diff options
Diffstat (limited to 'target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch')
-rw-r--r-- | target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch | 1512 |
1 files changed, 1512 insertions, 0 deletions
diff --git a/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch b/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch new file mode 100644 index 0000000000..090624de96 --- /dev/null +++ b/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch @@ -0,0 +1,1512 @@ +diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig +index 2fb0fdf..9ba9759 100644 +--- a/drivers/crypto/Kconfig ++++ b/drivers/crypto/Kconfig +@@ -436,4 +436,21 @@ config CRYPTO_DEV_QCE + hardware. To compile this driver as a module, choose M here. The + module will be called qcrypto. + ++config CRYPTO_DEV_SUNXI_SS ++ tristate "Support for Allwinner Security System cryptographic accelerator" ++ depends on ARCH_SUNXI ++ select CRYPTO_MD5 ++ select CRYPTO_SHA1 ++ select CRYPTO_AES ++ select CRYPTO_DES ++ select CRYPTO_BLKCIPHER ++ help ++ Some Allwinner SoC have a crypto accelerator named ++ Security System. Select this if you want to use it. ++ The Security System handle AES/DES/3DES ciphers in CBC mode ++ and SHA1 and MD5 hash algorithms. ++ ++ To compile this driver as a module, choose M here: the module ++ will be called sunxi-ss. ++ + endif # CRYPTO_HW +diff --git a/drivers/crypto/Makefile b/drivers/crypto/Makefile +index 3924f93..856545c 100644 +--- a/drivers/crypto/Makefile ++++ b/drivers/crypto/Makefile +@@ -25,3 +25,4 @@ obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o + obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/ + obj-$(CONFIG_CRYPTO_DEV_QAT) += qat/ + obj-$(CONFIG_CRYPTO_DEV_QCE) += qce/ ++obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss/ +diff --git a/drivers/crypto/sunxi-ss/Makefile b/drivers/crypto/sunxi-ss/Makefile +new file mode 100644 +index 0000000..8bb287d +--- /dev/null ++++ b/drivers/crypto/sunxi-ss/Makefile +@@ -0,0 +1,2 @@ ++obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss.o ++sunxi-ss-y += sunxi-ss-core.o sunxi-ss-hash.o sunxi-ss-cipher.o +diff --git a/drivers/crypto/sunxi-ss/sunxi-ss-cipher.c b/drivers/crypto/sunxi-ss/sunxi-ss-cipher.c +new file mode 100644 +index 0000000..8d0416e +--- /dev/null ++++ b/drivers/crypto/sunxi-ss/sunxi-ss-cipher.c +@@ -0,0 +1,489 @@ ++/* ++ * sunxi-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC ++ * ++ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> ++ * ++ * This file add support for AES cipher with 128,192,256 bits ++ * keysize in CBC mode. ++ * Add support also for DES and 3DES in CBC mode. ++ * ++ * You could find the datasheet in Documentation/arm/sunxi/README ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ */ ++#include "sunxi-ss.h" ++ ++extern struct sunxi_ss_ctx *ss; ++ ++static int sunxi_ss_cipher(struct ablkcipher_request *areq, u32 mode) ++{ ++ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ const char *cipher_type; ++ ++ if (areq->nbytes == 0) ++ return 0; ++ ++ if (areq->info == NULL) { ++ dev_err(ss->dev, "ERROR: Empty IV\n"); ++ return -EINVAL; ++ } ++ ++ if (areq->src == NULL || areq->dst == NULL) { ++ dev_err(ss->dev, "ERROR: Some SGs are NULL\n"); ++ return -EINVAL; ++ } ++ ++ cipher_type = crypto_tfm_alg_name(crypto_ablkcipher_tfm(tfm)); ++ ++ if (strcmp("cbc(aes)", cipher_type) == 0) { ++ mode |= SS_OP_AES | SS_CBC | SS_ENABLED | op->keymode; ++ return sunxi_ss_aes_poll(areq, mode); ++ } ++ ++ if (strcmp("cbc(des)", cipher_type) == 0) { ++ mode |= SS_OP_DES | SS_CBC | SS_ENABLED | op->keymode; ++ return sunxi_ss_des_poll(areq, mode); ++ } ++ ++ if (strcmp("cbc(des3_ede)", cipher_type) == 0) { ++ mode |= SS_OP_3DES | SS_CBC | SS_ENABLED | op->keymode; ++ return sunxi_ss_des_poll(areq, mode); ++ } ++ ++ dev_err(ss->dev, "ERROR: Cipher %s not handled\n", cipher_type); ++ return -EINVAL; ++} ++ ++int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq) ++{ ++ return sunxi_ss_cipher(areq, SS_ENCRYPTION); ++} ++ ++int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq) ++{ ++ return sunxi_ss_cipher(areq, SS_DECRYPTION); ++} ++ ++int sunxi_ss_cipher_init(struct crypto_tfm *tfm) ++{ ++ struct sunxi_tfm_ctx *op = crypto_tfm_ctx(tfm); ++ ++ memset(op, 0, sizeof(struct sunxi_tfm_ctx)); ++ return 0; ++} ++ ++/* ++ * Optimized function for the case where we have only one SG, ++ * so we can use kmap_atomic ++ */ ++static int sunxi_ss_aes_poll_atomic(struct ablkcipher_request *areq) ++{ ++ u32 spaces; ++ struct scatterlist *in_sg = areq->src; ++ struct scatterlist *out_sg = areq->dst; ++ void *src_addr; ++ void *dst_addr; ++ unsigned int ileft = areq->nbytes; ++ unsigned int oleft = areq->nbytes; ++ unsigned int todo; ++ u32 *src32; ++ u32 *dst32; ++ u32 rx_cnt = 32; ++ u32 tx_cnt = 0; ++ int i; ++ ++ src_addr = kmap_atomic(sg_page(in_sg)) + in_sg->offset; ++ if (src_addr == NULL) { ++ dev_err(ss->dev, "kmap_atomic error for src SG\n"); ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ ++ dst_addr = kmap_atomic(sg_page(out_sg)) + out_sg->offset; ++ if (dst_addr == NULL) { ++ dev_err(ss->dev, "kmap_atomic error for dst SG\n"); ++ writel(0, ss->base + SS_CTL); ++ kunmap_atomic(src_addr); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ ++ src32 = (u32 *)src_addr; ++ dst32 = (u32 *)dst_addr; ++ ileft = areq->nbytes / 4; ++ oleft = areq->nbytes / 4; ++ i = 0; ++ do { ++ if (ileft > 0 && rx_cnt > 0) { ++ todo = min(rx_cnt, ileft); ++ ileft -= todo; ++ do { ++ writel_relaxed(*src32++, ++ ss->base + ++ SS_RXFIFO); ++ todo--; ++ } while (todo > 0); ++ } ++ if (tx_cnt > 0) { ++ todo = min(tx_cnt, oleft); ++ oleft -= todo; ++ do { ++ *dst32++ = readl_relaxed(ss->base + ++ SS_TXFIFO); ++ todo--; ++ } while (todo > 0); ++ } ++ spaces = readl_relaxed(ss->base + SS_FCSR); ++ rx_cnt = SS_RXFIFO_SPACES(spaces); ++ tx_cnt = SS_TXFIFO_SPACES(spaces); ++ } while (oleft > 0); ++ writel(0, ss->base + SS_CTL); ++ kunmap_atomic(src_addr); ++ kunmap_atomic(dst_addr); ++ mutex_unlock(&ss->lock); ++ return 0; ++} ++ ++int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode) ++{ ++ u32 spaces; ++ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); ++ /* when activating SS, the default FIFO space is 32 */ ++ u32 rx_cnt = 32; ++ u32 tx_cnt = 0; ++ u32 v; ++ int i; ++ struct scatterlist *in_sg = areq->src; ++ struct scatterlist *out_sg = areq->dst; ++ void *src_addr; ++ void *dst_addr; ++ unsigned int ileft = areq->nbytes; ++ unsigned int oleft = areq->nbytes; ++ unsigned int sgileft = areq->src->length; ++ unsigned int sgoleft = areq->dst->length; ++ unsigned int todo; ++ u32 *src32; ++ u32 *dst32; ++ ++ mutex_lock(&ss->lock); ++ ++ for (i = 0; i < op->keylen; i += 4) ++ writel(*(op->key + i/4), ss->base + SS_KEY0 + i); ++ ++ if (areq->info != NULL) { ++ for (i = 0; i < 4 && i < ivsize / 4; i++) { ++ v = *(u32 *)(areq->info + i * 4); ++ writel(v, ss->base + SS_IV0 + i * 4); ++ } ++ } ++ writel(mode, ss->base + SS_CTL); ++ ++ /* If we have only one SG, we can use kmap_atomic */ ++ if (sg_next(in_sg) == NULL && sg_next(out_sg) == NULL) ++ return sunxi_ss_aes_poll_atomic(areq); ++ ++ /* ++ * If we have more than one SG, we cannot use kmap_atomic since ++ * we hold the mapping too long ++ */ ++ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; ++ if (src_addr == NULL) { ++ dev_err(ss->dev, "KMAP error for src SG\n"); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ dst_addr = kmap(sg_page(out_sg)) + out_sg->offset; ++ if (dst_addr == NULL) { ++ kunmap(sg_page(in_sg)); ++ dev_err(ss->dev, "KMAP error for dst SG\n"); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ src32 = (u32 *)src_addr; ++ dst32 = (u32 *)dst_addr; ++ ileft = areq->nbytes / 4; ++ oleft = areq->nbytes / 4; ++ sgileft = in_sg->length / 4; ++ sgoleft = out_sg->length / 4; ++ do { ++ spaces = readl_relaxed(ss->base + SS_FCSR); ++ rx_cnt = SS_RXFIFO_SPACES(spaces); ++ tx_cnt = SS_TXFIFO_SPACES(spaces); ++ todo = min3(rx_cnt, ileft, sgileft); ++ if (todo > 0) { ++ ileft -= todo; ++ sgileft -= todo; ++ } ++ while (todo > 0) { ++ writel_relaxed(*src32++, ss->base + SS_RXFIFO); ++ todo--; ++ } ++ if (in_sg != NULL && sgileft == 0 && ileft > 0) { ++ kunmap(sg_page(in_sg)); ++ in_sg = sg_next(in_sg); ++ while (in_sg != NULL && in_sg->length == 0) ++ in_sg = sg_next(in_sg); ++ if (in_sg != NULL && ileft > 0) { ++ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; ++ if (src_addr == NULL) { ++ dev_err(ss->dev, "ERROR: KMAP for src SG\n"); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ src32 = src_addr; ++ sgileft = in_sg->length / 4; ++ } ++ } ++ /* do not test oleft since when oleft == 0 we have finished */ ++ todo = min3(tx_cnt, oleft, sgoleft); ++ if (todo > 0) { ++ oleft -= todo; ++ sgoleft -= todo; ++ } ++ while (todo > 0) { ++ *dst32++ = readl_relaxed(ss->base + SS_TXFIFO); ++ todo--; ++ } ++ if (out_sg != NULL && sgoleft == 0 && oleft >= 0) { ++ kunmap(sg_page(out_sg)); ++ out_sg = sg_next(out_sg); ++ while (out_sg != NULL && out_sg->length == 0) ++ out_sg = sg_next(out_sg); ++ if (out_sg != NULL && oleft > 0) { ++ dst_addr = kmap(sg_page(out_sg)) + ++ out_sg->offset; ++ if (dst_addr == NULL) { ++ dev_err(ss->dev, "KMAP error\n"); ++ mutex_unlock(&ss->lock); ++ return -EINVAL; ++ } ++ dst32 = dst_addr; ++ sgoleft = out_sg->length / 4; ++ } ++ } ++ } while (oleft > 0); ++ ++ writel_relaxed(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return 0; ++} ++ ++/* ++ * Pure CPU way of doing DES/3DES with SS ++ * Since DES and 3DES SGs could be smaller than 4 bytes, I use sg_copy_to_buffer ++ * for "linearize" them. ++ * The problem with that is that I alloc (2 x areq->nbytes) for buf_in/buf_out ++ * TODO: change this system, I need to support other mode than CBC where len ++ * is not a multiple of 4 and the hack of linearize use too much memory ++ * SGsrc -> buf_in -> SS -> buf_out -> SGdst ++ */ ++int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode) ++{ ++ u32 value, spaces; ++ size_t nb_in_sg_tx, nb_in_sg_rx; ++ size_t ir, it; ++ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); ++ u32 tx_cnt = 0; ++ u32 rx_cnt = 0; ++ u32 v; ++ int i; ++ int no_chunk = 1; ++ struct scatterlist *in_sg = areq->src; ++ struct scatterlist *out_sg = areq->dst; ++ ++ /* ++ * if we have only SGs with size multiple of 4, ++ * we can use the SS AES function ++ */ ++ while (in_sg != NULL && no_chunk == 1) { ++ if ((in_sg->length % 4) != 0) ++ no_chunk = 0; ++ in_sg = sg_next(in_sg); ++ } ++ while (out_sg != NULL && no_chunk == 1) { ++ if ((out_sg->length % 4) != 0) ++ no_chunk = 0; ++ out_sg = sg_next(out_sg); ++ } ++ ++ if (no_chunk == 1) ++ return sunxi_ss_aes_poll(areq, mode); ++ ++ in_sg = areq->src; ++ out_sg = areq->dst; ++ ++ nb_in_sg_rx = sg_nents(in_sg); ++ nb_in_sg_tx = sg_nents(out_sg); ++ ++ /* ++ * buf_in and buf_out are allocated only one time ++ * then we keep the buffer until driver end ++ * the allocation can only grow more ++ * we do not reduce it for simplification ++ */ ++ mutex_lock(&ss->bufin_lock); ++ if (ss->buf_in == NULL) { ++ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL); ++ ss->buf_in_size = areq->nbytes; ++ } else { ++ if (areq->nbytes > ss->buf_in_size) { ++ kfree(ss->buf_in); ++ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL); ++ ss->buf_in_size = areq->nbytes; ++ } ++ } ++ if (ss->buf_in == NULL) { ++ ss->buf_in_size = 0; ++ mutex_unlock(&ss->bufin_lock); ++ dev_err(ss->dev, "Unable to allocate pages.\n"); ++ return -ENOMEM; ++ } ++ mutex_lock(&ss->bufout_lock); ++ if (ss->buf_out == NULL) { ++ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL); ++ if (ss->buf_out == NULL) { ++ ss->buf_out_size = 0; ++ mutex_unlock(&ss->bufin_lock); ++ mutex_unlock(&ss->bufout_lock); ++ dev_err(ss->dev, "Unable to allocate pages.\n"); ++ return -ENOMEM; ++ } ++ ss->buf_out_size = areq->nbytes; ++ } else { ++ if (areq->nbytes > ss->buf_out_size) { ++ kfree(ss->buf_out); ++ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL); ++ if (ss->buf_out == NULL) { ++ ss->buf_out_size = 0; ++ mutex_unlock(&ss->bufin_lock); ++ mutex_unlock(&ss->bufout_lock); ++ dev_err(ss->dev, "Unable to allocate pages.\n"); ++ return -ENOMEM; ++ } ++ ss->buf_out_size = areq->nbytes; ++ } ++ } ++ ++ sg_copy_to_buffer(areq->src, nb_in_sg_rx, ss->buf_in, areq->nbytes); ++ ++ ir = 0; ++ it = 0; ++ mutex_lock(&ss->lock); ++ ++ for (i = 0; i < op->keylen; i += 4) ++ writel(*(op->key + i/4), ss->base + SS_KEY0 + i); ++ if (areq->info != NULL) { ++ for (i = 0; i < 4 && i < ivsize / 4; i++) { ++ v = *(u32 *)(areq->info + i * 4); ++ writel(v, ss->base + SS_IV0 + i * 4); ++ } ++ } ++ writel(mode, ss->base + SS_CTL); ++ ++ do { ++ if (rx_cnt == 0 || tx_cnt == 0) { ++ spaces = readl(ss->base + SS_FCSR); ++ rx_cnt = SS_RXFIFO_SPACES(spaces); ++ tx_cnt = SS_TXFIFO_SPACES(spaces); ++ } ++ if (rx_cnt > 0 && ir < areq->nbytes) { ++ do { ++ value = *(u32 *)(ss->buf_in + ir); ++ writel(value, ss->base + SS_RXFIFO); ++ ir += 4; ++ rx_cnt--; ++ } while (rx_cnt > 0 && ir < areq->nbytes); ++ } ++ if (tx_cnt > 0 && it < areq->nbytes) { ++ do { ++ value = readl(ss->base + SS_TXFIFO); ++ *(u32 *)(ss->buf_out + it) = value; ++ it += 4; ++ tx_cnt--; ++ } while (tx_cnt > 0 && it < areq->nbytes); ++ } ++ if (ir == areq->nbytes) { ++ mutex_unlock(&ss->bufin_lock); ++ ir++; ++ } ++ } while (it < areq->nbytes); ++ ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ ++ /* ++ * a simple optimization, since we dont need the hardware for this copy ++ * we release the lock and do the copy. With that we gain 5/10% perf ++ */ ++ sg_copy_from_buffer(areq->dst, nb_in_sg_tx, ss->buf_out, areq->nbytes); ++ ++ mutex_unlock(&ss->bufout_lock); ++ return 0; ++} ++ ++/* check and set the AES key, prepare the mode to be used */ ++int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen) ++{ ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ ++ switch (keylen) { ++ case 128 / 8: ++ op->keymode = SS_AES_128BITS; ++ break; ++ case 192 / 8: ++ op->keymode = SS_AES_192BITS; ++ break; ++ case 256 / 8: ++ op->keymode = SS_AES_256BITS; ++ break; ++ default: ++ dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); ++ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); ++ return -EINVAL; ++ } ++ op->keylen = keylen; ++ memcpy(op->key, key, keylen); ++ return 0; ++} ++ ++/* check and set the DES key, prepare the mode to be used */ ++int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen) ++{ ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ ++ if (keylen != DES_KEY_SIZE) { ++ dev_err(ss->dev, "Invalid keylen %u\n", keylen); ++ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); ++ return -EINVAL; ++ } ++ op->keylen = keylen; ++ memcpy(op->key, key, keylen); ++ return 0; ++} ++ ++/* check and set the 3DES key, prepare the mode to be used */ ++int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen) ++{ ++ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); ++ ++ if (keylen != 3 * DES_KEY_SIZE) { ++ dev_err(ss->dev, "Invalid keylen %u\n", keylen); ++ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); ++ return -EINVAL; ++ } ++ op->keylen = keylen; ++ memcpy(op->key, key, keylen); ++ return 0; ++} +diff --git a/drivers/crypto/sunxi-ss/sunxi-ss-core.c b/drivers/crypto/sunxi-ss/sunxi-ss-core.c +new file mode 100644 +index 0000000..e66d7e2 +--- /dev/null ++++ b/drivers/crypto/sunxi-ss/sunxi-ss-core.c +@@ -0,0 +1,318 @@ ++/* ++ * sunxi-ss-core.c - hardware cryptographic accelerator for Allwinner A20 SoC ++ * ++ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> ++ * ++ * Core file which registers crypto algorithms supported by the SS. ++ * ++ * You