR; ++ } else { ++ frame_desc->status = -ECOMM; ++ } ++ frame_desc->actual_length = 0; ++ break; ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ printk("DWC_OTG_HC_XFER_BABBLE_ERR: %d\n", halt_status); ++ urb->error_count++; ++ frame_desc->status = -EOVERFLOW; ++ /* Don't need to update actual_length in this case. */ ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ printk("DWC_OTG_HC_XFER_XACT_ERR: %d\n", halt_status); ++ urb->error_count++; ++ frame_desc->status = -EPROTO; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ ++ /* non DWORD-aligned buffer case handling. */ ++ if (frame_desc->actual_length && ((uint32_t)hc->xfer_buff & 0x3) && ++ hc->qh->dw_align_buf && hc->ep_is_in) { ++ memcpy(urb->transfer_buffer + frame_desc->offset + qtd->isoc_split_offset, ++ hc->qh->dw_align_buf, frame_desc->actual_length); ++ ++ } ++ break; ++ default: ++ ++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, ++ halt_status); ++ BUG(); ++ break; ++ } ++ ++ if (++qtd->isoc_frame_index == urb->number_of_packets) { ++ /* ++ * urb->status is not used for isoc transfers. ++ * The individual frame_desc statuses are used instead. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, 0); ++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ ret_val = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Releases a host channel for use by other transfers. Attempts to select and ++ * queue more transactions since at least one host channel is available. ++ * ++ * @param hcd The HCD state structure. ++ * @param hc The host channel to release. ++ * @param qtd The QTD associated with the host channel. This QTD may be freed ++ * if the transfer is complete or an error has occurred. ++ * @param halt_status Reason the channel is being released. This status ++ * determines the actions taken by this function. ++ */ ++static void release_channel(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ dwc_otg_transaction_type_e tr_type; ++ int free_qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", ++ __func__, hc->hc_num, halt_status); ++ ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_URB_COMPLETE: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_AHB_ERR: ++ case DWC_OTG_HC_XFER_STALL: ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ if (qtd->error_count >= 3) { ++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); ++ free_qtd = 1; ++ qtd->urb->status = -EPROTO; ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); ++ } else { ++ free_qtd = 0; ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_DEQUEUE: ++ /* ++ * The QTD has already been removed and the QH has been ++ * deactivated. Don't want to do anything except release the ++ * host channel and try to queue more transfers. ++ */ ++ goto cleanup; ++ case DWC_OTG_HC_XFER_NO_HALT_STATUS: ++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num); ++ free_qtd = 0; ++ break; ++ default: ++ free_qtd = 0; ++ break; ++ } ++ ++ deactivate_qh(hcd, hc->qh, free_qtd); ++ ++ cleanup: ++ /* ++ * Release the host channel for use by other transfers. The cleanup ++ * function clears the channel interrupt enables and conditions, so ++ * there's no need to clear the Channel Halted interrupt separately. ++ */ ++ dwc_otg_hc_cleanup(hcd->core_if, hc); ++ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); ++ ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hcd->non_periodic_channels--; ++ break; ++ ++ default: ++ /* ++ * Don't release reservations for periodic channels here. ++ * That's done when a periodic transfer is descheduled (i.e. ++ * when the QH is removed from the periodic schedule). ++ */ ++ break; ++ } ++ ++ /* Try to queue more transfers now that there's a free channel. */ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++ } ++} ++ ++/** ++ * Halts a host channel. If the channel cannot be halted immediately because ++ * the request queue is full, this function ensures that the FIFO empty ++ * interrupt for the appropriate queue is enabled so that the halt request can ++ * be queued when there is space in the request queue. ++ * ++ * This function may also be called in DMA mode. In that case, the channel is ++ * simply released since the core always halts the channel automatically in ++ * DMA mode. ++ */ ++static void halt_channel(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ if (hcd->core_if->dma_enable) { ++ release_channel(hcd, hc, qtd, halt_status); ++ return; ++ } ++ ++ /* Slave mode processing... */ ++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status); ++ ++ if (hc->halt_on_queue) { ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs; ++ global_regs = hcd->core_if->core_global_regs; ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ /* ++ * Make sure the Non-periodic Tx FIFO empty interrupt ++ * is enabled so that the non-periodic schedule will ++ * be processed. ++ */ ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } else { ++ /* ++ * Move the QH from the periodic queued schedule to ++ * the periodic assigned schedule. This allows the ++ * halt to be queued when the periodic schedule is ++ * processed. ++ */ ++ list_move(&hc->qh->qh_list_entry, ++ &hcd->periodic_sched_assigned); ++ ++ /* ++ * Make sure the Periodic Tx FIFO Empty interrupt is ++ * enabled so that the periodic schedule will be ++ * processed. ++ */ ++ gintmsk.b.ptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } ++ } ++} ++ ++/** ++ * Performs common cleanup for non-periodic transfers after a Transfer ++ * Complete interrupt. This function should be called after any endpoint type ++ * specific handling is finished to release the host channel. ++ */ ++static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ hcint_data_t hcint; ++ ++ qtd->error_count = 0; ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ if (hcint.b.nyet) { ++ /* ++ * Got a NYET on the last transaction of the transfer. This ++ * means that the endpoint should be in the PING state at the ++ * beginning of the next transfer. ++ */ ++ hc->qh->ping_state = 1; ++ clear_hc_int(hc_regs, nyet); ++ } ++ ++ /* ++ * Always halt and release the host channel to make it available for ++ * more transfers. There may still be more phases for a control ++ * transfer or more data packets for a bulk transfer at this point, ++ * but the host channel is still halted. A channel will be reassigned ++ * to the transfer when the non-periodic schedule is processed after ++ * the channel is released. This allows transactions to be queued ++ * properly via dwc_otg_hcd_queue_transactions, which also enables the ++ * Tx FIFO Empty interrupt if necessary. ++ */ ++ if (hc->ep_is_in) { ++ /* ++ * IN transfers in Slave mode require an explicit disable to ++ * halt the channel. (In DMA mode, this call simply releases ++ * the channel.) ++ */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* ++ * The channel is automatically disabled by the core for OUT ++ * transfers in Slave mode. ++ */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Performs common cleanup for periodic transfers after a Transfer Complete ++ * interrupt. This function should be called after any endpoint type specific ++ * handling is finished to release the host channel. ++ */ ++static void complete_periodic_xfer(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ hctsiz_data_t hctsiz; ++ qtd->error_count = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) { ++ /* Core halts channel in these cases. */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* Flush any outstanding requests from the Tx queue. */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Handles a host channel Transfer Complete interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ int urb_xfer_done; ++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transfer Complete--\n", hc->hc_num); ++ ++ /* ++ * Handle xfer complete on CSPLIT. ++ */ ++ if (hc->qh->do_split) { ++ qtd->complete_split = 0; ++ } ++ ++ /* Update the QTD and URB states. */ ++ switch (pipe_type) { ++ case PIPE_CONTROL: ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ if (urb->transfer_buffer_length > 0) { ++ qtd->control_phase = DWC_OTG_CONTROL_DATA; ++ } else { ++ qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ } ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ case DWC_OTG_CONTROL_DATA: { ++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ if (urb_xfer_done) { ++ qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); ++ } else { ++ save_data_toggle(hc, hc_regs, qtd); ++ } ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ } ++ case DWC_OTG_CONTROL_STATUS: ++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); ++ if (urb->status == -EINPROGRESS) { ++ urb->status = 0; ++ } ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ break; ++ } ++ ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ case PIPE_BULK: ++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); ++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ if (urb_xfer_done) { ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ case PIPE_INTERRUPT: ++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); ++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ ++ /* ++ * Interrupt URB is done on the first transfer complete ++ * interrupt. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_URB_COMPLETE); ++ break; ++ case PIPE_ISOCHRONOUS: ++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); ++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE); ++ } ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xfercompl); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel STALL interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "STALL Received--\n", hc->hc_num); ++ ++ if (pipe_type == PIPE_CONTROL) { ++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); ++ } ++ ++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { ++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); ++ /* ++ * USB protocol requires resetting the data toggle for bulk ++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) ++ * setup command is issued to the endpoint. Anticipate the ++ * CLEAR_FEATURE command since a STALL has occurred and reset ++ * the data toggle now. ++ */ ++ hc->qh->data_toggle = 0; ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL); ++ ++ disable_hc_int(hc_regs, stall); ++ ++ return 1; ++} ++ ++/* ++ * Updates the state of the URB when a transfer has been stopped due to an ++ * abnormal condition before the transfer completes. Modifies the ++ * actual_length field of the URB to reflect the number of bytes that have ++ * actually been transferred via the host channel. ++ */ ++static void update_urb_state_xfer_intr(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ struct urb *urb, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ urb->actual_length += bytes_transferred; ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet); ++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ } ++#endif ++} ++ ++/** ++ * Handles a host channel NAK interrupt. This handler may be called in either ++ * DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NAK Received--\n", hc->hc_num); ++ ++ /* ++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and ++ * interrupt. Re-start the SSPLIT transfer. ++ */ ++ if (hc->do_split) { ++ if (hc->complete_split) { ++ qtd->error_count = 0; ++ } ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ goto handle_nak_done; ++ } ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ if (hcd->core_if->dma_enable && hc->ep_is_in) { ++ /* ++ * NAK interrupts are enabled on bulk/control IN ++ * transfers in DMA mode for the sole purpose of ++ * resetting the error count after a transaction error ++ * occurs. The core will continue transferring data. ++ */ ++ qtd->error_count = 0; ++ goto handle_nak_done; ++ } ++ ++ /* ++ * NAK interrupts normally occur during OUT transfers in DMA ++ * or Slave mode. For IN transfers, more requests will be ++ * queued as request queue space is available. ++ */ ++ qtd->error_count = 0; ++ ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, DWC_OTG_HC_XFER_NAK); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will ++ * start/continue. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_ISOCHRONOUS: ++ /* Should never get called for isochronous transfers. */ ++ BUG(); ++ break; ++ } ++ ++ handle_nak_done: ++ disable_hc_int(hc_regs, nak); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel ACK interrupt. This interrupt is enabled when ++ * performing the PING protocol in Slave mode, when errors occur during ++ * either Slave mode or DMA mode, and during Start Split transactions. ++ */ ++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "ACK Received--\n", hc->hc_num); ++ ++ if (hc->do_split) { ++ /* ++ * Handle ACK on SSPLIT. ++ * ACK should not occur in CSPLIT. ++ */ ++ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) { ++ qtd->ssplit_out_xfer_count = hc->xfer_len; ++ } ++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) { ++ /* Don't need complete for isochronous out transfers. */ ++ qtd->complete_split = 1; ++ } ++ ++ /* ISOC OUT */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { ++ switch (hc->xact_pos) { ++ case DWC_HCSPLIT_XACTPOS_ALL: ++ break; ++ case DWC_HCSPLIT_XACTPOS_END: ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ break; ++ case DWC_HCSPLIT_XACTPOS_BEGIN: ++ case DWC_HCSPLIT_XACTPOS_MID: ++ /* ++ * For BEGIN or MID, calculate the length for ++ * the next microframe to determine the correct ++ * SSPLIT token, either MID or END. ++ */ ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; ++ qtd->isoc_split_offset += 188; ++ ++ if ((frame_desc->length - qtd->isoc_split_offset) <= 188) { ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; ++ } else { ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; ++ } ++ ++ } ++ break; ++ } ++ } else { ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } else { ++ qtd->error_count = 0; ++ ++ if (hc->qh->ping_state) { ++ hc->qh->ping_state = 0; ++ /* ++ * Halt the channel so the transfer can be re-started ++ * from the appropriate point. This only happens in ++ * Slave mode. In DMA mode, the ping_state is cleared ++ * when the transfer is started because the core ++ * automatically executes the PING, then the transfer. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } ++ ++ /* ++ * If the ACK occurred when _not_ in the PING state, let the channel ++ * continue transferring data after clearing the error count. ++ */ ++ ++ disable_hc_int(hc_regs, ack); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel NYET interrupt. This interrupt should only occur on ++ * Bulk and Control OUT endpoints and for complete split transactions. If a ++ * NYET occurs at the same time as a Transfer Complete interrupt, it is ++ * handled in the xfercomp interrupt handler, not here. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NYET Received--\n", hc->hc_num); ++ ++ /* ++ * NYET on CSPLIT ++ * re-do the CSPLIT immediately on non-periodic ++ */ ++ if (hc->do_split && hc->complete_split) { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); ++ ++ if (dwc_full_frame_num(frnum) != ++ dwc_full_frame_num(hc->qh->sched_frame)) { ++ /* ++ * No longer in the same full speed frame. ++ * Treat this as a transaction error. ++ */ ++#if 0 ++ /** @todo Fix system performance so this can ++ * be treated as an error. Right now complete ++ * splits cannot be scheduled precisely enough ++ * due to other system activity, so this error ++ * occurs regularly in Slave mode. ++ */ ++ qtd->error_count++; ++#endif ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ /** @todo add support for isoc release */ ++ goto handle_nyet_done; ++ } ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ goto handle_nyet_done; ++ } ++ ++ hc->qh->ping_state = 1; ++ qtd->error_count = 0; ++ ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd, ++ DWC_OTG_HC_XFER_NYET); ++ save_data_toggle(hc, hc_regs, qtd); ++ ++ /* ++ * Halt the channel and re-start the transfer so the PING ++ * protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ ++handle_nyet_done: ++ disable_hc_int(hc_regs, nyet); ++ return 1; ++} ++ ++/** ++ * Handles a host channel babble interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Babble Error--\n", hc->hc_num); ++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR); ++ } else { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_BABBLE_ERR); ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ disable_hc_int(hc_regs, bblerr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel AHB error interrupt. This handler is only called in ++ * DMA mode. ++ */ ++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ struct urb *urb = qtd->urb; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "AHB Error--\n", hc->hc_num); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num); ++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); ++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_ERROR(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_ERROR(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_ERROR(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)urb->transfer_dma); ++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)urb->setup_dma); ++ DWC_ERROR(" Interval: %d\n", urb->interval); ++ ++ dwc_otg_hcd_complete_urb(hcd, urb, -EIO); ++ ++ /* ++ * Force a channel halt. Don't call halt_channel because that won't ++ * write to the HCCHARn register in DMA mode to force the halt. ++ */ ++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); ++ ++ disable_hc_int(hc_regs, ahberr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel transaction error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transaction Error--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ qtd->error_count++; ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count++; ++ if (hc->do_split && hc->complete_split) { ++ qtd->complete_split = 0; ++ } ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xacterr); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel frame overrun interrupt. This handler may be called ++ * in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Frame Overrun--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ break; ++ case PIPE_INTERRUPT: ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ break; ++ } ++ ++ disable_hc_int(hc_regs, frmovrun); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel data toggle error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Data Toggle Error--\n", hc->hc_num); ++ ++ if (hc->ep_is_in) { ++ qtd->error_count = 0; ++ } else { ++ DWC_ERROR("Data Toggle Error on OUT transfer," ++ "channel %d\n", hc->hc_num); ++ } ++ ++ disable_hc_int(hc_regs, datatglerr); ++ ++ return 1; ++} ++ ++#ifdef DEBUG ++/** ++ * This function is for debug only. It checks that a valid halt status is set ++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is ++ * taken and a warning is issued. ++ * @return 1 if halt status is ok, 0 otherwise. ++ */ ++static inline int halt_status_ok(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hcsplt_data_t hcsplt; ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { ++ /* ++ * This code is here only as a check. This condition should ++ * never happen. Ignore the halt if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ DWC_WARN("%s: hc->halt_status == DWC_OTG" ++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " ++ "hcint 0x%08x, hcintmsk 0x%08x, " ++ "hcsplt 0x%08x, qtd->complete_split %d\n", ++ __func__, hc->hc_num, hcchar.d32, hctsiz.d32, ++ hcint.d32, hcintmsk.d32, ++ hcsplt.d32, qtd->complete_split); ++ ++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", ++ __func__, hc->hc_num); ++ DWC_WARN("\n"); ++ clear_hc_int(hc_regs, chhltd); ++ return 0; ++ } ++ ++ /* ++ * This code is here only as a check. hcchar.chdis should ++ * never be set when the halt interrupt occurs. Halt the ++ * channel again if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: hcchar.chdis set unexpectedly, " ++ "hcchar 0x%08x, trying to halt again\n", ++ __func__, hcchar.d32); ++ clear_hc_int(hc_regs, chhltd); ++ hc->halt_pending = 0; ++ halt_channel(hcd, hc, qtd, hc->halt_status); ++ return 0; ++ } ++ ++ return 1; ++} ++#endif ++ ++/** ++ * Handles a host Channel Halted interrupt in DMA mode. This handler ++ * determines the reason the channel halted and proceeds accordingly. ++ */ ++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ int out_nak_enh = 0; ++ ++ /* For core with OUT NAK enhancement, the flow for high- ++ * speed CONTROL/BULK OUT is handled a little differently. ++ */ ++ if (hcd->core_if->snpsid >= 0x4F54271A) { ++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in && ++ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) { ++ printk(KERN_DEBUG "OUT NAK enhancement enabled\n"); ++ out_nak_enh = 1; ++ } else { ++ printk(KERN_DEBUG "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n"); ++ } ++ } else { ++// printk(KERN_DEBUG "OUT NAK enhancement disabled, no core support\n"); ++ } ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Just release the channel. A dequeue can happen on a ++ * transfer timeout. In the case of an AHB Error, the channel ++ * was forced to halt because there's no way to gracefully ++ * recover. ++ */ ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ return; ++ } ++ ++ /* Read the HCINTn register to determine the cause for the halt. */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ ++ if (hcint.b.xfercomp) { ++ /** @todo This is here because of a possible hardware bug. Spec ++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT ++ * interrupt w/ACK bit set should occur, but I only see the ++ * XFERCOMP bit, even with it masked out. This is a workaround ++ * for that behavior. Should fix this when hardware is fixed. ++ */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ } ++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.stall) { ++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.xacterr) { ++ if (out_nak_enh) { ++ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) { ++ printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n"); ++ qtd->error_count = 0; ++ } else { ++ printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n"); ++ } ++ } ++ ++ /* ++ * Must handle xacterr before nak or ack. Could get a xacterr ++ * at the same time as either of these on a BULK/CONTROL OUT ++ * that started with a PING. The xacterr takes precedence. ++ */ ++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd); ++ } else if (!out_nak_enh) { ++ if (hcint.b.nyet) { ++ /* ++ * Must handle nyet before nak or ack. Could get a nyet at the ++ * same time as either of those on a BULK/CONTROL OUT that ++ * started with a PING. The nyet takes precedence. ++ */ ++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.bblerr) { ++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.frmovrun) { ++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.nak && !hcintmsk.b.nak) { ++ /* ++ * If nak is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the nak is handled by ++ * the nak interrupt handler, not here. Handle nak here for ++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow ++ * rewinding the buffer pointer. ++ */ ++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.ack && !hcintmsk.b.ack) { ++ /* ++ * If ack is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the ack is handled by ++ * the ack interrupt handler, not here. Handle ack here for ++ * split transfers. Start splits halt on ACK. ++ */ ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ } else { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * A periodic transfer halted with no other channel ++ * interrupts set. Assume it was halted by the core ++ * because it could not be completed in its scheduled ++ * (micro)frame. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", ++ __func__, hc->hc_num); ++#endif ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE); ++ } else { ++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " ++ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n", ++ __func__, hc->hc_num, hcint.d32, ++ dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts)); ++ } ++ } ++ } else { ++ printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32); ++ } ++} ++ ++/** ++ * Handles a host channel Channel Halted interrupt. ++ * ++ * In slave mode, this handler is called only when the driver specifically ++ * requests a halt. This occurs during handling other host channel interrupts ++ * (e.g. nak, xacterr, stall, nyet, etc.). ++ * ++ * In DMA mode, this is the interrupt that occurs when the core has finished ++ * processing a transfer on a channel. Other host channel interrupts (except ++ * ahberr) are disabled in DMA mode. ++ */ ++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Channel Halted--\n", hc->hc_num); ++ ++ if (hcd->core_if->dma_enable) { ++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd); ++ } else { ++#ifdef DEBUG ++ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) { ++ return 1; ++ } ++#endif ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ } ++ ++ return 1; ++} ++ ++/** Handles interrupt for a specific Host Channel */ ++int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num) ++{ ++ int retval = 0; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ dwc_hc_t *hc; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[num]; ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num]; ++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", ++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); ++ hcint.d32 = hcint.d32 & hcintmsk.d32; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ if (hcint.b.chhltd && hcint.d32 != 0x2) { ++ hcint.b.chhltd = 0; ++ } ++ } ++ ++ if (hcint.b.xfercomp) { ++ retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ /* ++ * If NYET occurred at same time as Xfer Complete, the NYET is ++ * handled by the Xfer Complete interrupt handler. Don't want ++ * to call the NYET interrupt handler in this case. ++ */ ++ hcint.b.nyet = 0; ++ } ++ if (hcint.b.chhltd) { ++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.ahberr) { ++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.stall) { ++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.nak) { ++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.ack) { ++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.nyet) { ++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.xacterr) { ++ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.bblerr) { ++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.frmovrun) { ++ retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.datatglerr) { ++ retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c +@@ -0,0 +1,684 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $ ++ * $Revision: 1.5 $ ++ * $Date: 2008-12-15 06:51:32 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the functions to manage Queue Heads and Queue ++ * Transfer Descriptors. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/** ++ * This function allocates and initializes a QH. