aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch')
-rw-r--r--target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch6152
1 files changed, 6152 insertions, 0 deletions
diff --git a/target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch b/target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch
new file mode 100644
index 0000000000..e5bbc69738
--- /dev/null
+++ b/target/linux/coldfire/patches/021-Add-ethernet-switch-driver-for-MCF54418.patch
@@ -0,0 +1,6152 @@
+From 51e66f289f280a33bb17047717d2e6539a2917e1 Mon Sep 17 00:00:00 2001
+From: Alison Wang <b18965@freescale.com>
+Date: Thu, 4 Aug 2011 09:59:44 +0800
+Subject: [PATCH 21/52] Add ethernet switch driver for MCF54418
+
+Add ethernet switch driver support for MCF54418.
+
+Signed-off-by: Alison Wang <b18965@freescale.com>
+---
+ arch/m68k/coldfire/m5441x/l2switch.c | 284 +++
+ arch/m68k/include/asm/mcfswitch.h | 324 +++
+ drivers/net/Kconfig | 8 +
+ drivers/net/Makefile | 1 +
+ drivers/net/modelo_switch.c | 4293 ++++++++++++++++++++++++++++++++++
+ drivers/net/modelo_switch.h | 1141 +++++++++
+ include/linux/fsl_devices.h | 17 +
+ net/core/dev.c | 8 +
+ 8 files changed, 6076 insertions(+), 0 deletions(-)
+ create mode 100644 arch/m68k/coldfire/m5441x/l2switch.c
+ create mode 100644 arch/m68k/include/asm/mcfswitch.h
+ create mode 100644 drivers/net/modelo_switch.c
+ create mode 100644 drivers/net/modelo_switch.h
+
+--- /dev/null
++++ b/arch/m68k/coldfire/m5441x/l2switch.c
+@@ -0,0 +1,284 @@
++/*
++ * l2switch.c
++ *
++ * Sub-architcture dependant initialization code for the Freescale
++ * 5441X L2 Switch module.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
++ * ShrekWu B16972@freescale.com
++ *
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License as published by the
++ * Free Software Foundation; either version 2 of the License, or (at your
++ * option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++#include <linux/kernel.h>
++#include <linux/sched.h>
++#include <linux/param.h>
++#include <linux/init.h>
++#include <linux/interrupt.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++#include <linux/fsl_devices.h>
++
++#include <asm/traps.h>
++#include <asm/machdep.h>
++#include <asm/coldfire.h>
++#include <asm/mcfswitch.h>
++#include <asm/mcfsim.h>
++
++static unsigned char switch_mac_default[] = {
++ 0x00, 0x04, 0x9F, 0x00, 0xB3, 0x49,
++};
++
++static unsigned char switch_mac_addr[6];
++
++static void switch_request_intrs(struct net_device *dev,
++ irqreturn_t switch_net_irq_handler(int irq, void *private),
++ void *irq_privatedata)
++{
++ struct switch_enet_private *fep;
++ int b;
++ static const struct idesc {
++ char *name;
++ unsigned short irq;
++ } *idp, id[] = {
++ /*{ "esw_isr(EBERR)", 38 },*/
++ { "esw_isr(RxBuffer)", 39 },
++ { "esw_isr(RxFrame)", 40 },
++ { "esw_isr(TxBuffer)", 41 },
++ { "esw_isr(TxFrame)", 42 },
++ { "esw_isr(QM)", 43 },
++ { "esw_isr(P0OutputDiscard)", 44 },
++ { "esw_isr(P1OutputDiscard)", 45 },
++ { "esw_isr(P2OutputDiscard)", 46 },
++ { "esw_isr(LearningRecord)", 47 },
++ { NULL },
++ };
++
++ fep = netdev_priv(dev);
++ /*intrruption L2 ethernet SWITCH */
++ b = 64 + 64 + 64;
++
++ /* Setup interrupt handlers. */
++ for (idp = id; idp->name; idp++) {
++ if (request_irq(b+idp->irq,
++ switch_net_irq_handler, IRQF_DISABLED,
++ idp->name, irq_privatedata) != 0)
++ printk(KERN_ERR "FEC: Could not alloc %s IRQ(%d)!\n",
++ idp->name, b+idp->irq);
++ }
++
++ /* Configure RMII */
++ MCF_GPIO_PAR_FEC = (MCF_GPIO_PAR_FEC &
++ MCF_GPIO_PAR_FEC_FEC_MASK) |
++ MCF_GPIO_PAR_FEC_FEC_RMII0FUL_1FUL;
++
++ MCF_GPIO_PAR_FEC =
++ (MCF_GPIO_PAR_FEC &
++ MCF_GPIO_PAR_FEC_FEC_MASK) |
++ MCF_GPIO_PAR_FEC_FEC_RMII0FUL_1FUL;
++
++ MCF_GPIO_SRCR_FEC = 0x0F;
++
++ MCF_GPIO_PAR_SIMP0H =
++ (MCF_GPIO_PAR_SIMP0H &
++ MCF_GPIO_PAR_SIMP0H_DAT_MASK) |
++ MCF_GPIO_PAR_SIMP0H_DAT_GPIO;
++
++ MCF_GPIO_PDDR_G =
++ (MCF_GPIO_PDDR_G &
++ MCF_GPIO_PDDR_G4_MASK) |
++ MCF_GPIO_PDDR_G4_OUTPUT;
++
++ MCF_GPIO_PODR_G =
++ (MCF_GPIO_PODR_G &
++ MCF_GPIO_PODR_G4_MASK);
++}
++
++static void switch_set_mii(struct net_device *dev)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ MCF_FEC_RCR0 = (MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE |
++ MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD);
++ MCF_FEC_RCR1 = (MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE |
++ MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD);
++ /* TCR */
++ MCF_FEC_TCR0 = MCF_FEC_TCR_FDEN;
++ MCF_FEC_TCR1 = MCF_FEC_TCR_FDEN;
++ /* ECR */
++#ifdef MODELO_ENHANCE_BUFFER
++ MCF_FEC_ECR0 = MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588;
++ MCF_FEC_ECR1 = MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588;
++#else /*legac buffer*/
++ MCF_FEC_ECR0 = MCF_FEC_ECR_ETHER_EN;
++ MCF_FEC_ECR1 = MCF_FEC_ECR_ETHER_EN;
++#endif
++ /*
++ * Set MII speed to 2.5 MHz
++ */
++ MCF_FEC_MSCR0 = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
++ MCF_FEC_MSCR1 = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
++
++}
++
++static void switch_get_mac(struct net_device *dev)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++ volatile switch_t *fecp;
++ unsigned char *iap;
++
++ fecp = fep->hwp;
++
++ if (FEC_FLASHMAC) {
++ /*
++ * Get MAC address from FLASH.