could find a link for the datasheet in Documentation/arm/sunxi/README ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ */ ++#include <linux/clk.h> ++#include <linux/crypto.h> ++#include <linux/io.h> ++#include <linux/module.h> ++#include <linux/of.h> ++#include <linux/platform_device.h> ++#include <crypto/scatterwalk.h> ++#include <linux/scatterlist.h> ++#include <linux/interrupt.h> ++#include <linux/delay.h> ++ ++#include "sunxi-ss.h" ++ ++struct sunxi_ss_ctx *ss; ++ ++/* ++ * General notes for whole driver: ++ * ++ * After each request the device must be disabled with a write of 0 in SS_CTL ++ * ++ * For performance reason, we use writel_relaxed/read_relaxed for all ++ * operations on RX and TX FIFO and also SS_FCSR. ++ * Excepts for the last write on TX FIFO. ++ * For all other registers, we use writel/readl. ++ * See http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117644 ++ * and http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117640 ++ */ ++ ++static struct ahash_alg sunxi_md5_alg = { ++ .init = sunxi_hash_init, ++ .update = sunxi_hash_update, ++ .final = sunxi_hash_final, ++ .finup = sunxi_hash_finup, ++ .digest = sunxi_hash_digest, ++ .halg = { ++ .digestsize = MD5_DIGEST_SIZE, ++ .base = { ++ .cra_name = "md5", ++ .cra_driver_name = "md5-sunxi-ss", ++ .cra_priority = 300, ++ .cra_alignmask = 3, ++ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, ++ .cra_blocksize = MD5_HMAC_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct sunxi_req_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_type = &crypto_ahash_type, ++ .cra_init = sunxi_hash_crainit ++ } ++ } ++}; ++ ++static struct ahash_alg sunxi_sha1_alg = { ++ .init = sunxi_hash_init, ++ .update = sunxi_hash_update, ++ .final = sunxi_hash_final, ++ .finup = sunxi_hash_finup, ++ .digest = sunxi_hash_digest, ++ .halg = { ++ .digestsize = SHA1_DIGEST_SIZE, ++ .base = { ++ .cra_name = "sha1", ++ .cra_driver_name = "sha1-sunxi-ss", ++ .cra_priority = 300, ++ .cra_alignmask = 3, ++ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, ++ .cra_blocksize = SHA1_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct sunxi_req_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_type = &crypto_ahash_type, ++ .cra_init = sunxi_hash_crainit ++ } ++ } ++}; ++ ++static struct crypto_alg sunxi_cipher_algs[] = { ++{ ++ .cra_name = "cbc(aes)", ++ .cra_driver_name = "cbc-aes-sunxi-ss", ++ .cra_priority = 300, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, ++ .cra_ctxsize = sizeof(struct sunxi_tfm_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_alignmask = 3, ++ .cra_type = &crypto_ablkcipher_type, ++ .cra_init = sunxi_ss_cipher_init, ++ .cra_u = { ++ .ablkcipher = { ++ .min_keysize = AES_MIN_KEY_SIZE, ++ .max_keysize = AES_MAX_KEY_SIZE, ++ .ivsize = AES_BLOCK_SIZE, ++ .setkey = sunxi_ss_aes_setkey, ++ .encrypt = sunxi_ss_cipher_encrypt, ++ .decrypt = sunxi_ss_cipher_decrypt, ++ } ++ } ++}, { ++ .cra_name = "cbc(des)", ++ .cra_driver_name = "cbc-des-sunxi-ss", ++ .cra_priority = 300, ++ .cra_blocksize = DES_BLOCK_SIZE, ++ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, ++ .cra_ctxsize = sizeof(struct sunxi_req_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_alignmask = 3, ++ .cra_type = &crypto_ablkcipher_type, ++ .cra_init = sunxi_ss_cipher_init, ++ .cra_u.ablkcipher = { ++ .min_keysize = DES_KEY_SIZE, ++ .max_keysize = DES_KEY_SIZE, ++ .ivsize = DES_BLOCK_SIZE, ++ .setkey = sunxi_ss_des_setkey, ++ .encrypt = sunxi_ss_cipher_encrypt, ++ .decrypt = sunxi_ss_cipher_decrypt, ++ } ++}, { ++ .cra_name = "cbc(des3_ede)", ++ .cra_driver_name = "cbc-des3-sunxi-ss", ++ .cra_priority = 300, ++ .cra_blocksize = DES3_EDE_BLOCK_SIZE, ++ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, ++ .cra_ctxsize = sizeof(struct sunxi_req_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_alignmask = 3, ++ .cra_type = &crypto_ablkcipher_type, ++ .cra_init = sunxi_ss_cipher_init, ++ .cra_u.ablkcipher = { ++ .min_keysize = DES3_EDE_KEY_SIZE, ++ .max_keysize = DES3_EDE_KEY_SIZE, ++ .ivsize = DES3_EDE_BLOCK_SIZE, ++ .setkey = sunxi_ss_des3_setkey, ++ .encrypt = sunxi_ss_cipher_encrypt, ++ .decrypt = sunxi_ss_cipher_decrypt, ++ } ++} ++}; ++ ++static int sunxi_ss_probe(struct platform_device *pdev) ++{ ++ struct resource *res; ++ u32 v; ++ int err; ++ unsigned long cr; ++ const unsigned long cr_ahb = 24 * 1000 * 1000; ++ const unsigned long cr_mod = 150 * 1000 * 1000; ++ ++ if (!pdev->dev.of_node) ++ return -ENODEV; ++ ++ ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL); ++ if (ss == NULL) ++ return -ENOMEM; ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ ss->base = devm_ioremap_resource(&pdev->dev, res); ++ if (IS_ERR(ss->base)) { ++ dev_err(&pdev->dev, "Cannot request MMIO\n"); ++ return PTR_ERR(ss->base); ++ } ++ ++ ss->ssclk = devm_clk_get(&pdev->dev, "mod"); ++ if (IS_ERR(ss->ssclk)) { ++ err = PTR_ERR(ss->ssclk); ++ dev_err(&pdev->dev, "Cannot get SS clock err=%d\n", err); ++ return err; ++ } ++ dev_dbg(&pdev->dev, "clock ss acquired\n"); ++ ++ ss->busclk = devm_clk_get(&pdev->dev, "ahb"); ++ if (IS_ERR(ss->busclk)) { ++ err = PTR_ERR(ss->busclk); ++ dev_err(&pdev->dev, "Cannot get AHB SS clock err=%d\n", err); ++ return err; ++ } ++ dev_dbg(&pdev->dev, "clock ahb_ss acquired\n"); ++ ++ /* Enable both clocks */ ++ err = clk_prepare_enable(ss->busclk); ++ if (err != 0) { ++ dev_err(&pdev->dev, "Cannot prepare_enable busclk\n"); ++ return err; ++ } ++ err = clk_prepare_enable(ss->ssclk); ++ if (err != 0) { ++ dev_err(&pdev->dev, "Cannot prepare_enable ssclk\n"); ++ clk_disable_unprepare(ss->busclk); ++ return err; ++ } ++ ++ /* ++ * Check that clock have the correct rates gived in the datasheet ++ * Try to set the clock to the maximum allowed ++ */ ++ err = clk_set_rate(ss->ssclk, cr_mod); ++ if (err != 0) { ++ dev_err(&pdev->dev, "Cannot set clock rate to ssclk\n"); ++ clk_disable_unprepare(ss->ssclk); ++ clk_disable_unprepare(ss->busclk); ++ return err; ++ } ++ ++ cr = clk_get_rate(ss->busclk); ++ if (cr >= cr_ahb) ++ dev_dbg(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", ++ cr, cr / 1000000, cr_ahb); ++ else ++ dev_warn(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", ++ cr, cr / 1000000, cr_ahb); ++ ++ cr = clk_get_rate(ss->ssclk); ++ if (cr <= cr_mod) ++ if (cr < cr_mod) ++ dev_info(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", ++ cr, cr / 1000000, cr_mod); ++ else ++ dev_dbg(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", ++ cr, cr / 1000000, cr_mod); ++ else ++ dev_warn(&pdev->dev, "Clock ss is at %lu (%lu MHz) (must be <= %lu)\n", ++ cr, cr / 1000000, cr_mod); ++ ++ /* ++ * Datasheet named it "Die Bonding ID" ++ * I expect to be a sort of Security System Revision number. ++ * Since the A80 seems to have an other version of SS ++ * this info could be useful ++ */ ++ writel(SS_ENABLED, ss->base + SS_CTL); ++ v = readl(ss->base + SS_CTL); ++ v >>= 16; ++ v &= 0x07; ++ dev_info(&pdev->dev, "Die ID %d\n", v); ++ writel(0, ss->base + SS_CTL); ++ ++ ss->dev = &pdev->dev; ++ ++ mutex_init(&ss->lock); ++ mutex_init(&ss->bufin_lock); ++ mutex_init(&ss->bufout_lock); ++ ++ err = crypto_register_ahash(&sunxi_md5_alg); ++ if (err) ++ goto error_md5; ++ err = crypto_register_ahash(&sunxi_sha1_alg); ++ if (err) ++ goto error_sha1; ++ err = crypto_register_algs(sunxi_cipher_algs, ++ ARRAY_SIZE(sunxi_cipher_algs)); ++ if (err) ++ goto error_ciphers; ++ ++ return 0; ++error_ciphers: ++ crypto_unregister_ahash(&sunxi_sha1_alg); ++error_sha1: ++ crypto_unregister_ahash(&sunxi_md5_alg); ++error_md5: ++ clk_disable_unprepare(ss->ssclk); ++ clk_disable_unprepare(ss->busclk); ++ return err; ++} ++ ++static int __exit sunxi_ss_remove(struct platform_device *pdev) ++{ ++ if (!pdev->dev.of_node) ++ return 0; ++ ++ crypto_unregister_ahash(&sunxi_md5_alg); ++ crypto_unregister_ahash(&sunxi_sha1_alg); ++ crypto_unregister_algs(sunxi_cipher_algs, ++ ARRAY_SIZE(sunxi_cipher_algs)); ++ ++ if (ss->buf_in != NULL) ++ kfree(ss->buf_in); ++ if (ss->buf_out != NULL) ++ kfree(ss->buf_out); ++ ++ writel(0, ss->base + SS_CTL); ++ clk_disable_unprepare(ss->busclk); ++ clk_disable_unprepare(ss->ssclk); ++ return 0; ++} ++ ++static const struct of_device_id a20ss_crypto_of_match_table[] = { ++ { .compatible = "allwinner,sun7i-a20-crypto" }, ++ {} ++}; ++MODULE_DEVICE_TABLE(of, a20ss_crypto_of_match_table); ++ ++static struct platform_driver sunxi_ss_driver = { ++ .probe = sunxi_ss_probe, ++ .remove = __exit_p(sunxi_ss_remove), ++ .driver = { ++ .owner = THIS_MODULE, ++ .name = "sunxi-ss", ++ .of_match_table = a20ss_crypto_of_match_table, ++ }, ++}; ++ ++module_platform_driver(sunxi_ss_driver); ++ ++MODULE_DESCRIPTION("Allwinner Security System cryptographic accelerator"); ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Corentin LABBE <clabbe.montjoie@gmail.com>"); +diff --git a/drivers/crypto/sunxi-ss/sunxi-ss-hash.c b/drivers/crypto/sunxi-ss/sunxi-ss-hash.c +new file mode 100644 +index 0000000..ec8758f +--- /dev/null ++++ b/drivers/crypto/sunxi-ss/sunxi-ss-hash.c +@@ -0,0 +1,445 @@ ++/* ++ * sunxi-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC ++ * ++ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> ++ * ++ * This file add support for MD5 and SHA1. ++ * ++ * You could find the datasheet in Documentation/arm/sunxi/README ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ */ ++#include "sunxi-ss.h" ++ ++/* This is a totaly arbitrary value */ ++#define SS_TIMEOUT 100 ++ ++extern struct sunxi_ss_ctx *ss; ++ ++int sunxi_hash_crainit(struct crypto_tfm *tfm) ++{ ++ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), ++ sizeof(struct sunxi_req_ctx)); ++ return 0; ++} ++ ++/* sunxi_hash_init: initialize request context */ ++int sunxi_hash_init(struct ahash_request *areq) ++{ ++ const char *hash_type; ++ struct sunxi_req_ctx *op = ahash_request_ctx(areq); ++ ++ memset(op, 0, sizeof(struct sunxi_req_ctx)); ++ ++ hash_type = crypto_tfm_alg_name(areq->base.tfm); ++ ++ if (strcmp(hash_type, "sha1") == 0) ++ op->mode = SS_OP_SHA1; ++ if (strcmp(hash_type, "md5") == 0) ++ op->mode = SS_OP_MD5; ++ if (op->mode == 0) ++ return -EINVAL; ++ ++ return 0; ++} ++ ++static u32 rx_cnt; ++ ++inline void ss_writer(const u32 v) ++{ ++ u32 spaces; ++ ++ writel(v, ss->base + SS_RXFIFO); ++ rx_cnt--; ++ while (rx_cnt == 0) { ++ spaces = readl_relaxed(ss->base + SS_FCSR); ++ rx_cnt = SS_RXFIFO_SPACES(spaces); ++ } ++} ++ ++inline void ss_writer_relaxed(const u32 v) ++{ ++ u32 spaces; ++ ++ writel_relaxed(v, ss->base + SS_RXFIFO); ++ rx_cnt--; ++ while (rx_cnt == 0) { ++ spaces = readl_relaxed(ss->base + SS_FCSR); ++ rx_cnt = SS_RXFIFO_SPACES(spaces); ++ } ++} ++ ++/* ++ * sunxi_hash_update: update hash engine ++ * ++ * Could be used for both SHA1 and MD5 ++ * Write data by step of 32bits and put then in the SS. ++ * ++ * Since we cannot leave partial data and hash state in the engine, ++ * we need to get the hash state at the end of this function. ++ * After some work, I have found that we can get the hash state every 64o ++ * ++ * So the first work is to get the number of bytes to write to SS modulo 64 ++ * The extra bytes will go to two different destination: ++ * op->wait for full 32bits word ++ * op->wb (waiting bytes) for partial 32 bits word ++ * So we can have up to (64/4)-1 op->wait words and 0/1/2/3 bytes in wb ++ * ++ * So at the begin of update() ++ * if op->nwait * 4 + areq->nbytes < 64 ++ * => all data writed to wait buffers and end=0 ++ * if not write all nwait to the device and position end to complete to 64o ++ * ++ * example 1: ++ * update1 60o => nwait=15 ++ * update2 60o => need one more word to have 64o ++ * end=4 ++ * so write all data in op->wait and one word of SGs ++ * write remaining data in op->wait ++ * final state op->nwait=14 ++ */ ++int sunxi_hash_update(struct ahash_request *areq) ++{ ++ u32 v, ivmode = 0; ++ unsigned int i = 0; ++ /* ++ * i is the total bytes read from SGs, to be compared to areq->nbytes ++ * i is important because we cannot rely on SG length since the sum of ++ * SG->length could be greater than areq->nbytes ++ */ ++ ++ struct sunxi_req_ctx *op = ahash_request_ctx(areq); ++ struct scatterlist *in_sg; ++ unsigned int in_i = 0; /* advancement in the current SG */ ++ u64 end; ++ /* ++ * end is the position when we need to stop writing to the device, ++ * to be compared to i ++ */ ++ int in_r; ++ void *src_addr; ++ ++ dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x bw=%u ww=%u", ++ __func__, crypto_tfm_alg_name(areq->base.tfm), ++ op->byte_count, areq->nbytes, op->mode, ++ op->nbw, op->nwait); ++ ++ if (areq->nbytes == 0) ++ return 0; ++ ++ end = ((areq->nbytes + op->nwait * 4 + op->nbw) / 64) * 64 ++ - op->nbw - op->nwait * 4; ++ ++ if (end > areq->nbytes || areq->nbytes - end > 63) { ++ dev_err(ss->dev, "ERROR: Bound error %llu %u\n", ++ end, areq->nbytes); ++ return -EINVAL; ++ } ++ ++ if (op->nwait > 0 && end > 0) { ++ /* a precedent update was done */ ++ for (i = 0; i < op->nwait; i++) { ++ ss_writer(op->wait[i]); ++ op->byte_count += 4; ++ } ++ op->nwait = 0; ++ } ++ ++ mutex_lock(&ss->lock); ++ /* ++ * if some data have been processed before, ++ * we need to restore the partial hash state ++ */ ++ if (op->byte_count > 0) { ++ ivmode = SS_IV_ARBITRARY; ++ for (i = 0; i < 5; i++) ++ writel(op->hash[i], ss->base + SS_IV0 + i * 4); ++ } ++ /* Enable the device */ ++ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); ++ ++ rx_cnt = 0; ++ i = 0; ++ ++ in_sg = areq->src; ++ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; ++ if (src_addr == NULL) { ++ mutex_unlock(&ss->lock); ++ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n"); ++ return -EFAULT; ++ } ++ do { ++ /* ++ * step 1, if some bytes remains from last SG, ++ * try to complete them to 4 and send that word ++ */ ++ if (op->nbw > 0) { ++ while (op->nbw < 4 && i < areq->nbytes && ++ in_i < in_sg->length) { ++ op->wb |= (*(u8 *)(src_addr + in_i)) ++ << (8 * op->nbw); ++ dev_dbg(ss->dev, "%s Complete w=%d wb=%x\n", ++ __func__, op->nbw, op->wb); ++ i++; ++ in_i++; ++ op->nbw++; ++ } ++ if (op->nbw == 4) { ++ if (i <= end) { ++ ss_writer(op->wb); ++ op->byte_count += 4; ++ } else { ++ op->wait[op->nwait] = op->wb; ++ op->nwait++; ++ dev_dbg(ss->dev, "%s Keep %u bytes after %llu\n", ++ __func__, op->nwait, end); ++ } ++ op->nbw = 0; ++ op->wb = 0; ++ } ++ } ++ /* step 2, main loop, read data 4bytes at a time */ ++ while (i < areq->nbytes && in_i < in_sg->length) { ++ /* how many bytes we can read, (we need 4) */ ++ in_r = min(in_sg->length - in_i, areq->nbytes - i); ++ if (in_r < 4) { ++ /* Not enough data to write to the device */ ++ op->wb = 0; ++ while (in_r > 0) { ++ op->wb |= (*(u8 *)(src_addr + in_i)) ++ << (8 * op->nbw); ++ dev_dbg(ss->dev, "%s ending bw=%d wb=%x\n", ++ __func__, op->nbw, op->wb); ++ in_r--; ++ i++; ++ in_i++; ++ op->nbw++; ++ } ++ goto nextsg; ++ } ++ v = *(u32 *)(src_addr + in_i); ++ if (i < end) { ++ /* last write must be done without relaxed */ ++ if (i + 4 >= end) ++ ss_writer(v); ++ else ++ ss_writer_relaxed(v); ++ i += 4; ++ op->byte_count += 4; ++ in_i += 4; ++ } else { ++ op->wait[op->nwait] = v; ++ i += 4; ++ in_i += 4; ++ op->nwait++; ++ dev_dbg(ss->dev, "%s Keep word ww=%u after %llu\n", ++ __func__, op->nwait, end); ++ if (op->nwait > 15) { ++ dev_err(ss->dev, "FATAL: Cannot enqueue more, bug?