aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch')
-rw-r--r--target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch1400
1 files changed, 0 insertions, 1400 deletions
diff --git a/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch b/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
deleted file mode 100644
index ba844fed0f..0000000000
--- a/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
+++ /dev/null
@@ -1,1400 +0,0 @@
-From e84e2430ee0e483842b4ff013ae8a6e7e2fa2734 Mon Sep 17 00:00:00 2001
-From: Weijie Gao <weijie.gao@mediatek.com>
-Date: Wed, 1 Apr 2020 02:07:58 +0800
-Subject: [PATCH 1/2] mtd: rawnand: add driver support for MT7621 nand
- flash controller
-
-This patch adds NAND flash controller driver for MediaTek MT7621 SoC.
-
-The NAND flash controller is similar with controllers described in
-mtk_nand.c, except that the controller from MT7621 doesn't support DMA
-transmission, and some registers' offset and fields are different.
-
-Signed-off-by: Weijie Gao <weijie.gao@mediatek.com>
----
- drivers/mtd/nand/raw/Kconfig | 8 +
- drivers/mtd/nand/raw/Makefile | 1 +
- drivers/mtd/nand/raw/mt7621_nand.c | 1348 ++++++++++++++++++++++++++++++++++++
- 3 files changed, 1357 insertions(+)
- create mode 100644 drivers/mtd/nand/raw/mt7621_nand.c
-
---- a/drivers/mtd/nand/raw/Kconfig
-+++ b/drivers/mtd/nand/raw/Kconfig
-@@ -391,6 +391,14 @@ config MTD_NAND_QCOM
- Enables support for NAND flash chips on SoCs containing the EBI2 NAND
- controller. This controller is found on IPQ806x SoC.
-
-+config MTD_NAND_MT7621
-+ tristate "MT7621 NAND controller"
-+ depends on SOC_MT7621 || COMPILE_TEST
-+ depends on HAS_IOMEM
-+ help
-+ Enables support for NAND controller on MT7621 SoC.
-+ This driver uses PIO mode for data transmission instead of DMA mode.
-+
- config MTD_NAND_MTK
- tristate "MTK NAND controller"
- depends on ARCH_MEDIATEK || COMPILE_TEST
---- a/drivers/mtd/nand/raw/Makefile
-+++ b/drivers/mtd/nand/raw/Makefile
-@@ -52,6 +52,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_n
- obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
- obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
- obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
-+obj-$(CONFIG_MTD_NAND_MT7621) += mt7621_nand.o
- obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
- obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
- obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
---- /dev/null
-+++ b/drivers/mtd/nand/raw/mt7621_nand.c
-@@ -0,0 +1,1350 @@
-+// SPDX-License-Identifier: GPL-2.0
-+/*
-+ * MediaTek MT7621 NAND Flash Controller driver
-+ *
-+ * Copyright (C) 2020 MediaTek Inc. All Rights Reserved.
-+ *
-+ * Author: Weijie Gao <weijie.gao@mediatek.com>
-+ */
-+
-+#include <linux/io.h>
-+#include <linux/clk.h>
-+#include <linux/init.h>
-+#include <linux/errno.h>
-+#include <linux/sizes.h>
-+#include <linux/iopoll.h>
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/mtd/mtd.h>
-+#include <linux/mtd/rawnand.h>
-+#include <linux/mtd/partitions.h>
-+#include <linux/platform_device.h>
-+#include <asm/addrspace.h>
-+
-+/* NFI core registers */
-+#define NFI_CNFG 0x000
-+#define CNFG_OP_MODE_S 12
-+#define CNFG_OP_MODE_M GENMASK(14, 12)
-+#define CNFG_OP_CUSTOM 6
-+#define CNFG_AUTO_FMT_EN BIT(9)
-+#define CNFG_HW_ECC_EN BIT(8)
-+#define CNFG_BYTE_RW BIT(6)
-+#define CNFG_READ_MODE BIT(1)
-+
-+#define NFI_PAGEFMT 0x004
-+#define PAGEFMT_FDM_ECC_S 12
-+#define PAGEFMT_FDM_ECC_M GENMASK(15, 12)
-+#define PAGEFMT_FDM_S 8
-+#define PAGEFMT_FDM_M GENMASK(11, 8)
-+#define PAGEFMT_SPARE_S 4
-+#define PAGEFMT_SPARE_M GENMASK(5, 4)
-+#define PAGEFMT_PAGE_S 0
-+#define PAGEFMT_PAGE_M GENMASK(1, 0)
-+
-+#define NFI_CON 0x008
-+#define CON_NFI_SEC_S 12
-+#define CON_NFI_SEC_M GENMASK(15, 12)
-+#define CON_NFI_BWR BIT(9)
-+#define CON_NFI_BRD BIT(8)
-+#define CON_NFI_RST BIT(1)
-+#define CON_FIFO_FLUSH BIT(0)
-+
-+#define NFI_ACCCON 0x00c
-+#define ACCCON_POECS_S 28
-+#define ACCCON_POECS_MAX 0x0f
-+#define ACCCON_POECS_DEF 3
-+#define ACCCON_PRECS_S 22
-+#define ACCCON_PRECS_MAX 0x3f
-+#define ACCCON_PRECS_DEF 3
-+#define ACCCON_C2R_S 16
-+#define ACCCON_C2R_MAX 0x3f
-+#define ACCCON_C2R_DEF 7
