aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch')
-rw-r--r--target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch3078
1 files changed, 0 insertions, 3078 deletions
diff --git a/target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch b/target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch
deleted file mode 100644
index 7980659961..0000000000
--- a/target/linux/generic/backport-5.4/071-v5.16-02-mips-bpf-Add-eBPF-JIT-for-32-bit-MIPS.patch
+++ /dev/null
@@ -1,3078 +0,0 @@
-From: Johan Almbladh <johan.almbladh@anyfinetworks.com>
-Date: Tue, 5 Oct 2021 18:54:04 +0200
-Subject: [PATCH] mips: bpf: Add eBPF JIT for 32-bit MIPS
-
-This is an implementation of an eBPF JIT for 32-bit MIPS I-V and MIPS32.
-The implementation supports all 32-bit and 64-bit ALU and JMP operations,
-including the recently-added atomics. 64-bit div/mod and 64-bit atomics
-are implemented using function calls to math64 and atomic64 functions,
-respectively. All 32-bit operations are implemented natively by the JIT,
-except if the CPU lacks ll/sc instructions.
-
-Register mapping
-================
-All 64-bit eBPF registers are mapped to native 32-bit MIPS register pairs,
-and does not use any stack scratch space for register swapping. This means
-that all eBPF register data is kept in CPU registers all the time, and
-this simplifies the register management a lot. It also reduces the JIT's
-pressure on temporary registers since we do not have to move data around.
-
-Native register pairs are ordered according to CPU endiannes, following
-the O32 calling convention for passing 64-bit arguments and return values.
-The eBPF return value, arguments and callee-saved registers are mapped to
-their native MIPS equivalents.
-
-Since the 32 highest bits in the eBPF FP (frame pointer) register are
-always zero, only one general-purpose register is actually needed for the
-mapping. The MIPS fp register is used for this purpose. The high bits are
-mapped to MIPS register r0. This saves us one CPU register, which is much
-needed for temporaries, while still allowing us to treat the R10 (FP)
-register just like any other eBPF register in the JIT.
-
-The MIPS gp (global pointer) and at (assembler temporary) registers are
-used as internal temporary registers for constant blinding. CPU registers
-t6-t9 are used internally by the JIT when constructing more complex 64-bit
-operations. This is precisely what is needed - two registers to store an
-operand value, and two more as scratch registers when performing the
-operation.
-
-The register mapping is shown below.
-
- R0 - $v1, $v0 return value
- R1 - $a1, $a0 argument 1, passed in registers
- R2 - $a3, $a2 argument 2, passed in registers
- R3 - $t1, $t0 argument 3, passed on stack
- R4 - $t3, $t2 argument 4, passed on stack
- R5 - $t4, $t3 argument 5, passed on stack
- R6 - $s1, $s0 callee-saved
- R7 - $s3, $s2 callee-saved
- R8 - $s5, $s4 callee-saved
- R9 - $s7, $s6 callee-saved
- FP - $r0, $fp 32-bit frame pointer
- AX - $gp, $at constant-blinding
- $t6 - $t9 unallocated, JIT temporaries
-
-Jump offsets
-============
-The JIT tries to map all conditional JMP operations to MIPS conditional
-PC-relative branches. The MIPS branch offset field is 18 bits, in bytes,
-which is equivalent to the eBPF 16-bit instruction offset. However, since
-the JIT may emit more than one CPU instruction per eBPF instruction, the
-field width may overflow. If that happens, the JIT converts the long
-conditional jump to a short PC-relative branch with the condition
-inverted, jumping over a long unconditional absolute jmp (j).
-
-This conversion will change the instruction offset mapping used for jumps,
-and may in turn result in more branch offset overflows. The JIT therefore
-dry-runs the translation until no more branches are converted and the
-offsets do not change anymore. There is an upper bound on this of course,
-and if the JIT hits that limit, the last two iterations are run with all
-branches being converted.
-
-Tail call count
-===============
-The current tail call count is stored in the 16-byte area of the caller's
-stack frame that is reserved for the callee in the o32 ABI. The value is
-initialized in the prologue, and propagated to the tail-callee by skipping
-the initialization instructions when emitting the tail call.
-
-Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
----
- create mode 100644 arch/mips/net/bpf_jit_comp.c
- create mode 100644 arch/mips/net/bpf_jit_comp.h
- create mode 100644 arch/mips/net/bpf_jit_comp32.c
-
---- a/arch/mips/net/Makefile
-+++ b/arch/mips/net/Makefile
-@@ -2,4 +2,9 @@
- # MIPS networking code
-
- obj-$(CONFIG_MIPS_CBPF_JIT) += bpf_jit.o bpf_jit_asm.o
--obj-$(CONFIG_MIPS_EBPF_JIT) += ebpf_jit.o
-+
-+ifeq ($(CONFIG_32BIT),y)
-+ obj-$(CONFIG_MIPS_EBPF_JIT) += bpf_jit_comp.o bpf_jit_comp32.o
-+else
-+ obj-$(CONFIG_MIPS_EBPF_JIT) += ebpf_jit.o
-+endif
---- /dev/null
-+++ b/arch/mips/net/bpf_jit_comp.c
-@@ -0,0 +1,1020 @@
-+// SPDX-License-Identifier: GPL-2.0-only
-+/*
-+ * Just-In-Time compiler for eBPF bytecode on MIPS.
-+ * Implementation of JIT functions common to 32-bit and 64-bit CPUs.
-+ *
-+ * Copyright (c) 2021 Anyfi Networks AB.
-+ * Author: Johan Almbladh <johan.almbladh@gmail.com>
-+ *
-+ * Based on code and ideas from
-+ * Copyright (c) 2017 Cavium, Inc.
-+ * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
-+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
-+ */
-+
-+/*
-+ * Code overview
-+ * =============
-+ *
-+ * - bpf_jit_comp.h
-+ * Common definitions and utilities.
-+ *
-+ * - bpf_jit_comp.c
-+ * Implementation of JIT top-level logic and exported JIT API functions.
-+ * Implementation of internal operations shared by 32-bit and 64-bit code.
-+ * JMP and ALU JIT control code, register control code, shared ALU and
-+ * JMP/JMP32 JIT operations.
-+ *
-+ * - bpf_jit_comp32.c
-+ * Implementation of functions to JIT prologue, epilogue and a single eBPF
-+ * instruction for 32-bit MIPS CPUs. The functions use shared operations
-+ * where possible, and implement the rest for 32-bit MIPS such as ALU64
-+ * operations.
-+ *
-+ * - bpf_jit_comp64.c
-+ * Ditto, for 64-bit MIPS CPUs.
-+ *
-+ * Zero and sign extension
-+ * ========================
-+ * 32-bit MIPS instructions on 64-bit MIPS registers use sign extension,
-+ * but the eBPF instruction set mandates zero extension. We let the verifier
-+ * insert explicit zero-extensions after 32-bit ALU operations, both for
-+ * 32-bit and 64-bit MIPS JITs. Conditional JMP32 operations on 64-bit MIPs
-+ * are JITed with sign extensions inserted when so expected.
-+ *
-+ * ALU operations
-+ * ==============
-+ * ALU operations on 32/64-bit MIPS and ALU64 operations on 64-bit MIPS are
-+ * JITed in the following steps. ALU64 operations on 32-bit MIPS are more
-+ * complicated and therefore only processed by special implementations in
-+ * step (3).
-+ *
-+ * 1) valid_alu_i:
-+ * Determine if an immediate operation can be emitted as such, or if
-+ * we must fall back to the register version.
-+ *
-+ * 2) rewrite_alu_i:
-+ * Convert BPF operation and immediate value to a canonical form for
-+ * JITing. In some degenerate cases this form may be a no-op.
-+ *
-+ * 3) emit_alu_{i,i64,r,64}:
-+ * Emit instructions for an ALU or ALU64 immediate or register operation.
-+ *
-+ * JMP operations
-+ * ==============
-+ * JMP and JMP32 operations require an JIT instruction offset table for
-+ * translating the jump offset. This table is computed by dry-running the
-+ * JIT without actually emitting anything. However, the computed PC-relative
-+ * offset may overflow the 18-bit offset field width of the native MIPS
-+ * branch instruction. In such cases, the long jump is converted into the
-+ * following sequence.
-+ *
-+ * <branch> !<cond> +2 Inverted PC-relative branch
-+ * nop Delay slot
-+ * j <offset> Unconditional absolute long jump
-+ * nop Delay slot
-+ *
-+ * Since this converted sequence alters the offset table, all offsets must
-+ * be re-calculated. This may in turn trigger new branch conversions, so
-+ * the process is repeated until no further changes are made. Normally it
-+ * completes in 1-2 iterations. If JIT_MAX_ITERATIONS should reached, we
-+ * fall back to converting every remaining jump operation. The branch
-+ * conversion is independent of how the JMP or JMP32 condition is JITed.
-+ *
-+ * JMP32 and JMP operations are JITed as follows.
-+ *
-+ * 1) setup_jmp_{i,r}:
-+ * Convert jump conditional and offset into a form that can be JITed.
-+ * This form may be a no-op, a canonical form, or an inverted PC-relative
-+ * jump if branch conversion is necessary.
-+ *
-+ * 2) valid_jmp_i:
-+ * Determine if an immediate operations can be emitted as such, or if
-+ * we must fall back to the register version. Applies to JMP32 for 32-bit
-+ * MIPS, and both JMP and JMP32 for 64-bit MIPS.
-+ *
-+ * 3) emit_jmp_{i,i64,r,r64}:
-+ * Emit instructions for an JMP or JMP32 immediate or register operation.
-+ *
-+ * 4) finish_jmp_{i,r}:
-+ * Emit any instructions needed to finish the jump. This includes a nop
-+ * for the delay slot if a branch was emitted, and a long absolute jump
-+ * if the branch was converted.
-+ */
-+
-+#include <linux/limits.h>
-+#include <linux/bitops.h>
-+#include <linux/errno.h>
-+#include <linux/filter.h>
-+#include <linux/bpf.h>
-+#include <linux/slab.h>
-+#include <asm/bitops.h>
-+#include <asm/cacheflush.h>
-+#include <asm/cpu-features.h>
-+#include <asm/isa-rev.h>
-+#include <asm/uasm.h>
-+
-+#include "bpf_jit_comp.h"
-+
-+/* Convenience macros for descriptor access */
-+#define CONVERTED(desc) ((desc) & JIT_DESC_CONVERT)
-+#define INDEX(desc) ((desc) & ~JIT_DESC_CONVERT)
-+
-+/*
-+ * Push registers on the stack, starting at a given depth from the stack
-+ * pointer and increasing. The next depth to be written is returned.
-+ */
-+int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
-+{
-+ int reg;
-+
-+ for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
-+ if (mask & BIT(reg)) {
-+ if ((excl & BIT(reg)) == 0) {
-+ if (sizeof(long) == 4)
-+ emit(ctx, sw, reg, depth, MIPS_R_SP);
-+ else /* sizeof(long) == 8 */
-+ emit(ctx, sd, reg, depth, MIPS_R_SP);
-+ }
-+ depth += sizeof(long);
-+ }
-+
-+ ctx->stack_used = max((int)ctx->stack_used, depth);
-+ return depth;
-+}
-+
-+/*
-+ * Pop registers from the stack, starting at a given depth from the stack
-+ * pointer and increasing. The next depth to be read is returned.