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. ++ * ++ * @return Returns pointer to the newly allocated QH, or NULL on error. */ ++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb) ++{ ++ dwc_otg_qh_t *qh; ++ ++ /* Allocate memory */ ++ /** @todo add memflags argument */ ++ qh = dwc_otg_hcd_qh_alloc (); ++ if (qh == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qh_init (hcd, qh, urb); ++ return qh; ++} ++ ++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be ++ * removed from a list. QTD list should already be empty if called from URB ++ * Dequeue. ++ * ++ * @param[in] hcd HCD instance. ++ * @param[in] qh The QH to free. ++ */ ++void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ dwc_otg_qtd_t *qtd; ++ struct list_head *pos; ++ unsigned long flags; ++ ++ /* Free each QTD in the QTD list */ ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags) ++ for (pos = qh->qtd_list.next; ++ pos != &qh->qtd_list; ++ pos = qh->qtd_list.next) ++ { ++ list_del (pos); ++ qtd = dwc_list_to_qtd (pos); ++ dwc_otg_hcd_qtd_free (qtd); ++ } ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags) ++ ++ if (qh->dw_align_buf) { ++ dma_free_coherent((dwc_otg_hcd_to_hcd(hcd))->self.controller, ++ hcd->core_if->core_params->max_transfer_size, ++ qh->dw_align_buf, ++ qh->dw_align_buf_dma); ++ } ++ ++ kfree (qh); ++ return; ++} ++ ++/** Initializes a QH structure. ++ * ++ * @param[in] hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] qh The QH to init. ++ * @param[in] urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. */ ++#define SCHEDULE_SLOP 10 ++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb) ++{ ++ char *speed, *type; ++ memset (qh, 0, sizeof (dwc_otg_qh_t)); ++ ++ /* Initialize QH */ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ qh->ep_type = USB_ENDPOINT_XFER_CONTROL; ++ break; ++ case PIPE_BULK: ++ qh->ep_type = USB_ENDPOINT_XFER_BULK; ++ break; ++ case PIPE_ISOCHRONOUS: ++ qh->ep_type = USB_ENDPOINT_XFER_ISOC; ++ break; ++ case PIPE_INTERRUPT: ++ qh->ep_type = USB_ENDPOINT_XFER_INT; ++ break; ++ } ++ ++ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0; ++ ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe))); ++ INIT_LIST_HEAD(&qh->qtd_list); ++ INIT_LIST_HEAD(&qh->qh_list_entry); ++ qh->channel = NULL; ++ ++ /* FS/LS Enpoint on HS Hub ++ * NOT virtual root hub */ ++ qh->do_split = 0; ++ if (((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL)) && ++ (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1)) ++ { ++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", ++ usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum, ++ urb->dev->ttport); ++ qh->do_split = 1; ++ } ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT || ++ qh->ep_type == USB_ENDPOINT_XFER_ISOC) { ++ /* Compute scheduling parameters once and save them. */ ++ hprt0_data_t hprt; ++ ++ /** @todo Account for split transfers in the bus time. */ ++ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp); ++ ++ /* FIXME: work-around patch by Steven */ ++ qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed, ++ usb_pipein(urb->pipe), ++ (qh->ep_type == USB_ENDPOINT_XFER_ISOC), ++ bytecount)); ++ ++ /* Start in a slightly future (micro)frame. */ ++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, ++ SCHEDULE_SLOP); ++ qh->interval = urb->interval; ++#if 0 ++ /* Increase interrupt polling rate for debugging. */ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ qh->interval = 8; ++ } ++#endif ++ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0); ++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ++ ((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL))) { ++ qh->interval *= 8; ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", ++ urb->dev->devnum); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); ++ ++ switch(urb->dev->speed) { ++ case USB_SPEED_LOW: ++ speed = "low"; ++ break; ++ case USB_SPEED_FULL: ++ speed = "full"; ++ break; ++ case USB_SPEED_HIGH: ++ speed = "high"; ++ break; ++ default: ++ speed = "?"; ++ break; ++ } ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed); ++ ++ switch (qh->ep_type) { ++ case USB_ENDPOINT_XFER_ISOC: ++ type = "isochronous"; ++ break; ++ case USB_ENDPOINT_XFER_INT: ++ type = "interrupt"; ++ break; ++ case USB_ENDPOINT_XFER_CONTROL: ++ type = "control"; ++ break; ++ case USB_ENDPOINT_XFER_BULK: ++ type = "bulk"; ++ break; ++ default: ++ type = "?"; ++ break; ++ } ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type); ++ ++#ifdef DEBUG ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", ++ qh->usecs); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", ++ qh->interval); ++ } ++#endif ++ qh->dw_align_buf = NULL; ++ return; ++} ++ ++/** ++ * Checks that a channel is available for a periodic transfer. ++ * ++ * @return 0 if successful, negative error code otherise. ++ */ ++static int periodic_channel_available(dwc_otg_hcd_t *hcd) ++{ ++ /* ++ * Currently assuming that there is a dedicated host channnel for each ++ * periodic transaction plus at least one host channel for ++ * non-periodic transactions. ++ */ ++ int status; ++ int num_channels; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) && ++ (hcd->periodic_channels < num_channels - 1)) { ++ status = 0; ++ } ++ else { ++ DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", ++ __func__, num_channels, hcd->periodic_channels, ++ hcd->non_periodic_channels); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that there is sufficient bandwidth for the specified QH in the ++ * periodic schedule. For simplicity, this calculation assumes that all the ++ * transfers in the periodic schedule may occur in the same (micro)frame. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH containing periodic bandwidth required. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status; ++ uint16_t max_claimed_usecs; ++ ++ status = 0; ++ ++ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) { ++ /* ++ * High speed mode. ++ * Max periodic usecs is 80% x 125 usec = 100 usec. ++ */ ++ max_claimed_usecs = 100 - qh->usecs; ++ } else { ++ /* ++ * Full speed mode. ++ * Max periodic usecs is 90% x 1000 usec = 900 usec. ++ */ ++ max_claimed_usecs = 900 - qh->usecs; ++ } ++ ++ if (hcd->periodic_usecs > max_claimed_usecs) { ++ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n", ++ __func__, hcd->periodic_usecs, qh->usecs); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that the max transfer size allowed in a host channel is large enough ++ * to handle the maximum data transfer in a single (micro)frame for a periodic ++ * transfer. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for a periodic endpoint. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status; ++ uint32_t max_xfer_size; ++ uint32_t max_channel_xfer_size; ++ ++ status = 0; ++ ++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp); ++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size; ++ ++ if (max_xfer_size > max_channel_xfer_size) { ++ DWC_NOTICE("%s: Periodic xfer length %d > " ++ "max xfer length for channel %d\n", ++ __func__, max_xfer_size, max_channel_xfer_size); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Schedules an interrupt or isochronous transfer in the periodic schedule. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for the periodic transfer. The QH should already contain the ++ * scheduling information. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status = 0; ++ ++ status = periodic_channel_available(hcd); ++ if (status) { ++ DWC_NOTICE("%s: No host channel available for periodic " ++ "transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_periodic_bandwidth(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Insufficient periodic bandwidth for " ++ "periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_max_xfer_size(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Channel max transfer size too small " ++ "for periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive); ++ ++ /* Reserve the periodic channel. */ ++ hcd->periodic_channels++; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs += qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval; ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to either the non periodic or periodic schedule if ++ * it is not already in the schedule. If the QH is already in the schedule, no ++ * action is taken. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ unsigned long flags; ++ int status = 0; ++ ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags) ++ ++ if (!list_empty(&qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the appropriate schedule */ ++ if (dwc_qh_is_non_per(qh)) { ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive); ++ } else { ++ status = schedule_periodic(hcd, qh); ++ } ++ ++ done: ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags) ++ ++ return status; ++} ++ ++/** ++ * Removes an interrupt or isochronous transfer from the periodic schedule. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for the periodic transfer. ++ */ ++static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ list_del_init(&qh->qh_list_entry); ++ ++ /* Release the periodic channel reservation. */ ++ hcd->periodic_channels--; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs -= qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval; ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } ++} ++ ++/** ++ * Removes a QH from either the non-periodic or periodic schedule. Memory is ++ * not freed. ++ * ++ * @param[in] hcd The HCD state structure. ++ * @param[in] qh QH to remove from schedule. */ ++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ unsigned long flags; ++ ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ ++ if (list_empty(&qh->qh_list_entry)) { ++ /* QH is not in a schedule. */ ++ goto done; ++ } ++ ++ if (dwc_qh_is_non_per(qh)) { ++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ list_del_init(&qh->qh_list_entry); ++ } else { ++ deschedule_periodic(hcd, qh); ++ } ++ ++ done: ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags) ++} ++ ++/** ++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the inactive non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ * ++ * For periodic QHs, the QH is removed from the periodic queued schedule. If ++ * there are any QTDs still attached to the QH, the QH is added to either the ++ * periodic inactive schedule or the periodic ready schedule and its next ++ * scheduled frame is calculated. The QH is placed in the ready schedule if ++ * the scheduled frame has been reached already. Otherwise it's placed in the ++ * inactive schedule. If there are no QTDs attached to the QH, the QH is ++ * completely removed from the periodic schedule. ++ */ ++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split) ++{ ++ unsigned long flags; ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ ++ if (dwc_qh_is_non_per(qh)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ if (!list_empty(&qh->qtd_list)) { ++ /* Add back to inactive non-periodic schedule. */ ++ dwc_otg_hcd_qh_add(hcd, qh); ++ } ++ } else { ++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); ++ ++ if (qh->do_split) { ++ /* Schedule the next continuing periodic split transfer */ ++ if (sched_next_periodic_split) { ++ ++ qh->sched_frame = frame_number; ++ if (dwc_frame_num_le(frame_number, ++ dwc_frame_num_inc(qh->start_split_frame, 1))) { ++ /* ++ * Allow one frame to elapse after start ++ * split microframe before scheduling ++ * complete split, but DONT if we are ++ * doing the next start split in the ++ * same frame for an ISOC out. ++ */ ++ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) { ++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1); ++ } ++ } ++ } else { ++ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame, ++ qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ qh->sched_frame = frame_number; ++ } ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ } else { ++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ qh->sched_frame = frame_number; ++ } ++ } ++ ++ if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ } else { ++ /* ++ * Remove from periodic_sched_queued and move to ++ * appropriate queue. ++ */ ++ if (qh->sched_frame == frame_number) { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_ready); ++ } else { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_inactive); ++ } ++ } ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags); ++} ++ ++/** ++ * This function allocates and initializes a QTD. ++ * ++ * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up ++ * pointing to each other so each pair should have a unique correlation. ++ * ++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */ ++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb) ++{ ++ dwc_otg_qtd_t *qtd; ++ ++ qtd = dwc_otg_hcd_qtd_alloc (); ++ if (qtd == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qtd_init (qtd, urb); ++ return qtd; ++} ++ ++/** ++ * Initializes a QTD structure. ++ * ++ * @param[in] qtd The QTD to initialize. ++ * @param[in] urb The URB to use for initialization. */ ++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb) ++{ ++ memset (qtd, 0, sizeof (dwc_otg_qtd_t)); ++ qtd->urb = urb; ++ if (usb_pipecontrol(urb->pipe)) { ++ /* ++ * The only time the QTD data toggle is used is on the data ++ * phase of control transfers. This phase always starts with ++ * DATA1. ++ */ ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ qtd->control_phase = DWC_OTG_CONTROL_SETUP; ++ } ++ ++ /* start split */ ++ qtd->complete_split = 0; ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ ++ /* Store the qtd ptr in the urb to reference what QTD. */ ++ urb->hcpriv = qtd; ++ return; ++} ++ ++/** ++ * This function adds a QTD to the QTD-list of a QH. It will find the correct ++ * QH to place the QTD into. If it does not find a QH, then it will create a ++ * new QH. If the QH to which the QTD is added is not currently scheduled, it ++ * is placed into the proper schedule based on its EP type. ++ * ++ * @param[in] qtd The QTD to add ++ * @param[in] dwc_otg_hcd The DWC HCD structure ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, ++ dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ struct usb_host_endpoint *ep; ++ dwc_otg_qh_t *qh; ++ unsigned long flags; ++ int retval = 0; ++ ++ struct urb *urb = qtd->urb; ++ ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ ++ /* ++ * Get the QH which holds the QTD-list to insert to. Create QH if it ++ * doesn't exist. ++ */ ++ ep = dwc_urb_to_endpoint(urb); ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ if (qh == NULL) { ++ qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb); ++ if (qh == NULL) { ++ goto done; ++ } ++ ep->hcpriv = qh; ++ } ++ ++ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh); ++ if (retval == 0) { ++ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); ++ } ++ ++ done: ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_pcd.c +@@ -0,0 +1,2523 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $ ++ * $Revision: 1.5 $ ++ * $Date: 2008-11-27 09:21:25 $ ++ * $Change: 1115682 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++ ++/** @file ++ * This file implements the Peripheral Controller Driver. ++ * ++ * The Peripheral Controller Driver (PCD) is responsible for ++ * translating requests from the Function Driver into the appropriate ++ * actions on the DWC_otg controller. It isolates the Function Driver ++ * from the specifics of the controller by providing an API to the ++ * Function Driver. ++ * ++ * The Peripheral Controller Driver for Linux will implement the ++ * Gadget API, so that the existing Gadget drivers can be used. ++ * (Gadget Driver is the Linux terminology for a Function Driver.) ++ * ++ * The Linux Gadget API is defined in the header file ++ * <code><linux/usb_gadget.h></code>. The USB EP operations API is ++ * defined in the structure <code>usb_ep_ops</code> and the USB ++ * Controller API is defined in the structure ++ * <code>usb_gadget_ops</code>. ++ * ++ * An important function of the PCD is managing interrupts generated ++ * by the DWC_otg controller. The implementation of the DWC_otg device ++ * mode interrupt service routines is in dwc_otg_pcd_intr.c. ++ * ++ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc). ++ * @todo Does it work when the request size is greater than DEPTSIZ ++ * transfer size ++ * ++ */ ++ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21) ++# include <linux/usb/ch9.h> ++#else ++# include <linux/usb_ch9.h> ++#endif ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24) ++#include <linux/usb/gadget.h> ++#else ++#include <linux/usb_gadget.h> ++#endif ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_pcd.h" ++ ++ ++/** ++ * Static PCD pointer for use in usb_gadget_register_driver and ++ * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init. ++ */ ++static dwc_otg_pcd_t *s_pcd = 0; ++ ++ ++/* Display the contents of the buffer */ ++extern void dump_msg(const u8 *buf, unsigned int length); ++ ++ ++/** ++ * This function completes a request. It call's the request call back. ++ */ ++void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req, ++ int status) ++{ ++ unsigned stopped = ep->stopped; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep); ++ list_del_init(&req->queue); ++ ++ if (req->req.status == -EINPROGRESS) { ++ req->req.status = status; ++ } else { ++ status = req->req.status; ++ } ++ ++ /* don't modify queue heads during completion callback */ ++ ep->stopped = 1; ++ SPIN_UNLOCK(&ep->pcd->lock); ++ req->req.complete(&ep->ep, &req->req); ++ SPIN_LOCK(&ep->pcd->lock); ++ ++ if (ep->pcd->request_pending > 0) { ++ --ep->pcd->request_pending; ++ } ++ ++ ep->stopped = stopped; ++} ++ ++/** ++ * This function terminates all the requsts in the EP request queue. ++ */ ++void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_pcd_request_t *req; ++ ++ ep->stopped = 1; ++ ++ /* called with irqs blocked?? */ ++ while (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, ++ queue); ++ dwc_otg_request_done(ep, req, -ESHUTDOWN); ++ } ++} ++ ++/* USB Endpoint Operations */ ++/* ++ * The following sections briefly describe the behavior of the Gadget ++ * API endpoint operations implemented in the DWC_otg driver ++ * software. Detailed descriptions of the generic behavior of each of ++ * these functions can be found in the Linux header file ++ * include/linux/usb_gadget.h. ++ * ++ * The Gadget API provides wrapper functions for each of the function ++ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper ++ * function, which then calls the underlying PCD function. The ++ * following sections are named according to the wrapper ++ * functions. Within each section, the corresponding DWC_otg PCD ++ * function name is specified. ++ * ++ */ ++ ++/** ++ * This function assigns periodic Tx FIFO to an periodic EP ++ * in shared Tx FIFO mode ++ */ ++static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t PerTxMsk = 1; ++ int i; ++ for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i) ++ { ++ if((PerTxMsk & core_if->p_tx_msk) == 0) { ++ core_if->p_tx_msk |= PerTxMsk; ++ return i + 1; ++ } ++ PerTxMsk <<= 1; ++ } ++ return 0; ++} ++/** ++ * This function releases periodic Tx FIFO ++ * in shared Tx FIFO mode ++ */ ++static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num) ++{ ++ core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk; ++} ++/** ++ * This function assigns periodic Tx FIFO to an periodic EP ++ * in shared Tx FIFO mode ++ */ ++static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t TxMsk = 1; ++ int i; ++ ++ for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i) ++ { ++ if((TxMsk & core_if->tx_msk) == 0) { ++ core_if->tx_msk |= TxMsk; ++ return i + 1; ++ } ++ TxMsk <<= 1; ++ } ++ return 0; ++} ++/** ++ * This function releases periodic Tx FIFO ++ * in shared Tx FIFO mode ++ */ ++static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num) ++{ ++ core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk; ++} ++ ++/** ++ * This function is called by the Gadget Driver for each EP to be ++ * configured for the current configuration (SET_CONFIGURATION). ++ * ++ * This function initializes the dwc_otg_ep_t data structure, and then ++ * calls dwc_otg_ep_activate. ++ */ ++static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep, ++ const struct usb_endpoint_descriptor *ep_desc) ++{ ++ dwc_otg_pcd_ep_t *ep = 0; ++ dwc_otg_pcd_t *pcd = 0; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !ep_desc || ep->desc || ++ ep_desc->bDescriptorType != USB_DT_ENDPOINT) { ++ DWC_WARN("%s, bad ep or descriptor\n", __func__); ++ return -EINVAL; ++ } ++ if (ep == &ep->pcd->ep0) { ++ DWC_WARN("%s, bad ep(0)\n", __func__); ++ return -EINVAL; ++ } ++ ++ /* Check FIFO size? */ ++ if (!ep_desc->wMaxPacketSize) { ++ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name); ++ return -ERANGE; ++ } ++ ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ ep->desc = ep_desc; ++ ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize); ++ ++ /* ++ * Activate the EP ++ */ ++ ep->stopped = 0; ++ ++ ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0; ++ ep->dwc_ep.maxpacket = ep->ep.maxpacket; ++ ++ ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; ++ ++ if(ep->dwc_ep.is_in) { ++ if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) { ++ ep->dwc_ep.tx_fifo_num = 0; ++ ++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) { ++ /* ++ * if ISOC EP then assign a Periodic Tx FIFO. ++ */ ++ ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if); ++ } ++ } else { ++ /* ++ * if Dedicated FIFOs mode is on then assign a Tx FIFO. ++ */ ++ ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if); ++ ++ } ++ } ++ /* Set initial data PID. */ ++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) { ++ ep->dwc_ep.data_pid_start = 0; ++ } ++ ++ DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n", ++ ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"), ++ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc); ++ ++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) { ++ ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT); ++ } ++ ++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ return 0; ++} ++ ++/** ++ * This function is called when an EP is disabled due to disconnect or ++ * change in configuration. Any pending requests will terminate with a ++ * status of -ESHUTDOWN. ++ * ++ * This function modifies the dwc_otg_ep_t data structure for this EP, ++ * and then calls dwc_otg_ep_deactivate. ++ */ ++static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep); ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !ep->desc) { ++ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__, ++ usb_ep ? ep->ep.name : NULL); ++ return -EINVAL; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++ dwc_otg_request_nuke(ep); ++ ++ dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep); ++ ep->desc = 0; ++ ep->stopped = 1; ++ ++ if(ep->dwc_ep.is_in) { ++ dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ } ++ ++ /* Free DMA Descriptors */ ++ pcd = ep->pcd; ++ ++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); ++ ++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) { ++ dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT); ++ } ++ ++ DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name); ++ return 0; ++} ++ ++ ++/** ++ * This function allocates a request object to use with the specified ++ * endpoint. ++ * ++ * @param ep The endpoint to be used with with the request ++ * @param gfp_flags the GFP_* flags to use. ++ */ ++static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int gfp_flags ++#else ++ gfp_t gfp_flags ++#endif ++ ) ++{ ++ dwc_otg_pcd_request_t *req; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags); ++ if (0 == ep) { ++ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n"); ++ return 0; ++ } ++ req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags); ++ if (0 == req) { ++ DWC_WARN("%s() %s\n", __func__, ++ "request allocation failed!\n"); ++ return 0; ++ } ++ memset(req, 0, sizeof(dwc_otg_pcd_request_t)); ++ req->req.dma = DMA_ADDR_INVALID; ++ INIT_LIST_HEAD(&req->queue); ++ return &req->req; ++} ++ ++/** ++ * This function frees a request object. ++ * ++ * @param ep The endpoint associated with the request ++ * @param req The request being freed ++ */ ++static void dwc_otg_pcd_free_request(struct usb_ep *ep, ++ struct usb_request *req) ++{ ++ dwc_otg_pcd_request_t *request; ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req); ++ ++ if (0 == ep || 0 == req) { ++ DWC_WARN("%s() %s\n", __func__, ++ "Invalid ep or req argument!\n"); ++ return; ++ } ++ ++ request = container_of(req, dwc_otg_pcd_request_t, req); ++ kfree(request); ++} ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++/** ++ * This function allocates an I/O buffer to be used for a transfer ++ * to/from the specified endpoint. ++ * ++ * @param usb_ep The endpoint to be used with with the request ++ * @param bytes The desired number of bytes for the buffer ++ * @param dma Pointer to the buffer's DMA address; must be valid ++ * @param gfp_flags the GFP_* flags to use. ++ * @return address of a new buffer or null is buffer could not be allocated. ++ */ ++static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes, ++ dma_addr_t *dma, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int gfp_flags ++#else ++ gfp_t gfp_flags ++#endif ++ ) ++{ ++ void *buf; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ pcd = ep->pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes, ++ dma, gfp_flags); ++ ++ /* Check dword alignment */ ++ if ((bytes & 0x3UL) != 0) { ++ DWC_WARN("%s() Buffer size is not a multiple of" ++ "DWORD size (%d)",__func__, bytes); ++ } ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags); ++ } ++ else { ++ buf = kmalloc(bytes, gfp_flags); ++ } ++ ++ /* Check dword alignment */ ++ if (((int)buf & 0x3UL) != 0) { ++ DWC_WARN("%s() Buffer is not DWORD aligned (%p)", ++ __func__, buf); ++ } ++ ++ return buf; ++} ++ ++/** ++ * This function frees an I/O buffer that was allocated by alloc_buffer. ++ * ++ * @param usb_ep the endpoint associated with the buffer ++ * @param buf address of the buffer ++ * @param dma The buffer's DMA address ++ * @param bytes The number of bytes of the buffer ++ */ ++static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf, ++ dma_addr_t dma, unsigned bytes) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ pcd = ep->pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes); ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ dma_free_coherent (NULL, bytes, buf, dma); ++ } ++ else { ++ kfree(buf); ++ } ++} ++#endif ++ ++ ++/** ++ * This function is used to submit an I/O Request to an EP. ++ * ++ * - When the request completes the request's completion callback ++ * is called to return the request to the driver. ++ * - An EP, except control EPs, may have multiple requests ++ * pending. ++ * - Once submitted the request cannot be examined or modified. ++ * - Each request is turned into one or more packets. ++ * - A BULK EP can queue any amount of data; the transfer is ++ * packetized. ++ * - Zero length Packets are specified with the request 'zero' ++ * flag. ++ */ ++static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep, ++ struct usb_request *usb_req, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int gfp_flags ++#else ++ gfp_t gfp_flags ++#endif ++ ) ++{ ++ int prevented = 0; ++ dwc_otg_pcd_request_t *req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ unsigned long flags = 0; ++ dwc_otg_core_if_t *_core_if; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n", ++ __func__, usb_ep, usb_req, gfp_flags); ++ ++ req = container_of(usb_req, dwc_otg_pcd_request_t, req); ++ if (!usb_req || !usb_req->complete || !usb_req->buf || ++ !list_empty(&req->queue)) { ++ DWC_WARN("%s, bad params\n", __func__); ++ return -EINVAL; ++ } ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n", ++ usb_ep->name, usb_req, usb_req->length, usb_req->buf); ++ ++ if (!GET_CORE_IF(pcd)->core_params->opt) { ++ if (ep->dwc_ep.num != 0) { ++ DWC_ERROR("%s queue req %p, len %d buf %p\n", ++ usb_ep->name, usb_req, usb_req->length, usb_req->buf); ++ } ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++ ++ /************************************************** ++ New add by kaiker ,for DMA mode bug ++ ************************************************/ ++ //by kaiker ,for RT3052 USB OTG device mode ++ ++ _core_if = GET_CORE_IF(pcd); ++ ++ if (_core_if->dma_enable) ++ { ++ usb_req->dma = virt_to_phys((void *)usb_req->buf); ++ ++ if(ep->dwc_ep.is_in) ++ { ++#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24)) || defined(CONFIG_MIPS) ++ if(usb_req->length) ++ dma_cache_wback_inv((unsigned long)usb_req->buf, usb_req->length + 2); ++#endif ++ } ++ } ++ ++ ++ ++#if defined(DEBUG) & defined(VERBOSE) ++ dump_msg(usb_req->buf, usb_req->length); ++#endif ++ ++ usb_req->status = -EINPROGRESS; ++ usb_req->actual = 0; ++ ++ /* ++ * For EP0 IN without premature status, zlp is required? ++ */ ++ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) { ++ DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name); ++ //_req->zero = 1; ++ } ++ ++ /* Start the transfer */ ++ if (list_empty(&ep->queue) && !ep->stopped) { ++ /* EP0 Transfer? */ ++ if (ep->dwc_ep.num == 0) { ++ switch (pcd->ep0state) { ++ case EP0_IN_DATA_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_IN_DATA_PHASE\n", ++ __func__); ++ break; ++ ++ case EP0_OUT_DATA_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_OUT_DATA_PHASE\n", ++ __func__); ++ if (pcd->request_config) { ++ /* Complete STATUS PHASE */ ++ ep->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ } ++ break; ++ ++ case EP0_IN_STATUS_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_IN_STATUS_PHASE\n", ++ __func__); ++ break; ++ ++ default: ++ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n", ++ pcd->ep0state); ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return -EL2HLT; ++ } ++ ep->dwc_ep.dma_addr = usb_req->dma; ++ ep->dwc_ep.start_xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_len = usb_req->length; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len; ++ ++ if(usb_req->zero) { ++ if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.xfer_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep); ++ } ++ else { ++ ++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size; ++ ++ /* Setup and start the Transfer */ ++ ep->dwc_ep.dma_addr = usb_req->dma; ++ ep->dwc_ep.start_xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_buff = usb_req->buf; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = usb_req->length; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ++ if(max_transfer > MAX_TRANSFER_SIZE) { ++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket); ++ } else { ++ ep->dwc_ep.maxxfer = max_transfer; ++ } ++ ++ if(usb_req->zero) { ++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.total_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep); ++ } ++ } ++ ++ if ((req != 0) || prevented) { ++ ++pcd->request_pending; ++ list_add_tail(&req->queue, &ep->queue); ++ if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) { ++ /** @todo NGS Create a function for this. */ ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.intktxfemp = 1; ++ if(&GET_CORE_IF(pcd)->multiproc_int_enable) { ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num], ++ 0, diepmsk.d32); ++ } else { ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32); ++ } ++ } ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return 0; ++} ++ ++/** ++ * This function cancels an I/O request from an EP. ++ */ ++static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep, ++ struct usb_request *usb_req) ++{ ++ dwc_otg_pcd_request_t *req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) { ++ DWC_WARN("%s, bad argument\n", __func__); ++ return -EINVAL; ++ } ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name, ++ ep->dwc_ep.is_in ? "IN" : "OUT", ++ usb_req); ++ ++ /* make sure it's actually queued on this endpoint */ ++ list_for_each_entry(req, &ep->queue, queue) ++ { ++ if (&req->req == usb_req) { ++ break; ++ } ++ } ++ ++ if (&req->req != usb_req) { ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return -EINVAL; ++ } ++ ++ if (!list_empty(&req->queue)) { ++ dwc_otg_request_done(ep, req, -ECONNRESET); ++ } ++ else { ++ req = 0; ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ return req ? 