-+#define ACCCON_W2R_S 12
-+#define ACCCON_W2R_MAX 0x0f
-+#define ACCCON_W2R_DEF 7
-+#define ACCCON_WH_S 8
-+#define ACCCON_WH_MAX 0x0f
-+#define ACCCON_WH_DEF 15
-+#define ACCCON_WST_S 4
-+#define ACCCON_WST_MAX 0x0f
-+#define ACCCON_WST_DEF 15
-+#define ACCCON_WST_MIN 3
-+#define ACCCON_RLT_S 0
-+#define ACCCON_RLT_MAX 0x0f
-+#define ACCCON_RLT_DEF 15
-+#define ACCCON_RLT_MIN 3
-+
-+#define NFI_CMD 0x020
-+
-+#define NFI_ADDRNOB 0x030
-+#define ADDR_ROW_NOB_S 4
-+#define ADDR_ROW_NOB_M GENMASK(6, 4)
-+#define ADDR_COL_NOB_S 0
-+#define ADDR_COL_NOB_M GENMASK(2, 0)
-+
-+#define NFI_COLADDR 0x034
-+#define NFI_ROWADDR 0x038
-+
-+#define NFI_STRDATA 0x040
-+#define STR_DATA BIT(0)
-+
-+#define NFI_CNRNB 0x044
-+#define CB2R_TIME_S 4
-+#define CB2R_TIME_M GENMASK(7, 4)
-+#define STR_CNRNB BIT(0)
-+
-+#define NFI_DATAW 0x050
-+#define NFI_DATAR 0x054
-+
-+#define NFI_PIO_DIRDY 0x058
-+#define PIO_DIRDY BIT(0)
-+
-+#define NFI_STA 0x060
-+#define STA_NFI_FSM_S 16
-+#define STA_NFI_FSM_M GENMASK(19, 16)
-+#define STA_FSM_CUSTOM_DATA 14
-+#define STA_BUSY BIT(8)
-+#define STA_ADDR BIT(1)
-+#define STA_CMD BIT(0)
-+
-+#define NFI_ADDRCNTR 0x070
-+#define SEC_CNTR_S 12
-+#define SEC_CNTR_M GENMASK(15, 12)
-+#define SEC_ADDR_S 0
-+#define SEC_ADDR_M GENMASK(9, 0)
-+
-+#define NFI_CSEL 0x090
-+#define CSEL_S 0
-+#define CSEL_M GENMASK(1, 0)
-+
-+#define NFI_FDM0L 0x0a0
-+#define NFI_FDML(n) (0x0a0 + ((n) << 3))
-+
-+#define NFI_FDM0M 0x0a4
-+#define NFI_FDMM(n) (0x0a4 + ((n) << 3))
-+
-+#define NFI_MASTER_STA 0x210
-+#define MAS_ADDR GENMASK(11, 9)
-+#define MAS_RD GENMASK(8, 6)
-+#define MAS_WR GENMASK(5, 3)
-+#define MAS_RDDLY GENMASK(2, 0)
-+
-+/* ECC engine registers */
-+#define ECC_ENCCON 0x000
-+#define ENC_EN BIT(0)
-+
-+#define ECC_ENCCNFG 0x004
-+#define ENC_CNFG_MSG_S 16
-+#define ENC_CNFG_MSG_M GENMASK(28, 16)
-+#define ENC_MODE_S 4
-+#define ENC_MODE_M GENMASK(5, 4)
-+#define ENC_MODE_NFI 1
-+#define ENC_TNUM_S 0
-+#define ENC_TNUM_M GENMASK(2, 0)
-+
-+#define ECC_ENCIDLE 0x00c
-+#define ENC_IDLE BIT(0)
-+
-+#define ECC_DECCON 0x100
-+#define DEC_EN BIT(0)
-+
-+#define ECC_DECCNFG 0x104
-+#define DEC_EMPTY_EN BIT(31)
-+#define DEC_CS_S 16
-+#define DEC_CS_M GENMASK(28, 16)
-+#define DEC_CON_S 12
-+#define DEC_CON_M GENMASK(13, 12)
-+#define DEC_CON_EL 2
-+#define DEC_MODE_S 4
-+#define DEC_MODE_M GENMASK(5, 4)
-+#define DEC_MODE_NFI 1
-+#define DEC_TNUM_S 0
-+#define DEC_TNUM_M GENMASK(2, 0)
-+
-+#define ECC_DECIDLE 0x10c
-+#define DEC_IDLE BIT(1)
-+
-+#define ECC_DECENUM 0x114
-+#define ERRNUM_S 2
-+#define ERRNUM_M GENMASK(3, 0)
-+
-+#define ECC_DECDONE 0x118
-+#define DEC_DONE7 BIT(7)
-+#define DEC_DONE6 BIT(6)
-+#define DEC_DONE5 BIT(5)
-+#define DEC_DONE4 BIT(4)
-+#define DEC_DONE3 BIT(3)
-+#define DEC_DONE2 BIT(2)
-+#define DEC_DONE1 BIT(1)
-+#define DEC_DONE0 BIT(0)
-+
-+#define ECC_DECEL(n) (0x11c + (n) * 4)
-+#define DEC_EL_ODD_S 16
-+#define DEC_EL_EVEN_S 0
-+#define DEC_EL_M 0x1fff
-+#define DEC_EL_BYTE_POS_S 3
-+#define DEC_EL_BIT_POS_M GENMASK(3, 0)
-+
-+#define ECC_FDMADDR 0x13c
-+
-+/* ENCIDLE and DECIDLE */
-+#define ECC_IDLE BIT(0)
-+
-+#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
-+ ((tpoecs) << ACCCON_POECS_S | (tprecs) << ACCCON_PRECS_S | \
-+ (tc2r) << ACCCON_C2R_S | (tw2r) << ACCCON_W2R_S | \
-+ (twh) << ACCCON_WH_S | (twst) << ACCCON_WST_S | (trlt))
-+
-+#define MASTER_STA_MASK (MAS_ADDR | MAS_RD | MAS_WR | \
-+ MAS_RDDLY)
-+#define NFI_RESET_TIMEOUT 1000000
-+#define NFI_CORE_TIMEOUT 500000
-+#define ECC_ENGINE_TIMEOUT 500000
-+
-+#define ECC_SECTOR_SIZE 512
-+#define ECC_PARITY_BITS 13
-+
-+#define NFI_FDM_SIZE 8
-+
-+#define MT7621_NFC_NAME "mt7621-nand"
-+
-+struct mt7621_nfc {
-+ struct nand_controller controller;
-+ struct nand_chip nand;
-+ struct clk *nfi_clk;
-+ struct device *dev;
-+
-+ void __iomem *nfi_regs;
-+ void __iomem *ecc_regs;
-+
-+ u32 spare_per_sector;
-+};
-+
-+static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K };
-+static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 };
-+static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 };
-+
-+static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg)
-+{
-+ return readl(nfc->nfi_regs + reg);
-+}
-+