-+ */
-+int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
-+{
-+ int reg;
-+
-+ for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
-+ if (mask & BIT(reg)) {
-+ if ((excl & BIT(reg)) == 0) {
-+ if (sizeof(long) == 4)
-+ emit(ctx, lw, reg, depth, MIPS_R_SP);
-+ else /* sizeof(long) == 8 */
-+ emit(ctx, ld, reg, depth, MIPS_R_SP);
-+ }
-+ depth += sizeof(long);
-+ }
-+
-+ return depth;
-+}
-+
-+/* Compute the 28-bit jump target address from a BPF program location */
-+int get_target(struct jit_context *ctx, u32 loc)
-+{
-+ u32 index = INDEX(ctx->descriptors[loc]);
-+ unsigned long pc = (unsigned long)&ctx->target[ctx->jit_index];
-+ unsigned long addr = (unsigned long)&ctx->target[index];
-+
-+ if (!ctx->target)
-+ return 0;
-+
-+ if ((addr ^ pc) & ~MIPS_JMP_MASK)
-+ return -1;
-+
-+ return addr & MIPS_JMP_MASK;
-+}
-+
-+/* Compute the PC-relative offset to relative BPF program offset */
-+int get_offset(const struct jit_context *ctx, int off)
-+{
-+ return (INDEX(ctx->descriptors[ctx->bpf_index + off]) -
-+ ctx->jit_index - 1) * sizeof(u32);
-+}
-+
-+/* dst = imm (register width) */
-+void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm)
-+{
-+ if (imm >= -0x8000 && imm <= 0x7fff) {
-+ emit(ctx, addiu, dst, MIPS_R_ZERO, imm);
-+ } else {
-+ emit(ctx, lui, dst, (s16)((u32)imm >> 16));
-+ emit(ctx, ori, dst, dst, (u16)(imm & 0xffff));
-+ }
-+ clobber_reg(ctx, dst);
-+}
-+
-+/* dst = src (register width) */
-+void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src)
-+{
-+ emit(ctx, ori, dst, src, 0);
-+ clobber_reg(ctx, dst);
-+}
-+
-+/* Validate ALU immediate range */
-+bool valid_alu_i(u8 op, s32 imm)
-+{
-+ switch (BPF_OP(op)) {
-+ case BPF_NEG:
-+ case BPF_LSH:
-+ case BPF_RSH:
-+ case BPF_ARSH:
-+ /* All legal eBPF values are valid */
-+ return true;
-+ case BPF_ADD:
-+ /* imm must be 16 bits */
-+ return imm >= -0x8000 && imm <= 0x7fff;
-+ case BPF_SUB:
-+ /* -imm must be 16 bits */
-+ return imm >= -0x7fff && imm <= 0x8000;
-+ case BPF_AND:
-+ case BPF_OR:
-+ case BPF_XOR:
-+ /* imm must be 16 bits unsigned */
-+ return imm >= 0 && imm <= 0xffff;
-+ case BPF_MUL:
-+ /* imm must be zero or a positive power of two */
-+ return imm == 0 || (imm > 0 && is_power_of_2(imm));
-+ case BPF_DIV:
-+ case BPF_MOD:
-+ /* imm must be an 17-bit power of two */
-+ return (u32)imm <= 0x10000 && is_power_of_2((u32)imm);
-+ }
-+ return false;
-+}
-+
-+/* Rewrite ALU immediate operation */
-+bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val)
-+{
-+ bool act = true;
-+
-+ switch (BPF_OP(op)) {
-+ case BPF_LSH:
-+ case BPF_RSH:
-+ case BPF_ARSH:
-+ case BPF_ADD:
-+ case BPF_SUB:
-+ case BPF_OR:
-+ case BPF_XOR:
-+ /* imm == 0 is a no-op */
-+ act = imm != 0;
-+ break;
-+ case BPF_MUL:
-+ if (imm == 1) {
-+ /* dst * 1 is a no-op */
-+ act = false;
-+ } else if (imm == 0) {
-+ /* dst * 0 is dst & 0 */
-+ op = BPF_AND;
-+ } else {
-+ /* dst * (1 << n) is dst << n */
-+ op = BPF_LSH;
-+ imm = ilog2(abs(imm));
-+ }
-+ break;
-+ case BPF_DIV:
-+ if (imm == 1) {
-+ /* dst / 1 is a no-op */
-+ act = false;
-+ } else {
-+ /* dst / (1 << n) is dst >> n */
-+ op = BPF_RSH;
-+ imm = ilog2(imm);
-+ }
-+ break;
-+ case BPF_MOD:
-+ /* dst % (1 << n) is dst & ((1 << n) - 1) */
-+ op = BPF_AND;
-+ imm--;
-+ break;
-+ }
-+
-+ *alu = op;
-+ *val = imm;
-+ return act;
-+}
-+
-+/* ALU immediate operation (32-bit) */
-+void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op)
-+{
-+ switch (BPF_OP(op)) {
-+ /* dst = -dst */
-+ case BPF_NEG:
-+ emit(ctx, subu, dst, MIPS_R_ZERO, dst);
-+ break;
-+ /* dst = dst & imm */
-+ case BPF_AND:
-+ emit(ctx, andi, dst, dst, (u16)imm);
-+ break;
-+ /* dst = dst | imm */
-+ case BPF_OR:
-+ emit(ctx, ori, dst, dst, (u16)imm);
-+ break;
-+ /* dst = dst ^ imm */
-+ case BPF_XOR:
-+ emit(ctx, xori, dst, dst, (u16)imm);
-+ break;
-+ /* dst = dst << imm */
-+ case BPF_LSH:
-+ emit(ctx, sll, dst, dst, imm);
-+ break;
-+ /* dst = dst >> imm */
-+ case BPF_RSH:
-+ emit(ctx, srl, dst, dst, imm);
-+ break;
-+ /* dst = dst >> imm (arithmetic) */
-+ case BPF_ARSH:
-+ emit(ctx, sra, dst, dst, imm);
-+ break;
-+ /* dst = dst + imm */
-+ case BPF_ADD:
-+ emit(ctx, addiu, dst, dst, imm);
-+ break;
-+ /* dst = dst - imm */
-+ case BPF_SUB:
-+ emit(ctx, addiu, dst, dst, -imm);
-+ break;
-+ }
-+ clobber_reg(ctx, dst);
-+}
-+
-+/* ALU register operation (32-bit) */
-+void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op)
-+{
-+ switch (BPF_OP(op)) {
-+ /* dst = dst & src */
-+ case BPF_AND:
-+ emit(ctx, and, dst, dst, src);
-+ break;
-+ /* dst = dst | src */
-+ case BPF_OR:
-+ emit(ctx, or, dst, dst, src);
-+ break;
-+ /* dst = dst ^ src */
-+ case BPF_XOR:
-+ emit(ctx, xor, dst, dst, src);
-+ break;
-+ /* dst = dst << src */
-+ case BPF_LSH:
-+ emit(ctx, sllv, dst, dst, src);
-+ break;
-+ /* dst = dst >> src */
-+ case BPF_RSH:
-+ emit(ctx, srlv, dst, dst, src);
-+ break;
-+ /* dst = dst >> src (arithmetic) */
-+ case BPF_ARSH:
-+ emit(ctx, srav, dst, dst, src);
-+ break;
-+ /* dst = dst + src */
-+ case BPF_ADD:
-+ emit(ctx, addu, dst, dst, src);
-+ break;
-+ /* dst = dst - src */
-+ case BPF_SUB:
-+ emit(ctx, subu, dst, dst, src);
-+ break;
-+ /* dst = dst * src */
-+ case BPF_MUL:
-+ if (cpu_has_mips32r1 || cpu_has_mips32r6) {
-+ emit(ctx, mul, dst, dst, src);
-+ } else {
-+ emit(ctx, multu, dst, src);
-+ emit(ctx, mflo, dst);
-+ }
-+ break;
-+ /* dst = dst / src */
-+ case BPF_DIV:
-+ if (cpu_has_mips32r6) {
-+ emit(ctx, divu_r6, dst, dst, src);
-+ } else {
-+ emit(ctx, divu, dst, src);
-+ emit(ctx, mflo, dst);
-+ }
-+ break;
-+ /* dst = dst % src */
-+ case BPF_MOD:
-+ if (cpu_has_mips32r6) {
-+ emit(ctx, modu, dst, dst, src);
-+ } else {
-+ emit(ctx, divu, dst, src);
-+ emit(ctx, mfhi, dst);
-+ }
-+ break;
-+ }
-+ clobber_reg(ctx, dst);
-+}
-+
-+/* Atomic read-modify-write (32-bit) */
-+void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code)
-+{
-+ emit(ctx, ll, MIPS_R_T9, off, dst);
-+ switch (code) {
-+ case BPF_ADD:
-+ emit(ctx, addu, MIPS_R_T8, MIPS_R_T9, src);
-+ break;
-+ case BPF_AND:
-+ emit(ctx, and, MIPS_R_T8, MIPS_R_T9, src);
-+ break;
-+ case BPF_OR:
-+ emit(ctx, or, MIPS_R_T8, MIPS_R_T9, src);
-+ break;
-+ case BPF_XOR:
-+ emit(ctx, xor, MIPS_R_T8, MIPS_R_T9, src);
-+ break;
-+ }
-+ emit(ctx, sc, MIPS_R_T8, off, dst);
-+ emit(ctx, beqz, MIPS_R_T8, -16);
-+ emit(ctx, nop); /* Delay slot */
-+}
-+
-+/* Atomic compare-and-exchange (32-bit) */
-+void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off)
-+{
-+ emit(ctx, ll, MIPS_R_T9, off, dst);
-+ emit(ctx, bne, MIPS_R_T9, res, 12);
-+ emit(ctx, move, MIPS_R_T8, src); /* Delay slot */
-+ emit(ctx, sc, MIPS_R_T8, off, dst);
-+ emit(ctx, beqz, MIPS_R_T8, -20);
-+ emit(ctx, move, res, MIPS_R_T9); /* Delay slot */
-+ clobber_reg(ctx, res);
-+}
-+
-+/* Swap bytes and truncate a register word or half word */
-+void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width)
-+{
-+ u8 tmp = MIPS_R_T8;
-+ u8 msk = MIPS_R_T9;
-+
-+ switch (width) {
-+ /* Swap bytes in a word */
-+ case 32:
-+ if (cpu_has_mips32r2 || cpu_has_mips32r6) {
-+ emit(ctx, wsbh, dst, dst);
-+ emit(ctx, rotr, dst, dst, 16);
-+ } else {
-+ emit(ctx, sll, tmp, dst, 16); /* tmp = dst << 16 */
-+ emit(ctx, srl, dst, dst, 16); /* dst = dst >> 16 */
-+ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
-+
-+ emit(ctx, lui, msk, 0xff); /* msk = 0x00ff0000 */
-+ emit(ctx, ori, msk, msk, 0xff); /* msk = msk | 0xff */
-+
-+ emit(ctx, and, tmp, dst, msk); /* tmp = dst & msk */
-+ emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */
-+ emit(ctx, srl, dst, dst, 8); /* dst = dst >> 8 */
-+ emit(ctx, and, dst, dst, msk); /* dst = dst & msk */
-+ emit(ctx, or, dst, dst, tmp); /* reg = dst | tmp */
-+ }
-+ break;
-+ /* Swap bytes in a half word */
-+ case 16:
-+ if (cpu_has_mips32r2 || cpu_has_mips32r6) {
-+ emit(ctx, wsbh, dst, dst);
-+ emit(ctx, andi, dst, dst, 0xffff);
-+ } else {
-+ emit(ctx, andi, tmp, dst, 0xff00); /* t = d & 0xff00 */
-+ emit(ctx, srl, tmp, tmp, 8); /* t = t >> 8 */
-+ emit(ctx, andi, dst, dst, 0x00ff); /* d = d & 0x00ff */
-+ emit(ctx, sll, dst, dst, 8); /* d = d << 8 */
-+ emit(ctx, or, dst, dst, tmp); /* d = d | t */
-+ }
-+ break;
-+ }
-+ clobber_reg(ctx, dst);
-+}
-+
-+/* Validate jump immediate range */
-+bool valid_jmp_i(u8 op, s32 imm)
-+{
-+ switch (op) {
-+ case JIT_JNOP:
-+ /* Immediate value not used */
-+ return true;
-+ case BPF_JEQ:
-+ case BPF_JNE:
-+ /* No immediate operation */
-+ return false;
-+ case BPF_JSET:
-+ case JIT_JNSET:
-+ /* imm must be 16 bits unsigned */
-+ return imm >= 0 && imm <= 0xffff;
-+ case BPF_JGE:
-+ case BPF_JLT:
-+ case BPF_JSGE:
-+ case BPF_JSLT:
-+ /* imm must be 16 bits */
-+ return imm >= -0x8000 && imm <= 0x7fff;
-+ case BPF_JGT:
-+ case BPF_JLE:
-+ case BPF_JSGT:
-+ case BPF_JSLE:
-+ /* imm + 1 must be 16 bits */
-+ return imm >= -0x8001 && imm <= 0x7ffe;
-+ }
-+ return false;
-+}
-+
-+/* Invert a conditional jump operation */
-+static u8 invert_jmp(u8 op)
-+{
-+ switch (op) {
-+ case BPF_JA: return JIT_JNOP;
-+ case BPF_JEQ: return BPF_JNE;
-+ case BPF_JNE: return BPF_JEQ;
-+ case BPF_JSET: return JIT_JNSET;
-+ case BPF_JGT: return BPF_JLE;
-+ case BPF_JGE: return BPF_JLT;
-+ case BPF_JLT: return BPF_JGE;
-+ case BPF_JLE: return BPF_JGT;
-+ case BPF_JSGT: return BPF_JSLE;
-+ case BPF_JSGE: return BPF_JSLT;
-+ case BPF_JSLT: return BPF_JSGE;
-+ case BPF_JSLE: return BPF_JSGT;
-+ }
-+ return 0;
-+}
-+
-+/* Prepare a PC-relative jump operation */
-+static void setup_jmp(struct jit_context *ctx, u8 bpf_op,
-+ s16 bpf_off, u8 *jit_op, s32 *jit_off)
-+{
-+ u32 *descp = &ctx->descriptors[ctx->bpf_index];
-+ int op = bpf_op;
-+ int offset = 0;
-+
-+ /* Do not compute offsets on the first pass */
-+ if (INDEX(*descp) == 0)
-+ goto done;
-+
-+ /* Skip jumps never taken */
-+ if (bpf_op == JIT_JNOP)
-+ goto done;
-+
-+ /* Convert jumps always taken */
-+ if (bpf_op == BPF_JA)
-+ *descp |= JIT_DESC_CONVERT;
-+
-+ /*
-+ * Current ctx->jit_index points to the start of the branch preamble.
-+ * Since the preamble differs among different branch conditionals,
-+ * the current index cannot be used to compute the branch offset.
-+ * Instead, we use the offset table value for the next instruction,
-+ * which gives the index immediately after the branch delay slot.
-+ */
-+ if (!CONVERTED(*descp)) {
-+ int target = ctx->bpf_index + bpf_off + 1;
-+ int origin = ctx->bpf_index + 1;
-+
-+ offset = (INDEX(ctx->descriptors[target]) -
-+ INDEX(ctx->descriptors[origin]) + 1) * sizeof(u32);
-+ }
-+
-+ /*
-+ * The PC-relative branch offset field on MIPS is 18 bits signed,
-+ * so if the computed offset is larger than this we generate a an
-+ * absolute jump that we skip with an inverted conditional branch.
-+ */
-+ if (CONVERTED(*descp) || offset < -0x20000 || offset > 0x1ffff) {
-+ offset = 3 * sizeof(u32);
-+ op = invert_jmp(bpf_op);
-+ ctx->changes += !CONVERTED(*descp);
-+ *descp |= JIT_DESC_CONVERT;
-+ }
-+
-+done:
-+ *jit_off = offset;
-+ *jit_op = op;
-+}
-+
-+/* Prepare a PC-relative jump operation with immediate conditional */
-+void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width,
-+ u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
-+{
-+ bool always = false;
-+ bool never = false;
-+
-+ switch (bpf_op) {
-+ case BPF_JEQ:
-+ case BPF_JNE:
-+ break;
-+ case BPF_JSET:
-+ case BPF_JLT:
-+ never = imm == 0;
-+ break;
-+ case BPF_JGE:
-+ always = imm == 0;
-+ break;
-+ case BPF_JGT:
-+ never = (u32)imm == U32_MAX;
-+ break;
-+ case BPF_JLE:
-+ always = (u32)imm == U32_MAX;
-+ break;
-+ case BPF_JSGT:
-+ never = imm == S32_MAX && width == 32;
-+ break;
-+ case BPF_JSGE:
-+ always = imm == S32_MIN && width == 32;
-+ break;
-+ case BPF_JSLT:
-+ never = imm == S32_MIN && width == 32;
-+ break;
-+ case BPF_JSLE:
-+ always = imm == S32_MAX && width == 32;
-+ break;
-+ }
-+
-+ if (never)
-+ bpf_op = JIT_JNOP;
-+ if (always)
-+ bpf_op = BPF_JA;
-+ setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
-+}
-+
-+/* Prepare a PC-relative jump operation with register conditional */
-+void setup_jmp_r(struct jit_context *ctx, bool same_reg,
-+ u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
-+{
-+ switch (bpf_op) {
-+ case BPF_JSET:
-+ break;
-+ case BPF_JEQ:
-+ case BPF_JGE:
-+ case BPF_JLE:
-+ case BPF_JSGE:
-+ case BPF_JSLE:
-+ if (same_reg)
-+ bpf_op = BPF_JA;
-+ break;
-+ case BPF_JNE:
-+ case BPF_JLT:
-+ case BPF_JGT:
-+ case BPF_JSGT:
-+ case BPF_JSLT:
-+ if (same_reg)
-+ bpf_op = JIT_JNOP;
-+ break;
-+ }
-+ setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
-+}
-+
-+/* Finish a PC-relative jump operation */
-+int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off)
-+{
-+ /* Emit conditional branch delay slot */
-+ if (jit_op != JIT_JNOP)
-+ emit(ctx, nop);
-+ /*
-+ * Emit an absolute long jump with delay slot,
-+ * if the PC-relative branch was converted.
