diff options
Diffstat (limited to 'target/linux/generic/patches-2.6.30/270-sched_bfs.patch')
-rw-r--r-- | target/linux/generic/patches-2.6.30/270-sched_bfs.patch | 6411 |
1 files changed, 0 insertions, 6411 deletions
diff --git a/target/linux/generic/patches-2.6.30/270-sched_bfs.patch b/target/linux/generic/patches-2.6.30/270-sched_bfs.patch deleted file mode 100644 index f521b3239c..0000000000 --- a/target/linux/generic/patches-2.6.30/270-sched_bfs.patch +++ /dev/null @@ -1,6411 +0,0 @@ -This patch adds support for bfs v230, modified for diff size reduction - ---- a/Documentation/sysctl/kernel.txt -+++ b/Documentation/sysctl/kernel.txt -@@ -27,6 +27,7 @@ show up in /proc/sys/kernel: - - domainname - - hostname - - hotplug -+- iso_cpu - - java-appletviewer [ binfmt_java, obsolete ] - - java-interpreter [ binfmt_java, obsolete ] - - kstack_depth_to_print [ X86 only ] -@@ -48,6 +49,7 @@ show up in /proc/sys/kernel: - - randomize_va_space - - real-root-dev ==> Documentation/initrd.txt - - reboot-cmd [ SPARC only ] -+- rr_interval - - rtsig-max - - rtsig-nr - - sem -@@ -170,6 +172,16 @@ Default value is "/sbin/hotplug". - - ============================================================== - -+iso_cpu: (BFS only) -+ -+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can -+run effectively at realtime priority, averaged over a rolling five -+seconds over the -whole- system, meaning all cpus. -+ -+Set to 70 (percent) by default. -+ -+============================================================== -+ - l2cr: (PPC only) - - This flag controls the L2 cache of G3 processor boards. If -@@ -322,6 +334,19 @@ rebooting. ??? - - ============================================================== - -+rr_interval: (BFS only) -+ -+This is the smallest duration that any cpu process scheduling unit -+will run for. Increasing this value can increase throughput of cpu -+bound tasks substantially but at the expense of increased latencies -+overall. This value is in milliseconds and the default value chosen -+depends on the number of cpus available at scheduler initialisation -+with a minimum of 6. -+ -+Valid values are from 1-5000. -+ -+============================================================== -+ - rtsig-max & rtsig-nr: - - The file rtsig-max can be used to tune the maximum number ---- a/include/linux/init_task.h -+++ b/include/linux/init_task.h -@@ -119,9 +119,10 @@ extern struct cred init_cred; - .usage = ATOMIC_INIT(2), \ - .flags = PF_KTHREAD, \ - .lock_depth = -1, \ -- .prio = MAX_PRIO-20, \ -+ .prio = NORMAL_PRIO, \ - .static_prio = MAX_PRIO-20, \ -- .normal_prio = MAX_PRIO-20, \ -+ .normal_prio = NORMAL_PRIO, \ -+ .deadline = 0, \ - .policy = SCHED_NORMAL, \ - .cpus_allowed = CPU_MASK_ALL, \ - .mm = NULL, \ ---- a/include/linux/sched.h -+++ b/include/linux/sched.h -@@ -36,9 +36,12 @@ - #define SCHED_FIFO 1 - #define SCHED_RR 2 - #define SCHED_BATCH 3 --/* SCHED_ISO: reserved but not implemented yet */ -+#define SCHED_ISO 4 - #define SCHED_IDLE 5 - -+#define SCHED_MAX (SCHED_IDLE) -+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX) -+ - #ifdef __KERNEL__ - - struct sched_param { -@@ -1042,10 +1045,13 @@ struct sched_entity { - struct load_weight load; /* for load-balancing */ - struct rb_node run_node; - struct list_head group_node; -+#ifdef CONFIG_SCHED_CFS - unsigned int on_rq; - - u64 exec_start; -+#endif - u64 sum_exec_runtime; -+#ifdef CONFIG_SCHED_CFS - u64 vruntime; - u64 prev_sum_exec_runtime; - -@@ -1096,6 +1102,7 @@ struct sched_entity { - /* rq "owned" by this entity/group: */ - struct cfs_rq *my_q; - #endif -+#endif - }; - - struct sched_rt_entity { -@@ -1123,17 +1130,19 @@ struct task_struct { - - int lock_depth; /* BKL lock depth */ - --#ifdef CONFIG_SMP --#ifdef __ARCH_WANT_UNLOCKED_CTXSW - int oncpu; --#endif --#endif -- - int prio, static_prio, normal_prio; - unsigned int rt_priority; - const struct sched_class *sched_class; - struct sched_entity se; - struct sched_rt_entity rt; -+ unsigned long deadline; -+#ifdef CONFIG_SCHED_BFS -+ int load_weight; /* for niceness load balancing purposes */ -+ int first_time_slice; -+ unsigned long long timestamp, last_ran; -+ unsigned long utime_pc, stime_pc; -+#endif - - #ifdef CONFIG_PREEMPT_NOTIFIERS - /* list of struct preempt_notifier: */ -@@ -1156,6 +1165,9 @@ struct task_struct { - - unsigned int policy; - cpumask_t cpus_allowed; -+#ifdef CONFIG_HOTPLUG_CPU -+ cpumask_t unplugged_mask; -+#endif - - #ifdef CONFIG_PREEMPT_RCU - int rcu_read_lock_nesting; -@@ -1446,11 +1458,19 @@ struct task_struct { - * priority to a value higher than any user task. Note: - * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. - */ -- -+#define PRIO_RANGE (40) - #define MAX_USER_RT_PRIO 100 - #define MAX_RT_PRIO MAX_USER_RT_PRIO -- -+#ifdef CONFIG_SCHED_BFS -+#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE) -+#define ISO_PRIO (MAX_RT_PRIO) -+#define NORMAL_PRIO (MAX_RT_PRIO + 1) -+#define IDLE_PRIO (MAX_RT_PRIO + 2) -+#define PRIO_LIMIT ((IDLE_PRIO) + 1) -+#else - #define MAX_PRIO (MAX_RT_PRIO + 40) -+#define NORMAL_PRIO (MAX_RT_PRIO - 20) -+#endif - #define DEFAULT_PRIO (MAX_RT_PRIO + 20) - - static inline int rt_prio(int prio) -@@ -1734,7 +1754,7 @@ task_sched_runtime(struct task_struct *t - extern unsigned long long thread_group_sched_runtime(struct task_struct *task); - - /* sched_exec is called by processes performing an exec */ --#ifdef CONFIG_SMP -+#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_CFS) - extern void sched_exec(void); - #else - #define sched_exec() {} ---- a/init/Kconfig -+++ b/init/Kconfig -@@ -435,9 +435,22 @@ config LOG_BUF_SHIFT - config HAVE_UNSTABLE_SCHED_CLOCK - bool - -+choice -+ prompt "Scheduler" -+ default SCHED_CFS -+ -+ config SCHED_CFS -+ bool "CFS" -+ -+ config SCHED_BFS -+ bool "BFS" -+ -+endchoice -+ - config GROUP_SCHED - bool "Group CPU scheduler" - depends on EXPERIMENTAL -+ depends on SCHED_CFS - default n - help - This feature lets CPU scheduler recognize task groups and control CPU -@@ -488,6 +501,7 @@ endchoice - - menuconfig CGROUPS - boolean "Control Group support" -+ depends on SCHED_CFS - help - This option adds support for grouping sets of processes together, for - use with process control subsystems such as Cpusets, CFS, memory ---- a/kernel/Makefile -+++ b/kernel/Makefile -@@ -2,7 +2,7 @@ - # Makefile for the linux kernel. - # - --obj-y = sched.o fork.o exec_domain.o panic.o printk.o \ -+obj-y = $(if $(CONFIG_SCHED_CFS),sched.o,sched_bfs.o) fork.o exec_domain.o panic.o printk.o \ - cpu.o exit.o itimer.o time.o softirq.o resource.o \ - sysctl.o capability.o ptrace.o timer.o user.o \ - signal.o sys.o kmod.o workqueue.o pid.o \ -@@ -103,6 +103,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER - # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k - # to get a correct value for the wait-channel (WCHAN in ps). --davidm - CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer -+CFLAGS_sched_bfs.o := $(PROFILING) -fno-omit-frame-pointer - endif - - $(obj)/configs.o: $(obj)/config_data.h ---- a/kernel/kthread.c -+++ b/kernel/kthread.c -@@ -15,7 +15,11 @@ - #include <linux/mutex.h> - #include <trace/sched.h> - -+#ifdef CONFIG_SCHED_BFS -+#define KTHREAD_NICE_LEVEL (0) -+#else - #define KTHREAD_NICE_LEVEL (-5) -+#endif - - static DEFINE_SPINLOCK(kthread_create_lock); - static LIST_HEAD(kthread_create_list); ---- /dev/null -+++ b/kernel/sched_bfs.c -@@ -0,0 +1,6059 @@ -+/* -+ * kernel/sched_bfs.c, was sched.c -+ * -+ * Kernel scheduler and related syscalls -+ * -+ * Copyright (C) 1991-2002 Linus Torvalds -+ * -+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and -+ * make semaphores SMP safe -+ * 1998-11-19 Implemented schedule_timeout() and related stuff -+ * by Andrea Arcangeli -+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: -+ * hybrid priority-list and round-robin design with -+ * an array-switch method of distributing timeslices -+ * and per-CPU runqueues. Cleanups and useful suggestions -+ * by Davide Libenzi, preemptible kernel bits by Robert Love. -+ * 2003-09-03 Interactivity tuning by Con Kolivas. -+ * 2004-04-02 Scheduler domains code by Nick Piggin -+ * 2007-04-15 Work begun on replacing all interactivity tuning with a -+ * fair scheduling design by Con Kolivas. -+ * 2007-05-05 Load balancing (smp-nice) and other improvements -+ * by Peter Williams -+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith -+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri -+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, -+ * Thomas Gleixner, Mike Kravetz -+ * now Brainfuck deadline scheduling policy by Con Kolivas deletes -+ * a whole lot of those previous things. -+ */ -+ -+#include <linux/mm.h> -+#include <linux/module.h> -+#include <linux/nmi.h> -+#include <linux/init.h> -+#include <asm/uaccess.h> -+#include <linux/highmem.h> -+#include <linux/smp_lock.h> -+#include <asm/mmu_context.h> -+#include <linux/interrupt.h> -+#include <linux/capability.h> -+#include <linux/completion.h> -+#include <linux/kernel_stat.h> -+#include <linux/debug_locks.h> -+#include <linux/perf_counter.h> -+#include <linux/security.h> -+#include <linux/notifier.h> -+#include <linux/profile.h> -+#include <linux/freezer.h> -+#include <linux/vmalloc.h> -+#include <linux/blkdev.h> -+#include <linux/delay.h> -+#include <linux/smp.h> -+#include <linux/threads.h> -+#include <linux/timer.h> -+#include <linux/rcupdate.h> -+#include <linux/cpu.h> -+#include <linux/cpuset.h> -+#include <linux/cpumask.h> -+#include <linux/percpu.h> -+#include <linux/kthread.h> -+#include <linux/proc_fs.h> -+#include <linux/seq_file.h> -+#include <linux/syscalls.h> -+#include <linux/times.h> -+#include <linux/tsacct_kern.h> -+#include <linux/kprobes.h> -+#include <linux/delayacct.h> -+#include <linux/reciprocal_div.h> -+#include <linux/log2.h> -+#include <linux/bootmem.h> -+#include <linux/ftrace.h> -+ -+#include <asm/tlb.h> -+#include <asm/unistd.h> -+ -+#define CREATE_TRACE_POINTS -+#include <trace/events/sched.h> -+ -+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) -+#define rt_task(p) rt_prio((p)->prio) -+#define rt_queue(rq) rt_prio((rq)->rq_prio) -+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) -+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ -+ (policy) == SCHED_RR) -+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) -+#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLE) -+#define iso_task(p) unlikely((p)->policy == SCHED_ISO) -+#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO) -+#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1) -+ -+/* -+ * Convert user-nice values [ -20 ... 0 ... 19 ] -+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], -+ * and back. -+ */ -+#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) -+#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) -+#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) -+ -+/* -+ * 'User priority' is the nice value converted to something we -+ * can work with better when scaling various scheduler parameters, -+ * it's a [ 0 ... 39 ] range. -+ */ -+#define USER_PRIO(p) ((p)-MAX_RT_PRIO) -+#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) -+#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) -+#define SCHED_PRIO(p) ((p)+MAX_RT_PRIO) -+ -+/* Some helpers for converting to/from various scales.*/ -+#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) -+#define MS_TO_NS(TIME) ((TIME) * 1000000) -+#define MS_TO_US(TIME) ((TIME) * 1000) -+ -+#ifdef CONFIG_SMP -+/* -+ * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) -+ * Since cpu_power is a 'constant', we can use a reciprocal divide. -+ */ -+static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) -+{ -+ return reciprocal_divide(load, sg->reciprocal_cpu_power); -+} -+ -+/* -+ * Each time a sched group cpu_power is changed, -+ * we must compute its reciprocal value -+ */ -+static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) -+{ -+ sg->__cpu_power += val; -+ sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); -+} -+#endif -+ -+/* -+ * This is the time all tasks within the same priority round robin. -+ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. -+ * Tunable via /proc interface. -+ */ -+int rr_interval __read_mostly = 6; -+ -+/* -+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks -+ * are allowed to run five seconds as real time tasks. This is the total over -+ * all online cpus. -+ */ -+int sched_iso_cpu __read_mostly = 70; -+ -+int prio_ratios[PRIO_RANGE] __read_mostly; -+ -+static inline unsigned long timeslice(void) -+{ -+ return MS_TO_US(rr_interval); -+} -+ -+struct global_rq { -+ spinlock_t lock; -+ unsigned long nr_running; -+ unsigned long nr_uninterruptible; -+ unsigned long long nr_switches; -+ struct list_head queue[PRIO_LIMIT]; -+ DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); -+ unsigned long iso_ticks; -+ unsigned short iso_refractory; -+#ifdef CONFIG_SMP -+ unsigned long qnr; /* queued not running */ -+ cpumask_t cpu_idle_map; -+#endif -+}; -+ -+static struct global_rq grq; -+ -+/* -+ * This is the main, per-CPU runqueue data structure. -+ * All this is protected by the global_rq lock. -+ */ -+struct rq { -+#ifdef CONFIG_SMP -+#ifdef CONFIG_NO_HZ -+ unsigned char in_nohz_recently; -+#endif -+#endif -+ -+ struct task_struct *curr, *idle; -+ struct mm_struct *prev_mm; -+ struct list_head queue; /* Place to store currently running task */ -+ -+ /* Stored data about rq->curr to work outside grq lock */ -+ unsigned long rq_deadline; -+ unsigned int rq_policy; -+ int rq_time_slice; -+ int rq_prio; -+ -+ /* Accurate timekeeping data */ -+ u64 timekeep_clock; -+ unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, -+ iowait_pc, idle_pc; -+ atomic_t nr_iowait; -+ -+ int cpu; /* cpu of this runqueue */ -+ int online; -+ -+#ifdef CONFIG_SMP -+ struct root_domain *rd; -+ struct sched_domain *sd; -+ -+ struct list_head migration_queue; -+#endif -+ -+ u64 clock; -+#ifdef CONFIG_SCHEDSTATS -+ -+ /* latency stats */ -+ struct sched_info rq_sched_info; -+ unsigned long long rq_cpu_time; -+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ -+ -+ /* sys_sched_yield() stats */ -+ unsigned int yld_count; -+ -+ /* schedule() stats */ -+ unsigned int sched_switch; -+ unsigned int sched_count; -+ unsigned int sched_goidle; -+ -+ /* try_to_wake_up() stats */ -+ unsigned int ttwu_count; -+ unsigned int ttwu_local; -+ -+ /* BKL stats */ -+ unsigned int bkl_count; -+#endif -+}; -+ -+static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp; -+static DEFINE_MUTEX(sched_hotcpu_mutex); -+ -+#ifdef CONFIG_SMP -+ -+/* -+ * We add the notion of a root-domain which will be used to define per-domain -+ * variables. Each exclusive cpuset essentially defines an island domain by -+ * fully partitioning the member cpus from any other cpuset. Whenever a new -+ * exclusive cpuset is created, we also create and attach a new root-domain -+ * object. -+ * -+ */ -+struct root_domain { -+ atomic_t refcount; -+ cpumask_var_t span; -+ cpumask_var_t online; -+ -+ /* -+ * The "RT overload" flag: it gets set if a CPU has more than -+ * one runnable RT task. -+ */ -+ cpumask_var_t rto_mask; -+ atomic_t rto_count; -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+ /* -+ * Preferred wake up cpu nominated by sched_mc balance that will be -+ * used when most cpus are idle in the system indicating overall very -+ * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) -+ */ -+ unsigned int sched_mc_preferred_wakeup_cpu; -+#endif -+}; -+ -+/* -+ * By default the system creates a single root-domain with all cpus as -+ * members (mimicking the global state we have today). -+ */ -+static struct root_domain def_root_domain; -+ -+#endif -+ -+static inline int cpu_of(struct rq *rq) -+{ -+#ifdef CONFIG_SMP -+ return rq->cpu; -+#else -+ return 0; -+#endif -+} -+ -+/* -+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition. -+ * See detach_destroy_domains: synchronize_sched for details. -+ * -+ * The domain tree of any CPU may only be accessed from within -+ * preempt-disabled sections. -+ */ -+#define for_each_domain(cpu, __sd) \ -+ for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) -+ -+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) -+#define this_rq() (&__get_cpu_var(runqueues)) -+#define task_rq(p) cpu_rq(task_cpu(p)) -+#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -+ -+#include "sched_stats.h" -+ -+#ifndef prepare_arch_switch -+# define prepare_arch_switch(next) do { } while (0) -+#endif -+#ifndef finish_arch_switch -+# define finish_arch_switch(prev) do { } while (0) -+#endif -+ -+inline void update_rq_clock(struct rq *rq) -+{ -+ rq->clock = sched_clock_cpu(cpu_of(rq)); -+} -+ -+static inline int task_running(struct task_struct *p) -+{ -+ return (!!p->oncpu); -+} -+ -+static inline void grq_lock(void) -+ __acquires(grq.lock) -+{ -+ smp_mb(); -+ spin_lock(&grq.lock); -+} -+ -+static inline void grq_unlock(void) -+ __releases(grq.lock) -+{ -+ spin_unlock(&grq.lock); -+} -+ -+static inline void grq_lock_irq(void) -+ __acquires(grq.lock) -+{ -+ smp_mb(); -+ spin_lock_irq(&grq.lock); -+} -+ -+static inline void time_lock_grq(struct rq *rq) -+ __acquires(grq.lock) -+{ -+ grq_lock(); -+ update_rq_clock(rq); -+} -+ -+static inline void grq_unlock_irq(void) -+ __releases(grq.lock) -+{ -+ spin_unlock_irq(&grq.lock); -+} -+ -+static inline void grq_lock_irqsave(unsigned long *flags) -+ __acquires(grq.lock) -+{ -+ smp_mb(); -+ spin_lock_irqsave(&grq.lock, *flags); -+} -+ -+static inline void grq_unlock_irqrestore(unsigned long *flags) -+ __releases(grq.lock) -+{ -+ spin_unlock_irqrestore(&grq.lock, *flags); -+} -+ -+static inline struct rq -+*task_grq_lock(struct task_struct *p, unsigned long *flags) -+ __acquires(grq.lock) -+{ -+ grq_lock_irqsave(flags); -+ return task_rq(p); -+} -+ -+static inline struct rq -+*time_task_grq_lock(struct task_struct *p, unsigned long *flags) -+ __acquires(grq.lock) -+{ -+ struct rq *rq = task_grq_lock(p, flags); -+ update_rq_clock(rq); -+ return rq; -+} -+ -+static inline void task_grq_unlock(unsigned long *flags) -+ __releases(grq.lock) -+{ -+ grq_unlock_irqrestore(flags); -+} -+ -+/** -+ * runqueue_is_locked -+ * -+ * Returns true if the global runqueue is locked. -+ * This interface allows printk to be called with the runqueue lock -+ * held and know whether or not it is OK to wake up the klogd. -+ */ -+int runqueue_is_locked(void) -+{ -+ return spin_is_locked(&grq.lock); -+} -+ -+void task_rq_unlock_wait(struct task_struct *p) -+ __releases(grq.lock) -+{ -+ smp_mb(); /* spin-unlock-wait is not a full memory barrier */ -+ spin_unlock_wait(&grq.lock); -+} -+ -+static inline void time_grq_lock(struct rq *rq, unsigned long *flags) -+ __acquires(grq.lock) -+{ -+ spin_lock_irqsave(&grq.lock, *flags); -+ update_rq_clock(rq); -+} -+ -+static inline struct rq *__task_grq_lock(struct task_struct *p) -+ __acquires(grq.lock) -+{ -+ grq_lock(); -+ return task_rq(p); -+} -+ -+static inline void __task_grq_unlock(void) -+ __releases(grq.lock) -+{ -+ grq_unlock(); -+} -+ -+#ifndef __ARCH_WANT_UNLOCKED_CTXSW -+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -+{ -+} -+ -+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -+{ -+#ifdef CONFIG_DEBUG_SPINLOCK -+ /* this is a valid case when another task releases the spinlock */ -+ grq.lock.owner = current; -+#endif -+ /* -+ * If we are tracking spinlock dependencies then we have to -+ * fix up the runqueue lock - which gets 'carried over' from -+ * prev into current: -+ */ -+ spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); -+ -+ grq_unlock_irq(); -+} -+ -+#else /* __ARCH_WANT_UNLOCKED_CTXSW */ -+ -+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -+{ -+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -+ grq_unlock_irq(); -+#else -+ grq_unlock(); -+#endif -+} -+ -+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -+{ -+ smp_wmb(); -+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW -+ local_irq_enable(); -+#endif -+} -+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ -+ -+/* -+ * A task that is queued will be on the grq run list. -+ * A task that is not running or queued will not be on the grq run list. -+ * A task that is currently running will have ->oncpu set and be queued -+ * temporarily in its own rq queue. -+ * A task that is running and no longer queued will be seen only on -+ * context switch exit. -+ */ -+ -+static inline int task_queued(struct task_struct *p) -+{ -+ return (!list_empty(&p->rt.run_list)); -+} -+ -+static inline int task_queued_only(struct task_struct *p) -+{ -+ return (!list_empty(&p->rt.run_list) && !task_running(p)); -+} -+ -+/* -+ * Removing from the global runqueue. Enter with grq locked. -+ */ -+static void dequeue_task(struct task_struct *p) -+{ -+ list_del_init(&p->rt.run_list); -+ if (list_empty(grq.queue + p->prio)) -+ __clear_bit(p->prio, grq.prio_bitmap); -+} -+ -+static inline void reset_first_time_slice(struct task_struct *p) -+{ -+ if (unlikely(p->first_time_slice)) -+ p->first_time_slice = 0; -+} -+ -+static int idleprio_suitable(struct task_struct *p) -+{ -+ return (!freezing(p) && !signal_pending(p) && -+ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); -+} -+ -+static int isoprio_suitable(void) -+{ -+ return !grq.iso_refractory; -+} -+ -+/* -+ * Adding to the global runqueue. Enter with grq locked. -+ */ -+static void enqueue_task(struct task_struct *p) -+{ -+ if (!rt_task(p)) { -+ /* Check it hasn't gotten rt from PI */ -+ if ((idleprio_task(p) && idleprio_suitable(p)) || -+ (iso_task(p) && isoprio_suitable())) -+ p->prio = p->normal_prio; -+ else -+ p->prio = NORMAL_PRIO; -+ } -+ __set_bit(p->prio, grq.prio_bitmap); -+ list_add_tail(&p->rt.run_list, grq.queue + p->prio); -+ sched_info_queued(p); -+} -+ -+/* Only idle task does this as a real time task*/ -+static inline void enqueue_task_head(struct task_struct *p) -+{ -+ __set_bit(p->prio, grq.prio_bitmap); -+ list_add(&p->rt.run_list, grq.queue + p->prio); -+ sched_info_queued(p); -+} -+ -+static inline void requeue_task(struct task_struct *p) -+{ -+ sched_info_queued(p); -+} -+ -+static inline int pratio(struct task_struct *p) -+{ -+ return prio_ratios[TASK_USER_PRIO(p)]; -+} -+ -+/* -+ * task_timeslice - all tasks of all priorities get the exact same timeslice -+ * length. CPU distribution is handled by giving different deadlines to -+ * tasks of different priorities. -+ */ -+static inline int task_timeslice(struct task_struct *p) -+{ -+ return (rr_interval * pratio(p) / 100); -+} -+ -+#ifdef CONFIG_SMP -+static inline void inc_qnr(void) -+{ -+ grq.qnr++; -+} -+ -+static inline void dec_qnr(void) -+{ -+ grq.qnr--; -+} -+ -+static inline int queued_notrunning(void) -+{ -+ return grq.qnr; -+} -+#else -+static inline void inc_qnr(void) -+{ -+} -+ -+static inline void dec_qnr(void) -+{ -+} -+ -+static inline int queued_notrunning(void) -+{ -+ return grq.nr_running; -+} -+#endif -+ -+/* -+ * activate_idle_task - move idle task to the _front_ of runqueue. -+ */ -+static inline void activate_idle_task(struct task_struct *p) -+{ -+ enqueue_task_head(p); -+ grq.nr_running++; -+ inc_qnr(); -+} -+ -+static inline int normal_prio(struct task_struct *p) -+{ -+ if (has_rt_policy(p)) -+ return MAX_RT_PRIO - 1 - p->rt_priority; -+ if (idleprio_task(p)) -+ return IDLE_PRIO; -+ if (iso_task(p)) -+ return ISO_PRIO; -+ return NORMAL_PRIO; -+} -+ -+/* -+ * Calculate the current priority, i.e. the priority -+ * taken into account by the scheduler. This value might -+ * be boosted by RT tasks as it will be RT if the task got -+ * RT-boosted. If not then it returns p->normal_prio. -+ */ -+static int effective_prio(struct task_struct *p) -+{ -+ p->normal_prio = normal_prio(p); -+ /* -+ * If we are RT tasks or we were boosted to RT priority, -+ * keep the priority unchanged. Otherwise, update priority -+ * to the normal priority: -+ */ -+ if (!rt_prio(p->prio)) -+ return p->normal_prio; -+ return p->prio; -+} -+ -+/* -+ * activate_task - move a task to the runqueue. Enter with grq locked. The rq -+ * doesn't really matter but gives us the local clock. -+ */ -+static void activate_task(struct task_struct *p, struct rq *rq) -+{ -+ u64 now = rq->clock; -+ -+ /* -+ * Sleep time is in units of nanosecs, so shift by 20 to get a -+ * milliseconds-range estimation of the amount of time that the task -+ * spent sleeping: -+ */ -+ if (unlikely(prof_on == SLEEP_PROFILING)) { -+ if (p->state == TASK_UNINTERRUPTIBLE) -+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), -+ (now - p->timestamp) >> 20); -+ } -+ -+ p->prio = effective_prio(p); -+ p->timestamp = now; -+ if (task_contributes_to_load(p)) -+ grq.nr_uninterruptible--; -+ enqueue_task(p); -+ grq.nr_running++; -+ inc_qnr(); -+} -+ -+/* -+ * deactivate_task - If it's running, it's not on the grq and we can just -+ * decrement the nr_running. -+ */ -+static inline void deactivate_task(struct task_struct *p) -+{ -+ if (task_contributes_to_load(p)) -+ grq.nr_uninterruptible++; -+ grq.nr_running--; -+} -+ -+#ifdef CONFIG_SMP -+void set_task_cpu(struct task_struct *p, unsigned int cpu) -+{ -+ trace_sched_migrate_task(p, cpu); -+ /* -+ * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be -+ * successfuly executed on another CPU. We must ensure that updates of -+ * per-task data have been completed by this moment. -+ */ -+ smp_wmb(); -+ task_thread_info(p)->cpu = cpu; -+} -+#endif -+ -+/* -+ * Move a task off the global queue and take it to a cpu for it will -+ * become the running task. -+ */ -+static inline void take_task(struct rq *rq, struct task_struct *p) -+{ -+ set_task_cpu(p, rq->cpu); -+ dequeue_task(p); -+ list_add(&p->rt.run_list, &rq->queue); -+ dec_qnr(); -+} -+ -+/* -+ * Returns a descheduling task to the grq runqueue unless it is being -+ * deactivated. -+ */ -+static inline void return_task(struct task_struct *p, int deactivate) -+{ -+ list_del_init(&p->rt.run_list); -+ if (deactivate) -+ deactivate_task(p); -+ else { -+ inc_qnr(); -+ enqueue_task(p); -+ } -+} -+ -+/* -+ * resched_task - mark a task 'to be rescheduled now'. -+ * -+ * On UP this means the setting of the need_resched flag, on SMP it -+ * might also involve a cross-CPU call to trigger the scheduler on -+ * the target CPU. -+ */ -+#ifdef CONFIG_SMP -+ -+#ifndef tsk_is_polling -+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) -+#endif -+ -+static void resched_task(struct task_struct *p) -+{ -+ int cpu; -+ -+ assert_spin_locked(&grq.lock); -+ -+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) -+ return; -+ -+ set_tsk_thread_flag(p, TIF_NEED_RESCHED); -+ -+ cpu = task_cpu(p); -+ if (cpu == smp_processor_id()) -+ return; -+ -+ /* NEED_RESCHED must be visible before we test polling */ -+ smp_mb(); -+ if (!tsk_is_polling(p)) -+ smp_send_reschedule(cpu); -+} -+ -+#else -+static inline void resched_task(struct task_struct *p) -+{ -+ assert_spin_locked(&grq.lock); -+ set_tsk_need_resched(p); -+} -+#endif -+ -+/** -+ * task_curr - is this task currently executing on a CPU? -+ * @p: the task in question. -+ */ -+inline int task_curr(const struct task_struct *p) -+{ -+ return cpu_curr(task_cpu(p)) == p; -+} -+ -+#ifdef CONFIG_SMP -+struct migration_req { -+ struct list_head list; -+ -+ struct task_struct *task; -+ int dest_cpu; -+ -+ struct completion done; -+}; -+ -+/* -+ * wait_task_context_switch - wait for a thread to complete at least one -+ * context switch. -+ * -+ * @p must not be current. -+ */ -+void wait_task_context_switch(struct task_struct *p) -+{ -+ unsigned long nvcsw, nivcsw, flags; -+ int running; -+ struct rq *rq; -+ -+ nvcsw = p->nvcsw; -+ nivcsw = p->nivcsw; -+ for (;;) { -+ /* -+ * The runqueue is assigned before the actual context -+ * switch. We need to take the runqueue lock. -+ * -+ * We could check initially without the lock but it is -+ * very likely that we need to take the lock in every -+ * iteration. -+ */ -+ rq = task_grq_lock(p, &flags); -+ running = task_running(p); -+ task_grq_unlock(&flags); -+ -+ if (likely(!running)) -+ break; -+ /* -+ * The switch count is incremented before the actual -+ * context switch. We thus wait for two switches to be -+ * sure at least one completed. -+ */ -+ if ((p->nvcsw - nvcsw) > 1) -+ break; -+ if ((p->nivcsw - nivcsw) > 1) -+ break; -+ -+ cpu_relax(); -+ } -+} -+ -+/* -+ * wait_task_inactive - wait for a thread to unschedule. -+ * -+ * If @match_state is nonzero, it's the @p->state value just checked and -+ * not expected to change. If it changes, i.e. @p might have woken up, -+ * then return zero. When we succeed in waiting for @p to be off its CPU, -+ * we return a positive number (its total switch count). If a second call -+ * a short while later returns the same number, the caller can be sure that -+ * @p has remained unscheduled the whole time. -+ * -+ * The caller must ensure that the task *will* unschedule sometime soon, -+ * else this function might spin for a *long* time. This function can't -+ * be called with interrupts off, or it may introduce deadlock with -+ * smp_call_function() if an IPI is sent by the same process we are -+ * waiting to become inactive. -+ */ -+unsigned long wait_task_inactive(struct task_struct *p, long match_state) -+{ -+ unsigned long flags; -+ int running, on_rq; -+ unsigned long ncsw; -+ struct rq *rq; -+ -+ for (;;) { -+ /* -+ * We do the initial early heuristics without holding -+ * any task-queue locks at all. We'll only try to get -+ * the runqueue lock when things look like they will -+ * work out! -+ */ -+ rq = task_rq(p); -+ -+ /* -+ * If the task is actively running on another CPU -+ * still, just relax and busy-wait without holding -+ * any locks. -+ * -+ * NOTE! Since we don't hold any locks, it's not -+ * even sure that "rq" stays as the right runqueue! -+ * But we don't care, since this will -+ * return false if the runqueue has changed and p -+ * is actually now running somewhere else! -+ */ -+ while (task_running(p) && p == rq->curr) { -+ if (match_state && unlikely(p->state != match_state)) -+ return 0; -+ cpu_relax(); -+ } -+ -+ /* -+ * Ok, time to look more closely! We need the grq -+ * lock now, to be *sure*. If we're wrong, we'll -+ * just go back and repeat. -+ */ -+ rq = task_grq_lock(p, &flags); -+ trace_sched_wait_task(rq, p); -+ running = task_running(p); -+ on_rq = task_queued(p); -+ ncsw = 0; -+ if (!match_state || p->state == match_state) -+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ -+ task_grq_unlock(&flags); -+ -+ /* -+ * If it changed from the expected state, bail out now. -+ */ -+ if (unlikely(!ncsw)) -+ break; -+ -+ /* -+ * Was it really running after all now that we -+ * checked with the proper locks actually held? -+ * -+ * Oops. Go back and try again.. -+ */ -+ if (unlikely(running)) { -+ cpu_relax(); -+ continue; -+ } -+ -+ /* -+ * It's not enough that it's not actively running, -+ * it must be off the runqueue _entirely_, and not -+ * preempted! -+ * -+ * So if it was still runnable (but just not actively -+ * running right now), it's preempted, and we should -+ * yield - it could be a while. -+ */ -+ if (unlikely(on_rq)) { -+ schedule_timeout_uninterruptible(1); -+ continue; -+ } -+ -+ /* -+ * Ahh, all good. It wasn't running, and it wasn't -+ * runnable, which means that it will never become -+ * running in the future either. We're all done! -+ */ -+ break; -+ } -+ -+ return ncsw; -+} -+ -+/*** -+ * kick_process - kick a running thread to enter/exit the kernel -+ * @p: the to-be-kicked thread -+ * -+ * Cause a process which is running on another CPU to enter -+ * kernel-mode, without any delay. (to get signals handled.) -+ * -+ * NOTE: this function doesnt have to take the runqueue lock, -+ * because all it wants to ensure is that the remote task enters -+ * the kernel. If the IPI races and the task has been migrated -+ * to another CPU then no harm is done and the purpose has been -+ * achieved as well. -+ */ -+void kick_process(struct task_struct *p) -+{ -+ int cpu; -+ -+ preempt_disable(); -+ cpu = task_cpu(p); -+ if ((cpu != smp_processor_id()) && task_curr(p)) -+ smp_send_reschedule(cpu); -+ preempt_enable(); -+} -+EXPORT_SYMBOL_GPL(kick_process); -+#endif -+ -+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) -+ -+/* -+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the -+ * basis of earlier deadlines. SCHED_BATCH and SCHED_IDLE don't preempt, -+ * they cooperatively multitask. -+ */ -+static inline int task_preempts_curr(struct task_struct *p, struct rq *rq) -+{ -+ int preempts = 0; -+ -+ if (p->prio < rq->rq_prio) -+ preempts = 1; -+ else if (p->policy == SCHED_NORMAL && (p->prio == rq->rq_prio && -+ time_before(p->deadline, rq->rq_deadline))) -+ preempts = 1; -+ return preempts; -+} -+ -+/* -+ * Wake up *any* suitable cpu to schedule this task. -+ */ -+static void try_preempt(struct task_struct *p) -+{ -+ struct rq *highest_prio_rq, *this_rq; -+ unsigned long latest_deadline, cpu; -+ int highest_prio; -+ cpumask_t tmp; -+ -+ /* Try the task's previous rq first and as a fallback */ -+ this_rq = task_rq(p); -+ -+ if (cpu_isset(this_rq->cpu, p->cpus_allowed)) { -+ highest_prio_rq = this_rq; -+ /* If this_rq is idle, use that. */ -+ if (rq_idle(this_rq)) -+ goto found_rq; -+ } else -+ highest_prio_rq = cpu_rq(any_online_cpu(p->cpus_allowed)); -+ latest_deadline = this_rq->rq_deadline; -+ highest_prio = this_rq->rq_prio; -+ -+ cpus_and(tmp, cpu_online_map, p->cpus_allowed); -+ -+ for_each_cpu_mask(cpu, tmp) { -+ struct rq *rq; -+ int rq_prio; -+ -+ rq = cpu_rq(cpu); -+ -+ if (rq_idle(rq)) { -+ /* found an idle rq, use that one */ -+ highest_prio_rq = rq; -+ goto found_rq; -+ } -+ -+ rq_prio = rq->rq_prio; -+ if (rq_prio > highest_prio || -+ (rq_prio == highest_prio && -+ time_after(rq->rq_deadline, latest_deadline))) { -+ highest_prio = rq_prio; -+ latest_deadline = rq->rq_deadline; -+ highest_prio_rq = rq; -+ } -+ } -+ -+ if (!task_preempts_curr(p, highest_prio_rq)) -+ return; -+found_rq: -+ resched_task(highest_prio_rq->curr); -+ return; -+} -+ -+/** -+ * task_oncpu_function_call - call a function on the cpu on which a task runs -+ * @p: the task to evaluate -+ * @func: the function to be called -+ * @info: the function call argument -+ * -+ * Calls the function @func when the task is currently running. This might -+ * be on the current CPU, which just calls the function directly -+ */ -+void task_oncpu_function_call(struct task_struct *p, -+ void (*func) (void *info), void *info) -+{ -+ int cpu; -+ -+ preempt_disable(); -+ cpu = task_cpu(p); -+ if (task_curr(p)) -+ smp_call_function_single(cpu, func, info, 1); -+ preempt_enable(); -+} -+ -+#ifdef CONFIG_SMP -+static int suitable_idle_cpus(struct task_struct *p) -+{ -+ return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map)); -+} -+#else -+static int suitable_idle_cpus(struct task_struct *p) -+{ -+ return 0; -+} -+#endif -+ -+/*** -+ * try_to_wake_up - wake up a thread -+ * @p: the to-be-woken-up thread -+ * @state: the mask of task states that can be woken -+ * @sync: do a synchronous wakeup? -+ * -+ * Put it on the run-queue if it's not already there. The "current" -+ * thread is always on the run-queue (except when the actual -+ * re-schedule is in progress), and as such you're allowed to do -+ * the simpler "current->state = TASK_RUNNING" to mark yourself -+ * runnable without the overhead of this. -+ * -+ * returns failure only if the task is already active. -+ */ -+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) -+{ -+ unsigned long flags; -+ int success = 0; -+ long old_state; -+ struct rq *rq; -+ -+ rq = time_task_grq_lock(p, &flags); -+ old_state = p->state; -+ if (!(old_state & state)) -+ goto out_unlock; -+ -+ /* -+ * Note this catches tasks that are running and queued, but returns -+ * false during the context switch when they're running and no -+ * longer queued. -+ */ -+ if (task_queued(p)) -+ goto out_running; -+ -+ activate_task(p, rq); -+ /* -+ * Sync wakeups (i.e. those types of wakeups where the waker -+ * has indicated that it will leave the CPU in short order) -+ * don't trigger a preemption if there are no idle cpus, -+ * instead waiting for current to deschedule. -+ */ -+ if (!sync || (sync && suitable_idle_cpus(p))) -+ try_preempt(p); -+ success = 1; -+ -+out_running: -+ trace_sched_wakeup(rq, p, success); -+ p->state = TASK_RUNNING; -+out_unlock: -+ task_grq_unlock(&flags); -+ return success; -+} -+ -+/** -+ * wake_up_process - Wake up a specific process -+ * @p: The process to be woken up. -+ * -+ * Attempt to wake up the nominated process and move it to the set of runnable -+ * processes. Returns 1 if the process was woken up, 0 if it was already -+ * running. -+ * -+ * It may be assumed that this function implies a write memory barrier before -+ * changing the task state if and only if any tasks are woken up. -+ */ -+int wake_up_process(struct task_struct *p) -+{ -+ return try_to_wake_up(p, TASK_ALL, 0); -+} -+EXPORT_SYMBOL(wake_up_process); -+ -+int wake_up_state(struct task_struct *p, unsigned int state) -+{ -+ return try_to_wake_up(p, state, 0); -+} -+ -+/* -+ * Perform scheduler related setup for a newly forked process p. -+ * p is forked by current. -+ */ -+void sched_fork(struct task_struct *p, int clone_flags) -+{ -+ int cpu = get_cpu(); -+ struct rq *rq; -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ INIT_HLIST_HEAD(&p->preempt_notifiers); -+#endif -+ /* -+ * We mark the process as running here, but have not actually -+ * inserted it onto the runqueue yet. This guarantees that -+ * nobody will actually run it, and a signal or other external -+ * event cannot wake it up and insert it on the runqueue either. -+ */ -+ p->state = TASK_RUNNING; -+ set_task_cpu(p, cpu); -+ -+ /* Should be reset in fork.c but done here for ease of bfs patching */ -+ p->se.sum_exec_runtime = p->stime_pc = p->utime_pc = 0; -+ -+ /* -+ * Make sure we do not leak PI boosting priority to the child: -+ */ -+ p->prio = current->normal_prio; -+ -+ INIT_LIST_HEAD(&p->rt.run_list); -+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) -+ if (unlikely(sched_info_on())) -+ memset(&p->sched_info, 0, sizeof(p->sched_info)); -+#endif -+ -+ p->oncpu = 0; -+ -+#ifdef CONFIG_PREEMPT -+ /* Want to start with kernel preemption disabled. */ -+ task_thread_info(p)->preempt_count = 1; -+#endif -+ if (unlikely(p->policy == SCHED_FIFO)) -+ goto out; -+ /* -+ * Share the timeslice between parent and child, thus the -+ * total amount of pending timeslices in the system doesn't change, -+ * resulting in more scheduling fairness. If it's negative, it won't -+ * matter since that's the same as being 0. current's time_slice is -+ * actually in rq_time_slice when it's running. -+ */ -+ local_irq_disable(); -+ rq = task_rq(current); -+ if (likely(rq->rq_time_slice > 0)) { -+ rq->rq_time_slice /= 2; -+ /* -+ * The remainder of the first timeslice might be recovered by -+ * the parent if the child exits early enough. -+ */ -+ p->first_time_slice = 1; -+ } -+ p->rt.time_slice = rq->rq_time_slice; -+ local_irq_enable(); -+out: -+ put_cpu(); -+} -+ -+/* -+ * wake_up_new_task - wake up a newly created task for the first time. -+ * -+ * This function will do some initial scheduler statistics housekeeping -+ * that must be done for every newly created context, then puts the task -+ * on the runqueue and wakes it. -+ */ -+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) -+{ -+ struct task_struct *parent; -+ unsigned long flags; -+ struct rq *rq; -+ -+ rq = time_task_grq_lock(p, &flags); ; -+ parent = p->parent; -+ BUG_ON(p->state != TASK_RUNNING); -+ set_task_cpu(p, task_cpu(parent)); -+ -+ activate_task(p, rq); -+ trace_sched_wakeup_new(rq, p, 1); -+ if (!