-+static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
-+{
-+ writel(val, nfc->nfi_regs + reg);
-+}
-+
-+static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg)
-+{
-+ return readw(nfc->nfi_regs + reg);
-+}
-+
-+static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
-+{
-+ writew(val, nfc->nfi_regs + reg);
-+}
-+
-+static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
-+{
-+ writew(val, nfc->ecc_regs + reg);
-+}
-+
-+static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg)
-+{
-+ return readl(nfc->ecc_regs + reg);
-+}
-+
-+static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
-+{
-+ return writel(val, nfc->ecc_regs + reg);
-+}
-+
-+static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect)
-+{
-+ return nand->oob_poi + sect * NFI_FDM_SIZE;
-+}
-+
-+static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+
-+ return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE +
-+ sect * (nfc->spare_per_sector - NFI_FDM_SIZE);
-+}
-+
-+static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf,
-+ int sect)
-+{
-+ return (u8 *)buf + sect * nand->ecc.size;
-+}
-+
-+static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg)
-+{
-+ struct device *dev = nfc->dev;
-+ u32 val;
-+ int ret;
-+
-+ ret = readw_poll_timeout_atomic(nfc->ecc_regs + reg, val,
-+ val & ECC_IDLE, 10,
-+ ECC_ENGINE_TIMEOUT);
-+ if (ret) {
-+ dev_warn(dev, "ECC engine timed out entering idle mode\n");
-+ return -EIO;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect)
-+{
-+ struct device *dev = nfc->dev;
-+ u32 val;
-+ int ret;
-+
-+ ret = readw_poll_timeout_atomic(nfc->ecc_regs + ECC_DECDONE, val,
-+ val & (1 << sect), 10,
-+ ECC_ENGINE_TIMEOUT);
-+
-+ if (ret) {
-+ dev_warn(dev, "ECC decoder for sector %d timed out\n",
-+ sect);
-+ return -ETIMEDOUT;
-+ }
-+
-+ return 0;
-+}
-+
-+static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable)
-+{
-+ mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE);
-+ ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0);
-+}
-+
-+static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable)
-+{
-+ mt7621_ecc_wait_idle(nfc, ECC_DECIDLE);
-+ ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0);
-+}
-+
-+static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf,
-+ u8 *fdm_buf, u32 sect)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ u32 decnum, num_error_bits, fdm_end_bits;
-+ u32 error_locations, error_bit_loc;
-+ u32 error_byte_pos, error_bit_pos;
-+ int bitflips = 0;
-+ u32 i;
-+
-+ decnum = ecc_read32(nfc, ECC_DECENUM);
-+ num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M;
-+ fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3;
-+
-+ if (!num_error_bits)
-+ return 0;
-+
-+ if (num_error_bits == ERRNUM_M)
-+ return -1;
-+
-+ for (i = 0; i < num_error_bits; i++) {
-+ error_locations = ecc_read32(nfc, ECC_DECEL(i / 2));
-+ error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) &
-+ DEC_EL_M;
-+ error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S;
-+ error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M;
-+
-+ if (error_bit_loc < (nand->ecc.size << 3)) {
-+ if (sector_buf) {
-+ sector_buf[error_byte_pos] ^=
-+ (1 << error_bit_pos);
-+ }
-+ } else if (error_bit_loc < fdm_end_bits) {
-+ if (fdm_buf) {
-+ fdm_buf[error_byte_pos - nand->ecc.size] ^=
-+ (1 << error_bit_pos);
-+ }
-+ }
-+
-+ bitflips++;
-+ }
-+
-+ return bitflips;
-+}
-+
-+static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc,
-+ struct nand_chip *nand)
-+{
-+ struct device *dev = nfc->dev;
-+ u16 val;
-+ int ret;
-+
-+ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_ADDRCNTR, val,
-+ ((val & SEC_CNTR_M) >> SEC_CNTR_S) >= nand->ecc.steps, 10,
-+ NFI_CORE_TIMEOUT);
-+
-+ if (ret) {
-+ dev_warn(dev, "NFI core write operation timed out\n");
-+ return -ETIMEDOUT;
-+ }
-+
-+ return ret;
-+}
-+
-+static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc)
-+{
-+ u32 val;
-+ int ret;
-+
-+ /* reset all registers and force the NFI master to terminate */
-+ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
-+
-+ /* wait for the master to finish the last transaction */
-+ ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val,