-+ */
-+ if (CONVERTED(ctx->descriptors[ctx->bpf_index])) {
-+ int target = get_target(ctx, ctx->bpf_index + bpf_off + 1);
-+
-+ if (target < 0)
-+ return -1;
-+ emit(ctx, j, target);
-+ emit(ctx, nop);
-+ }
-+ return 0;
-+}
-+
-+/* Jump immediate (32-bit) */
-+void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op)
-+{
-+ switch (op) {
-+ /* No-op, used internally for branch optimization */
-+ case JIT_JNOP:
-+ break;
-+ /* PC += off if dst & imm */
-+ case BPF_JSET:
-+ emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
-+ case JIT_JNSET:
-+ emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst > imm */
-+ case BPF_JGT:
-+ emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst >= imm */
-+ case BPF_JGE:
-+ emit(ctx, sltiu, MIPS_R_T9, dst, imm);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst < imm */
-+ case BPF_JLT:
-+ emit(ctx, sltiu, MIPS_R_T9, dst, imm);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst <= imm */
-+ case BPF_JLE:
-+ emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst > imm (signed) */
-+ case BPF_JSGT:
-+ emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst >= imm (signed) */
-+ case BPF_JSGE:
-+ emit(ctx, slti, MIPS_R_T9, dst, imm);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst < imm (signed) */
-+ case BPF_JSLT:
-+ emit(ctx, slti, MIPS_R_T9, dst, imm);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst <= imm (signed) */
-+ case BPF_JSLE:
-+ emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ }
-+}
-+
-+/* Jump register (32-bit) */
-+void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op)
-+{
-+ switch (op) {
-+ /* No-op, used internally for branch optimization */
-+ case JIT_JNOP:
-+ break;
-+ /* PC += off if dst == src */
-+ case BPF_JEQ:
-+ emit(ctx, beq, dst, src, off);
-+ break;
-+ /* PC += off if dst != src */
-+ case BPF_JNE:
-+ emit(ctx, bne, dst, src, off);
-+ break;
-+ /* PC += off if dst & src */
-+ case BPF_JSET:
-+ emit(ctx, and, MIPS_R_T9, dst, src);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
-+ case JIT_JNSET:
-+ emit(ctx, and, MIPS_R_T9, dst, src);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst > src */
-+ case BPF_JGT:
-+ emit(ctx, sltu, MIPS_R_T9, src, dst);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst >= src */
-+ case BPF_JGE:
-+ emit(ctx, sltu, MIPS_R_T9, dst, src);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst < src */
-+ case BPF_JLT:
-+ emit(ctx, sltu, MIPS_R_T9, dst, src);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst <= src */
-+ case BPF_JLE:
-+ emit(ctx, sltu, MIPS_R_T9, src, dst);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst > src (signed) */
-+ case BPF_JSGT:
-+ emit(ctx, slt, MIPS_R_T9, src, dst);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst >= src (signed) */
-+ case BPF_JSGE:
-+ emit(ctx, slt, MIPS_R_T9, dst, src);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst < src (signed) */
-+ case BPF_JSLT:
-+ emit(ctx, slt, MIPS_R_T9, dst, src);
-+ emit(ctx, bnez, MIPS_R_T9, off);
-+ break;
-+ /* PC += off if dst <= src (signed) */
-+ case BPF_JSLE:
-+ emit(ctx, slt, MIPS_R_T9, src, dst);
-+ emit(ctx, beqz, MIPS_R_T9, off);
-+ break;
-+ }
-+}
-+
-+/* Jump always */
-+int emit_ja(struct jit_context *ctx, s16 off)
-+{
-+ int target = get_target(ctx, ctx->bpf_index + off + 1);
-+
-+ if (target < 0)
-+ return -1;
-+ emit(ctx, j, target);
-+ emit(ctx, nop);
-+ return 0;
-+}
-+
-+/* Jump to epilogue */
-+int emit_exit(struct jit_context *ctx)
-+{
-+ int target = get_target(ctx, ctx->program->len);
-+
-+ if (target < 0)
-+ return -1;
-+ emit(ctx, j, target);
-+ emit(ctx, nop);
-+ return 0;
-+}
-+
-+/* Build the program body from eBPF bytecode */
-+static int build_body(struct jit_context *ctx)
-+{
-+ const struct bpf_prog *prog = ctx->program;
-+ unsigned int i;
-+
-+ ctx->stack_used = 0;
-+ for (i = 0; i < prog->len; i++) {
-+ const struct bpf_insn *insn = &prog->insnsi[i];
-+ u32 *descp = &ctx->descriptors[i];
-+ int ret;
-+
-+ access_reg(ctx, insn->src_reg);
-+ access_reg(ctx, insn->dst_reg);
-+
-+ ctx->bpf_index = i;
-+ if (ctx->target == NULL) {
-+ ctx->changes += INDEX(*descp) != ctx->jit_index;
-+ *descp &= JIT_DESC_CONVERT;
-+ *descp |= ctx->jit_index;
-+ }
-+
-+ ret = build_insn(insn, ctx);
-+ if (ret < 0)
-+ return ret;
-+
-+ if (ret > 0) {
-+ i++;
-+ if (ctx->target == NULL)
-+ descp[1] = ctx->jit_index;
-+ }
-+ }
-+
-+ /* Store the end offset, where the epilogue begins */
-+ ctx->descriptors[prog->len] = ctx->jit_index;
-+ return 0;
-+}
-+
-+/* Set the branch conversion flag on all instructions */
-+static void set_convert_flag(struct jit_context *ctx, bool enable)
-+{
-+ const struct bpf_prog *prog = ctx->program;
-+ u32 flag = enable ? JIT_DESC_CONVERT : 0;
-+ unsigned int i;
-+
-+ for (i = 0; i <= prog->len; i++)
-+ ctx->descriptors[i] = INDEX(ctx->descriptors[i]) | flag;
-+}
-+
-+static void jit_fill_hole(void *area, unsigned int size)
-+{
-+ u32 *p;
-+
-+ /* We are guaranteed to have aligned memory. */
-+ for (p = area; size >= sizeof(u32); size -= sizeof(u32))
-+ uasm_i_break(&p, BRK_BUG); /* Increments p */
-+}
-+
-+bool bpf_jit_needs_zext(void)
-+{
-+ return true;
-+}
-+
-+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
-+{
-+ struct bpf_prog *tmp, *orig_prog = prog;
-+ struct bpf_binary_header *header = NULL;
-+ struct jit_context ctx;
-+ bool tmp_blinded = false;
-+ unsigned int tmp_idx;
-+ unsigned int image_size;
-+ u8 *image_ptr;
-+ int tries;
-+
-+ /*
-+ * If BPF JIT was not enabled then we must fall back to
-+ * the interpreter.
-+ */
-+ if (!prog->jit_requested)
-+ return orig_prog;
-+ /*
-+ * If constant blinding was enabled and we failed during blinding
-+ * then we must fall back to the interpreter. Otherwise, we save
-+ * the new JITed code.
-+ */
-+ tmp = bpf_jit_blind_constants(prog);
-+ if (IS_ERR(tmp))
-+ return orig_prog;
-+ if (tmp != prog) {
-+ tmp_blinded = true;
-+ prog = tmp;
-+ }
-+
-+ memset(&ctx, 0, sizeof(ctx));
-+ ctx.program = prog;
-+
-+ /*
-+ * Not able to allocate memory for descriptors[], then
-+ * we must fall back to the interpreter
-+ */
-+ ctx.descriptors = kcalloc(prog->len + 1, sizeof(*ctx.descriptors),
-+ GFP_KERNEL);
-+ if (ctx.descriptors == NULL)
-+ goto out_err;
-+
-+ /* First pass discovers used resources */
-+ if (build_body(&ctx) < 0)
-+ goto out_err;
-+ /*
-+ * Second pass computes instruction offsets.
-+ * If any PC-relative branches are out of range, a sequence of
-+ * a PC-relative branch + a jump is generated, and we have to
-+ * try again from the beginning to generate the new offsets.
-+ * This is done until no additional conversions are necessary.
-+ * The last two iterations are done with all branches being
-+ * converted, to guarantee offset table convergence within a
-+ * fixed number of iterations.
-+ */
-+ ctx.jit_index = 0;
-+ build_prologue(&ctx);
-+ tmp_idx = ctx.jit_index;
-+
-+ tries = JIT_MAX_ITERATIONS;
-+ do {
-+ ctx.jit_index = tmp_idx;
-+ ctx.changes = 0;
-+ if (tries == 2)
-+ set_convert_flag(&ctx, true);
-+ if (build_body(&ctx) < 0)
-+ goto out_err;
-+ } while (ctx.changes > 0 && --tries > 0);
-+
-+ if (WARN_ONCE(ctx.changes > 0, "JIT offsets failed to converge"))
-+ goto out_err;
-+
-+ build_epilogue(&ctx, MIPS_R_RA);
-+
-+ /* Now we know the size of the structure to make */
-+ image_size = sizeof(u32) * ctx.jit_index;
-+ header = bpf_jit_binary_alloc(image_size, &image_ptr,
-+ sizeof(u32), jit_fill_hole);
-+ /*
-+ * Not able to allocate memory for the structure then
-+ * we must fall back to the interpretation
-+ */
-+ if (header == NULL)
-+ goto out_err;
-+
-+ /* Actual pass to generate final JIT code */
-+ ctx.target = (u32 *)image_ptr;
-+ ctx.jit_index = 0;
-+
-+ /*
-+ * If building the JITed code fails somehow,
-+ * we fall back to the interpretation.
-+ */
-+ build_prologue(&ctx);
-+ if (build_body(&ctx) < 0)
-+ goto out_err;
-+ build_epilogue(&ctx, MIPS_R_RA);
-+
-+ /* Populate line info meta data */
-+ set_convert_flag(&ctx, false);
-+ bpf_prog_fill_jited_linfo(prog, &ctx.descriptors[1]);
-+
-+ /* Set as read-only exec and flush instruction cache */
-+ bpf_jit_binary_lock_ro(header);
-+ flush_icache_range((unsigned long)header,
-+ (unsigned long)&ctx.target[ctx.jit_index]);
-+
-+ if (bpf_jit_enable > 1)
-+ bpf_jit_dump(prog->len, image_size, 2, ctx.target);
-+
-+ prog->bpf_func = (void *)ctx.target;
-+ prog->jited = 1;
-+ prog->jited_len = image_size;
-+
-+out:
-+ if (tmp_blinded)
-+ bpf_jit_prog_release_other(prog, prog == orig_prog ?
-+ tmp : orig_prog);
-+ kfree(ctx.descriptors);
-+ return prog;
-+
-+out_err:
-+ prog = orig_prog;
-+ if (header)
-+ bpf_jit_binary_free(header);
-+ goto out;
-+}
---- /dev/null
-+++ b/arch/mips/net/bpf_jit_comp.h
-@@ -0,0 +1,211 @@
-+/* SPDX-License-Identifier: GPL-2.0-only */
-+/*
-+ * Just-In-Time compiler for eBPF bytecode on 32-bit and 64-bit MIPS.
-+ *
-+ * Copyright (c) 2021 Anyfi Networks AB.
-+ * Author: Johan Almbladh <johan.almbladh@gmail.com>
-+ *
-+ * Based on code and ideas from
-+ * Copyright (c) 2017 Cavium, Inc.
-+ * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
-+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
-+ */
-+
-+#ifndef _BPF_JIT_COMP_H
-+#define _BPF_JIT_COMP_H
-+
-+/* MIPS registers */
-+#define MIPS_R_ZERO 0 /* Const zero */
-+#define MIPS_R_AT 1 /* Asm temp */
-+#define MIPS_R_V0 2 /* Result */
-+#define MIPS_R_V1 3 /* Result */
-+#define MIPS_R_A0 4 /* Argument */
-+#define MIPS_R_A1 5 /* Argument */
-+#define MIPS_R_A2 6 /* Argument */
-+#define MIPS_R_A3 7 /* Argument */
-+#define MIPS_R_A4 8 /* Arg (n64) */
-+#define MIPS_R_A5 9 /* Arg (n64) */
-+#define MIPS_R_A6 10 /* Arg (n64) */
-+#define MIPS_R_A7 11 /* Arg (n64) */
-+#define MIPS_R_T0 8 /* Temp (o32) */
-+#define MIPS_R_T1 9 /* Temp (o32) */
-+#define MIPS_R_T2 10 /* Temp (o32) */
-+#define MIPS_R_T3 11 /* Temp (o32) */
-+#define MIPS_R_T4 12 /* Temporary */
-+#define MIPS_R_T5 13 /* Temporary */
-+#define MIPS_R_T6 14 /* Temporary */
-+#define MIPS_R_T7 15 /* Temporary */
-+#define MIPS_R_S0 16 /* Saved */
-+#define MIPS_R_S1 17 /* Saved */
-+#define MIPS_R_S2 18 /* Saved */
-+#define MIPS_R_S3 19 /* Saved */
-+#define MIPS_R_S4 20 /* Saved */
-+#define MIPS_R_S5 21 /* Saved */
-+#define MIPS_R_S6 22 /* Saved */
-+#define MIPS_R_S7 23 /* Saved */
-+#define MIPS_R_T8 24 /* Temporary */
-+#define MIPS_R_T9 25 /* Temporary */
-+/* MIPS_R_K0 26 Reserved */
-+/* MIPS_R_K1 27 Reserved */
-+#define MIPS_R_GP 28 /* Global ptr */
-+#define MIPS_R_SP 29 /* Stack ptr */
-+#define MIPS_R_FP 30 /* Frame ptr */
-+#define MIPS_R_RA 31 /* Return */
-+
-+/*
-+ * Jump address mask for immediate jumps. The four most significant bits
-+ * must be equal to PC.
-+ */
-+#define MIPS_JMP_MASK 0x0fffffffUL
-+
-+/* Maximum number of iterations in offset table computation */
-+#define JIT_MAX_ITERATIONS 8
-+
-+/*
-+ * Jump pseudo-instructions used internally
-+ * for branch conversion and branch optimization.
-+ */
-+#define JIT_JNSET 0xe0
-+#define JIT_JNOP 0xf0
-+
-+/* Descriptor flag for PC-relative branch conversion */
-+#define JIT_DESC_CONVERT BIT(31)
-+
-+/* JIT context for an eBPF program */
-+struct jit_context {
-+ struct bpf_prog *program; /* The eBPF program being JITed */
-+ u32 *descriptors; /* eBPF to JITed CPU insn descriptors */
-+ u32 *target; /* JITed code buffer */
-+ u32 bpf_index; /* Index of current BPF program insn */
-+ u32 jit_index; /* Index of current JIT target insn */
-+ u32 changes; /* Number of PC-relative branch conv */
-+ u32 accessed; /* Bit mask of read eBPF registers */
-+ u32 clobbered; /* Bit mask of modified CPU registers */
-+ u32 stack_size; /* Total allocated stack size in bytes */
-+ u32 saved_size; /* Size of callee-saved registers */
-+ u32 stack_used; /* Stack size used for function calls */
-+};
-+
-+/* Emit the instruction if the JIT memory space has been allocated */
-+#define emit(ctx, func, ...) \
-+do { \
-+ if ((ctx)->target != NULL) { \
-+ u32 *p = &(ctx)->target[ctx->jit_index]; \
-+ uasm_i_##func(&p, ##__VA_ARGS__); \
-+ } \
-+ (ctx)->jit_index++; \
-+} while (0)
-+
-+/*
-+ * Mark a BPF register as accessed, it needs to be
-+ * initialized by the program if expected, e.g. FP.
-+ */
-+static inline void access_reg(struct jit_context *ctx, u8 reg)
-+{
-+ ctx->accessed |= BIT(reg);
-+}
-+
-+/*
-+ * Mark a CPU register as clobbered, it needs to be
-+ * saved/restored by the program if callee-saved.
-+ */
-+static inline void clobber_reg(struct jit_context *ctx, u8 reg)
-+{
-+ ctx->clobbered |= BIT(reg);
-+}
-+
-+/*
-+ * Push registers on the stack, starting at a given depth from the stack
-+ * pointer and increasing. The next depth to be written is returned.
-+ */
-+int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth);
-+
-+/*
-+ * Pop registers from the stack, starting at a given depth from the stack
-+ * pointer and increasing. The next depth to be read is returned.