0 : -EOPNOTSUPP; ++} ++ ++/** ++ * usb_ep_set_halt stalls an endpoint. ++ * ++ * usb_ep_clear_halt clears an endpoint halt and resets its data ++ * toggle. ++ * ++ * Both of these functions are implemented with the same underlying ++ * function. The behavior depends on the value argument. ++ * ++ * @param[in] usb_ep the Endpoint to halt or clear halt. ++ * @param[in] value ++ * - 0 means clear_halt. ++ * - 1 means set_halt, ++ * - 2 means clear stall lock flag. ++ * - 3 means set stall lock flag. ++ */ ++static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value) ++{ ++ int retval = 0; ++ unsigned long flags; ++ dwc_otg_pcd_ep_t *ep = 0; ++ ++ ++ DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) || ++ ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ if (!list_empty(&ep->queue)) { ++ DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name); ++ retval = -EAGAIN; ++ } ++ else if (value == 0) { ++ dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ else if(value == 1) { ++ if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) { ++ dtxfsts_data_t txstatus; ++ fifosize_data_t txfifosize; ++ ++ txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]); ++ txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts); ++ ++ if(txstatus.b.txfspcavail < txfifosize.b.depth) { ++ DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name); ++ retval = -EAGAIN; ++ } ++ else { ++ if (ep->dwc_ep.num == 0) { ++ ep->pcd->ep0state = EP0_STALL; ++ } ++ ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ } ++ else { ++ if (ep->dwc_ep.num == 0) { ++ ep->pcd->ep0state = EP0_STALL; ++ } ++ ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ } ++ else if (value == 2) { ++ ep->dwc_ep.stall_clear_flag = 0; ++ } ++ else if (value == 3) { ++ ep->dwc_ep.stall_clear_flag = 1; ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); ++ return retval; ++} ++ ++/** ++ * This function allocates a DMA Descriptor chain for the Endpoint ++ * buffer to be used for a transfer to/from the specified endpoint. ++ */ ++dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count) ++{ ++ ++ return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL); ++} ++ ++/** ++ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc. ++ */ ++void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count) ++{ ++ dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr); ++} ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ ++ dsts_data_t dsts = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ int i, j; ++ ++ if(dwc_ep->is_in) ++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval; ++ else ++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ ++ ++ /** Allocate descriptors for double buffering */ ++ dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2); ++ if(dwc_ep->desc_addr) { ++ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__); ++ return; ++ } ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ desc_sts_data_t sts = { .d32 =0 }; ++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr; ++ dma_addr_t dma_ad; ++ uint32_t data_per_desc; ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[dwc_ep->num]; ++ int offset; ++ ++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma)); ++ ++ /** Buffer 0 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr0; ++ ++ sts.b_iso_out.bs = BS_HOST_READY; ++ sts.b_iso_out.rxsts = 0; ++ sts.b_iso_out.l = 0; ++ sts.b_iso_out.sp = 0; ++ sts.b_iso_out.ioc = 0; ++ sts.b_iso_out.pid = 0; ++ sts.b_iso_out.framenum = 0; ++ ++ offset = 0; ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ (uint32_t)dma_ad += data_per_desc; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ (uint32_t)dma_ad += data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ /** Buffer 1 descriptors setup */ ++ sts.b_iso_out.ioc = 0; ++ dma_ad = dwc_ep->dma_addr1; ++ ++ offset = 0; ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ (uint32_t)dma_ad += data_per_desc; ++ } ++ } ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ (uint32_t)dma_ad += data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ sts.b_iso_out.l = 1; ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = 0; ++ ++ /** Write dma_ad into DOEPDMA register */ ++ dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr); ++ ++ } ++ /** ISO IN EP */ ++ else { ++ desc_sts_data_t sts = { .d32 =0 }; ++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr; ++ dma_addr_t dma_ad; ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[dwc_ep->num]; ++ unsigned int frmnumber; ++ fifosize_data_t txfifosize,rxfifosize; ++ ++ txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts); ++ rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz); ++ ++ ++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ ++ dma_ad = dwc_ep->dma_addr0; ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ sts.b_iso_in.bs = BS_HOST_READY; ++ sts.b_iso_in.txsts = 0; ++ sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0; ++ sts.b_iso_in.ioc = 0; ++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm; ++ ++ ++ frmnumber = dwc_ep->next_frame; ++ ++ sts.b_iso_in.framenum = frmnumber; ++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame; ++ sts.b_iso_in.l = 0; ++ ++ /** Buffer 0 descriptors setup */ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ (uint32_t)dma_ad += dwc_ep->data_per_frame; ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ } ++ ++ sts.b_iso_in.ioc = 1; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++dma_desc; ++ ++ /** Buffer 1 descriptors setup */ ++ sts.b_iso_in.ioc = 0; ++ dma_ad = dwc_ep->dma_addr1; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ (uint32_t)dma_ad += dwc_ep->data_per_frame; ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ ++ sts.b_iso_in.ioc = 0; ++ } ++ sts.b_iso_in.ioc = 1; ++ sts.b_iso_in.l = 1; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval; ++ ++ /** Write dma_ad into diepdma register */ ++ dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr); ++ } ++ /** Enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ depctl.b.epena = 1; ++ depctl.b.usbactep = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ depctl.d32 = dwc_read_reg32(addr); ++} ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++ ++void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ ++ if(ep->is_in) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ ++ if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) { ++ return; ++ } else { ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ ++ ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval; ++ ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ ep->xfer_count = 0; ++ ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ ++ if(ep->is_in) { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.mc = ep->pkt_per_frm; ++ deptsiz.b.xfersize = ep->xfer_len; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr); ++ ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr); ++ ++ } ++ /** Enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ } ++} ++ ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable) { ++ if(ep->is_in) { ++ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm; ++ } else { ++ ep->desc_cnt = ep->pkt_cnt; ++ } ++ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep); ++ } else { ++ if(core_if->pti_enh_enable) { ++ dwc_otg_iso_ep_start_buf_transfer(core_if, ep); ++ } else { ++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep); ++ } ++ } ++ } else { ++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep); ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ if(ep->is_in == 1) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } ++ else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ /* disable the ep */ ++ depctl.d32 = dwc_read_reg32(addr); ++ ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ ++ if(core_if->dma_desc_enable && ++ ep->iso_desc_addr && ep->iso_dma_desc_addr) { ++ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2); ++ } ++ ++ /* reset varibales */ ++ ep->dma_addr0 = 0; ++ ep->dma_addr1 = 0; ++ ep->xfer_buff0 = 0; ++ ep->xfer_buff1 = 0; ++ ep->data_per_frame = 0; ++ ep->data_pattern_frame = 0; ++ ep->sync_frame = 0; ++ ep->buf_proc_intrvl = 0; ++ ep->bInterval = 0; ++ ep->proc_buf_num = 0; ++ ep->pkt_per_frm = 0; ++ ep->pkt_per_frm = 0; ++ ep->desc_cnt = 0; ++ ep->iso_desc_addr = 0; ++ ep->iso_dma_desc_addr = 0; ++} ++ ++ ++/** ++ * This function is used to submit an ISOC Transfer Request to an EP. ++ * ++ * - Every time a sync period completes the request's completion callback ++ * is called to provide data to the gadget driver. ++ * - Once submitted the request cannot be modified. ++ * - Each request is turned into periodic data packets untill ISO ++ * Transfer is stopped.. ++ */ ++static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int gfp_flags ++#else ++ gfp_t gfp_flags ++#endif ++) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ dwc_ep_t *dwc_ep; ++ unsigned long flags = 0; ++ int32_t frm_data; ++ dwc_otg_core_if_t *core_if; ++ dcfg_data_t dcfg; ++ dsts_data_t dsts; ++ ++ ++ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) { ++ DWC_WARN("%s, bad params\n", __func__); ++ return -EINVAL; ++ } ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ core_if = GET_CORE_IF(pcd); ++ ++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ if(ep->iso_req) { ++ DWC_WARN("%s, iso request in progress\n", __func__); ++ } ++ req->status = -EINPROGRESS; ++ ++ dwc_ep->dma_addr0 = req->dma0; ++ dwc_ep->dma_addr1 = req->dma1; ++ ++ dwc_ep->xfer_buff0 = req->buf0; ++ dwc_ep->xfer_buff1 = req->buf1; ++ ++ ep->iso_req = req; ++ ++ dwc_ep->data_per_frame = req->data_per_frame; ++ ++ /** @todo - pattern data support is to be implemented in the future */ ++ dwc_ep->data_pattern_frame = req->data_pattern_frame; ++ dwc_ep->sync_frame = req->sync_frame; ++ ++ dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl; ++ ++ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1); ++ ++ dwc_ep->proc_buf_num = 0; ++ ++ dwc_ep->pkt_per_frm = 0; ++ frm_data = ep->dwc_ep.data_per_frame; ++ while(frm_data > 0) { ++ dwc_ep->pkt_per_frm++; ++ frm_data -= ep->dwc_ep.maxpacket; ++ } ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ if(req->flags & USB_REQ_ISO_ASAP) { ++ dwc_ep->next_frame = dsts.b.soffn + 1; ++ if(dwc_ep->bInterval != 1){ ++ dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval); ++ } ++ } else { ++ dwc_ep->next_frame = req->start_frame; ++ } ++ ++ ++ if(!core_if->pti_enh_enable) { ++ dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ } else { ++ dwc_ep->pkt_cnt = ++ (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval) ++ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket; ++ } ++ ++ if(core_if->dma_desc_enable) { ++ dwc_ep->desc_cnt = ++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ } ++ ++ dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL); ++ if(!dwc_ep->pkt_info) { ++ return -ENOMEM; ++ } ++ if(core_if->pti_enh_enable) { ++ memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt); ++ } ++ ++ dwc_ep->cur_pkt = 0; ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep); ++ ++ return 0; ++} ++ ++/** ++ * This function stops ISO EP Periodic Data Transfer. ++ */ ++static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ dwc_ep_t *dwc_ep; ++ unsigned long flags; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep); ++ ++ kfree(dwc_ep->pkt_info); ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ if(ep->iso_req != req) { ++ return -EINVAL; ++ } ++ ++ req->status = -ECONNRESET; ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ ++ ep->iso_req = 0; ++ ++ return 0; ++} ++ ++/** ++ * This function is used for perodical data exchnage between PCD and gadget drivers. ++ * for Isochronous EPs ++ * ++ * - Every time a sync period completes this function is called to ++ * perform data exchange between PCD and gadget ++ */ ++void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req) ++{ ++ int i; ++ struct usb_gadget_iso_packet_descriptor *iso_packet; ++ dwc_ep_t *dwc_ep; ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ if(ep->iso_req->status == -ECONNRESET) { ++ DWC_PRINT("Device has already disconnected\n"); ++ /*Device has been disconnected*/ ++ return; ++ } ++ ++ if(dwc_ep->proc_buf_num != 0) { ++ iso_packet = ep->iso_req->iso_packet_desc0; ++ } ++ ++ else { ++ iso_packet = ep->iso_req->iso_packet_desc1; ++ } ++ ++ /* Fill in ISOC packets descriptors & pass to gadget driver*/ ++ ++ for(i = 0; i < dwc_ep->pkt_cnt; ++i) { ++ iso_packet[i].status = dwc_ep->pkt_info[i].status; ++ iso_packet[i].offset = dwc_ep->pkt_info[i].offset; ++ iso_packet[i].actual_length = dwc_ep->pkt_info[i].length; ++ dwc_ep->pkt_info[i].status = 0; ++ dwc_ep->pkt_info[i].offset = 0; ++ dwc_ep->pkt_info[i].length = 0; ++ } ++ ++ /* Call callback function to process data buffer */ ++ ep->iso_req->status = 0;/* success */ ++ ++ SPIN_UNLOCK(&ep->pcd->lock); ++ ep->iso_req->process_buffer(&ep->ep, ep->iso_req); ++ SPIN_LOCK(&ep->pcd->lock); ++} ++ ++ ++static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ++ int gfp_flags ++#else ++ gfp_t gfp_flags ++#endif ++) ++{ ++ struct usb_iso_request *pReq = NULL; ++ uint32_t req_size; ++ ++ ++ req_size = sizeof(struct usb_iso_request); ++ req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor))); ++ ++ ++ pReq = kmalloc(req_size, gfp_flags); ++ if (!pReq) { ++ DWC_WARN("%s, can't allocate Iso Request\n", __func__); ++ return 0; ++ } ++ pReq->iso_packet_desc0 = (void*) (pReq + 1); ++ ++ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets; ++ ++ return pReq; ++} ++ ++static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req) ++{ ++ kfree(req); ++} ++ ++static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops = ++{ ++ .ep_ops = ++ { ++ .enable = dwc_otg_pcd_ep_enable, ++ .disable = dwc_otg_pcd_ep_disable, ++ ++ .alloc_request = dwc_otg_pcd_alloc_request, ++ .free_request = dwc_otg_pcd_free_request, ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++ .alloc_buffer = dwc_otg_pcd_alloc_buffer, ++ .free_buffer = dwc_otg_pcd_free_buffer, ++#endif ++ ++ .queue = dwc_otg_pcd_ep_queue, ++ .dequeue = dwc_otg_pcd_ep_dequeue, ++ ++ .set_halt = dwc_otg_pcd_ep_set_halt, ++ .fifo_status = 0, ++ .fifo_flush = 0, ++ }, ++ .iso_ep_start = dwc_otg_pcd_iso_ep_start, ++ .iso_ep_stop = dwc_otg_pcd_iso_ep_stop, ++ .alloc_iso_request = dwc_otg_pcd_alloc_iso_request, ++ .free_iso_request = dwc_otg_pcd_free_iso_request, ++}; ++ ++#else ++ ++ ++static struct usb_ep_ops dwc_otg_pcd_ep_ops = ++{ ++ .enable = dwc_otg_pcd_ep_enable, ++ .disable = dwc_otg_pcd_ep_disable, ++ ++ .alloc_request = dwc_otg_pcd_alloc_request, ++ .free_request = dwc_otg_pcd_free_request, ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ++ .alloc_buffer = dwc_otg_pcd_alloc_buffer, ++ .free_buffer = dwc_otg_pcd_free_buffer, ++#endif ++ ++ .queue = dwc_otg_pcd_ep_queue, ++ .dequeue = dwc_otg_pcd_ep_dequeue, ++ ++ .set_halt = dwc_otg_pcd_ep_set_halt, ++ .fifo_status = 0, ++ .fifo_flush = 0, ++ ++ ++}; ++ ++#endif /* DWC_EN_ISOC */ ++/* Gadget Operations */ ++/** ++ * The following gadget operations will be implemented in the DWC_otg ++ * PCD. Functions in the API that are not described below are not ++ * implemented. ++ * ++ * The Gadget API provides wrapper functions for each of the function ++ * pointers defined in usb_gadget_ops. The Gadget Driver calls the ++ * wrapper function, which then calls the underlying PCD function. The ++ * following sections are named according to the wrapper functions ++ * (except for ioctl, which doesn't have a wrapper function). Within ++ * each section, the corresponding DWC_otg PCD function name is ++ * specified. ++ * ++ */ ++ ++/** ++ *Gets the USB Frame number of the last SOF. ++ */ ++static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget) ++{ ++ dwc_otg_pcd_t *pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget); ++ ++ if (gadget == 0) { ++ return -ENODEV; ++ } ++ else { ++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget); ++ dwc_otg_get_frame_number(GET_CORE_IF(pcd)); ++ } ++ ++ return 0; ++} ++ ++void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd) ++{ ++ uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ gotgctl_data_t val; ++ ++ val.d32 = dwc_read_reg32(addr); ++ if (val.b.sesreq) { ++ DWC_ERROR("Session Request Already active!\n"); ++ return; ++ } ++ ++ DWC_NOTICE("Session Request Initated\n"); ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.sesreq = 1; ++ dwc_write_reg32(addr, mem.d32); ++ ++ /* Start the SRP timer */ ++ dwc_otg_pcd_start_srp_timer(pcd); ++ return; ++} ++ ++void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set) ++{ ++ dctl_data_t dctl = {.d32=0}; ++ volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl); ++ ++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { ++ if (pcd->remote_wakeup_enable) { ++ if (set) { ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(addr, 0, dctl.d32); ++ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n"); ++ mdelay(1); ++ dwc_modify_reg32(addr, dctl.d32, 0); ++ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n"); ++ } ++ else { ++ } ++ } ++ else { ++ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n"); ++ } ++ } ++ return; ++} ++ ++/** ++ * Initiates Session Request Protocol (SRP) to wakeup the host if no ++ * session is in progress. If a session is already in progress, but ++ * the device is suspended, remote wakeup signaling is started. ++ * ++ */ ++static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget) ++{ ++ unsigned long flags; ++ dwc_otg_pcd_t *pcd; ++ dsts_data_t dsts; ++ gotgctl_data_t gotgctl; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget); ++ ++ if (gadget == 0) { ++ return -ENODEV; ++ } ++ else { ++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget); ++ } ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ /* ++ * This function starts the Protocol if no session is in progress. If ++ * a session is already in progress, but the device is suspended, ++ * remote wakeup signaling is started. ++ */ ++ ++ /* Check if valid session */ ++ gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl)); ++ if (gotgctl.b.bsesvld) { ++ /* Check if suspend state */ ++ dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts)); ++ if (dsts.b.suspsts) { ++ dwc_otg_pcd_remote_wakeup(pcd, 1); ++ } ++ } ++ else { ++ dwc_otg_pcd_initiate_srp(pcd); ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return 0; ++} ++ ++static const struct usb_gadget_ops dwc_otg_pcd_ops = ++{ ++ .get_frame = dwc_otg_pcd_get_frame, ++ .wakeup = dwc_otg_pcd_wakeup, ++ // current versions must always be self-powered ++}; ++ ++/** ++ * This function updates the otg values in the gadget structure. ++ */ ++void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset) ++{ ++ ++ if (!pcd->gadget.is_otg) ++ return; ++ ++ if (reset) { ++ pcd->b_hnp_enable = 0; ++ pcd->a_hnp_support = 0; ++ pcd->a_alt_hnp_support = 0; ++ } ++ ++ pcd->gadget.b_hnp_enable = pcd->b_hnp_enable; ++ pcd->gadget.a_hnp_support = pcd->a_hnp_support; ++ pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support; ++} ++ ++/** ++ * This function is the top level PCD interrupt handler. ++ */ ++static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ++ , struct pt_regs *r ++#endif ++ ) ++{ ++ dwc_otg_pcd_t *pcd = dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_pcd_handle_intr(pcd); ++ return IRQ_RETVAL(retval); ++} ++ ++/** ++ * PCD Callback function for initializing the PCD when switching to ++ * device mode. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_start_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ /* ++ * Initialized the Core for Device mode. ++ */ ++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { ++ dwc_otg_core_dev_init(GET_CORE_IF(pcd)); ++ } ++ return 1; ++} ++ ++/** ++ * PCD Callback function for stopping the PCD when switching to Host ++ * mode. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_stop_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd); ++ ++ dwc_otg_pcd_stop(pcd); ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback function for notifying the PCD when resuming from ++ * suspend. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_suspend_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ if (pcd->driver && pcd->driver->resume) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->suspend(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++ ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback function for notifying the PCD when resuming from ++ * suspend. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_resume_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ if (pcd->driver && pcd->driver->resume) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->resume(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++ ++ /* Stop the SRP timeout timer. */ ++ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) || ++ (!GET_CORE_IF(pcd)->core_params->i2c_enable)) { ++ if (GET_CORE_IF(pcd)->srp_timer_started) { ++ GET_CORE_IF(pcd)->srp_timer_started = 0; ++ del_timer(&pcd->srp_timer); ++ } ++ } ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t pcd_callbacks = ++{ ++ .start = dwc_otg_pcd_start_cb, ++ .stop = dwc_otg_pcd_stop_cb, ++ .suspend = dwc_otg_pcd_suspend_cb, ++ .resume_wakeup = dwc_otg_pcd_resume_cb, ++ .p = 0, /* Set at registration */ ++}; ++ ++/** ++ * This function is called when the SRP timer expires. The SRP should ++ * complete within 6 seconds. ++ */ ++static void srp_timeout(unsigned long ptr) ++{ ++ gotgctl_data_t gotgctl; ++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr; ++ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl; ++ ++ gotgctl.d32 = dwc_read_reg32(addr); ++ ++ core_if->srp_timer_started = 0; ++ ++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->core_params->i2c_enable)) { ++ DWC_PRINT("SRP Timeout\n"); ++ ++ if ((core_if->srp_success) && ++ (gotgctl.b.bsesvld)) { ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++ ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl, ++ gotgctl.d32, 0); ++ ++ core_if->srp_success = 0; ++ } ++ else { ++ DWC_ERROR("Device not connected/responding\n"); ++ gotgctl.b.sesreq = 0; ++ dwc_write_reg32(addr, gotgctl.d32); ++ } ++ } ++ else if (gotgctl.b.sesreq) { ++ DWC_PRINT("SRP Timeout\n"); ++ ++ DWC_ERROR("Device not connected/responding\n"); ++ gotgctl.b.sesreq = 0; ++ dwc_write_reg32(addr, gotgctl.d32); ++ } ++ else { ++ DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32); ++ } ++} ++ ++/** ++ * Start the SRP timer to detect when the SRP does not complete within ++ * 6 seconds. ++ * ++ * @param pcd the pcd structure. ++ */ ++void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd) ++{ ++ struct timer_list *srp_timer = &pcd->srp_timer; ++ GET_CORE_IF(pcd)->srp_timer_started = 1; ++ init_timer(srp_timer); ++ srp_timer->function = srp_timeout; ++ srp_timer->data = (unsigned long)GET_CORE_IF(pcd); ++ srp_timer->expires = jiffies + (HZ*6); ++ add_timer(srp_timer); ++} ++ ++/** ++ * Tasklet ++ * ++ */ ++extern void start_next_request(dwc_otg_pcd_ep_t *ep); ++ ++static void start_xfer_tasklet_func (unsigned long data) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data; ++ dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if; ++ ++ int i; ++ depctl_data_t diepctl; ++ ++ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n"); ++ ++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); ++ ++ if (pcd->ep0.queue_sof) { ++ pcd->ep0.queue_sof = 0; ++ start_next_request (&pcd->ep0); ++ // break; ++ } ++ ++ for (i=0; i<core_if->dev_if->num_in_eps; i++) ++ { ++ depctl_data_t diepctl; ++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl); ++ ++ if (pcd->in_ep[i].queue_sof) { ++ pcd->in_ep[i].queue_sof = 0; ++ start_next_request (&pcd->in_ep[i]); ++ // break; ++ } ++ } ++ ++ return; ++} ++ ++ ++ ++ ++ ++ ++ ++static struct tasklet_struct start_xfer_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = start_xfer_tasklet_func, ++ .data = 0, ++}; ++/** ++ * This function initialized the pcd Dp structures to there default ++ * state. ++ * ++ * @param pcd the pcd structure. ++ */ ++void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd) ++{ ++ static const char * names[] = ++ { ++ ++ "ep0", ++ "ep1in", ++ "ep2in", ++ "ep3in", ++ "ep4in", ++ "ep5in", ++ "ep6in", ++ "ep7in", ++ "ep8in", ++ "ep9in", ++ "ep10in", ++ "ep11in", ++ "ep12in", ++ "ep13in", ++ "ep14in", ++ "ep15in", ++ "ep1out", ++ "ep2out", ++ "ep3out", ++ "ep4out", ++ "ep5out", ++ "ep6out", ++ "ep7out", ++ "ep8out", ++ "ep9out", ++ "ep10out", ++ "ep11out", ++ "ep12out", ++ "ep13out", ++ "ep14out", ++ "ep15out" ++ ++ }; ++ ++ int i; ++ int in_ep_cntr, out_ep_cntr; ++ uint32_t hwcfg1; ++ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps; ++ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps; ++ dwc_otg_pcd_ep_t *ep; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd); ++ ++ INIT_LIST_HEAD (&pcd->gadget.ep_list); ++ pcd->gadget.ep0 = &pcd->ep0.ep; ++ pcd->gadget.speed = USB_SPEED_UNKNOWN; ++ ++ INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list); ++ ++ /** ++ * Initialize the EP0 structure. ++ */ ++ ep = &pcd->ep0; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.num = 0; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ep->dwc_ep.desc_addr = 0; ++ ep->dwc_ep.dma_desc_addr = 0; ++ ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[0]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ /** ++ * Initialize the EP structures. ++ */ ++ in_ep_cntr = 0; ++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3; ++ ++ for (i = 1; in_ep_cntr < num_in_eps; i++) ++ { ++ if((hwcfg1 & 0x1) == 0) { ++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr]; ++ in_ep_cntr ++; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.is_in = 1; ++ ep->dwc_ep.num = i; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ep->dwc_ep.desc_addr = 0; ++ ep->dwc_ep.dma_desc_addr = 0; ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[i]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ } ++ hwcfg1 >>= 2; ++ } ++ ++ out_ep_cntr = 0; ++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2; ++ ++ for (i = 1; out_ep_cntr < num_out_eps; i++) ++ { ++ if((hwcfg1 & 0x1) == 0) { ++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr]; ++ out_ep_cntr++; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.is_in = 0; ++ ep->dwc_ep.num = i; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[15 + i]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ } ++ hwcfg1 >>= 2; ++ } ++ ++ /* remove ep0 from the list. There is a ep0 pointer.