(clone_flags & CLONE_VM) && rq->curr == parent && -+ !suitable_idle_cpus(p)) { -+ /* -+ * The VM isn't cloned, so we're in a good position to -+ * do child-runs-first in anticipation of an exec. This -+ * usually avoids a lot of COW overhead. -+ */ -+ resched_task(parent); -+ } else -+ try_preempt(p); -+ task_grq_unlock(&flags); -+} -+ -+/* -+ * Potentially available exiting-child timeslices are -+ * retrieved here - this way the parent does not get -+ * penalized for creating too many threads. -+ * -+ * (this cannot be used to 'generate' timeslices -+ * artificially, because any timeslice recovered here -+ * was given away by the parent in the first place.) -+ */ -+void sched_exit(struct task_struct *p) -+{ -+ struct task_struct *parent; -+ unsigned long flags; -+ struct rq *rq; -+ -+ if (p->first_time_slice) { -+ parent = p->parent; -+ rq = task_grq_lock(parent, &flags); -+ parent->rt.time_slice += p->rt.time_slice; -+ if (unlikely(parent->rt.time_slice > timeslice())) -+ parent->rt.time_slice = timeslice(); -+ task_grq_unlock(&flags); -+ } -+} -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ -+/** -+ * preempt_notifier_register - tell me when current is being preempted & rescheduled -+ * @notifier: notifier struct to register -+ */ -+void preempt_notifier_register(struct preempt_notifier *notifier) -+{ -+ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); -+} -+EXPORT_SYMBOL_GPL(preempt_notifier_register); -+ -+/** -+ * preempt_notifier_unregister - no longer interested in preemption notifications -+ * @notifier: notifier struct to unregister -+ * -+ * This is safe to call from within a preemption notifier. -+ */ -+void preempt_notifier_unregister(struct preempt_notifier *notifier) -+{ -+ hlist_del(¬ifier->link); -+} -+EXPORT_SYMBOL_GPL(preempt_notifier_unregister); -+ -+static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -+{ -+ struct preempt_notifier *notifier; -+ struct hlist_node *node; -+ -+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -+ notifier->ops->sched_in(notifier, raw_smp_processor_id()); -+} -+ -+static void -+fire_sched_out_preempt_notifiers(struct task_struct *curr, -+ struct task_struct *next) -+{ -+ struct preempt_notifier *notifier; -+ struct hlist_node *node; -+ -+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -+ notifier->ops->sched_out(notifier, next); -+} -+ -+#else /* !CONFIG_PREEMPT_NOTIFIERS */ -+ -+static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -+{ -+} -+ -+static void -+fire_sched_out_preempt_notifiers(struct task_struct *curr, -+ struct task_struct *next) -+{ -+} -+ -+#endif /* CONFIG_PREEMPT_NOTIFIERS */ -+ -+/** -+ * prepare_task_switch - prepare to switch tasks -+ * @rq: the runqueue preparing to switch -+ * @next: the task we are going to switch to. -+ * -+ * This is called with the rq lock held and interrupts off. It must -+ * be paired with a subsequent finish_task_switch after the context -+ * switch. -+ * -+ * prepare_task_switch sets up locking and calls architecture specific -+ * hooks. -+ */ -+static inline void -+prepare_task_switch(struct rq *rq, struct task_struct *prev, -+ struct task_struct *next) -+{ -+ fire_sched_out_preempt_notifiers(prev, next); -+ prepare_lock_switch(rq, next); -+ prepare_arch_switch(next); -+} -+ -+/** -+ * finish_task_switch - clean up after a task-switch -+ * @rq: runqueue associated with task-switch -+ * @prev: the thread we just switched away from. -+ * -+ * finish_task_switch must be called after the context switch, paired -+ * with a prepare_task_switch call before the context switch. -+ * finish_task_switch will reconcile locking set up by prepare_task_switch, -+ * and do any other architecture-specific cleanup actions. -+ * -+ * Note that we may have delayed dropping an mm in context_switch(). If -+ * so, we finish that here outside of the runqueue lock. (Doing it -+ * with the lock held can cause deadlocks; see schedule() for -+ * details.) -+ */ -+static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) -+ __releases(grq.lock) -+{ -+ struct mm_struct *mm = rq->prev_mm; -+ long prev_state; -+ -+ rq->prev_mm = NULL; -+ -+ /* -+ * A task struct has one reference for the use as "current". -+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls -+ * schedule one last time. The schedule call will never return, and -+ * the scheduled task must drop that reference. -+ * The test for TASK_DEAD must occur while the runqueue locks are -+ * still held, otherwise prev could be scheduled on another cpu, die -+ * there before we look at prev->state, and then the reference would -+ * be dropped twice. -+ * Manfred Spraul <manfred@colorfullife.com> -+ */ -+ prev_state = prev->state; -+ finish_arch_switch(prev); -+ perf_counter_task_sched_in(current, cpu_of(rq)); -+ finish_lock_switch(rq, prev); -+ -+ fire_sched_in_preempt_notifiers(current); -+ if (mm) -+ mmdrop(mm); -+ if (unlikely(prev_state == TASK_DEAD)) { -+ /* -+ * Remove function-return probe instances associated with this -+ * task and put them back on the free list. -+ */ -+ kprobe_flush_task(prev); -+ put_task_struct(prev); -+ } -+} -+ -+/** -+ * schedule_tail - first thing a freshly forked thread must call. -+ * @prev: the thread we just switched away from. -+ */ -+asmlinkage void schedule_tail(struct task_struct *prev) -+ __releases(grq.lock) -+{ -+ struct rq *rq = this_rq(); -+ -+ finish_task_switch(rq, prev); -+#ifdef __ARCH_WANT_UNLOCKED_CTXSW -+ /* In this case, finish_task_switch does not reenable preemption */ -+ preempt_enable(); -+#endif -+ if (current->set_child_tid) -+ put_user(current->pid, current->set_child_tid); -+} -+ -+/* -+ * context_switch - switch to the new MM and the new -+ * thread's register state. -+ */ -+static inline void -+context_switch(struct rq *rq, struct task_struct *prev, -+ struct task_struct *next) -+{ -+ struct mm_struct *mm, *oldmm; -+ -+ prepare_task_switch(rq, prev, next); -+ trace_sched_switch(rq, prev, next); -+ mm = next->mm; -+ oldmm = prev->active_mm; -+ /* -+ * For paravirt, this is coupled with an exit in switch_to to -+ * combine the page table reload and the switch backend into -+ * one hypercall. -+ */ -+ arch_enter_lazy_cpu_mode(); -+ -+ if (unlikely(!mm)) { -+ next->active_mm = oldmm; -+ atomic_inc(&oldmm->mm_count); -+ enter_lazy_tlb(oldmm, next); -+ } else -+ switch_mm(oldmm, mm, next); -+ -+ if (unlikely(!prev->mm)) { -+ prev->active_mm = NULL; -+ rq->prev_mm = oldmm; -+ } -+ /* -+ * Since the runqueue lock will be released by the next -+ * task (which is an invalid locking op but in the case -+ * of the scheduler it's an obvious special-case), so we -+ * do an early lockdep release here: -+ */ -+#ifndef __ARCH_WANT_UNLOCKED_CTXSW -+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_); -+#endif -+ -+ /* Here we just switch the register state and the stack. */ -+ switch_to(prev, next, prev); -+ -+ barrier(); -+ /* -+ * this_rq must be evaluated again because prev may have moved -+ * CPUs since it called schedule(), thus the 'rq' on its stack -+ * frame will be invalid. -+ */ -+ finish_task_switch(this_rq(), prev); -+} -+ -+/* -+ * nr_running, nr_uninterruptible and nr_context_switches: -+ * -+ * externally visible scheduler statistics: current number of runnable -+ * threads, current number of uninterruptible-sleeping threads, total -+ * number of context switches performed since bootup. All are measured -+ * without grabbing the grq lock but the occasional inaccurate result -+ * doesn't matter so long as it's positive. -+ */ -+unsigned long nr_running(void) -+{ -+ long nr = grq.nr_running; -+ -+ if (unlikely(nr < 0)) -+ nr = 0; -+ return (unsigned long)nr; -+} -+ -+unsigned long nr_uninterruptible(void) -+{ -+ unsigned long nu = grq.nr_uninterruptible; -+ -+ if (unlikely(nu < 0)) -+ nu = 0; -+ return nu; -+} -+ -+unsigned long long nr_context_switches(void) -+{ -+ long long ns = grq.nr_switches; -+ -+ /* This is of course impossible */ -+ if (unlikely(ns < 0)) -+ ns = 1; -+ return (long long)ns; -+} -+ -+unsigned long nr_iowait(void) -+{ -+ unsigned long i, sum = 0; -+ -+ for_each_possible_cpu(i) -+ sum += atomic_read(&cpu_rq(i)->nr_iowait); -+ -+ return sum; -+} -+ -+unsigned long nr_active(void) -+{ -+ return nr_running() + nr_uninterruptible(); -+} -+ -+DEFINE_PER_CPU(struct kernel_stat, kstat); -+ -+EXPORT_PER_CPU_SYMBOL(kstat); -+ -+/* -+ * On each tick, see what percentage of that tick was attributed to each -+ * component and add the percentage to the _pc values. Once a _pc value has -+ * accumulated one tick's worth, account for that. This means the total -+ * percentage of load components will always be 100 per tick. -+ */ -+static void pc_idle_time(struct rq *rq, unsigned long pc) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime64_t tmp = cputime_to_cputime64(jiffies_to_cputime(1)); -+ -+ if (atomic_read(&rq->nr_iowait) > 0) { -+ rq->iowait_pc += pc; -+ if (rq->iowait_pc >= 100) { -+ rq->iowait_pc %= 100; -+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp); -+ } -+ } else { -+ rq->idle_pc += pc; -+ if (rq->idle_pc >= 100) { -+ rq->idle_pc %= 100; -+ cpustat->idle = cputime64_add(cpustat->idle, tmp); -+ } -+ } -+} -+ -+static void -+pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, -+ unsigned long pc, unsigned long ns) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime_t one_jiffy = jiffies_to_cputime(1); -+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); -+ cputime64_t tmp = cputime_to_cputime64(one_jiffy); -+ -+ p->stime_pc += pc; -+ if (p->stime_pc >= 100) { -+ p->stime_pc -= 100; -+ p->stime = cputime_add(p->stime, one_jiffy); -+ p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled); -+ account_group_system_time(p, one_jiffy); -+ acct_update_integrals(p); -+ } -+ p->se.sum_exec_runtime += ns; -+ -+ if (hardirq_count() - hardirq_offset) -+ rq->irq_pc += pc; -+ else if (softirq_count()) { -+ rq->softirq_pc += pc; -+ if (rq->softirq_pc >= 100) { -+ rq->softirq_pc %= 100; -+ cpustat->softirq = cputime64_add(cpustat->softirq, tmp); -+ } -+ } else { -+ rq->system_pc += pc; -+ if (rq->system_pc >= 100) { -+ rq->system_pc %= 100; -+ cpustat->system = cputime64_add(cpustat->system, tmp); -+ } -+ } -+} -+ -+static void pc_user_time(struct rq *rq, struct task_struct *p, -+ unsigned long pc, unsigned long ns) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime_t one_jiffy = jiffies_to_cputime(1); -+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); -+ cputime64_t tmp = cputime_to_cputime64(one_jiffy); -+ -+ p->utime_pc += pc; -+ if (p->utime_pc >= 100) { -+ p->utime_pc -= 100; -+ p->utime = cputime_add(p->utime, one_jiffy); -+ p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled); -+ account_group_user_time(p, one_jiffy); -+ acct_update_integrals(p); -+ } -+ p->se.sum_exec_runtime += ns; -+ -+ if (TASK_NICE(p) > 0 || idleprio_task(p)) { -+ rq->nice_pc += pc; -+ if (rq->nice_pc >= 100) { -+ rq->nice_pc %= 100; -+ cpustat->nice = cputime64_add(cpustat->nice, tmp); -+ } -+ } else { -+ rq->user_pc += pc; -+ if (rq->user_pc >= 100) { -+ rq->user_pc %= 100; -+ cpustat->user = cputime64_add(cpustat->user, tmp); -+ } -+ } -+} -+ -+/* Convert nanoseconds to percentage of one tick. */ -+#define NS_TO_PC(NS) (NS * 100 / JIFFIES_TO_NS(1)) -+ -+/* -+ * This is called on clock ticks and on context switches. -+ * Bank in p->se.sum_exec_runtime the ns elapsed since the last tick or switch. -+ * CPU scheduler quota accounting is also performed here in microseconds. -+ * The value returned from sched_clock() occasionally gives bogus values so -+ * some sanity checking is required. Time is supposed to be banked all the -+ * time so default to half a tick to make up for when sched_clock reverts -+ * to just returning jiffies, and for hardware that can't do tsc. -+ */ -+static void -+update_cpu_clock(struct rq *rq, struct task_struct *p, int tick) -+{ -+ long time_diff = rq->clock - p->last_ran; -+ long account_ns = rq->clock - rq->timekeep_clock; -+ struct task_struct *idle = rq->idle; -+ unsigned long account_pc; -+ -+ /* -+ * There should be less than or equal to one jiffy worth, and not -+ * negative/overflow. time_diff is only used for internal scheduler -+ * time_slice accounting. -+ */ -+ if (time_diff <= 0) -+ time_diff = JIFFIES_TO_NS(1) / 2; -+ else if (time_diff > JIFFIES_TO_NS(1)) -+ time_diff = JIFFIES_TO_NS(1); -+ -+ if (unlikely(account_ns < 0)) -+ account_ns = 0; -+ -+ account_pc = NS_TO_PC(account_ns); -+ -+ if (tick) { -+ int user_tick = user_mode(get_irq_regs()); -+ -+ /* Accurate tick timekeeping */ -+ if (user_tick) -+ pc_user_time(rq, p, account_pc, account_ns); -+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) -+ pc_system_time(rq, p, HARDIRQ_OFFSET, -+ account_pc, account_ns); -+ else -+ pc_idle_time(rq, account_pc); -+ } else { -+ /* Accurate subtick timekeeping */ -+ if (p == idle) -+ pc_idle_time(rq, account_pc); -+ else -+ pc_user_time(rq, p, account_pc, account_ns); -+ } -+ -+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */ -+ if (rq->rq_policy != SCHED_FIFO && p != idle) -+ rq->rq_time_slice -= time_diff / 1000; -+ p->last_ran = rq->timekeep_clock = rq->clock; -+} -+ -+/* -+ * Return any ns on the sched_clock that have not yet been accounted in -+ * @p in case that task is currently running. -+ * -+ * Called with task_grq_lock() held on @rq. -+ */ -+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) -+{ -+ u64 ns = 0; -+ -+ if (p == rq->curr) { -+ update_rq_clock(rq); -+ ns = rq->clock - p->last_ran; -+ if ((s64)ns < 0) -+ ns = 0; -+ } -+ -+ return ns; -+} -+ -+unsigned long long task_delta_exec(struct task_struct *p) -+{ -+ unsigned long flags; -+ struct rq *rq; -+ u64 ns = 0; -+ -+ rq = task_grq_lock(p, &flags); -+ ns = do_task_delta_exec(p, rq); -+ task_grq_unlock(&flags); -+ -+ return ns; -+} -+ -+/* -+ * Return accounted runtime for the task. -+ * In case the task is currently running, return the runtime plus current's -+ * pending runtime that have not been accounted yet. -+ */ -+unsigned long long task_sched_runtime(struct task_struct *p) -+{ -+ unsigned long flags; -+ struct rq *rq; -+ u64 ns = 0; -+ -+ rq = task_grq_lock(p, &flags); -+ ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); -+ task_grq_unlock(&flags); -+ -+ return ns; -+} -+ -+/* -+ * Return sum_exec_runtime for the thread group. -+ * In case the task is currently running, return the sum plus current's -+ * pending runtime that have not been accounted yet. -+ * -+ * Note that the thread group might have other running tasks as well, -+ * so the return value not includes other pending runtime that other -+ * running tasks might have. -+ */ -+unsigned long long thread_group_sched_runtime(struct task_struct *p) -+{ -+ struct task_cputime totals; -+ unsigned long flags; -+ struct rq *rq; -+ u64 ns; -+ -+ rq = task_grq_lock(p, &flags); -+ thread_group_cputime(p, &totals); -+ ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); -+ task_grq_unlock(&flags); -+ -+ return ns; -+} -+ -+/* Compatibility crap for removal */ -+void account_user_time(struct task_struct *p, cputime_t cputime, -+ cputime_t cputime_scaled) -+{ -+} -+ -+void account_idle_time(cputime_t cputime) -+{ -+} -+ -+/* -+ * Account guest cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @cputime: the cpu time spent in virtual machine since the last update -+ * @cputime_scaled: cputime scaled by cpu frequency -+ */ -+static void account_guest_time(struct task_struct *p, cputime_t cputime, -+ cputime_t cputime_scaled) -+{ -+ cputime64_t tmp; -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ -+ tmp = cputime_to_cputime64(cputime); -+ -+ /* Add guest time to process. */ -+ p->utime = cputime_add(p->utime, cputime); -+ p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); -+ account_group_user_time(p, cputime); -+ p->gtime = cputime_add(p->gtime, cputime); -+ -+ /* Add guest time to cpustat. */ -+ cpustat->user = cputime64_add(cpustat->user, tmp); -+ cpustat->guest = cputime64_add(cpustat->guest, tmp); -+} -+ -+/* -+ * Account system cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @hardirq_offset: the offset to subtract from hardirq_count() -+ * @cputime: the cpu time spent in kernel space since the last update -+ * @cputime_scaled: cputime scaled by cpu frequency -+ * This is for guest only now. -+ */ -+void account_system_time(struct task_struct *p, int hardirq_offset, -+ cputime_t cputime, cputime_t cputime_scaled) -+{ -+ -+ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) -+ account_guest_time(p, cputime, cputime_scaled); -+} -+ -+/* -+ * Account for involuntary wait time. -+ * @steal: the cpu time spent in involuntary wait -+ */ -+void account_steal_time(cputime_t cputime) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime64_t cputime64 = cputime_to_cputime64(cputime); -+ -+ cpustat->steal = cputime64_add(cpustat->steal, cputime64); -+} -+ -+/* -+ * Account for idle time. -+ * @cputime: the cpu time spent in idle wait -+ */ -+static void account_idle_times(cputime_t cputime) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime64_t cputime64 = cputime_to_cputime64(cputime); -+ struct rq *rq = this_rq(); -+ -+ if (atomic_read(&rq->nr_iowait) > 0) -+ cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); -+ else -+ cpustat->idle = cputime64_add(cpustat->idle, cputime64); -+} -+ -+#ifndef CONFIG_VIRT_CPU_ACCOUNTING -+ -+void account_process_tick(struct task_struct *p, int user_tick) -+{ -+} -+ -+/* -+ * Account multiple ticks of steal time. -+ * @p: the process from which the cpu time has been stolen -+ * @ticks: number of stolen ticks -+ */ -+void account_steal_ticks(unsigned long ticks) -+{ -+ account_steal_time(jiffies_to_cputime(ticks)); -+} -+ -+/* -+ * Account multiple ticks of idle time. -+ * @ticks: number of stolen ticks -+ */ -+void account_idle_ticks(unsigned long ticks) -+{ -+ account_idle_times(jiffies_to_cputime(ticks)); -+} -+#endif -+ -+/* -+ * Functions to test for when SCHED_ISO tasks have used their allocated -+ * quota as real time scheduling and convert them back to SCHED_NORMAL. -+ * Where possible, the data is tested lockless, to avoid grabbing grq_lock -+ * because the occasional inaccurate result won't matter. However the -+ * data is only ever modified under lock. -+ */ -+static void set_iso_refractory(void) -+{ -+ grq_lock(); -+ grq.iso_refractory = 1; -+ grq_unlock(); -+} -+ -+static void clear_iso_refractory(void) -+{ -+ grq_lock(); -+ grq.iso_refractory = 0; -+ grq_unlock(); -+} -+ -+/* -+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT -+ * tasks and set the refractory flag if necessary. There is 10% hysteresis -+ * for unsetting the flag. -+ */ -+static unsigned int test_ret_isorefractory(struct rq *rq) -+{ -+ if (likely(!grq.iso_refractory)) { -+ if (grq.iso_ticks / ISO_PERIOD > sched_iso_cpu) -+ set_iso_refractory(); -+ } else { -+ if (grq.iso_ticks / ISO_PERIOD < (sched_iso_cpu * 90 / 100)) -+ clear_iso_refractory(); -+ } -+ return grq.iso_refractory; -+} -+ -+static void iso_tick(void) -+{ -+ grq_lock(); -+ grq.iso_ticks += 100; -+ grq_unlock(); -+} -+ -+/* No SCHED_ISO task was running so decrease rq->iso_ticks */ -+static inline void no_iso_tick(void) -+{ -+ if (grq.iso_ticks) { -+ grq_lock(); -+ grq.iso_ticks = grq.iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD; -+ grq_unlock(); -+ } -+} -+ -+static int rq_running_iso(struct rq *rq) -+{ -+ return rq->rq_prio == ISO_PRIO; -+} -+ -+/* This manages tasks that have run out of timeslice during a scheduler_tick */ -+static void task_running_tick(struct rq *rq) -+{ -+ struct task_struct *p; -+ -+ /* -+ * If a SCHED_ISO task is running we increment the iso_ticks. In -+ * order to prevent SCHED_ISO tasks from causing starvation in the -+ * presence of true RT tasks we account those as iso_ticks as well. -+ */ -+ if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { -+ if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100) -+ iso_tick(); -+ } else -+ no_iso_tick(); -+ -+ if (iso_queue(rq)) { -+ if (unlikely(test_ret_isorefractory(rq))) { -+ if (rq_running_iso(rq)) { -+ /* -+ * SCHED_ISO task is running as RT and limit -+ * has been hit. Force it to reschedule as -+ * SCHED_NORMAL by zeroing its time_slice -+ */ -+ rq->rq_time_slice = 0; -+ } -+ } -+ } -+ -+ /* SCHED_FIFO tasks never run out of timeslice. */ -+ if (rq_idle(rq) || rq->rq_time_slice > 0 || rq->rq_policy == SCHED_FIFO) -+ return; -+ -+ /* p->rt.time_slice <= 0. We only modify task_struct under grq lock */ -+ grq_lock(); -+ p = rq->curr; -+ if (likely(task_running(p))) { -+ requeue_task(p); -+ set_tsk_need_resched(p); -+ } -+ grq_unlock(); -+} -+ -+void wake_up_idle_cpu(int cpu); -+ -+/* -+ * This function gets called by the timer code, with HZ frequency. -+ * We call it with interrupts disabled. The data modified is all -+ * local to struct rq so we don't need to grab grq lock. -+ */ -+void scheduler_tick(void) -+{ -+ int cpu = smp_processor_id(); -+ struct rq *rq = cpu_rq(cpu); -+ -+ sched_clock_tick(); -+ update_rq_clock(rq); -+ update_cpu_clock(rq, rq->curr, 1); -+ if (!rq_idle(rq)) -+ task_running_tick(rq); -+ else { -+ no_iso_tick(); -+ if (unlikely(queued_notrunning())) -+ set_tsk_need_resched(rq->idle); -+ } -+} -+ -+notrace unsigned long get_parent_ip(unsigned long addr) -+{ -+ if (in_lock_functions(addr)) { -+ addr = CALLER_ADDR2; -+ if (in_lock_functions(addr)) -+ addr = CALLER_ADDR3; -+ } -+ return addr; -+} -+ -+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ -+ defined(CONFIG_PREEMPT_TRACER)) -+void __kprobes add_preempt_count(int val) -+{ -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Underflow? -+ */ -+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) -+ return; -+#endif -+ preempt_count() += val; -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Spinlock count overflowing soon? -+ */ -+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= -+ PREEMPT_MASK - 10); -+#endif -+ if (preempt_count() == val) -+ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -+} -+EXPORT_SYMBOL(add_preempt_count); -+ -+void __kprobes sub_preempt_count(int val) -+{ -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Underflow? -+ */ -+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) -+ return; -+ /* -+ * Is the spinlock portion underflowing? -+ */ -+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && -+ !