-+ */
-+int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth);
-+
-+/* Compute the 28-bit jump target address from a BPF program location */
-+int get_target(struct jit_context *ctx, u32 loc);
-+
-+/* Compute the PC-relative offset to relative BPF program offset */
-+int get_offset(const struct jit_context *ctx, int off);
-+
-+/* dst = imm (32-bit) */
-+void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm);
-+
-+/* dst = src (32-bit) */
-+void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src);
-+
-+/* Validate ALU/ALU64 immediate range */
-+bool valid_alu_i(u8 op, s32 imm);
-+
-+/* Rewrite ALU/ALU64 immediate operation */
-+bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val);
-+
-+/* ALU immediate operation (32-bit) */
-+void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op);
-+
-+/* ALU register operation (32-bit) */
-+void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op);
-+
-+/* Atomic read-modify-write (32-bit) */
-+void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code);
-+
-+/* Atomic compare-and-exchange (32-bit) */
-+void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off);
-+
-+/* Swap bytes and truncate a register word or half word */
-+void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width);
-+
-+/* Validate JMP/JMP32 immediate range */
-+bool valid_jmp_i(u8 op, s32 imm);
-+
-+/* Prepare a PC-relative jump operation with immediate conditional */
-+void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width,
-+ u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off);
-+
-+/* Prepare a PC-relative jump operation with register conditional */
-+void setup_jmp_r(struct jit_context *ctx, bool same_reg,
-+ u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off);
-+
-+/* Finish a PC-relative jump operation */
-+int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off);
-+
-+/* Conditional JMP/JMP32 immediate */
-+void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op);
-+
-+/* Conditional JMP/JMP32 register */
-+void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op);
-+
-+/* Jump always */
-+int emit_ja(struct jit_context *ctx, s16 off);
-+
-+/* Jump to epilogue */
-+int emit_exit(struct jit_context *ctx);
-+
-+/*
-+ * Build program prologue to set up the stack and registers.
-+ * This function is implemented separately for 32-bit and 64-bit JITs.
-+ */
-+void build_prologue(struct jit_context *ctx);
-+
-+/*
-+ * Build the program epilogue to restore the stack and registers.
-+ * This function is implemented separately for 32-bit and 64-bit JITs.
-+ */
-+void build_epilogue(struct jit_context *ctx, int dest_reg);
-+
-+/*
-+ * Convert an eBPF instruction to native instruction, i.e
-+ * JITs an eBPF instruction.
-+ * Returns :
-+ * 0 - Successfully JITed an 8-byte eBPF instruction
-+ * >0 - Successfully JITed a 16-byte eBPF instruction
-+ * <0 - Failed to JIT.
-+ * This function is implemented separately for 32-bit and 64-bit JITs.
-+ */
-+int build_insn(const struct bpf_insn *insn, struct jit_context *ctx);
-+
-+#endif /* _BPF_JIT_COMP_H */
---- /dev/null
-+++ b/arch/mips/net/bpf_jit_comp32.c
-@@ -0,0 +1,1741 @@
-+// SPDX-License-Identifier: GPL-2.0-only
-+/*
-+ * Just-In-Time compiler for eBPF bytecode on MIPS.
-+ * Implementation of JIT functions for 32-bit CPUs.
-+ *
-+ * Copyright (c) 2021 Anyfi Networks AB.
-+ * Author: Johan Almbladh <johan.almbladh@gmail.com>
-+ *
-+ * Based on code and ideas from
-+ * Copyright (c) 2017 Cavium, Inc.
-+ * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
-+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
-+ */
-+
-+#include <linux/math64.h>
-+#include <linux/errno.h>
-+#include <linux/filter.h>
-+#include <linux/bpf.h>
-+#include <asm/cpu-features.h>
-+#include <asm/isa-rev.h>
-+#include <asm/uasm.h>
-+
-+#include "bpf_jit_comp.h"
-+
-+/* MIPS a4-a7 are not available in the o32 ABI */
-+#undef MIPS_R_A4
-+#undef MIPS_R_A5
-+#undef MIPS_R_A6
-+#undef MIPS_R_A7
-+
-+/* Stack is 8-byte aligned in o32 ABI */
-+#define MIPS_STACK_ALIGNMENT 8
-+
-+/*
-+ * The top 16 bytes of a stack frame is reserved for the callee in O32 ABI.
-+ * This corresponds to stack space for register arguments a0-a3.
-+ */
-+#define JIT_RESERVED_STACK 16
-+
-+/* Temporary 64-bit register used by JIT */
-+#define JIT_REG_TMP MAX_BPF_JIT_REG
-+
-+/*
-+ * Number of prologue bytes to skip when doing a tail call.
-+ * Tail call count (TCC) initialization (8 bytes) always, plus
-+ * R0-to-v0 assignment (4 bytes) if big endian.
-+ */
-+#ifdef __BIG_ENDIAN
-+#define JIT_TCALL_SKIP 12
-+#else
-+#define JIT_TCALL_SKIP 8
-+#endif
-+
-+/* CPU registers holding the callee return value */
-+#define JIT_RETURN_REGS \
-+ (BIT(MIPS_R_V0) | \
-+ BIT(MIPS_R_V1))
-+
-+/* CPU registers arguments passed to callee directly */
-+#define JIT_ARG_REGS \
-+ (BIT(MIPS_R_A0) | \
-+ BIT(MIPS_R_A1) | \
-+ BIT(MIPS_R_A2) | \
-+ BIT(MIPS_R_A3))
-+
-+/* CPU register arguments passed to callee on stack */
-+#define JIT_STACK_REGS \
-+ (BIT(MIPS_R_T0) | \
-+ BIT(MIPS_R_T1) | \
-+ BIT(MIPS_R_T2) | \
-+ BIT(MIPS_R_T3) | \
-+ BIT(MIPS_R_T4) | \
-+ BIT(MIPS_R_T5))
-+
-+/* Caller-saved CPU registers */
-+#define JIT_CALLER_REGS \
-+ (JIT_RETURN_REGS | \
-+ JIT_ARG_REGS | \
-+ JIT_STACK_REGS)
-+
-+/* Callee-saved CPU registers */
-+#define JIT_CALLEE_REGS \
-+ (BIT(MIPS_R_S0) | \
-+ BIT(MIPS_R_S1) | \
-+ BIT(MIPS_R_S2) | \
-+ BIT(MIPS_R_S3) | \
-+ BIT(MIPS_R_S4) | \
-+ BIT(MIPS_R_S5) | \
-+ BIT(MIPS_R_S6) | \
-+ BIT(MIPS_R_S7) | \
-+ BIT(MIPS_R_GP) | \
-+ BIT(MIPS_R_FP) | \
-+ BIT(MIPS_R_RA))
-+
-+/*
-+ * Mapping of 64-bit eBPF registers to 32-bit native MIPS registers.
-+ *
-+ * 1) Native register pairs are ordered according to CPU endiannes, following
-+ * the MIPS convention for passing 64-bit arguments and return values.
-+ * 2) The eBPF return value, arguments and callee-saved registers are mapped
-+ * to their native MIPS equivalents.
-+ * 3) Since the 32 highest bits in the eBPF FP register are always zero,
-+ * only one general-purpose register is actually needed for the mapping.
-+ * We use the fp register for this purpose, and map the highest bits to
-+ * the MIPS register r0 (zero).
-+ * 4) We use the MIPS gp and at registers as internal temporary registers
-+ * for constant blinding. The gp register is callee-saved.
-+ * 5) One 64-bit temporary register is mapped for use when sign-extending
-+ * immediate operands. MIPS registers t6-t9 are available to the JIT
-+ * for as temporaries when implementing complex 64-bit operations.
-+ *
-+ * With this scheme all eBPF registers are being mapped to native MIPS
-+ * registers without having to use any stack scratch space. The direct
-+ * register mapping (2) simplifies the handling of function calls.
-+ */
-+static const u8 bpf2mips32[][2] = {
-+ /* Return value from in-kernel function, and exit value from eBPF */
-+ [BPF_REG_0] = {MIPS_R_V1, MIPS_R_V0},
-+ /* Arguments from eBPF program to in-kernel function */
-+ [BPF_REG_1] = {MIPS_R_A1, MIPS_R_A0},
-+ [BPF_REG_2] = {MIPS_R_A3, MIPS_R_A2},
-+ /* Remaining arguments, to be passed on the stack per O32 ABI */
-+ [BPF_REG_3] = {MIPS_R_T1, MIPS_R_T0},
-+ [BPF_REG_4] = {MIPS_R_T3, MIPS_R_T2},
-+ [BPF_REG_5] = {MIPS_R_T5, MIPS_R_T4},
-+ /* Callee-saved registers that in-kernel function will preserve */
-+ [BPF_REG_6] = {MIPS_R_S1, MIPS_R_S0},
-+ [BPF_REG_7] = {MIPS_R_S3, MIPS_R_S2},
-+ [BPF_REG_8] = {MIPS_R_S5, MIPS_R_S4},
-+ [BPF_REG_9] = {MIPS_R_S7, MIPS_R_S6},
-+ /* Read-only frame pointer to access the eBPF stack */
-+#ifdef __BIG_ENDIAN
-+ [BPF_REG_FP] = {MIPS_R_FP, MIPS_R_ZERO},
-+#else
-+ [BPF_REG_FP] = {MIPS_R_ZERO, MIPS_R_FP},
-+#endif
-+ /* Temporary register for blinding constants */
-+ [BPF_REG_AX] = {MIPS_R_GP, MIPS_R_AT},
-+ /* Temporary register for internal JIT use */
-+ [JIT_REG_TMP] = {MIPS_R_T7, MIPS_R_T6},
-+};
-+
-+/* Get low CPU register for a 64-bit eBPF register mapping */
-+static inline u8 lo(const u8 reg[])
-+{
-+#ifdef __BIG_ENDIAN
-+ return reg[0];
-+#else
-+ return reg[1];
-+#endif
-+}
-+
-+/* Get high CPU register for a 64-bit eBPF register mapping */
-+static inline u8 hi(const u8 reg[])
-+{
-+#ifdef __BIG_ENDIAN
-+ return reg[1];
-+#else
-+ return reg[0];
-+#endif
-+}
-+
-+/*
-+ * Mark a 64-bit CPU register pair as clobbered, it needs to be
-+ * saved/restored by the program if callee-saved.
-+ */
-+static void clobber_reg64(struct jit_context *ctx, const u8 reg[])
-+{
-+ clobber_reg(ctx, reg[0]);
-+ clobber_reg(ctx, reg[1]);
-+}
-+
-+/* dst = imm (sign-extended) */
-+static void emit_mov_se_i64(struct jit_context *ctx, const u8 dst[], s32 imm)
-+{
-+ emit_mov_i(ctx, lo(dst), imm);
-+ if (imm < 0)
-+ emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1);
-+ else
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* Zero extension, if verifier does not do it for us */
-+static void emit_zext_ver(struct jit_context *ctx, const u8 dst[])
-+{
-+ if (!ctx->program->aux->verifier_zext) {
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ clobber_reg(ctx, hi(dst));
-+ }
-+}
-+
-+/* Load delay slot, if ISA mandates it */
-+static void emit_load_delay(struct jit_context *ctx)
-+{
-+ if (!cpu_has_mips_2_3_4_5_r)
-+ emit(ctx, nop);
-+}
-+
-+/* ALU immediate operation (64-bit) */
-+static void emit_alu_i64(struct jit_context *ctx,
-+ const u8 dst[], s32 imm, u8 op)
-+{
-+ u8 src = MIPS_R_T6;
-+
-+ /*
-+ * ADD/SUB with all but the max negative imm can be handled by
-+ * inverting the operation and the imm value, saving one insn.
