diff options
Diffstat (limited to 'target/linux/generic/backport-5.4/080-wireguard-0025-crypto-curve25519-generic-C-library-implementations.patch')
-rw-r--r-- | target/linux/generic/backport-5.4/080-wireguard-0025-crypto-curve25519-generic-C-library-implementations.patch | 1850 |
1 files changed, 1850 insertions, 0 deletions
diff --git a/target/linux/generic/backport-5.4/080-wireguard-0025-crypto-curve25519-generic-C-library-implementations.patch b/target/linux/generic/backport-5.4/080-wireguard-0025-crypto-curve25519-generic-C-library-implementations.patch new file mode 100644 index 0000000000..87d4d41c96 --- /dev/null +++ b/target/linux/generic/backport-5.4/080-wireguard-0025-crypto-curve25519-generic-C-library-implementations.patch @@ -0,0 +1,1850 @@ +From feadb4076186623fb4ca14d8f70759637c4df1f2 Mon Sep 17 00:00:00 2001 +From: "Jason A. Donenfeld" <Jason@zx2c4.com> +Date: Fri, 8 Nov 2019 13:22:32 +0100 +Subject: [PATCH 025/124] crypto: curve25519 - generic C library + implementations + +commit 0ed42a6f431e930b2e8fae21955406e09fe75d70 upstream. + +This contains two formally verified C implementations of the Curve25519 +scalar multiplication function, one for 32-bit systems, and one for +64-bit systems whose compiler supports efficient 128-bit integer types. +Not only are these implementations formally verified, but they are also +the fastest available C implementations. They have been modified to be +friendly to kernel space and to be generally less horrendous looking, +but still an effort has been made to retain their formally verified +characteristic, and so the C might look slightly unidiomatic. + +The 64-bit version comes from HACL*: https://github.com/project-everest/hacl-star +The 32-bit version comes from Fiat: https://github.com/mit-plv/fiat-crypto + +Information: https://cr.yp.to/ecdh.html + +Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> +[ardb: - move from lib/zinc to lib/crypto + - replace .c #includes with Kconfig based object selection + - drop simd handling and simplify support for per-arch versions ] +Signed-off-by: Ard Biesheuvel <ardb@kernel.org> +Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> +Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> +--- + include/crypto/curve25519.h | 71 +++ + lib/crypto/Kconfig | 25 + + lib/crypto/Makefile | 5 + + lib/crypto/curve25519-fiat32.c | 864 +++++++++++++++++++++++++++++++++ + lib/crypto/curve25519-hacl64.c | 788 ++++++++++++++++++++++++++++++ + lib/crypto/curve25519.c | 25 + + 6 files changed, 1778 insertions(+) + create mode 100644 include/crypto/curve25519.h + create mode 100644 lib/crypto/curve25519-fiat32.c + create mode 100644 lib/crypto/curve25519-hacl64.c + create mode 100644 lib/crypto/curve25519.c + +--- /dev/null ++++ b/include/crypto/curve25519.h +@@ -0,0 +1,71 @@ ++/* SPDX-License-Identifier: GPL-2.0 OR MIT */ ++/* ++ * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. ++ */ ++ ++#ifndef CURVE25519_H ++#define CURVE25519_H ++ ++#include <crypto/algapi.h> // For crypto_memneq. ++#include <linux/types.h> ++#include <linux/random.h> ++ ++enum curve25519_lengths { ++ CURVE25519_KEY_SIZE = 32 ++}; ++ ++extern const u8 curve25519_null_point[]; ++extern const u8 curve25519_base_point[]; ++ ++void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], ++ const u8 scalar[CURVE25519_KEY_SIZE], ++ const u8 point[CURVE25519_KEY_SIZE]); ++ ++void curve25519_arch(u8 out[CURVE25519_KEY_SIZE], ++ const u8 scalar[CURVE25519_KEY_SIZE], ++ const u8 point[CURVE25519_KEY_SIZE]); ++ ++void curve25519_base_arch(u8 pub[CURVE25519_KEY_SIZE], ++ const u8 secret[CURVE25519_KEY_SIZE]); ++ ++static inline ++bool __must_check curve25519(u8 mypublic[CURVE25519_KEY_SIZE], ++ const u8 secret[CURVE25519_KEY_SIZE], ++ const u8 basepoint[CURVE25519_KEY_SIZE]) ++{ ++ if (IS_ENABLED(CONFIG_CRYPTO_ARCH_HAVE_LIB_CURVE25519)) ++ curve25519_arch(mypublic, secret, basepoint); ++ else ++ curve25519_generic(mypublic, secret, basepoint); ++ return crypto_memneq(mypublic, curve25519_null_point, ++ CURVE25519_KEY_SIZE); ++} ++ ++static inline bool ++__must_check curve25519_generate_public(u8 pub[CURVE25519_KEY_SIZE], ++ const u8 secret[CURVE25519_KEY_SIZE]) ++{ ++ if (unlikely(!crypto_memneq(secret, curve25519_null_point, ++ CURVE25519_KEY_SIZE))) ++ return false; ++ ++ if (IS_ENABLED(CONFIG_CRYPTO_ARCH_HAVE_LIB_CURVE25519)) ++ curve25519_base_arch(pub, secret); ++ else ++ curve25519_generic(pub, secret, curve25519_base_point); ++ return crypto_memneq(pub, curve25519_null_point, CURVE25519_KEY_SIZE); ++} ++ ++static inline void curve25519_clamp_secret(u8 secret[CURVE25519_KEY_SIZE]) ++{ ++ secret[0] &= 248; ++ secret[31] = (secret[31] & 127) | 64; ++} ++ ++static inline void curve25519_generate_secret(u8 secret[CURVE25519_KEY_SIZE]) ++{ ++ get_random_bytes_wait(secret, CURVE25519_KEY_SIZE); ++ curve25519_clamp_secret(secret); ++} ++ ++#endif /* CURVE25519_H */ +--- a/lib/crypto/Kconfig ++++ b/lib/crypto/Kconfig +@@ -59,6 +59,31 @@ config CRYPTO_LIB_CHACHA + by either the generic implementation or an arch-specific one, if one + is available and enabled. + ++config CRYPTO_ARCH_HAVE_LIB_CURVE25519 ++ tristate ++ help ++ Declares whether the architecture provides an arch-specific ++ accelerated implementation of the Curve25519 library interface, ++ either builtin or as a module. ++ ++config CRYPTO_LIB_CURVE25519_GENERIC ++ tristate ++ help ++ This symbol can be depended upon by arch implementations of the ++ Curve25519 library interface that require the generic code as a ++ fallback, e.g., for SIMD implementations. If no arch specific ++ implementation is enabled, this implementation serves the users ++ of CRYPTO_LIB_CURVE25519. ++ ++config CRYPTO_LIB_CURVE25519 ++ tristate "Curve25519 scalar multiplication library" ++ depends on CRYPTO_ARCH_HAVE_LIB_CURVE25519 || !CRYPTO_ARCH_HAVE_LIB_CURVE25519 ++ select CRYPTO_LIB_CURVE25519_GENERIC if CRYPTO_ARCH_HAVE_LIB_CURVE25519=n ++ help ++ Enable the Curve25519 library interface. This interface may be ++ fulfilled by either the generic implementation or an arch-specific ++ one, if one is available and enabled. ++ + config CRYPTO_LIB_DES + tristate + +--- a/lib/crypto/Makefile ++++ b/lib/crypto/Makefile +@@ -16,6 +16,11 @@ libblake2s-generic-y += blake2s-gener + obj-$(CONFIG_CRYPTO_LIB_BLAKE2S) += libblake2s.o + libblake2s-y += blake2s.o + ++obj-$(CONFIG_CRYPTO_LIB_CURVE25519_GENERIC) += libcurve25519.o ++libcurve25519-y := curve25519-fiat32.o ++libcurve25519-$(CONFIG_ARCH_SUPPORTS_INT128) := curve25519-hacl64.o ++libcurve25519-y += curve25519.o ++ + obj-$(CONFIG_CRYPTO_LIB_DES) += libdes.o + libdes-y := des.o + +--- /dev/null ++++ b/lib/crypto/curve25519-fiat32.c +@@ -0,0 +1,864 @@ ++// SPDX-License-Identifier: GPL-2.0 OR MIT ++/* ++ * Copyright (C) 2015-2016 The fiat-crypto Authors. ++ * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. ++ * ++ * This is a machine-generated formally verified implementation of Curve25519 ++ * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally ++ * machine generated, it has been tweaked to be suitable for use in the kernel. ++ * It is optimized for 32-bit machines and machines that cannot work efficiently ++ * with 128-bit integer types. ++ */ ++ ++#include <asm/unaligned.h> ++#include <crypto/curve25519.h> ++#include <linux/string.h> ++ ++/* fe means field element. Here the field is \Z/(2^255-19). An element t, ++ * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 ++ * t[3]+2^102 t[4]+...