\n"); ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return -EIO; ++ } ++ } ++ } ++nextsg: ++ /* Nothing more to read in this SG */ ++ if (in_i == in_sg->length) { ++ kunmap(sg_page(in_sg)); ++ do { ++ in_sg = sg_next(in_sg); ++ } while (in_sg != NULL && in_sg->length == 0); ++ in_i = 0; ++ if (in_sg != NULL) { ++ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; ++ if (src_addr == NULL) { ++ mutex_unlock(&ss->lock); ++ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n"); ++ return -EFAULT; ++ } ++ } ++ } ++ } while (in_sg != NULL && i < areq->nbytes); ++ ++ /* ask the device to finish the hashing */ ++ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); ++ i = 0; ++ do { ++ v = readl(ss->base + SS_CTL); ++ i++; ++ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0); ++ if (i >= SS_TIMEOUT) { ++ dev_err(ss->dev, "ERROR: %s hash end timeout after %d loop, CTL=%x\n", ++ __func__, i, v); ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return -EIO; ++ } ++ ++ /* get the partial hash */ ++ if (op->mode == SS_OP_SHA1) { ++ for (i = 0; i < 5; i++) ++ op->hash[i] = readl(ss->base + SS_MD0 + i * 4); ++ } else { ++ for (i = 0; i < 4; i++) ++ op->hash[i] = readl(ss->base + SS_MD0 + i * 4); ++ } ++ ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return 0; ++} ++ ++/* ++ * sunxi_hash_final: finalize hashing operation ++ * ++ * If we have some remaining bytes, we write them. ++ * Then ask the SS for finalizing the hashing operation ++ */ ++int sunxi_hash_final(struct ahash_request *areq) ++{ ++ u32 v, ivmode = 0; ++ unsigned int i; ++ int zeros; ++ unsigned int index, padlen; ++ __be64 bits; ++ struct sunxi_req_ctx *op = ahash_request_ctx(areq); ++ ++ dev_dbg(ss->dev, "%s byte=%llu len=%u mode=%x bw=%u %x h=%x ww=%u", ++ __func__, op->byte_count, areq->nbytes, op->mode, ++ op->nbw, op->wb, op->hash[0], op->nwait); ++ ++ mutex_lock(&ss->lock); ++ rx_cnt = 0; ++ ++ /* ++ * if we have already writed something, ++ * restore the partial hash state ++ */ ++ if (op->byte_count > 0) { ++ ivmode = SS_IV_ARBITRARY; ++ for (i = 0; i < 5; i++) ++ writel(op->hash[i], ss->base + SS_IV0 + i * 4); ++ } ++ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); ++ ++ /* write the remaining words of the wait buffer */ ++ if (op->nwait > 0) { ++ for (i = 0; i < op->nwait; i++) { ++ v = op->wait[i]; ++ ss_writer(v); ++ op->byte_count += 4; ++ dev_dbg(ss->dev, "%s write %llu i=%u %x\n", ++ __func__, op->byte_count, i, v); ++ } ++ op->nwait = 0; ++ } ++ ++ /* write the remaining bytes of the nbw buffer */ ++ if (op->nbw > 0) { ++ op->wb |= ((1 << 7) << (op->nbw * 8)); ++ ss_writer(op->wb); ++ } else { ++ ss_writer((1 << 7)); ++ } ++ ++ /* ++ * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) ++ * I take the operations from other md5/sha1 implementations ++ */ ++ ++ /* we have already send 4 more byte of which nbw data */ ++ if (op->mode == SS_OP_MD5) { ++ index = (op->byte_count + 4) & 0x3f; ++ op->byte_count += op->nbw; ++ if (index > 56) ++ zeros = (120 - index) / 4; ++ else ++ zeros = (56 - index) / 4; ++ } else { ++ op->byte_count += op->nbw; ++ index = op->byte_count & 0x3f; ++ padlen = (index < 56) ? (56 - index) : ((64+56) - index); ++ zeros = (padlen - 1) / 4; ++ } ++ for (i = 0; i < zeros; i++) ++ ss_writer(0); ++ ++ /* write the length of data */ ++ if (op->mode == SS_OP_SHA1) { ++ bits = cpu_to_be64(op->byte_count << 3); ++ ss_writer(bits & 0xffffffff); ++ ss_writer((bits >> 32) & 0xffffffff); ++ } else { ++ ss_writer((op->byte_count << 3) & 0xffffffff); ++ ss_writer((op->byte_count >> 29) & 0xffffffff); ++ } ++ ++ /* Tell the SS to stop the hashing */ ++ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); ++ ++ /* ++ * Wait for SS to finish the hash. ++ * The timeout could happend only in case of bad overcloking ++ * or driver bug. ++ */ ++ i = 0; ++ do { ++ v = readl(ss->base + SS_CTL); ++ i++; ++ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0); ++ if (i >= SS_TIMEOUT) { ++ dev_err(ss->dev, "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", ++ i, SS_TIMEOUT, v, areq->nbytes); ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return -EIO; ++ } ++ ++ /* Get the hash from the device */ ++ if (op->mode == SS_OP_SHA1) { ++ for (i = 0; i < 5; i++) { ++ v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); ++ memcpy(areq->result + i * 4, &v, 4); ++ } ++ } else { ++ for (i = 0; i < 4; i++) { ++ v = readl(ss->base + SS_MD0 + i * 4); ++ memcpy(areq->result + i * 4, &v, 4); ++ } ++ } ++ writel(0, ss->base + SS_CTL); ++ mutex_unlock(&ss->lock); ++ return 0; ++} ++ ++/* sunxi_hash_finup: finalize hashing operation after an update */ ++int sunxi_hash_finup(struct ahash_request *areq) ++{ ++ int err; ++ ++ err = sunxi_hash_update(areq); ++ if (err != 0) ++ return err; ++ ++ return sunxi_hash_final(areq); ++} ++ ++/* combo of init/update/final functions */ ++int sunxi_hash_digest(struct ahash_request *areq) ++{ ++ int err; ++ ++ err = sunxi_hash_init(areq); ++ if (err != 0) ++ return err; ++ ++ err = sunxi_hash_update(areq); ++ if (err != 0) ++ return err; ++ ++ return sunxi_hash_final(areq); ++} +diff --git a/drivers/crypto/sunxi-ss/sunxi-ss.h b/drivers/crypto/sunxi-ss/sunxi-ss.h +new file mode 100644 +index 0000000..331e75b +--- /dev/null ++++ b/drivers/crypto/sunxi-ss/sunxi-ss.h +@@ -0,0 +1,193 @@ ++/* ++ * sunxi-ss.c - hardware cryptographic accelerator for Allwinner A20 SoC ++ * ++ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> ++ * ++ * Support AES