-+ !(val & MASTER_STA_MASK), 50,
-+ NFI_RESET_TIMEOUT);
-+ if (ret) {
-+ dev_warn(nfc->dev, "Failed to reset NFI master in %dms\n",
-+ NFI_RESET_TIMEOUT);
-+ }
-+
-+ /* ensure any status register affected by the NFI master is reset */
-+ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
-+ nfi_write16(nfc, NFI_STRDATA, 0);
-+}
-+
-+static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc)
-+{
-+ u32 acccon;
-+
-+ /*
-+ * CNRNB: nand ready/busy register
-+ * -------------------------------
-+ * 7:4: timeout register for polling the NAND busy/ready signal
-+ * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
-+ */
-+ nfi_write16(nfc, NFI_CNRNB, CB2R_TIME_M | STR_CNRNB);
-+
-+ mt7621_nfc_hw_reset(nfc);
-+
-+ /* Apply default access timing */
-+ acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF,
-+ ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF,
-+ ACCCON_RLT_DEF);
-+
-+ nfi_write32(nfc, NFI_ACCCON, acccon);
-+}
-+
-+static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command)
-+{
-+ struct device *dev = nfc->dev;
-+ u32 val;
-+ int ret;
-+
-+ nfi_write32(nfc, NFI_CMD, command);
-+
-+ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
-+ !(val & STA_CMD), 10,
-+ NFI_CORE_TIMEOUT);
-+ if (ret) {
-+ dev_warn(dev, "NFI core timed out entering command mode\n");
-+ return -EIO;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr)
-+{
-+ struct device *dev = nfc->dev;
-+ u32 val;
-+ int ret;
-+
-+ nfi_write32(nfc, NFI_COLADDR, addr);
-+ nfi_write32(nfc, NFI_ROWADDR, 0);
-+ nfi_write16(nfc, NFI_ADDRNOB, 1);
-+
-+ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
-+ !(val & STA_ADDR), 10,
-+ NFI_CORE_TIMEOUT);
-+ if (ret) {
-+ dev_warn(dev, "NFI core timed out entering address mode\n");
-+ return -EIO;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_send_address(struct mt7621_nfc *nfc, const u8 *addr,
-+ unsigned int naddrs)
-+{
-+ int ret;
-+
-+ while (naddrs) {
-+ ret = mt7621_nfc_send_address_byte(nfc, *addr);
-+ if (ret)
-+ return ret;
-+
-+ addr++;
-+ naddrs--;
-+ }
-+
-+ return 0;
-+}
-+
-+static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc)
-+{
-+ struct device *dev = nfc->dev;
-+ int ret;
-+ u16 val;
-+
-+ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_PIO_DIRDY, val,
-+ val & PIO_DIRDY, 10,
-+ NFI_CORE_TIMEOUT);
-+ if (ret < 0)
-+ dev_err(dev, "NFI core PIO mode not ready\n");
-+}
-+
-+static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br)
-+{
-+ u32 reg;
-+
-+ /* after each byte read, the NFI_STA reg is reset by the hardware */
-+ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S;
-+ if (reg != STA_FSM_CUSTOM_DATA) {
-+ reg = nfi_read16(nfc, NFI_CNFG);
-+ reg |= CNFG_READ_MODE | CNFG_BYTE_RW;
-+ if (!br)
-+ reg &= ~CNFG_BYTE_RW;
-+ nfi_write16(nfc, NFI_CNFG, reg);
-+
-+ /*
-+ * set to max sector to allow the HW to continue reading over
-+ * unaligned accesses
-+ */
-+ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BRD);
-+
-+ /* trigger to fetch data */
-+ nfi_write16(nfc, NFI_STRDATA, STR_DATA);
-+ }
-+
-+ mt7621_nfc_wait_pio_ready(nfc);
-+
-+ return nfi_read32(nfc, NFI_DATAR);
-+}
-+
-+static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len)
-+{
-+ while (((uintptr_t)buf & 3) && len) {
-+ *buf = mt7621_nfc_pio_read(nfc, true);
-+ buf++;
-+ len--;
-+ }
-+
-+ while (len >= 4) {
-+ *(u32 *)buf = mt7621_nfc_pio_read(nfc, false);
-+ buf += 4;
-+ len -= 4;
-+ }
-+
-+ while (len) {
-+ *buf = mt7621_nfc_pio_read(nfc, true);
-+ buf++;
-+ len--;
-+ }
-+}
-+
-+static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len)
-+{
-+ while (len >= 4) {
-+ mt7621_nfc_pio_read(nfc, false);
-+ len -= 4;
-+ }
-+
-+ while (len) {
-+ mt7621_nfc_pio_read(nfc, true);
-+ len--;
-+ }
-+}
-+
-+static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw)
-+{
-+ u32 reg;
-+
-+ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S;
-+ if (reg != STA_FSM_CUSTOM_DATA) {
-+ reg = nfi_read16(nfc, NFI_CNFG);
-+ reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW);
-+ if (bw)
-+ reg |= CNFG_BYTE_RW;
-+ nfi_write16(nfc, NFI_CNFG, reg);
-+
-+ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BWR);
-+ nfi_write16(nfc, NFI_STRDATA, STR_DATA);
-+ }
-+
-+ mt7621_nfc_wait_pio_ready(nfc);