*/ ++ list_del_init (&pcd->ep0.ep.ep_list); ++ ++ pcd->ep0state = EP0_DISCONNECT; ++ pcd->ep0.ep.maxpacket = MAX_EP0_SIZE; ++ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE; ++ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++} ++ ++/** ++ * This function releases the Gadget device. ++ * required by device_unregister(). ++ * ++ * @todo Should this do something? Should it free the PCD? ++ */ ++static void dwc_otg_pcd_gadget_release(struct device *dev) ++{ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev); ++} ++ ++ ++ ++/** ++ * This function initialized the PCD portion of the driver. ++ * ++ */ ++ ++int dwc_otg_pcd_init(struct device *dev) ++{ ++ static char pcd_name[] = "dwc_otg_pcd"; ++ dwc_otg_pcd_t *pcd; ++ dwc_otg_core_if_t* core_if; ++ dwc_otg_dev_if_t* dev_if; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(dev); ++ int retval = 0; ++ ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, dev); ++ /* ++ * Allocate PCD structure ++ */ ++ pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL); ++ ++ if (pcd == 0) { ++ return -ENOMEM; ++ } ++ ++ memset(pcd, 0, sizeof(dwc_otg_pcd_t)); ++ spin_lock_init(&pcd->lock); ++ ++ otg_dev->pcd = pcd; ++ s_pcd = pcd; ++ pcd->gadget.name = pcd_name; ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30) ++ strcpy(pcd->gadget.dev.bus_id, "gadget"); ++#else ++ dev_set_name(&pcd->gadget.dev, "%s", "gadget"); ++#endif ++ ++ pcd->otg_dev = dev_get_drvdata(dev); ++ ++ pcd->gadget.dev.parent = dev; ++ pcd->gadget.dev.release = dwc_otg_pcd_gadget_release; ++ pcd->gadget.ops = &dwc_otg_pcd_ops; ++ ++ core_if = GET_CORE_IF(pcd); ++ dev_if = core_if->dev_if; ++ ++ if(core_if->hwcfg4.b.ded_fifo_en) { ++ DWC_PRINT("Dedicated Tx FIFOs mode\n"); ++ } ++ else { ++ DWC_PRINT("Shared Tx FIFO mode\n"); ++ } ++ ++ /* If the module is set to FS or if the PHY_TYPE is FS then the gadget ++ * should not report as dual-speed capable. replace the following line ++ * with the block of code below it once the software is debugged for ++ * this. If is_dualspeed = 0 then the gadget driver should not report ++ * a device qualifier descriptor when queried. */ ++ if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) || ++ ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) && ++ (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) && ++ (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) { ++ pcd->gadget.is_dualspeed = 0; ++ } ++ else { ++ pcd->gadget.is_dualspeed = 1; ++ } ++ ++ if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { ++ pcd->gadget.is_otg = 0; ++ } ++ else { ++ pcd->gadget.is_otg = 1; ++ } ++ ++ ++ pcd->driver = 0; ++ /* Register the gadget device */ ++ retval = device_register(&pcd->gadget.dev); ++ if (retval != 0) { ++ kfree (pcd); ++ return retval; ++ } ++ ++ ++ /* ++ * Initialized the Core for Device mode. ++ */ ++ if (dwc_otg_is_device_mode(core_if)) { ++ dwc_otg_core_dev_init(core_if); ++ } ++ ++ /* ++ * Initialize EP structures ++ */ ++ dwc_otg_pcd_reinit(pcd); ++ ++ /* ++ * Register the PCD Callbacks. ++ */ ++ dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks, ++ pcd); ++ /* ++ * Setup interupt handler ++ */ ++ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq); ++ retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq, ++ IRQF_SHARED, pcd->gadget.name, pcd); ++ if (retval != 0) { ++ DWC_ERROR("request of irq%d failed\n", otg_dev->irq); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -EBUSY; ++ } ++ ++ /* ++ * Initialize the DMA buffer for SETUP packets ++ */ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0); ++ if (pcd->setup_pkt == 0) { ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0); ++ if (pcd->status_buf == 0) { ++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ if (GET_CORE_IF(pcd)->dma_desc_enable) { ++ dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1); ++ dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1); ++ dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1); ++ dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1); ++ ++ if(dev_if->setup_desc_addr[0] == 0 ++ || dev_if->setup_desc_addr[1] == 0 ++ || dev_if->in_desc_addr == 0 ++ || dev_if->out_desc_addr == 0 ) { ++ ++ if(dev_if->out_desc_addr) ++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1); ++ if(dev_if->in_desc_addr) ++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1); ++ if(dev_if->setup_desc_addr[1]) ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1); ++ if(dev_if->setup_desc_addr[0]) ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1); ++ ++ ++ dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle); ++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ ++ return -ENOMEM; ++ } ++ } ++ } ++ else { ++ pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL); ++ if (pcd->setup_pkt == 0) { ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL); ++ if (pcd->status_buf == 0) { ++ kfree(pcd->setup_pkt); ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ } ++ ++ ++ /* Initialize tasklet */ ++ start_xfer_tasklet.data = (unsigned long)pcd; ++ pcd->start_xfer_tasklet = &start_xfer_tasklet; ++ ++ return 0; ++} ++ ++/** ++ * Cleanup the PCD. ++ */ ++void dwc_otg_pcd_remove(struct device *dev) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(dev); ++ dwc_otg_pcd_t *pcd = otg_dev->pcd; ++ dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, dev); ++ ++ /* ++ * Free the IRQ ++ */ ++ free_irq(otg_dev->irq, pcd); ++ ++ /* start with the driver above us */ ++ if (pcd->driver) { ++ /* should have been done already by driver model core */ ++ DWC_WARN("driver '%s' is still registered\n", ++ pcd->driver->driver.name); ++ usb_gadget_unregister_driver(pcd->driver); ++ } ++ device_unregister(&pcd->gadget.dev); ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle); ++ if (GET_CORE_IF(pcd)->dma_desc_enable) { ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1); ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1); ++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1); ++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1); ++ } ++ } ++ else { ++ kfree (pcd->setup_pkt); ++ kfree (pcd->status_buf); ++ } ++ ++ kfree(pcd); ++ otg_dev->pcd = 0; ++} ++ ++/** ++ * This function registers a gadget driver with the PCD. ++ * ++ * When a driver is successfully registered, it will receive control ++ * requests including set_configuration(), which enables non-control ++ * requests. then usb traffic follows until a disconnect is reported. ++ * then a host may connect again, or the driver might get unbound. ++ * ++ * @param driver The driver being registered ++ */ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37) ++int usb_gadget_probe_driver(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)) ++#else ++int usb_gadget_register_driver(struct usb_gadget_driver *driver) ++#endif ++{ ++ int retval; ++ int (*d_bind)(struct usb_gadget *); ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37) ++ d_bind = bind; ++#else ++ d_bind = driver->bind; ++#endif ++ ++ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name); ++ ++ if (!driver || driver->speed == USB_SPEED_UNKNOWN || ++ !d_bind || ++ !driver->unbind || ++ !driver->disconnect || ++ !driver->setup) { ++ DWC_DEBUGPL(DBG_PCDV,"EINVAL\n"); ++ return -EINVAL; ++ } ++ if (s_pcd == 0) { ++ DWC_DEBUGPL(DBG_PCDV,"ENODEV\n"); ++ return -ENODEV; ++ } ++ if (s_pcd->driver != 0) { ++ DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver); ++ return -EBUSY; ++ } ++ ++ /* hook up the driver */ ++ s_pcd->driver = driver; ++ s_pcd->gadget.dev.driver = &driver->driver; ++ ++ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name); ++ retval = d_bind(&s_pcd->gadget); ++ if (retval) { ++ DWC_ERROR("bind to driver %s --> error %d\n", ++ driver->driver.name, retval); ++ s_pcd->driver = 0; ++ s_pcd->gadget.dev.driver = 0; ++ return retval; ++ } ++ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n", ++ driver->driver.name); ++ return 0; ++} ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37) ++EXPORT_SYMBOL(usb_gadget_probe_driver); ++#else ++EXPORT_SYMBOL(usb_gadget_register_driver); ++#endif ++ ++/** ++ * This function unregisters a gadget driver ++ * ++ * @param driver The driver being unregistered ++ */ ++int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) ++{ ++ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver); ++ ++ if (s_pcd == 0) { ++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__, ++ -ENODEV); ++ return -ENODEV; ++ } ++ if (driver == 0 || driver != s_pcd->driver) { ++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__, ++ -EINVAL); ++ return -EINVAL; ++ } ++ ++ driver->unbind(&s_pcd->gadget); ++ s_pcd->driver = 0; ++ ++ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n", ++ driver->driver.name); ++ return 0; ++} ++EXPORT_SYMBOL(usb_gadget_unregister_driver); ++ ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_pcd.h +@@ -0,0 +1,248 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1103515 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++#if !defined(__DWC_PCD_H__) ++#define __DWC_PCD_H__ ++ ++#include <linux/types.h> ++#include <linux/list.h> ++#include <linux/errno.h> ++#include <linux/device.h> ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21) ++# include <linux/usb/ch9.h> ++#else ++# include <linux/usb_ch9.h> ++#endif ++ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24) ++#include <linux/usb/gadget.h> ++#else ++#include <linux/usb_gadget.h> ++#endif ++#include <linux/interrupt.h> ++#include <linux/dma-mapping.h> ++ ++struct dwc_otg_device; ++ ++#include "dwc_otg_cil.h" ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Perpherial Contoller Driver (PCD). ++ * ++ * The Peripheral Controller Driver (PCD) for Linux will implement the ++ * Gadget API, so that the existing Gadget drivers can be used. For ++ * the Mass Storage Function driver the File-backed USB Storage Gadget ++ * (FBS) driver will be used. The FBS driver supports the ++ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only ++ * transports. ++ * ++ */ ++ ++/** Invalid DMA Address */ ++#define DMA_ADDR_INVALID (~(dma_addr_t)0) ++/** Maxpacket size for EP0 */ ++#define MAX_EP0_SIZE 64 ++/** Maxpacket size for any EP */ ++#define MAX_PACKET_SIZE 1024 ++ ++/** Max Transfer size for any EP */ ++#define MAX_TRANSFER_SIZE 65535 ++ ++/** Max DMA Descriptor count for any EP */ ++#define MAX_DMA_DESC_CNT 64 ++ ++/** ++ * Get the pointer to the core_if from the pcd pointer. ++ */ ++#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if) ++ ++/** ++ * States of EP0. ++ */ ++typedef enum ep0_state ++{ ++ EP0_DISCONNECT, /* no host */ ++ EP0_IDLE, ++ EP0_IN_DATA_PHASE, ++ EP0_OUT_DATA_PHASE, ++ EP0_IN_STATUS_PHASE, ++ EP0_OUT_STATUS_PHASE, ++ EP0_STALL, ++} ep0state_e; ++ ++/** Fordward declaration.*/ ++struct dwc_otg_pcd; ++ ++/** DWC_otg iso request structure. ++ * ++ */ ++typedef struct usb_iso_request dwc_otg_pcd_iso_request_t; ++ ++/** PCD EP structure. ++ * This structure describes an EP, there is an array of EPs in the PCD ++ * structure. ++ */ ++typedef struct dwc_otg_pcd_ep ++{ ++ /** USB EP data */ ++ struct usb_ep ep; ++ /** USB EP Descriptor */ ++ const struct usb_endpoint_descriptor *desc; ++ ++ /** queue of dwc_otg_pcd_requests. */ ++ struct list_head queue; ++ unsigned stopped : 1; ++ unsigned disabling : 1; ++ unsigned dma : 1; ++ unsigned queue_sof : 1; ++ ++#ifdef DWC_EN_ISOC ++ /** DWC_otg Isochronous Transfer */ ++ struct usb_iso_request* iso_req; ++#endif //DWC_EN_ISOC ++ ++ /** DWC_otg ep data. */ ++ dwc_ep_t dwc_ep; ++ ++ /** Pointer to PCD */ ++ struct dwc_otg_pcd *pcd; ++}dwc_otg_pcd_ep_t; ++ ++ ++ ++/** DWC_otg PCD Structure. ++ * This structure encapsulates the data for the dwc_otg PCD. ++ */ ++typedef struct dwc_otg_pcd ++{ ++ /** USB gadget */ ++ struct usb_gadget gadget; ++ /** USB gadget driver pointer*/ ++ struct usb_gadget_driver *driver; ++ /** The DWC otg device pointer. */ ++ struct dwc_otg_device *otg_dev; ++ ++ /** State of EP0 */ ++ ep0state_e ep0state; ++ /** EP0 Request is pending */ ++ unsigned ep0_pending : 1; ++ /** Indicates when SET CONFIGURATION Request is in process */ ++ unsigned request_config : 1; ++ /** The state of the Remote Wakeup Enable. */ ++ unsigned remote_wakeup_enable : 1; ++ /** The state of the B-Device HNP Enable. */ ++ unsigned b_hnp_enable : 1; ++ /** The state of A-Device HNP Support. */ ++ unsigned a_hnp_support : 1; ++ /** The state of the A-Device Alt HNP support. */ ++ unsigned a_alt_hnp_support : 1; ++ /** Count of pending Requests */ ++ unsigned request_pending; ++ ++ /** SETUP packet for EP0 ++ * This structure is allocated as a DMA buffer on PCD initialization ++ * with enough space for up to 3 setup packets. ++ */ ++ union ++ { ++ struct usb_ctrlrequest req; ++ uint32_t d32[2]; ++ } *setup_pkt; ++ ++ dma_addr_t setup_pkt_dma_handle; ++ ++ /** 2-byte dma buffer used to return status from GET_STATUS */ ++ uint16_t *status_buf; ++ dma_addr_t status_buf_dma_handle; ++ ++ /** EP0 */ ++ dwc_otg_pcd_ep_t ep0; ++ ++ /** Array of IN EPs. */ ++ dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1]; ++ /** Array of OUT EPs. */ ++ dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1]; ++ /** number of valid EPs in the above array. */ ++// unsigned num_eps : 4; ++ spinlock_t lock; ++ /** Timer for SRP. If it expires before SRP is successful ++ * clear the SRP. */ ++ struct timer_list srp_timer; ++ ++ /** Tasklet to defer starting of TEST mode transmissions until ++ * Status Phase has been completed. ++ */ ++ struct tasklet_struct test_mode_tasklet; ++ ++ /** Tasklet to delay starting of xfer in DMA mode */ ++ struct tasklet_struct *start_xfer_tasklet; ++ ++ /** The test mode to enter when the tasklet is executed. */ ++ unsigned test_mode; ++ ++} dwc_otg_pcd_t; ++ ++ ++/** DWC_otg request structure. ++ * This structure is a list of requests. ++ */ ++typedef struct ++{ ++ struct usb_request req; /**< USB Request. */ ++ struct list_head queue; /**< queue of these requests. */ ++} dwc_otg_pcd_request_t; ++ ++ ++extern int dwc_otg_pcd_init(struct device *dev); ++ ++//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev ); ++extern void dwc_otg_pcd_remove( struct device *dev); ++extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd ); ++extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd ); ++ ++extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd); ++extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set); ++ ++extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req); ++extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req, ++ int status); ++extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep); ++extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd, ++ const unsigned reset); ++ ++#endif ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_pcd_intr.c +@@ -0,0 +1,3654 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1115682 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++#include <linux/interrupt.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_pcd.h" ++ ++ ++#define DEBUG_EP0 ++ ++/* request functions defined in "dwc_otg_pcd.c" */ ++ ++/** @file ++ * This file contains the implementation of the PCD Interrupt handlers. ++ * ++ * The PCD handles the device interrupts. Many conditions can cause a ++ * device interrupt. When an interrupt occurs, the device interrupt ++ * service routine determines the cause of the interrupt and ++ * dispatches handling to the appropriate function. These interrupt ++ * handling functions are described below. ++ * All interrupt registers are processed from LSB to MSB. ++ */ ++ ++ ++/** ++ * This function prints the ep0 state for debug purposes. ++ */ ++static inline void print_ep0_state(dwc_otg_pcd_t *pcd) ++{ ++#ifdef DEBUG ++ char str[40]; ++ ++ switch (pcd->ep0state) { ++ case EP0_DISCONNECT: ++ strcpy(str, "EP0_DISCONNECT"); ++ break; ++ case EP0_IDLE: ++ strcpy(str, "EP0_IDLE"); ++ break; ++ case EP0_IN_DATA_PHASE: ++ strcpy(str, "EP0_IN_DATA_PHASE"); ++ break; ++ case EP0_OUT_DATA_PHASE: ++ strcpy(str, "EP0_OUT_DATA_PHASE"); ++ break; ++ case EP0_IN_STATUS_PHASE: ++ strcpy(str,"EP0_IN_STATUS_PHASE"); ++ break; ++ case EP0_OUT_STATUS_PHASE: ++ strcpy(str,"EP0_OUT_STATUS_PHASE"); ++ break; ++ case EP0_STALL: ++ strcpy(str,"EP0_STALL"); ++ break; ++ default: ++ strcpy(str,"EP0_INVALID"); ++ } ++ ++ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state); ++#endif ++} ++ ++/** ++ * This function returns pointer to in ep struct with number ep_num ++ */ ++static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) ++{ ++ int i; ++ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; ++ if(ep_num == 0) { ++ return &pcd->ep0; ++ } ++ else { ++ for(i = 0; i < num_in_eps; ++i) ++ { ++ if(pcd->in_ep[i].dwc_ep.num == ep_num) ++ return &pcd->in_ep[i]; ++ } ++ return 0; ++ } ++} ++/** ++ * This function returns pointer to out ep struct with number ep_num ++ */ ++static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) ++{ ++ int i; ++ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; ++ if(ep_num == 0) { ++ return &pcd->ep0; ++ } ++ else { ++ for(i = 0; i < num_out_eps; ++i) ++ { ++ if(pcd->out_ep[i].dwc_ep.num == ep_num) ++ return &pcd->out_ep[i]; ++ } ++ return 0; ++ } ++} ++/** ++ * This functions gets a pointer to an EP from the wIndex address ++ * value of the control request. ++ */ ++static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ ++ if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0) ++ return &pcd->ep0; ++ list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list) ++ { ++ u8 bEndpointAddress; ++ ++ if (!ep->desc) ++ continue; ++ ++ bEndpointAddress = ep->desc->bEndpointAddress; ++ if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)) ++ == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))) ++ return ep; ++ } ++ return NULL; ++} ++ ++/** ++ * This function checks the EP request queue, if the queue is not ++ * empty the next request is started. ++ */ ++void start_next_request(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_pcd_request_t *req = 0; ++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size; ++ ++ if (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, ++ dwc_otg_pcd_request_t, queue); ++ ++ /* Setup and start the Transfer */ ++ ep->dwc_ep.dma_addr = req->req.dma; ++ ep->dwc_ep.start_xfer_buff = req->req.buf; ++ ep->dwc_ep.xfer_buff = req->req.buf; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = req->req.length; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ++ if(max_transfer > MAX_TRANSFER_SIZE) { ++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket); ++ } else { ++ ep->dwc_ep.maxxfer = max_transfer; ++ } ++ ++ if(req->req.zero) { ++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.total_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ ++ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep); ++ } ++} ++ ++/** ++ * This function handles the SOF Interrupts. At this time the SOF ++ * Interrupt is disabled. ++ */ ++int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_PCD, "SOF\n"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function handles the Rx Status Queue Level Interrupt, which ++ * indicates that there is a least one packet in the Rx FIFO. The ++ * packets are moved from the FIFO to memory, where they will be ++ * processed when the Endpoint Interrupt Register indicates Transfer ++ * Complete or SETUP Phase Done. ++ * ++ * Repeat the following until the Rx Status Queue is empty: ++ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet ++ * info ++ * -# If Receive FIFO is empty then skip to step Clear the interrupt ++ * and exit ++ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the ++ * SETUP data to the buffer ++ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data ++ * to the destination buffer ++ */ ++int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ gintmsk_data_t gintmask = {.d32=0}; ++ device_grxsts_data_t status; ++ dwc_otg_pcd_ep_t *ep; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" }; ++#endif ++ ++ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); ++ /* Disable the Rx Status Queue Level interrupt */ ++ gintmask.b.rxstsqlvl= 1; ++ dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0); ++ ++ /* Get the Status from the top of the FIFO */ ++ status.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ ++ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s " ++ "pktsts:%x Frame:%d(0x%0x)\n", ++ status.b.epnum, status.b.bcnt, ++ dpid_str[status.b.dpid], ++ status.b.pktsts, status.b.fn, status.b.fn); ++ /* Get pointer to EP structure */ ++ ep = get_out_ep(pcd, status.b.epnum); ++ ++ switch (status.b.pktsts) { ++ case DWC_DSTS_GOUT_NAK: ++ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n"); ++ break; ++ case DWC_STS_DATA_UPDT: ++ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n"); ++ if (status.b.bcnt && ep->dwc_ep.xfer_buff) { ++ /** @todo NGS Check for buffer overflow? */ ++ dwc_otg_read_packet(core_if, ++ ep->dwc_ep.xfer_buff, ++ status.b.bcnt); ++ ep->dwc_ep.xfer_count += status.b.bcnt; ++ ep->dwc_ep.xfer_buff += status.b.bcnt; ++ } ++ break; ++ case DWC_STS_XFER_COMP: ++ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n"); ++ break; ++ case DWC_DSTS_SETUP_COMP: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n"); ++#endif ++ break; ++case DWC_DSTS_SETUP_UPDT: ++ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32); ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, ++ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n", ++ pcd->setup_pkt->req.bRequestType, ++ pcd->setup_pkt->req.bRequest, ++ pcd->setup_pkt->req.wValue, ++ pcd->setup_pkt->req.wIndex, ++ pcd->setup_pkt->req.wLength); ++#endif ++ ep->dwc_ep.xfer_count += status.b.bcnt; ++ break; ++ default: ++ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n", ++ status.b.pktsts); ++ break; ++ } ++ ++ /* Enable the Rx Status Queue Level interrupt */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32); ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); ++ ++ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__); ++ return 1; ++} ++/** ++ * This function examines the Device IN Token Learning Queue to ++ * determine the EP number of the last IN token received. This ++ * implementation is for the Mass Storage device where there are only ++ * 2 IN EPs (Control-IN and BULK-IN). ++ * ++ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there ++ * are 8 EP Numbers in each of the other possible DTKNQ Registers. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * ++ */ ++static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_device_global_regs_t *dev_global_regs = ++ core_if->dev_if->dev_global_regs; ++ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth; ++ /* Number of Token Queue Registers */ ++ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8; ++ dtknq1_data_t dtknqr1; ++ uint32_t in_tkn_epnums[4]; ++ int ndx = 0; ++ int i = 0; ++ volatile uint32_t *addr = &dev_global_regs->dtknqr1; ++ int epnum = 0; ++ ++ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH); ++ ++ ++ /* Read the DTKNQ Registers */ ++ for (i = 0; i < DTKNQ_REG_CNT; i++) ++ { ++ in_tkn_epnums[ i ] = dwc_read_reg32(addr); ++ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1, ++ in_tkn_epnums[i]); ++ if (addr == &dev_global_regs->dvbusdis) { ++ addr = &dev_global_regs->dtknqr3_dthrctl; ++ } ++ else { ++ ++addr; ++ } ++ ++ } ++ ++ /* Copy the DTKNQR1 data to the bit field. */ ++ dtknqr1.d32 = in_tkn_epnums[0]; ++ /* Get the EP numbers */ ++ in_tkn_epnums[0] = dtknqr1.b.epnums0_5; ++ ndx = dtknqr1.b.intknwptr - 1; ++ ++ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx); ++ if (ndx == -1) { ++ /** @todo Find a simpler way to calculate the max ++ * queue position.*/ ++ int cnt = TOKEN_Q_DEPTH; ++ if (TOKEN_Q_DEPTH <= 6) { ++ cnt = TOKEN_Q_DEPTH - 1; ++ } ++ else if (TOKEN_Q_DEPTH <= 14) { ++ cnt = TOKEN_Q_DEPTH - 7; ++ } ++ else if (TOKEN_Q_DEPTH <= 22) { ++ cnt = TOKEN_Q_DEPTH - 15; ++ } ++ else { ++ cnt = TOKEN_Q_DEPTH - 23; ++ } ++ epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF; ++ } ++ else { ++ if (ndx <= 5) { ++ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 13) { ++ ndx -= 6; ++ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 21) { ++ ndx -= 14; ++ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 29) { ++ ndx -= 22; ++ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF; ++ } ++ } ++ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum); ++ return epnum; ++} ++ ++/** ++ * This interrupt occurs when the non-periodic Tx FIFO is half-empty. ++ * The active request is checked for the next packet to be loaded into ++ * the non-periodic Tx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ gnptxsts_data_t txstatus = {.d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ int epnum = 0; ++ dwc_otg_pcd_ep_t *ep = 0; ++ uint32_t len = 0; ++ int dwords; ++ ++ /* Get the epnum from the IN Token Learning Queue. */ ++ epnum = get_ep_of_last_in_token(core_if); ++ ep = get_in_ep(pcd, epnum); ++ ++ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); ++ ep_regs = core_if->dev_if->in_ep_regs[epnum]; ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ dwords = (len + 3)/4; ++ ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32); ++ ++ while (txstatus.b.nptxqspcavail > 0 && ++ txstatus.b.nptxfspcavail > dwords && ++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", ++ dwc_read_reg32(&global_regs->gnptxsts)); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.nptxfempty = 1; ++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function is called when dedicated Tx FIFO Empty interrupt occurs. ++ * The active request is checked for the next packet to be loaded into ++ * apropriate Tx FIFO. ++ */ ++static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t* dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ dtxfsts_data_t txstatus = {.d32 = 0}; ++ dwc_otg_pcd_ep_t *ep = 0; ++ uint32_t len = 0; ++ int dwords; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); ++ ++ ep_regs = core_if->dev_if->in_ep_regs[epnum]; ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32); ++ ++ while (txstatus.b.txfspcavail > dwords && ++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len && ++ ep->dwc_ep.xfer_len != 0) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts)); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function is called when the Device is disconnected. It stops ++ * any active requests and informs the Gadget driver of the ++ * disconnect. ++ */ ++void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd) ++{ ++ int i, num_in_eps, num_out_eps; ++ dwc_otg_pcd_ep_t *ep; ++ ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; ++ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__); ++ /* don't disconnect drivers more than once */ ++ if (pcd->ep0state == EP0_DISCONNECT) { ++ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__); ++ return; ++ } ++ pcd->ep0state = EP0_DISCONNECT; ++ ++ /* Reset the OTG state. */ ++ dwc_otg_pcd_update_otg(pcd, 1); ++ ++ /* Disable the NP Tx Fifo Empty Interrupt. */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Flush the FIFOs */ ++ /**@todo NGS Flush Periodic FIFOs */ ++ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10); ++ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd)); ++ ++ /* prevent new request submissions, kill any outstanding requests */ ++ ep = &pcd->ep0; ++ dwc_otg_request_nuke(ep); ++ /* prevent new request submissions, kill any outstanding requests */ ++ for (i = 0; i < num_in_eps; i++) ++ { ++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i]; ++ dwc_otg_request_nuke(ep); ++ } ++ /* prevent new request submissions, kill any outstanding requests */ ++ for (i = 0; i < num_out_eps; i++) ++ { ++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i]; ++ dwc_otg_request_nuke(ep); ++ } ++ ++ /* report disconnect; the driver is already quiesced */ ++ if (pcd->driver && pcd->driver->disconnect) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->disconnect(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++} ++ ++/** ++ * This interrupt indicates that ... ++ */ ++int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr"); ++ intr_mask.b.i2cintr = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.i2cintr = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++ ++/** ++ * This interrupt indicates that ... ++ */ ++int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintsts_data_t gintsts; ++#if defined(VERBOSE) ++ DWC_PRINT("Early Suspend Detected\n"); ++#endif ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.erlysuspend = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++/** ++ * This function configures EPO to receive SETUP packets. ++ * ++ * @todo NGS: Update the comments from the HW FS. ++ * ++ * -# Program the following fields in the endpoint specific registers ++ * for Control OUT EP 0, in order to receive a setup packet ++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back ++ * setup packets) ++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back ++ * to back setup packets) ++ * - In DMA mode, DOEPDMA0 Register with a memory address to ++ * store any setup packets received ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param pcd Programming view of the PCD. ++ */ ++static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ deptsiz0_data_t doeptsize0 = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ depctl_data_t doepctl = { .d32 = 0 }; ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__, ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++#endif ++ ++ doeptsize0.b.supcnt = 3; ++ doeptsize0.b.pktcnt = 1; ++ doeptsize0.b.xfersize = 8*3; ++ ++ ++ if (core_if->dma_enable) { ++ if (!core_if->dma_desc_enable) { ++ /** put here as for Hermes mode deptisz register should not be written */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, ++ doeptsize0.d32); ++ ++ /** @todo dma needs to handle multiple setup packets (up to 3) */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, ++ pcd->setup_pkt_dma_handle); ++ } else { ++ dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1; ++ dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index]; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket; ++ dma_desc->buf = pcd->setup_pkt_dma_handle; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]); ++ } ++ ++ } else { ++ /** put here as for Hermes mode deptisz register should not be written */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, ++ doeptsize0.d32); ++ } ++ ++ /** DOEPCTL0 Register write */ ++ doepctl.b.epena = 1; ++ doepctl.b.cnak = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++} ++ ++ ++/** ++ * This interrupt occurs when a USB Reset is detected. When the USB ++ * Reset Interrupt occurs the device state is set to DEFAULT and the ++ * EP0 state is set to IDLE. ++ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1) ++ * -# Unmask the following interrupt bits ++ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint) ++ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint) ++ * - DOEPMSK.SETUP = 1 ++ * - DOEPMSK.XferCompl = 1 ++ * - DIEPMSK.XferCompl = 1 ++ * - DIEPMSK.TimeOut = 1 ++ * -# Program the following fields in the endpoint specific registers ++ * for Control OUT EP 0, in order to receive a setup packet ++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back ++ * setup packets) ++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back ++ * to back setup packets) ++ * - In DMA mode, DOEPDMA0 Register with a memory address to ++ * store any setup packets received ++ * At this point, all the required initialization, except for enabling ++ * the control 0 OUT endpoint is done, for receiving SETUP packets. ++ */ ++int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ depctl_data_t doepctl = { .d32 = 0}; ++ ++ daint_data_t daintmsk = { .d32 = 0}; ++ doepmsk_data_t doepmsk = { .d32 = 0}; ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ ++ dcfg_data_t dcfg = { .d32=0 }; ++ grstctl_t resetctl = { .d32=0 }; ++ dctl_data_t dctl = {.d32=0}; ++ int i = 0; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("USB RESET\n"); ++#ifdef DWC_EN_ISOC ++ for(i = 1;i < 16; ++i) ++ { ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ep = get_in_ep(pcd,i); ++ if(ep != 0){ ++ dwc_ep = &ep->dwc_ep; ++ dwc_ep->next_frame = 0xffffffff; ++ } ++ } ++#endif /* DWC_EN_ISOC */ ++ ++ /* reset the HNP settings */ ++ dwc_otg_pcd_update_otg(pcd, 1); ++ ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ ++ /* Set NAK for all OUT EPs */ ++ doepctl.b.snak = 1; ++ for (i=0; i <= dev_if->num_out_eps; i++) ++ { ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, ++ doepctl.d32); ++ } ++ ++ /* Flush the NP Tx FIFO */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); ++ /* Flush the Learning Queue */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ if(core_if->multiproc_int_enable) { ++ daintmsk.b.inep0 = 1; ++ daintmsk.b.outep0 = 1; ++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32); ++ ++ doepmsk.b.setup = 1; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.stsphsercvd = 1; ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ ++ if(core_if->dma_enable) { ++ doepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32); ++ ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++/* ++ if(core_if->dma_enable) { ++ diepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32); ++ } else{ ++ daintmsk.b.inep0 = 1; ++ daintmsk.b.outep0 = 1; ++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32); ++ ++ doepmsk.b.setup = 1; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.stsphsercvd = 1; ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ doepmsk.b.nak = 1; ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32); ++ ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++ ++// diepmsk.b.nak = 1; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32); ++ } ++ ++ /* Reset Device Address */ ++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); ++ dcfg.b.devaddr = 0; ++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); ++ ++ /* setup EP0 to receive SETUP packets */ ++ ep0_out_start(core_if, pcd); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbreset = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * Get the device speed from the device status register and convert it ++ * to USB speed constant. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static int get_device_speed(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ enum usb_device_speed speed = USB_SPEED_UNKNOWN; ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ speed = USB_SPEED_HIGH; ++ break; ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ speed = USB_SPEED_FULL; ++ break; ++ ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ speed = USB_SPEED_LOW; ++ break; ++ } ++ ++ return speed; ++} ++ ++/** ++ * Read the device status register and set the device speed in the ++ * data structure. ++ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate. ++ */ ++int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ gintsts_data_t gintsts; ++ gusbcfg_data_t gusbcfg; ++ dwc_otg_core_global_regs_t *global_regs = ++ GET_CORE_IF(pcd)->core_global_regs; ++ uint8_t utmi16b, utmi8b; ++ DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n"); ++ ++ if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) { ++ utmi16b = 6; ++ utmi8b = 9; ++ } else { ++ utmi16b = 4; ++ utmi8b = 8; ++ } ++ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++#ifdef DEBUG_EP0 ++ print_ep0_state(pcd); ++#endif ++ ++ if (pcd->ep0state == EP0_DISCONNECT) { ++ pcd->ep0state = EP0_IDLE; ++ } ++ else if (pcd->ep0state == EP0_STALL) { ++ pcd->ep0state = EP0_IDLE; ++ } ++ ++ pcd->ep0state = EP0_IDLE; ++ ++ ep0->stopped = 0; ++ ++ pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd)); ++ ++ /* Set USB turnaround time based on device speed and PHY interface. */ ++ gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ if (pcd->gadget.speed == USB_SPEED_HIGH) { ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) { ++ /* ULPI interface */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) { ++ /* UTMI+ interface */ ++ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ else { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ } ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) { ++ /* UTMI+ OR ULPI interface */ ++ if (gusbcfg.b.ulpi_utmi_sel == 1) { ++ /* ULPI interface */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ else { ++ /* UTMI+ interface */ ++ if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ else { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ } ++ } ++ } ++ else { ++ /* Full or low speed */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.enumdone = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that the ISO OUT Packet was dropped due to ++ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs ++ * read all the data from the Rx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "ISOC Out Dropped"); ++ ++ intr_mask.b.isooutdrop = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ ++ gintsts.d32 = 0; ++ gintsts.b.isooutdrop = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates the end of the portion of the micro-frame ++ * for periodic transactions. If there is a periodic transaction for ++ * the next frame, load the packets into the EP periodic Tx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP"); ++ ++ intr_mask.b.eopframe = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.eopframe = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that EP of the packet on the top of the ++ * non-periodic Tx FIFO does not match EP of the IN Token received. ++ * ++ * The "Device IN Token Queue" Registers are read to determine the ++ * order the IN Tokens have been received. The non-periodic Tx FIFO ++ * is flushed, so it can be reloaded in the order seen in the IN Token ++ * Queue. ++ */ ++int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.epmismatch = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This funcion stalls EP0. ++ */ ++static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req; ++ DWC_WARN("req %02x.%02x protocol STALL; err %d\n", ++ ctrl->bRequestType, ctrl->bRequest, err_val); ++ ++ ep0->dwc_ep.is_in = 1; ++ dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep); ++ pcd->ep0.stopped = 1; ++ pcd->ep0state = EP0_IDLE; ++ ep0_out_start(GET_CORE_IF(pcd), pcd); ++} ++ ++/** ++ * This functions delegates the setup command to the gadget driver. ++ */ ++static inline void do_gadget_setup(dwc_otg_pcd_t *pcd, ++ struct usb_ctrlrequest * ctrl) ++{ ++ int ret = 0; ++ if (pcd->driver && pcd->driver->setup) { ++ SPIN_UNLOCK(&pcd->lock); ++ ret = pcd->driver->setup(&pcd->gadget, ctrl); ++ SPIN_LOCK(&pcd->lock); ++ if (ret < 0) { ++ ep0_do_stall(pcd, ret); ++ } ++ ++ /** @todo This is a g_file_storage gadget driver specific ++ * workaround: a DELAYED_STATUS result from the fsg_setup ++ * routine will result in the gadget queueing a EP0 IN status ++ * phase for a two-stage control transfer. Exactly the same as ++ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class ++ * specific request. Need a generic way to know when the gadget ++ * driver will queue the status phase. Can we assume when we ++ * call the gadget driver setup() function that it will always ++ * queue and require the following flag? Need to look into ++ * this. ++ */ ++ ++ if (ret == 256 + 999) { ++ pcd->request_config = 1; ++ } ++ } ++} ++ ++/** ++ * This function starts the Zero-Length Packet for the IN status phase ++ * of a 2 stage control transfer. ++ */ ++static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ if (pcd->ep0state == EP0_STALL) { ++ return; ++ } ++ ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ ++ /* Prepare for more SETUP Packets */ ++ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n"); ++ ep0->dwc_ep.xfer_len = 0; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.is_in = 1; ++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++ /* Prepare for more SETUP Packets */ ++// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd); ++} ++ ++/** ++ * This function starts the Zero-Length Packet for the OUT status phase ++ * of a 2 stage control transfer. ++ */ ++static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ if (pcd->ep0state == EP0_STALL) { ++ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n"); ++ return; ++ } ++ pcd->ep0state = EP0_OUT_STATUS_PHASE; ++ ++ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n"); ++ ep0->dwc_ep.xfer_len = 0; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.is_in = 0; ++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++ /* Prepare for more SETUP Packets */ ++ if(GET_CORE_IF(pcd)->dma_enable == 0) { ++ ep0_out_start(GET_CORE_IF(pcd), pcd); ++ } ++} ++ ++/** ++ * Clear the EP halt (STALL) and if pending requests start the ++ * transfer. ++ */ ++static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep) ++{ ++ if(ep->dwc_ep.stall_clear_flag == 0) ++ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep); ++ ++ /* Reactive the EP */ ++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); ++ if (ep->stopped) { ++ ep->stopped = 0; ++ /* If there is a request in the EP queue start it */ ++ ++ /** @todo FIXME: this causes an EP mismatch in DMA mode. ++ * epmismatch not yet implemented. */ ++ ++ /* ++ * Above fixme is solved by implmenting a tasklet to call the ++ * start_next_request(), outside of interrupt context at some ++ * time after the current time, after a clear-halt setup packet. ++ * Still need to implement ep mismatch in the future if a gadget ++ * ever uses more than one endpoint at once ++ */ ++ ep->queue_sof = 1; ++ tasklet_schedule (pcd->start_xfer_tasklet); ++ } ++ /* Start Control Status Phase */ ++ do_setup_in_status_phase(pcd); ++} ++ ++/** ++ * This function is called when the SET_FEATURE TEST_MODE Setup packet ++ * is sent from the host. The Device Control register is written with ++ * the Test Mode bits set to the specified Test Mode. This is done as ++ * a tasklet so that the "Status" phase of the control transfer ++ * completes before transmitting the TEST packets. ++ * ++ * @todo This has not been tested since the tasklet struct was put ++ * into the PCD struct! ++ * ++ */ ++static void do_test_mode(unsigned long data) ++{ ++ dctl_data_t dctl; ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data; ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ int test_mode = pcd->test_mode; ++ ++ ++// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__); ++ ++ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); ++ switch (test_mode) { ++ case 1: // TEST_J ++ dctl.b.tstctl = 1; ++ break; ++ ++ case 2: // TEST_K ++ dctl.b.tstctl = 2; ++ break; ++ ++ case 3: // TEST_SE0_NAK ++ dctl.b.tstctl = 3; ++ break; ++ ++ case 4: // TEST_PACKET ++ dctl.b.tstctl = 4; ++ break; ++ ++ case 5: // TEST_FORCE_ENABLE ++ dctl.b.tstctl = 5; ++ break; ++ } ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32); ++} ++ ++/** ++ * This function process the GET_STATUS Setup Commands. ++ */ ++static inline void do_get_status(dwc_otg_pcd_t *pcd) ++{ ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ uint16_t *status = pcd->status_buf; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, ++ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++#endif ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ *status = 0x1; /* Self powered */ ++ *status |= pcd->remote_wakeup_enable << 1; ++ break; ++ ++ case USB_RECIP_INTERFACE: ++ *status = 0; ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0 || ctrl.wLength > 2) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ /** @todo check for EP stall */ ++ *status = ep->stopped; ++ break; ++ } ++ pcd->ep0_pending = 1; ++ ep0->dwc_ep.start_xfer_buff = (uint8_t *)status; ++ ep0->dwc_ep.xfer_buff = (uint8_t *)status; ++ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle; ++ ep0->dwc_ep.xfer_len = 2; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++} ++/** ++ * This function process the SET_FEATURE Setup Commands. ++ */ ++static inline void do_set_feature(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep = 0; ++ int32_t otg_cap_param = core_if->core_params->otg_cap; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++ DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param); ++ ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ switch (ctrl.wValue) { ++ case USB_DEVICE_REMOTE_WAKEUP: ++ pcd->remote_wakeup_enable = 1; ++ break; ++ ++ case USB_DEVICE_TEST_MODE: ++ /* Setup the Test Mode tasklet to do the Test ++ * Packet generation after the SETUP Status ++ * phase has completed. */ ++ ++ /** @todo This has not been tested since the ++ * tasklet struct was put into the PCD ++ * struct! */ ++ pcd->test_mode_tasklet.next = 0; ++ pcd->test_mode_tasklet.state = 0; ++ atomic_set(&pcd->test_mode_tasklet.count, 0); ++ pcd->test_mode_tasklet.func = do_test_mode; ++ pcd->test_mode_tasklet.data = (unsigned long)pcd; ++ pcd->test_mode = ctrl.wIndex >> 8; ++ tasklet_schedule(&pcd->test_mode_tasklet); ++ break; ++ ++ case USB_DEVICE_B_HNP_ENABLE: ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n"); ++ ++ /* dev may initiate HNP */ ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->b_hnp_enable = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n"); ++ /**@todo Is the gotgctl.devhnpen cleared ++ * by a USB Reset? */ ++ gotgctl.b.devhnpen = 1; ++ gotgctl.b.hnpreq = 1; ++ dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ ++ case USB_DEVICE_A_HNP_SUPPORT: ++ /* RH port supports HNP */ ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n"); ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->a_hnp_support = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ ++ case USB_DEVICE_A_ALT_HNP_SUPPORT: ++ /* other RH port does */ ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n"); ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->a_alt_hnp_support = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ ++ case USB_RECIP_INTERFACE: ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ if (ctrl.wValue == USB_ENDPOINT_HALT) { ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep); ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ } ++} ++ ++/** ++ * This function process the CLEAR_FEATURE Setup Commands. ++ */ ++static inline void do_clear_feature(dwc_otg_pcd_t *pcd) ++{ ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep = 0; ++ ++ DWC_DEBUGPL(DBG_PCD, ++ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ switch (ctrl.wValue) { ++ case USB_DEVICE_REMOTE_WAKEUP: ++ pcd->remote_wakeup_enable = 0; ++ break; ++ ++ case USB_DEVICE_TEST_MODE: ++ /** @todo Add CLEAR_FEATURE for TEST modes. */ ++ break; ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ ++ pcd_clear_halt(pcd, ep); ++ ++ break; ++ } ++} ++ ++/** ++ * This function process the SET_ADDRESS Setup Commands. ++ */ ++static inline void do_set_address(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ ++ if (ctrl.bRequestType == USB_RECIP_DEVICE) { ++ dcfg_data_t dcfg = {.d32=0}; ++ ++#ifdef DEBUG_EP0 ++// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue); ++#endif ++ dcfg.b.devaddr = ctrl.wValue; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32); ++ do_setup_in_status_phase(pcd); ++ } ++} ++ ++/** ++ * This function processes SETUP commands. In Linux, the USB Command ++ * processing is done in two places - the first being the PCD and the ++ * second in the Gadget Driver (for example, the File-Backed Storage ++ * Gadget Driver). ++ * ++ * <table> ++ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr> ++ * ++ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as ++ * defined in chapter 9 of the USB 2.0 Specification chapter 9 ++ * </td></tr> ++ * ++ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint ++ * requests are the ENDPOINT_HALT feature is procesed, all others the ++ * interface requests are ignored.</td></tr> ++ * ++ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint ++ * requests are processed by the PCD. Interface requests are passed ++ * to the Gadget Driver.</td></tr> ++ * ++ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg, ++ * with device address received </td></tr> ++ * ++ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the ++ * requested descriptor</td></tr> ++ * ++ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional - ++ * not implemented by any of the existing Gadget Drivers.</td></tr> ++ * ++ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable ++ * all EPs and enable EPs for new configuration.</td></tr> ++ * ++ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return ++ * the current configuration</td></tr> ++ * ++ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all ++ * EPs and enable EPs for new configuration.</td></tr> ++ * ++ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the ++ * current interface.</td></tr> ++ * ++ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug ++ * message.</td></tr> ++ * </table> ++ * ++ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are ++ * processed by pcd_setup. Calling the Function Driver's setup function from ++ * pcd_setup processes the gadget SETUP commands. ++ */ ++static inline void pcd_setup(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ ++ deptsiz0_data_t doeptsize0 = { .d32 = 0}; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++#endif ++ ++ doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz); ++ ++ /** @todo handle > 1 setup packet , assert error for now */ ++ ++ if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) { ++ DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n"); ++ } ++ ++ /* Clean up the request queue */ ++ dwc_otg_request_nuke(ep0); ++ ep0->stopped = 0; ++ ++ if (ctrl.bRequestType & USB_DIR_IN) { ++ ep0->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_DATA_PHASE; ++ } ++ else { ++ ep0->dwc_ep.is_in = 0; ++ pcd->ep0state = EP0_OUT_DATA_PHASE; ++ } ++ ++ if(ctrl.wLength == 0) { ++ ep0->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ } ++ ++ if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) { ++ /* handle non-standard (class/vendor) requests in the gadget driver */ ++ do_gadget_setup(pcd, &ctrl); ++ return; ++ } ++ ++ /** @todo NGS: Handle bad setup packet? */ ++ ++/////////////////////////////////////////// ++//// --- Standard Request handling --- //// ++ ++ switch (ctrl.bRequest) { ++ case USB_REQ_GET_STATUS: ++ do_get_status(pcd); ++ break; ++ ++ case USB_REQ_CLEAR_FEATURE: ++ do_clear_feature(pcd); ++ break; ++ ++ case USB_REQ_SET_FEATURE: ++ do_set_feature(pcd); ++ break; ++ ++ case USB_REQ_SET_ADDRESS: ++ do_set_address(pcd); ++ break; ++ ++ case USB_REQ_SET_INTERFACE: ++ case USB_REQ_SET_CONFIGURATION: ++// _pcd->request_config = 1; /* Configuration changed */ ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ case USB_REQ_SYNCH_FRAME: ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ default: ++ /* Call the Gadget Driver's setup functions */ ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ } ++} ++ ++/** ++ * This function completes the ep0 control transfer. ++ */ ++static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs = ++ dev_if->in_ep_regs[ep->dwc_ep.num]; ++#ifdef DEBUG_EP0 ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs = ++ dev_if->out_ep_regs[ep->dwc_ep.num]; ++#endif ++ deptsiz0_data_t deptsiz; ++ desc_sts_data_t desc_sts; ++ dwc_otg_pcd_request_t *req; ++ int is_last = 0; ++ dwc_otg_pcd_t *pcd = ep->pcd; ++ ++ //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name); ++ ++ if (pcd->ep0_pending && list_empty(&ep->queue)) { ++ if (ep->dwc_ep.is_in) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n"); ++#endif ++ do_setup_out_status_phase(pcd); ++ } ++ else { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n"); ++#endif ++ do_setup_in_status_phase(pcd); ++ } ++ pcd->ep0_pending = 0; ++ return 1; ++ } ++ ++ if (list_empty(&ep->queue)) { ++ return 0; ++ } ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue); ++ ++ ++ if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) { ++ is_last = 1; ++ } ++ else if (ep->dwc_ep.is_in) { ++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); ++ if(core_if->dma_desc_enable != 0) ++ desc_sts.d32 = readl(dev_if->in_desc_addr); ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++#endif ++ ++ if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) || ++ ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) { ++ req->req.actual = ep->dwc_ep.xfer_count; ++ /* Is a Zero Len Packet needed? */ ++ if (req->req.zero) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n"); ++#endif ++ req->req.zero = 0; ++ } ++ do_setup_out_status_phase(pcd); ++ } ++ } ++ else { ++ /* ep0-OUT */ ++#ifdef DEBUG_EP0 ++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, ++ deptsiz.b.pktcnt); ++#endif ++ req->req.actual = ep->dwc_ep.xfer_count; ++ /* Is a Zero Len Packet needed? */ ++ if (req->req.zero) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n"); ++#endif ++ req->req.zero = 0; ++ } ++ if(core_if->dma_desc_enable == 0) ++ do_setup_in_status_phase(pcd); ++ } ++ ++ /* Complete the request */ ++ if (is_last) { ++ dwc_otg_request_done(ep, req, 0); ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ return 1; ++ } ++ return 0; ++} ++ ++/** ++ * This function completes the request for the EP. If there are ++ * additional requests for the EP in the queue they will be started. ++ */ ++static void complete_ep(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs = ++ dev_if->in_ep_regs[ep->dwc_ep.num]; ++ deptsiz_data_t deptsiz; ++ desc_sts_data_t desc_sts; ++ dwc_otg_pcd_request_t *req = 0; ++ dwc_otg_dma_desc_t* dma_desc; ++ uint32_t byte_count = 0; ++ int is_last = 0; ++ int i; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name, ++ (ep->dwc_ep.is_in?"IN":"OUT")); ++ ++ /* Get any pending requests */ ++ if (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, ++ queue); ++ if (!req) { ++ printk("complete_ep 0x%p, req = NULL!\n", ep); ++ return; ++ } ++ } ++ else { ++ printk("complete_ep 0x%p, ep->queue empty!\n", ep); ++ return; ++ } ++ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending); ++ ++ if (ep->dwc_ep.is_in) { ++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); ++ ++ if (core_if->dma_enable) { ++ if(core_if->dma_desc_enable == 0) { ++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { ++ byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ ++ ep->dwc_ep.xfer_buff += byte_count; ++ ep->dwc_ep.dma_addr += byte_count; ++ ep->dwc_ep.xfer_count += byte_count; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } else { ++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", ++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ } ++ } else { ++ dma_desc = ep->dwc_ep.desc_addr; ++ byte_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { ++ desc_sts.d32 = readl(dma_desc); ++ byte_count += desc_sts.b.bytes; ++ dma_desc++; ++ } ++ ++ if(byte_count == 0) { ++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len; ++ is_last = 1; ++ } else { ++ DWC_WARN("Incomplete transfer\n"); ++ } ++ } ++ } else { ++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ else { ++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", ++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ } ++ } ++ } else { ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs = ++ dev_if->out_ep_regs[ep->dwc_ep.num]; ++ desc_sts.d32 = 0; ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable) { ++ dma_desc = ep->dwc_ep.desc_addr; ++ byte_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { ++ desc_sts.d32 = readl(dma_desc); ++ byte_count += desc_sts.b.bytes; ++ dma_desc++; ++ } ++ ++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len ++ - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3); ++ is_last = 1; ++ } else { ++ deptsiz.d32 = 0; ++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); ++ ++ byte_count = (ep->dwc_ep.xfer_len - ++ ep->dwc_ep.xfer_count - deptsiz.b.xfersize); ++ ep->dwc_ep.xfer_buff += byte_count; ++ ep->dwc_ep.dma_addr += byte_count; ++ ep->dwc_ep.xfer_count += byte_count; ++ ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } ++ else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ } else { ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } ++ else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ ++#ifdef DEBUG ++ ++ DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n", ++ &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len, ++ ep->dwc_ep.xfer_count, ++ deptsiz.b.xfersize, ++ deptsiz.b.pktcnt); ++#endif ++ } ++ ++ /* Complete the request */ ++ if (is_last) { ++ req->req.actual = ep->dwc_ep.xfer_count; ++ ++ dwc_otg_request_done(ep, req, 0); ++ ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ++ /* If there is a request in the queue start it.