(preempt_count() & PREEMPT_MASK))) -+ return; -+#endif -+ -+ if (preempt_count() == val) -+ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -+ preempt_count() -= val; -+} -+EXPORT_SYMBOL(sub_preempt_count); -+#endif -+ -+/* -+ * Deadline is "now" in jiffies + (offset by priority). Setting the deadline -+ * is the key to everything. It distributes cpu fairly amongst tasks of the -+ * same nice value, it proportions cpu according to nice level, it means the -+ * task that last woke up the longest ago has the earliest deadline, thus -+ * ensuring that interactive tasks get low latency on wake up. -+ */ -+static inline int prio_deadline_diff(struct task_struct *p) -+{ -+ return (pratio(p) * rr_interval * HZ / 1000 / 100) ? : 1; -+} -+ -+static inline int longest_deadline(void) -+{ -+ return (prio_ratios[39] * rr_interval * HZ / 1000 / 100); -+} -+ -+/* -+ * SCHED_IDLE tasks still have a deadline set, but offset by to nice +19. -+ * This allows nice levels to work between IDLEPRIO tasks and gives a -+ * deadline longer than nice +19 for when they're scheduled as SCHED_NORMAL -+ * tasks. -+ */ -+static inline void time_slice_expired(struct task_struct *p) -+{ -+ reset_first_time_slice(p); -+ p->rt.time_slice = timeslice(); -+ p->deadline = jiffies + prio_deadline_diff(p); -+ if (idleprio_task(p)) -+ p->deadline += longest_deadline(); -+} -+ -+static inline void check_deadline(struct task_struct *p) -+{ -+ if (p->rt.time_slice <= 0) -+ time_slice_expired(p); -+} -+ -+/* -+ * O(n) lookup of all tasks in the global runqueue. The real brainfuck -+ * of lock contention and O(n). It's not really O(n) as only the queued, -+ * but not running tasks are scanned, and is O(n) queued in the worst case -+ * scenario only because the right task can be found before scanning all of -+ * them. -+ * Tasks are selected in this order: -+ * Real time tasks are selected purely by their static priority and in the -+ * order they were queued, so the lowest value idx, and the first queued task -+ * of that priority value is chosen. -+ * If no real time tasks are found, the SCHED_ISO priority is checked, and -+ * all SCHED_ISO tasks have the same priority value, so they're selected by -+ * the earliest deadline value. -+ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the -+ * earliest deadline. -+ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are -+ * selected by the earliest deadline. -+ */ -+static inline struct -+task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle) -+{ -+ unsigned long dl, earliest_deadline = 0; /* Initialise to silence compiler */ -+ struct task_struct *p, *edt; -+ unsigned int cpu = rq->cpu; -+ struct list_head *queue; -+ int idx = 0; -+ -+ edt = idle; -+retry: -+ idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx); -+ if (idx >= PRIO_LIMIT) -+ goto out; -+ queue = &grq.queue[idx]; -+ list_for_each_entry(p, queue, rt.run_list) { -+ /* Make sure cpu affinity is ok */ -+ if (!cpu_isset(cpu, p->cpus_allowed)) -+ continue; -+ if (idx < MAX_RT_PRIO) { -+ /* We found an rt task */ -+ edt = p; -+ goto out_take; -+ } -+ -+ /* -+ * No rt task, select the earliest deadline task now. -+ * On the 1st run the 2nd condition is never used, so -+ * there is no need to initialise earliest_deadline -+ * before. Normalise all old deadlines to now. -+ */ -+ if (time_before(p->deadline, jiffies)) -+ dl = jiffies; -+ else -+ dl = p->deadline; -+ -+ if (edt == idle || -+ time_before(dl, earliest_deadline)) { -+ earliest_deadline = dl; -+ edt = p; -+ } -+ } -+ if (edt == idle) { -+ if (++idx < PRIO_LIMIT) -+ goto retry; -+ goto out; -+ } -+out_take: -+ take_task(rq, edt); -+out: -+ return edt; -+} -+ -+#ifdef CONFIG_SMP -+static inline void set_cpuidle_map(unsigned long cpu) -+{ -+ cpu_set(cpu, grq.cpu_idle_map); -+} -+ -+static inline void clear_cpuidle_map(unsigned long cpu) -+{ -+ cpu_clear(cpu, grq.cpu_idle_map); -+} -+ -+#else /* CONFIG_SMP */ -+static inline void set_cpuidle_map(unsigned long cpu) -+{ -+} -+ -+static inline void clear_cpuidle_map(unsigned long cpu) -+{ -+} -+#endif /* !CONFIG_SMP */ -+ -+/* -+ * Print scheduling while atomic bug: -+ */ -+static noinline void __schedule_bug(struct task_struct *prev) -+{ -+ struct pt_regs *regs = get_irq_regs(); -+ -+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", -+ prev->comm, prev->pid, preempt_count()); -+ -+ debug_show_held_locks(prev); -+ print_modules(); -+ if (irqs_disabled()) -+ print_irqtrace_events(prev); -+ -+ if (regs) -+ show_regs(regs); -+ else -+ dump_stack(); -+} -+ -+/* -+ * Various schedule()-time debugging checks and statistics: -+ */ -+static inline void schedule_debug(struct task_struct *prev) -+{ -+ /* -+ * Test if we are atomic. Since do_exit() needs to call into -+ * schedule() atomically, we ignore that path for now. -+ * Otherwise, whine if we are scheduling when we should not be. -+ */ -+ if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) -+ __schedule_bug(prev); -+ -+ profile_hit(SCHED_PROFILING, __builtin_return_address(0)); -+ -+ schedstat_inc(this_rq(), sched_count); -+#ifdef CONFIG_SCHEDSTATS -+ if (unlikely(prev->lock_depth >= 0)) { -+ schedstat_inc(this_rq(), bkl_count); -+ schedstat_inc(prev, sched_info.bkl_count); -+ } -+#endif -+} -+ -+/* -+ * schedule() is the main scheduler function. -+ */ -+asmlinkage void __sched __schedule(void) -+{ -+ struct task_struct *prev, *next, *idle; -+ int deactivate = 0, cpu; -+ long *switch_count; -+ struct rq *rq; -+ u64 now; -+ -+ cpu = smp_processor_id(); -+ rq = this_rq(); -+ rcu_qsctr_inc(cpu); -+ prev = rq->curr; -+ switch_count = &prev->nivcsw; -+ -+ release_kernel_lock(prev); -+need_resched_nonpreemptible: -+ -+ schedule_debug(prev); -+ idle = rq->idle; -+ /* -+ * The idle thread is not allowed to schedule! -+ * Remove this check after it has been exercised a bit. -+ */ -+ if (unlikely(prev == idle) && prev->state != TASK_RUNNING) { -+ printk(KERN_ERR "bad: scheduling from the idle thread!\n"); -+ dump_stack(); -+ } -+ -+ grq_lock_irq(); -+ update_rq_clock(rq); -+ now = rq->clock; -+ update_cpu_clock(rq, prev, 0); -+ -+ clear_tsk_need_resched(prev); -+ -+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { -+ if (unlikely(signal_pending_state(prev->state, prev))) -+ prev->state = TASK_RUNNING; -+ else -+ deactivate = 1; -+ switch_count = &prev->nvcsw; -+ } -+ -+ if (prev != idle) { -+ /* Update all the information stored on struct rq */ -+ prev->rt.time_slice = rq->rq_time_slice; -+ prev->deadline = rq->rq_deadline; -+ check_deadline(prev); -+ return_task(prev, deactivate); -+ } -+ -+ if (likely(queued_notrunning())) { -+ next = earliest_deadline_task(rq, idle); -+ } else { -+ next = idle; -+ schedstat_inc(rq, sched_goidle); -+ } -+ -+ if (next == rq->idle) -+ set_cpuidle_map(cpu); -+ else -+ clear_cpuidle_map(cpu); -+ -+ prefetch(next); -+ prefetch_stack(next); -+ -+ prev->timestamp = prev->last_ran = now; -+ -+ if (likely(prev != next)) { -+ rq->rq_time_slice = next->rt.time_slice; -+ rq->rq_deadline = next->deadline; -+ rq->rq_prio = next->prio; -+ -+ sched_info_switch(prev, next); -+ grq.nr_switches++; -+ next->oncpu = 1; -+ prev->oncpu = 0; -+ rq->curr = next; -+ ++*switch_count; -+ -+ context_switch(rq, prev, next); /* unlocks the rq */ -+ /* -+ * the context switch might have flipped the stack from under -+ * us, hence refresh the local variables. -+ */ -+ cpu = smp_processor_id(); -+ rq = cpu_rq(cpu); -+ } else -+ grq_unlock_irq(); -+ -+ if (unlikely(reacquire_kernel_lock(current) < 0)) -+ goto need_resched_nonpreemptible; -+} -+ -+asmlinkage void __sched schedule(void) -+{ -+need_resched: -+ preempt_disable(); -+ __schedule(); -+ preempt_enable_no_resched(); -+ if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) -+ goto need_resched; -+} -+EXPORT_SYMBOL(schedule); -+ -+#ifdef CONFIG_SMP -+int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) -+{ -+ return 0; -+} -+#endif -+ -+#ifdef CONFIG_PREEMPT -+/* -+ * this is the entry point to schedule() from in-kernel preemption -+ * off of preempt_enable. Kernel preemptions off return from interrupt -+ * occur there and call schedule directly. -+ */ -+asmlinkage void __sched preempt_schedule(void) -+{ -+ struct thread_info *ti = current_thread_info(); -+ -+ /* -+ * If there is a non-zero preempt_count or interrupts are disabled, -+ * we do not want to preempt the current task. Just return.. -+ */ -+ if (likely(ti->preempt_count || irqs_disabled())) -+ return; -+ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ schedule(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ -+ /* -+ * Check again in case we missed a preemption opportunity -+ * between schedule and now. -+ */ -+ barrier(); -+ } while (need_resched()); -+} -+EXPORT_SYMBOL(preempt_schedule); -+ -+/* -+ * this is the entry point to schedule() from kernel preemption -+ * off of irq context. -+ * Note, that this is called and return with irqs disabled. This will -+ * protect us against recursive calling from irq. -+ */ -+asmlinkage void __sched preempt_schedule_irq(void) -+{ -+ struct thread_info *ti = current_thread_info(); -+ -+ /* Catch callers which need to be fixed */ -+ BUG_ON(ti->preempt_count || !irqs_disabled()); -+ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ local_irq_enable(); -+ schedule(); -+ local_irq_disable(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ -+ /* -+ * Check again in case we missed a preemption opportunity -+ * between schedule and now. -+ */ -+ barrier(); -+ } while (need_resched()); -+} -+ -+#endif /* CONFIG_PREEMPT */ -+ -+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, -+ void *key) -+{ -+ return try_to_wake_up(curr->private, mode, sync); -+} -+EXPORT_SYMBOL(default_wake_function); -+ -+/* -+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just -+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve -+ * number) then we wake all the non-exclusive tasks and one exclusive task. -+ * -+ * There are circumstances in which we can try to wake a task which has already -+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns -+ * zero in this (rare) case, and we handle it by continuing to scan the queue. -+ */ -+void __wake_up_common(wait_queue_head_t *q, unsigned int mode, -+ int nr_exclusive, int sync, void *key) -+{ -+ struct list_head *tmp, *next; -+ -+ list_for_each_safe(tmp, next, &q->task_list) { -+ wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); -+ unsigned flags = curr->flags; -+ -+ if (curr->func(curr, mode, sync, key) && -+ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) -+ break; -+ } -+} -+ -+/** -+ * __wake_up - wake up threads blocked on a waitqueue. -+ * @q: the waitqueue -+ * @mode: which threads -+ * @nr_exclusive: how many wake-one or wake-many threads to wake up -+ * @key: is directly passed to the wakeup function -+ * -+ * It may be assumed that this function implies a write memory barrier before -+ * changing the task state if and only if any tasks are woken up. -+ */ -+void __wake_up(wait_queue_head_t *q, unsigned int mode, -+ int nr_exclusive, void *key) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __wake_up_common(q, mode, nr_exclusive, 0, key); -+ spin_unlock_irqrestore(&q->lock, flags); -+} -+EXPORT_SYMBOL(__wake_up); -+ -+/* -+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held. -+ */ -+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) -+{ -+ __wake_up_common(q, mode, 1, 0, NULL); -+} -+ -+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) -+{ -+ __wake_up_common(q, mode, 1, 0, key); -+} -+ -+/** -+ * __wake_up_sync_key - wake up threads blocked on a waitqueue. -+ * @q: the waitqueue -+ * @mode: which threads -+ * @nr_exclusive: how many wake-one or wake-many threads to wake up -+ * @key: opaque value to be passed to wakeup targets -+ * -+ * The sync wakeup differs that the waker knows that it will schedule -+ * away soon, so while the target thread will be woken up, it will not -+ * be migrated to another CPU - ie. the two threads are 'synchronized' -+ * with each other. This can prevent needless bouncing between CPUs. -+ * -+ * On UP it can prevent extra preemption. -+ * -+ * It may be assumed that this function implies a write memory barrier before -+ * changing the task state if and only if any tasks are woken up. -+ */ -+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, -+ int nr_exclusive, void *key) -+{ -+ unsigned long flags; -+ int sync = 1; -+ -+ if (unlikely(!q)) -+ return; -+ -+ if (unlikely(!nr_exclusive)) -+ sync = 0; -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __wake_up_common(q, mode, nr_exclusive, sync, key); -+ spin_unlock_irqrestore(&q->lock, flags); -+} -+EXPORT_SYMBOL_GPL(__wake_up_sync_key); -+ -+/** -+ * __wake_up_sync - wake up threads blocked on a waitqueue. -+ * @q: the waitqueue -+ * @mode: which threads -+ * @nr_exclusive: how many wake-one or wake-many threads to wake up -+ * -+ * The sync wakeup differs that the waker knows that it will schedule -+ * away soon, so while the target thread will be woken up, it will not -+ * be migrated to another CPU - ie. the two threads are 'synchronized' -+ * with each other. This can prevent needless bouncing between CPUs. -+ * -+ * On UP it can prevent extra preemption. -+ */ -+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) -+{ -+ unsigned long flags; -+ int sync = 1; -+ -+ if (unlikely(!q)) -+ return; -+ -+ if (unlikely(!nr_exclusive)) -+ sync = 0; -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __wake_up_common(q, mode, nr_exclusive, sync, NULL); -+ spin_unlock_irqrestore(&q->lock, flags); -+} -+EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ -+ -+/** -+ * complete: - signals a single thread waiting on this completion -+ * @x: holds the state of this particular completion -+ * -+ * This will wake up a single thread waiting on this completion. Threads will be -+ * awakened in the same order in which they were queued. -+ * -+ * See also complete_all(), wait_for_completion() and related routines. -+ * -+ * It may be assumed that this function implies a write memory barrier before -+ * changing the task state if and only if any tasks are woken up. -+ */ -+void complete(struct completion *x) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&x->wait.lock, flags); -+ x->done++; -+ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); -+ spin_unlock_irqrestore(&x->wait.lock, flags); -+} -+EXPORT_SYMBOL(complete); -+ -+/** -+ * complete_all: - signals all threads waiting on this completion -+ * @x: holds the state of this particular completion -+ * -+ * This will wake up all threads waiting on this particular completion event. -+ * -+ * It may be assumed that this function implies a write memory barrier before -+ * changing the task state if and only if any tasks are woken up. -+ */ -+void complete_all(struct completion *x) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&x->wait.lock, flags); -+ x->done += UINT_MAX/2; -+ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); -+ spin_unlock_irqrestore(&x->wait.lock, flags); -+} -+EXPORT_SYMBOL(complete_all); -+ -+static inline long __sched -+do_wait_for_common(struct completion *x, long timeout, int state) -+{ -+ if (!x->done) { -+ DECLARE_WAITQUEUE(wait, current); -+ -+ wait.flags |= WQ_FLAG_EXCLUSIVE; -+ __add_wait_queue_tail(&x->wait, &wait); -+ do { -+ if (signal_pending_state(state, current)) { -+ timeout = -ERESTARTSYS; -+ break; -+ } -+ __set_current_state(state); -+ spin_unlock_irq(&x->wait.lock); -+ timeout = schedule_timeout(timeout); -+ spin_lock_irq(&x->wait.lock); -+ } while (!x->done && timeout); -+ __remove_wait_queue(&x->wait, &wait); -+ if (!x->done) -+ return timeout; -+ } -+ x->done--; -+ return timeout ?: 1; -+} -+ -+static long __sched -+wait_for_common(struct completion *x, long timeout, int state) -+{ -+ might_sleep(); -+ -+ spin_lock_irq(&x->wait.lock); -+ timeout = do_wait_for_common(x, timeout, state); -+ spin_unlock_irq(&x->wait.lock); -+ return timeout; -+} -+ -+/** -+ * wait_for_completion: - waits for completion of a task -+ * @x: holds the state of this particular completion -+ * -+ * This waits to be signaled for completion of a specific task. It is NOT -+ * interruptible and there is no timeout. -+ * -+ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout -+ * and interrupt capability. Also see complete(). -+ */ -+void __sched wait_for_completion(struct completion *x) -+{ -+ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion); -+ -+/** -+ * wait_for_completion_timeout: - waits for completion of a task (w/timeout) -+ * @x: holds the state of this particular completion -+ * @timeout: timeout value in jiffies -+ * -+ * This waits for either a completion of a specific task to be signaled or for a -+ * specified timeout to expire. The timeout is in jiffies. It is not -+ * interruptible. -+ */ -+unsigned long __sched -+wait_for_completion_timeout(struct completion *x, unsigned long timeout) -+{ -+ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion_timeout); -+ -+/** -+ * wait_for_completion_interruptible: - waits for completion of a task (w/intr) -+ * @x: holds the state of this particular completion -+ * -+ * This waits for completion of a specific task to be signaled. It is -+ * interruptible. -+ */ -+int __sched wait_for_completion_interruptible(struct completion *x) -+{ -+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); -+ if (t == -ERESTARTSYS) -+ return t; -+ return 0; -+} -+EXPORT_SYMBOL(wait_for_completion_interruptible); -+ -+/** -+ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) -+ * @x: holds the state of this particular completion -+ * @timeout: timeout value in jiffies -+ * -+ * This waits for either a completion of a specific task to be signaled or for a -+ * specified timeout to expire. It is interruptible. The timeout is in jiffies. -+ */ -+unsigned long __sched -+wait_for_completion_interruptible_timeout(struct completion *x, -+ unsigned long timeout) -+{ -+ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); -+ -+/** -+ * wait_for_completion_killable: - waits for completion of a task (killable) -+ * @x: holds the state of this particular completion -+ * -+ * This waits to be signaled for completion of a specific task. It can be -+ * interrupted by a kill signal. -+ */ -+int __sched wait_for_completion_killable(struct completion *x) -+{ -+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); -+ if (t == -ERESTARTSYS) -+ return t; -+ return 0; -+} -+EXPORT_SYMBOL(wait_for_completion_killable); -+ -+/** -+ * try_wait_for_completion - try to decrement a completion without blocking -+ * @x: completion structure -+ * -+ * Returns: 0 if a decrement cannot be done without blocking -+ * 1 if a decrement succeeded. -+ * -+ * If a completion is being used as a counting completion, -+ * attempt to decrement the counter without blocking. This -+ * enables us to avoid waiting if the resource the completion -+ * is protecting is not available. -+ */ -+bool try_wait_for_completion(struct completion *x) -+{ -+ int ret = 1; -+ -+ spin_lock_irq(&x->wait.lock); -+ if (!x->done) -+ ret = 0; -+ else -+ x->done--; -+ spin_unlock_irq(&x->wait.lock); -+ return ret; -+} -+EXPORT_SYMBOL(try_wait_for_completion); -+ -+/** -+ * completion_done - Test to see if a completion has any waiters -+ * @x: completion structure -+ * -+ * Returns: 0 if there are waiters (wait_for_completion() in progress) -+ * 1 if there are no waiters. -+ * -+ */ -+bool completion_done(struct completion *x) -+{ -+ int ret = 1; -+ -+ spin_lock_irq(&x->wait.lock); -+ if (!x->done) -+ ret = 0; -+ spin_unlock_irq(&x->wait.lock); -+ return ret; -+} -+EXPORT_SYMBOL(completion_done); -+ -+static long __sched -+sleep_on_common(wait_queue_head_t *q, int state, long timeout) -+{ -+ unsigned long flags; -+ wait_queue_t wait; -+ -+ init_waitqueue_entry(&wait, current); -+ -+ __set_current_state(state); -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __add_wait_queue(q, &wait); -+ spin_unlock(&q->lock); -+ timeout = schedule_timeout(timeout); -+ spin_lock_irq(&q->lock); -+ __remove_wait_queue(q, &wait); -+ spin_unlock_irqrestore(&q->lock, flags); -+ -+ return timeout; -+} -+ -+void __sched interruptible_sleep_on(wait_queue_head_t *q) -+{ -+ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -+} -+EXPORT_SYMBOL(interruptible_sleep_on); -+ -+long __sched -+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) -+{ -+ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); -+} -+EXPORT_SYMBOL(interruptible_sleep_on_timeout); -+ -+void __sched sleep_on(wait_queue_head_t *q) -+{ -+ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -+} -+EXPORT_SYMBOL(sleep_on); -+ -+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) -+{ -+ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); -+} -+EXPORT_SYMBOL(sleep_on_timeout); -+ -+#ifdef CONFIG_RT_MUTEXES -+ -+/* -+ * rt_mutex_setprio - set the current priority of a task -+ * @p: task -+ * @prio: prio value (kernel-internal form) -+ * -+ * This function changes the 'effective' priority of a task. It does -+ * not touch ->normal_prio like __setscheduler(). -+ * -+ * Used by the rt_mutex code to implement priority inheritance logic. -+ */ -+void rt_mutex_setprio(struct task_struct *p, int prio) -+{ -+ unsigned long flags; -+ int queued, oldprio; -+ struct rq *rq; -+ -+ BUG_ON(prio < 0 || prio > MAX_PRIO); -+ -+ rq = time_task_grq_lock(p, &flags); -+ -+ oldprio = p->prio; -+ queued = task_queued_only(p); -+ if (queued) -+ dequeue_task(p); -+ p->prio = prio; -+ if (task_running(p) && prio > oldprio) -+ resched_task(p); -+ if (queued) { -+ enqueue_task(p); -+ try_preempt(p); -+ } -+ -+ task_grq_unlock(&flags); -+} -+ -+#endif -+ -+/* -+ * Adjust the deadline for when the priority is to change, before it's -+ * changed. -+ */ -+static void adjust_deadline(struct task_struct *p, int new_prio) -+{ -+ p->deadline += (prio_ratios[USER_PRIO(new_prio)] - pratio(p)) * -+ rr_interval * HZ / 1000 / 100; -+} -+ -+void set_user_nice(struct task_struct *p, long nice) -+{ -+ int queued, new_static; -+ unsigned long flags; -+ struct rq *rq; -+ -+ if (TASK_NICE(p) == nice || nice < -20 || nice > 19) -+ return; -+ new_static = NICE_TO_PRIO(nice); -+ /* -+ * We have to be careful, if called from sys_setpriority(), -+ * the task might be in the middle of scheduling on another CPU. -+ */ -+ rq = time_task_grq_lock(p, &flags); -+ /* -+ * The RT priorities are set via sched_setscheduler(), but we still -+ * allow the 'normal' nice value to be set - but as expected -+ * it wont have any effect on scheduling until