-+ nfi_write32(nfc, NFI_DATAW, val);
-+}
-+
-+static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf,
-+ u32 len)
-+{
-+ while (((uintptr_t)buf & 3) && len) {
-+ mt7621_nfc_pio_write(nfc, *buf, true);
-+ buf++;
-+ len--;
-+ }
-+
-+ while (len >= 4) {
-+ mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false);
-+ buf += 4;
-+ len -= 4;
-+ }
-+
-+ while (len) {
-+ mt7621_nfc_pio_write(nfc, *buf, true);
-+ buf++;
-+ len--;
-+ }
-+}
-+
-+static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len)
-+{
-+ while (len >= 4) {
-+ mt7621_nfc_pio_write(nfc, 0xffffffff, false);
-+ len -= 4;
-+ }
-+
-+ while (len) {
-+ mt7621_nfc_pio_write(nfc, 0xff, true);
-+ len--;
-+ }
-+}
-+
-+static int mt7621_nfc_dev_ready(struct mt7621_nfc *nfc,
-+ unsigned int timeout_ms)
-+{
-+ u32 val;
-+
-+ return readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
-+ !(val & STA_BUSY), 10,
-+ timeout_ms * 1000);
-+}
-+
-+static int mt7621_nfc_exec_instr(struct nand_chip *nand,
-+ const struct nand_op_instr *instr)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+
-+ switch (instr->type) {
-+ case NAND_OP_CMD_INSTR:
-+ mt7621_nfc_hw_reset(nfc);
-+ nfi_write16(nfc, NFI_CNFG, CNFG_OP_CUSTOM << CNFG_OP_MODE_S);
-+ return mt7621_nfc_send_command(nfc, instr->ctx.cmd.opcode);
-+ case NAND_OP_ADDR_INSTR:
-+ return mt7621_nfc_send_address(nfc, instr->ctx.addr.addrs,
-+ instr->ctx.addr.naddrs);
-+ case NAND_OP_DATA_IN_INSTR:
-+ mt7621_nfc_read_data(nfc, instr->ctx.data.buf.in,
-+ instr->ctx.data.len);
-+ return 0;
-+ case NAND_OP_DATA_OUT_INSTR:
-+ mt7621_nfc_write_data(nfc, instr->ctx.data.buf.out,
-+ instr->ctx.data.len);
-+ return 0;
-+ case NAND_OP_WAITRDY_INSTR:
-+ return mt7621_nfc_dev_ready(nfc,
-+ instr->ctx.waitrdy.timeout_ms);
-+ default:
-+ WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
-+ instr->type);
-+
-+ return -EINVAL;
-+ }
-+}
-+
-+static int mt7621_nfc_exec_op(struct nand_chip *nand,
-+ const struct nand_operation *op, bool check_only)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ int i, ret;
-+
-+ if (check_only)
-+ return 0;
-+
-+ /* Only CS0 available */
-+ nfi_write16(nfc, NFI_CSEL, 0);
-+
-+ for (i = 0; i < op->ninstrs; i++) {
-+ ret = mt7621_nfc_exec_instr(nand, &op->instrs[i]);
-+ if (ret)
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_setup_data_interface(struct nand_chip *nand, int csline,
-+ const struct nand_data_interface *conf)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ const struct nand_sdr_timings *timings;
-+ u32 acccon, temp, rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
-+
-+ if (!nfc->nfi_clk)
-+ return -ENOTSUPP;
-+
-+ timings = nand_get_sdr_timings(conf);
-+ if (IS_ERR(timings))
-+ return -ENOTSUPP;
-+
-+ rate = clk_get_rate(nfc->nfi_clk);
-+
-+ /* turn clock rate into KHZ */
-+ rate /= 1000;
-+
-+ tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
-+ tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
-+ tpoecs = min_t(u32, tpoecs, ACCCON_POECS_MAX);
-+
-+ tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
-+ tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
-+ tprecs = min_t(u32, tprecs, ACCCON_PRECS_MAX);
-+
-+ /* sdr interface has no tCR which means CE# low to RE# low */
-+ tc2r = 0;
-+
-+ tw2r = timings->tWHR_min / 1000;
-+ tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
-+ tw2r = DIV_ROUND_UP(tw2r - 1, 2);
-+ tw2r = min_t(u32, tw2r, ACCCON_W2R_MAX);
-+
-+ twh = max(timings->tREH_min, timings->tWH_min) / 1000;
-+ twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
-+ twh = min_t(u32, twh, ACCCON_WH_MAX);
-+
-+ /* Calculate real WE#/RE# hold time in nanosecond */
-+ temp = (twh + 1) * 1000000 / rate;
-+ /* nanosecond to picosecond */
-+ temp *= 1000;
-+
-+ /*
-+ * WE# low level time should be expaned to meet WE# pulse time
-+ * and WE# cycle time at the same time.
-+ */
-+ if (temp < timings->tWC_min)
-+ twst = timings->tWC_min - temp;
-+ else
-+ twst = 0;
-+ twst = max(timings->tWP_min, twst) / 1000;
-+ twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
-+ twst = min_t(u32, twst, ACCCON_WST_MAX);
-+
-+ /*
-+ * RE# low level time should be expaned to meet RE# pulse time
-+ * and RE# cycle time at the same time.
