diff options
Diffstat (limited to 'target/linux/layerscape/patches-5.4/701-net-0367-net-mscc-ocelot-Workaround-to-allow-traffic-to-CPU-i.patch')
-rw-r--r-- | target/linux/layerscape/patches-5.4/701-net-0367-net-mscc-ocelot-Workaround-to-allow-traffic-to-CPU-i.patch | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/target/linux/layerscape/patches-5.4/701-net-0367-net-mscc-ocelot-Workaround-to-allow-traffic-to-CPU-i.patch b/target/linux/layerscape/patches-5.4/701-net-0367-net-mscc-ocelot-Workaround-to-allow-traffic-to-CPU-i.patch new file mode 100644 index 0000000000..069c518389 --- /dev/null +++ b/target/linux/layerscape/patches-5.4/701-net-0367-net-mscc-ocelot-Workaround-to-allow-traffic-to-CPU-i.patch @@ -0,0 +1,149 @@ +From 937bf9496489cb4b491e75fe4436348bf3454dcd Mon Sep 17 00:00:00 2001 +From: Vladimir Oltean <vladimir.oltean@nxp.com> +Date: Sat, 21 Dec 2019 23:19:20 +0200 +Subject: [PATCH] net: mscc: ocelot: Workaround to allow traffic to CPU in + standalone mode + +The Ocelot switches have what is, in my opinion, a design flaw: their +DSA header is in front of the Ethernet header, which means that they +subvert the DSA master's RX filter, which for all practical purposes, +either needs to be in promiscuous mode, or the OCELOT_TAG_PREFIX_LONG +needs to be used for extraction, which makes the switch add a fake DMAC +of ff:ff:ff:ff:ff:ff so that the DSA master accepts the frame. + +The issue with this design, of course, is that the CPU will be spammed +with frames that it doesn't want to respond to, and there isn't any +hardware offload in place by default to drop them. + +What is being done in the VSC7514 Ocelot driver is a process of +selective whitelisting. The "MAC address" of each Ocelot switch net +device, with all VLANs installed on that port, is being added as a FDB +entry towards PGID_CPU. + +Some background first: Port Group IDs (PGIDs) are masks of destination +ports. The switch performs 3 lookups in the PGID table for each frame, +and forwards the frame to the ports that are present in the logical AND +of all 3 PGIDs (for the most part, see below). + +The first PGID lookup is for the destination masks and the PGID table is +indexed by the DEST_IDX field from the MAC table (FDB). +The PGID can be an unicast set: PGIDs 0-11 are the per-port PGIDs, and +by convention PGID i has only BIT(i) set, aka only this port is set in +the destination mask. +Or the PGID can be a multicast set: PGIDs 12-63 can (again, still by +convention) hold a richer destination mask comprised of multiple ports. + +[ Ignoring the second PGID lookup, for aggregation, since it doesn't + interfere. ] + +The third PGID lookup is for source masks: PGID entries 80-91 answer the +question: is port i allowed to forward traffic to port j? If yes, then +BIT(j) of PGID 80+i will be found set. + +What is interesting about the CPU port in this whole story is that, in +the way the driver sets up the PGIDs, its bit isn't set in any source +mask PGID of any other port (therefore, the third lookup would always +decide to exclude the CPU port from this list). So frames are never +_forwarded_ to the CPU. + +There is a loophole in this PGID mechanism which is described in the +VSC7514 manual: + + If an entry is found in the MAC table entry of ENTRY_TYPE 0 or 1 + and the CPU port is set in the PGID pointed to by the MAC table + entry, CPU extraction queue PGID.DST_PGID is added to the CPUQ. + +In other words, the CPU port is special, and frames are "copied" to the +CPU, disregarding the source masks (third PGID lookup), if BIT(cpu) is +found to be set in the destination masks (first PGID lookup). + +Now back to the story: what is PGID_CPU? It is a multicast set +containing only BIT(cpu). I don't know why it was chosen to be a +multicast PGID (59) and not simply the unicast one of this port, but it +doesn't matter. + +The point is that frames that match the FDB will go to PGID_CPU by +virtue of the DEST_IDX from the respective MAC table entry, and frames +that don't will go to PGID_UC or PGID_MC, by virtue of the FLD_UNICAST, +FLD_BROADCAST etc settings for flooding. And that is where the +distinction is made: flooded frames will be subject to the third PGID +lookup, while frames that are whitelisted to the PGID_CPU by the MAC +table aren't. + +So we can use this mechanism to simulate an RX filter, given that we are +subverting the DSA master's implicit one, as mentioned in the first +paragraph. But this has some limitations: + +- In Ocelot each net device has its own MAC address. When simulating + this with MAC table entries, it will practically result in having N + MAC addresses for each of the N front-panel ports (because FDB entries + are not per source port). A bit strange, I think. + +- In DSA we don't have the infrastructure in place to support this + whitelisting mechanism. Calling .port_fdb_add on the CPU port for each + slave net device dev_addr isn't, in itself, hard. The problem is with + the VLANs that this port is part of. We would need to keep a duplicate + list of the VLANs from the bridge, plus the ones added from 8021q, for + each port. And we would need reference counting on each MAC address, + such that when a front-panel port changes its MAC address and we need + to delete the old FDB entry, we don't actually delete it if the other + front-panel ports are still using it. Not to mention that this FDB + entry would have to be added on the whole net of upstream DSA switches. + +So... it's complicated. What this patch does is to simply allow frames +to be flooded to the CPU, which is anyway what the Ocelot driver is +doing after removing the bridge from the net devices, see this snippet +from ocelot_bridge_stp_state_set: + + /* Apply FWD mask. The loop is needed to add/remove the current port as + * a source for the other ports. + */ + for (p = 0; p < ocelot->num_phys_ports; p++) { + if (p == ocelot->cpu || (ocelot->bridge_fwd_mask & BIT(p))) { + (...) + } else { + /* Only the CPU port, this is compatible with link + * aggregation. + */ + ocelot_write_rix(ocelot, + BIT(ocelot->cpu), + ANA_PGID_PGID, PGID_SRC + p); + } + +Otherwise said, the ocelot driver itself is already not self-coherent, +since immediately after probe time, and immediately after removal from a +bridge, it behaves in different ways, although the front panel ports are +standalone in both cases. + +While standalone traffic _does_ work for the Felix DSA wrapper after +enslaving and removing the ports from a bridge, this patch makes +standalone traffic work at probe time too, with the caveat that even +irrelevant frames will get processed by software, making it more +susceptible to denial of service. + +Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> +--- + drivers/net/ethernet/mscc/ocelot.c | 12 ++++++++++++ + 1 file changed, 12 insertions(+) + +--- a/drivers/net/ethernet/mscc/ocelot.c ++++ b/drivers/net/ethernet/mscc/ocelot.c +@@ -2292,6 +2292,18 @@ void ocelot_set_cpu_port(struct ocelot * + enum ocelot_tag_prefix injection, + enum ocelot_tag_prefix extraction) + { ++ int port; ++ ++ for (port = 0; port < ocelot->num_phys_ports; port++) { ++ /* Disable old CPU port and enable new one */ ++ ocelot_rmw_rix(ocelot, 0, BIT(ocelot->cpu), ++ ANA_PGID_PGID, PGID_SRC + port); ++ if (port == cpu) ++ continue; ++ ocelot_rmw_rix(ocelot, BIT(cpu), BIT(cpu), ++ ANA_PGID_PGID, PGID_SRC + port); ++ } ++ + /* Configure and enable the CPU port. */ + ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, cpu); + ocelot_write_rix(ocelot, BIT(cpu), ANA_PGID_PGID, PGID_CPU); |