the task is -+ * not SCHED_NORMAL/SCHED_BATCH: -+ */ -+ if (has_rt_policy(p)) { -+ p->static_prio = new_static; -+ goto out_unlock; -+ } -+ queued = task_queued_only(p); -+ /* -+ * If p is actually running, we don't need to do anything when -+ * changing the priority because the grq is unaffected. -+ */ -+ if (queued) -+ dequeue_task(p); -+ -+ adjust_deadline(p, new_static); -+ p->static_prio = new_static; -+ p->prio = effective_prio(p); -+ -+ if (queued) { -+ enqueue_task(p); -+ try_preempt(p); -+ } -+ -+ /* Just resched the task, schedule() will know what to do. */ -+ if (task_running(p)) -+ resched_task(p); -+out_unlock: -+ task_grq_unlock(&flags); -+} -+EXPORT_SYMBOL(set_user_nice); -+ -+/* -+ * can_nice - check if a task can reduce its nice value -+ * @p: task -+ * @nice: nice value -+ */ -+int can_nice(const struct task_struct *p, const int nice) -+{ -+ /* convert nice value [19,-20] to rlimit style value [1,40] */ -+ int nice_rlim = 20 - nice; -+ -+ return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || -+ capable(CAP_SYS_NICE)); -+} -+ -+#ifdef __ARCH_WANT_SYS_NICE -+ -+/* -+ * sys_nice - change the priority of the current process. -+ * @increment: priority increment -+ * -+ * sys_setpriority is a more generic, but much slower function that -+ * does similar things. -+ */ -+SYSCALL_DEFINE1(nice, int, increment) -+{ -+ long nice, retval; -+ -+ /* -+ * Setpriority might change our priority at the same moment. -+ * We don't have to worry. Conceptually one call occurs first -+ * and we have a single winner. -+ */ -+ if (increment < -40) -+ increment = -40; -+ if (increment > 40) -+ increment = 40; -+ -+ nice = TASK_NICE(current) + increment; -+ if (nice < -20) -+ nice = -20; -+ if (nice > 19) -+ nice = 19; -+ -+ if (increment < 0 && !can_nice(current, nice)) -+ return -EPERM; -+ -+ retval = security_task_setnice(current, nice); -+ if (retval) -+ return retval; -+ -+ set_user_nice(current, nice); -+ return 0; -+} -+ -+#endif -+ -+/** -+ * task_prio - return the priority value of a given task. -+ * @p: the task in question. -+ * -+ * This is the priority value as seen by users in /proc. -+ * RT tasks are offset by -100. Normal tasks are centered -+ * around 1, value goes from 0 (SCHED_ISO) up to 82 (nice +19 -+ * SCHED_IDLE). -+ */ -+int task_prio(const struct task_struct *p) -+{ -+ int delta, prio = p->prio - MAX_RT_PRIO; -+ -+ /* rt tasks and iso tasks */ -+ if (prio <= 0) -+ goto out; -+ -+ delta = (p->deadline - jiffies) * 40 / longest_deadline(); -+ if (delta > 0 && delta <= 80) -+ prio += delta; -+out: -+ return prio; -+} -+ -+/** -+ * task_nice - return the nice value of a given task. -+ * @p: the task in question. -+ */ -+int task_nice(const struct task_struct *p) -+{ -+ return TASK_NICE(p); -+} -+EXPORT_SYMBOL_GPL(task_nice); -+ -+/** -+ * idle_cpu - is a given cpu idle currently? -+ * @cpu: the processor in question. -+ */ -+int idle_cpu(int cpu) -+{ -+ return cpu_curr(cpu) == cpu_rq(cpu)->idle; -+} -+ -+/** -+ * idle_task - return the idle task for a given cpu. -+ * @cpu: the processor in question. -+ */ -+struct task_struct *idle_task(int cpu) -+{ -+ return cpu_rq(cpu)->idle; -+} -+ -+/** -+ * find_process_by_pid - find a process with a matching PID value. -+ * @pid: the pid in question. -+ */ -+static inline struct task_struct *find_process_by_pid(pid_t pid) -+{ -+ return pid ? find_task_by_vpid(pid) : current; -+} -+ -+/* Actually do priority change: must hold grq lock. */ -+static void __setscheduler(struct task_struct *p, int policy, int prio) -+{ -+ BUG_ON(task_queued_only(p)); -+ -+ p->policy = policy; -+ p->rt_priority = prio; -+ p->normal_prio = normal_prio(p); -+ /* we are holding p->pi_lock already */ -+ p->prio = rt_mutex_getprio(p); -+ /* -+ * Reschedule if running. schedule() will know if it can continue -+ * running or not. -+ */ -+ if (task_running(p)) -+ resched_task(p); -+} -+ -+/* -+ * check the target process has a UID that matches the current process's -+ */ -+static bool check_same_owner(struct task_struct *p) -+{ -+ const struct cred *cred = current_cred(), *pcred; -+ bool match; -+ -+ rcu_read_lock(); -+ pcred = __task_cred(p); -+ match = (cred->euid == pcred->euid || -+ cred->euid == pcred->uid); -+ rcu_read_unlock(); -+ return match; -+} -+ -+static int __sched_setscheduler(struct task_struct *p, int policy, -+ struct sched_param *param, bool user) -+{ -+ struct sched_param zero_param = { .sched_priority = 0 }; -+ int queued, retval, oldprio, oldpolicy = -1; -+ unsigned long flags, rlim_rtprio = 0; -+ struct rq *rq; -+ -+ /* may grab non-irq protected spin_locks */ -+ BUG_ON(in_interrupt()); -+ -+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { -+ unsigned long lflags; -+ -+ if (!lock_task_sighand(p, &lflags)) -+ return -ESRCH; -+ rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; -+ unlock_task_sighand(p, &lflags); -+ if (rlim_rtprio) -+ goto recheck; -+ /* -+ * If the caller requested an RT policy without having the -+ * necessary rights, we downgrade the policy to SCHED_ISO. -+ * We also set the parameter to zero to pass the checks. -+ */ -+ policy = SCHED_ISO; -+ param = &zero_param; -+ } -+recheck: -+ /* double check policy once rq lock held */ -+ if (policy < 0) -+ policy = oldpolicy = p->policy; -+ else if (!SCHED_RANGE(policy)) -+ return -EINVAL; -+ /* -+ * Valid priorities for SCHED_FIFO and SCHED_RR are -+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and -+ * SCHED_BATCH is 0. -+ */ -+ if (param->sched_priority < 0 || -+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || -+ (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) -+ return -EINVAL; -+ if (is_rt_policy(policy) != (param->sched_priority != 0)) -+ return -EINVAL; -+ -+ /* -+ * Allow unprivileged RT tasks to decrease priority: -+ */ -+ if (user && !capable(CAP_SYS_NICE)) { -+ if (is_rt_policy(policy)) { -+ /* can't set/change the rt policy */ -+ if (policy != p->policy && !rlim_rtprio) -+ return -EPERM; -+ -+ /* can't increase priority */ -+ if (param->sched_priority > p->rt_priority && -+ param->sched_priority > rlim_rtprio) -+ return -EPERM; -+ } else { -+ switch (p->policy) { -+ /* -+ * Can only downgrade policies but not back to -+ * SCHED_NORMAL -+ */ -+ case SCHED_ISO: -+ if (policy == SCHED_ISO) -+ goto out; -+ if (policy == SCHED_NORMAL) -+ return -EPERM; -+ break; -+ case SCHED_BATCH: -+ if (policy == SCHED_BATCH) -+ goto out; -+ if (policy != SCHED_IDLE) -+ return -EPERM; -+ break; -+ case SCHED_IDLE: -+ if (policy == SCHED_IDLE) -+ goto out; -+ return -EPERM; -+ default: -+ break; -+ } -+ } -+ -+ /* can't change other user's priorities */ -+ if (!check_same_owner(p)) -+ return -EPERM; -+ } -+ -+ retval = security_task_setscheduler(p, policy, param); -+ if (retval) -+ return retval; -+ /* -+ * make sure no PI-waiters arrive (or leave) while we are -+ * changing the priority of the task: -+ */ -+ spin_lock_irqsave(&p->pi_lock, flags); -+ /* -+ * To be able to change p->policy safely, the apropriate -+ * runqueue lock must be held. -+ */ -+ rq = __task_grq_lock(p); -+ /* recheck policy now with rq lock held */ -+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { -+ __task_grq_unlock(); -+ spin_unlock_irqrestore(&p->pi_lock, flags); -+ policy = oldpolicy = -1; -+ goto recheck; -+ } -+ update_rq_clock(rq); -+ queued = task_queued_only(p); -+ if (queued) -+ dequeue_task(p); -+ oldprio = p->prio; -+ __setscheduler(p, policy, param->sched_priority); -+ if (queued) { -+ enqueue_task(p); -+ try_preempt(p); -+ } -+ __task_grq_unlock(); -+ spin_unlock_irqrestore(&p->pi_lock, flags); -+ -+ rt_mutex_adjust_pi(p); -+out: -+ return 0; -+} -+ -+/** -+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. -+ * @p: the task in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ * -+ * NOTE that the task may be already dead. -+ */ -+int sched_setscheduler(struct task_struct *p, int policy, -+ struct sched_param *param) -+{ -+ return __sched_setscheduler(p, policy, param, true); -+} -+ -+EXPORT_SYMBOL_GPL(sched_setscheduler); -+ -+/** -+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. -+ * @p: the task in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ * -+ * Just like sched_setscheduler, only don't bother checking if the -+ * current context has permission. For example, this is needed in -+ * stop_machine(): we create temporary high priority worker threads, -+ * but our caller might not have that capability. -+ */ -+int sched_setscheduler_nocheck(struct task_struct *p, int policy, -+ struct sched_param *param) -+{ -+ return __sched_setscheduler(p, policy, param, false); -+} -+ -+static int -+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -+{ -+ struct sched_param lparam; -+ struct task_struct *p; -+ int retval; -+ -+ if (!param || pid < 0) -+ return -EINVAL; -+ if (copy_from_user(&lparam, param, sizeof(struct sched_param))) -+ return -EFAULT; -+ -+ rcu_read_lock(); -+ retval = -ESRCH; -+ p = find_process_by_pid(pid); -+ if (p != NULL) -+ retval = sched_setscheduler(p, policy, &lparam); -+ rcu_read_unlock(); -+ -+ return retval; -+} -+ -+/** -+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority -+ * @pid: the pid in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ */ -+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, -+ struct sched_param __user *param) -+{ -+ /* negative values for policy are not valid */ -+ if (policy < 0) -+ return -EINVAL; -+ -+ return do_sched_setscheduler(pid, policy, param); -+} -+ -+/** -+ * sys_sched_setparam - set/change the RT priority of a thread -+ * @pid: the pid in question. -+ * @param: structure containing the new RT priority. -+ */ -+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -+{ -+ return do_sched_setscheduler(pid, -1, param); -+} -+ -+/** -+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread -+ * @pid: the pid in question. -+ */ -+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -+{ -+ struct task_struct *p; -+ int retval = -EINVAL; -+ -+ if (pid < 0) -+ goto out_nounlock; -+ -+ retval = -ESRCH; -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ if (p) { -+ retval = security_task_getscheduler(p); -+ if (!retval) -+ retval = p->policy; -+ } -+ read_unlock(&tasklist_lock); -+ -+out_nounlock: -+ return retval; -+} -+ -+/** -+ * sys_sched_getscheduler - get the RT priority of a thread -+ * @pid: the pid in question. -+ * @param: structure containing the RT priority. -+ */ -+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -+{ -+ struct sched_param lp; -+ struct task_struct *p; -+ int retval = -EINVAL; -+ -+ if (!param || pid < 0) -+ goto out_nounlock; -+ -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ retval = -ESRCH; -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ lp.sched_priority = p->rt_priority; -+ read_unlock(&tasklist_lock); -+ -+ /* -+ * This one might sleep, we cannot do it with a spinlock held ... -+ */ -+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; -+ -+out_nounlock: -+ return retval; -+ -+out_unlock: -+ read_unlock(&tasklist_lock); -+ return retval; -+} -+ -+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -+{ -+ cpumask_var_t cpus_allowed, new_mask; -+ struct task_struct *p; -+ int retval; -+ -+ get_online_cpus(); -+ read_lock(&tasklist_lock); -+ -+ p = find_process_by_pid(pid); -+ if (!p) { -+ read_unlock(&tasklist_lock); -+ put_online_cpus(); -+ return -ESRCH; -+ } -+ -+ /* -+ * It is not safe to call set_cpus_allowed with the -+ * tasklist_lock held. We will bump the task_struct's -+ * usage count and then drop tasklist_lock. -+ */ -+ get_task_struct(p); -+ read_unlock(&tasklist_lock); -+ -+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { -+ retval = -ENOMEM; -+ goto out_put_task; -+ } -+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { -+ retval = -ENOMEM; -+ goto out_free_cpus_allowed; -+ } -+ retval = -EPERM; -+ if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) -+ goto out_unlock; -+ -+ retval = security_task_setscheduler(p, 0, NULL); -+ if (retval) -+ goto out_unlock; -+ -+ cpuset_cpus_allowed(p, cpus_allowed); -+ cpumask_and(new_mask, in_mask, cpus_allowed); -+again: -+ retval = set_cpus_allowed_ptr(p, new_mask); -+ -+ if (!retval) { -+ cpuset_cpus_allowed(p, cpus_allowed); -+ if (!cpumask_subset(new_mask, cpus_allowed)) { -+ /* -+ * We must have raced with a concurrent cpuset -+ * update. Just reset the cpus_allowed to the -+ * cpuset's cpus_allowed -+ */ -+ cpumask_copy(new_mask, cpus_allowed); -+ goto again; -+ } -+ } -+out_unlock: -+ free_cpumask_var(new_mask); -+out_free_cpus_allowed: -+ free_cpumask_var(cpus_allowed); -+out_put_task: -+ put_task_struct(p); -+ put_online_cpus(); -+ return retval; -+} -+ -+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, -+ cpumask_t *new_mask) -+{ -+ if (len < sizeof(cpumask_t)) { -+ memset(new_mask, 0, sizeof(cpumask_t)); -+ } else if (len > sizeof(cpumask_t)) { -+ len = sizeof(cpumask_t); -+ } -+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -+} -+ -+ -+/** -+ * sys_sched_setaffinity - set the cpu affinity of a process -+ * @pid: pid of the process -+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr -+ * @user_mask_ptr: user-space pointer to the new cpu mask -+ */ -+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, -+ unsigned long __user *, user_mask_ptr) -+{ -+ cpumask_var_t new_mask; -+ int retval; -+ -+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) -+ return -ENOMEM; -+ -+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); -+ if (retval == 0) -+ retval = sched_setaffinity(pid, new_mask); -+ free_cpumask_var(new_mask); -+ return retval; -+} -+ -+long sched_getaffinity(pid_t pid, cpumask_t *mask) -+{ -+ struct task_struct *p; -+ int retval; -+ -+ mutex_lock(&sched_hotcpu_mutex); -+ read_lock(&tasklist_lock); -+ -+ retval = -ESRCH; -+ p = find_process_by_pid(pid); -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ cpus_and(*mask, p->cpus_allowed, cpu_online_map); -+ -+out_unlock: -+ read_unlock(&tasklist_lock); -+ mutex_unlock(&sched_hotcpu_mutex); -+ if (retval) -+ return retval; -+ -+ return 0; -+} -+ -+/** -+ * sys_sched_getaffinity - get the cpu affinity of a process -+ * @pid: pid of the process -+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr -+ * @user_mask_ptr: user-space pointer to hold the current cpu mask -+ */ -+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, -+ unsigned long __user *, user_mask_ptr) -+{ -+ int ret; -+ cpumask_var_t mask; -+ -+ if (len < cpumask_size()) -+ return -EINVAL; -+ -+ if (!alloc_cpumask_var(&mask, GFP_KERNEL)) -+ return -ENOMEM; -+ -+ ret = sched_getaffinity(pid, mask); -+ if (ret == 0) { -+ if (copy_to_user(user_mask_ptr, mask, cpumask_size())) -+ ret = -EFAULT; -+ else -+ ret = cpumask_size(); -+ } -+ free_cpumask_var(mask); -+ -+ return ret; -+} -+ -+/** -+ * sys_sched_yield - yield the current processor to other threads. -+ * -+ * This function yields the current CPU to other tasks. It does this by -+ * refilling the timeslice, resetting the deadline and scheduling away. -+ */ -+SYSCALL_DEFINE0(sched_yield) -+{ -+ struct task_struct *p; -+ -+ grq_lock_irq(); -+ p = current; -+ schedstat_inc(this_rq(), yld_count); -+ update_rq_clock(task_rq(p)); -+ time_slice_expired(p); -+ requeue_task(p); -+ -+ /* -+ * Since we are going to call schedule() anyway, there's -+ * no need to preempt or enable interrupts: -+ */ -+ __release(grq.lock); -+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_); -+ _raw_spin_unlock(&grq.lock); -+ preempt_enable_no_resched(); -+ -+ schedule(); -+ -+ return 0; -+} -+ -+static inline int should_resched(void) -+{ -+ return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); -+} -+ -+static void __cond_resched(void) -+{ -+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -+ __might_sleep(__FILE__, __LINE__); -+#endif -+ /* -+ * The BKS might be reacquired before we have dropped -+ * PREEMPT_ACTIVE, which could trigger a second -+ * cond_resched() call. -+ */ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ schedule(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ } while (need_resched()); -+} -+ -+int __sched _cond_resched(void) -+{ -+ if (should_resched()) { -+ __cond_resched(); -+ return 1; -+ } -+ return 0; -+} -+EXPORT_SYMBOL(_cond_resched); -+ -+/* -+ * cond_resched_lock() - if a reschedule is pending, drop the given lock, -+ * call schedule, and on return reacquire the lock. -+ * -+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level -+ * operations here to prevent schedule() from being called twice (once via -+ * spin_unlock(), once by hand). -+ */ -+int cond_resched_lock(spinlock_t *lock) -+{ -+ int resched = should_resched(); -+ int ret = 0; -+ -+ if (spin_needbreak(lock) || resched) { -+ spin_unlock(lock); -+ if (resched) -+ __cond_resched(); -+ else -+ cpu_relax(); -+ ret = 1; -+ spin_lock(lock); -+ } -+ return ret; -+} -+EXPORT_SYMBOL(cond_resched_lock); -+ -+int __sched cond_resched_softirq(void) -+{ -+ BUG_ON(!in_softirq()); -+ -+ if (should_resched()) { -+ local_bh_enable(); -+ __cond_resched(); -+ local_bh_disable(); -+ return 1; -+ } -+ return 0; -+} -+EXPORT_SYMBOL(cond_resched_softirq); -+ -+/** -+ * yield - yield the current processor to other threads. -+ * -+ * This is a shortcut for kernel-space yielding - it marks the -+ * thread runnable and calls sys_sched_yield(). -+ */ -+void __sched yield(void) -+{ -+ set_current_state(TASK_RUNNING); -+ sys_sched_yield(); -+} -+EXPORT_SYMBOL(yield); -+ -+/* -+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so -+ * that process accounting knows that this is a task in IO wait state. -+ * -+ * But don't do that if it is a deliberate, throttling IO wait (this task -+ * has set its backing_dev_info: the queue against which it should throttle) -+ */ -+void __sched io_schedule(void) -+{ -+ struct rq *rq = &__raw_get_cpu_var(runqueues); -+ -+ delayacct_blkio_start(); -+ atomic_inc(&rq->nr_iowait); -+ schedule(); -+ atomic_dec(&rq->nr_iowait); -+ delayacct_blkio_end(); -+} -+EXPORT_SYMBOL(io_schedule); -+ -+long __sched io_schedule_timeout(long timeout) -+{ -+ struct rq *rq = &__raw_get_cpu_var(runqueues); -+ long ret; -+ -+ delayacct_blkio_start(); -+ atomic_inc(&rq->nr_iowait); -+ ret = schedule_timeout(timeout); -+ atomic_dec(&rq->nr_iowait); -+ delayacct_blkio_end(); -+ return ret; -+} -+ -+/** -+ * sys_sched_get_priority_max - return maximum RT priority. -+ * @policy: scheduling class. -+ * -+ * this syscall returns the maximum rt_priority that can be used -+ * by a given scheduling class. -+ */ -+SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -+{ -+ int ret = -EINVAL; -+ -+ switch (policy) { -+ case SCHED_FIFO: -+ case SCHED_RR: -+ ret = MAX_USER_RT_PRIO-1; -+ break; -+ case SCHED_NORMAL: -+ case SCHED_BATCH: -+ case SCHED_ISO: -+ case SCHED_IDLE: -+ ret = 0; -+ break; -+ } -+ return ret; -+} -+ -+/** -+ * sys_sched_get_priority_min - return minimum RT priority. -+ * @policy: scheduling class. -+ * -+ * this syscall returns the minimum rt_priority that can be used -+ * by a given scheduling class. -+ */ -+SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -+{ -+ int ret = -EINVAL; -+ -+ switch (policy) { -+ case SCHED_FIFO: -+ case SCHED_RR: -+ ret = 1; -+ break; -+ case SCHED_NORMAL: -+ case SCHED_BATCH: -+ case SCHED_ISO: -+ case SCHED_IDLE: -+ ret = 0; -+ break; -+ } -+ return ret; -+} -+ -+/** -+ * sys_sched_rr_get_interval - return the default timeslice of a process. -+ * @pid: pid of the process. -+ * @interval: userspace pointer to the timeslice value. -+ * -+ * this syscall writes the default timeslice value of a given process -+ * into the user-space timespec buffer. A value of '0' means infinity. -+ */ -+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, -+ struct timespec __user *, interval) -+{ -+ struct task_struct *p; -+ int retval = -EINVAL; -+ struct timespec t; -+ -+ if (pid < 0) -+ goto out_nounlock; -+ -+ retval = -ESRCH; -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ t = ns_to_timespec(p->policy == SCHED_FIFO ? 