-+ */
-+ if (imm > S32_MIN && imm < 0)
-+ switch (op) {
-+ case BPF_ADD:
-+ op = BPF_SUB;
-+ imm = -imm;
-+ break;
-+ case BPF_SUB:
-+ op = BPF_ADD;
-+ imm = -imm;
-+ break;
-+ }
-+
-+ /* Move immediate to temporary register */
-+ emit_mov_i(ctx, src, imm);
-+
-+ switch (op) {
-+ /* dst = dst + imm */
-+ case BPF_ADD:
-+ emit(ctx, addu, lo(dst), lo(dst), src);
-+ emit(ctx, sltu, MIPS_R_T9, lo(dst), src);
-+ emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9);
-+ if (imm < 0)
-+ emit(ctx, addiu, hi(dst), hi(dst), -1);
-+ break;
-+ /* dst = dst - imm */
-+ case BPF_SUB:
-+ emit(ctx, sltu, MIPS_R_T9, lo(dst), src);
-+ emit(ctx, subu, lo(dst), lo(dst), src);
-+ emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
-+ if (imm < 0)
-+ emit(ctx, addiu, hi(dst), hi(dst), 1);
-+ break;
-+ /* dst = dst | imm */
-+ case BPF_OR:
-+ emit(ctx, or, lo(dst), lo(dst), src);
-+ if (imm < 0)
-+ emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1);
-+ break;
-+ /* dst = dst & imm */
-+ case BPF_AND:
-+ emit(ctx, and, lo(dst), lo(dst), src);
-+ if (imm >= 0)
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ break;
-+ /* dst = dst ^ imm */
-+ case BPF_XOR:
-+ emit(ctx, xor, lo(dst), lo(dst), src);
-+ if (imm < 0) {
-+ emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst));
-+ emit(ctx, addiu, hi(dst), hi(dst), -1);
-+ }
-+ break;
-+ }
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* ALU register operation (64-bit) */
-+static void emit_alu_r64(struct jit_context *ctx,
-+ const u8 dst[], const u8 src[], u8 op)
-+{
-+ switch (BPF_OP(op)) {
-+ /* dst = dst + src */
-+ case BPF_ADD:
-+ if (src == dst) {
-+ emit(ctx, srl, MIPS_R_T9, lo(dst), 31);
-+ emit(ctx, addu, lo(dst), lo(dst), lo(dst));
-+ } else {
-+ emit(ctx, addu, lo(dst), lo(dst), lo(src));
-+ emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src));
-+ }
-+ emit(ctx, addu, hi(dst), hi(dst), hi(src));
-+ emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9);
-+ break;
-+ /* dst = dst - src */
-+ case BPF_SUB:
-+ emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src));
-+ emit(ctx, subu, lo(dst), lo(dst), lo(src));
-+ emit(ctx, subu, hi(dst), hi(dst), hi(src));
-+ emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
-+ break;
-+ /* dst = dst | src */
-+ case BPF_OR:
-+ emit(ctx, or, lo(dst), lo(dst), lo(src));
-+ emit(ctx, or, hi(dst), hi(dst), hi(src));
-+ break;
-+ /* dst = dst & src */
-+ case BPF_AND:
-+ emit(ctx, and, lo(dst), lo(dst), lo(src));
-+ emit(ctx, and, hi(dst), hi(dst), hi(src));
-+ break;
-+ /* dst = dst ^ src */
-+ case BPF_XOR:
-+ emit(ctx, xor, lo(dst), lo(dst), lo(src));
-+ emit(ctx, xor, hi(dst), hi(dst), hi(src));
-+ break;
-+ }
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* ALU invert (64-bit) */
-+static void emit_neg_i64(struct jit_context *ctx, const u8 dst[])
-+{
-+ emit(ctx, sltu, MIPS_R_T9, MIPS_R_ZERO, lo(dst));
-+ emit(ctx, subu, lo(dst), MIPS_R_ZERO, lo(dst));
-+ emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst));
-+ emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
-+
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* ALU shift immediate (64-bit) */
-+static void emit_shift_i64(struct jit_context *ctx,
-+ const u8 dst[], u32 imm, u8 op)
-+{
-+ switch (BPF_OP(op)) {
-+ /* dst = dst << imm */
-+ case BPF_LSH:
-+ if (imm < 32) {
-+ emit(ctx, srl, MIPS_R_T9, lo(dst), 32 - imm);
-+ emit(ctx, sll, lo(dst), lo(dst), imm);
-+ emit(ctx, sll, hi(dst), hi(dst), imm);
-+ emit(ctx, or, hi(dst), hi(dst), MIPS_R_T9);
-+ } else {
-+ emit(ctx, sll, hi(dst), lo(dst), imm - 32);
-+ emit(ctx, move, lo(dst), MIPS_R_ZERO);
-+ }
-+ break;
-+ /* dst = dst >> imm */
-+ case BPF_RSH:
-+ if (imm < 32) {
-+ emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm);
-+ emit(ctx, srl, lo(dst), lo(dst), imm);
-+ emit(ctx, srl, hi(dst), hi(dst), imm);
-+ emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9);
-+ } else {
-+ emit(ctx, srl, lo(dst), hi(dst), imm - 32);
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ }
-+ break;
-+ /* dst = dst >> imm (arithmetic) */
-+ case BPF_ARSH:
-+ if (imm < 32) {
-+ emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm);
-+ emit(ctx, srl, lo(dst), lo(dst), imm);
-+ emit(ctx, sra, hi(dst), hi(dst), imm);
-+ emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9);
-+ } else {
-+ emit(ctx, sra, lo(dst), hi(dst), imm - 32);
-+ emit(ctx, sra, hi(dst), hi(dst), 31);
-+ }
-+ break;
-+ }
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* ALU shift register (64-bit) */
-+static void emit_shift_r64(struct jit_context *ctx,
-+ const u8 dst[], u8 src, u8 op)
-+{
-+ u8 t1 = MIPS_R_T8;
-+ u8 t2 = MIPS_R_T9;
-+
-+ emit(ctx, andi, t1, src, 32); /* t1 = src & 32 */
-+ emit(ctx, beqz, t1, 16); /* PC += 16 if t1 == 0 */
-+ emit(ctx, nor, t2, src, MIPS_R_ZERO); /* t2 = ~src (delay slot) */
-+
-+ switch (BPF_OP(op)) {
-+ /* dst = dst << src */
-+ case BPF_LSH:
-+ /* Next: shift >= 32 */
-+ emit(ctx, sllv, hi(dst), lo(dst), src); /* dh = dl << src */
-+ emit(ctx, move, lo(dst), MIPS_R_ZERO); /* dl = 0 */
-+ emit(ctx, b, 20); /* PC += 20 */
-+ /* +16: shift < 32 */
-+ emit(ctx, srl, t1, lo(dst), 1); /* t1 = dl >> 1 */
-+ emit(ctx, srlv, t1, t1, t2); /* t1 = t1 >> t2 */
-+ emit(ctx, sllv, lo(dst), lo(dst), src); /* dl = dl << src */
-+ emit(ctx, sllv, hi(dst), hi(dst), src); /* dh = dh << src */
-+ emit(ctx, or, hi(dst), hi(dst), t1); /* dh = dh | t1 */
-+ break;
-+ /* dst = dst >> src */
-+ case BPF_RSH:
-+ /* Next: shift >= 32 */
-+ emit(ctx, srlv, lo(dst), hi(dst), src); /* dl = dh >> src */
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO); /* dh = 0 */
-+ emit(ctx, b, 20); /* PC += 20 */
-+ /* +16: shift < 32 */
-+ emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */
-+ emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */
-+ emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >> src */
-+ emit(ctx, srlv, hi(dst), hi(dst), src); /* dh = dh >> src */
-+ emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */
-+ break;
-+ /* dst = dst >> src (arithmetic) */
-+ case BPF_ARSH:
-+ /* Next: shift >= 32 */
-+ emit(ctx, srav, lo(dst), hi(dst), src); /* dl = dh >>a src */
-+ emit(ctx, sra, hi(dst), hi(dst), 31); /* dh = dh >>a 31 */
-+ emit(ctx, b, 20); /* PC += 20 */
-+ /* +16: shift < 32 */
-+ emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */
-+ emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */
-+ emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >>a src */
-+ emit(ctx, srav, hi(dst), hi(dst), src); /* dh = dh >> src */
-+ emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */
-+ break;
-+ }
-+
-+ /* +20: Done */
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* ALU mul immediate (64x32-bit) */
-+static void emit_mul_i64(struct jit_context *ctx, const u8 dst[], s32 imm)
-+{
-+ u8 src = MIPS_R_T6;
-+ u8 tmp = MIPS_R_T9;
-+
-+ switch (imm) {
-+ /* dst = dst * 1 is a no-op */
-+ case 1:
-+ break;
-+ /* dst = dst * -1 */
-+ case -1:
-+ emit_neg_i64(ctx, dst);
-+ break;
-+ case 0:
-+ emit_mov_r(ctx, lo(dst), MIPS_R_ZERO);
-+ emit_mov_r(ctx, hi(dst), MIPS_R_ZERO);
-+ break;
-+ /* Full 64x32 multiply */
-+ default:
-+ /* hi(dst) = hi(dst) * src(imm) */
-+ emit_mov_i(ctx, src, imm);
-+ if (cpu_has_mips32r1 || cpu_has_mips32r6) {
-+ emit(ctx, mul, hi(dst), hi(dst), src);
-+ } else {
-+ emit(ctx, multu, hi(dst), src);
-+ emit(ctx, mflo, hi(dst));
-+ }
-+
-+ /* hi(dst) = hi(dst) - lo(dst) */
-+ if (imm < 0)
-+ emit(ctx, subu, hi(dst), hi(dst), lo(dst));
-+
-+ /* tmp = lo(dst) * src(imm) >> 32 */
-+ /* lo(dst) = lo(dst) * src(imm) */
-+ if (cpu_has_mips32r6) {
-+ emit(ctx, muhu, tmp, lo(dst), src);
-+ emit(ctx, mulu, lo(dst), lo(dst), src);
-+ } else {
-+ emit(ctx, multu, lo(dst), src);
-+ emit(ctx, mflo, lo(dst));
-+ emit(ctx, mfhi, tmp);
-+ }
-+
-+ /* hi(dst) += tmp */
-+ emit(ctx, addu, hi(dst), hi(dst), tmp);
-+ clobber_reg64(ctx, dst);
-+ break;
-+ }
-+}
-+
-+/* ALU mul register (64x64-bit) */
-+static void emit_mul_r64(struct jit_context *ctx,
-+ const u8 dst[], const u8 src[])
-+{
-+ u8 acc = MIPS_R_T8;
-+ u8 tmp = MIPS_R_T9;
-+
-+ /* acc = hi(dst) * lo(src) */
-+ if (cpu_has_mips32r1 || cpu_has_mips32r6) {
-+ emit(ctx, mul, acc, hi(dst), lo(src));
-+ } else {
-+ emit(ctx, multu, hi(dst), lo(src));
-+ emit(ctx, mflo, acc);
-+ }
-+
-+ /* tmp = lo(dst) * hi(src) */
-+ if (cpu_has_mips32r1 || cpu_has_mips32r6) {
-+ emit(ctx, mul, tmp, lo(dst), hi(src));
-+ } else {
-+ emit(ctx, multu, lo(dst), hi(src));
-+ emit(ctx, mflo, tmp);
-+ }
-+
-+ /* acc += tmp */
-+ emit(ctx, addu, acc, acc, tmp);
-+
-+ /* tmp = lo(dst) * lo(src) >> 32 */
-+ /* lo(dst) = lo(dst) * lo(src) */
-+ if (cpu_has_mips32r6) {
-+ emit(ctx, muhu, tmp, lo(dst), lo(src));
-+ emit(ctx, mulu, lo(dst), lo(dst), lo(src));
-+ } else {
-+ emit(ctx, multu, lo(dst), lo(src));
-+ emit(ctx, mflo, lo(dst));
-+ emit(ctx, mfhi, tmp);
-+ }
-+
-+ /* hi(dst) = acc + tmp */
-+ emit(ctx, addu, hi(dst), acc, tmp);
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* Helper function for 64-bit modulo */
-+static u64 jit_mod64(u64 a, u64 b)
-+{
-+ u64 rem;
-+
-+ div64_u64_rem(a, b, &rem);
-+ return rem;
-+}
-+
-+/* ALU div/mod register (64-bit) */
-+static void emit_divmod_r64(struct jit_context *ctx,
-+ const u8 dst[], const u8 src[], u8 op)
-+{
-+ const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */
-+ const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */
-+ const u8 *r2 = bpf2mips32[BPF_REG_2]; /* Mapped to a2-a3 */
-+ int exclude, k;
-+ u32 addr = 0;
-+
-+ /* Push caller-saved registers on stack */
-+ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ 0, JIT_RESERVED_STACK);
-+
-+ /* Put 64-bit arguments 1 and 2 in registers a0-a3 */
-+ for (k = 0; k < 2; k++) {
-+ emit(ctx, move, MIPS_R_T9, src[k]);
-+ emit(ctx, move, r1[k], dst[k]);
-+ emit(ctx, move, r2[k], MIPS_R_T9);
-+ }
-+
-+ /* Emit function call */
-+ switch (BPF_OP(op)) {
-+ /* dst = dst / src */
-+ case BPF_DIV:
-+ addr = (u32)&div64_u64;
-+ break;
-+ /* dst = dst % src */
-+ case BPF_MOD:
-+ addr = (u32)&jit_mod64;
-+ break;
-+ }
-+ emit_mov_i(ctx, MIPS_R_T9, addr);
-+ emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
-+ emit(ctx, nop); /* Delay slot */
-+
-+ /* Store the 64-bit result in dst */
-+ emit(ctx, move, dst[0], r0[0]);
-+ emit(ctx, move, dst[1], r0[1]);
-+
-+ /* Restore caller-saved registers, excluding the computed result */
-+ exclude = BIT(lo(dst)) | BIT(hi(dst));
-+ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ exclude, JIT_RESERVED_STACK);
-+ emit_load_delay(ctx);
-+
-+ clobber_reg64(ctx, dst);
-+ clobber_reg(ctx, MIPS_R_V0);
-+ clobber_reg(ctx, MIPS_R_V1);
-+ clobber_reg(ctx, MIPS_R_RA);
-+}
-+
-+/* Swap bytes in a register word */
-+static void emit_swap8_r(struct jit_context *ctx, u8 dst, u8 src, u8 mask)
-+{
-+ u8 tmp = MIPS_R_T9;
-+
-+ emit(ctx, and, tmp, src, mask); /* tmp = src & 0x00ff00ff */
-+ emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */
-+ emit(ctx, srl, dst, src, 8); /* dst = src >> 8 */
-+ emit(ctx, and, dst, dst, mask); /* dst = dst & 0x00ff00ff */
-+ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
-+}
-+
-+/* Swap half words in a register word */
-+static void emit_swap16_r(struct jit_context *ctx, u8 dst, u8 src)
-+{
-+ u8 tmp = MIPS_R_T9;
-+
-+ emit(ctx, sll, tmp, src, 16); /* tmp = src << 16 */
-+ emit(ctx, srl, dst, src, 16); /* dst = src >> 16 */
-+ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
-+}
-+
-+/* Swap bytes and truncate a register double word, word or half word */
-+static void emit_bswap_r64(struct jit_context *ctx, const u8 dst[], u32 width)
-+{
-+ u8 tmp = MIPS_R_T8;
-+
-+ switch (width) {
-+ /* Swap bytes in a double word */
-+ case 64:
-+ if (cpu_has_mips32r2 || cpu_has_mips32r6) {
-+ emit(ctx, rotr, tmp, hi(dst), 16);
-+ emit(ctx, rotr, hi(dst), lo(dst), 16);
-+ emit(ctx, wsbh, lo(dst), tmp);
-+ emit(ctx, wsbh, hi(dst), hi(dst));
-+ } else {
-+ emit_swap16_r(ctx, tmp, lo(dst));
-+ emit_swap16_r(ctx, lo(dst), hi(dst));
-+ emit(ctx, move, hi(dst), tmp);
-+
-+ emit(ctx, lui, tmp, 0xff); /* tmp = 0x00ff0000 */
-+ emit(ctx, ori, tmp, tmp, 0xff); /* tmp = 0x00ff00ff */
-+ emit_swap8_r(ctx, lo(dst), lo(dst), tmp);
-+ emit_swap8_r(ctx, hi(dst), hi(dst), tmp);
-+ }
-+ break;
-+ /* Swap bytes in a word */
-+ /* Swap bytes in a half word */
-+ case 32:
-+ case 16:
-+ emit_bswap_r(ctx, lo(dst), width);
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ break;
-+ }
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* Truncate a register double word, word or half word */
-+static void emit_trunc_r64(struct jit_context *ctx, const u8 dst[], u32 width)
-+{
-+ switch (width) {
-+ case 64:
-+ break;
-+ /* Zero-extend a word */
-+ case 32:
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ clobber_reg(ctx, hi(dst));
-+ break;
-+ /* Zero-extend a half word */
-+ case 16:
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ emit(ctx, andi, lo(dst), lo(dst), 0xffff);
-+ clobber_reg64(ctx, dst);
-+ break;
-+ }
-+}
-+
-+/* Load operation: dst = *(size*)(src + off) */
-+static void emit_ldx(struct jit_context *ctx,
-+ const u8 dst[], u8 src, s16 off, u8 size)
-+{
-+ switch (size) {
-+ /* Load a byte */
-+ case BPF_B:
-+ emit(ctx, lbu, lo(dst), off, src);
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ break;
-+ /* Load a half word */
-+ case BPF_H:
-+ emit(ctx, lhu, lo(dst), off, src);
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ break;
-+ /* Load a word */
-+ case BPF_W:
-+ emit(ctx, lw, lo(dst), off, src);
-+ emit(ctx, move, hi(dst), MIPS_R_ZERO);
-+ break;
-+ /* Load a double word */
-+ case BPF_DW:
-+ if (dst[1] == src) {
-+ emit(ctx, lw, dst[0], off + 4, src);
-+ emit(ctx, lw, dst[1], off, src);
-+ } else {
-+ emit(ctx, lw, dst[1], off, src);
-+ emit(ctx, lw, dst[0], off + 4, src);
-+ }
-+ emit_load_delay(ctx);
-+ break;
-+ }
-+ clobber_reg64(ctx, dst);
-+}
-+
-+/* Store operation: *(size *)(dst + off) = src */
-+static void emit_stx(struct jit_context *ctx,
-+ const u8 dst, const u8 src[], s16 off, u8 size)
-+{
-+ switch (size) {
-+ /* Store a byte */
-+ case BPF_B:
-+ emit(ctx, sb, lo(src), off, dst);
-+ break;
-+ /* Store a half word */
-+ case BPF_H:
-+ emit(ctx, sh, lo(src), off, dst);
-+ break;
-+ /* Store a word */
-+ case BPF_W:
-+ emit(ctx, sw, lo(src), off, dst);
-+ break;
-+ /* Store a double word */
-+ case BPF_DW:
-+ emit(ctx, sw, src[1], off, dst);
-+ emit(ctx, sw, src[0], off + 4, dst);
-+ break;
-+ }
-+}
-+
-+/* Atomic read-modify-write (32-bit, non-ll/sc fallback) */
-+static void emit_atomic_r32(struct jit_context *ctx,
-+ u8 dst, u8 src, s16 off, u8 code)
-+{
-+ u32 exclude = 0;
-+ u32 addr = 0;
-+
-+ /* Push caller-saved registers on stack */
-+ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ 0, JIT_RESERVED_STACK);
-+ /*
-+ * Argument 1: dst+off if xchg, otherwise src, passed in register a0
-+ * Argument 2: src if xchg, othersize dst+off, passed in register a1
-+ */
-+ emit(ctx, move, MIPS_R_T9, dst);
-+ emit(ctx, move, MIPS_R_A0, src);
-+ emit(ctx, addiu, MIPS_R_A1, MIPS_R_T9, off);
-+
-+ /* Emit function call */
-+ switch (code) {
-+ case BPF_ADD:
-+ addr = (u32)&atomic_add;
-+ break;
-+ case BPF_SUB:
-+ addr = (u32)&atomic_sub;
-+ break;
-+ case BPF_OR:
-+ addr = (u32)&atomic_or;
-+ break;
-+ case BPF_AND:
-+ addr = (u32)&atomic_and;
-+ break;
-+ case BPF_XOR:
-+ addr = (u32)&atomic_xor;
-+ break;
-+ }
-+ emit_mov_i(ctx, MIPS_R_T9, addr);
-+ emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
-+ emit(ctx, nop); /* Delay slot */
-+
-+ /* Restore caller-saved registers, except any fetched value */
-+ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ exclude, JIT_RESERVED_STACK);
-+ emit_load_delay(ctx);
-+ clobber_reg(ctx, MIPS_R_RA);
-+}
-+
-+/* Atomic read-modify-write (64-bit) */
-+static void emit_atomic_r64(struct jit_context *ctx,
-+ u8 dst, const u8 src[], s16 off, u8 code)
-+{
-+ const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */
-+ u32 exclude = 0;
-+ u32 addr = 0;
-+
-+ /* Push caller-saved registers on stack */
-+ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ 0, JIT_RESERVED_STACK);
-+ /*
-+ * Argument 1: 64-bit src, passed in registers a0-a1
-+ * Argument 2: 32-bit dst+off, passed in register a2
-+ */
-+ emit(ctx, move, MIPS_R_T9, dst);
-+ emit(ctx, move, r1[0], src[0]);
-+ emit(ctx, move, r1[1], src[1]);
-+ emit(ctx, addiu, MIPS_R_A2, MIPS_R_T9, off);
-+
-+ /* Emit function call */
-+ switch (code) {
-+ case BPF_ADD:
-+ addr = (u32)&atomic64_add;
-+ break;
-+ case BPF_SUB:
-+ addr = (u32)&atomic64_sub;
-+ break;
-+ case BPF_OR:
-+ addr = (u32)&atomic64_or;
-+ break;
-+ case BPF_AND:
-+ addr = (u32)&atomic64_and;
-+ break;
-+ case BPF_XOR:
-+ addr = (u32)&atomic64_xor;
-+ break;
-+ }
-+ emit_mov_i(ctx, MIPS_R_T9, addr);
-+ emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
-+ emit(ctx, nop); /* Delay slot */
-+
-+ /* Restore caller-saved registers, except any fetched value */
-+ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
-+ exclude, JIT_RESERVED_STACK);
-+ emit_load_delay(ctx);
-+ clobber_reg(ctx, MIPS_R_RA);
-+}
-+
-+/*
-+ * Conditional movz or an emulated equivalent.