-+ */
-+ if (temp < timings->tRC_min)
-+ trlt = timings->tRC_min - temp;
-+ else
-+ trlt = 0;
-+ trlt = max(trlt, timings->tRP_min) / 1000;
-+ trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
-+ trlt = min_t(u32, trlt, ACCCON_RLT_MAX);
-+
-+ if (csline == NAND_DATA_IFACE_CHECK_ONLY) {
-+ if (twst < ACCCON_WST_MIN || trlt < ACCCON_RLT_MIN)
-+ return -ENOTSUPP;
-+ }
-+
-+ acccon = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
-+
-+ dev_info(nfc->dev, "Using programmed access timing: %08x\n", acccon);
-+
-+ nfi_write32(nfc, NFI_ACCCON, acccon);
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc,
-+ u32 avail_ecc_bytes)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ u32 strength;
-+ int i;
-+
-+ strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS;
-+
-+ /* Find the closest supported ecc strength */
-+ for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) {
-+ if (mt7621_ecc_strength[i] <= strength)
-+ break;
-+ }
-+
-+ if (unlikely(i < 0)) {
-+ dev_err(nfc->dev, "OOB size (%u) is not supported\n",
-+ mtd->oobsize);
-+ return -EINVAL;
-+ }
-+
-+ nand->ecc.strength = mt7621_ecc_strength[i];
-+ nand->ecc.bytes =
-+ DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
-+
-+ dev_info(nfc->dev, "ECC strength adjusted to %u bits\n",
-+ nand->ecc.strength);
-+
-+ return i;
-+}
-+
-+static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ u32 size;
-+ int i;
-+
-+ size = nand->ecc.bytes + NFI_FDM_SIZE;
-+
-+ /* Find the closest supported spare size */
-+ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) {
-+ if (mt7621_nfi_spare_size[i] >= size)
-+ break;
-+ }
-+
-+ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) {
-+ dev_err(nfc->dev, "OOB size (%u) is not supported\n",
-+ mtd->oobsize);
-+ return -EINVAL;
-+ }
-+
-+ nfc->spare_per_sector = mt7621_nfi_spare_size[i];
-+
-+ return i;
-+}
-+
-+static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ u32 spare_per_sector, encode_block_size, decode_block_size;
-+ u32 ecc_enccfg, ecc_deccfg;
-+ int ecc_cap;
-+
-+ /* Only hardware ECC mode is supported */
-+ if (nand->ecc.mode != NAND_ECC_HW_SYNDROME) {
-+ dev_err(nfc->dev, "Only hardware ECC mode is supported\n");
-+ return -EINVAL;
-+ }
-+
-+ nand->ecc.size = ECC_SECTOR_SIZE;
-+ nand->ecc.steps = mtd->writesize / nand->ecc.size;
-+
-+ spare_per_sector = mtd->oobsize / nand->ecc.steps;
-+
-+ ecc_cap = mt7621_nfc_calc_ecc_strength(nfc,
-+ spare_per_sector - NFI_FDM_SIZE);
-+ if (ecc_cap < 0)
-+ return ecc_cap;
-+
-+ /* Sector + FDM */
-+ encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8;
-+ ecc_enccfg = ecc_cap | (ENC_MODE_NFI << ENC_MODE_S) |
-+ (encode_block_size << ENC_CNFG_MSG_S);
-+
-+ /* Sector + FDM + ECC parity bits */
-+ decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) +
-+ nand->ecc.strength * ECC_PARITY_BITS;
-+ ecc_deccfg = ecc_cap | (DEC_MODE_NFI << DEC_MODE_S) |
-+ (decode_block_size << DEC_CS_S) |
-+ (DEC_CON_EL << DEC_CON_S) | DEC_EMPTY_EN;
-+
-+ mt7621_ecc_encoder_op(nfc, false);
-+ ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg);
-+
-+ mt7621_ecc_decoder_op(nfc, false);
-+ ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg);
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ int i, spare_size;
-+ u32 pagefmt;
-+
-+ spare_size = mt7621_nfc_set_spare_per_sector(nfc);
-+ if (spare_size < 0)
-+ return spare_size;
-+
-+ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) {
-+ if (mt7621_nfi_page_size[i] == mtd->writesize)
-+ break;
-+ }
-+
-+ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) {
-+ dev_err(nfc->dev, "Page size (%u) is not supported\n",
-+ mtd->writesize);
-+ return -EINVAL;
-+ }
-+
-+ pagefmt = i | (spare_size << PAGEFMT_SPARE_S) |
-+ (NFI_FDM_SIZE << PAGEFMT_FDM_S) |
-+ (NFI_FDM_SIZE << PAGEFMT_FDM_ECC_S);
-+
-+ nfi_write16(nfc, NFI_PAGEFMT, pagefmt);
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_attach_chip(struct nand_chip *nand)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ int ret;
-+
-+ if (nand->options & NAND_BUSWIDTH_16) {
-+ dev_err(nfc->dev, "16-bit buswidth is not supported");
-+ return -EINVAL;
-+ }
-+
-+ ret = mt7621_nfc_ecc_init(nfc);
-+ if (ret)
-+ return ret;
-+
-+ return mt7621_nfc_set_page_format(nfc);
-+}
-+
-+static const struct nand_controller_ops mt7621_nfc_controller_ops = {
-+ .attach_chip = mt7621_nfc_attach_chip,
-+ .exec_op = mt7621_nfc_exec_op,
-+ .setup_data_interface = mt7621_nfc_setup_data_interface,
-+};
-+
-+static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section,
-+ struct mtd_oob_region *oob_region)
-+{
-+ struct nand_chip *nand = mtd_to_nand(mtd);
-+
-+ if (section >= nand->ecc.steps)
-+ return -ERANGE;
-+
-+ oob_region->length = NFI_FDM_SIZE - 1;
-+ oob_region->offset = section * NFI_FDM_SIZE + 1;
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