+2^230 t[9]. ++ * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc. ++ * Multiplication and carrying produce fe from fe_loose. ++ */ ++typedef struct fe { u32 v[10]; } fe; ++ ++/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc ++ * Addition and subtraction produce fe_loose from (fe, fe). ++ */ ++typedef struct fe_loose { u32 v[10]; } fe_loose; ++ ++static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s) ++{ ++ /* Ignores top bit of s. */ ++ u32 a0 = get_unaligned_le32(s); ++ u32 a1 = get_unaligned_le32(s+4); ++ u32 a2 = get_unaligned_le32(s+8); ++ u32 a3 = get_unaligned_le32(s+12); ++ u32 a4 = get_unaligned_le32(s+16); ++ u32 a5 = get_unaligned_le32(s+20); ++ u32 a6 = get_unaligned_le32(s+24); ++ u32 a7 = get_unaligned_le32(s+28); ++ h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */ ++ h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */ ++ h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */ ++ h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */ ++ h[4] = (a3>> 6); /* (32- 6) = 26 */ ++ h[5] = a4&((1<<25)-1); /* 25 */ ++ h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */ ++ h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */ ++ h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */ ++ h[9] = (a7>> 6)&((1<<25)-1); /* 25 */ ++} ++ ++static __always_inline void fe_frombytes(fe *h, const u8 *s) ++{ ++ fe_frombytes_impl(h->v, s); ++} ++ ++static __always_inline u8 /*bool*/ ++addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) ++{ ++ /* This function extracts 25 bits of result and 1 bit of carry ++ * (26 total), so a 32-bit intermediate is sufficient. ++ */ ++ u32 x = a + b + c; ++ *low = x & ((1 << 25) - 1); ++ return (x >> 25) & 1; ++} ++ ++static __always_inline u8 /*bool*/ ++addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) ++{ ++ /* This function extracts 26 bits of result and 1 bit of carry ++ * (27 total), so a 32-bit intermediate is sufficient. ++ */ ++ u32 x = a + b + c; ++ *low = x & ((1 << 26) - 1); ++ return (x >> 26) & 1; ++} ++ ++static __always_inline u8 /*bool*/ ++subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) ++{ ++ /* This function extracts 25 bits of result and 1 bit of borrow ++ * (26 total), so a 32-bit intermediate is sufficient. ++ */ ++ u32 x = a - b - c; ++ *low = x & ((1 << 25) - 1); ++ return x >> 31; ++} ++ ++static __always_inline u8 /*bool*/ ++subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) ++{ ++ /* This function extracts 26 bits of result and 1 bit of borrow ++ *(27 total), so a 32-bit intermediate is sufficient. ++ */ ++ u32 x = a - b - c; ++ *low = x & ((1 << 26) - 1); ++ return x >> 31; ++} ++ ++static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz) ++{ ++ t = -!!t; /* all set if nonzero, 0 if 0 */ ++ return (t&nz) | ((~t)&z); ++} ++ ++static __always_inline void fe_freeze(u32 out[10], const u32 in1[10]) ++{ ++ { const u32 x17 = in1[9]; ++ { const u32 x18 = in1[8]; ++ { const u32 x16 = in1[7]; ++ { const u32 x14 = in1[6]; ++ { const u32 x12 = in1[5]; ++ { const u32 x10 = in1[4]; ++ { const u32 x8 = in1[3]; ++ { const u32 x6 = in1[2]; ++ { const u32 x4 = in1[1]; ++ { const u32 x2 = in1[0]; ++ { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20); ++ { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23); ++ { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26); ++ { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29); ++ { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32); ++ { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35); ++ { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38); ++ { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41); ++ { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44); ++ { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47); ++ { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff); ++ { u32 x50 = (x49 & 0x3ffffed); ++ { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52); ++ { u32 x54 = (x49 & 0x1ffffff); ++ { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56); ++ { u32 x58 = (x49 & 0x3ffffff); ++ { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60); ++ { u32 x62 = (x49 & 0x1ffffff); ++ { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64); ++ { u32 x66 = (x49 & 0x3ffffff); ++ { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68); ++ { u32 x70 = (x49 & 0x1ffffff); ++ { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72); ++ { u32 x74 = (x49 & 0x3ffffff); ++ { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76); ++ { u32 x78 = (x49 & 0x1ffffff); ++ { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80); ++ { u32 x82 = (x49 & 0x3ffffff); ++ { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84); ++ { u32 x86 = (x49 & 0x1ffffff); ++ { u32 x88; addcarryx_u25(x85, x47, x86, &x88); ++ out[0] = x52; ++ out[1] = x56; ++ out[2] = x60; ++ out[3] = x64; ++ out[4] = x68; ++ out[5] = x72; ++ out[6] = x76; ++ out[7] = x80; ++ out[8] = x84; ++ out[9] = x88; ++ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} ++} ++ ++static __always_inline void fe_tobytes(u8 s[32], const fe *f) ++{ ++ u32 h[10]; ++ fe_freeze(h, f->v); ++ s[0] = h[0] >> 0; ++ s[1] = h[0] >> 8; ++ s[2] = h[0] >> 16; ++ s[3] = (h[0] >> 24) | (h[1] << 2); ++ s[4] = h[1] >> 6; ++ s[5] = h[1] >> 14; ++ s[6] = (h[1] >> 22) | (h[2] << 3); ++ s[7] = h[2] >> 5; ++ s[8] = h[2] >> 13; ++ s[9] = (h[2] >> 21) | (h[3] << 5); ++ s[10] = h[3] >> 3; ++ s[11] = h[3] >> 11; ++ s[12] = (h[3] >> 19) | (h[4] << 6); ++ s[13] = h[4] >> 2; ++ s[14] = h[4] >> 10; ++ s[15] = h[4] >> 18; ++ s[16] = h[5] >> 0; ++ s[17] = h[5] >> 8; ++ s[18] = h[5] >> 16; ++ s[19] = (h[5] >> 24) | (h[6] << 1); ++ s[20] = h[6] >> 7; ++ s[21] = h[6] >> 15; ++ s[22] = (h[6] >> 23) | (h[7] << 3); ++ s[23] = h[7] >> 5; ++ s[24] = h[7] >> 13; ++ s[25] = (h[7] >> 21) | (h[8] << 4); ++ s[26] = h[8] >> 4; ++ s[27] = h[8] >> 12; ++ s[28] = (h[8] >> 20) | (h[9] << 6); ++ s[29] = h[9] >> 2; ++ s[30] = h[9] >> 10; ++ s[31] = h[9] >> 18; ++} ++ ++/* h = f */ ++static __always_inline void fe_copy(fe *h, const fe *f) ++{ ++ memmove(h, f, sizeof(u32) * 10); ++} ++ ++static __always_inline void