-+ * Note that the rs register may be modified.
-+ */
-+static void emit_movz_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt)
-+{
-+ if (cpu_has_mips_2) {
-+ emit(ctx, movz, rd, rs, rt); /* rd = rt ? rd : rs */
-+ } else if (cpu_has_mips32r6) {
-+ if (rs != MIPS_R_ZERO)
-+ emit(ctx, seleqz, rs, rs, rt); /* rs = 0 if rt == 0 */
-+ emit(ctx, selnez, rd, rd, rt); /* rd = 0 if rt != 0 */
-+ if (rs != MIPS_R_ZERO)
-+ emit(ctx, or, rd, rd, rs); /* rd = rd | rs */
-+ } else {
-+ emit(ctx, bnez, rt, 8); /* PC += 8 if rd != 0 */
-+ emit(ctx, nop); /* +0: delay slot */
-+ emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */
-+ }
-+ clobber_reg(ctx, rd);
-+ clobber_reg(ctx, rs);
-+}
-+
-+/*
-+ * Conditional movn or an emulated equivalent.
-+ * Note that the rs register may be modified.
-+ */
-+static void emit_movn_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt)
-+{
-+ if (cpu_has_mips_2) {
-+ emit(ctx, movn, rd, rs, rt); /* rd = rt ? rs : rd */
-+ } else if (cpu_has_mips32r6) {
-+ if (rs != MIPS_R_ZERO)
-+ emit(ctx, selnez, rs, rs, rt); /* rs = 0 if rt == 0 */
-+ emit(ctx, seleqz, rd, rd, rt); /* rd = 0 if rt != 0 */
-+ if (rs != MIPS_R_ZERO)
-+ emit(ctx, or, rd, rd, rs); /* rd = rd | rs */
-+ } else {
-+ emit(ctx, beqz, rt, 8); /* PC += 8 if rd == 0 */
-+ emit(ctx, nop); /* +0: delay slot */
-+ emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */
-+ }
-+ clobber_reg(ctx, rd);
-+ clobber_reg(ctx, rs);
-+}
-+
-+/* Emulation of 64-bit sltiu rd, rs, imm, where imm may be S32_MAX + 1 */
-+static void emit_sltiu_r64(struct jit_context *ctx, u8 rd,
-+ const u8 rs[], s64 imm)
-+{
-+ u8 tmp = MIPS_R_T9;
-+
-+ if (imm < 0) {
-+ emit_mov_i(ctx, rd, imm); /* rd = imm */
-+ emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */
-+ emit(ctx, sltiu, tmp, hi(rs), -1); /* tmp = rsh < ~0U */
-+ emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */
-+ } else { /* imm >= 0 */
-+ if (imm > 0x7fff) {
-+ emit_mov_i(ctx, rd, (s32)imm); /* rd = imm */
-+ emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */
-+ } else {
-+ emit(ctx, sltiu, rd, lo(rs), imm); /* rd = rsl < imm */
-+ }
-+ emit_movn_r(ctx, rd, MIPS_R_ZERO, hi(rs)); /* rd = 0 if rsh */
-+ }
-+}
-+
-+/* Emulation of 64-bit sltu rd, rs, rt */
-+static void emit_sltu_r64(struct jit_context *ctx, u8 rd,
-+ const u8 rs[], const u8 rt[])
-+{
-+ u8 tmp = MIPS_R_T9;
-+
-+ emit(ctx, sltu, rd, lo(rs), lo(rt)); /* rd = rsl < rtl */
-+ emit(ctx, subu, tmp, hi(rs), hi(rt)); /* tmp = rsh - rth */
-+ emit_movn_r(ctx, rd, MIPS_R_ZERO, tmp); /* rd = 0 if tmp != 0 */
-+ emit(ctx, sltu, tmp, hi(rs), hi(rt)); /* tmp = rsh < rth */
-+ emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */
-+}
-+
-+/* Emulation of 64-bit slti rd, rs, imm, where imm may be S32_MAX + 1 */
-+static void emit_slti_r64(struct jit_context *ctx, u8 rd,
-+ const u8 rs[], s64 imm)
-+{
-+ u8 t1 = MIPS_R_T8;
-+ u8 t2 = MIPS_R_T9;
-+ u8 cmp;
-+
-+ /*
-+ * if ((rs < 0) ^ (imm < 0)) t1 = imm >u rsl
-+ * else t1 = rsl <u imm
-+ */
-+ emit_mov_i(ctx, rd, (s32)imm);
-+ emit(ctx, sltu, t1, lo(rs), rd); /* t1 = rsl <u imm */
-+ emit(ctx, sltu, t2, rd, lo(rs)); /* t2 = imm <u rsl */
-+ emit(ctx, srl, rd, hi(rs), 31); /* rd = rsh >> 31 */
-+ if (imm < 0)
-+ emit_movz_r(ctx, t1, t2, rd); /* t1 = rd ? t1 : t2 */
-+ else
-+ emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */
-+ /*
-+ * if ((imm < 0 && rsh != 0xffffffff) ||
-+ * (imm >= 0 && rsh != 0))
-+ * t1 = 0
-+ */
-+ if (imm < 0) {
-+ emit(ctx, addiu, rd, hi(rs), 1); /* rd = rsh + 1 */
-+ cmp = rd;
-+ } else { /* imm >= 0 */
-+ cmp = hi(rs);
-+ }
-+ emit_movn_r(ctx, t1, MIPS_R_ZERO, cmp); /* t1 = 0 if cmp != 0 */
-+
-+ /*
-+ * if (imm < 0) rd = rsh < -1
-+ * else rd = rsh != 0
-+ * rd = rd | t1
-+ */
-+ emit(ctx, slti, rd, hi(rs), imm < 0 ? -1 : 0); /* rd = rsh < hi(imm) */
-+ emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */
-+}
-+
-+/* Emulation of 64-bit(slt rd, rs, rt) */
-+static void emit_slt_r64(struct jit_context *ctx, u8 rd,
-+ const u8 rs[], const u8 rt[])
-+{
-+ u8 t1 = MIPS_R_T7;
-+ u8 t2 = MIPS_R_T8;
-+ u8 t3 = MIPS_R_T9;
-+
-+ /*
-+ * if ((rs < 0) ^ (rt < 0)) t1 = rtl <u rsl
-+ * else t1 = rsl <u rtl
-+ * if (rsh == rth) t1 = 0
-+ */
-+ emit(ctx, sltu, t1, lo(rs), lo(rt)); /* t1 = rsl <u rtl */
-+ emit(ctx, sltu, t2, lo(rt), lo(rs)); /* t2 = rtl <u rsl */
-+ emit(ctx, xor, t3, hi(rs), hi(rt)); /* t3 = rlh ^ rth */
-+ emit(ctx, srl, rd, t3, 31); /* rd = t3 >> 31 */
-+ emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */
-+ emit_movn_r(ctx, t1, MIPS_R_ZERO, t3); /* t1 = 0 if t3 != 0 */
-+
-+ /* rd = (rsh < rth) | t1 */
-+ emit(ctx, slt, rd, hi(rs), hi(rt)); /* rd = rsh <s rth */
-+ emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */
-+}
-+
-+/* Jump immediate (64-bit) */
-+static void emit_jmp_i64(struct jit_context *ctx,
-+ const u8 dst[], s32 imm, s32 off, u8 op)
-+{
-+ u8 tmp = MIPS_R_T6;
-+
-+ switch (op) {
-+ /* No-op, used internally for branch optimization */
-+ case JIT_JNOP:
-+ break;
-+ /* PC += off if dst == imm */
-+ /* PC += off if dst != imm */
-+ case BPF_JEQ:
-+ case BPF_JNE:
-+ if (imm >= -0x7fff && imm <= 0x8000) {
-+ emit(ctx, addiu, tmp, lo(dst), -imm);
-+ } else if ((u32)imm <= 0xffff) {
-+ emit(ctx, xori, tmp, lo(dst), imm);
-+ } else { /* Register fallback */
-+ emit_mov_i(ctx, tmp, imm);
-+ emit(ctx, xor, tmp, lo(dst), tmp);
-+ }
-+ if (imm < 0) { /* Compare sign extension */
-+ emit(ctx, addu, MIPS_R_T9, hi(dst), 1);
-+ emit(ctx, or, tmp, tmp, MIPS_R_T9);
-+ } else { /* Compare zero extension */
-+ emit(ctx, or, tmp, tmp, hi(dst));
-+ }
-+ if (op == BPF_JEQ)
-+ emit(ctx, beqz, tmp, off);
-+ else /* BPF_JNE */
-+ emit(ctx, bnez, tmp, off);
-+ break;
-+ /* PC += off if dst & imm */
-+ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
-+ case BPF_JSET:
-+ case JIT_JNSET:
-+ if ((u32)imm <= 0xffff) {
-+ emit(ctx, andi, tmp, lo(dst), imm);
-+ } else { /* Register fallback */
-+ emit_mov_i(ctx, tmp, imm);
-+ emit(ctx, and, tmp, lo(dst), tmp);
-+ }
-+ if (imm < 0) /* Sign-extension pulls in high word */
-+ emit(ctx, or, tmp, tmp, hi(dst));
-+ if (op == BPF_JSET)
-+ emit(ctx, bnez, tmp, off);
-+ else /* JIT_JNSET */
-+ emit(ctx, beqz, tmp, off);
-+ break;
-+ /* PC += off if dst > imm */
-+ case BPF_JGT:
-+ emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1);
-+ emit(ctx, beqz, tmp, off);
-+ break;
-+ /* PC += off if dst >= imm */
-+ case BPF_JGE:
-+ emit_sltiu_r64(ctx, tmp, dst, imm);
-+ emit(ctx, beqz, tmp, off);
-+ break;
-+ /* PC += off if dst < imm */
-+ case BPF_JLT:
-+ emit_sltiu_r64(ctx, tmp, dst, imm);
-+ emit(ctx, bnez, tmp, off);
-+ break;
-+ /* PC += off if dst <= imm */
-+ case BPF_JLE:
-+ emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1);
-+ emit(ctx, bnez, tmp, off);
-+ break;
-+ /* PC += off if dst > imm (signed) */
-+ case BPF_JSGT:
-+ emit_slti_r64(ctx, tmp, dst, (s64)imm + 1);
-+ emit(ctx, beqz, tmp, off);
-+ break;
-+ /* PC += off if dst >= imm (signed) */
-+ case BPF_JSGE:
-+ emit_slti_r64(ctx, tmp, dst, imm);
-+ emit(ctx, beqz, tmp, off);
-+ break;
-+ /* PC += off if dst < imm (signed) */
-+ case BPF_JSLT:
-+ emit_slti_r64(ctx, tmp, dst, imm);
-+ emit(ctx, bnez, tmp, off);
-+ break;
-+ /* PC += off if dst <= imm (signed) */
-+ case BPF_JSLE:
-+ emit_slti_r64(ctx, tmp, dst, (s64)imm + 1);
-+ emit(ctx, bnez, tmp, off);
-+ break;
-+ }
-+}
-+
-+/* Jump register (64-bit) */
-+static void emit_jmp_r64(struct jit_context *ctx,
-+ const u8 dst[], const u8 src[], s32 off, u8 op)
-+{
-+ u8 t1 = MIPS_R_T6;
-+ u8 t2 = MIPS_R_T7;
-+
-+ switch (op) {
-+ /* No-op, used internally for branch optimization */
-+ case JIT_JNOP:
-+ break;
-+ /* PC += off if dst == src */
-+ /* PC += off if dst != src */
-+ case BPF_JEQ:
-+ case BPF_JNE:
-+ emit(ctx, subu, t1, lo(dst), lo(src));
-+ emit(ctx, subu, t2, hi(dst), hi(src));
-+ emit(ctx, or, t1, t1, t2);
-+ if (op == BPF_JEQ)
-+ emit(ctx, beqz, t1, off);
-+ else /* BPF_JNE */
-+ emit(ctx, bnez, t1, off);
-+ break;
-+ /* PC += off if dst & src */
-+ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
-+ case BPF_JSET:
-+ case JIT_JNSET:
-+ emit(ctx, and, t1, lo(dst), lo(src));
-+ emit(ctx, and, t2, hi(dst), hi(src));
-+ emit(ctx, or, t1, t1, t2);
-+ if (op == BPF_JSET)
-+ emit(ctx, bnez, t1, off);
-+ else /* JIT_JNSET */
-+ emit(ctx, beqz, t1, off);
-+ break;
-+ /* PC += off if dst > src */
-+ case BPF_JGT:
-+ emit_sltu_r64(ctx, t1, src, dst);
-+ emit(ctx, bnez, t1, off);
-+ break;
-+ /* PC += off if dst >= src */
-+ case BPF_JGE:
-+ emit_sltu_r64(ctx, t1, dst, src);
-+ emit(ctx, beqz, t1, off);
-+ break;
-+ /* PC += off if dst < src */
-+ case BPF_JLT:
-+ emit_sltu_r64(ctx, t1, dst, src);
-+ emit(ctx, bnez, t1, off);
-+ break;
-+ /* PC += off if dst <= src */
-+ case BPF_JLE:
-+ emit_sltu_r64(ctx, t1, src, dst);
-+ emit(ctx, beqz, t1, off);
-+ break;
-+ /* PC += off if dst > src (signed) */
-+ case BPF_JSGT:
-+ emit_slt_r64(ctx, t1, src, dst);
-+ emit(ctx, bnez, t1, off);
-+ break;
-+ /* PC += off if dst >= src (signed) */
-+ case BPF_JSGE:
-+ emit_slt_r64(ctx, t1, dst, src);
-+ emit(ctx, beqz, t1, off);
-+ break;
-+ /* PC += off if dst < src (signed) */
-+ case BPF_JSLT:
-+ emit_slt_r64(ctx, t1, dst, src);
-+ emit(ctx, bnez, t1, off);
-+ break;
-+ /* PC += off if dst <= src (signed) */
-+ case BPF_JSLE:
-+ emit_slt_r64(ctx, t1, src, dst);
-+ emit(ctx, beqz, t1, off);
-+ break;
-+ }
-+}
-+
-+/* Function call */
-+static int emit_call(struct jit_context *ctx, const struct bpf_insn *insn)
-+{
-+ bool fixed;
-+ u64 addr;
-+
-+ /* Decode the call address */
-+ if (bpf_jit_get_func_addr(ctx->program, insn, false,
-+ &addr, &fixed) < 0)
-+ return -1;
-+ if (!fixed)
-+ return -1;
-+
-+ /* Push stack arguments */
-+ push_regs(ctx, JIT_STACK_REGS, 0, JIT_RESERVED_STACK);
-+
-+ /* Emit function call */
-+ emit_mov_i(ctx, MIPS_R_T9, addr);
-+ emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
-+ emit(ctx, nop); /* Delay slot */
-+
-+ clobber_reg(ctx, MIPS_R_RA);
-+ clobber_reg(ctx, MIPS_R_V0);
-+ clobber_reg(ctx, MIPS_R_V1);
-+ return 0;