-+ struct mtd_oob_region *oob_region)
-+{
-+ struct nand_chip *nand = mtd_to_nand(mtd);
-+
-+ if (section)
-+ return -ERANGE;
-+
-+ oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps;
-+ oob_region->length = mtd->oobsize - oob_region->offset;
-+
-+ return 0;
-+}
-+
-+static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = {
-+ .free = mt7621_nfc_ooblayout_free,
-+ .ecc = mt7621_nfc_ooblayout_ecc,
-+};
-+
-+static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ u32 vall, valm;
-+ u8 *oobptr;
-+ int i, j;
-+
-+ for (i = 0; i < nand->ecc.steps; i++) {
-+ vall = 0;
-+ valm = 0;
-+ oobptr = oob_fdm_ptr(nand, i);
-+
-+ for (j = 0; j < 4; j++)
-+ vall |= (u32)oobptr[j] << (j * 8);
-+
-+ for (j = 0; j < 4; j++)
-+ valm |= (u32)oobptr[j + 4] << ((j - 4) * 8);
-+
-+ nfi_write32(nfc, NFI_FDML(i), vall);
-+ nfi_write32(nfc, NFI_FDMM(i), valm);
-+ }
-+}
-+
-+static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ u32 vall, valm;
-+ u8 *oobptr;
-+ int i;
-+
-+ vall = nfi_read32(nfc, NFI_FDML(sect));
-+ valm = nfi_read32(nfc, NFI_FDMM(sect));
-+ oobptr = oob_fdm_ptr(nand, sect);
-+
-+ for (i = 0; i < 4; i++)
-+ oobptr[i] = (vall >> (i * 8)) & 0xff;
-+
-+ for (i = 0; i < 4; i++)
-+ oobptr[i + 4] = (valm >> (i * 8)) & 0xff;
-+}
-+
-+static int mt7621_nfc_read_page_hwecc(struct nand_chip *nand, uint8_t *buf,
-+ int oob_required, int page)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ int bitflips = 0;
-+ int rc, i;
-+
-+ nand_read_page_op(nand, page, 0, NULL, 0);
-+
-+ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
-+ CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
-+
-+ mt7621_ecc_decoder_op(nfc, true);
-+
-+ nfi_write16(nfc, NFI_CON,
-+ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S));
-+
-+ for (i = 0; i < nand->ecc.steps; i++) {
-+ if (buf)
-+ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
-+ nand->ecc.size);
-+ else
-+ mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
-+
-+ rc = mt7621_ecc_decoder_wait_done(nfc, i);
-+
-+ mt7621_nfc_read_sector_fdm(nfc, i);
-+
-+ if (rc < 0) {
-+ bitflips = -EIO;
-+ continue;
-+ }
-+
-+ rc = mt7621_ecc_correct_check(nfc,
-+ buf ? page_data_ptr(nand, buf, i) : NULL,
-+ oob_fdm_ptr(nand, i), i);
-+
-+ if (rc < 0) {
-+ dev_warn(nfc->dev,
-+ "Uncorrectable ECC error at page %d.%d\n",
-+ page, i);
-+ bitflips = -EBADMSG;
-+ mtd->ecc_stats.failed++;
-+ } else if (bitflips >= 0) {
-+ bitflips += rc;
-+ mtd->ecc_stats.corrected += rc;
-+ }
-+ }
-+
-+ mt7621_ecc_decoder_op(nfc, false);
-+
-+ nfi_write16(nfc, NFI_CON, 0);
-+
-+ return bitflips;
-+}
-+
-+static int mt7621_nfc_read_page_raw(struct nand_chip *nand, uint8_t *buf,
-+ int oob_required, int page)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ int i;
-+
-+ nand_read_page_op(nand, page, 0, NULL, 0);
-+
-+ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
-+ CNFG_READ_MODE);
-+
-+ nfi_write16(nfc, NFI_CON,
-+ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S));
-+
-+ for (i = 0; i < nand->ecc.steps; i++) {
-+ /* Read data */
-+ if (buf)
-+ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
-+ nand->ecc.size);
-+ else
-+ mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
-+
-+ /* Read FDM */
-+ mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE);
-+
-+ /* Read ECC parity data */
-+ mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i),
-+ nfc->spare_per_sector - NFI_FDM_SIZE);
-+ }
-+
-+ nfi_write16(nfc, NFI_CON, 0);
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_read_oob_hwecc(struct nand_chip *nand, int page)
-+{
-+ return mt7621_nfc_read_page_hwecc(nand, NULL, 1, page);
-+}
-+
-+static int mt7621_nfc_read_oob_raw(struct nand_chip *nand, int page)
-+{
-+ return mt7621_nfc_read_page_raw(nand, NULL, 1, page);
-+}
-+
-+static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf)
-+{
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+ uint32_t i, j;
-+ u8 *oobptr;
-+
-+ if (buf) {
-+ for (i = 0; i < mtd->writesize; i++)
-+ if (buf[i] != 0xff)
-+ return 0;
-+ }
-+
-+ for (i = 0; i < nand->ecc.steps; i++) {
-+ oobptr = oob_fdm_ptr(nand, i);
-+ for (j = 0; j < NFI_FDM_SIZE; j++)
-+ if (oobptr[j] != 0xff)
-+ return 0;
-+ }
-+
-+ return 1;
-+}
-+
-+static int mt7621_nfc_write_page_hwecc(struct nand_chip *nand,
-+ const uint8_t *buf, int oob_required,
-+ int page)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ struct mtd_info *mtd = nand_to_mtd(nand);
-+
-+ if (mt7621_nfc_check_empty_page(nand, buf)) {
-+ /*
-+ * MT7621 ECC engine always generates parity code for input
-+ * pages, even for empty pages. Doing so will write back ECC
-+ * parity code to the oob region, which means such pages will
-+ * no longer be empty pages.
-+ *
-+ * To avoid this, stop write operation if current page is an
-+ * empty page.