fe_copy_lt(fe_loose *h, const fe *f) ++{ ++ memmove(h, f, sizeof(u32) * 10); ++} ++ ++/* h = 0 */ ++static __always_inline void fe_0(fe *h) ++{ ++ memset(h, 0, sizeof(u32) * 10); ++} ++ ++/* h = 1 */ ++static __always_inline void fe_1(fe *h) ++{ ++ memset(h, 0, sizeof(u32) * 10); ++ h->v[0] = 1; ++} ++ ++static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) ++{ ++ { const u32 x20 = in1[9]; ++ { const u32 x21 = in1[8]; ++ { const u32 x19 = in1[7]; ++ { const u32 x17 = in1[6]; ++ { const u32 x15 = in1[5]; ++ { const u32 x13 = in1[4]; ++ { const u32 x11 = in1[3]; ++ { const u32 x9 = in1[2]; ++ { const u32 x7 = in1[1]; ++ { const u32 x5 = in1[0]; ++ { const u32 x38 = in2[9]; ++ { const u32 x39 = in2[8]; ++ { const u32 x37 = in2[7]; ++ { const u32 x35 = in2[6]; ++ { const u32 x33 = in2[5]; ++ { const u32 x31 = in2[4]; ++ { const u32 x29 = in2[3]; ++ { const u32 x27 = in2[2]; ++ { const u32 x25 = in2[1]; ++ { const u32 x23 = in2[0]; ++ out[0] = (x5 + x23); ++ out[1] = (x7 + x25); ++ out[2] = (x9 + x27); ++ out[3] = (x11 + x29); ++ out[4] = (x13 + x31); ++ out[5] = (x15 + x33); ++ out[6] = (x17 + x35); ++ out[7] = (x19 + x37); ++ out[8] = (x21 + x39); ++ out[9] = (x20 + x38); ++ }}}}}}}}}}}}}}}}}}}} ++} ++ ++/* h = f + g ++ * Can overlap h with f or g. ++ */ ++static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g) ++{ ++ fe_add_impl(h->v, f->v, g->v); ++} ++ ++static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) ++{ ++ { const u32 x20 = in1[9]; ++ { const u32 x21 = in1[8]; ++ { const u32 x19 = in1[7]; ++ { const u32 x17 = in1[6]; ++ { const u32 x15 = in1[5]; ++ { const u32 x13 = in1[4]; ++ { const u32 x11 = in1[3]; ++ { const u32 x9 = in1[2]; ++ { const u32 x7 = in1[1]; ++ { const u32 x5 = in1[0]; ++ { const u32 x38 = in2[9]; ++ { const u32 x39 = in2[8]; ++ { const u32 x37 = in2[7]; ++ { const u32 x35 = in2[6]; ++ { const u32 x33 = in2[5]; ++ { const u32 x31 = in2[4]; ++ { const u32 x29 = in2[3]; ++ { const u32 x27 = in2[2]; ++ { const u32 x25 = in2[1]; ++ { const u32 x23 = in2[0]; ++ out[0] = ((0x7ffffda + x5) - x23); ++ out[1] = ((0x3fffffe + x7) - x25); ++ out[2] = ((0x7fffffe + x9) - x27); ++ out[3] = ((0x3fffffe + x11) - x29); ++ out[4] = ((0x7fffffe + x13) - x31); ++ out[5] = ((0x3fffffe + x15) - x33); ++ out[6] = ((0x7fffffe + x17) - x35); ++ out[7] = ((0x3fffffe + x19) - x37); ++ out[8] = ((0x7fffffe + x21) - x39); ++ out[9] = ((0x3fffffe + x20) - x38); ++ }}}}}}}}}}}}}}}}}}}} ++} ++ ++/* h = f - g ++ * Can overlap h with f or g. ++ */ ++static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g) ++{ ++ fe_sub_impl(h->v, f->v, g->v); ++} ++ ++static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) ++{ ++ { const u32 x20 = in1[9]; ++ { const u32 x21 = in1[8]; ++ { const u32 x19 = in1[7]; ++ { const u32 x17 = in1[6]; ++ { const u32 x15 = in1[5]; ++ { const u32 x13 = in1[4]; ++ { const u32 x11 = in1[3]; ++ { const u32 x9 = in1[2]; ++ { const u32 x7 = in1[1]; ++ { const u32 x5 = in1[0]; ++ { const u32 x38 = in2[9]; ++ { const u32 x39 = in2[8]; ++ { const u32 x37 = in2[7]; ++ { const u32 x35 = in2[6]; ++ { const u32 x33 = in2[5]; ++ { const u32 x31 = in2[4]; ++ { const u32 x29 = in2[3]; ++ { const u32 x27 = in2[2]; ++ { const u32 x25 = in2[1]; ++ { const u32 x23 = in2[0]; ++ { u64 x40 = ((u64)x23 * x5); ++ { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); ++ { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); ++ { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); ++ { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); ++ { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); ++ { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); ++ { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); ++ { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); ++ { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); ++ { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); ++ { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); ++ { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); ++ { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); ++ { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); ++ { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); ++ { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); ++ { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); ++ { u64 x58 = ((u64)(0x2 * x38) * x20); ++ { u64 x59 = (x48 + (x58 << 0x4)); ++ { u64 x60 = (x59 + (x58 << 0x1)); ++ { u64 x61 = (x60 + x58); ++ { u64 x62 = (x47 + (x57 << 0x4)); ++ { u64 x63 = (x62 + (x57 << 0x1)); ++ { u64 x64 = (x63 + x57); ++ { u64 x65 = (x46 + (x56 << 0x4)); ++ { u64 x66 = (x65 + (x56 << 0x1)); ++ { u64 x67 = (x66 + x56); ++ { u64 x68 = (x45 + (x55 << 0x4)); ++ { u64 x69 = (x68 + (x55 << 0x1)); ++ { u64 x70 = (x69 + x55); ++ { u64 x71 = (x44 + (x54 << 0x4)); ++ { u64 x72 = (x71 + (x54 << 0x1)); ++ { u64 x73 = (x72 + x54); ++ { u64 x74 = (x43 + (x53 << 0x4)); ++ { u64 x75 = (x74 + (x53 << 0x1)); ++ { u64 x76 = (x75 + x53); ++ { u64 x77 = (x42 + (x52 << 0x4)); ++ { u64 x78 = (x77 + (x52 << 0x1)); ++ { u64 x79 = (x78 + x52); ++ { u64 x80 = (x41 + (x51 << 0x4)); ++ { u64 x81 = (x80 + (x51 << 0x1)); ++ { u64 x82 = (x81 + x51); ++ { u64 x83 = (x40 + (x50 << 0x4)); ++ { u64 x84 = (x83 + (x50 << 0x1)); ++ { u64 x85 = (x84 + x50); ++ { u64 x86 = (x85 >> 0x1a); ++ { u32 x87 = ((u32)x85 & 0x3ffffff); ++ { u64 x88 = (x86 + x82); ++ { u64 x89 = (x88 >> 0x19); ++ { u32 x90 = ((u32)x88 & 0x1ffffff); ++ { u64 x91 = (x89 + x79); ++ { u64 x92 = (x91 >> 0x1a); ++ { u32 x93 = ((u32)x91 & 0x3ffffff); ++ { u64 x94 = (x92 + x76); ++ { u64 x95 = (x94 >> 0x19); ++ { u32 x96 = ((u32)x94 & 0x1ffffff); ++ { u64 x97 = (x95 + x73); ++ { u64 x98 = (x97 >> 0x1a); ++ { u32 x99 = ((u32)x97 & 0x3ffffff); ++ { u64 x100 = (x98 + x70); ++ { u64 x101 = (x100 >> 0x19); ++ { u32 x102 = ((u32)x100 & 0x1ffffff); ++ { u64 x103 = (x101 + x67); ++ { u64 x104 = (x103 >> 0x1a); ++ { u32 x105 = ((u32)x103 & 0x3ffffff); ++ { u64 x106 = (x104 + x64); ++ { u64 x107 = (x106 >> 0x19); ++ { u32 x108 = ((u32)x106 & 0x1ffffff); ++ { u64 x109 = (x107 + x61); ++ { u64 x110 = (x109 >> 0x1a); ++ { u32 x111 = ((u32)x109 & 0x3ffffff); ++ { u64 x112 = (x110 + x49); ++ { u64 x113 = (x112 >> 0x19); ++ { u32 x114 = ((u32)x112 & 0x1ffffff); ++ { u64 x115 = (x87 + (0x13 * x113)); ++ { u32 x116 = (u32) (x115 >> 0x1a); ++ { u32 x117 = ((u32)x115 & 0x3ffffff); ++ { u32 x118 = (x116 + x90); ++ { u32 x119 = (x118 >> 0x19); ++ { u32 x120 = (x118 & 0x1ffffff); ++ out[0] = x117; ++ out[1] = x120; ++ out[2] = (x119 + x93); ++ out[3] = x96; ++ out[4] = x99; ++ out[5] = x102; ++ out[6] = x105; ++ out[7] = x108; ++ out[8] = x111; ++ out[9] = x114; ++ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} ++} ++ ++static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g) ++{ ++ fe_mul_impl(h->v, f->v, g->v); ++} ++ ++static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) ++{ ++ fe_mul_impl(h->v, f->v, g->v); ++} ++ ++static __always_inline void ++fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) ++{ ++ fe_mul_impl(h->v, f->v, g->v); ++} ++ ++static void fe_sqr_impl(u32 out[10], const u32 in1[10]) ++{ ++ { const u32 x17 = in1[9]; ++ { const u32 x18 = in1[8]; ++ { const u32 x16 = in1[7]; ++ { const u32 x14 = in1[6]; ++ { const u32 x12 = in1[5]; ++ { const u32 x10 = in1[4]; ++ { const u32 x8 = in1[3]; ++ { const u32 x6 = in1[2]; ++ { const u32 x4 = in1[1]; ++ { const u32 x2 = in1[0]; ++ { u64 x19 = ((u64)x2 * x2); ++ { u64 x20 = ((u64)(0x2 * x2) * x4); ++ { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6))); ++ { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8))); ++ { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10)); ++ { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12))); ++ { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12))); ++ { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16))); ++ { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12)))))); ++ { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17))); ++ { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17))))); ++ { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17))); ++ { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17)))))); ++ { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17))); ++ { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17))); ++ { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17))); ++ { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17)); ++ { u64 x36 = ((u64)(0x2 * x18) * x17); ++ { u64 x37 = ((u64)(0x2 * x17) * x17); ++ { u64 x38 = (x27 + (x37 << 0x4)); ++ { u64 x39 = (x38 + (x37 << 0x1)); ++ { u64 x40 = (x39 + x37); ++ { u64 x41 = (x26 + (x36 << 0x4)); ++ { u64 x42 = (x41 + (x36 << 0x1)); ++ { u64 x43 = (x42 + x36); ++ { u64 x44 = (x25 + (x35 << 0x4)); ++ { u64 x45 = (x44 + (x35 << 0x1)); ++ { u64 x46 = (x45 + x35); ++ { u64 x47 = (x24 + (x34 << 0x4)); ++ { u64 x48 = (x47 + (x34 << 0x1)); ++ { u64 x49 = (x48 + x34); ++ { u64 x50 = (x23 + (x33 << 0x4)); ++ { u64 x51 = (x50 + (x33 << 0x1)); ++ { u64 x52 = (x51 + x33); ++ { u64 x53 = (x22 + (x32 << 0x4)); ++ { u64 x54 = (x53 + (x32 << 0x1)); ++ { u64 x55 = (x54 + x32); ++ { u64 x56 = (x21 + (x31 << 0x4)); ++ { u64 x57 = (x56 + (x31 << 0x1)); ++ { u64 x58 = (x57 + x31); ++ { u64 x59 = (x20 + (x30 << 0x4)); ++ { u64 x60 = (x59 + (x30 << 0x1)); ++ { u64 x61 = (x60 + x30); ++ { u64 x62 = (x19 + (x29 << 0x4)); ++ { u64 x63 = (x62 + (x29 << 0x1)); ++ { u64 x64 = (x63 + x29); ++ { u64 x65 = (x64 >> 0x1a); ++ { u32 x66 = ((u32)x64 & 0x3ffffff); ++ { u64 x67 = (x65 + x61); ++ { u64 x68 = (x67 >> 0x19); ++ { u32 x69 = ((u32)x67 & 0x1ffffff); ++ { u64 x70 = (x68 + x58); ++ { u64 x71 = (x70 >> 0x1a); ++ { u32 x72 = ((u32)x70 & 0x3ffffff); ++ { u64 x73 = (x71 + x55); ++ { u64 x74 = (x73 >> 0x19); ++ { u32 x75 = ((u32)x73 & 0x1ffffff); ++ { u64 x76 = (x74 + x52); ++ { u64 x77 = (x76 >> 0x1a); ++ { u32 x78 = ((u32)x76 & 0x3ffffff); ++ { u64 x79 = (x77 + x49); ++ { u64 x80 = (x79 >> 0x19); ++ { u32 x81 = ((u32)x79 & 0x1ffffff); ++ { u64 x82 = (x80 + x46); ++ { u64 x83 = (x82 >> 0x1a); ++ { u32 x84 = ((u32)x82 & 0x3ffffff); ++ { u64 x85 = (x83 + x43); ++ { u64 x86 = (x85 >> 0x19); ++ { u32 x87 = ((u32)x85 & 0x1ffffff); ++ { u64 x88 = (x86 + x40); ++ { u64 x89 = (x88 >> 0x1a); ++ { u32 x90 = ((u32)x88 & 0x3ffffff); ++ { u64 x91 = (x89 + x28); ++ { u64 x92 = (x91 >> 0x19); ++ { u32 x93 = ((u32)x91 & 0x1ffffff); ++ { u64 x94 = (x66 + (0x13 * x92)); ++ { u32 x95 = (u32) (x94 >> 0x1a); ++ { u32 x96 = ((u32)x94 & 0x3ffffff); ++ { u32 x97 = (x95 + x69); ++ { u32 x98 = (x97 >> 0x19); ++ { u32 x99 = (x97 & 0x1ffffff); ++ out[0] = x96; ++ out[1] = x99; ++ out[2] = (x98 + x72); ++ out[3] = x75; ++ out[4] = x78; ++ out[5] = x81; ++ out[6] = x84; ++ out[7] = x87; ++ out[8] = x90; ++ out[9] = x93; ++ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} ++} ++ ++static __always_inline void fe_sq_tl(fe *h, const fe_loose *f) ++{ ++ fe_sqr_impl(h->v, f->v); ++} ++ ++static __always_inline void fe_sq_tt(fe *h, const fe *f) ++{ ++ fe_sqr_impl(h->v, f->v); ++} ++ ++static __always_inline void fe_loose_invert(fe *out, const fe_loose *z) ++{ ++ fe t0; ++ fe t1; ++ fe t2; ++ fe t3; ++ int i; ++ ++ fe_sq_tl(&t0, z); ++ fe_sq_tt(&t1, &t0); ++ for (i = 1; i < 2; ++i) ++ fe_sq_tt(&t1, &t1); ++ fe_mul_tlt(&t1, z, &t1); ++ fe_mul_ttt(&t0, &t0, &t1); ++ fe_sq_tt(&t2, &t0); ++ fe_mul_ttt(&t1, &t1, &t2); ++ fe_sq_tt(&t2, &t1); ++ for (i = 1; i < 5; ++i) ++ fe_sq_tt(&t2, &t2); ++ fe_mul_ttt(&t1, &t2, &t1); ++ fe_sq_tt(&t2, &t1); ++ for (i = 1; i < 10; ++i) ++ fe_sq_tt(&t2, &t2); ++ fe_mul_ttt(&t2, &t2, &t1); ++ fe_sq_tt(&t3, &t2); ++ for (i = 1; i < 20; ++i) ++ fe_sq_tt(&t3, &t3); ++ fe_mul_ttt(&t2, &t3, &t2); ++ fe_sq_tt(&t2, &t2); ++ for (i = 1; i < 10; ++i) ++ fe_sq_tt(&t2, &t2); ++ fe_mul_ttt(&t1, &t2, &t1); ++ fe_sq_tt(&t2, &t1); ++ for (i = 1; i < 50; ++i) ++ fe_sq_tt(&t2, &t2); ++ fe_mul_ttt(&t2, &t2, &t1); ++ fe_sq_tt(&t3, &t2); ++ for (i = 1; i < 100; ++i) ++ fe_sq_tt(&t3, &t3); ++ fe_mul_ttt(&t2, &t3, &t2); ++ fe_sq_tt(&t2, &t2); ++ for (i = 1; i < 50; ++i) ++ fe_sq_tt(&t2, &t2); ++ fe_mul_ttt(&t1, &t2, &t1); ++ fe_sq_tt(&t1, &t1); ++ for (i = 1; i < 5; ++i) ++ fe_sq_tt(&t1, &t1); ++ fe_mul_ttt(out, &t1, &t0); ++} ++ ++static __always_inline void fe_invert(fe *out, const fe *z) ++{ ++ fe_loose l; ++ fe_copy_lt(&l, z); ++ fe_loose_invert(out, &l); ++} ++ ++/* Replace (f,g) with (g,f) if b == 1; ++ * replace (f,g) with (f,g) if b == 0. ++ * ++ * Preconditions: b in {0,1} ++ */ ++static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b) ++{ ++ unsigned i; ++ b = 0 - b; ++ for (i = 0; i < 10; i++) { ++ u32 x = f->v[i] ^ g->v[i]; ++ x &= b; ++ f->v[i] ^= x; ++ g->v[i] ^= x; ++ } ++} ++ ++/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/ ++static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10]) ++{ ++ { const u32 x20 = in1[9]; ++ { const u32 x21 = in1[8]; ++ { const u32 x19 = in1[7]; ++ { const u32 x17 = in1[6]; ++ { const u32 x15 = in1[5]; ++ { const u32 x13 = in1[4]; ++ { const u32 x11 = in1[3]; ++ { const u32 x9 = in1[2]; ++ { const u32 x7 = in1[1]; ++ { const u32 x5 = in1[0]; ++ { const u32 x38 = 0; ++ { const u32 x39 = 0; ++ { const u32 x37 = 0; ++ { const u32 x35 = 0; ++ { const u32 x33 = 0; ++ { const u32 x31 = 0; ++ { const u32 x29 = 0; ++ { const u32 x27 = 0; ++ { const u32 x25 = 0; ++ { const u32 x23 = 121666; ++ { u64 x40 = ((u64)x23 * x5); ++ { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); ++ { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); ++ { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); ++ { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); ++ { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); ++ { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); ++ { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); ++ { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); ++ { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); ++ { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); ++ { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); ++ { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); ++ { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); ++ { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); ++ { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); ++ { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); ++ { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); ++ { u64 x58 = ((u64)(0x2 * x38) * x20); ++ { u64 x59 = (x48 + (x58 << 0x4)); ++ { u64 x60 = (x59 + (x58 << 0x1)); ++ { u64 x61 = (x60 + x58); ++ { u64 x62 = (x47 + (x57 << 0x4)); ++ { u64 x63 = (x62 + (x57 << 0x1)); ++ { u64 x64 = (x63 + x57); ++ { u64 x65 = (x46 + (x56 << 0x4)); ++ { u64 x66 = (x65 + (x56 << 0x1)); ++ { u64 x67 = (x66 + x56); ++ { u64 x68 = (x45 + (x55 << 0x4)); ++ { u64 x69 = (x68 + (x55 << 0x1)); ++ { u64 x70 = (x69 + x55); ++ { u64 x71 = (x44 + (x54 << 0x4)); ++ { u64 x72 = (x71 + (x54 << 0x1)); ++ { u64 x73 = (x72 + x54); ++ { u64 x74 = (x43 + (x53 << 0x4)); ++ { u64 x75 = (x74 + (x53 << 0x1)); ++ { u64 x76 = (x75 + x53); ++ { u64 x77 = (x42 + (x52 << 0x4)); ++ { u64 x78 = (x77 + (x52 << 0x1)); ++ { u64 x79 = (x78 + x52); ++ { u64 x80 = (x41 + (x51 << 0x4)); ++ { u64 x81 = (x80 + (x51 << 0x1)); ++ { u64 x82 = (x81 + x51); ++ { u64 x83 = (x40 + (x50 << 0x4)); ++ { u64 x84 = (x83 + (x50 << 0x1)); ++ { u64 x85 = (x84 + x50); ++ { u64 x86 = (x85 >> 0x1a); ++ { u32 x87 = ((u32)x85 & 0x3ffffff); ++ { u64 x88 = (x86 + x82); ++ { u64 x89 = (x88 >> 0x19); ++ { u32 x90 = ((u32)x88 & 0x1ffffff); ++ { u64 x91 = (x89 + x79); ++ { u64 x92 = (x91 >> 0x1a); ++ { u32 x93 = ((u32)x91 & 0x3ffffff); ++ { u64 x94 = (x92 + x76); ++ { u64 x95 = (x94 >> 0x19); ++ { u32 x96 = ((u32)x94 & 0x1ffffff); ++ { u64 x97 = (x95 + x73); ++ { u64 x98 = (x97 >> 0x1a); ++ { u32 x99 = ((u32)x97 & 0x3ffffff); ++ { u64 x100 = (x98 + x70); ++ { u64 x101 = (x100 >> 0x19); ++ { u32 x102 = ((u32)x100 & 0x1ffffff); ++ { u64 x103 = (x101 + x67); ++ { u64 x104 = (x103 >> 0x1a); ++ { u32 x105 = ((u32)x103 & 0x3ffffff); ++ { u64 x106 = (x104 + x64); ++ { u64 x107 = (x106 >> 0x19); ++ { u32 x108 = ((u32)x106 & 0x1ffffff); ++ { u64 x109 = (x107 + x61); ++ { u64 x110 = (x109 >> 0x1a); ++ { u32 x111 = ((u32)x109 & 0x3ffffff); ++ { u64 x112 = (x110 + x49); ++ { u64 x113 = (x112 >> 0x19); ++ { u32 x114 = ((u32)x112 & 0x1ffffff); ++ { u64 x115 = (x87 + (0x13 * x113)); ++ { u32 x116 = (u32) (x115 >> 0x1a); ++ { u32 x117 = ((u32)x115 & 0x3ffffff); ++ { u32 x118 = (x116 + x90); ++ { u32 x119 = (x118 >> 0x19); ++ { u32 x120 = (x118 & 0x1ffffff); ++ out[0] = x117; ++ out[1] = x120; ++ out[2] = (x119 + x93); ++ out[3] = x96; ++ out[4] = x99; ++ out[5] = x102; ++ out[6] = x105; ++ out[7] = x108; ++ out[8] = x111; ++ out[9] = x114; ++ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} ++} ++ ++static __always_inline void fe_mul121666(fe *h, const fe_loose *f) ++{ ++ fe_mul_121666_impl(h->v, f->v); ++} ++ ++void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], ++ const u8 scalar[CURVE25519_KEY_SIZE], ++ const u8 point[CURVE25519_KEY_SIZE]) ++{ ++ fe x1, x2, z2, x3, z3; ++ fe_loose x2l, z2l, x3l; ++ unsigned swap = 0; ++ int pos; ++ u8 e[32]; ++ ++ memcpy(e, scalar, 32); ++ curve25519_clamp_secret(e); ++ ++ /* The following implementation was transcribed to Coq and proven to ++ * correspond to unary scalar multiplication in affine coordinates given ++ * that x1 != 0 is the x coordinate of some point on the curve. It was ++ * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives ++ * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was ++ * quantified over the underlying field, so it applies to Curve25519 ++ * itself and the quadratic twist of Curve25519. It was not proven in ++ * Coq that prime-field arithmetic correctly simulates extension-field ++ * arithmetic on prime-field values. The decoding of the byte array ++ * representation of e was not considered. ++ * ++ * Specification of Montgomery curves in affine coordinates: ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> ++ * ++ * Proof that these form a group that is isomorphic to a Weierstrass ++ * curve: ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> ++ * ++ * Coq transcription and correctness proof of the loop ++ * (where scalarbits=255): ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> ++ * preconditions: 0 <= e < 2^255 (not necessarily e < order), ++ * fe_invert(0) = 0 ++ */ ++ fe_frombytes(&x1, point); ++ fe_1(&x2); ++ fe_0(&z2); ++ fe_copy(&x3, &x1); ++ fe_1(&z3); ++ ++ for (pos = 254; pos >= 0; --pos) { ++ fe tmp0, tmp1; ++ fe_loose tmp0l, tmp1l; ++ /* loop invariant as of right before the test, for the case ++ * where x1 != 0: ++ * pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 ++ * is nonzero ++ * let r := e >> (pos+1) in the following equalities of ++ * projective points: ++ * to_xz (r*P) === if swap then (x3, z3) else (x2, z2) ++ * to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) ++ * x1 is the nonzero x coordinate of the nonzero ++ * point (r*P-(r+1)*P) ++ */ ++ unsigned b = 1 & (e[pos / 8] >> (pos & 7)); ++ swap ^= b; ++ fe_cswap(&x2, &x3, swap); ++ fe_cswap(&z2, &z3, swap); ++ swap = b; ++ /* Coq transcription of ladderstep formula (called from ++ * transcribed loop): ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> ++ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> ++ * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> ++ * x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> ++ */ ++ fe_sub(&tmp0l, &x3, &z3); ++ fe_sub(&tmp1l, &x2, &z2); ++ fe_add(&x2l, &x2, &z2); ++ fe_add(&z2l, &x3, &z3); ++ fe_mul_tll(&z3, &tmp0l, &x2l); ++ fe_mul_tll(&z2, &z2l, &tmp1l); ++ fe_sq_tl(&tmp0, &tmp1l); ++ fe_sq_tl(&tmp1, &x2l); ++ fe_add(&x3l, &z3, &z2); ++ fe_sub(&z2l, &z3, &z2); ++ fe_mul_ttt(&x2, &tmp1, &tmp0); ++ fe_sub(&tmp1l, &tmp1, &tmp0); ++ fe_sq_tl(&z2, &z2l); ++ fe_mul121666(&z3, &tmp1l); ++ fe_sq_tl(&x3, &x3l); ++ fe_add(&tmp0l, &tmp0, &z3); ++ fe_mul_ttt(&z3, &x1, &z2); ++ fe_mul_tll(&z2, &tmp1l, &tmp0l); ++ } ++ /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) ++ * else (x2, z2) ++ */ ++ fe_cswap(&x2, &x3, swap); ++ fe_cswap(&z2, &z3, swap); ++ ++ fe_invert(&z2, &z2); ++ fe_mul_ttt(&x2, &x2, &z2); ++ fe_tobytes(out, &x2); ++ ++ memzero_explicit(&x1, sizeof(x1)); ++ memzero_explicit(&x2, sizeof(x2)); ++ memzero_explicit(&z2, sizeof(z2)); ++ memzero_explicit(&x3, sizeof(x3)); ++ memzero_explicit(&z3, sizeof(z3)); ++ memzero_explicit(&x2l, sizeof(x2l)); ++ memzero_explicit(&z2l, sizeof(z2l)); ++ memzero_explicit(&x3l, sizeof(x3l)); ++ memzero_explicit(&e, sizeof(e)); ++} +--- /dev/null ++++ b/lib/crypto/curve25519-hacl64.c +@@ -0,0 +1,788 @@ ++// SPDX-License-Identifier: GPL-2.0 OR MIT ++/* ++ * Copyright (C) 2016-2017 INRIA and Microsoft Corporation. ++ * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. ++ * ++ * This is a machine-generated formally verified implementation of Curve25519 ++ * ECDH from: <https://github.com/mitls/hacl-star>. Though originally machine ++ * generated, it has been tweaked to be suitable for use in the kernel. It is ++ * optimized for 64-bit machines that can efficiently work with 128-bit ++ * integer types. ++ */ ++ ++#include <asm/unaligned.h> ++#include <crypto/curve25519.h> ++#include <linux/string.h> ++ ++typedef __uint128_t u128; ++ ++static __always_inline u64 u64_eq_mask(u64 a, u64 b) ++{ ++ u64 x = a ^ b; ++ u64 minus_x = ~x + (u64)1U; ++ u64 x_or_minus_x = x | minus_x; ++ u64 xnx = x_or_minus_x >> (u32)63U; ++ u64 c = xnx - (u64)1U; ++ return c; ++} ++ ++static __always_inline u64 u64_gte_mask(u64 a, u64 b) ++{ ++ u64 x = a; ++ u64 y = b; ++ u64 x_xor_y = x ^ y; ++ u64 x_sub_y = x - y; ++ u64 x_sub_y_xor_y = x_sub_y ^ y; ++ u64 q = x_xor_y | x_sub_y_xor_y; ++ u64 x_xor_q = x ^ q; ++ u64 x_xor_q_ = x_xor_q >> (u32)63U; ++ u64 c = x_xor_q_ - (u64)1U; ++ return c; ++} ++ ++static __always_inline void modulo_carry_top(u64 *b) ++{ ++ u64 b4 = b[4]; ++ u64 b0 = b[0]; ++ u64 b4_ = b4 & 0x7ffffffffffffLLU; ++ u64 b0_ = b0 + 19 * (b4 >> 51); ++ b[4] = b4_; ++ b[0] = b0_; ++} ++ ++static __always_inline void fproduct_copy_from_wide_(u64 *output, u128 *input) ++{ ++ { ++ u128 xi = input[0]; ++ output[0] = ((u64)(xi)); ++ } ++ { ++ u128 xi = input[1]; ++ output[1] = ((u64)(xi)); ++ } ++ { ++ u128 xi = input[2]; ++ output[2] = ((u64)(xi)); ++ } ++ { ++ u128 xi = input[3]; ++ output[3] = ((u64)(xi)); ++ } ++ { ++ u128 xi = input[4]; ++ output[4] = ((u64)(xi)); ++ } ++} ++ ++static __always_inline void ++fproduct_sum_scalar_multiplication_(u128 *output, u64 *input, u64 s) ++{ ++ output[0] += (u128)input[0] * s; ++ output[1] += (u128)input[1] * s; ++ output[2] += (u128)input[2] * s; ++ output[3] += (u128)input[3] * s; ++ output[4] += (u128)input[4] * s; ++} ++ ++static __always_inline void fproduct_carry_wide_(u128 *tmp) ++{ ++ { ++ u32 ctr = 0; ++ u128 tctr = tmp[ctr]; ++ u128 tctrp1 = tmp[ctr + 1]; ++ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; ++ u128 c = ((tctr) >> (51)); ++ tmp[ctr] = ((u128)(r0)); ++ tmp[ctr + 1] = ((tctrp1) + (c)); ++ } ++ { ++ u32 ctr = 1; ++ u128 tctr = tmp[ctr]; ++ u128 tctrp1 = tmp[ctr + 1]; ++ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; ++ u128 c = ((tctr) >> (51)); ++ tmp[ctr] = ((u128)(r0)); ++ tmp[ctr + 1] = ((tctrp1) + (c)); ++ } ++ ++ { ++ u32 ctr = 2; ++ u128 tctr = tmp[ctr]; ++ u128 tctrp1 = tmp[ctr + 1]; ++ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; ++ u128 c = ((tctr) >> (51)); ++ tmp[ctr] = ((u128)(r0)); ++ tmp[ctr + 1] = ((tctrp1) + (c)); ++ } ++ { ++ u32 ctr = 3; ++ u128 tctr = tmp[ctr]; ++ u128 tctrp1 = tmp[ctr + 1]; ++ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; ++ u128 c = ((tctr) >> (51)); ++ tmp[ctr] = ((u128)(r0)); ++ tmp[ctr + 1] = ((tctrp1) + (c)); ++ } ++} ++ ++static __always_inline void fmul_shift_reduce(u64 *output) ++{ ++ u64 tmp = output[4]; ++ u64 b0; ++ { ++ u32 ctr = 5 - 0 - 1; ++ u64 z = output[ctr - 1]; ++ output[ctr] = z; ++ } ++ { ++ u32 ctr = 5 - 1 - 1; ++ u64 z = output[ctr - 1]; ++ output[ctr] = z; ++ } ++ { ++ u32 ctr = 5 - 2 - 1; ++ u64 z = output[ctr - 1]; ++ output[ctr] = z; ++ } ++ { ++ u32 ctr = 5 - 3 - 1; ++ u64 z = output[ctr - 1]; ++ output[ctr] = z; ++ } ++ output[0] = tmp; ++ b0 = output[0]; ++ output[0] = 19 * b0; ++} ++ ++static __always_inline void fmul_mul_shift_reduce_(u128 *output, u64 *input, ++ u64 *input21) ++{ ++ u32 i; ++ u64 input2i; ++ { ++ u64 input2i = input21[0]; ++ fproduct_sum_scalar_multiplication_(output, input, input2i); ++ fmul_shift_reduce(input); ++ } ++ { ++ u64 input2i = input21[1]; ++ fproduct_sum_scalar_multiplication_(output, input, input2i); ++ fmul_shift_reduce(input); ++ } ++ { ++ u64 input2i = input21[2]; ++ fproduct_sum_scalar_multiplication_(output, input, input2i); ++ fmul_shift_reduce(input); ++ } ++ { ++ u64 input2i = input21[3]; ++ fproduct_sum_scalar_multiplication_(output, input, input2i); ++ fmul_shift_reduce(input); ++ } ++ i = 4; ++ input2i = input21[i]; ++ fproduct_sum_scalar_multiplication_(output, input, input2i); ++} ++ ++static __always_inline void fmul_fmul(u64 *output, u64 *input, u64 *input21) ++{ ++ u64 tmp[5] = { input[0], input[1], input[2], input[3], input[4] }; ++ { ++ u128 b4; ++ u128 b0; ++ u128 b4_; ++ u128 b0_; ++ u64 i0; ++ u64 i1; ++ u64 i0_; ++ u64 i1_; ++ u128 t[5] = { 0 }; ++ fmul_mul_shift_reduce_(t, tmp, input21); ++ fproduct_carry_wide_(t); ++ b4 = t[4]; ++ b0 = t[0]; ++ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); ++ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); ++ t[4] = b4_; ++ t[0] = b0_; ++ fproduct_copy_from_wide_(output, t); ++ i0 = output[0]; ++ i1 = output[1]; ++ i0_ = i0 & 0x7ffffffffffffLLU; ++ i1_ = i1 + (i0 >> 51); ++ output[0] = i0_; ++ output[1] = i1_; ++ } ++} ++ ++static __always_inline void fsquare_fsquare__(u128 *tmp, u64 *output) ++{ ++ u64 r0 = output[0]; ++ u64 r1 = output[1]; ++ u64 r2 = output[2]; ++ u64 r3 = output[3]; ++ u64 r4 = output[4]; ++ u64 d0 = r0 * 2; ++ u64 d1 = r1 * 2; ++ u64 d2 = r2 * 2 * 19; ++ u64 d419 = r4 * 19; ++ u64 d4 = d419 * 2; ++ u128 s0 = ((((((u128)(r0) * (r0))) + (((u128)(d4) * (r1))))) + ++ (((u128)(d2) * (r3)))); ++ u128 s1 = ((((((u128)(d0) * (r1))) + (((u128)(d4) * (r2))))) + ++ (((u128)(r3 * 19) * (r3)))); ++ u128 s2 = ((((((u128)(d0) * (r2))) + (((u128)(r1) * (r1))))) + ++ (((u128)(d4) * (r3)))); ++ u128 s3 = ((((((u128)(d0) * (r3))) + (((u128)(d1) * (r2))))) + ++ (((u128)(r4) * (d419)))); ++ u128 s4 = ((((((u128)(d0) * (r4))) + (((u128)(d1) * (r3))))) + ++ (((u128)(r2) * (r2)))); ++ tmp[0] = s0; ++ tmp[1] = s1; ++ tmp[2] = s2; ++ tmp[3] = s3; ++ tmp[4] = s4; ++} ++ ++static __always_inline void fsquare_fsquare_(u128 *tmp, u64 *output) ++{ ++ u128 b4; ++ u128 b0; ++ u128 b4_; ++ u128 b0_; ++ u64 i0; ++ u64 i1; ++ u64 i0_; ++ u64 i1_; ++ fsquare_fsquare__(tmp, output); ++ fproduct_carry_wide_(tmp); ++ b4 = tmp[4]; ++ b0 = tmp[0]; ++ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); ++ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); ++ tmp[4] = b4_; ++ tmp[0] = b0_; ++ fproduct_copy_from_wide_(output, tmp); ++ i0 = output[0]; ++ i1 = output[1]; ++ i0_ = i0 & 0x7ffffffffffffLLU; ++ i1_ = i1 + (i0 >> 51); ++ output[0] = i0_; ++ output[1] = i1_; ++} ++ ++static __always_inline