-+}
-+
-+/* Function tail call */
-+static int emit_tail_call(struct jit_context *ctx)
-+{
-+ u8 ary = lo(bpf2mips32[BPF_REG_2]);
-+ u8 ind = lo(bpf2mips32[BPF_REG_3]);
-+ u8 t1 = MIPS_R_T8;
-+ u8 t2 = MIPS_R_T9;
-+ int off;
-+
-+ /*
-+ * Tail call:
-+ * eBPF R1 - function argument (context ptr), passed in a0-a1
-+ * eBPF R2 - ptr to object with array of function entry points
-+ * eBPF R3 - array index of function to be called
-+ * stack[sz] - remaining tail call count, initialized in prologue
-+ */
-+
-+ /* if (ind >= ary->map.max_entries) goto out */
-+ off = offsetof(struct bpf_array, map.max_entries);
-+ if (off > 0x7fff)
-+ return -1;
-+ emit(ctx, lw, t1, off, ary); /* t1 = ary->map.max_entries*/
-+ emit_load_delay(ctx); /* Load delay slot */
-+ emit(ctx, sltu, t1, ind, t1); /* t1 = ind < t1 */
-+ emit(ctx, beqz, t1, get_offset(ctx, 1)); /* PC += off(1) if t1 == 0 */
-+ /* (next insn delay slot) */
-+ /* if (TCC-- <= 0) goto out */
-+ emit(ctx, lw, t2, ctx->stack_size, MIPS_R_SP); /* t2 = *(SP + size) */
-+ emit_load_delay(ctx); /* Load delay slot */
-+ emit(ctx, blez, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 < 0 */
-+ emit(ctx, addiu, t2, t2, -1); /* t2-- (delay slot) */
-+ emit(ctx, sw, t2, ctx->stack_size, MIPS_R_SP); /* *(SP + size) = t2 */
-+
-+ /* prog = ary->ptrs[ind] */
-+ off = offsetof(struct bpf_array, ptrs);
-+ if (off > 0x7fff)
-+ return -1;
-+ emit(ctx, sll, t1, ind, 2); /* t1 = ind << 2 */
-+ emit(ctx, addu, t1, t1, ary); /* t1 += ary */
-+ emit(ctx, lw, t2, off, t1); /* t2 = *(t1 + off) */
-+ emit_load_delay(ctx); /* Load delay slot */
-+
-+ /* if (prog == 0) goto out */
-+ emit(ctx, beqz, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 == 0 */
-+ emit(ctx, nop); /* Delay slot */
-+
-+ /* func = prog->bpf_func + 8 (prologue skip offset) */
-+ off = offsetof(struct bpf_prog, bpf_func);
-+ if (off > 0x7fff)
-+ return -1;
-+ emit(ctx, lw, t1, off, t2); /* t1 = *(t2 + off) */
-+ emit_load_delay(ctx); /* Load delay slot */
-+ emit(ctx, addiu, t1, t1, JIT_TCALL_SKIP); /* t1 += skip (8 or 12) */
-+
-+ /* goto func */
-+ build_epilogue(ctx, t1);
-+ return 0;
-+}
-+
-+/*
-+ * Stack frame layout for a JITed program (stack grows down).
-+ *
-+ * Higher address : Caller's stack frame :
-+ * :----------------------------:
-+ * : 64-bit eBPF args r3-r5 :
-+ * :----------------------------:
-+ * : Reserved / tail call count :
-+ * +============================+ <--- MIPS sp before call
-+ * | Callee-saved registers, |
-+ * | including RA and FP |
-+ * +----------------------------+ <--- eBPF FP (MIPS zero,fp)
-+ * | Local eBPF variables |
-+ * | allocated by program |
-+ * +----------------------------+
-+ * | Reserved for caller-saved |
-+ * | registers |
-+ * +----------------------------+
-+ * | Reserved for 64-bit eBPF |
-+ * | args r3-r5 & args passed |
-+ * | on stack in kernel calls |
-+ * Lower address +============================+ <--- MIPS sp
-+ */
-+
-+/* Build program prologue to set up the stack and registers */
-+void build_prologue(struct jit_context *ctx)
-+{
-+ const u8 *r1 = bpf2mips32[BPF_REG_1];
-+ const u8 *fp = bpf2mips32[BPF_REG_FP];
-+ int stack, saved, locals, reserved;
-+
-+ /*
-+ * The first two instructions initialize TCC in the reserved (for us)
-+ * 16-byte area in the parent's stack frame. On a tail call, the
-+ * calling function jumps into the prologue after these instructions.
-+ */
-+ emit(ctx, ori, MIPS_R_T9, MIPS_R_ZERO,
-+ min(MAX_TAIL_CALL_CNT + 1, 0xffff));
-+ emit(ctx, sw, MIPS_R_T9, 0, MIPS_R_SP);
-+
-+ /*
-+ * Register eBPF R1 contains the 32-bit context pointer argument.
-+ * A 32-bit argument is always passed in MIPS register a0, regardless
-+ * of CPU endianness. Initialize R1 accordingly and zero-extend.
-+ */
-+#ifdef __BIG_ENDIAN
-+ emit(ctx, move, lo(r1), MIPS_R_A0);
-+#endif
-+
-+ /* === Entry-point for tail calls === */
-+
-+ /* Zero-extend the 32-bit argument */
-+ emit(ctx, move, hi(r1), MIPS_R_ZERO);
-+
-+ /* If the eBPF frame pointer was accessed it must be saved */
-+ if (ctx->accessed & BIT(BPF_REG_FP))
-+ clobber_reg64(ctx, fp);
-+
-+ /* Compute the stack space needed for callee-saved registers */
-+ saved = hweight32(ctx->clobbered & JIT_CALLEE_REGS) * sizeof(u32);
-+ saved = ALIGN(saved, MIPS_STACK_ALIGNMENT);
-+
-+ /* Stack space used by eBPF program local data */
-+ locals = ALIGN(ctx->program->aux->stack_depth, MIPS_STACK_ALIGNMENT);
-+
-+ /*
-+ * If we are emitting function calls, reserve extra stack space for
-+ * caller-saved registers and function arguments passed on the stack.
-+ * The required space is computed automatically during resource
-+ * usage discovery (pass 1).
-+ */
-+ reserved = ctx->stack_used;
-+
-+ /* Allocate the stack frame */
-+ stack = ALIGN(saved + locals + reserved, MIPS_STACK_ALIGNMENT);
-+ emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, -stack);
-+
-+ /* Store callee-saved registers on stack */
-+ push_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, stack - saved);
-+
-+ /* Initialize the eBPF frame pointer if accessed */
-+ if (ctx->accessed & BIT(BPF_REG_FP))
-+ emit(ctx, addiu, lo(fp), MIPS_R_SP, stack - saved);
-+
-+ ctx->saved_size = saved;
-+ ctx->stack_size = stack;
-+}
-+
-+/* Build the program epilogue to restore the stack and registers */
-+void build_epilogue(struct jit_context *ctx, int dest_reg)
-+{
-+ /* Restore callee-saved registers from stack */
-+ pop_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0,
-+ ctx->stack_size - ctx->saved_size);
-+ /*
-+ * A 32-bit return value is always passed in MIPS register v0,
-+ * but on big-endian targets the low part of R0 is mapped to v1.
-+ */
-+#ifdef __BIG_ENDIAN
-+ emit(ctx, move, MIPS_R_V0, MIPS_R_V1);
-+#endif
-+
-+ /* Jump to the return address and adjust the stack pointer */
-+ emit(ctx, jr, dest_reg);
-+ emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, ctx->stack_size);
-+}
-+
-+/* Build one eBPF instruction */
-+int build_insn(const struct bpf_insn *insn, struct jit_context *ctx)
-+{
-+ const u8 *dst = bpf2mips32[insn->dst_reg];
-+ const u8 *src = bpf2mips32[insn->src_reg];
-+ const u8 *tmp = bpf2mips32[JIT_REG_TMP];
-+ u8 code = insn->code;
-+ s16 off = insn->off;
-+ s32 imm = insn->imm;
-+ s32 val, rel;
-+ u8 alu, jmp;
-+
-+ switch (code) {
-+ /* ALU operations */
-+ /* dst = imm */
-+ case BPF_ALU | BPF_MOV | BPF_K:
-+ emit_mov_i(ctx, lo(dst), imm);
-+ emit_zext_ver(ctx, dst);
-+ break;
-+ /* dst = src */
-+ case BPF_ALU | BPF_MOV | BPF_X:
-+ if (imm == 1) {
-+ /* Special mov32 for zext */
-+ emit_mov_i(ctx, hi(dst), 0);
-+ } else {
-+ emit_mov_r(ctx, lo(dst), lo(src));
-+ emit_zext_ver(ctx, dst);
-+ }
-+ break;
-+ /* dst = -dst */
-+ case BPF_ALU | BPF_NEG:
-+ emit_alu_i(ctx, lo(dst), 0, BPF_NEG);
-+ emit_zext_ver(ctx, dst);
-+ break;
-+ /* dst = dst & imm */
-+ /* dst = dst | imm */
-+ /* dst = dst ^ imm */
-+ /* dst = dst << imm */
-+ /* dst = dst >> imm */
-+ /* dst = dst >> imm (arithmetic) */
-+ /* dst = dst + imm */
-+ /* dst = dst - imm */
-+ /* dst = dst * imm */
-+ /* dst = dst / imm */
-+ /* dst = dst % imm */
-+ case BPF_ALU | BPF_OR | BPF_K:
-+ case BPF_ALU | BPF_AND | BPF_K:
-+ case BPF_ALU | BPF_XOR | BPF_K:
-+ case BPF_ALU | BPF_LSH | BPF_K:
-+ case BPF_ALU | BPF_RSH | BPF_K:
-+ case BPF_ALU | BPF_ARSH | BPF_K:
-+ case BPF_ALU | BPF_ADD | BPF_K:
-+ case BPF_ALU | BPF_SUB | BPF_K:
-+ case BPF_ALU | BPF_MUL | BPF_K:
-+ case BPF_ALU | BPF_DIV | BPF_K:
-+ case BPF_ALU | BPF_MOD | BPF_K:
-+ if (!valid_alu_i(BPF_OP(code), imm)) {
-+ emit_mov_i(ctx, MIPS_R_T6, imm);
-+ emit_alu_r(ctx, lo(dst), MIPS_R_T6, BPF_OP(code));
-+ } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) {
-+ emit_alu_i(ctx, lo(dst), val, alu);
-+ }
-+ emit_zext_ver(ctx, dst);
-+ break;
-+ /* dst = dst & src */
-+ /* dst = dst | src */
-+ /* dst = dst ^ src */
-+ /* dst = dst << src */
-+ /* dst = dst >> src */
-+ /* dst = dst >> src (arithmetic) */
-+ /* dst = dst + src */
-+ /* dst = dst - src */
-+ /* dst = dst * src */
-+ /* dst = dst / src */
-+ /* dst = dst % src */
-+ case BPF_ALU | BPF_AND | BPF_X:
-+ case BPF_ALU | BPF_OR | BPF_X:
-+ case BPF_ALU | BPF_XOR | BPF_X:
-+ case BPF_ALU | BPF_LSH | BPF_X:
-+ case BPF_ALU | BPF_RSH | BPF_X:
-+ case BPF_ALU | BPF_ARSH | BPF_X:
-+ case BPF_ALU | BPF_ADD | BPF_X:
-+ case BPF_ALU | BPF_SUB | BPF_X:
-+ case BPF_ALU | BPF_MUL | BPF_X:
-+ case BPF_ALU | BPF_DIV | BPF_X:
-+ case BPF_ALU | BPF_MOD | BPF_X:
-+ emit_alu_r(ctx, lo(dst), lo(src), BPF_OP(code));
-+ emit_zext_ver(ctx, dst);
-+ break;
-+ /* dst = imm (64-bit) */
-+ case BPF_ALU64 | BPF_MOV | BPF_K:
-+ emit_mov_se_i64(ctx, dst, imm);
-+ break;
-+ /* dst = src (64-bit) */
-+ case BPF_ALU64 | BPF_MOV | BPF_X:
-+ emit_mov_r(ctx, lo(dst), lo(src));
-+ emit_mov_r(ctx, hi(dst), hi(src));
-+ break;
-+ /* dst = -dst (64-bit) */
-+ case BPF_ALU64 | BPF_NEG:
-+ emit_neg_i64(ctx, dst);
-+ break;
-+ /* dst = dst & imm (64-bit) */
-+ case BPF_ALU64 | BPF_AND | BPF_K:
-+ emit_alu_i64(ctx, dst, imm, BPF_OP(code));
-+ break;
-+ /* dst = dst | imm (64-bit) */
-+ /* dst = dst ^ imm (64-bit) */
-+ /* dst = dst + imm (64-bit) */
-+ /* dst = dst - imm (64-bit) */
-+ case BPF_ALU64 | BPF_OR | BPF_K:
-+ case BPF_ALU64 | BPF_XOR | BPF_K:
-+ case BPF_ALU64 | BPF_ADD | BPF_K:
-+ case BPF_ALU64 | BPF_SUB | BPF_K:
-+ if (imm)
-+ emit_alu_i64(ctx, dst, imm, BPF_OP(code));
-+ break;
-+ /* dst = dst << imm (64-bit) */
-+ /* dst = dst >> imm (64-bit) */
-+ /* dst = dst >> imm (64-bit, arithmetic) */
-+ case BPF_ALU64 | BPF_LSH | BPF_K:
-+ case BPF_ALU64 | BPF_RSH | BPF_K:
-+ case BPF_ALU64 | BPF_ARSH | BPF_K:
-+ if (imm)
-+ emit_shift_i64(ctx, dst, imm, BPF_OP(code));
-+ break;
-+ /* dst = dst * imm (64-bit) */
-+ case BPF_ALU64 | BPF_MUL | BPF_K:
-+ emit_mul_i64(ctx, dst, imm);
-+ break;
-+ /* dst = dst / imm (64-bit) */
-+ /* dst = dst % imm (64-bit) */
-+ case BPF_ALU64 | BPF_DIV | BPF_K:
-+ case BPF_ALU64 | BPF_MOD | BPF_K:
-+ /*
-+ * Sign-extend the immediate value into a temporary register,
-+ * and then do the operation on this register.