-+ */
-+ return 0;
-+ }
-+
-+ nand_prog_page_begin_op(nand, page, 0, NULL, 0);
-+
-+ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
-+ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
-+
-+ mt7621_ecc_encoder_op(nfc, true);
-+
-+ mt7621_nfc_write_fdm(nfc);
-+
-+ nfi_write16(nfc, NFI_CON,
-+ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S));
-+
-+ if (buf)
-+ mt7621_nfc_write_data(nfc, buf, mtd->writesize);
-+ else
-+ mt7621_nfc_write_data_empty(nfc, mtd->writesize);
-+
-+ mt7621_nfc_wait_write_completion(nfc, nand);
-+
-+ mt7621_ecc_encoder_op(nfc, false);
-+
-+ nfi_write16(nfc, NFI_CON, 0);
-+
-+ return nand_prog_page_end_op(nand);
-+}
-+
-+static int mt7621_nfc_write_page_raw(struct nand_chip *nand,
-+ const uint8_t *buf, int oob_required,
-+ int page)
-+{
-+ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
-+ int i;
-+
-+ nand_prog_page_begin_op(nand, page, 0, NULL, 0);
-+
-+ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S));
-+
-+ nfi_write16(nfc, NFI_CON,
-+ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S));
-+
-+ for (i = 0; i < nand->ecc.steps; i++) {
-+ /* Write data */
-+ if (buf)
-+ mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i),
-+ nand->ecc.size);
-+ else
-+ mt7621_nfc_write_data_empty(nfc, nand->ecc.size);
-+
-+ /* Write FDM */
-+ mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i),
-+ NFI_FDM_SIZE);
-+
-+ /* Write dummy ECC parity data */
-+ mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector -
-+ NFI_FDM_SIZE);
-+ }
-+
-+ mt7621_nfc_wait_write_completion(nfc, nand);
-+
-+ nfi_write16(nfc, NFI_CON, 0);
-+
-+ return nand_prog_page_end_op(nand);
-+}
-+
-+static int mt7621_nfc_write_oob_hwecc(struct nand_chip *nand, int page)
-+{
-+ return mt7621_nfc_write_page_hwecc(nand, NULL, 1, page);
-+}
-+
-+static int mt7621_nfc_write_oob_raw(struct nand_chip *nand, int page)
-+{
-+ return mt7621_nfc_write_page_raw(nand, NULL, 1, page);
-+}
-+
-+static int mt7621_nfc_init_chip(struct mt7621_nfc *nfc)
-+{
-+ struct nand_chip *nand = &nfc->nand;
-+ struct mtd_info *mtd;
-+ int ret;
-+
-+ nand->controller = &nfc->controller;
-+ nand_set_controller_data(nand, (void *)nfc);
-+ nand_set_flash_node(nand, nfc->dev->of_node);
-+
-+ nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE;
-+ if (!nfc->nfi_clk)
-+ nand->options |= NAND_KEEP_TIMINGS;
-+
-+ nand->ecc.mode = NAND_ECC_HW_SYNDROME;
-+ nand->ecc.read_page = mt7621_nfc_read_page_hwecc;
-+ nand->ecc.read_page_raw = mt7621_nfc_read_page_raw;
-+ nand->ecc.write_page = mt7621_nfc_write_page_hwecc;
-+ nand->ecc.write_page_raw = mt7621_nfc_write_page_raw;
-+ nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc;
-+ nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw;
-+ nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc;
-+ nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw;
-+
-+ mtd = nand_to_mtd(nand);
-+ mtd->owner = THIS_MODULE;
-+ mtd->dev.parent = nfc->dev;
-+ mtd->name = MT7621_NFC_NAME;
-+ mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops);
-+
-+ mt7621_nfc_hw_init(nfc);
-+
-+ ret = nand_scan(nand, 1);
-+ if (ret)
-+ return ret;
-+
-+ ret = mtd_device_register(mtd, NULL, 0);
-+ if (ret) {
-+ dev_err(nfc->dev, "Failed to register MTD: %d\n", ret);
-+ nand_release(nand);
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mt7621_nfc_probe(struct platform_device *pdev)
-+{
-+ struct device *dev = &pdev->dev;
-+ struct mt7621_nfc *nfc;
-+ struct resource *res;
-+ int ret;
-+
-+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
-+ if (!nfc)
-+ return -ENOMEM;
-+
-+ nand_controller_init(&nfc->controller);
-+ nfc->controller.ops = &mt7621_nfc_controller_ops;
-+ nfc->dev = dev;
-+
-+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nfi");
-+ nfc->nfi_regs = devm_ioremap_resource(dev, res);
-+ if (IS_ERR(nfc->nfi_regs)) {
-+ ret = PTR_ERR(nfc->nfi_regs);
-+ return ret;
-+ }
-+
-+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ecc");
-+ nfc->ecc_regs = devm_ioremap_resource(dev, res);
-+ if (IS_ERR(nfc->ecc_regs)) {
-+ ret = PTR_ERR(nfc->ecc_regs);
-+ return ret;
-+ }
-+
-+ nfc->nfi_clk = devm_clk_get(dev, "nfi_clk");
-+ if (IS_ERR(nfc->nfi_clk)) {
-+ dev_warn(dev, "nfi clk not provided\n");
-+ nfc->nfi_clk = NULL;
-+ } else {
-+ ret = clk_prepare_enable(nfc->nfi_clk);
-+ if (ret) {
-+ dev_err(dev, "Failed to enable nfi core clock\n");
-+ return ret;
-+ }
-+ }
-+
-+ platform_set_drvdata(pdev, nfc);
-+
-+ ret = mt7621_nfc_init_chip(nfc);
-+ if (ret) {
-+ dev_err(dev, "Failed to initialize nand chip\n");
-+ goto clk_disable;
-+ }
-+
-+ return 0;
-+
-+clk_disable:
-+ clk_disable_unprepare(nfc->nfi_clk);
-+
-+ return ret;
-+}
-+
-+static int mt7621_nfc_remove(struct platform_device *pdev)
-+{
-+ struct mt7621_nfc *nfc = platform_get_drvdata(pdev);
-+
-+ nand_release(&nfc->nand);
-+ clk_disable_unprepare(nfc->nfi_clk);
-+
-+ return 0;
-+}
-+
-+static const struct of_device_id mt7621_nfc_id_table[] = {
-+ { .compatible = "mediatek,mt7621-nfc" },
-+ { },
-+};
-+MODULE_DEVICE_TABLE(of, match);
-+
-+static struct platform_driver mt7621_nfc_driver = {
-+ .probe = mt7621_nfc_probe,
-+ .remove = mt7621_nfc_remove,
-+ .driver = {
-+ .name = MT7621_NFC_NAME,
-+ .owner = THIS_MODULE,
-+ .of_match_table = mt7621_nfc_id_table,
-+ },
-+};
-+module_platform_driver(mt7621_nfc_driver);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Weijie Gao <weijie.gao@mediatek.com>");
-+MODULE_DESCRIPTION("MediaTek MT7621 NAND Flash Controller driver");