cipher with 128,192,256 bits keysize. ++ * Support MD5 and SHA1 hash algorithms. ++ * Support DES and 3DES ++ * ++ * You could find the datasheet in Documentation/arm/sunxi/README ++ * ++ * Licensed under the GPL-2. ++ */ ++ ++#include <linux/clk.h> ++#include <linux/crypto.h> ++#include <linux/io.h> ++#include <linux/module.h> ++#include <linux/of.h> ++#include <linux/platform_device.h> ++#include <crypto/scatterwalk.h> ++#include <linux/scatterlist.h> ++#include <linux/interrupt.h> ++#include <linux/delay.h> ++#include <crypto/md5.h> ++#include <crypto/sha.h> ++#include <crypto/hash.h> ++#include <crypto/internal/hash.h> ++#include <crypto/aes.h> ++#include <crypto/des.h> ++#include <crypto/internal/rng.h> ++ ++#define SS_CTL 0x00 ++#define SS_KEY0 0x04 ++#define SS_KEY1 0x08 ++#define SS_KEY2 0x0C ++#define SS_KEY3 0x10 ++#define SS_KEY4 0x14 ++#define SS_KEY5 0x18 ++#define SS_KEY6 0x1C ++#define SS_KEY7 0x20 ++ ++#define SS_IV0 0x24 ++#define SS_IV1 0x28 ++#define SS_IV2 0x2C ++#define SS_IV3 0x30 ++ ++#define SS_CNT0 0x34 ++#define SS_CNT1 0x38 ++#define SS_CNT2 0x3C ++#define SS_CNT3 0x40 ++ ++#define SS_FCSR 0x44 ++#define SS_ICSR 0x48 ++ ++#define SS_MD0 0x4C ++#define SS_MD1 0x50 ++#define SS_MD2 0x54 ++#define SS_MD3 0x58 ++#define SS_MD4 0x5C ++ ++#define SS_RXFIFO 0x200 ++#define SS_TXFIFO 0x204 ++ ++/* SS_CTL configuration values */ ++ ++/* PRNG generator mode - bit 15 */ ++#define SS_PRNG_ONESHOT (0 << 15) ++#define SS_PRNG_CONTINUE (1 << 15) ++ ++/* IV mode for hash */ ++#define SS_IV_ARBITRARY (1 << 14) ++ ++/* SS operation mode - bits 12-13 */ ++#define SS_ECB (0 << 12) ++#define SS_CBC (1 << 12) ++#define SS_CNT (2 << 12) ++ ++/* Counter width for CNT mode - bits 10-11 */ ++#define SS_CNT_16BITS (0 << 10) ++#define SS_CNT_32BITS (1 << 10) ++#define SS_CNT_64BITS (2 << 10) ++ ++/* Key size for AES - bits 8-9 */ ++#define SS_AES_128BITS (0 << 8) ++#define SS_AES_192BITS (1 << 8) ++#define SS_AES_256BITS (2 << 8) ++ ++/* Operation direction - bit 7 */ ++#define SS_ENCRYPTION (0 << 7) ++#define SS_DECRYPTION (1 << 7) ++ ++/* SS Method - bits 4-6 */ ++#define SS_OP_AES (0 << 4) ++#define SS_OP_DES (1 << 4) ++#define SS_OP_3DES (2 << 4) ++#define SS_OP_SHA1 (3 << 4) ++#define SS_OP_MD5 (4 << 4) ++#define SS_OP_PRNG (5 << 4) ++ ++/* Data end bit - bit 2 */ ++#define SS_DATA_END (1 << 2) ++ ++/* PRNG start bit - bit 1 */ ++#define SS_PRNG_START (1 << 1) ++ ++/* SS Enable bit - bit 0 */ ++#define SS_DISABLED (0 << 0) ++#define SS_ENABLED (1 << 0) ++ ++/* SS_FCSR configuration values */ ++/* RX FIFO status - bit 30 */ ++#define SS_RXFIFO_FREE (1 << 30) ++ ++/* RX FIFO empty spaces - bits 24-29 */ ++#define SS_RXFIFO_SPACES(val) (((val) >> 24) & 0x3f) ++ ++/* TX FIFO status - bit 22 */ ++#define SS_TXFIFO_AVAILABLE (1 << 22) ++ ++/* TX FIFO available spaces - bits 16-21 */ ++#define SS_TXFIFO_SPACES(val) (((val) >> 16) & 0x3f) ++ ++#define SS_RXFIFO_EMP_INT_PENDING (1 << 10) ++#define SS_TXFIFO_AVA_INT_PENDING (1 << 8) ++#define SS_RXFIFO_EMP_INT_ENABLE (1 << 2) ++#define SS_TXFIFO_AVA_INT_ENABLE (1 << 0) ++ ++/* SS_ICSR configuration values */ ++#define SS_ICS_DRQ_ENABLE (1 << 4) ++ ++struct sunxi_ss_ctx { ++ void __iomem *base; ++ int irq; ++ struct clk *busclk; ++ struct clk *ssclk; ++ struct device *dev; ++ struct resource *res; ++ void *buf_in; /* pointer to data to be uploaded to the device */ ++ size_t buf_in_size; /* size of buf_in */ ++ void *buf_out; ++ size_t buf_out_size; ++ struct mutex lock; /* control the use of the device */ ++ struct mutex bufout_lock; /* control the use of buf_out*/ ++ struct mutex bufin_lock; /* control the sue of buf_in*/ ++}; ++ ++struct sunxi_tfm_ctx { ++ u32 key[AES_MAX_KEY_SIZE / 4];/* divided by sizeof(u32) */ ++ u32 keylen; ++ u32 keymode; ++}; ++ ++struct sunxi_req_ctx { ++ u32 mode; ++ u64 byte_count; /* number of bytes "uploaded" to the device */ ++ u32 wb; /* a partial word waiting to be completed and ++ uploaded to the device */ ++ /* number of bytes to be uploaded in the wb word */ ++ unsigned int nbw; ++ u32 hash[5]; ++ u32 wait[64]; ++ unsigned int nwait; ++}; ++ ++#define SS_SEED_LEN (192/8) ++#define SS_DATA_LEN (160/8) ++ ++struct prng_context { ++ u32 seed[SS_SEED_LEN/4]; ++ unsigned int slen; ++}; ++ ++int sunxi_hash_crainit(struct crypto_tfm *tfm); ++int sunxi_hash_init(struct ahash_request *areq); ++int sunxi_hash_update(struct ahash_request *areq); ++int sunxi_hash_final(struct ahash_request *areq); ++int sunxi_hash_finup(struct ahash_request *areq); ++int sunxi_hash_digest(struct ahash_request *areq); ++int sunxi_hash_export(struct ahash_request *areq, void *out); ++int sunxi_hash_import(struct ahash_request *areq, const void *in); ++ ++int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode); ++int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode); ++int sunxi_ss_cipher_init(struct crypto_tfm *tfm); ++int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq); ++int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq); ++int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen); ++int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen); ++int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ++ unsigned int keylen); |