-+ */
-+ emit_mov_se_i64(ctx, tmp, imm);
-+ emit_divmod_r64(ctx, dst, tmp, BPF_OP(code));
-+ break;
-+ /* dst = dst & src (64-bit) */
-+ /* dst = dst | src (64-bit) */
-+ /* dst = dst ^ src (64-bit) */
-+ /* dst = dst + src (64-bit) */
-+ /* dst = dst - src (64-bit) */
-+ case BPF_ALU64 | BPF_AND | BPF_X:
-+ case BPF_ALU64 | BPF_OR | BPF_X:
-+ case BPF_ALU64 | BPF_XOR | BPF_X:
-+ case BPF_ALU64 | BPF_ADD | BPF_X:
-+ case BPF_ALU64 | BPF_SUB | BPF_X:
-+ emit_alu_r64(ctx, dst, src, BPF_OP(code));
-+ break;
-+ /* dst = dst << src (64-bit) */
-+ /* dst = dst >> src (64-bit) */
-+ /* dst = dst >> src (64-bit, arithmetic) */
-+ case BPF_ALU64 | BPF_LSH | BPF_X:
-+ case BPF_ALU64 | BPF_RSH | BPF_X:
-+ case BPF_ALU64 | BPF_ARSH | BPF_X:
-+ emit_shift_r64(ctx, dst, lo(src), BPF_OP(code));
-+ break;
-+ /* dst = dst * src (64-bit) */
-+ case BPF_ALU64 | BPF_MUL | BPF_X:
-+ emit_mul_r64(ctx, dst, src);
-+ break;
-+ /* dst = dst / src (64-bit) */
-+ /* dst = dst % src (64-bit) */
-+ case BPF_ALU64 | BPF_DIV | BPF_X:
-+ case BPF_ALU64 | BPF_MOD | BPF_X:
-+ emit_divmod_r64(ctx, dst, src, BPF_OP(code));
-+ break;
-+ /* dst = htole(dst) */
-+ /* dst = htobe(dst) */
-+ case BPF_ALU | BPF_END | BPF_FROM_LE:
-+ case BPF_ALU | BPF_END | BPF_FROM_BE:
-+ if (BPF_SRC(code) ==
-+#ifdef __BIG_ENDIAN
-+ BPF_FROM_LE
-+#else
-+ BPF_FROM_BE
-+#endif
-+ )
-+ emit_bswap_r64(ctx, dst, imm);
-+ else
-+ emit_trunc_r64(ctx, dst, imm);
-+ break;
-+ /* dst = imm64 */
-+ case BPF_LD | BPF_IMM | BPF_DW:
-+ emit_mov_i(ctx, lo(dst), imm);
-+ emit_mov_i(ctx, hi(dst), insn[1].imm);
-+ return 1;
-+ /* LDX: dst = *(size *)(src + off) */
-+ case BPF_LDX | BPF_MEM | BPF_W:
-+ case BPF_LDX | BPF_MEM | BPF_H:
-+ case BPF_LDX | BPF_MEM | BPF_B:
-+ case BPF_LDX | BPF_MEM | BPF_DW:
-+ emit_ldx(ctx, dst, lo(src), off, BPF_SIZE(code));
-+ break;
-+ /* ST: *(size *)(dst + off) = imm */
-+ case BPF_ST | BPF_MEM | BPF_W:
-+ case BPF_ST | BPF_MEM | BPF_H:
-+ case BPF_ST | BPF_MEM | BPF_B:
-+ case BPF_ST | BPF_MEM | BPF_DW:
-+ switch (BPF_SIZE(code)) {
-+ case BPF_DW:
-+ /* Sign-extend immediate value into temporary reg */
-+ emit_mov_se_i64(ctx, tmp, imm);
-+ break;
-+ case BPF_W:
-+ case BPF_H:
-+ case BPF_B:
-+ emit_mov_i(ctx, lo(tmp), imm);
-+ break;
-+ }
-+ emit_stx(ctx, lo(dst), tmp, off, BPF_SIZE(code));
-+ break;
-+ /* STX: *(size *)(dst + off) = src */
-+ case BPF_STX | BPF_MEM | BPF_W:
-+ case BPF_STX | BPF_MEM | BPF_H:
-+ case BPF_STX | BPF_MEM | BPF_B:
-+ case BPF_STX | BPF_MEM | BPF_DW:
-+ emit_stx(ctx, lo(dst), src, off, BPF_SIZE(code));
-+ break;
-+ /* Speculation barrier */
-+ case BPF_ST | BPF_NOSPEC:
-+ break;
-+ /* Atomics */
-+ case BPF_STX | BPF_XADD | BPF_W:
-+ switch (imm) {
-+ case BPF_ADD:
-+ case BPF_AND:
-+ case BPF_OR:
-+ case BPF_XOR:
-+ if (cpu_has_llsc)
-+ emit_atomic_r(ctx, lo(dst), lo(src), off, imm);
-+ else /* Non-ll/sc fallback */
-+ emit_atomic_r32(ctx, lo(dst), lo(src),
-+ off, imm);
-+ break;
-+ default:
-+ goto notyet;
-+ }
-+ break;
-+ /* Atomics (64-bit) */
-+ case BPF_STX | BPF_XADD | BPF_DW:
-+ switch (imm) {
-+ case BPF_ADD:
-+ case BPF_AND:
-+ case BPF_OR:
-+ case BPF_XOR:
-+ emit_atomic_r64(ctx, lo(dst), src, off, imm);
-+ break;
-+ default:
-+ goto notyet;
-+ }
-+ break;
-+ /* PC += off if dst == src */
-+ /* PC += off if dst != src */
-+ /* PC += off if dst & src */
-+ /* PC += off if dst > src */
-+ /* PC += off if dst >= src */
-+ /* PC += off if dst < src */
-+ /* PC += off if dst <= src */
-+ /* PC += off if dst > src (signed) */
-+ /* PC += off if dst >= src (signed) */
-+ /* PC += off if dst < src (signed) */
-+ /* PC += off if dst <= src (signed) */
-+ case BPF_JMP32 | BPF_JEQ | BPF_X:
-+ case BPF_JMP32 | BPF_JNE | BPF_X:
-+ case BPF_JMP32 | BPF_JSET | BPF_X:
-+ case BPF_JMP32 | BPF_JGT | BPF_X:
-+ case BPF_JMP32 | BPF_JGE | BPF_X:
-+ case BPF_JMP32 | BPF_JLT | BPF_X:
-+ case BPF_JMP32 | BPF_JLE | BPF_X:
-+ case BPF_JMP32 | BPF_JSGT | BPF_X:
-+ case BPF_JMP32 | BPF_JSGE | BPF_X:
-+ case BPF_JMP32 | BPF_JSLT | BPF_X:
-+ case BPF_JMP32 | BPF_JSLE | BPF_X:
-+ if (off == 0)
-+ break;
-+ setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel);
-+ emit_jmp_r(ctx, lo(dst), lo(src), rel, jmp);
-+ if (finish_jmp(ctx, jmp, off) < 0)
-+ goto toofar;
-+ break;
-+ /* PC += off if dst == imm */
-+ /* PC += off if dst != imm */
-+ /* PC += off if dst & imm */
-+ /* PC += off if dst > imm */
-+ /* PC += off if dst >= imm */
-+ /* PC += off if dst < imm */
-+ /* PC += off if dst <= imm */
-+ /* PC += off if dst > imm (signed) */
-+ /* PC += off if dst >= imm (signed) */
-+ /* PC += off if dst < imm (signed) */
-+ /* PC += off if dst <= imm (signed) */
-+ case BPF_JMP32 | BPF_JEQ | BPF_K:
-+ case BPF_JMP32 | BPF_JNE | BPF_K:
-+ case BPF_JMP32 | BPF_JSET | BPF_K:
-+ case BPF_JMP32 | BPF_JGT | BPF_K:
-+ case BPF_JMP32 | BPF_JGE | BPF_K:
-+ case BPF_JMP32 | BPF_JLT | BPF_K:
-+ case BPF_JMP32 | BPF_JLE | BPF_K:
-+ case BPF_JMP32 | BPF_JSGT | BPF_K:
-+ case BPF_JMP32 | BPF_JSGE | BPF_K:
-+ case BPF_JMP32 | BPF_JSLT | BPF_K:
-+ case BPF_JMP32 | BPF_JSLE | BPF_K:
-+ if (off == 0)
-+ break;
-+ setup_jmp_i(ctx, imm, 32, BPF_OP(code), off, &jmp, &rel);
-+ if (valid_jmp_i(jmp, imm)) {
-+ emit_jmp_i(ctx, lo(dst), imm, rel, jmp);
-+ } else {
-+ /* Move large immediate to register */
-+ emit_mov_i(ctx, MIPS_R_T6, imm);
-+ emit_jmp_r(ctx, lo(dst), MIPS_R_T6, rel, jmp);
-+ }
-+ if (finish_jmp(ctx, jmp, off) < 0)
-+ goto toofar;
-+ break;
-+ /* PC += off if dst == src */
-+ /* PC += off if dst != src */
-+ /* PC += off if dst & src */
-+ /* PC += off if dst > src */
-+ /* PC += off if dst >= src */
-+ /* PC += off if dst < src */
-+ /* PC += off if dst <= src */
-+ /* PC += off if dst > src (signed) */
-+ /* PC += off if dst >= src (signed) */
-+ /* PC += off if dst < src (signed) */
-+ /* PC += off if dst <= src (signed) */
-+ case BPF_JMP | BPF_JEQ | BPF_X:
-+ case BPF_JMP | BPF_JNE | BPF_X:
-+ case BPF_JMP | BPF_JSET | BPF_X:
-+ case BPF_JMP | BPF_JGT | BPF_X:
-+ case BPF_JMP | BPF_JGE | BPF_X:
-+ case BPF_JMP | BPF_JLT | BPF_X:
-+ case BPF_JMP | BPF_JLE | BPF_X:
-+ case BPF_JMP | BPF_JSGT | BPF_X:
-+ case BPF_JMP | BPF_JSGE | BPF_X:
-+ case BPF_JMP | BPF_JSLT | BPF_X:
-+ case BPF_JMP | BPF_JSLE | BPF_X:
-+ if (off == 0)
-+ break;
-+ setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel);
-+ emit_jmp_r64(ctx, dst, src, rel, jmp);
-+ if (finish_jmp(ctx, jmp, off) < 0)
-+ goto toofar;
-+ break;
-+ /* PC += off if dst == imm */
-+ /* PC += off if dst != imm */
-+ /* PC += off if dst & imm */
-+ /* PC += off if dst > imm */
-+ /* PC += off if dst >= imm */
-+ /* PC += off if dst < imm */
-+ /* PC += off if dst <= imm */
-+ /* PC += off if dst > imm (signed) */
-+ /* PC += off if dst >= imm (signed) */
-+ /* PC += off if dst < imm (signed) */
-+ /* PC += off if dst <= imm (signed) */
-+ case BPF_JMP | BPF_JEQ | BPF_K:
-+ case BPF_JMP | BPF_JNE | BPF_K:
-+ case BPF_JMP | BPF_JSET | BPF_K:
-+ case BPF_JMP | BPF_JGT | BPF_K:
-+ case BPF_JMP | BPF_JGE | BPF_K:
-+ case BPF_JMP | BPF_JLT | BPF_K:
-+ case BPF_JMP | BPF_JLE | BPF_K:
-+ case BPF_JMP | BPF_JSGT | BPF_K:
-+ case BPF_JMP | BPF_JSGE | BPF_K:
-+ case BPF_JMP | BPF_JSLT | BPF_K:
-+ case BPF_JMP | BPF_JSLE | BPF_K:
-+ if (off == 0)
-+ break;
-+ setup_jmp_i(ctx, imm, 64, BPF_OP(code), off, &jmp, &rel);
-+ emit_jmp_i64(ctx, dst, imm, rel, jmp);
-+ if (finish_jmp(ctx, jmp, off) < 0)
-+ goto toofar;
-+ break;
-+ /* PC += off */
-+ case BPF_JMP | BPF_JA:
-+ if (off == 0)
-+ break;
-+ if (emit_ja(ctx, off) < 0)
-+ goto toofar;
-+ break;
-+ /* Tail call */
-+ case BPF_JMP | BPF_TAIL_CALL:
-+ if (emit_tail_call(ctx) < 0)
-+ goto invalid;
-+ break;
-+ /* Function call */
-+ case BPF_JMP | BPF_CALL:
-+ if (emit_call(ctx, insn) < 0)
-+ goto invalid;
-+ break;
-+ /* Function return */
-+ case BPF_JMP | BPF_EXIT:
-+ /*
-+ * Optimization: when last instruction is EXIT
-+ * simply continue to epilogue.
-+ */
-+ if (ctx->bpf_index == ctx->program->len - 1)
-+ break;
-+ if (emit_exit(ctx) < 0)
-+ goto toofar;
-+ break;
-+
-+ default:
-+invalid:
-+ pr_err_once("unknown opcode %02x\n", code);
-+ return -EINVAL;
-+notyet:
-+ pr_info_once("*** NOT YET: opcode %02x ***\n", code);
-+ return -EFAULT;
-+toofar:
-+ pr_info_once("*** TOO FAR: jump at %u opcode %02x ***\n",
-+ ctx->bpf_index, code);
-+ return -E2BIG;
-+ }
-+ return 0;
-+}