*/ ++ start_next_request(ep); ++ } ++} ++ ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function BNA interrupt for Isochronous EPs ++ * ++ */ ++static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_ep_t *dwc_ep = &ep->dwc_ep; ++ volatile uint32_t *addr; ++ depctl_data_t depctl = {.d32 = 0}; ++ dwc_otg_pcd_t *pcd = ep->pcd; ++ dwc_otg_dma_desc_t *dma_desc; ++ int i; ++ ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num); ++ ++ if(dwc_ep->is_in) { ++ desc_sts_data_t sts = {.d32 = 0}; ++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ sts.b_iso_in.bs = BS_HOST_READY; ++ writel(sts.d32,&dma_desc->status); ++ } ++ } ++ else { ++ desc_sts_data_t sts = {.d32 = 0}; ++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ sts.b_iso_out.bs = BS_HOST_READY; ++ writel(sts.d32,&dma_desc->status); ++ } ++ } ++ ++ if(dwc_ep->is_in == 0){ ++ addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ } ++ else{ ++ addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ } ++ depctl.b.epena = 1; ++ dwc_modify_reg32(addr,depctl.d32,depctl.d32); ++} ++ ++/** ++ * This function sets latest iso packet information(non-PTI mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ dma_addr_t dma_addr; ++ uint32_t offset; ++ ++ if(ep->proc_buf_num) ++ dma_addr = ep->dma_addr1; ++ else ++ dma_addr = ep->dma_addr0; ++ ++ ++ if(ep->is_in) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); ++ offset = ep->data_per_frame; ++ } else { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); ++ offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3))); ++ } ++ ++ if(!deptsiz.b.xfersize) { ++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; ++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; ++ ep->pkt_info[ep->cur_pkt].status = 0; ++ } else { ++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; ++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; ++ ep->pkt_info[ep->cur_pkt].status = -ENODATA; ++ } ++ ep->cur_pkt_addr += offset; ++ ep->cur_pkt_dma_addr += offset; ++ ep->cur_pkt++; ++} ++ ++/** ++ * This function sets latest iso packet information(DDMA mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ dwc_otg_dma_desc_t* dma_desc; ++ desc_sts_data_t sts = {.d32 = 0}; ++ iso_pkt_info_t *iso_packet; ++ uint32_t data_per_desc; ++ uint32_t offset; ++ int i, j; ++ ++ iso_packet = dwc_ep->pkt_info; ++ ++ /** Reinit closed DMA Descriptors*/ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ offset = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Received data length */ ++ if(!sts.b_iso_out.rxbytes){ ++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes; ++ } else { ++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes + ++ (4 - dwc_ep->data_per_frame % 4); ++ } ++ ++ iso_packet->offset = offset; ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ iso_packet ++; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Received data length */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; ++ ++ iso_packet->offset = offset; ++ ++ offset += data_per_desc; ++ iso_packet++; ++ dma_desc++; ++ } ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ /* Received data length */ ++ if(!sts.b_iso_out.rxbytes){ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; ++ } else { ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes + ++ (4 - dwc_ep->data_per_frame % 4); ++ } ++ ++ iso_packet->offset = offset; ++ } ++ else /** ISO IN EP */ ++ { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso packet descriptor */ ++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); ++ if(iso_packet->status != 0) { ++ iso_packet->status = -ENODATA; ++ ++ } ++ /* Bytes has been transfered */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; ++ ++ dma_desc ++; ++ iso_packet++; ++ } ++ ++ sts.d32 = readl(&dma_desc->status); ++ while(sts.b_iso_in.bs == BS_DMA_BUSY) { ++ sts.d32 = readl(&dma_desc->status); ++ } ++ ++ /* Write status in iso packet descriptor ??? do be done with ERROR codes*/ ++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); ++ if(iso_packet->status != 0) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Bytes has been transfered */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; ++ } ++} ++ ++/** ++ * This function reinitialize DMA Descriptors for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ int i, j; ++ dwc_otg_dma_desc_t* dma_desc; ++ dma_addr_t dma_ad; ++ volatile uint32_t *addr; ++ desc_sts_data_t sts = { .d32 =0 }; ++ uint32_t data_per_desc; ++ ++ if(dwc_ep->is_in == 0) { ++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ } ++ else { ++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ } ++ ++ ++ if(dwc_ep->proc_buf_num == 0) { ++ /** Buffer 0 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr0; ++ } ++ else { ++ /** Buffer 1 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr1; ++ } ++ ++ ++ /** Reinit closed DMA Descriptors*/ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ sts.b_iso_out.bs = BS_HOST_READY; ++ sts.b_iso_out.rxsts = 0; ++ sts.b_iso_out.l = 0; ++ sts.b_iso_out.sp = 0; ++ sts.b_iso_out.ioc = 0; ++ sts.b_iso_out.pid = 0; ++ sts.b_iso_out.framenum = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ (uint32_t)dma_ad += data_per_desc; ++ dma_desc ++; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dma_desc++; ++ (uint32_t)dma_ad += data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ sts.b_iso_out.l = dwc_ep->proc_buf_num; ++ ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ } ++ else /** ISO IN EP */ ++ { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ sts.b_iso_in.bs = BS_HOST_READY; ++ sts.b_iso_in.txsts = 0; ++ sts.b_iso_in.sp = 0; ++ sts.b_iso_in.ioc = 0; ++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm; ++ sts.b_iso_in.framenum = dwc_ep->next_frame; ++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame; ++ sts.b_iso_in.l = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ (uint32_t)dma_ad += dwc_ep->data_per_frame; ++ dma_desc ++; ++ } ++ ++ sts.b_iso_in.ioc = 1; ++ sts.b_iso_in.l = dwc_ep->proc_buf_num; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1; ++ } ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++} ++ ++ ++/** ++ * This function is to handle Iso EP transfer complete interrupt ++ * in case Iso out packet was dropped ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP for wihich transfer complete was asserted ++ * ++ */ ++static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ uint32_t dma_addr; ++ uint32_t drp_pkt; ++ uint32_t drp_pkt_cnt; ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ depctl_data_t depctl = { .d32 = 0 }; ++ int i; ++ ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz); ++ ++ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt; ++ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm); ++ ++ /* Setting dropped packets status */ ++ for(i = 0; i < drp_pkt_cnt; ++i) { ++ dwc_ep->pkt_info[drp_pkt].status = -ENODATA; ++ drp_pkt ++; ++ deptsiz.b.pktcnt--; ++ } ++ ++ ++ if(deptsiz.b.pktcnt > 0) { ++ deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket; ++ } else { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 0; ++ } ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32); ++ ++ if(deptsiz.b.pktcnt > 0) { ++ if(dwc_ep->proc_buf_num) { ++ dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize; ++ } else { ++ dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;; ++ } ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr); ++ ++ /** Re-enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl, ++ depctl.d32,depctl.d32); ++ return 0; ++ } else { ++ return 1; ++ } ++} ++ ++/** ++ * This function sets iso packets information(PTI mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ int i, j; ++ dma_addr_t dma_ad; ++ iso_pkt_info_t *packet_info = ep->pkt_info; ++ uint32_t offset; ++ uint32_t frame_data; ++ deptsiz_data_t deptsiz; ++ ++ if(ep->proc_buf_num == 0) { ++ /** Buffer 0 descriptors setup */ ++ dma_ad = ep->dma_addr0; ++ } ++ else { ++ /** Buffer 1 descriptors setup */ ++ dma_ad = ep->dma_addr1; ++ } ++ ++ ++ if(ep->is_in) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); ++ } else { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); ++ } ++ ++ if(!deptsiz.b.xfersize) { ++ offset = 0; ++ for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm) ++ { ++ frame_data = ep->data_per_frame; ++ for(j = 0; j < ep->pkt_per_frm; ++j) { ++ ++ /* Packet status - is not set as initially ++ * it is set to 0 and if packet was sent ++ successfully, status field will remain 0*/ ++ ++ ++ /* Bytes has been transfered */ ++ packet_info->length = (ep->maxpacket < frame_data) ? ++ ep->maxpacket : frame_data; ++ ++ /* Received packet offset */ ++ packet_info->offset = offset; ++ offset += packet_info->length; ++ frame_data -= packet_info->length; ++ ++ packet_info ++; ++ } ++ } ++ return 1; ++ } else { ++ /* This is a workaround for in case of Transfer Complete with ++ * PktDrpSts interrupts merging - in this case Transfer complete ++ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts ++ * set and with DOEPTSIZ register non zero. Investigations showed, ++ * that this happens when Out packet is dropped, but because of ++ * interrupts merging during first interrupt handling PktDrpSts ++ * bit is cleared and for next merged interrupts it is not reset. ++ * In this case SW hadles the interrupt as if PktDrpSts bit is set. ++ */ ++ if(ep->is_in) { ++ return 1; ++ } else { ++ return handle_iso_out_pkt_dropped(core_if, ep); ++ } ++ } ++} ++ ++/** ++ * This function is to handle Iso EP transfer complete interrupt ++ * ++ * @param ep The EP for which transfer complete was asserted ++ * ++ */ ++static void complete_iso_ep(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_ep_t *dwc_ep = &ep->dwc_ep; ++ uint8_t is_last = 0; ++ ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable) { ++ set_ddma_iso_pkts_info(core_if, dwc_ep); ++ reinit_ddma_iso_xfer(core_if, dwc_ep); ++ is_last = 1; ++ } else { ++ if(core_if->pti_enh_enable) { ++ if(set_iso_pkts_info(core_if, dwc_ep)) { ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep); ++ is_last = 1; ++ } ++ } else { ++ set_current_pkt_info(core_if, dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ is_last = 1; ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ ++ } ++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); ++ } ++ } ++ } else { ++ set_current_pkt_info(core_if, dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ is_last = 1; ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ ++ } ++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); ++ } ++ if(is_last) ++ dwc_otg_iso_buffer_done(ep, ep->iso_req); ++} ++ ++#endif //DWC_EN_ISOC ++ ++ ++/** ++ * This function handles EP0 Control transfers. ++ * ++ * The state of the control tranfers are tracked in ++ * <code>ep0state</code>. ++ */ ++static void handle_ep0(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ desc_sts_data_t desc_sts; ++ deptsiz0_data_t deptsiz; ++ uint32_t byte_count; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); ++ print_ep0_state(pcd); ++#endif ++ ++ switch (pcd->ep0state) { ++ case EP0_DISCONNECT: ++ break; ++ ++ case EP0_IDLE: ++ pcd->request_config = 0; ++ ++ pcd_setup(pcd); ++ break; ++ ++ case EP0_IN_DATA_PHASE: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n", ++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), ++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); ++#endif ++ ++ if (core_if->dma_enable != 0) { ++ /* ++ * For EP0 we can only program 1 packet at a time so we ++ * need to do the make calculations after each complete. ++ * Call write_packet to make the calculations, as in ++ * slave mode, and use those values to determine if we ++ * can complete. ++ */ ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz); ++ byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize; ++ } ++ else { ++ desc_sts.d32 = readl(core_if->dev_if->in_desc_addr); ++ byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes; ++ } ++ ep0->dwc_ep.xfer_count += byte_count; ++ ep0->dwc_ep.xfer_buff += byte_count; ++ ep0->dwc_ep.dma_addr += byte_count; ++ } ++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else if(ep0->dwc_ep.sent_zlp) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ep0->dwc_ep.sent_zlp = 0; ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else { ++ ep0_complete_request(ep0); ++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); ++ } ++ break; ++ case EP0_OUT_DATA_PHASE: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n", ++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), ++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); ++#endif ++ if (core_if->dma_enable != 0) { ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz); ++ byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize; ++ } ++ else { ++ desc_sts.d32 = readl(core_if->dev_if->out_desc_addr); ++ byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes; ++ } ++ ep0->dwc_ep.xfer_count += byte_count; ++ ep0->dwc_ep.xfer_buff += byte_count; ++ ep0->dwc_ep.dma_addr += byte_count; ++ } ++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else if(ep0->dwc_ep.sent_zlp) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ep0->dwc_ep.sent_zlp = 0; ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else { ++ ep0_complete_request(ep0); ++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); ++ } ++ break; ++ ++ ++ case EP0_IN_STATUS_PHASE: ++ case EP0_OUT_STATUS_PHASE: ++ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n"); ++ ep0_complete_request(ep0); ++ pcd->ep0state = EP0_IDLE; ++ ep0->stopped = 1; ++ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */ ++ ++ /* Prepare for more SETUP Packets */ ++ if(core_if->dma_enable) { ++ ep0_out_start(core_if, pcd); ++ } ++ break; ++ ++ case EP0_STALL: ++ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n"); ++ break; ++ } ++#ifdef DEBUG_EP0 ++ print_ep0_state(pcd); ++#endif ++} ++ ++ ++/** ++ * Restart transfer ++ */ ++static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if; ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++#ifdef DWC_EN_ISOC ++ if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) { ++ return; ++ } ++#endif /* DWC_EN_ISOC */ ++ ++ core_if = GET_CORE_IF(pcd); ++ dev_if = core_if->dev_if; ++ ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); ++ ++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x" ++ " stopped=%d\n", ep->dwc_ep.xfer_buff, ++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , ++ ep->stopped); ++ /* ++ * If xfersize is 0 and pktcnt in not 0, resend the last packet. ++ */ ++ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 && ++ ep->dwc_ep.start_xfer_buff != 0) { ++ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) { ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff; ++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; ++ } ++ else { ++ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket; ++ /* convert packet size to dwords. */ ++ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket; ++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; ++ } ++ ep->stopped = 0; ++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x " ++ "xfer_len=%0x stopped=%d\n", ++ ep->dwc_ep.xfer_buff, ++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , ++ ep->stopped ++ ); ++ if (epnum == 0) { ++ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep); ++ } ++ else { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } ++ } ++} ++ ++ ++/** ++ * handle the IN EP disable interrupt. ++ */ ++static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ++ ep = get_in_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); ++ return; ++ } ++ ++ DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum, ++ dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl)); ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); ++ ++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", ++ dieptsiz.b.pktcnt, ++ dieptsiz.b.xfersize); ++ ++ if (ep->stopped) { ++ /* Flush the Tx FIFO */ ++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); ++ /* Clear the Global IN NP NAK */ ++ dctl.d32 = 0; ++ dctl.b.cgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ /* Restart the transaction */ ++ if (dieptsiz.b.pktcnt != 0 || ++ dieptsiz.b.xfersize != 0) { ++ restart_transfer(pcd, epnum); ++ } ++ } ++ else { ++ /* Restart the transaction */ ++ if (dieptsiz.b.pktcnt != 0 || ++ dieptsiz.b.xfersize != 0) { ++ restart_transfer(pcd, epnum); ++ } ++ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n"); ++ } ++} ++ ++/** ++ * Handler for the IN EP timeout handshake interrupt. ++ */ ++static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ ++#ifdef DEBUG ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ uint32_t num = 0; ++#endif ++ dctl_data_t dctl = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++ /* Disable the NP Tx Fifo Empty Interrrupt */ ++ if (!core_if->dma_enable) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ /** @todo NGS Check EP type. ++ * Implement for Periodic EPs */ ++ /* ++ * Non-periodic EP ++ */ ++ /* Enable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.ginnakeff = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ 0, intr_mask.d32); ++ ++ /* Set Global IN NAK */ ++ dctl.b.sgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, ++ dctl.d32, dctl.d32); ++ ++ ep->stopped = 1; ++ ++#ifdef DEBUG ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz); ++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", ++ dieptsiz.b.pktcnt, ++ dieptsiz.b.xfersize); ++#endif ++ ++#ifdef DISABLE_PERIODIC_EP ++ /* ++ * Set the NAK bit for this EP to ++ * start the disable process. ++ */ ++ diepctl.d32 = 0; ++ diepctl.b.snak = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32); ++ ep->disabling = 1; ++ ep->stopped = 1; ++#endif ++} ++ ++/** ++ * Handler for the IN EP NAK interrupt. ++ */ ++static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ diepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nak = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP Babble interrupt. ++ */ ++static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.babble = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP NAK interrupt. ++ */ ++static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nak = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP NYET interrupt. ++ */ ++static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nyet = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that an IN EP has a pending Interrupt. ++ * The sequence for handling the IN EP interrupt is shown below: ++ * -# Read the Device All Endpoint Interrupt register ++ * -# Repeat the following for each IN EP interrupt bit set (from ++ * LSB to MSB). ++ * -# Read the Device Endpoint Interrupt (DIEPINTn) register ++ * -# If "Transfer Complete" call the request complete function ++ * -# If "Endpoint Disabled" complete the EP disable procedure. ++ * -# If "AHB Error Interrupt" log error ++ * -# If "Time-out Handshake" log error ++ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx ++ * FIFO. ++ * -# If "IN Token EP Mismatch" (disable, this is handled by EP ++ * Mismatch Interrupt) ++ */ ++static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd) ++{ ++#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \ ++do { \ ++ diepint_data_t diepint = {.d32=0}; \ ++ diepint.b.__intr = 1; \ ++ dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \ ++ diepint.d32); \ ++} while (0) ++ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ diepint_data_t diepint = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ depctl_data_t depctl = {.d32=0}; ++ uint32_t ep_intr; ++ uint32_t epnum = 0; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd); ++ ++ /* Read in the device interrupt bits */ ++ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if); ++ ++ /* Service the Device IN interrupts for each endpoint */ ++ while(ep_intr) { ++ if (ep_intr&0x1) { ++ uint32_t empty_msk; ++ /* Get EP pointer */ ++ ep = get_in_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); ++ empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ ++ DWC_DEBUGPL(DBG_PCDV, ++ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n", ++ epnum, ++ empty_msk, ++ depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, ++ "EP%d-%s: type=%d, mps=%d\n", ++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), ++ dwc_ep->type, dwc_ep->maxpacket); ++ ++ diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep); ++ ++ DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32); ++ /* Transfer complete */ ++ if (diepint.b.xfercompl) { ++ /* Disable the NP Tx FIFO Empty ++ * Interrrupt */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ else { ++ /* Disable the Tx FIFO Empty Interrupt for this EP */ ++ uint32_t fifoemptymsk = 0x1 << dwc_ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ fifoemptymsk, 0); ++ } ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,xfercompl); ++ ++ /* Complete the transfer */ ++ if (epnum == 0) { ++ handle_ep0(pcd); ++ } ++#ifdef DWC_EN_ISOC ++ else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ if(!ep->stopped) ++ complete_iso_ep(ep); ++ } ++#endif //DWC_EN_ISOC ++ else { ++ ++ complete_ep(ep); ++ } ++ } ++ /* Endpoint disable */ ++ if (diepint.b.epdisabled) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum); ++ handle_in_ep_disable_intr(pcd, epnum); ++ ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,epdisabled); ++ } ++ /* AHB Error */ ++ if (diepint.b.ahberr) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum); ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,ahberr); ++ } ++ /* TimeOUT Handshake (non-ISOC IN EPs) */ ++ if (diepint.b.timeout) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum); ++ handle_in_ep_timeout_intr(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,timeout); ++ } ++ /** IN Token received with TxF Empty */ ++ if (diepint.b.intktxfemp) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n", ++ epnum); ++ if (!ep->stopped && epnum != 0) { ++ ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.intktxfemp = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum], ++ diepmsk.d32, 0); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0); ++ } ++ start_next_request(ep); ++ } ++ else if(core_if->dma_desc_enable && epnum == 0 && ++ pcd->ep0state == EP0_OUT_STATUS_PHASE) { ++ // EP0 IN set STALL ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++ depctl.b.stall = 1; ++ dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32); ++ } ++ CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp); ++ } ++ /** IN Token Received with EP mismatch */ ++ if (diepint.b.intknepmis) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum); ++ CLEAR_IN_EP_INTR(core_if,epnum,intknepmis); ++ } ++ /** IN Endpoint NAK Effective */ ++ if (diepint.b.inepnakeff) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum); ++ /* Periodic EP */ ++ if (ep->disabling) { ++ depctl.d32 = 0; ++ depctl.b.snak = 1; ++ depctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); ++ } ++ CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff); ++ ++ } ++ ++ /** IN EP Tx FIFO Empty Intr */ ++ if (diepint.b.emptyintr) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum); ++ write_empty_tx_fifo(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,emptyintr); ++ ++ } ++ ++ /** IN EP BNA Intr */ ++ if (diepint.b.bna) { ++ CLEAR_IN_EP_INTR(core_if,epnum,bna); ++ if(core_if->dma_desc_enable) { ++#ifdef DWC_EN_ISOC ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This checking is performed to prevent first "false" BNA ++ * handling occuring right after reconnect ++ */ ++ if(dwc_ep->next_frame != 0xffffffff) ++ dwc_otg_pcd_handle_iso_bna(ep); ++ } ++ else ++#endif //DWC_EN_ISOC ++ { ++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); ++ ++ /* If Global Continue on BNA is disabled - disable EP */ ++ if(!dctl.b.gcontbna) { ++ depctl.d32 = 0; ++ depctl.b.snak = 1; ++ depctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); ++ } else { ++ start_next_request(ep); ++ } ++ } ++ } ++ } ++ /* NAK Interrutp */ ++ if (diepint.b.nak) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum); ++ handle_in_ep_nak_intr(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,nak); ++ } ++ } ++ epnum++; ++ ep_intr >>=1; ++ } ++ ++ return 1; ++#undef CLEAR_IN_EP_INTR ++} ++ ++/** ++ * This interrupt indicates that an OUT EP has a pending Interrupt. ++ * The sequence for handling the OUT EP interrupt is shown below: ++ * -# Read the Device All Endpoint Interrupt register ++ * -# Repeat the following for each OUT EP interrupt bit set (from ++ * LSB to MSB). ++ * -# Read the Device Endpoint Interrupt (DOEPINTn) register ++ * -# If "Transfer Complete" call the request complete function ++ * -# If "Endpoint Disabled" complete the EP disable procedure. ++ * -# If "AHB Error Interrupt" log error ++ * -# If "Setup Phase Done" process Setup Packet (See Standard USB ++ * Command Processing) ++ */ ++static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd) ++{ ++#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \ ++do { \ ++ doepint_data_t doepint = {.d32=0}; \ ++ doepint.b.__intr = 1; \ ++ dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \ ++ doepint.d32); \ ++} while (0) ++ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ uint32_t ep_intr; ++ doepint_data_t doepint = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ depctl_data_t doepctl = {.d32=0}; ++ uint32_t epnum = 0; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); ++ ++ /* Read in the device interrupt bits */ ++ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if); ++ ++ while(ep_intr) { ++ if (ep_intr&0x1) { ++ /* Get EP pointer */ ++ ep = get_out_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, ++ "EP%d-%s: type=%d, mps=%d\n", ++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), ++ dwc_ep->type, dwc_ep->maxpacket); ++#endif ++ doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep); ++ ++ /* Transfer complete */ ++ if (doepint.b.xfercompl) { ++ ++ if (epnum == 0) { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE) ++ handle_ep0(pcd); ++#ifdef DWC_EN_ISOC ++ } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ if (doepint.b.pktdrpsts == 0) { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ complete_iso_ep(ep); ++ } else { ++ ++ doepint_data_t doepint = {.d32=0}; ++ doepint.b.xfercompl = 1; ++ doepint.b.pktdrpsts = 1; ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint, ++ doepint.d32); ++ if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) { ++ complete_iso_ep(ep); ++ } ++ } ++#endif //DWC_EN_ISOC ++ } else { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ complete_ep(ep); ++ } ++ ++ } ++ ++ /* Endpoint disable */ ++ if (doepint.b.epdisabled) { ++ ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled); ++ } ++ /* AHB Error */ ++ if (doepint.b.ahberr) { ++ DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum); ++ DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma); ++ CLEAR_OUT_EP_INTR(core_if,epnum,ahberr); ++ } ++ /* Setup Phase Done (contorl EPs) */ ++ if (doepint.b.setup) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n", ++ epnum); ++#endif ++ CLEAR_OUT_EP_INTR(core_if,epnum,setup); ++ ++ handle_ep0(pcd); ++ } ++ ++ /** OUT EP BNA Intr */ ++ if (doepint.b.bna) { ++ CLEAR_OUT_EP_INTR(core_if,epnum,bna); ++ if(core_if->dma_desc_enable) { ++#ifdef DWC_EN_ISOC ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This checking is performed to prevent first "false" BNA ++ * handling occuring right after reconnect ++ */ ++ if(dwc_ep->next_frame != 0xffffffff) ++ dwc_otg_pcd_handle_iso_bna(ep); ++ } ++ else ++#endif //DWC_EN_ISOC ++ { ++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); ++ ++ /* If Global Continue on BNA is disabled - disable EP*/ ++ if(!dctl.b.gcontbna) { ++ doepctl.d32 = 0; ++ doepctl.b.snak = 1; ++ doepctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32); ++ } else { ++ start_next_request(ep); ++ } ++ } ++ } ++ } ++ if (doepint.b.stsphsercvd) { ++ CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd); ++ if(core_if->dma_desc_enable) { ++ do_setup_in_status_phase(pcd); ++ } ++ } ++ /* Babble Interrutp */ ++ if (doepint.b.babble) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum); ++ handle_out_ep_babble_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,babble); ++ } ++ /* NAK Interrutp */ ++ if (doepint.b.nak) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum); ++ handle_out_ep_nak_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,nak); ++ } ++ /* NYET Interrutp */ ++ if (doepint.b.nyet) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum); ++ handle_out_ep_nyet_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,nyet); ++ } ++ } ++ ++ epnum++; ++ ep_intr >>=1; ++ } ++ ++ return 1; ++ ++#undef CLEAR_OUT_EP_INTR ++} ++ ++ ++/** ++ * Incomplete ISO IN Transfer Interrupt. ++ * This interrupt indicates one of the following conditions occurred ++ * while transmitting an ISOC transaction. ++ * - Corrupted IN Token for ISOC EP. ++ * - Packet not complete in FIFO. ++ * The follow actions will be taken: ++ * -# Determine the EP ++ * -# Set incomplete flag in dwc_ep structure ++ * -# Disable EP; when "Endpoint Disabled" interrupt is received ++ * Flush FIFO ++ */ ++int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintsts_data_t gintsts; ++ ++ ++#ifdef DWC_EN_ISOC ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t deptsiz = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0}; ++ dsts_data_t dsts = { .d32 = 0}; ++ dwc_ep_t *dwc_ep; ++ int i; ++ ++ dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ for(i = 1; i <= dev_if->num_in_eps; ++i) { ++ dwc_ep = &pcd->in_ep[i].dwc_ep; ++ if(dwc_ep->active && ++ dwc_ep->type == USB_ENDPOINT_XFER_ISOC) ++ { ++ deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz); ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ ++ if(depctl.b.epdis && deptsiz.d32) { ++ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ ++ } ++ ++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); ++ dwc_ep->next_frame = dsts.b.soffn; ++ ++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); ++ } ++ } ++ } ++ ++#else ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "IN ISOC Incomplete"); ++ ++ intr_mask.b.incomplisoin = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++#endif //DWC_EN_ISOC ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.incomplisoin = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * Incomplete ISO OUT Transfer Interrupt. ++ * ++ * This interrupt indicates that the core has dropped an ISO OUT ++ * packet. The following conditions can be the cause: ++ * - FIFO Full, the entire packet would not fit in the FIFO. ++ * - CRC Error ++ * - Corrupted Token ++ * The follow actions will be taken: ++ * -# Determine the EP ++ * -# Set incomplete flag in dwc_ep structure ++ * -# Read any data from the FIFO ++ * -# Disable EP. when "Endpoint Disabled" interrupt is received ++ * re-enable EP. ++ */ ++int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd) ++{ ++ /* @todo implement ISR */ ++ gintsts_data_t gintsts; ++ ++#ifdef DWC_EN_ISOC ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t deptsiz = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0}; ++ dsts_data_t dsts = { .d32 = 0}; ++ dwc_ep_t *dwc_ep; ++ int i; ++ ++ dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ for(i = 1; i <= dev_if->num_out_eps; ++i) { ++ dwc_ep = &pcd->in_ep[i].dwc_ep; ++ if(pcd->out_ep[i].dwc_ep.active && ++ pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC) ++ { ++ deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz); ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ ++ if(depctl.b.epdis && deptsiz.d32) { ++ set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ ++ } ++ ++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); ++ dwc_ep->next_frame = dsts.b.soffn; ++ ++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); ++ } ++ } ++ } ++#else ++ /** @todo implement ISR */ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "OUT ISOC Incomplete"); ++ ++ intr_mask.b.incomplisoout = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++#endif // DWC_EN_ISOC ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.incomplisoout = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function handles the Global IN NAK Effective interrupt. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; ++ depctl_data_t diepctl = { .d32 = 0}; ++ depctl_data_t diepctl_rd = { .d32 = 0}; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ int i; ++ ++ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n"); ++ ++ /* Disable all active IN EPs */ ++ diepctl.b.epdis = 1; ++ diepctl.b.snak = 1; ++ ++ for (i=0; i <= dev_if->num_in_eps; i++) ++ { ++ diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (diepctl_rd.b.epena) { ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, ++ diepctl.d32); ++ } ++ } ++ /* Disable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.ginnakeff = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.ginnakeff = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * OUT NAK Effective. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "Global IN NAK Effective\n"); ++ /* Disable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.goutnakeff = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.goutnakeff = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * PCD interrupt handler. ++ * ++ * The PCD handles the device interrupts. Many conditions can cause a ++ * device interrupt. When an interrupt occurs, the device interrupt ++ * service routine determines the cause of the interrupt and ++ * dispatches handling to the appropriate function. These interrupt ++ * handling functions are described below. ++ * ++ * All interrupt registers are processed from LSB to MSB. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++#ifdef VERBOSE ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++#endif ++ gintsts_data_t gintr_status; ++ int32_t retval = 0; ++ ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n", ++ __func__, ++ dwc_read_reg32(&global_regs->gintsts), ++ dwc_read_reg32(&global_regs->gintmsk)); ++#endif ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ SPIN_LOCK(&pcd->lock); ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n", ++ __func__, ++ dwc_read_reg32(&global_regs->gintsts), ++ dwc_read_reg32(&global_regs->gintmsk)); ++#endif ++ ++ gintr_status.d32 = dwc_otg_read_core_intr(core_if); ++ ++/* ++ if (!gintr_status.d32) { ++ SPIN_UNLOCK(&pcd->lock); ++ return 0; ++ } ++*/ ++ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n", ++ __func__, gintr_status.d32); ++ ++ if (gintr_status.b.sofintr) { ++ retval |= dwc_otg_pcd_handle_sof_intr(pcd); ++ } ++ if (gintr_status.b.rxstsqlvl) { ++ retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd); ++ } ++ if (gintr_status.b.nptxfempty) { ++ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd); ++ } ++ if (gintr_status.b.ginnakeff) { ++ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd); ++ } ++ if (gintr_status.b.goutnakeff) { ++ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd); ++ } ++ if (gintr_status.b.i2cintr) { ++ retval |= dwc_otg_pcd_handle_i2c_intr(pcd); ++ } ++ if (gintr_status.b.erlysuspend) { ++ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd); ++ } ++ if (gintr_status.b.usbreset) { ++ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd); ++ } ++ if (gintr_status.b.enumdone) { ++ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd); ++ } ++ if (gintr_status.b.isooutdrop) { ++ retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd); ++ } ++ if (gintr_status.b.eopframe) { ++ retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd); ++ } ++ if (gintr_status.b.epmismatch) { ++ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if); ++ } ++ if (gintr_status.b.inepint) { ++ if(!core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); ++ } ++ } ++ if (gintr_status.b.outepintr) { ++ if(!core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); ++ } ++ } ++ if (gintr_status.b.incomplisoin) { ++ retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd); ++ } ++ if (gintr_status.b.incomplisoout) { ++ retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd); ++ } ++ ++ /* In MPI mode De vice Endpoints intterrupts are asserted ++ * without setting outepintr and inepint bits set, so these ++ * Interrupt handlers are called without checking these bit-fields ++ */ ++ if(core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); ++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); ++ } ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__, ++ dwc_read_reg32(&global_regs->gintsts)); ++#endif ++ SPIN_UNLOCK(&pcd->lock); ++ } ++ ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} ++ ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_regs.h +@@ -0,0 +1,2075 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:15 $ ++ * $Change: 1099526 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_REGS_H__ ++#define __DWC_OTG_REGS_H__ ++ ++/** ++ * @file ++ * ++ * This file contains the data structures for accessing the DWC_otg core registers. ++ * ++ * The application interfaces with the HS OTG core by reading from and ++ * writing to the Control and Status Register (CSR) space through the ++ * AHB Slave interface. These registers are 32 bits wide, and the ++ * addresses are 32-bit-block aligned. ++ * CSRs are classified as follows: ++ * - Core Global Registers ++ * - Device Mode Registers ++ * - Device Global Registers ++ * - Device Endpoint Specific Registers ++ * - Host Mode Registers ++ * - Host Global Registers ++ * - Host Port CSRs ++ * - Host Channel Specific Registers ++ * ++ * Only the Core Global registers can be accessed in both Device and ++ * Host modes. When the HS OTG core is operating in one mode, either ++ * Device or Host, the application must not access registers from the ++ * other mode. When the core switches from one mode to another, the ++ * registers in the new mode of operation must be reprogrammed as they ++ * would be after a power-on reset. ++ */ ++ ++/** Maximum number of Periodic FIFOs */ ++#define MAX_PERIO_FIFOS 15 ++/** Maximum number of Transmit FIFOs */ ++#define MAX_TX_FIFOS 15 ++ ++/** Maximum number of Endpoints/HostChannels */ ++#define MAX_EPS_CHANNELS 16 ++ ++/****************************************************************************/ ++/** DWC_otg Core registers . ++ * The dwc_otg_core_global_regs structure defines the size ++ * and relative field offsets for the Core Global registers. ++ */ ++typedef struct dwc_otg_core_global_regs ++{ ++ /** OTG Control and Status Register. <i>Offset: 000h</i> */ ++ volatile uint32_t gotgctl; ++ /** OTG Interrupt Register. <i>Offset: 004h</i> */ ++ volatile uint32_t gotgint; ++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */ ++ volatile uint32_t gahbcfg; ++ ++#define DWC_GLBINTRMASK 0x0001 ++#define DWC_DMAENABLE 0x0020 ++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 ++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 ++#define DWC_PTXEMPTYLVL_EMPTY 0x0100 ++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 ++ ++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */ ++ volatile uint32_t gusbcfg; ++ /**Core Reset Register. <i>Offset: 010h</i> */ ++ volatile uint32_t grstctl; ++ /**Core Interrupt Register. <i>Offset: 014h</i> */ ++ volatile uint32_t gintsts; ++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */ ++ volatile uint32_t gintmsk; ++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */ ++ volatile uint32_t grxstsr; ++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/ ++ volatile uint32_t grxstsp; ++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */ ++ volatile uint32_t grxfsiz; ++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */ ++ volatile uint32_t gnptxfsiz; ++ /**Non Periodic Transmit FIFO/Queue Status Register (Read ++ * Only). <i>Offset: 02Ch</i> */ ++ volatile uint32_t gnptxsts; ++ /**I2C Access Register. <i>Offset: 030h</i> */ ++ volatile uint32_t gi2cctl; ++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */ ++ volatile uint32_t gpvndctl; ++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */ ++ volatile uint32_t ggpio; ++ /**User ID Register. <i>Offset: 03Ch</i> */ ++ volatile uint32_t guid; ++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */ ++ volatile uint32_t gsnpsid; ++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */ ++ volatile uint32_t ghwcfg1; ++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */ ++ volatile uint32_t ghwcfg2; ++#define DWC_SLAVE_ONLY_ARCH 0 ++#define DWC_EXT_DMA_ARCH 1 ++#define DWC_INT_DMA_ARCH 2 ++ ++#define DWC_MODE_HNP_SRP_CAPABLE 0 ++#define DWC_MODE_SRP_ONLY_CAPABLE 1 ++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 ++#define DWC_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */ ++ volatile uint32_t ghwcfg3; ++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/ ++ volatile uint32_t ghwcfg4; ++ /** Reserved <i>Offset: 054h-0FFh</i> */ ++ volatile uint32_t reserved[43]; ++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */ ++ volatile uint32_t hptxfsiz; ++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled, ++ otherwise Device Transmit FIFO#n Register. ++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */ ++ volatile uint32_t dptxfsiz_dieptxf[15]; ++} dwc_otg_core_global_regs_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Control ++ * and Status Register (GOTGCTL). Set the bits using the bit ++ * fields then write the <i>d32</i> value to the register. ++ */ ++typedef union gotgctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned sesreqscs : 1; ++ unsigned sesreq : 1; ++ unsigned reserved2_7 : 6; ++ unsigned hstnegscs : 1; ++ unsigned hnpreq : 1; ++ unsigned hstsethnpen : 1; ++ unsigned devhnpen : 1; ++ unsigned reserved12_15 : 4; ++ unsigned conidsts : 1; ++ unsigned reserved17 : 1; ++ unsigned asesvld : 1; ++ unsigned bsesvld : 1; ++ unsigned currmod : 1; ++ unsigned reserved21_31 : 11; ++ } b; ++} gotgctl_data_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Interrupt Register ++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i> ++ * value to the register. ++ */ ++typedef union gotgint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Current Mode */ ++ unsigned reserved0_1 : 2; ++ ++ /** Session End Detected */ ++ unsigned sesenddet : 1; ++ ++ unsigned reserved3_7 : 5; ++ ++ /** Session Request Success Status Change */ ++ unsigned sesreqsucstschng : 1; ++ /** Host Negotiation Success Status Change */ ++ unsigned hstnegsucstschng : 1; ++ ++ unsigned reserver10_16 : 7; ++ ++ /** Host Negotiation Detected */ ++ unsigned hstnegdet : 1; ++ /** A-Device Timeout Change */ ++ unsigned adevtoutchng : 1; ++ /** Debounce Done */ ++ unsigned debdone : 1; ++ ++ unsigned reserved31_20 : 12; ++ ++ } b; ++} gotgint_data_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core AHB Configuration ++ * Register (GAHBCFG). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gahbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned glblintrmsk : 1; ++#define DWC_GAHBCFG_GLBINT_ENABLE 1 ++ ++ unsigned hburstlen : 4; ++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 ++ ++ unsigned dmaenable : 1; ++#define DWC_GAHBCFG_DMAENABLE 1 ++ unsigned reserved : 1; ++ unsigned nptxfemplvl_txfemplvl : 1; ++ unsigned ptxfemplvl : 1; ++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 ++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 ++ unsigned reserved9_31 : 23; ++ } b; ++} gahbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core USB Configuration ++ * Register (GUSBCFG). Set the bits using the bit fields then write ++ * the <i>d32</i> value to the register. ++ */ ++typedef union gusbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned toutcal : 3; ++ unsigned phyif : 1; ++ unsigned ulpi_utmi_sel : 1; ++ unsigned fsintf : 1; ++ unsigned physel : 1; ++ unsigned ddrsel : 1; ++ unsigned srpcap : 1; ++ unsigned hnpcap : 1; ++ unsigned usbtrdtim : 4; ++ unsigned nptxfrwnden : 1; ++ unsigned phylpwrclksel : 1; ++ unsigned otgutmifssel : 1; ++ unsigned ulpi_fsls : 1; ++ unsigned ulpi_auto_res : 1; ++ unsigned ulpi_clk_sus_m : 1; ++ unsigned ulpi_ext_vbus_drv : 1; ++ unsigned ulpi_int_vbus_indicator : 1; ++ unsigned term_sel_dl_pulse : 1; ++ unsigned reserved23_27 : 5; ++ unsigned tx_end_delay : 1; ++ unsigned reserved29_31 : 3; ++ } b; ++} gusbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core Reset Register ++ * (GRSTCTL). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union grstctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Core Soft Reset (CSftRst) (Device and Host) ++ * ++ * The application can flush the control logic in the ++ * entire core using this bit. This bit resets the ++ * pipelines in the AHB Clock domain as well as the ++ * PHY Clock domain. ++ * ++ * The state machines are reset to an IDLE state, the ++ * control bits in the CSRs are cleared, all the ++ * transmit FIFOs and the receive FIFO are flushed. ++ * ++ * The status mask bits that control the generation of ++ * the interrupt, are cleared, to clear the ++ * interrupt. The interrupt status bits are not ++ * cleared, so the application can get the status of ++ * any events that occurred in the core after it has ++ * set this bit. ++ * ++ * Any transactions on the AHB are terminated as soon ++ * as possible following the protocol. Any ++ * transactions on the USB are terminated immediately. ++ * ++ * The configuration settings in the CSRs are ++ * unchanged, so the software doesn't have to ++ * reprogram these registers (Device ++ * Configuration/Host Configuration/Core System ++ * Configuration/Core PHY Configuration). ++ * ++ * The application can write to this bit, any time it ++ * wants to reset the core. This is a self clearing ++ * bit and the core clears this bit after all the ++ * necessary logic is reset in the core, which may ++ * take several clocks, depending on the current state ++ * of the core. ++ */ ++ unsigned csftrst : 1; ++ /** Hclk Soft Reset ++ * ++ * The application uses this bit to reset the control logic in ++ * the AHB clock domain. Only AHB clock domain pipelines are ++ * reset. ++ */ ++ unsigned hsftrst : 1; ++ /** Host Frame Counter Reset (Host Only)<br> ++ * ++ * The application can reset the (micro)frame number ++ * counter inside the core, using this bit. When the ++ * (micro)frame counter is reset, the subsequent SOF ++ * sent out by the core, will have a (micro)frame ++ * number of 0. ++ */ ++ unsigned hstfrm : 1; ++ /** In Token Sequence Learning Queue Flush ++ * (INTknQFlsh) (Device Only) ++ */ ++ unsigned intknqflsh : 1; ++ /** RxFIFO Flush (RxFFlsh) (Device and Host) ++ * ++ * The application can flush the entire Receive FIFO ++ * using this bit. <p>The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is reading from the RxFIFO nor the MAC ++ * is writing the data in to the FIFO. <p>The ++ * application should wait until the bit is cleared ++ * before performing any other operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned rxfflsh : 1; ++ /** TxFIFO Flush (TxFFlsh) (Device and Host). ++ * ++ * This bit is used to selectively flush a single or ++ * all transmit FIFOs. The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is writing into the TxFIFO nor the MAC ++ * is reading the data out of the FIFO. <p>The ++ * application should wait until the core clears this ++ * bit, before performing any operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned txfflsh : 1; ++ ++ /** TxFIFO Number (TxFNum) (Device and Host). ++ * ++ * This is the FIFO number which needs to be flushed, ++ * using the TxFIFO Flush bit. This field should not ++ * be changed until the TxFIFO Flush bit is cleared by ++ * the core. ++ * - 0x0 : Non Periodic TxFIFO Flush ++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode ++ * or Periodic TxFIFO in host mode ++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode. ++ * - ... ++ * - 0xF : Periodic TxFIFO #15 Flush in device mode ++ * - 0x10: Flush all the Transmit NonPeriodic and ++ * Transmit Periodic FIFOs in the core ++ */ ++ unsigned txfnum : 5; ++ /** Reserved */ ++ unsigned reserved11_29 : 19; ++ /** DMA Request Signal. Indicated DMA request is in ++ * probress. Used for debug purpose. */ ++ unsigned dmareq : 1; ++ /** AHB Master Idle. Indicates the AHB Master State ++ * Machine is in IDLE condition. */ ++ unsigned ahbidle : 1; ++ } b; ++} grstctl_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core Interrupt Mask ++ * Register (GINTMSK). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned reserved0 : 1; ++ unsigned modemismatch : 1; ++ unsigned otgintr : 1; ++ unsigned sofintr : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned nptxfempty : 1; ++ unsigned ginnakeff : 1; ++ unsigned goutnakeff : 1; ++ unsigned reserved8 : 1; ++ unsigned i2cintr : 1; ++ unsigned erlysuspend : 1; ++ unsigned usbsuspend : 1; ++ unsigned usbreset : 1; ++ unsigned enumdone : 1; ++ unsigned isooutdrop : 1; ++ unsigned eopframe : 1; ++ unsigned reserved16 : 1; ++ unsigned epmismatch : 1; ++ unsigned inepintr : 1; ++ unsigned outepintr : 1; ++ unsigned incomplisoin : 1; ++ unsigned incomplisoout : 1; ++ unsigned reserved22_23 : 2; ++ unsigned portintr : 1; ++ unsigned hcintr : 1; ++ unsigned ptxfempty : 1; ++ unsigned reserved27 : 1; ++ unsigned conidstschng : 1; ++ unsigned disconnect : 1; ++ unsigned sessreqintr : 1; ++ unsigned wkupintr : 1; ++ } b; ++} gintmsk_data_t; ++/** ++ * This union represents the bit fields of the Core Interrupt Register ++ * (GINTSTS). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union gintsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++#define DWC_SOF_INTR_MASK 0x0008 ++ /** register bits */ ++ struct ++ { ++#define DWC_HOST_MODE 1 ++ unsigned curmode : 1; ++ unsigned modemismatch : 1; ++ unsigned otgintr : 1; ++ unsigned sofintr : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned nptxfempty : 1; ++ unsigned ginnakeff : 1; ++ unsigned goutnakeff : 1; ++ unsigned reserved8 : 1; ++ unsigned i2cintr : 1; ++ unsigned erlysuspend : 1; ++ unsigned usbsuspend : 1; ++ unsigned usbreset : 1; ++ unsigned enumdone : 1; ++ unsigned isooutdrop : 1; ++ unsigned eopframe : 1; ++ unsigned intokenrx : 1; ++ unsigned epmismatch : 1; ++ unsigned inepint: 1; ++ unsigned outepintr : 1; ++ unsigned incomplisoin : 1; ++ unsigned incomplisoout : 1; ++ unsigned reserved22_23 : 2; ++ unsigned portintr : 1; ++ unsigned hcintr : 1; ++ unsigned ptxfempty : 1; ++ unsigned reserved27 : 1; ++ unsigned conidstschng : 1; ++ unsigned disconnect : 1; ++ unsigned sessreqintr : 1; ++ unsigned wkupintr : 1; ++ } b; ++} gintsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union device_grxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned epnum : 4; ++ unsigned bcnt : 11; ++ unsigned dpid : 2; ++ ++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet ++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete ++ ++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK ++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete ++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet ++ unsigned pktsts : 4; ++ unsigned fn : 4; ++ unsigned reserved : 7; ++ } b; ++} device_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union host_grxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned chnum : 4; ++ unsigned bcnt : 11; ++ unsigned dpid : 2; ++ ++ unsigned pktsts : 4; ++#define DWC_GRXSTS_PKTSTS_IN 0x2 ++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 ++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 ++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 ++ ++ unsigned reserved : 11; ++ } b; ++} host_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, ++ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then ++ * read out the bits using the <i>b</i>it elements. ++ */ ++typedef union fifosize_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned startaddr : 16; ++ unsigned depth : 16; ++ } b; ++} fifosize_data_t; ++ ++/** ++ * This union represents the bit fields in the Non-Periodic Transmit ++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union gnptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned nptxfspcavail : 16; ++ unsigned nptxqspcavail : 8; ++ /** Top of the Non-Periodic Transmit Request Queue ++ * - bit 24 - Terminate (Last entry for the selected ++ * channel/EP) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - IN/OUT ++ * - 2'b01 - Zero Length OUT ++ * - 2'b10 - PING/Complete Split ++ * - 2'b11 - Channel Halt ++ * - bits 30:27 - Channel/EP Number ++ */ ++ unsigned nptxqtop_terminate : 1; ++ unsigned nptxqtop_token : 2; ++ unsigned nptxqtop_chnep : 4; ++ unsigned reserved : 1; ++ } b; ++} gnptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Transmit ++ * FIFO Status Register (DTXFSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union dtxfsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned txfspcavail : 16; ++ unsigned reserved : 16; ++ } b; ++} dtxfsts_data_t; ++ ++/** ++ * This union represents the bit fields in the I2C Control Register ++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union gi2cctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned rwdata : 8; ++ unsigned regaddr : 8; ++ unsigned addr : 7; ++ unsigned i2cen : 1; ++ unsigned ack : 1; ++ unsigned i2csuspctl : 1; ++ unsigned i2cdevaddr : 2; ++ unsigned reserved : 2; ++ unsigned rw : 1; ++ unsigned bsydne : 1; ++ } b; ++} gi2cctl_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config1 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ep_dir0 : 2; ++ unsigned ep_dir1 : 2; ++ unsigned ep_dir2 : 2; ++ unsigned ep_dir3 : 2; ++ unsigned ep_dir4 : 2; ++ unsigned ep_dir5 : 2; ++ unsigned ep_dir6 : 2; ++ unsigned ep_dir7 : 2; ++ unsigned ep_dir8 : 2; ++ unsigned ep_dir9 : 2; ++ unsigned ep_dir10 : 2; ++ unsigned ep_dir11 : 2; ++ unsigned ep_dir12 : 2; ++ unsigned ep_dir13 : 2; ++ unsigned ep_dir14 : 2; ++ unsigned ep_dir15 : 2; ++ } b; ++} hwcfg1_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config2 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg2_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /* GHWCFG2 */ ++ unsigned op_mode : 3; ++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 ++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 ++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ unsigned architecture : 2; ++ unsigned point2point : 1; ++ unsigned hs_phy_type : 2; ++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 ++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 ++ ++ unsigned fs_phy_type : 2; ++ unsigned num_dev_ep : 4; ++ unsigned num_host_chan : 4; ++ unsigned perio_ep_supported : 1; ++ unsigned dynamic_fifo : 1; ++ unsigned multi_proc_int : 1; ++ unsigned reserved21 : 1; ++ unsigned nonperio_tx_q_depth : 2; ++ unsigned host_perio_tx_q_depth : 2; ++ unsigned dev_token_q_depth : 5; ++ unsigned reserved31 : 1; ++ } b; ++} hwcfg2_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config3 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg3_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /* GHWCFG3 */ ++ unsigned xfer_size_cntr_width : 4; ++ unsigned packet_size_cntr_width : 3; ++ unsigned otg_func : 1; ++ unsigned i2c : 1; ++ unsigned vendor_ctrl_if : 1; ++ unsigned optional_features : 1; ++ unsigned synch_reset_type : 1; ++ unsigned ahb_phy_clock_synch : 1; ++ unsigned reserved15_13 : 3; ++ unsigned dfifo_depth : 16; ++ } b; ++} hwcfg3_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config4 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg4_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned num_dev_perio_in_ep : 4; ++ unsigned power_optimiz : 1; ++ unsigned min_ahb_freq : 9; ++ unsigned utmi_phy_data_width : 2; ++ unsigned num_dev_mode_ctrl_ep : 4; ++ unsigned iddig_filt_en : 1; ++ unsigned vbus_valid_filt_en : 1; ++ unsigned a_valid_filt_en : 1; ++ unsigned b_valid_filt_en : 1; ++ unsigned session_end_filt_en : 1; ++ unsigned ded_fifo_en : 1; ++ unsigned num_in_eps : 4; ++ unsigned desc_dma : 1; ++ unsigned desc_dma_dyn : 1; ++ } b; ++} hwcfg4_data_t; ++ ++//////////////////////////////////////////// ++// Device Registers ++/** ++ * Device Global Registers. <i>Offsets 800h-BFFh</i> ++ * ++ * The following structures define the size and relative field offsets ++ * for the Device Mode Registers. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_global_regs ++{ ++ /** Device Configuration Register. <i>Offset 800h</i> */ ++ volatile uint32_t dcfg; ++ /** Device Control Register. <i>Offset: 804h</i> */ ++ volatile uint32_t dctl; ++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */ ++ volatile uint32_t dsts; ++ /** Reserved. <i>Offset: 80Ch</i> */ ++ uint32_t unused; ++ /** Device IN Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 810h</i> */ ++ volatile uint32_t diepmsk; ++ /** Device OUT Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 814h</i> */ ++ volatile uint32_t doepmsk; ++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */ ++ volatile uint32_t daint; ++ /** Device All Endpoints Interrupt Mask Register. <i>Offset: ++ * 81Ch</i> */ ++ volatile uint32_t daintmsk; ++ /** Device IN Token Queue Read Register-1 (Read Only). ++ * <i>Offset: 820h</i> */ ++ volatile uint32_t dtknqr1; ++ /** Device IN Token Queue Read Register-2 (Read Only). ++ * <i>Offset: 824h</i> */ ++ volatile uint32_t dtknqr2; ++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */ ++ volatile uint32_t dvbusdis; ++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */ ++ volatile uint32_t dvbuspulse; ++ /** Device IN Token Queue Read Register-3 (Read Only). / ++ * Device Thresholding control register (Read/Write) ++ * <i>Offset: 830h</i> */ ++ volatile uint32_t dtknqr3_dthrctl; ++ /** Device IN Token Queue Read Register-4 (Read Only). / ++ * Device IN EPs empty Inr. Mask Register (Read/Write) ++ * <i>Offset: 834h</i> */ ++ volatile uint32_t dtknqr4_fifoemptymsk; ++ /** Device Each Endpoint Interrupt Register (Read Only). / ++ * <i>Offset: 838h</i> */ ++ volatile uint32_t deachint; ++ /** Device Each Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 83Ch</i> */ ++ volatile uint32_t deachintmsk; ++ /** Device Each In Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 840h</i> */ ++ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS]; ++ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 880h</i> */ ++ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS]; ++} dwc_otg_device_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device Configuration ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. Write the ++ * <i>d32</i> member to the dcfg register. ++ */ ++typedef union dcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Device Speed */ ++ unsigned devspd : 2; ++ /** Non Zero Length Status OUT Handshake */ ++ unsigned nzstsouthshk : 1; ++#define DWC_DCFG_SEND_STALL 1 ++ ++ unsigned reserved3 : 1; ++ /** Device Addresses */ ++ unsigned devaddr : 7; ++ /** Periodic Frame Interval */ ++ unsigned perfrint : 2; ++#define DWC_DCFG_FRAME_INTERVAL_80 0 ++#define DWC_DCFG_FRAME_INTERVAL_85 1 ++#define DWC_DCFG_FRAME_INTERVAL_90 2 ++#define DWC_DCFG_FRAME_INTERVAL_95 3 ++ ++ unsigned reserved13_17 : 5; ++ /** In Endpoint Mis-match count */ ++ unsigned epmscnt : 5; ++ /** Enable Descriptor DMA in Device mode */ ++ unsigned descdma : 1; ++ } b; ++} dcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Remote Wakeup */ ++ unsigned rmtwkupsig : 1; ++ /** Soft Disconnect */ ++ unsigned sftdiscon : 1; ++ /** Global Non-Periodic IN NAK Status */ ++ unsigned gnpinnaksts : 1; ++ /** Global OUT NAK Status */ ++ unsigned goutnaksts : 1; ++ /** Test Control */ ++ unsigned tstctl : 3; ++ /** Set Global Non-Periodic IN NAK */ ++ unsigned sgnpinnak : 1; ++ /** Clear Global Non-Periodic IN NAK */ ++ unsigned cgnpinnak : 1; ++ /** Set Global OUT NAK */ ++ unsigned sgoutnak : 1; ++ /** Clear Global OUT NAK */ ++ unsigned cgoutnak : 1; ++ ++ /** Power-On Programming Done */ ++ unsigned pwronprgdone : 1; ++ /** Global Continue on BNA */ ++ unsigned gcontbna : 1; ++ /** Global Multi Count */ ++ unsigned gmc : 2; ++ /** Ignore Frame Number for ISOC EPs */ ++ unsigned ifrmnum : 1; ++ /** NAK on Babble */ ++ unsigned nakonbble : 1; ++ ++ unsigned reserved16_31 : 16; ++ } b; ++} dctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Status ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Suspend Status */ ++ unsigned suspsts : 1; ++ /** Enumerated Speed */ ++ unsigned enumspd : 2; ++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 ++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 ++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 ++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 ++ /** Erratic Error */ ++ unsigned errticerr : 1; ++ unsigned reserved4_7: 4; ++ /** Frame or Microframe Number of the received SOF */ ++ unsigned soffn : 14; ++ unsigned reserved22_31 : 10; ++ } b; ++} dsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device IN EP Interrupt ++ * Register and the Device IN EP Common Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union diepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer complete mask */ ++ unsigned xfercompl : 1; ++ /** Endpoint disable mask */ ++ unsigned epdisabled : 1; ++ /** AHB Error mask */ ++ unsigned ahberr : 1; ++ /** TimeOUT Handshake mask (non-ISOC EPs) */ ++ unsigned timeout : 1; ++ /** IN Token received with TxF Empty mask */ ++ unsigned intktxfemp : 1; ++ /** IN Token Received with EP mismatch mask */ ++ unsigned intknepmis : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned inepnakeff : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned emptyintr : 1; ++ ++ unsigned txfifoundrn : 1; ++ ++ /** BNA Interrupt mask */ ++ unsigned bna : 1; ++ ++ unsigned reserved10_12 : 3; ++ /** BNA Interrupt mask */ ++ unsigned nak : 1; ++ ++ unsigned reserved14_31 : 18; ++ } b; ++} diepint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN EP ++ * Common/Dedicated Interrupt Mask Register. ++ */ ++typedef union diepint_data diepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP Interrupt ++ * Registerand Device OUT EP Common Interrupt Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union doepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer complete */ ++ unsigned xfercompl : 1; ++ /** Endpoint disable */ ++ unsigned epdisabled : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Setup Phase Done (contorl EPs) */ ++ unsigned setup : 1; ++ /** OUT Token Received when Endpoint Disabled */ ++ unsigned outtknepdis : 1; ++ ++ unsigned stsphsercvd : 1; ++ /** Back-to-Back SETUP Packets Received */ ++ unsigned back2backsetup : 1; ++ ++ unsigned reserved7 : 1; ++ /** OUT packet Error */ ++ unsigned outpkterr : 1; ++ /** BNA Interrupt */ ++ unsigned bna : 1; ++ ++ unsigned reserved10 : 1; ++ /** Packet Drop Status */ ++ unsigned pktdrpsts : 1; ++ /** Babble Interrupt */ ++ unsigned babble : 1; ++ /** NAK Interrupt */ ++ unsigned nak : 1; ++ /** NYET Interrupt */ ++ unsigned nyet : 1; ++ ++ unsigned reserved15_31 : 17; ++ } b; ++} doepint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP ++ * Common/Dedicated Interrupt Mask Register. ++ */ ++typedef union doepint_data doepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device All EP Interrupt ++ * and Mask Registers. ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union daint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** IN Endpoint bits */ ++ unsigned in : 16; ++ /** OUT Endpoint bits */ ++ unsigned out : 16; ++ } ep; ++ struct ++ { ++ /** IN Endpoint bits */ ++ unsigned inep0 : 1; ++ unsigned inep1 : 1; ++ unsigned inep2 : 1; ++ unsigned inep3 : 1; ++ unsigned inep4 : 1; ++ unsigned inep5 : 1; ++ unsigned inep6 : 1; ++ unsigned inep7 : 1; ++ unsigned inep8 : 1; ++ unsigned inep9 : 1; ++ unsigned inep10 : 1; ++ unsigned inep11 : 1; ++ unsigned inep12 : 1; ++ unsigned inep13 : 1; ++ unsigned inep14 : 1; ++ unsigned inep15 : 1; ++ /** OUT Endpoint bits */ ++ unsigned outep0 : 1; ++ unsigned outep1 : 1; ++ unsigned outep2 : 1; ++ unsigned outep3 : 1; ++ unsigned outep4 : 1; ++ unsigned outep5 : 1; ++ unsigned outep6 : 1; ++ unsigned outep7 : 1; ++ unsigned outep8 : 1; ++ unsigned outep9 : 1; ++ unsigned outep10 : 1; ++ unsigned outep11 : 1; ++ unsigned outep12 : 1; ++ unsigned outep13 : 1; ++ unsigned outep14 : 1; ++ unsigned outep15 : 1; ++ } b; ++} daint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN Token Queue ++ * Read Registers. ++ * - Read the register into the <i>d32</i> member. ++ * - READ-ONLY Register ++ */ ++typedef union dtknq1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** In Token Queue Write Pointer */ ++ unsigned intknwptr : 5; ++ /** Reserved */ ++ unsigned reserved05_06 : 2; ++ /** write pointer has wrapped. */ ++ unsigned wrap_bit : 1; ++ /** EP Numbers of IN Tokens 0 ... 4 */ ++ unsigned epnums0_5 : 24; ++ }b; ++} dtknq1_data_t; ++ ++/** ++ * This union represents Threshold control Register ++ * - Read and write the register into the <i>d32</i> member. ++ * - READ-WRITABLE Register ++ */ ++typedef union dthrctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** non ISO Tx Thr. Enable */ ++ unsigned non_iso_thr_en : 1; ++ /** ISO Tx Thr. Enable */ ++ unsigned iso_thr_en : 1; ++ /** Tx Thr. Length */ ++ unsigned tx_thr_len : 9; ++ /** Reserved */ ++ unsigned reserved11_15 : 5; ++ /** Rx Thr. Enable */ ++ unsigned rx_thr_en : 1; ++ /** Rx Thr. Length */ ++ unsigned rx_thr_len : 9; ++ /** Reserved */ ++ unsigned reserved26_31 : 6; ++ }b; ++} dthrctl_data_t; ++ ++ ++/** ++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets ++ * 900h-AFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_in_ep_regs ++{ ++ /** Device IN Endpoint Control Register. <i>Offset:900h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t diepctl; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */ ++ uint32_t reserved04; ++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t diepint; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device IN Endpoint Transfer Size ++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t dieptsiz; ++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h + ++ * (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t diepdma; ++ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h + ++ * (ep_num * 20h) + 18h</i> */ ++ volatile uint32_t dtxfsts; ++ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h + ++ * (ep_num * 20h) + 1Ch</i> */ ++ volatile uint32_t diepdmab; ++} dwc_otg_dev_in_ep_regs_t; ++ ++/** ++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets: ++ * B00h-CFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_out_ep_regs ++{ ++ /** Device OUT Endpoint Control Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t doepctl; ++ /** Device OUT Endpoint Frame number Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 04h</i> */ ++ volatile uint32_t doepfn; ++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t doepint; ++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device OUT Endpoint Transfer Size Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t doeptsiz; ++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h ++ * + (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t doepdma; ++ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */ ++ uint32_t unused; ++ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h ++ * + (ep_num * 20h) + 1Ch</i> */ ++ uint32_t doepdmab; ++} dwc_otg_dev_out_ep_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union depctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Maximum Packet Size ++ * IN/OUT EPn ++ * IN/OUT EP0 - 2 bits ++ * 2'b00: 64 Bytes ++ * 2'b01: 32 ++ * 2'b10: 16 ++ * 2'b11: 8 */ ++ unsigned mps : 11; ++#define DWC_DEP0CTL_MPS_64 0 ++#define DWC_DEP0CTL_MPS_32 1 ++#define DWC_DEP0CTL_MPS_16 2 ++#define DWC_DEP0CTL_MPS_8 3 ++ ++ /** Next Endpoint ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned nextep : 4; ++ ++ /** USB Active Endpoint */ ++ unsigned usbactep : 1; ++ ++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) ++ * This field contains the PID of the packet going to ++ * be received or transmitted on this endpoint. The ++ * application should program the PID of the first ++ * packet going to be received or transmitted on this ++ * endpoint , after the endpoint is ++ * activated. Application use the SetD1PID and ++ * SetD0PID fields of this register to program either ++ * D0 or D1 PID. ++ * ++ * The encoding for this field is ++ * - 0: D0 ++ * - 1: D1 ++ */ ++ unsigned dpid : 1; ++ ++ /** NAK Status */ ++ unsigned naksts : 1; ++ ++ /** Endpoint Type ++ * 2'b00: Control ++ * 2'b01: Isochronous ++ * 2'b10: Bulk ++ * 2'b11: Interrupt */ ++ unsigned eptype : 2; ++ ++ /** Snoop Mode ++ * OUT EPn/OUT EP0 ++ * IN EPn/IN EP0 - reserved */ ++ unsigned snp : 1; ++ ++ /** Stall Handshake */ ++ unsigned stall : 1; ++ ++ /** Tx Fifo Number ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned txfnum : 4; ++ ++ /** Clear NAK */ ++ unsigned cnak : 1; ++ /** Set NAK */ ++ unsigned snak : 1; ++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA0. Set Even ++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to even (micro) ++ * frame. ++ */ ++ unsigned setd0pid : 1; ++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA1 Set Odd ++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to odd (micro) frame. ++ */ ++ unsigned setd1pid : 1; ++ ++ /** Endpoint Disable */ ++ unsigned epdis : 1; ++ /** Endpoint Enable */ ++ unsigned epena : 1; ++ } b; ++} depctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Transfer size */ ++ unsigned xfersize : 19; ++ /** Packet Count */ ++ unsigned pktcnt : 10; ++ /** Multi Count - Periodic IN endpoints */ ++ unsigned mc : 2; ++ unsigned reserved : 1; ++ } b; ++} deptsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP 0 Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Transfer size */ ++ unsigned xfersize : 7; ++ /** Reserved */ ++ unsigned reserved7_18 : 12; ++ /** Packet Count */ ++ unsigned pktcnt : 1; ++ /** Reserved */ ++ unsigned reserved20_28 : 9; ++ /**Setup Packet Count (DOEPTSIZ0 Only) */ ++ unsigned supcnt : 2; ++ unsigned reserved31; ++ } b; ++} deptsiz0_data_t; ++ ++ ++///////////////////////////////////////////////// ++// DMA Descriptor Specific Structures ++// ++ ++/** Buffer status definitions */ ++ ++#define BS_HOST_READY 0x0 ++#define BS_DMA_BUSY 0x1 ++#define BS_DMA_DONE 0x2 ++#define BS_HOST_BUSY 0x3 ++ ++/** Receive/Transmit status definitions */ ++ ++#define RTS_SUCCESS 0x0 ++#define RTS_BUFFLUSH 0x1 ++#define RTS_RESERVED 0x2 ++#define RTS_BUFERR 0x3 ++ ++ ++/** ++ * This union represents the bit fields in the DMA Descriptor ++ * status quadlet. Read the quadlet into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and ++ * <i>b_iso_in</i> elements. ++ */ ++typedef union desc_sts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** quadlet bits */ ++ struct { ++ /** Received number of bytes */ ++ unsigned bytes : 16; ++ ++ unsigned reserved16_22 : 7; ++ /** Multiple Transfer - only for OUT EPs */ ++ unsigned mtrf : 1; ++ /** Setup Packet received - only for OUT EPs */ ++ unsigned sr : 1; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Receive Status */ ++ unsigned sts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b; ++ ++#ifdef DWC_EN_ISOC ++ /** iso out quadlet bits */ ++ struct { ++ /** Received number of bytes */ ++ unsigned rxbytes : 11; ++ ++ unsigned reserved11 : 1; ++ /** Frame Number */ ++ unsigned framenum : 11; ++ /** Received ISO Data PID */ ++ unsigned pid : 2; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Receive Status */ ++ unsigned rxsts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b_iso_out; ++ ++ /** iso in quadlet bits */ ++ struct { ++ /** Transmited number of bytes */ ++ unsigned txbytes : 12; ++ /** Frame Number */ ++ unsigned framenum : 11; ++ /** Transmited ISO Data PID */ ++ unsigned pid : 2; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Transmit Status */ ++ unsigned txsts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b_iso_in; ++#endif //DWC_EN_ISOC ++} desc_sts_data_t; ++ ++/** ++ * DMA Descriptor structure ++ * ++ * DMA Descriptor structure contains two quadlets: ++ * Status quadlet and Data buffer pointer. ++ */ ++typedef struct dwc_otg_dma_desc ++{ ++ /** DMA Descriptor status quadlet */ ++ desc_sts_data_t status; ++ /** DMA Descriptor data buffer pointer */ ++ dma_addr_t buf; ++} dwc_otg_dma_desc_t; ++ ++/** ++ * The dwc_otg_dev_if structure contains information needed to manage ++ * the DWC_otg controller acting in device mode. It represents the ++ * programming view of the device-specific aspects of the controller. ++ */ ++typedef struct dwc_otg_dev_if ++{ ++ /** Pointer to device Global registers. ++ * Device Global Registers starting at offset 800h ++ */ ++ dwc_otg_device_global_regs_t *dev_global_regs; ++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 ++ ++ /** ++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh ++ */ ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_IN_EP_REG_OFFSET 0x900 ++#define DWC_EP_REG_OFFSET 0x20 ++ ++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 ++ ++ /* Device configuration information*/ ++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ ++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ ++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ ++ ++ /** Size of periodic FIFOs (Bytes) */ ++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++ ++ /** Size of Tx FIFOs (Bytes) */ ++ uint16_t tx_fifo_size[MAX_TX_FIFOS]; ++ ++ /** Thresholding enable flags and length varaiables **/ ++ uint16_t rx_thr_en; ++ uint16_t iso_tx_thr_en; ++ uint16_t non_iso_tx_thr_en; ++ ++ uint16_t rx_thr_length; ++ uint16_t tx_thr_length; ++ ++ /** ++ * Pointers to the DMA Descriptors for EP0 Control ++ * transfers (virtual and physical) ++ */ ++ ++ /** 2 descriptors for SETUP packets */ ++ uint32_t dma_setup_desc_addr[2]; ++ dwc_otg_dma_desc_t* setup_desc_addr[2]; ++ ++ /** Pointer to Descriptor with latest SETUP packet */ ++ dwc_otg_dma_desc_t* psetup; ++ ++ /** Index of current SETUP handler descriptor */ ++ uint32_t setup_desc_index; ++ ++ /** Descriptor for Data In or Status In phases */ ++ uint32_t dma_in_desc_addr; ++ dwc_otg_dma_desc_t* in_desc_addr;; ++ ++ /** Descriptor for Data Out or Status Out phases */ ++ uint32_t dma_out_desc_addr; ++ dwc_otg_dma_desc_t* out_desc_addr; ++ ++} dwc_otg_dev_if_t; ++ ++ ++ ++ ++///////////////////////////////////////////////// ++// Host Mode Register Structures ++// ++/** ++ * The Host Global Registers structure defines the size and relative ++ * field offsets for the Host Mode Global Registers. Host Global ++ * Registers offsets 400h-7FFh. ++*/ ++typedef struct dwc_otg_host_global_regs ++{ ++ /** Host Configuration Register. <i>Offset: 400h</i> */ ++ volatile uint32_t hcfg; ++ /** Host Frame Interval Register. <i>Offset: 404h</i> */ ++ volatile uint32_t hfir; ++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */ ++ volatile uint32_t hfnum; ++ /** Reserved. <i>Offset: 40Ch</i> */ ++ uint32_t reserved40C; ++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */ ++ volatile uint32_t hptxsts; ++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */ ++ volatile uint32_t haint; ++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */ ++ volatile uint32_t haintmsk; ++} dwc_otg_host_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Configuration Register. ++ * Read the register into the <i>d32</i> member then set/clear the bits using ++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register. ++ */ ++typedef union hcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** FS/LS Phy Clock Select */ ++ unsigned fslspclksel : 2; ++#define DWC_HCFG_30_60_MHZ 0 ++#define DWC_HCFG_48_MHZ 1 ++#define DWC_HCFG_6_MHZ 2 ++ ++ /** FS/LS Only Support */ ++ unsigned fslssupp : 1; ++ } b; ++} hcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfir_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned frint : 16; ++ unsigned reserved : 16; ++ } b; ++} hfir_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfnum_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned frnum : 16; ++#define DWC_HFNUM_MAX_FRNUM 0x3FFF ++ unsigned frrem : 16; ++ } b; ++} hfnum_data_t; ++ ++typedef union hptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned ptxfspcavail : 16; ++ unsigned ptxqspcavail : 8; ++ /** Top of the Periodic Transmit Request Queue ++ * - bit 24 - Terminate (last entry for the selected channel) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - Zero length ++ * - 2'b01 - Ping ++ * - 2'b10 - Disable ++ * - bits 30:27 - Channel Number ++ * - bit 31 - Odd/even microframe ++ */ ++ unsigned ptxqtop_terminate : 1; ++ unsigned ptxqtop_token : 2; ++ unsigned ptxqtop_chnum : 4; ++ unsigned ptxqtop_odd : 1; ++ } b; ++} hptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Port Control and Status ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hprt0 register. ++ */ ++typedef union hprt0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned prtconnsts : 1; ++ unsigned prtconndet : 1; ++ unsigned prtena : 1; ++ unsigned prtenchng : 1; ++ unsigned prtovrcurract : 1; ++ unsigned prtovrcurrchng : 1; ++ unsigned prtres : 1; ++ unsigned prtsusp : 1; ++ unsigned prtrst : 1; ++ unsigned reserved9 : 1; ++ unsigned prtlnsts : 2; ++ unsigned prtpwr : 1; ++ unsigned prttstctl : 4; ++ unsigned prtspd : 2; ++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 ++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 ++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 ++ unsigned reserved19_31 : 13; ++ } b; ++} hprt0_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ch0 : 1; ++ unsigned ch1 : 1; ++ unsigned ch2 : 1; ++ unsigned ch3 : 1; ++ unsigned ch4 : 1; ++ unsigned ch5 : 1; ++ unsigned ch6 : 1; ++ unsigned ch7 : 1; ++ unsigned ch8 : 1; ++ unsigned ch9 : 1; ++ unsigned ch10 : 1; ++ unsigned ch11 : 1; ++ unsigned ch12 : 1; ++ unsigned ch13 : 1; ++ unsigned ch14 : 1; ++ unsigned ch15 : 1; ++ unsigned reserved : 16; ++ } b; ++ ++ struct ++ { ++ unsigned chint : 16; ++ unsigned reserved : 16; ++ } b2; ++} haint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ch0 : 1; ++ unsigned ch1 : 1; ++ unsigned ch2 : 1; ++ unsigned ch3 : 1; ++ unsigned ch4 : 1; ++ unsigned ch5 : 1; ++ unsigned ch6 : 1; ++ unsigned ch7 : 1; ++ unsigned ch8 : 1; ++ unsigned ch9 : 1; ++ unsigned ch10 : 1; ++ unsigned ch11 : 1; ++ unsigned ch12 : 1; ++ unsigned ch13 : 1; ++ unsigned ch14 : 1; ++ unsigned ch15 : 1; ++ unsigned reserved : 16; ++ } b; ++ ++ struct ++ { ++ unsigned chint : 16; ++ unsigned reserved : 16; ++ } b2; ++} haintmsk_data_t; ++ ++/** ++ * Host Channel Specific Registers. <i>500h-5FCh</i> ++ */ ++typedef struct dwc_otg_hc_regs ++{ ++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */ ++ volatile uint32_t hcchar; ++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */ ++ volatile uint32_t hcsplt; ++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */ ++ volatile uint32_t hcint; ++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */ ++ volatile uint32_t hcintmsk; ++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */ ++ volatile uint32_t hctsiz; ++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */ ++ volatile uint32_t hcdma; ++ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */ ++ uint32_t reserved[2]; ++} dwc_otg_hc_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Characteristics ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hcchar_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Maximum packet size in bytes */ ++ unsigned mps : 11; ++ ++ /** Endpoint number */ ++ unsigned epnum : 4; ++ ++ /** 0: OUT, 1: IN */ ++ unsigned epdir : 1; ++ ++ unsigned reserved : 1; ++ ++ /** 0: Full/high speed device, 1: Low speed device */ ++ unsigned lspddev : 1; ++ ++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ ++ unsigned eptype : 2; ++ ++ /** Packets per frame for periodic transfers. 0 is reserved. */ ++ unsigned multicnt : 2; ++ ++ /** Device address */ ++ unsigned devaddr : 7; ++ ++ /** ++ * Frame to transmit periodic transaction. ++ * 0: even, 1: odd ++ */ ++ unsigned oddfrm : 1; ++ ++ /** Channel disable */ ++ unsigned chdis : 1; ++ ++ /** Channel enable */ ++ unsigned chen : 1; ++ } b; ++} hcchar_data_t; ++ ++typedef union hcsplt_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Port Address */ ++ unsigned prtaddr : 7; ++ ++ /** Hub Address */ ++ unsigned hubaddr : 7; ++ ++ /** Transaction Position */ ++ unsigned xactpos : 2; ++#define DWC_HCSPLIT_XACTPOS_MID 0 ++#define DWC_HCSPLIT_XACTPOS_END 1 ++#define DWC_HCSPLIT_XACTPOS_BEGIN 2 ++#define DWC_HCSPLIT_XACTPOS_ALL 3 ++ ++ /** Do Complete Split */ ++ unsigned compsplt : 1; ++ ++ /** Reserved */ ++ unsigned reserved : 14; ++ ++ /** Split Enble */ ++ unsigned spltena : 1; ++ } b; ++} hcsplt_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union hcint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer Complete */ ++ unsigned xfercomp : 1; ++ /** Channel Halted */ ++ unsigned chhltd : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** STALL Response Received */ ++ unsigned stall : 1; ++ /** NAK Response Received */ ++ unsigned nak : 1; ++ /** ACK Response Received */ ++ unsigned ack : 1; ++ /** NYET Response Received */ ++ unsigned nyet : 1; ++ /** Transaction Err */ ++ unsigned xacterr : 1; ++ /** Babble Error */ ++ unsigned bblerr : 1; ++ /** Frame Overrun */ ++ unsigned frmovrun : 1; ++ /** Data Toggle Error */ ++ unsigned datatglerr : 1; ++ /** Reserved */ ++ unsigned reserved : 21; ++ } b; ++} hcint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Transfer Size ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hctsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Total transfer size in bytes */ ++ unsigned xfersize : 19; ++ ++ /** Data packets to transfer */ ++ unsigned pktcnt : 10; ++ ++ /** ++ * Packet ID for next data packet ++ * 0: DATA0 ++ * 1: DATA2 ++ * 2: DATA1 ++ * 3: MDATA (non-Control), SETUP (Control) ++ */ ++ unsigned pid : 2; ++#define DWC_HCTSIZ_DATA0 0 ++#define DWC_HCTSIZ_DATA1 2 ++#define DWC_HCTSIZ_DATA2 1 ++#define DWC_HCTSIZ_MDATA 3 ++#define DWC_HCTSIZ_SETUP 3 ++ ++ /** Do PING protocol when 1 */ ++ unsigned dopng : 1; ++ } b; ++} hctsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Interrupt Mask ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcintmsk register. ++ */ ++typedef union hcintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned xfercompl : 1; ++ unsigned chhltd : 1; ++ unsigned ahberr : 1; ++ unsigned stall : 1; ++ unsigned nak : 1; ++ unsigned ack : 1; ++ unsigned nyet : 1; ++ unsigned xacterr : 1; ++ unsigned bblerr : 1; ++ unsigned frmovrun : 1; ++ unsigned datatglerr : 1; ++ unsigned reserved : 21; ++ } b; ++} hcintmsk_data_t; ++ ++/** OTG Host Interface Structure. ++ * ++ * The OTG Host Interface Structure structure contains information ++ * needed to manage the DWC_otg controller acting in host mode. It ++ * represents the programming view of the host-specific aspects of the ++ * controller. ++ */ ++typedef struct dwc_otg_host_if ++{ ++ /** Host Global Registers starting at offset 400h.*/ ++ dwc_otg_host_global_regs_t *host_global_regs; ++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 ++ ++ /** Host Port 0 Control and Status Register */ ++ volatile uint32_t *hprt0; ++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 ++ ++ ++ /** Host Channel Specific Registers at offsets 500h-5FCh. */ ++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; ++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 ++#define DWC_OTG_CHAN_REGS_OFFSET 0x20 ++ ++ ++ /* Host configuration information */ ++ /** Number of Host Channels (range: 1-16) */ ++ uint8_t num_host_channels; ++ /** Periodic EPs supported (0: no, 1: yes) */ ++ uint8_t perio_eps_supported; ++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ ++ uint16_t perio_tx_fifo_size; ++ ++} dwc_otg_host_if_t; ++ ++ ++/** ++ * This union represents the bit fields in the Power and Clock Gating Control ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union pcgcctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Stop Pclk */ ++ unsigned stoppclk : 1; ++ /** Gate Hclk */ ++ unsigned gatehclk : 1; ++ /** Power Clamp */ ++ unsigned pwrclmp : 1; ++ /** Reset Power Down Modules */ ++ unsigned rstpdwnmodule : 1; ++ /** PHY Suspended */ ++ unsigned physuspended : 1; ++ ++ unsigned reserved : 27; ++ } b; ++} pcgcctl_data_t; ++ ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/linux/dwc_otg_plat.h +@@ -0,0 +1,260 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $ ++ * $Revision: 1.2 $ ++ * $Date: 2008-11-21 05:39:16 $ ++ * $Change: 1064915 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_PLAT_H__) ++#define __DWC_OTG_PLAT_H__ ++ ++#include <linux/types.h> ++#include <linux/slab.h> ++#include <linux/list.h> ++#include <linux/delay.h> ++#include <asm/io.h> ++ ++/** ++ * @file ++ * ++ * This file contains the Platform Specific constants, interfaces ++ * (functions and macros) for Linux. ++ * ++ */ ++//#if !defined(__LINUX_ARM_ARCH__) ++//#error "The contents of this file is Linux specific!!!" ++//#endif ++ ++/** ++ * Reads the content of a register. ++ * ++ * @param reg address of register to read. ++ * @return contents of the register. ++ * ++ ++ * Usage:<br> ++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> ++ */ ++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg) ++{ ++ return readl(reg); ++}; ++ ++/** ++ * Writes a register with a 32 bit value. ++ * ++ * @param reg address of register to read. ++ * @param value to write to _reg. ++ * ++ * Usage:<br> ++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> ++ */ ++static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value) ++{ ++ writel( value, reg ); ++}; ++ ++/** ++ * This function modifies bit values in a register. Using the ++ * algorithm: (reg_contents & ~clear_mask) | set_mask. ++ * ++ * @param reg address of register to read. ++ * @param clear_mask bit mask to be cleared. ++ * @param set_mask bit mask to be set. ++ * ++ * Usage:<br> ++ * <code> // Clear the SOF Interrupt Mask bit and <br> ++ * // set the OTG Interrupt mask bit, leaving all others as they were. ++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> ++ */ ++static __inline__ ++ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask) ++{ ++ writel( (readl(reg) & ~clear_mask) | set_mask, reg ); ++}; ++ ++ ++/** ++ * Wrapper for the OS micro-second delay function. ++ * @param[in] usecs Microseconds of delay ++ */ ++static __inline__ void UDELAY( const uint32_t usecs ) ++{ ++ udelay( usecs ); ++} ++ ++/** ++ * Wrapper for the OS milli-second delay function. ++ * @param[in] msecs milliseconds of delay ++ */ ++static __inline__ void MDELAY( const uint32_t msecs ) ++{ ++ mdelay( msecs ); ++} ++ ++/** ++ * Wrapper for the Linux spin_lock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_LOCK( spinlock_t *lock ) ++{ ++ spin_lock(lock); ++} ++ ++/** ++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_UNLOCK( spinlock_t *lock ) ++{ ++ spin_unlock(lock); ++} ++ ++/** ++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param l Pointer to the spinlock. ++ * @param f unsigned long for irq flags storage. ++ */ ++#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f); ++ ++/** ++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param l Pointer to the spinlock. ++ * @param f unsigned long for irq flags storage. ++ */ ++#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f); ++ ++/* ++ * Debugging support vanishes in non-debug builds. ++ */ ++ ++ ++/** ++ * The Debug Level bit-mask variable. ++ */ ++extern uint32_t g_dbg_lvl; ++/** ++ * Set the Debug Level variable. ++ */ ++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new ) ++{ ++ uint32_t old = g_dbg_lvl; ++ g_dbg_lvl = new; ++ return old; ++} ++ ++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ ++#define DBG_CIL (0x2) ++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug ++ * messages */ ++#define DBG_CILV (0x20) ++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug ++ * messages */ ++#define DBG_PCD (0x4) ++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug ++ * messages */ ++#define DBG_PCDV (0x40) ++/** When debug level has the DBG_HCD bit set, display Host debug messages */ ++#define DBG_HCD (0x8) ++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug ++ * messages */ ++#define DBG_HCDV (0x80) ++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host ++ * mode. */ ++#define DBG_HCD_URB (0x800) ++ ++/** When debug level has any bit set, display debug messages */ ++#define DBG_ANY (0xFF) ++ ++/** All debug messages off */ ++#define DBG_OFF 0 ++ ++/** Prefix string for DWC_DEBUG print macros. */ ++#define USB_DWC "dwc_otg: " ++ ++/** ++ * Print a debug message when the Global debug level variable contains ++ * the bit defined in <code>lvl</code>. ++ * ++ * @param[in] lvl - Debug level, use one of the DBG_ constants above. ++ * @param[in] x - like printf ++ * ++ * Example:<p> ++ * <code> ++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); ++ * </code> ++ * <br> ++ * results in:<br> ++ * <code> ++ * usb-DWC_otg: dwc_otg_cil_init(ca867000) ++ * </code> ++ */ ++#ifdef DEBUG ++ ++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0) ++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x ) ++ ++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) ++ ++#else ++ ++# define DWC_DEBUGPL(lvl, x...) do{}while(0) ++# define DWC_DEBUGP(x...) ++ ++# define CHK_DEBUG_LEVEL(level) (0) ++ ++#endif /*DEBUG*/ ++ ++/** ++ * Print an Error message. ++ */ ++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x ) ++/** ++ * Print a Warning message. ++ */ ++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x ) ++/** ++ * Print a notice (normal but significant message). ++ */ ++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x ) ++/** ++ * Basic message printing. ++ */ ++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x ) ++ ++#endif ++ |