0 : -+ MS_TO_NS(task_timeslice(p))); -+ read_unlock(&tasklist_lock); -+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; -+out_nounlock: -+ return retval; -+out_unlock: -+ read_unlock(&tasklist_lock); -+ return retval; -+} -+ -+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; -+ -+void sched_show_task(struct task_struct *p) -+{ -+ unsigned long free = 0; -+ unsigned state; -+ -+ state = p->state ? __ffs(p->state) + 1 : 0; -+ printk(KERN_INFO "%-13.13s %c", p->comm, -+ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); -+#if BITS_PER_LONG == 32 -+ if (state == TASK_RUNNING) -+ printk(KERN_CONT " running "); -+ else -+ printk(KERN_CONT " %08lx ", thread_saved_pc(p)); -+#else -+ if (state == TASK_RUNNING) -+ printk(KERN_CONT " running task "); -+ else -+ printk(KERN_CONT " %016lx ", thread_saved_pc(p)); -+#endif -+#ifdef CONFIG_DEBUG_STACK_USAGE -+ free = stack_not_used(p); -+#endif -+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, -+ task_pid_nr(p), task_pid_nr(p->real_parent), -+ (unsigned long)task_thread_info(p)->flags); -+ -+ show_stack(p, NULL); -+} -+ -+void show_state_filter(unsigned long state_filter) -+{ -+ struct task_struct *g, *p; -+ -+#if BITS_PER_LONG == 32 -+ printk(KERN_INFO -+ " task PC stack pid father\n"); -+#else -+ printk(KERN_INFO -+ " task PC stack pid father\n"); -+#endif -+ read_lock(&tasklist_lock); -+ do_each_thread(g, p) { -+ /* -+ * reset the NMI-timeout, listing all files on a slow -+ * console might take alot of time: -+ */ -+ touch_nmi_watchdog(); -+ if (!state_filter || (p->state & state_filter)) -+ sched_show_task(p); -+ } while_each_thread(g, p); -+ -+ touch_all_softlockup_watchdogs(); -+ -+ read_unlock(&tasklist_lock); -+ /* -+ * Only show locks if all tasks are dumped: -+ */ -+ if (state_filter == -1) -+ debug_show_all_locks(); -+} -+ -+/** -+ * init_idle - set up an idle thread for a given CPU -+ * @idle: task in question -+ * @cpu: cpu the idle task belongs to -+ * -+ * NOTE: this function does not set the idle thread's NEED_RESCHED -+ * flag, to make booting more robust. -+ */ -+void __cpuinit init_idle(struct task_struct *idle, int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long flags; -+ -+ time_grq_lock(rq, &flags); -+ idle->timestamp = idle->last_ran = rq->clock; -+ idle->state = TASK_RUNNING; -+ /* Setting prio to illegal value shouldn't matter when never queued */ -+ idle->prio = rq->rq_prio = PRIO_LIMIT; -+ rq->rq_deadline = idle->deadline; -+ rq->rq_policy = idle->policy; -+ rq->rq_time_slice = idle->rt.time_slice; -+ idle->cpus_allowed = cpumask_of_cpu(cpu); -+ set_task_cpu(idle, cpu); -+ rq->curr = rq->idle = idle; -+ idle->oncpu = 1; -+ set_cpuidle_map(cpu); -+#ifdef CONFIG_HOTPLUG_CPU -+ idle->unplugged_mask = CPU_MASK_NONE; -+#endif -+ grq_unlock_irqrestore(&flags); -+ -+ /* Set the preempt count _outside_ the spinlocks! */ -+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) -+ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); -+#else -+ task_thread_info(idle)->preempt_count = 0; -+#endif -+ ftrace_graph_init_task(idle); -+} -+ -+/* -+ * In a system that switches off the HZ timer nohz_cpu_mask -+ * indicates which cpus entered this state. This is used -+ * in the rcu update to wait only for active cpus. For system -+ * which do not switch off the HZ timer nohz_cpu_mask should -+ * always be CPU_BITS_NONE. -+ */ -+cpumask_var_t nohz_cpu_mask; -+ -+#ifdef CONFIG_SMP -+#ifdef CONFIG_NO_HZ -+static struct { -+ atomic_t load_balancer; -+ cpumask_var_t cpu_mask; -+ cpumask_var_t ilb_grp_nohz_mask; -+} nohz ____cacheline_aligned = { -+ .load_balancer = ATOMIC_INIT(-1), -+}; -+ -+int get_nohz_load_balancer(void) -+{ -+ return atomic_read(&nohz.load_balancer); -+} -+ -+/* -+ * This routine will try to nominate the ilb (idle load balancing) -+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle -+ * load balancing on behalf of all those cpus. If all the cpus in the system -+ * go into this tickless mode, then there will be no ilb owner (as there is -+ * no need for one) and all the cpus will sleep till the next wakeup event -+ * arrives... -+ * -+ * For the ilb owner, tick is not stopped. And this tick will be used -+ * for idle load balancing. ilb owner will still be part of -+ * nohz.cpu_mask.. -+ * -+ * While stopping the tick, this cpu will become the ilb owner if there -+ * is no other owner. And will be the owner till that cpu becomes busy -+ * or if all cpus in the system stop their ticks at which point -+ * there is no need for ilb owner. -+ * -+ * When the ilb owner becomes busy, it nominates another owner, during the -+ * next busy scheduler_tick() -+ */ -+int select_nohz_load_balancer(int stop_tick) -+{ -+ int cpu = smp_processor_id(); -+ -+ if (stop_tick) { -+ cpu_rq(cpu)->in_nohz_recently = 1; -+ -+ if (!cpu_active(cpu)) { -+ if (atomic_read(&nohz.load_balancer) != cpu) -+ return 0; -+ -+ /* -+ * If we are going offline and still the leader, -+ * give up! -+ */ -+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) -+ BUG(); -+ -+ return 0; -+ } -+ -+ cpumask_set_cpu(cpu, nohz.cpu_mask); -+ -+ /* time for ilb owner also to sleep */ -+ if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { -+ if (atomic_read(&nohz.load_balancer) == cpu) -+ atomic_set(&nohz.load_balancer, -1); -+ return 0; -+ } -+ -+ if (atomic_read(&nohz.load_balancer) == -1) { -+ /* make me the ilb owner */ -+ if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) -+ return 1; -+ } else if (atomic_read(&nohz.load_balancer) == cpu) -+ return 1; -+ } else { -+ if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) -+ return 0; -+ -+ cpumask_clear_cpu(cpu, nohz.cpu_mask); -+ -+ if (atomic_read(&nohz.load_balancer) == cpu) -+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) -+ BUG(); -+ } -+ return 0; -+} -+ -+/* -+ * When add_timer_on() enqueues a timer into the timer wheel of an -+ * idle CPU then this timer might expire before the next timer event -+ * which is scheduled to wake up that CPU. In case of a completely -+ * idle system the next event might even be infinite time into the -+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and -+ * leaves the inner idle loop so the newly added timer is taken into -+ * account when the CPU goes back to idle and evaluates the timer -+ * wheel for the next timer event. -+ */ -+void wake_up_idle_cpu(int cpu) -+{ -+ struct task_struct *idle; -+ struct rq *rq; -+ -+ if (cpu == smp_processor_id()) -+ return; -+ -+ rq = cpu_rq(cpu); -+ idle = rq->idle; -+ -+ /* -+ * This is safe, as this function is called with the timer -+ * wheel base lock of (cpu) held. When the CPU is on the way -+ * to idle and has not yet set rq->curr to idle then it will -+ * be serialized on the timer wheel base lock and take the new -+ * timer into account automatically. -+ */ -+ if (unlikely(rq->curr != idle)) -+ return; -+ -+ /* -+ * We can set TIF_RESCHED on the idle task of the other CPU -+ * lockless. The worst case is that the other CPU runs the -+ * idle task through an additional NOOP schedule() -+ */ -+ set_tsk_need_resched(idle); -+ -+ /* NEED_RESCHED must be visible before we test polling */ -+ smp_mb(); -+ if (!tsk_is_polling(idle)) -+ smp_send_reschedule(cpu); -+} -+ -+#endif /* CONFIG_NO_HZ */ -+ -+/* -+ * Change a given task's CPU affinity. Migrate the thread to a -+ * proper CPU and schedule it away if the CPU it's executing on -+ * is removed from the allowed bitmask. -+ * -+ * NOTE: the caller must have a valid reference to the task, the -+ * task must not exit() & deallocate itself prematurely. The -+ * call is not atomic; no spinlocks may be held. -+ */ -+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) -+{ -+ unsigned long flags; -+ int running = 0; -+ int queued = 0; -+ struct rq *rq; -+ int ret = 0; -+ -+ rq = task_grq_lock(p, &flags); -+ if (!cpumask_intersects(new_mask, cpu_online_mask)) { -+ ret = -EINVAL; -+ goto out; -+ } -+ -+ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && -+ !cpumask_equal(&p->cpus_allowed, new_mask))) { -+ ret = -EINVAL; -+ goto out; -+ } -+ -+ queued = task_queued_only(p); -+ -+ cpumask_copy(&p->cpus_allowed, new_mask); -+ p->rt.nr_cpus_allowed = cpumask_weight(new_mask); -+ -+ /* Can the task run on the task's current CPU? If so, we're done */ -+ if (cpumask_test_cpu(task_cpu(p), new_mask)) -+ goto out; -+ -+ /* Reschedule the task, schedule() will know if it can keep running */ -+ if (task_running(p)) -+ running = 1; -+ else -+ set_task_cpu(p, cpumask_any_and(cpu_online_mask, new_mask)); -+ -+out: -+ if (queued) -+ try_preempt(p); -+ task_grq_unlock(&flags); -+ -+ /* This might be a flaky way of changing cpus! */ -+ if (running) -+ schedule(); -+ return ret; -+} -+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); -+ -+#ifdef CONFIG_HOTPLUG_CPU -+/* Schedules idle task to be the next runnable task on current CPU. -+ * It does so by boosting its priority to highest possible. -+ * Used by CPU offline code. -+ */ -+void sched_idle_next(void) -+{ -+ int this_cpu = smp_processor_id(); -+ struct rq *rq = cpu_rq(this_cpu); -+ struct task_struct *idle = rq->idle; -+ unsigned long flags; -+ -+ /* cpu has to be offline */ -+ BUG_ON(cpu_online(this_cpu)); -+ -+ /* -+ * Strictly not necessary since rest of the CPUs are stopped by now -+ * and interrupts disabled on the current cpu. -+ */ -+ time_grq_lock(rq, &flags); -+ -+ __setscheduler(idle, SCHED_FIFO, MAX_RT_PRIO - 1); -+ -+ activate_idle_task(idle); -+ set_tsk_need_resched(rq->curr); -+ -+ grq_unlock_irqrestore(&flags); -+} -+ -+/* -+ * Ensures that the idle task is using init_mm right before its cpu goes -+ * offline. -+ */ -+void idle_task_exit(void) -+{ -+ struct mm_struct *mm = current->active_mm; -+ -+ BUG_ON(cpu_online(smp_processor_id())); -+ -+ if (mm != &init_mm) -+ switch_mm(mm, &init_mm, current); -+ mmdrop(mm); -+} -+ -+#endif /* CONFIG_HOTPLUG_CPU */ -+ -+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) -+ -+static struct ctl_table sd_ctl_dir[] = { -+ { -+ .procname = "sched_domain", -+ .mode = 0555, -+ }, -+ {0, }, -+}; -+ -+static struct ctl_table sd_ctl_root[] = { -+ { -+ .ctl_name = CTL_KERN, -+ .procname = "kernel", -+ .mode = 0555, -+ .child = sd_ctl_dir, -+ }, -+ {0, }, -+}; -+ -+static struct ctl_table *sd_alloc_ctl_entry(int n) -+{ -+ struct ctl_table *entry = -+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); -+ -+ return entry; -+} -+ -+static void sd_free_ctl_entry(struct ctl_table **tablep) -+{ -+ struct ctl_table *entry; -+ -+ /* -+ * In the intermediate directories, both the child directory and -+ * procname are dynamically allocated and could fail but the mode -+ * will always be set. In the lowest directory the names are -+ * static strings and all have proc handlers. -+ */ -+ for (entry = *tablep; entry->mode; entry++) { -+ if (entry->child) -+ sd_free_ctl_entry(&entry->child); -+ if (entry->proc_handler == NULL) -+ kfree(entry->procname); -+ } -+ -+ kfree(*tablep); -+ *tablep = NULL; -+} -+ -+static void -+set_table_entry(struct ctl_table *entry, -+ const char *procname, void *data, int maxlen, -+ mode_t mode, proc_handler *proc_handler) -+{ -+ entry->procname = procname; -+ entry->data = data; -+ entry->maxlen = maxlen; -+ entry->mode = mode; -+ entry->proc_handler = proc_handler; -+} -+ -+static struct ctl_table * -+sd_alloc_ctl_domain_table(struct sched_domain *sd) -+{ -+ struct ctl_table *table = sd_alloc_ctl_entry(13); -+ -+ if (table == NULL) -+ return NULL; -+ -+ set_table_entry(&table[0], "min_interval", &sd->min_interval, -+ sizeof(long), 0644, proc_doulongvec_minmax); -+ set_table_entry(&table[1], "max_interval", &sd->max_interval, -+ sizeof(long), 0644, proc_doulongvec_minmax); -+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[9], "cache_nice_tries", -+ &sd->cache_nice_tries, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[10], "flags", &sd->flags, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[11], "name", sd->name, -+ CORENAME_MAX_SIZE, 0444, proc_dostring); -+ /* &table[12] is terminator */ -+ -+ return table; -+} -+ -+static ctl_table *sd_alloc_ctl_cpu_table(int cpu) -+{ -+ struct ctl_table *entry, *table; -+ struct sched_domain *sd; -+ int domain_num = 0, i; -+ char buf[32]; -+ -+ for_each_domain(cpu, sd) -+ domain_num++; -+ entry = table = sd_alloc_ctl_entry(domain_num + 1); -+ if (table == NULL) -+ return NULL; -+ -+ i = 0; -+ for_each_domain(cpu, sd) { -+ snprintf(buf, 32, "domain%d", i); -+ entry->procname = kstrdup(buf, GFP_KERNEL); -+ entry->mode = 0555; -+ entry->child = sd_alloc_ctl_domain_table(sd); -+ entry++; -+ i++; -+ } -+ return table; -+} -+ -+static struct ctl_table_header *sd_sysctl_header; -+static void register_sched_domain_sysctl(void) -+{ -+ int i, cpu_num = num_online_cpus(); -+ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); -+ char buf[32]; -+ -+ WARN_ON(sd_ctl_dir[0].child); -+ sd_ctl_dir[0].child = entry; -+ -+ if (entry == NULL) -+ return; -+ -+ for_each_online_cpu(i) { -+ snprintf(buf, 32, "cpu%d", i); -+ entry->procname = kstrdup(buf, GFP_KERNEL); -+ entry->mode = 0555; -+ entry->child = sd_alloc_ctl_cpu_table(i); -+ entry++; -+ } -+ -+ WARN_ON(sd_sysctl_header); -+ sd_sysctl_header = register_sysctl_table(sd_ctl_root); -+} -+ -+/* may be called multiple times per register */ -+static void unregister_sched_domain_sysctl(void) -+{ -+ if (sd_sysctl_header) -+ unregister_sysctl_table(sd_sysctl_header); -+ sd_sysctl_header = NULL; -+ if (sd_ctl_dir[0].child) -+ sd_free_ctl_entry(&sd_ctl_dir[0].child); -+} -+#else -+static void register_sched_domain_sysctl(void) -+{ -+} -+static void unregister_sched_domain_sysctl(void) -+{ -+} -+#endif -+ -+static void set_rq_online(struct rq *rq) -+{ -+ if (!rq->online) { -+ cpumask_set_cpu(rq->cpu, rq->rd->online); -+ rq->online = 1; -+ } -+} -+ -+static void set_rq_offline(struct rq *rq) -+{ -+ if (rq->online) { -+ cpumask_clear_cpu(rq->cpu, rq->rd->online); -+ rq->online = 0; -+ } -+} -+ -+#ifdef CONFIG_HOTPLUG_CPU -+/* -+ * This cpu is going down, so walk over the tasklist and find tasks that can -+ * only run on this cpu and remove their affinity. Store their value in -+ * unplugged_mask so it can be restored once their correct cpu is online. No -+ * need to do anything special since they'll just move on next reschedule if -+ * they're running. -+ */ -+static void remove_cpu(unsigned long cpu) -+{ -+ struct task_struct *p, *t; -+ -+ read_lock(&tasklist_lock); -+ -+ do_each_thread(t, p) { -+ cpumask_t cpus_remaining; -+ -+ cpus_and(cpus_remaining, p->cpus_allowed, cpu_online_map); -+ cpu_clear(cpu, cpus_remaining); -+ if (cpus_empty(cpus_remaining)) { -+ p->unplugged_mask = p->cpus_allowed; -+ p->cpus_allowed = cpu_possible_map; -+ } -+ } while_each_thread(t, p); -+ -+ read_unlock(&tasklist_lock); -+} -+ -+/* -+ * This cpu is coming up so add it to the cpus_allowed. -+ */ -+static void add_cpu(unsigned long cpu) -+{ -+ struct task_struct *p, *t; -+ -+ read_lock(&tasklist_lock); -+ -+ do_each_thread(t, p) { -+ /* Have we taken all the cpus from the unplugged_mask back */ -+ if (cpus_empty(p->unplugged_mask)) -+ continue; -+ -+ /* Was this cpu in the unplugged_mask mask */ -+ if (cpu_isset(cpu, p->unplugged_mask)) { -+ cpu_set(cpu, p->cpus_allowed); -+ if (cpus_subset(p->unplugged_mask, p->cpus_allowed)) { -+ /* -+ * Have we set more than the unplugged_mask? -+ * If so, that means we have remnants set from -+ * the unplug/plug cycle and need to remove -+ * them. Then clear the unplugged_mask as we've -+ * set all the cpus back. -+ */ -+ p->cpus_allowed = p->unplugged_mask; -+ cpus_clear(p->unplugged_mask); -+ } -+ } -+ } while_each_thread(t, p); -+ -+ read_unlock(&tasklist_lock); -+} -+#else -+static void add_cpu(unsigned long cpu) -+{ -+} -+#endif -+ -+/* -+ * migration_call - callback that gets triggered when a CPU is added. -+ */ -+static int __cpuinit -+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) -+{ -+ int cpu = (long)hcpu; -+ unsigned long flags; -+ struct rq *rq; -+ -+ switch (action) { -+ -+ case CPU_UP_PREPARE: -+ case CPU_UP_PREPARE_FROZEN: -+ break; -+ -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ /* Update our root-domain */ -+ rq = cpu_rq(cpu); -+ grq_lock_irqsave(&flags); -+ if (rq->rd) { -+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); -+ -+ set_rq_online(rq); -+ } -+ add_cpu(cpu); -+ grq_unlock_irqrestore(&flags); -+ break; -+ -+#ifdef CONFIG_HOTPLUG_CPU -+ case CPU_UP_CANCELED: -+ case CPU_UP_CANCELED_FROZEN: -+ break; -+ -+ case CPU_DEAD: -+ case CPU_DEAD_FROZEN: -+ cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ -+ rq = cpu_rq(cpu); -+ /* Idle task back to normal (off runqueue, low prio) */ -+ grq_lock_irq(); -+ remove_cpu(cpu); -+ deactivate_task(rq->idle); -+ rq->idle->static_prio = MAX_PRIO; -+ __setscheduler(rq->idle, SCHED_NORMAL, 0); -+ rq->idle->prio = PRIO_LIMIT; -+ update_rq_clock(rq); -+ grq_unlock_irq(); -+ cpuset_unlock(); -+ break; -+ -+ case CPU_DYING: -+ case CPU_DYING_FROZEN: -+ rq = cpu_rq(cpu); -+ grq_lock_irqsave(&flags); -+ if (rq->rd) { -+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); -+ set_rq_offline(rq); -+ } -+ grq_unlock_irqrestore(&flags); -+ break; -+#endif -+ } -+ return NOTIFY_OK; -+} -+ -+/* -+ * Register at high priority so that task migration (migrate_all_tasks) -+ * happens before everything else. This has to be lower priority than -+ * the notifier in the perf_counter subsystem, though. -+ */ -+static struct notifier_block __cpuinitdata migration_notifier = { -+ .notifier_call = migration_call, -+ .priority = 10 -+}; -+ -+int __init migration_init(void) -+{ -+ void *cpu = (void *)(long)smp_processor_id(); -+ int err; -+ -+ /* Start one for the boot CPU: */ -+ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); -+ BUG_ON(err == NOTIFY_BAD); -+ migration_call(&migration_notifier, CPU_ONLINE, cpu); -+ register_cpu_notifier(&migration_notifier); -+ -+ return 0; -+} -+early_initcall(migration_init); -+#endif -+ -+/* -+ * sched_domains_mutex serializes calls to arch_init_sched_domains, -+ * detach_destroy_domains and partition_sched_domains. -+ */ -+static DEFINE_MUTEX(sched_domains_mutex); -+ -+#ifdef CONFIG_SMP -+ -+#ifdef CONFIG_SCHED_DEBUG -+ -+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, -+ struct cpumask *groupmask) -+{ -+ struct sched_group *group = sd->groups; -+ char str[256]; -+ -+ cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); -+ cpumask_clear(groupmask); -+ -+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level); -+ -+ if (!(sd->flags & SD_LOAD_BALANCE)) { -+ printk("does not load-balance\n"); -+ if (sd->parent) -+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" -+ " has parent"); -+ return -1; -+ } -+ -+ printk(KERN_CONT "span %s level %s\n", str, sd->name); -+ -+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { -+ printk(KERN_ERR "ERROR: domain->span does not contain " -+ "CPU%d\n", cpu); -+ } -+ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { -+ printk(KERN_ERR "ERROR: domain->groups does not contain" -+ " CPU%d\n", cpu); -+ } -+ -+ printk(KERN_DEBUG "%*s groups:", level + 1, ""); -+ do { -+ if (!group) { -+ printk("\n"); -+ printk(KERN_ERR "ERROR: group is NULL\n"); -+ break; -+ } -+ -+ if (!group->__cpu_power) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: domain->cpu_power not " -+ "set\n"); -+ break; -+ } -+ -+ if (!cpumask_weight(sched_group_cpus(group))) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: empty group\n"); -+ break; -+ } -+ -+ if (cpumask_intersects(groupmask, sched_group_cpus(group))) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: repeated CPUs\n"); -+ break; -+ } -+ -+ cpumask_or(groupmask, groupmask, sched_group_cpus(group)); -+ -+ cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); -+ -+ printk(KERN_CONT " %s", str); -+ if (group->__cpu_power != SCHED_LOAD_SCALE) { -+ printk(KERN_CONT " (__cpu_power = %d)", -+ group->__cpu_power); -+ } -+ -+ group = group->next; -+ } while (group != sd->groups); -+ printk(KERN_CONT "\n"); -+ -+ if (!cpumask_equal(sched_domain_span(sd), groupmask)) -+ printk(KERN_ERR "ERROR: groups don't span domain->span\n"); -+ -+ if (sd->parent && -+ !cpumask_subset(groupmask, sched_domain_span(sd->parent))) -+ printk(KERN_ERR "ERROR: parent span is not a superset " -+ "of domain->span\n"); -+ return 0; -+} -+ -+static void sched_domain_debug(struct sched_domain *sd, int cpu) -+{ -+ cpumask_var_t groupmask; -+ int level = 0; -+ -+ if (!sd) { -+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); -+ return; -+ } -+ -+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); -+ -+ if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { -+ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); -+ return; -+ } -+ -+ for (;;) { -+ if (sched_domain_debug_one(sd, cpu, level, groupmask)) -+ break; -+ level++; -+ sd = sd->parent; -+ if (!sd) -+ break; -+ } -+ free_cpumask_var(groupmask); -+} -+#else /* !CONFIG_SCHED_DEBUG */ -+# define sched_domain_debug(sd, cpu) do { } while (0) -+#endif /* CONFIG_SCHED_DEBUG */ -+ -+static int sd_degenerate(struct sched_domain *sd) -+{ -+ if (cpumask_weight(sched_domain_span(sd)) == 1) -+ return 1; -+ -+ /* Following flags need at least 2 groups */ -+ if (sd->flags & (SD_LOAD_BALANCE | -+ SD_BALANCE_NEWIDLE | -+ SD_BALANCE_FORK | -+ SD_BALANCE_EXEC | -+ SD_SHARE_CPUPOWER | -+ SD_SHARE_PKG_RESOURCES)) { -+ if (sd->groups != sd->groups->next) -+ return 0; -+ } -+ -+ /* Following flags don't use groups */ -+ if (sd->flags & (SD_WAKE_IDLE | -+ SD_WAKE_AFFINE | -+ SD_WAKE_BALANCE)) -+ return 0; -+ -+ return 1; -+} -+ -+static int -+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -+{ -+ unsigned long cflags = sd->flags, pflags = parent->flags; -+ -+ if (sd_degenerate(parent)) -+ return 1; -+ -+ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) -+ return 0; -+ -+ /* Does parent contain flags not in child? */ -+ /* WAKE_BALANCE is a subset of WAKE_AFFINE */ -+ if (cflags & SD_WAKE_AFFINE) -+ pflags &= ~SD_WAKE_BALANCE; -+ /* Flags needing groups don't count if only 1 group in parent */ -+ if (parent->groups == parent->groups->next) { -+ pflags &= ~(SD_LOAD_BALANCE | -+ SD_BALANCE_NEWIDLE | -+ SD_BALANCE_FORK | -+ SD_BALANCE_EXEC | -+ SD_SHARE_CPUPOWER | -+ SD_SHARE_PKG_RESOURCES); -+ if (nr_node_ids == 1) -+ pflags &= ~SD_SERIALIZE; -+ } -+ if (~cflags & pflags) -+ return 0; -+ -+ return 1; -+} -+ -+static void free_rootdomain(struct root_domain *rd) -+{ -+ free_cpumask_var(rd->rto_mask); -+ free_cpumask_var(rd->online); -+ free_cpumask_var(rd->span); -+ kfree(rd); -+} -+ -+static void rq_attach_root(struct rq *rq, struct root_domain *rd) -+{ -+ struct root_domain *old_rd = NULL; -+ unsigned long flags; -+ -+ grq_lock_irqsave(&flags); -+ -+ if (rq->rd) { -+ old_rd = rq->rd; -+ -+ if (cpumask_test_cpu(rq->cpu, old_rd->online)) -+ set_rq_offline(rq); -+ -+ cpumask_clear_cpu(rq->cpu, old_rd->span); -+ -+ /* -+ * If we dont want to free the old_rt yet then -+ * set old_rd to NULL to skip the freeing later -+ * in this function: -+ */ -+ if (!atomic_dec_and_test(&old_rd->refcount)) -+ old_rd = NULL; -+ } -+ -+ atomic_inc(&rd->refcount); -+ rq->rd = rd; -+ -+ cpumask_set_cpu(rq->cpu, rd->span); -+ if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) -+ set_rq_online(rq); -+ -+ grq_unlock_irqrestore(&flags); -+ -+ if (old_rd) -+ free_rootdomain(old_rd); -+} -+ -+static int init_rootdomain(struct root_domain *rd, bool bootmem) -+{ -+ gfp_t gfp = GFP_KERNEL; -+ -+ memset(rd, 0, sizeof(*rd)); -+ -+ if (bootmem) -+ gfp = GFP_NOWAIT; -+ -+ if (!alloc_cpumask_var(&rd->span, gfp)) -+ goto out; -+ if (!alloc_cpumask_var(&rd->online, gfp)) -+ goto free_span; -+ if (!alloc_cpumask_var(&rd->rto_mask, gfp)) -+ goto free_online; -+ -+ return 0; -+ -+free_online: -+ free_cpumask_var(rd->online); -+free_span: -+ free_cpumask_var(rd->span); -+out: -+ return -ENOMEM; -+} -+ -+static void init_defrootdomain(void) -+{ -+ init_rootdomain(&def_root_domain, true); -+ -+ atomic_set(&def_root_domain.refcount, 1); -+} -+ -+static struct root_domain *alloc_rootdomain(void) -+{ -+ struct root_domain *rd; -+ -+ rd = kmalloc(sizeof(*rd), GFP_KERNEL); -+ if (!rd) -+ return NULL; -+ -+ if (init_rootdomain(rd, false) != 0) { -+ kfree(rd); -+ return NULL; -+ } -+ -+ return rd; -+} -+ -+/* -+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must -+ * hold the hotplug lock. -+ */ -+static void -+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ struct sched_domain *tmp; -+ -+ /* Remove the sched domains which do not contribute to scheduling. */ -+ for (tmp = sd; tmp; ) { -+ struct sched_domain *parent = tmp->parent; -+ if (!parent) -+ break; -+ -+ if (sd_parent_degenerate(tmp, parent)) { -+ tmp->parent = parent->parent; -+ if (parent->parent) -+ parent->parent->child = tmp; -+ } else -+ tmp = tmp->parent; -+ } -+ -+ if (sd && sd_degenerate(sd)) { -+ sd = sd->parent; -+ if (sd) -+ sd->child = NULL; -+ } -+ -+ sched_domain_debug(sd, cpu); -+ -+ rq_attach_root(rq, rd); -+ rcu_assign_pointer(rq->sd, sd); -+} -+ -+/* cpus with isolated domains */ -+static cpumask_var_t cpu_isolated_map; -+ -+/* Setup the mask of cpus configured for isolated domains */ -+static int __init isolated_cpu_setup(char *str) -+{ -+ cpulist_parse(str, cpu_isolated_map); -+ return 1; -+} -+ -+__setup("isolcpus=", isolated_cpu_setup); -+ -+/* -+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer -+ * to a function which identifies what group(along with sched group) a CPU -+ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids -+ * (due to the fact that we keep track of groups covered with a struct cpumask). -+ * -+ * init_sched_build_groups will build a circular linked list of the groups -+ * covered by the given span, and will set each group's ->cpumask correctly, -+ * and ->cpu_power to 0. -+ */ -+static void -+init_sched_build_groups(const struct cpumask *span, -+ const struct cpumask *cpu_map, -+ int (*group_fn)(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, -+ struct cpumask *tmpmask), -+ struct cpumask *covered, struct cpumask *tmpmask) -+{ -+ struct sched_group *first = NULL, *last = NULL; -+ int i; -+ -+ cpumask_clear(covered); -+ -+ for_each_cpu(i, span) { -+ struct sched_group *sg; -+ int group = group_fn(i, cpu_map, &sg, tmpmask); -+ int j; -+ -+ if (cpumask_test_cpu(i, covered)) -+ continue; -+ -+ cpumask_clear(sched_group_cpus(sg)); -+ sg->__cpu_power = 0; -+ -+ for_each_cpu(j, span) { -+ if (group_fn(j, cpu_map, NULL, tmpmask) != group) -+ continue; -+ -+ cpumask_set_cpu(j, covered); -+ cpumask_set_cpu(j, sched_group_cpus(sg)); -+ } -+ if (!first) -+ first = sg; -+ if (last) -+ last->next = sg; -+ last = sg; -+ } -+ last->next = first; -+} -+ -+#define SD_NODES_PER_DOMAIN 16 -+ -+#ifdef CONFIG_NUMA -+ -+/** -+ * find_next_best_node - find the next node to include in a sched_domain -+ * @node: node whose sched_domain we're building -+ * @used_nodes: nodes already in the sched_domain -+ * -+ * Find the next node to include in a given scheduling domain. Simply -+ * finds the closest node not already in the @used_nodes map. -+ * -+ * Should use nodemask_t. -+ */ -+static int find_next_best_node(int node, nodemask_t *used_nodes) -+{ -+ int i, n, val, min_val, best_node = 0; -+ -+ min_val = INT_MAX; -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ /* Start at @node */ -+ n = (node + i) % nr_node_ids; -+ -+ if (!nr_cpus_node(n)) -+ continue; -+ -+ /* Skip already used nodes */ -+ if (node_isset(n, *used_nodes)) -+ continue; -+ -+ /* Simple min distance search */ -+ val = node_distance(node, n); -+ -+ if (val < min_val) { -+ min_val = val; -+ best_node = n; -+ } -+ } -+ -+ node_set(best_node, *used_nodes); -+ return best_node; -+} -+ -+/** -+ * sched_domain_node_span - get a cpumask for a node's sched_domain -+ * @node: node whose cpumask we're constructing -+ * @span: resulting cpumask -+ * -+ * Given a node, construct a good cpumask for its sched_domain to span. It -+ * should be one that prevents unnecessary balancing, but also spreads tasks -+ * out optimally. -+ */ -+static void sched_domain_node_span(int node, struct cpumask *span) -+{ -+ nodemask_t used_nodes; -+ int i; -+ -+ cpumask_clear(span); -+ nodes_clear(used_nodes); -+ -+ cpumask_or(span, span, cpumask_of_node(node)); -+ node_set(node, used_nodes); -+ -+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { -+ int next_node = find_next_best_node(node, &used_nodes); -+ -+ cpumask_or(span, span, cpumask_of_node(next_node)); -+ } -+} -+#endif /* CONFIG_NUMA */ -+ -+int sched_smt_power_savings = 0, sched_mc_power_savings = 0; -+ -+/* -+ * The cpus mask in sched_group and sched_domain hangs off the end. -+ * -+ * ( See the the comments in include/linux/sched.h:struct sched_group -+ * and struct sched_domain. ) -+ */ -+struct static_sched_group { -+ struct sched_group sg; -+ DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); -+}; -+ -+struct static_sched_domain { -+ struct sched_domain sd; -+ DECLARE_BITMAP(span, CONFIG_NR_CPUS); -+}; -+ -+/* -+ * SMT sched-domains: -+ */ -+#ifdef CONFIG_SCHED_SMT -+static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); -+static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); -+ -+static int -+cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, struct cpumask *unused) -+{ -+ if (sg) -+ *sg = &per_cpu(sched_group_cpus, cpu).sg; -+ return cpu; -+} -+#endif /* CONFIG_SCHED_SMT */ -+ -+/* -+ * multi-core sched-domains: -+ */ -+#ifdef CONFIG_SCHED_MC -+static DEFINE_PER_CPU(struct static_sched_domain, core_domains); -+static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); -+#endif /* CONFIG_SCHED_MC */ -+ -+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) -+static int -+cpu_to_core_group(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, struct cpumask *mask) -+{ -+ int group; -+ -+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); -+ group = cpumask_first(mask); -+ if (sg) -+ *sg = &per_cpu(sched_group_core, group).sg; -+ return group; -+} -+#elif defined(CONFIG_SCHED_MC) -+static int -+cpu_to_core_group(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, struct cpumask *unused) -+{ -+ if (sg) -+ *sg = &per_cpu(sched_group_core, cpu).sg; -+ return cpu; -+} -+#endif -+ -+static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); -+static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); -+ -+static int -+cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, struct cpumask *mask) -+{ -+ int group; -+#ifdef CONFIG_SCHED_MC -+ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); -+ group = cpumask_first(mask); -+#elif defined(CONFIG_SCHED_SMT) -+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); -+ group = cpumask_first(mask); -+#else -+ group = cpu; -+#endif -+ if (sg) -+ *sg = &per_cpu(sched_group_phys, group).sg; -+ return group; -+} -+ -+/** -+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. -+ * @group: The group whose first cpu is to be returned. -+ */ -+static inline unsigned int group_first_cpu(struct sched_group *group) -+{ -+ return cpumask_first(sched_group_cpus(group)); -+} -+ -+#ifdef CONFIG_NUMA -+/* -+ * The init_sched_build_groups can't handle what we want to do with node -+ * groups, so roll our own. Now each node has its own list of groups which -+ * gets dynamically allocated. -+ */ -+static DEFINE_PER_CPU(struct static_sched_domain, node_domains); -+static struct sched_group ***sched_group_nodes_bycpu; -+ -+static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); -+static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); -+ -+static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, -+ struct sched_group **sg, -+ struct cpumask *nodemask) -+{ -+ int group; -+ -+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); -+ group = cpumask_first(nodemask); -+ -+ if (sg) -+ *sg = &per_cpu(sched_group_allnodes, group).sg; -+ return group; -+} -+ -+static void init_numa_sched_groups_power(struct sched_group *group_head) -+{ -+ struct sched_group *sg = group_head; -+ int j; -+ -+ if (!sg) -+ return; -+ do { -+ for_each_cpu(j, sched_group_cpus(sg)) { -+ struct sched_domain *sd; -+ -+ sd = &per_cpu(phys_domains, j).sd; -+ if (j != group_first_cpu(sd->groups)) { -+ /* -+ * Only add "power" once for each -+ * physical package. -+ */ -+ continue; -+ } -+ -+ sg_inc_cpu_power(sg, sd->groups->__cpu_power); -+ } -+ sg = sg->next; -+ } while (sg != group_head); -+} -+#endif /* CONFIG_NUMA */ -+ -+#ifdef CONFIG_NUMA -+/* Free memory allocated for various sched_group structures */ -+static void free_sched_groups(const struct cpumask *cpu_map, -+ struct cpumask *nodemask) -+{ -+ int cpu, i; -+ -+ for_each_cpu(cpu, cpu_map) { -+ struct sched_group **sched_group_nodes -+ = sched_group_nodes_bycpu[cpu]; -+ -+ if (!sched_group_nodes) -+ continue; -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ struct sched_group *oldsg, *sg = sched_group_nodes[i]; -+ -+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map); -+ if (cpumask_empty(nodemask)) -+ continue; -+ -+ if (sg == NULL) -+ continue; -+ sg = sg->next; -+next_sg: -+ oldsg = sg; -+ sg = sg->next; -+ kfree(oldsg); -+ if (oldsg != sched_group_nodes[i]) -+ goto next_sg; -+ } -+ kfree(sched_group_nodes); -+ sched_group_nodes_bycpu[cpu] = NULL; -+ } -+} -+#else /* !CONFIG_NUMA */ -+static void free_sched_groups(const struct cpumask *cpu_map, -+ struct cpumask *nodemask) -+{ -+} -+#endif /* CONFIG_NUMA */ -+ -+/* -+ * Initialize sched groups cpu_power. -+ * -+ * cpu_power indicates the capacity of sched group, which is used while -+ * distributing the load between different sched groups in a sched domain. -+ * Typically cpu_power for all the groups in a sched domain will be same unless -+ * there are asymmetries in the topology. If there are asymmetries, group -+ * having more cpu_power will pickup more load compared to the group having -+ * less cpu_power. -+ * -+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents -+ * the maximum number of tasks a group can handle in the presence of other idle -+ * or lightly loaded groups in the same sched domain. -+ */ -+static void init_sched_groups_power(int cpu, struct sched_domain *sd) -+{ -+ struct sched_domain *child; -+ struct sched_group *group; -+ -+ WARN_ON(!sd || !sd->groups); -+ -+ if (cpu != group_first_cpu(sd->groups)) -+ return; -+ -+ child = sd->child; -+ -+ sd->groups->__cpu_power = 0; -+ -+ /* -+ * For perf policy, if the groups in child domain share resources -+ * (for example cores sharing some portions of the cache hierarchy -+ * or SMT), then set this domain groups cpu_power such that each group -+ * can handle only one task, when there are other idle groups in the -+ * same sched domain. -+ */ -+ if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && -+ (child->flags & -+ (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { -+ sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); -+ return; -+ } -+ -+ /* -+ * add cpu_power of each child group to this groups cpu_power -+ */ -+ group = child->groups; -+ do { -+ sg_inc_cpu_power(sd->groups, group->__cpu_power); -+ group = group->next; -+ } while (group != child->groups); -+} -+ -+/* -+ * Initializers for schedule domains -+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains() -+ */ -+ -+#ifdef CONFIG_SCHED_DEBUG -+# define SD_INIT_NAME(sd, type) sd->name = #type -+#else -+# define SD_INIT_NAME(sd, type) do { } while (0) -+#endif -+ -+#define SD_INIT(sd, type) sd_init_##type(sd) -+ -+#define SD_INIT_FUNC(type) \ -+static noinline void sd_init_##type(struct sched_domain *sd) \ -+{ \ -+ memset(sd, 0, sizeof(*sd)); \ -+ *sd = SD_##type##_INIT; \ -+ sd->level = SD_LV_##type; \ -+ SD_INIT_NAME(sd, type); \ -+} -+ -+SD_INIT_FUNC(CPU) -+#ifdef CONFIG_NUMA -+ SD_INIT_FUNC(ALLNODES) -+ SD_INIT_FUNC(NODE) -+#endif -+#ifdef CONFIG_SCHED_SMT -+ SD_INIT_FUNC(SIBLING) -+#endif -+#ifdef CONFIG_SCHED_MC -+ SD_INIT_FUNC(MC) -+#endif -+ -+static int default_relax_domain_level = -1; -+ -+static int __init setup_relax_domain_level(char *str) -+{ -+ unsigned long val; -+ -+ val = simple_strtoul(str, NULL, 0); -+ if (val < SD_LV_MAX) -+ default_relax_domain_level = val; -+ -+ return 1; -+} -+__setup("relax_domain_level=", setup_relax_domain_level); -+ -+static void set_domain_attribute(struct sched_domain *sd, -+ struct sched_domain_attr *attr) -+{ -+ int request; -+ -+ if (!attr || attr->relax_domain_level < 0) { -+ if (default_relax_domain_level < 0) -+ return; -+ else -+ request = default_relax_domain_level; -+ } else -+ request = attr->relax_domain_level; -+ if (request < sd->level) { -+ /* turn off idle balance on this domain */ -+ sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); -+ } else { -+ /* turn on idle balance on this domain */ -+ sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); -+ } -+} -+ -+/* -+ * Build sched domains for a given set of cpus and attach the sched domains -+ * to the individual cpus -+ */ -+static int __build_sched_domains(const struct cpumask *cpu_map, -+ struct sched_domain_attr *attr) -+{ -+ int i, err = -ENOMEM; -+ struct root_domain *rd; -+ cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, -+ tmpmask; -+#ifdef CONFIG_NUMA -+ cpumask_var_t domainspan, covered, notcovered; -+ struct sched_group **sched_group_nodes = NULL; -+ int sd_allnodes = 0; -+ -+ if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) -+ goto out; -+ if (!alloc_cpumask_var(&covered, GFP_KERNEL)) -+ goto free_domainspan; -+ if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) -+ goto free_covered; -+#endif -+ -+ if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) -+ goto free_notcovered; -+ if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) -+ goto free_nodemask; -+ if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) -+ goto free_this_sibling_map; -+ if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) -+ goto free_this_core_map; -+ if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) -+ goto free_send_covered; -+ -+#ifdef CONFIG_NUMA -+ /* -+ * Allocate the per-node list of sched groups -+ */ -+ sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), -+ GFP_KERNEL); -+ if (!sched_group_nodes) { -+ printk(KERN_WARNING "Can not alloc sched group node list\n"); -+ goto free_tmpmask; -+ } -+#endif -+ -+ rd = alloc_rootdomain(); -+ if (!rd) { -+ printk(KERN_WARNING "Cannot alloc root domain\n"); -+ goto free_sched_groups; -+ } -+ -+#ifdef CONFIG_NUMA -+ sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; -+#endif -+ -+ /* -+ * Set up domains for cpus specified by the cpu_map. -+ */ -+ for_each_cpu(i, cpu_map) { -+ struct sched_domain *sd = NULL, *p; -+ -+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); -+ -+#ifdef CONFIG_NUMA -+ if (cpumask_weight(cpu_map) > -+ SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { -+ sd = &per_cpu(allnodes_domains, i).sd; -+ SD_INIT(sd, ALLNODES); -+ set_domain_attribute(sd, attr); -+ cpumask_copy(sched_domain_span(sd), cpu_map); -+ cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); -+ p = sd; -+ sd_allnodes = 1; -+ } else -+ p = NULL; -+ -+ sd = &per_cpu(node_domains, i).sd; -+ SD_INIT(sd, NODE); -+ set_domain_attribute(sd, attr); -+ sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); -+ sd->parent = p; -+ if (p) -+ p->child = sd; -+ cpumask_and(sched_domain_span(sd), -+ sched_domain_span(sd), cpu_map); -+#endif -+ -+ p = sd; -+ sd = &per_cpu(phys_domains, i).sd; -+ SD_INIT(sd, CPU); -+ set_domain_attribute(sd, attr); -+ cpumask_copy(sched_domain_span(sd), nodemask); -+ sd->parent = p; -+ if (p) -+ p->child = sd; -+ cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); -+ -+#ifdef CONFIG_SCHED_MC -+ p = sd; -+ sd = &per_cpu(core_domains, i).sd; -+ SD_INIT(sd, MC); -+ set_domain_attribute(sd, attr); -+ cpumask_and(sched_domain_span(sd), cpu_map, -+ cpu_coregroup_mask(i)); -+ sd->parent = p; -+ p->child = sd; -+ cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); -+#endif -+ -+#ifdef CONFIG_SCHED_SMT -+ p = sd; -+ sd = &per_cpu(cpu_domains, i).sd; -+ SD_INIT(sd, SIBLING); -+ set_domain_attribute(sd, attr); -+ cpumask_and(sched_domain_span(sd), -+ topology_thread_cpumask(i), cpu_map); -+ sd->parent = p; -+ p->child = sd; -+ cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); -+#endif -+ } -+ -+#ifdef CONFIG_SCHED_SMT -+ /* Set up CPU (sibling) groups */ -+ for_each_cpu(i, cpu_map) { -+ cpumask_and(this_sibling_map, -+ topology_thread_cpumask(i), cpu_map); -+ if (i != cpumask_first(this_sibling_map)) -+ continue; -+ -+ init_sched_build_groups(this_sibling_map, cpu_map, -+ &cpu_to_cpu_group, -+ send_covered, tmpmask); -+ } -+#endif -+ -+#ifdef CONFIG_SCHED_MC -+ /* Set up multi-core groups */ -+ for_each_cpu(i, cpu_map) { -+ cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); -+ if (i != cpumask_first(this_core_map)) -+ continue; -+ -+ init_sched_build_groups(this_core_map, cpu_map, -+ &cpu_to_core_group, -+ send_covered, tmpmask); -+ } -+#endif -+ -+ /* Set up physical groups */ -+ for (i = 0; i < nr_node_ids; i++) { -+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map); -+ if (cpumask_empty(nodemask)) -+ continue; -+ -+ init_sched_build_groups(nodemask, cpu_map, -+ &cpu_to_phys_group, -+ send_covered, tmpmask); -+ } -+ -+#ifdef CONFIG_NUMA -+ /* Set up node groups */ -+ if (sd_allnodes) { -+ init_sched_build_groups(cpu_map, cpu_map, -+ &cpu_to_allnodes_group, -+ send_covered, tmpmask); -+ } -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ /* Set up node groups */ -+ struct sched_group *sg, *prev; -+ int j; -+ -+ cpumask_clear(covered); -+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map); -+ if (cpumask_empty(nodemask)) { -+ sched_group_nodes[i] = NULL; -+ continue; -+ } -+ -+ sched_domain_node_span(i, domainspan); -+ cpumask_and(domainspan, domainspan, cpu_map); -+ -+ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), -+ GFP_KERNEL, i); -+ if (!sg) { -+ printk(KERN_WARNING "Can not alloc domain group for " -+ "node %d\n", i); -+ goto error; -+ } -+ sched_group_nodes[i] = sg; -+ for_each_cpu(j, nodemask) { -+ struct sched_domain *sd; -+ -+ sd = &per_cpu(node_domains, j).sd; -+ sd->groups = sg; -+ } -+ sg->__cpu_power = 0; -+ cpumask_copy(sched_group_cpus(sg), nodemask); -+ sg->next = sg; -+ cpumask_or(covered, covered, nodemask); -+ prev = sg; -+ -+ for (j = 0; j < nr_node_ids; j++) { -+ int n = (i + j) % nr_node_ids; -+ -+ cpumask_complement(notcovered, covered); -+ cpumask_and(tmpmask, notcovered, cpu_map); -+ cpumask_and(tmpmask, tmpmask, domainspan); -+ if (cpumask_empty(tmpmask)) -+ break; -+ -+ cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); -+ if (cpumask_empty(tmpmask)) -+ continue; -+ -+ sg = kmalloc_node(sizeof(struct sched_group) + -+ cpumask_size(), -+ GFP_KERNEL, i); -+ if (!sg) { -+ printk(KERN_WARNING -+ "Can not alloc domain group for node %d\n", j); -+ goto error; -+ } -+ sg->__cpu_power = 0; -+ cpumask_copy(sched_group_cpus(sg), tmpmask); -+ sg->next = prev->next; -+ cpumask_or(covered, covered, tmpmask); -+ prev->next = sg; -+ prev = sg; -+ } -+ } -+#endif -+ -+ /* Calculate CPU power for physical packages and nodes */ -+#ifdef CONFIG_SCHED_SMT -+ for_each_cpu(i, cpu_map) { -+ struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; -+ -+ init_sched_groups_power(i, sd); -+ } -+#endif -+#ifdef CONFIG_SCHED_MC -+ for_each_cpu(i, cpu_map) { -+ struct sched_domain *sd = &per_cpu(core_domains, i).sd; -+ -+ init_sched_groups_power(i, sd); -+ } -+#endif -+ -+ for_each_cpu(i, cpu_map) { -+ struct sched_domain *sd = &per_cpu(phys_domains, i).sd; -+ -+ init_sched_groups_power(i, sd); -+ } -+ -+#ifdef CONFIG_NUMA -+ for (i = 0; i < nr_node_ids; i++) -+ init_numa_sched_groups_power(sched_group_nodes[i]); -+ -+ if (sd_allnodes) { -+ struct sched_group *sg; -+ -+ cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, -+ tmpmask); -+ init_numa_sched_groups_power(sg); -+ } -+#endif -+ -+ /* Attach the domains */ -+ for_each_cpu(i, cpu_map) { -+ struct sched_domain *sd; -+#ifdef CONFIG_SCHED_SMT -+ sd = &per_cpu(cpu_domains, i).sd; -+#elif defined(CONFIG_SCHED_MC) -+ sd = &per_cpu(core_domains, i).sd; -+#else -+ sd = &per_cpu(phys_domains, i).sd; -+#endif -+ cpu_attach_domain(sd, rd, i); -+ } -+ -+ err = 0; -+ -+free_tmpmask: -+ free_cpumask_var(tmpmask); -+free_send_covered: -+ free_cpumask_var(send_covered); -+free_this_core_map: -+ free_cpumask_var(this_core_map); -+free_this_sibling_map: -+ free_cpumask_var(this_sibling_map); -+free_nodemask: -+ free_cpumask_var(nodemask); -+free_notcovered: -+#ifdef CONFIG_NUMA -+ free_cpumask_var(notcovered); -+free_covered: -+ free_cpumask_var(covered); -+free_domainspan: -+ free_cpumask_var(domainspan); -+out: -+#endif -+ return err; -+ -+free_sched_groups: -+#ifdef CONFIG_NUMA -+ kfree(sched_group_nodes); -+#endif -+ goto free_tmpmask; -+ -+#ifdef CONFIG_NUMA -+error: -+ free_sched_groups(cpu_map, tmpmask); -+ free_rootdomain(rd); -+ goto free_tmpmask; -+#endif -+} -+ -+static int build_sched_domains(const struct cpumask *cpu_map) -+{ -+ return __build_sched_domains(cpu_map, NULL); -+} -+ -+static struct cpumask *doms_cur; /* current sched domains */ -+static int ndoms_cur; /* number of sched domains in 'doms_cur' */ -+static struct sched_domain_attr *dattr_cur; -+ /* attribues of custom domains in 'doms_cur' */ -+ -+/* -+ * Special case: If a kmalloc of a doms_cur partition (array of -+ * cpumask) fails, then fallback to a single sched domain, -+ * as determined by the single cpumask fallback_doms. -+ */ -+static cpumask_var_t fallback_doms; -+ -+/* -+ * arch_update_cpu_topology lets virtualized architectures update the -+ * cpu core maps. It is supposed to return 1 if the topology changed -+ * or 0 if it stayed the same. -+ */ -+int __attribute__((weak)) arch_update_cpu_topology(void) -+{ -+ return 0; -+} -+ -+/* -+ * Set up scheduler domains and groups. Callers must hold the hotplug lock. -+ * For now this just excludes isolated cpus, but could be used to -+ * exclude other special cases in the future. -+ */ -+static int arch_init_sched_domains(const struct cpumask *cpu_map) -+{ -+ int err; -+ -+ arch_update_cpu_topology(); -+ ndoms_cur = 1; -+ doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); -+ if (!doms_cur) -+ doms_cur = fallback_doms; -+ cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); -+ dattr_cur = NULL; -+ err = build_sched_domains(doms_cur); -+ register_sched_domain_sysctl(); -+ -+ return err; -+} -+ -+static void arch_destroy_sched_domains(const struct cpumask *cpu_map, -+ struct cpumask *tmpmask) -+{ -+ free_sched_groups(cpu_map, tmpmask); -+} -+ -+/* -+ * Detach sched domains from a group of cpus specified in cpu_map -+ * These cpus will now be attached to the NULL domain -+ */ -+static void detach_destroy_domains(const struct cpumask *cpu_map) -+{ -+ /* Save because hotplug lock held. */ -+ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); -+ int i; -+ -+ for_each_cpu(i, cpu_map) -+ cpu_attach_domain(NULL, &def_root_domain, i); -+ synchronize_sched(); -+ arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); -+} -+ -+/* handle null as "default" */ -+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, -+ struct sched_domain_attr *new, int idx_new) -+{ -+ struct sched_domain_attr tmp; -+ -+ /* fast path */ -+ if (!new && !cur) -+ return 1; -+ -+ tmp = SD_ATTR_INIT; -+ return !memcmp(cur ? (cur + idx_cur) : &tmp, -+ new ? (new + idx_new) : &tmp, -+ sizeof(struct sched_domain_attr)); -+} -+ -+/* -+ * Partition sched domains as specified by the 'ndoms_new' -+ * cpumasks in the array doms_new[] of cpumasks. This compares -+ * doms_new[] to the current sched domain partitioning, doms_cur[]. -+ * It destroys each deleted domain and builds each new domain. -+ * -+ * 'doms_new' is an array of cpumask's of length 'ndoms_new'. -+ * The masks don't intersect (don't overlap.) We should setup one -+ * sched domain for each mask. CPUs not in any of the cpumasks will -+ * not be load balanced. If the same cpumask appears both in the -+ * current 'doms_cur' domains and in the new 'doms_new', we can leave -+ * it as it is. -+ * -+ * The passed in 'doms_new' should be kmalloc'd. This routine takes -+ * ownership of it and will kfree it when done with it. If the caller -+ * failed the kmalloc call, then it can pass in doms_new == NULL && -+ * ndoms_new == 1, and partition_sched_domains() will fallback to -+ * the single partition 'fallback_doms', it also forces the domains -+ * to be rebuilt. -+ * -+ * If doms_new == NULL it will be replaced with cpu_online_mask. -+ * ndoms_new == 0 is a special case for destroying existing domains, -+ * and it will not create the default domain. -+ * -+ * Call with hotplug lock held -+ */ -+/* FIXME: Change to struct cpumask *doms_new[] */ -+void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, -+ struct sched_domain_attr *dattr_new) -+{ -+ int i, j, n; -+ int new_topology; -+ -+ mutex_lock(&sched_domains_mutex); -+ -+ /* always unregister in case we don't destroy any domains */ -+ unregister_sched_domain_sysctl(); -+ -+ /* Let architecture update cpu core mappings. */ -+ new_topology = arch_update_cpu_topology(); -+ -+ n = doms_new ? ndoms_new : 0; -+ -+ /* Destroy deleted domains */ -+ for (i = 0; i < ndoms_cur; i++) { -+ for (j = 0; j < n && !new_topology; j++) { -+ if (cpumask_equal(&doms_cur[i], &doms_new[j]) -+ && dattrs_equal(dattr_cur, i, dattr_new, j)) -+ goto match1; -+ } -+ /* no match - a current sched domain not in new doms_new[] */ -+ detach_destroy_domains(doms_cur + i); -+match1: -+ ; -+ } -+ -+ if (doms_new == NULL) { -+ ndoms_cur = 0; -+ doms_new = fallback_doms; -+ cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); -+ WARN_ON_ONCE(dattr_new); -+ } -+ -+ /* Build new domains */ -+ for (i = 0; i < ndoms_new; i++) { -+ for (j = 0; j < ndoms_cur && !new_topology; j++) { -+ if (cpumask_equal(&doms_new[i], &doms_cur[j]) -+ && dattrs_equal(dattr_new, i, dattr_cur, j)) -+ goto match2; -+ } -+ /* no match - add a new doms_new */ -+ __build_sched_domains(doms_new + i, -+ dattr_new ? dattr_new + i : NULL); -+match2: -+ ; -+ } -+ -+ /* Remember the new sched domains */ -+ if (doms_cur != fallback_doms) -+ kfree(doms_cur); -+ kfree(dattr_cur); /* kfree(NULL) is safe */ -+ doms_cur = doms_new; -+ dattr_cur = dattr_new; -+ ndoms_cur = ndoms_new; -+ -+ register_sched_domain_sysctl(); -+ -+ mutex_unlock(&sched_domains_mutex); -+} -+ -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+static void arch_reinit_sched_domains(void) -+{ -+ get_online_cpus(); -+ -+ /* Destroy domains first to force the rebuild */ -+ partition_sched_domains(0, NULL, NULL); -+ -+ rebuild_sched_domains(); -+ put_online_cpus(); -+} -+ -+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) -+{ -+ unsigned int level = 0; -+ -+ if (sscanf(buf, "%u", &level) != 1) -+ return -EINVAL; -+ -+ /* -+ * level is always be positive so don't check for -+ * level < POWERSAVINGS_BALANCE_NONE which is 0 -+ * What happens on 0 or 1 byte write, -+ * need to check for count as well? -+ */ -+ -+ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) -+ return -EINVAL; -+ -+ if (smt) -+ sched_smt_power_savings = level; -+ else -+ sched_mc_power_savings = level; -+ -+ arch_reinit_sched_domains(); -+ -+ return count; -+} -+ -+#ifdef CONFIG_SCHED_MC -+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, -+ char *page) -+{ -+ return sprintf(page, "%u\n", sched_mc_power_savings); -+} -+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, -+ const char *buf, size_t count) -+{ -+ return sched_power_savings_store(buf, count, 0); -+} -+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, -+ sched_mc_power_savings_show, -+ sched_mc_power_savings_store); -+#endif -+ -+#ifdef CONFIG_SCHED_SMT -+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, -+ char *page) -+{ -+ return sprintf(page, "%u\n", sched_smt_power_savings); -+} -+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, -+ const char *buf, size_t count) -+{ -+ return sched_power_savings_store(buf, count, 1); -+} -+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, -+ sched_smt_power_savings_show, -+ sched_smt_power_savings_store); -+#endif -+ -+int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) -+{ -+ int err = 0; -+ -+#ifdef CONFIG_SCHED_SMT -+ if (smt_capable()) -+ err = sysfs_create_file(&cls->kset.kobj, -+ &attr_sched_smt_power_savings.attr); -+#endif -+#ifdef CONFIG_SCHED_MC -+ if (!err && mc_capable()) -+ err = sysfs_create_file(&cls->kset.kobj, -+ &attr_sched_mc_power_savings.attr); -+#endif -+ return err; -+} -+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ -+ -+#ifndef CONFIG_CPUSETS -+/* -+ * Add online and remove offline CPUs from the scheduler domains. -+ * When cpusets are enabled they take over this function. -+ */ -+static int update_sched_domains(struct notifier_block *nfb, -+ unsigned long action, void *hcpu) -+{ -+ switch (action) { -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ case CPU_DEAD: -+ case CPU_DEAD_FROZEN: -+ partition_sched_domains(1, NULL, NULL); -+ return NOTIFY_OK; -+ -+ default: -+ return NOTIFY_DONE; -+ } -+} -+#endif -+ -+static int update_runtime(struct notifier_block *nfb, -+ unsigned long action, void *hcpu) -+{ -+ switch (action) { -+ case CPU_DOWN_PREPARE: -+ case CPU_DOWN_PREPARE_FROZEN: -+ return NOTIFY_OK; -+ -+ case CPU_DOWN_FAILED: -+ case CPU_DOWN_FAILED_FROZEN: -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ return NOTIFY_OK; -+ -+ default: -+ return NOTIFY_DONE; -+ } -+} -+ -+void __init sched_init_smp(void) -+{ -+ cpumask_var_t non_isolated_cpus; -+ -+ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); -+ -+#if defined(CONFIG_NUMA) -+ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), -+ GFP_KERNEL); -+ BUG_ON(sched_group_nodes_bycpu == NULL); -+#endif -+ get_online_cpus(); -+ mutex_lock(&sched_domains_mutex); -+ arch_init_sched_domains(cpu_online_mask); -+ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); -+ if (cpumask_empty(non_isolated_cpus)) -+ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); -+ mutex_unlock(&sched_domains_mutex); -+ put_online_cpus(); -+ -+#ifndef CONFIG_CPUSETS -+ /* XXX: Theoretical race here - CPU may be hotplugged now */ -+ hotcpu_notifier(update_sched_domains, 0); -+#endif -+ -+ /* RT runtime code needs to handle some hotplug events */ -+ hotcpu_notifier(update_runtime, 0); -+ -+ /* Move init over to a non-isolated CPU */ -+ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) -+ BUG(); -+ free_cpumask_var(non_isolated_cpus); -+ -+ alloc_cpumask_var(&fallback_doms, GFP_KERNEL); -+ -+ /* -+ * Assume that every added cpu gives us slightly less overall latency -+ * allowing us to increase the base rr_interval, but in a non linear -+ * fashion. -+ */ -+ rr_interval *= 1 + ilog2(num_online_cpus()); -+} -+#else -+void __init sched_init_smp(void) -+{ -+} -+#endif /* CONFIG_SMP */ -+ -+unsigned int sysctl_timer_migration = 1; -+ -+int in_sched_functions(unsigned long addr) -+{ -+ return in_lock_functions(addr) || -+ (addr >= (unsigned long)__sched_text_start -+ && addr < (unsigned long)__sched_text_end); -+} -+ -+void __init sched_init(void) -+{ -+ int i; -+ int highest_cpu = 0; -+ -+ prio_ratios[0] = 100; -+ for (i = 1 ; i < PRIO_RANGE ; i++) -+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; -+ -+#ifdef CONFIG_SMP -+ init_defrootdomain(); -+ cpus_clear(grq.cpu_idle_map); -+#endif -+ spin_lock_init(&grq.lock); -+ for_each_possible_cpu(i) { -+ struct rq *rq; -+ -+ rq = cpu_rq(i); -+ INIT_LIST_HEAD(&rq->queue); -+ rq->rq_deadline = 0; -+ rq->rq_prio = 0; -+ rq->cpu = i; -+ rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = -+ rq->iowait_pc = rq->idle_pc = 0; -+#ifdef CONFIG_SMP -+ rq->sd = NULL; -+ rq->rd = NULL; -+ rq->online = 0; -+ INIT_LIST_HEAD(&rq->migration_queue); -+ rq_attach_root(rq, &def_root_domain); -+#endif -+ atomic_set(&rq->nr_iowait, 0); -+ highest_cpu = i; -+ } -+ grq.iso_ticks = grq.nr_running = grq.nr_uninterruptible = 0; -+ for (i = 0; i < PRIO_LIMIT; i++) -+ INIT_LIST_HEAD(grq.queue + i); -+ bitmap_zero(grq.prio_bitmap, PRIO_LIMIT); -+ /* delimiter for bitsearch */ -+ __set_bit(PRIO_LIMIT, grq.prio_bitmap); -+ -+#ifdef CONFIG_SMP -+ nr_cpu_ids = highest_cpu + 1; -+#endif -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ INIT_HLIST_HEAD(&init_task.preempt_notifiers); -+#endif -+ -+#ifdef CONFIG_RT_MUTEXES -+ plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); -+#endif -+ -+ /* -+ * The boot idle thread does lazy MMU switching as well: -+ */ -+ atomic_inc(&init_mm.mm_count); -+ enter_lazy_tlb(&init_mm, current); -+ -+ /* -+ * Make us the idle thread. Technically, schedule() should not be -+ * called from this thread, however somewhere below it might be, -+ * but because we are the idle thread, we just pick up running again -+ * when this runqueue becomes "idle". -+ */ -+ init_idle(current, smp_processor_id()); -+ -+ /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ -+ alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); -+#ifdef CONFIG_SMP -+#ifdef CONFIG_NO_HZ -+ alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); -+ alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); -+#endif -+ alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); -+#endif /* SMP */ -+ perf_counter_init(); -+} -+ -+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -+void __might_sleep(char *file, int line) -+{ -+#ifdef in_atomic -+ static unsigned long prev_jiffy; /* ratelimiting */ -+ -+ if ((in_atomic() || irqs_disabled()) && -+ system_state == SYSTEM_RUNNING && !oops_in_progress) { -+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) -+ return; -+ prev_jiffy = jiffies; -+ printk(KERN_ERR "BUG: sleeping function called from invalid" -+ " context at %s:%d\n", file, line); -+ printk("in_atomic():%d, irqs_disabled():%d\n", -+ in_atomic(), irqs_disabled()); -+ debug_show_held_locks(current); -+ if (irqs_disabled()) -+ print_irqtrace_events(current); -+ dump_stack(); -+ } -+#endif -+} -+EXPORT_SYMBOL(__might_sleep); -+#endif -+ -+#ifdef CONFIG_MAGIC_SYSRQ -+void normalize_rt_tasks(void) -+{ -+ struct task_struct *g, *p; -+ unsigned long flags; -+ struct rq *rq; -+ int queued; -+ -+ read_lock_irq(&tasklist_lock); -+ -+ do_each_thread(g, p) { -+ if (!rt_task(p) && !iso_task(p)) -+ continue; -+ -+ spin_lock_irqsave(&p->pi_lock, flags); -+ rq = __task_grq_lock(p); -+ update_rq_clock(rq); -+ -+ queued = task_queued_only(p); -+ if (queued) -+ dequeue_task(p); -+ __setscheduler(p, SCHED_NORMAL, 0); -+ if (task_running(p)) -+ resched_task(p); -+ if (queued) { -+ enqueue_task(p); -+ try_preempt(p); -+ } -+ -+ __task_grq_unlock(); -+ spin_unlock_irqrestore(&p->pi_lock, flags); -+ } while_each_thread(g, p); -+ -+ read_unlock_irq(&tasklist_lock); -+} -+#endif /* CONFIG_MAGIC_SYSRQ */ -+ -+#ifdef CONFIG_IA64 -+/* -+ * These functions are only useful for the IA64 MCA handling. -+ * -+ * They can only be called when the whole system has been -+ * stopped - every CPU needs to be quiescent, and no scheduling -+ * activity can take place. Using them for anything else would -+ * be a serious bug, and as a result, they aren't even visible -+ * under any other configuration. -+ */ -+ -+/** -+ * curr_task - return the current task for a given cpu. -+ * @cpu: the processor in question. -+ * -+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! -+ */ -+struct task_struct *curr_task(int cpu) -+{ -+ return cpu_curr(cpu); -+} -+ -+/** -+ * set_curr_task - set the current task for a given cpu. -+ * @cpu: the processor in question. -+ * @p: the task pointer to set. -+ * -+ * Description: This function must only be used when non-maskable interrupts -+ * are serviced on a separate stack. It allows the architecture to switch the -+ * notion of the current task on a cpu in a non-blocking manner. This function -+ * must be called with all CPU's synchronized, and interrupts disabled, the -+ * and caller must save the original value of the current task (see -+ * curr_task() above) and restore that value before reenabling interrupts and -+ * re-starting the system. -+ * -+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! -+ */ -+void set_curr_task(int cpu, struct task_struct *p) -+{ -+ cpu_curr(cpu) = p; -+} -+ -+#endif -+ -+/* -+ * Use precise platform statistics if available: -+ */ -+#ifdef CONFIG_VIRT_CPU_ACCOUNTING -+cputime_t task_utime(struct task_struct *p) -+{ -+ return p->utime; -+} -+ -+cputime_t task_stime(struct task_struct *p) -+{ -+ return p->stime; -+} -+#else -+cputime_t task_utime(struct task_struct *p) -+{ -+ clock_t utime = cputime_to_clock_t(p->utime), -+ total = utime + cputime_to_clock_t(p->stime); -+ u64 temp; -+ -+ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); -+ -+ if (total) { -+ temp *= utime; -+ do_div(temp, total); -+ } -+ utime = (clock_t)temp; -+ -+ p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); -+ return p->prev_utime; -+} -+ -+cputime_t task_stime(struct task_struct *p) -+{ -+ clock_t stime; -+ -+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) - -+ cputime_to_clock_t(task_utime(p)); -+ -+ if (stime >= 0) -+ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); -+ -+ return p->prev_stime; -+} -+#endif -+ -+inline cputime_t task_gtime(struct task_struct *p) -+{ -+ return p->gtime; -+} -+ -+void __cpuinit init_idle_bootup_task(struct task_struct *idle) -+{} -+ -+#ifdef CONFIG_SCHED_DEBUG -+void proc_sched_show_task(struct task_struct *p, struct seq_file *m) -+{} -+ -+void proc_sched_set_task(struct task_struct *p) -+{} -+#endif ---- a/kernel/sysctl.c -+++ b/kernel/sysctl.c -@@ -83,6 +83,8 @@ extern int percpu_pagelist_fraction; - extern int compat_log; - extern int latencytop_enabled; - extern int sysctl_nr_open_min, sysctl_nr_open_max; -+extern int rr_interval; -+extern int sched_iso_cpu; - #ifndef CONFIG_MMU - extern int sysctl_nr_trim_pages; - #endif -@@ -100,7 +102,8 @@ static int zero; - static int __maybe_unused one = 1; - static int __maybe_unused two = 2; - static unsigned long one_ul = 1; --static int one_hundred = 100; -+static int __read_mostly one_hundred = 100; -+static int __maybe_unused __read_mostly five_thousand = 5000; - - /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ - static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; -@@ -234,7 +237,7 @@ static struct ctl_table root_table[] = { - { .ctl_name = 0 } - }; - --#ifdef CONFIG_SCHED_DEBUG -+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS) - static int min_sched_granularity_ns = 100000; /* 100 usecs */ - static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ - static int min_wakeup_granularity_ns; /* 0 usecs */ -@@ -242,7 +245,7 @@ static int max_wakeup_granularity_ns = N - #endif - - static struct ctl_table kern_table[] = { --#ifdef CONFIG_SCHED_DEBUG -+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS) - { - .ctl_name = CTL_UNNUMBERED, - .procname = "sched_min_granularity_ns", -@@ -327,6 +330,7 @@ static struct ctl_table kern_table[] = { - .proc_handler = &proc_dointvec, - }, - #endif -+#ifdef CONFIG_SCHED_CFS - { - .ctl_name = CTL_UNNUMBERED, - .procname = "sched_rt_period_us", -@@ -351,6 +355,7 @@ static struct ctl_table kern_table[] = { - .mode = 0644, - .proc_handler = &proc_dointvec, - }, -+#endif - #ifdef CONFIG_PROVE_LOCKING - { - .ctl_name = CTL_UNNUMBERED, -@@ -756,6 +761,30 @@ static struct ctl_table kern_table[] = { - .proc_handler = &proc_dointvec, - }, - #endif -+#ifdef CONFIG_SCHED_BFS -+ { -+ .ctl_name = CTL_UNNUMBERED, -+ .procname = "rr_interval", -+ .data = &rr_interval, -+ .maxlen = sizeof (int), -+ .mode = 0644, -+ .proc_handler = &proc_dointvec_minmax, -+ .strategy = &sysctl_intvec, -+ .extra1 = &one, -+ .extra2 = &five_thousand, -+ }, -+ { -+ .ctl_name = CTL_UNNUMBERED, -+ .procname = "iso_cpu", -+ .data = &sched_iso_cpu, -+ .maxlen = sizeof (int), -+ .mode = 0644, -+ .proc_handler = &proc_dointvec_minmax, -+ .strategy = &sysctl_intvec, -+ .extra1 = &zero, -+ .extra2 = &one_hundred, -+ }, -+#endif - #if defined(CONFIG_S390) && defined(CONFIG_SMP) - { - .ctl_name = KERN_SPIN_RETRY, ---- a/kernel/workqueue.c -+++ b/kernel/workqueue.c -@@ -320,7 +320,9 @@ static int worker_thread(void *__cwq) - if (cwq->wq->freezeable) - set_freezable(); - -+#ifdef CONFIG_SCHED_CFS - set_user_nice(current, -5); -+#endif - - for (;;) { - prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); ---- /dev/null -+++ b/include/linux/perf_counter.h -@@ -0,0 +1,2 @@ -+#define perf_counter_init() do {} while(0) -+#define perf_counter_task_sched_in(...) do {} while(0) ---- /dev/null -+++ b/include/trace/events/sched.h -@@ -0,0 +1 @@ -+#include <trace/sched.h> |