void fsquare_fsquare_times_(u64 *output, u128 *tmp, ++ u32 count1) ++{ ++ u32 i; ++ fsquare_fsquare_(tmp, output); ++ for (i = 1; i < count1; ++i) ++ fsquare_fsquare_(tmp, output); ++} ++ ++static __always_inline void fsquare_fsquare_times(u64 *output, u64 *input, ++ u32 count1) ++{ ++ u128 t[5]; ++ memcpy(output, input, 5 * sizeof(*input)); ++ fsquare_fsquare_times_(output, t, count1); ++} ++ ++static __always_inline void fsquare_fsquare_times_inplace(u64 *output, ++ u32 count1) ++{ ++ u128 t[5]; ++ fsquare_fsquare_times_(output, t, count1); ++} ++ ++static __always_inline void crecip_crecip(u64 *out, u64 *z) ++{ ++ u64 buf[20] = { 0 }; ++ u64 *a0 = buf; ++ u64 *t00 = buf + 5; ++ u64 *b0 = buf + 10; ++ u64 *t01; ++ u64 *b1; ++ u64 *c0; ++ u64 *a; ++ u64 *t0; ++ u64 *b; ++ u64 *c; ++ fsquare_fsquare_times(a0, z, 1); ++ fsquare_fsquare_times(t00, a0, 2); ++ fmul_fmul(b0, t00, z); ++ fmul_fmul(a0, b0, a0); ++ fsquare_fsquare_times(t00, a0, 1); ++ fmul_fmul(b0, t00, b0); ++ fsquare_fsquare_times(t00, b0, 5); ++ t01 = buf + 5; ++ b1 = buf + 10; ++ c0 = buf + 15; ++ fmul_fmul(b1, t01, b1); ++ fsquare_fsquare_times(t01, b1, 10); ++ fmul_fmul(c0, t01, b1); ++ fsquare_fsquare_times(t01, c0, 20); ++ fmul_fmul(t01, t01, c0); ++ fsquare_fsquare_times_inplace(t01, 10); ++ fmul_fmul(b1, t01, b1); ++ fsquare_fsquare_times(t01, b1, 50); ++ a = buf; ++ t0 = buf + 5; ++ b = buf + 10; ++ c = buf + 15; ++ fmul_fmul(c, t0, b); ++ fsquare_fsquare_times(t0, c, 100); ++ fmul_fmul(t0, t0, c); ++ fsquare_fsquare_times_inplace(t0, 50); ++ fmul_fmul(t0, t0, b); ++ fsquare_fsquare_times_inplace(t0, 5); ++ fmul_fmul(out, t0, a); ++} ++ ++static __always_inline void fsum(u64 *a, u64 *b) ++{ ++ a[0] += b[0]; ++ a[1] += b[1]; ++ a[2] += b[2]; ++ a[3] += b[3]; ++ a[4] += b[4]; ++} ++ ++static __always_inline void fdifference(u64 *a, u64 *b) ++{ ++ u64 tmp[5] = { 0 }; ++ u64 b0; ++ u64 b1; ++ u64 b2; ++ u64 b3; ++ u64 b4; ++ memcpy(tmp, b, 5 * sizeof(*b)); ++ b0 = tmp[0]; ++ b1 = tmp[1]; ++ b2 = tmp[2]; ++ b3 = tmp[3]; ++ b4 = tmp[4]; ++ tmp[0] = b0 + 0x3fffffffffff68LLU; ++ tmp[1] = b1 + 0x3ffffffffffff8LLU; ++ tmp[2] = b2 + 0x3ffffffffffff8LLU; ++ tmp[3] = b3 + 0x3ffffffffffff8LLU; ++ tmp[4] = b4 + 0x3ffffffffffff8LLU; ++ { ++ u64 xi = a[0]; ++ u64 yi = tmp[0]; ++ a[0] = yi - xi; ++ } ++ { ++ u64 xi = a[1]; ++ u64 yi = tmp[1]; ++ a[1] = yi - xi; ++ } ++ { ++ u64 xi = a[2]; ++ u64 yi = tmp[2]; ++ a[2] = yi - xi; ++ } ++ { ++ u64 xi = a[3]; ++ u64 yi = tmp[3]; ++ a[3] = yi - xi; ++ } ++ { ++ u64 xi = a[4]; ++ u64 yi = tmp[4]; ++ a[4] = yi - xi; ++ } ++} ++ ++static __always_inline void fscalar(u64 *output, u64 *b, u64 s) ++{ ++ u128 tmp[5]; ++ u128 b4; ++ u128 b0; ++ u128 b4_; ++ u128 b0_; ++ { ++ u64 xi = b[0]; ++ tmp[0] = ((u128)(xi) * (s)); ++ } ++ { ++ u64 xi = b[1]; ++ tmp[1] = ((u128)(xi) * (s)); ++ } ++ { ++ u64 xi = b[2]; ++ tmp[2] = ((u128)(xi) * (s)); ++ } ++ { ++ u64 xi = b[3]; ++ tmp[3] = ((u128)(xi) * (s)); ++ } ++ { ++ u64 xi = b[4]; ++ tmp[4] = ((u128)(xi) * (s)); ++ } ++ fproduct_carry_wide_(tmp); ++ b4 = tmp[4]; ++ b0 = tmp[0]; ++ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); ++ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); ++ tmp[4] = b4_; ++ tmp[0] = b0_; ++ fproduct_copy_from_wide_(output, tmp); ++} ++ ++static __always_inline void fmul(u64 *output, u64 *a, u64 *b) ++{ ++ fmul_fmul(output, a, b); ++} ++ ++static __always_inline void crecip(u64 *output, u64 *input) ++{ ++ crecip_crecip(output, input); ++} ++ ++static __always_inline void point_swap_conditional_step(u64 *a, u64 *b, ++ u64 swap1, u32 ctr) ++{ ++ u32 i = ctr - 1; ++ u64 ai = a[i]; ++ u64 bi = b[i]; ++ u64 x = swap1 & (ai ^ bi); ++ u64 ai1 = ai ^ x; ++ u64 bi1 = bi ^ x; ++ a[i] = ai1; ++ b[i] = bi1; ++} ++ ++static __always_inline void point_swap_conditional5(u64 *a, u64 *b, u64 swap1) ++{ ++ point_swap_conditional_step(a, b, swap1, 5); ++ point_swap_conditional_step(a, b, swap1, 4); ++ point_swap_conditional_step(a, b, swap1, 3); ++ point_swap_conditional_step(a, b, swap1, 2); ++ point_swap_conditional_step(a, b, swap1, 1); ++} ++ ++static __always_inline void point_swap_conditional(u64 *a, u64 *b, u64 iswap) ++{ ++ u64 swap1 = 0 - iswap; ++ point_swap_conditional5(a, b, swap1); ++ point_swap_conditional5(a + 5, b + 5, swap1); ++} ++ ++static __always_inline void point_copy(u64 *output, u64 *input) ++{ ++ memcpy(output, input, 5 * sizeof(*input)); ++ memcpy(output + 5, input + 5, 5 * sizeof(*input)); ++} ++ ++static __always_inline void addanddouble_fmonty(u64 *pp, u64 *ppq, u64 *p, ++ u64 *pq, u64 *qmqp) ++{ ++ u64 *qx = qmqp; ++ u64 *x2 = pp; ++ u64 *z2 = pp + 5; ++ u64 *x3 = ppq; ++ u64 *z3 = ppq + 5; ++ u64 *x = p; ++ u64 *z = p + 5; ++ u64 *xprime = pq; ++ u64 *zprime = pq + 5; ++ u64 buf[40] = { 0 }; ++ u64 *origx = buf; ++ u64 *origxprime0 = buf + 5; ++ u64 *xxprime0; ++ u64 *zzprime0; ++ u64 *origxprime; ++ xxprime0 = buf + 25; ++ zzprime0 = buf + 30; ++ memcpy(origx, x, 5 * sizeof(*x)); ++ fsum(x, z); ++ fdifference(z, origx); ++ memcpy(origxprime0, xprime, 5 * sizeof(*xprime)); ++ fsum(xprime, zprime); ++ fdifference(zprime, origxprime0); ++ fmul(xxprime0, xprime, z); ++ fmul(zzprime0, x, zprime); ++ origxprime = buf + 5; ++ { ++ u64 *xx0; ++ u64 *zz0; ++ u64 *xxprime; ++ u64 *zzprime; ++ u64 *zzzprime; ++ xx0 = buf + 15; ++ zz0 = buf + 20; ++ xxprime = buf + 25; ++ zzprime = buf + 30; ++ zzzprime = buf + 35; ++ memcpy(origxprime, xxprime, 5 * sizeof(*xxprime)); ++ fsum(xxprime, zzprime); ++ fdifference(zzprime, origxprime); ++ fsquare_fsquare_times(x3, xxprime, 1); ++ fsquare_fsquare_times(zzzprime, zzprime, 1); ++ fmul(z3, zzzprime, qx); ++ fsquare_fsquare_times(xx0, x, 1); ++ fsquare_fsquare_times(zz0, z, 1); ++ { ++ u64 *zzz; ++ u64 *xx; ++ u64 *zz; ++ u64 scalar; ++ zzz = buf + 10; ++ xx = buf + 15; ++ zz = buf + 20; ++ fmul(x2, xx, zz); ++ fdifference(zz, xx); ++ scalar = 121665; ++ fscalar(zzz, zz, scalar); ++ fsum(zzz, xx); ++ fmul(z2, zzz, zz); ++ } ++ } ++} ++ ++static __always_inline void ++ladder_smallloop_cmult_small_loop_step(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2, ++ u64 *q, u8 byt) ++{ ++ u64 bit0 = (u64)(byt >> 7); ++ u64 bit; ++ point_swap_conditional(nq, nqpq, bit0); ++ addanddouble_fmonty(nq2, nqpq2, nq, nqpq, q); ++ bit = (u64)(byt >> 7); ++ point_swap_conditional(nq2, nqpq2, bit); ++} ++ ++static __always_inline void ++ladder_smallloop_cmult_small_loop_double_step(u64 *nq, u64 *nqpq, u64 *nq2, ++ u64 *nqpq2, u64 *q, u8 byt) ++{ ++ u8 byt1; ++ ladder_smallloop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt); ++ byt1 = byt << 1; ++ ladder_smallloop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1); ++} ++ ++static __always_inline void ++ladder_smallloop_cmult_small_loop(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2, ++ u64 *q, u8 byt, u32 i) ++{ ++ while (i--) { ++ ladder_smallloop_cmult_small_loop_double_step(nq, nqpq, nq2, ++ nqpq2, q, byt); ++ byt <<= 2; ++ } ++} ++ ++static __always_inline void ladder_bigloop_cmult_big_loop(u8 *n1, u64 *nq, ++ u64 *nqpq, u64 *nq2, ++ u64 *nqpq2, u64 *q, ++ u32 i) ++{ ++ while (i--) { ++ u8 byte = n1[i]; ++ ladder_smallloop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, ++ byte, 4); ++ } ++} ++ ++static void ladder_cmult(u64 *result, u8 *n1, u64 *q) ++{ ++ u64 point_buf[40] = { 0 }; ++ u64 *nq = point_buf; ++ u64 *nqpq = point_buf + 10; ++ u64 *nq2 = point_buf + 20; ++ u64 *nqpq2 = point_buf + 30; ++ point_copy(nqpq, q); ++ nq[0] = 1; ++ ladder_bigloop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, 32); ++ point_copy(result, nq); ++} ++ ++static __always_inline void format_fexpand(u64 *output, const u8 *input) ++{ ++ const u8 *x00 = input + 6; ++ const u8 *x01 = input + 12; ++ const u8 *x02 = input + 19; ++ const u8 *x0 = input + 24; ++ u64 i0, i1, i2, i3, i4, output0, output1, output2, output3, output4; ++ i0 = get_unaligned_le64(input); ++ i1 = get_unaligned_le64(x00); ++ i2 = get_unaligned_le64(x01); ++ i3 = get_unaligned_le64(x02); ++ i4 = get_unaligned_le64(x0); ++ output0 = i0 & 0x7ffffffffffffLLU; ++ output1 = i1 >> 3 & 0x7ffffffffffffLLU; ++ output2 = i2 >> 6 & 0x7ffffffffffffLLU; ++ output3 = i3 >> 1 & 0x7ffffffffffffLLU; ++ output4 = i4 >> 12 & 0x7ffffffffffffLLU; ++ output[0] = output0; ++ output[1] = output1; ++ output[2] = output2; ++ output[3] = output3; ++ output[4] = output4; ++} ++ ++static __always_inline void format_fcontract_first_carry_pass(u64 *input) ++{ ++ u64 t0 = input[0]; ++ u64 t1 = input[1]; ++ u64 t2 = input[2]; ++ u64 t3 = input[3]; ++ u64 t4 = input[4]; ++ u64 t1_ = t1 + (t0 >> 51); ++ u64 t0_ = t0 & 0x7ffffffffffffLLU; ++ u64 t2_ = t2 + (t1_ >> 51); ++ u64 t1__ = t1_ & 0x7ffffffffffffLLU; ++ u64 t3_ = t3 + (t2_ >> 51); ++ u64 t2__ = t2_ & 0x7ffffffffffffLLU; ++ u64 t4_ = t4 + (t3_ >> 51); ++ u64 t3__ = t3_ & 0x7ffffffffffffLLU; ++ input[0] = t0_; ++ input[1] = t1__; ++ input[2] = t2__; ++ input[3] = t3__; ++ input[4] = t4_; ++} ++ ++static __always_inline void format_fcontract_first_carry_full(u64 *input) ++{ ++ format_fcontract_first_carry_pass(input); ++ modulo_carry_top(input); ++} ++ ++static __always_inline void format_fcontract_second_carry_pass(u64 *input) ++{ ++ u64 t0 = input[0]; ++ u64 t1 = input[1]; ++ u64 t2 = input[2]; ++ u64 t3 = input[3]; ++ u64 t4 = input[4]; ++ u64 t1_ = t1 + (t0 >> 51); ++ u64 t0_ = t0 & 0x7ffffffffffffLLU; ++ u64 t2_ = t2 + (t1_ >> 51); ++ u64 t1__ = t1_ & 0x7ffffffffffffLLU; ++ u64 t3_ = t3 + (t2_ >> 51); ++ u64 t2__ = t2_ & 0x7ffffffffffffLLU; ++ u64 t4_ = t4 + (t3_ >> 51); ++ u64 t3__ = t3_ & 0x7ffffffffffffLLU; ++ input[0] = t0_; ++ input[1] = t1__; ++ input[2] = t2__; ++ input[3] = t3__; ++ input[4] = t4_; ++} ++ ++static __always_inline void format_fcontract_second_carry_full(u64 *input) ++{ ++ u64 i0; ++ u64 i1; ++ u64 i0_; ++ u64 i1_; ++ format_fcontract_second_carry_pass(input); ++ modulo_carry_top(input); ++ i0 = input[0]; ++ i1 = input[1]; ++ i0_ = i0 & 0x7ffffffffffffLLU; ++ i1_ = i1 + (i0 >> 51); ++ input[0] = i0_; ++ input[1] = i1_; ++} ++ ++static __always_inline void format_fcontract_trim(u64 *input) ++{ ++ u64 a0 = input[0]; ++ u64 a1 = input[1]; ++ u64 a2 = input[2]; ++ u64 a3 = input[3]; ++ u64 a4 = input[4]; ++ u64 mask0 = u64_gte_mask(a0, 0x7ffffffffffedLLU); ++ u64 mask1 = u64_eq_mask(a1, 0x7ffffffffffffLLU); ++ u64 mask2 = u64_eq_mask(a2, 0x7ffffffffffffLLU); ++ u64 mask3 = u64_eq_mask(a3, 0x7ffffffffffffLLU); ++ u64 mask4 = u64_eq_mask(a4, 0x7ffffffffffffLLU); ++ u64 mask = (((mask0 & mask1) & mask2) & mask3) & mask4; ++ u64 a0_ = a0 - (0x7ffffffffffedLLU & mask); ++ u64 a1_ = a1 - (0x7ffffffffffffLLU & mask); ++ u64 a2_ = a2 - (0x7ffffffffffffLLU & mask); ++ u64 a3_ = a3 - (0x7ffffffffffffLLU & mask); ++ u64 a4_ = a4 - (0x7ffffffffffffLLU & mask); ++ input[0] = a0_; ++ input[1] = a1_; ++ input[2] = a2_; ++ input[3] = a3_; ++ input[4] = a4_; ++} ++ ++static __always_inline void format_fcontract_store(u8 *output, u64 *input) ++{ ++ u64 t0 = input[0]; ++ u64 t1 = input[1]; ++ u64 t2 = input[2]; ++ u64 t3 = input[3]; ++ u64 t4 = input[4]; ++ u64 o0 = t1 << 51 | t0; ++ u64 o1 = t2 << 38 | t1 >> 13; ++ u64 o2 = t3 << 25 | t2 >> 26; ++ u64 o3 = t4 << 12 | t3 >> 39; ++ u8 *b0 = output; ++ u8 *b1 = output + 8; ++ u8 *b2 = output + 16; ++ u8 *b3 = output + 24; ++ put_unaligned_le64(o0, b0); ++ put_unaligned_le64(o1, b1); ++ put_unaligned_le64(o2, b2); ++ put_unaligned_le64(o3, b3); ++} ++ ++static __always_inline void format_fcontract(u8 *output, u64 *input) ++{ ++ format_fcontract_first_carry_full(input); ++ format_fcontract_second_carry_full(input); ++ format_fcontract_trim(input); ++ format_fcontract_store(output, input); ++} ++ ++static __always_inline void format_scalar_of_point(u8 *scalar, u64 *point) ++{ ++ u64 *x = point; ++ u64 *z = point + 5; ++ u64 buf[10] __aligned(32) = { 0 }; ++ u64 *zmone = buf; ++ u64 *sc = buf + 5; ++ crecip(zmone, z); ++ fmul(sc, x, zmone); ++ format_fcontract(scalar, sc); ++} ++ ++void curve25519_generic(u8 mypublic[CURVE25519_KEY_SIZE], ++ const u8 secret[CURVE25519_KEY_SIZE], ++ const u8 basepoint[CURVE25519_KEY_SIZE]) ++{ ++ u64 buf0[10] __aligned(32) = { 0 }; ++ u64 *x0 = buf0; ++ u64 *z = buf0 + 5; ++ u64 *q; ++ format_fexpand(x0, basepoint); ++ z[0] = 1; ++ q = buf0; ++ { ++ u8 e[32] __aligned(32) = { 0 }; ++ u8 *scalar; ++ memcpy(e, secret, 32); ++ curve25519_clamp_secret(e); ++ scalar = e; ++ { ++ u64 buf[15] = { 0 }; ++ u64 *nq = buf; ++ u64 *x = nq; ++ x[0] = 1; ++ ladder_cmult(nq, scalar, q); ++ format_scalar_of_point(mypublic, nq); ++ memzero_explicit(buf, sizeof(buf)); ++ } ++ memzero_explicit(e, sizeof(e)); ++ } ++ memzero_explicit(buf0, sizeof(buf0)); ++} +--- /dev/null ++++ b/lib/crypto/curve25519.c +@@ -0,0 +1,25 @@ ++// SPDX-License-Identifier: GPL-2.0 OR MIT ++/* ++ * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. ++ * ++ * This is an implementation of the Curve25519 ECDH algorithm, using either ++ * a 32-bit implementation or a 64-bit implementation with 128-bit integers, ++ * depending on what is supported by the target compiler. ++ * ++ * Information: https://cr.yp.to/ecdh.html ++ */ ++ ++#include <crypto/curve25519.h> ++#include <linux/module.h> ++#include <linux/init.h> ++ ++const u8 curve25519_null_point[CURVE25519_KEY_SIZE] __aligned(32) = { 0 }; ++const u8 curve25519_base_point[CURVE25519_KEY_SIZE] __aligned(32) = { 9 }; ++ ++EXPORT_SYMBOL(curve25519_null_point); ++EXPORT_SYMBOL(curve25519_base_point); ++EXPORT_SYMBOL(curve25519_generic); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_DESCRIPTION("Curve25519 scalar multiplication"); ++MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>"); |