++ * If it is all 1's or 0's, use the default.
++ */
++ iap = FEC_FLASHMAC;
++ if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
++ (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
++ iap = switch_mac_default;
++ if ((iap[0] == 0xff) && (iap[1] == 0xff) &&
++ (iap[2] == 0xff) && (iap[3] == 0xff) &&
++ (iap[4] == 0xff) && (iap[5] == 0xff))
++ iap = switch_mac_default;
++
++ } else {
++ iap = &switch_mac_addr[0];
++
++ if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
++ (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
++ iap = switch_mac_default;
++ if ((iap[0] == 0xff) && (iap[1] == 0xff) &&
++ (iap[2] == 0xff) && (iap[3] == 0xff) &&
++ (iap[4] == 0xff) && (iap[5] == 0xff))
++ iap = switch_mac_default;
++ }
++
++ memcpy(dev->dev_addr, iap, ETH_ALEN);
++ /* Adjust MAC if using default MAC address */
++ if (iap == switch_mac_default)
++ dev->dev_addr[ETH_ALEN-1] = switch_mac_default[ETH_ALEN-1] +
++ fep->index;
++}
++
++static void switch_enable_phy_intr(void)
++{
++}
++
++static void switch_disable_phy_intr(void)
++{
++}
++
++static void switch_phy_ack_intr(void)
++{
++}
++
++static void switch_localhw_setup(void)
++{
++}
++
++static void switch_uncache(unsigned long addr)
++{
++}
++
++static void switch_platform_flush_cache(void)
++{
++}
++
++/*
++ * Define the fixed address of the FEC hardware.
++ */
++static unsigned int switch_platform_hw[] = {
++ (0xfc0dc000),
++ (0xfc0e000),
++};
++
++static struct coldfire_switch_platform_data mcf5441x_switch_data = {
++ .hash_table = 0,
++ .switch_hw = switch_platform_hw,
++ .request_intrs = switch_request_intrs,
++ .set_mii = switch_set_mii,
++ .get_mac = switch_get_mac,
++ .enable_phy_intr = switch_enable_phy_intr,
++ .disable_phy_intr = switch_disable_phy_intr,
++ .phy_ack_intr = switch_phy_ack_intr,
++ .localhw_setup = switch_localhw_setup,
++ .uncache = switch_uncache,
++ .platform_flush_cache = switch_platform_flush_cache,
++};
++
++static struct resource l2switch_coldfire_resources[] = {
++ [0] = {
++ .start = 0xFC0DC000,
++ .end = 0xFC0DC508,
++ .flags = IORESOURCE_MEM,
++ },
++ [1] = {
++ .start = (64 + 64 + 64 + 38),
++ .end = (64 + 64 + 64 + 48),
++ .flags = IORESOURCE_IRQ,
++ },
++ [2] = {
++ .start = 0xFC0E0000,
++ .end = 0xFC0E3FFC,
++ .flags = IORESOURCE_MEM,
++ },
++};
++
++static struct platform_device l2switch_coldfire_device = {
++ .name = "coldfire-switch",
++ .id = 0,
++ .resource = l2switch_coldfire_resources,
++ .num_resources = ARRAY_SIZE(l2switch_coldfire_resources),
++ .dev = {
++ .platform_data = &mcf5441x_switch_data,
++ .coherent_dma_mask = ~0, /* $$$ REVISIT */
++ }
++};
++
++
++static int __init mcf5441x_switch_dev_init(void)
++{
++ int retval = 0;
++
++ retval = platform_device_register(&l2switch_coldfire_device);
++
++ if (retval < 0) {
++ printk(KERN_ERR "MCF5441x L2Switch: platform_device_register"
++ " failed with code=%d\n", retval);
++ }
++
++ return retval;
++}
++
++static int __init param_switch_addr_setup(char *str)
++{
++ char *end;
++ int i;
++
++ for (i = 0; i < 6; i++) {
++ switch_mac_addr[i] = str ? simple_strtoul(str, &end, 16) : 0;
++ if (str)
++ str = (*end) ? end + 1 : end;
++ }
++ return 0;
++}
++__setup("switchaddr=", param_switch_addr_setup);
++
++arch_initcall(mcf5441x_switch_dev_init);
+--- /dev/null
++++ b/arch/m68k/include/asm/mcfswitch.h
+@@ -0,0 +1,324 @@
++/****************************************************************************/
++
++/*
++ * mcfswitch -- L2 SWITCH Controller for Motorola ColdFire SoC
++ * processors.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License as published by the
++ * Free Software Foundation; either version 2 of the License, or (at your
++ * option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++
++/****************************************************************************/
++#ifndef SWITCH_H
++#define SWITCH_H
++/****************************************************************************/
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/skbuff.h>
++#include <linux/spinlock.h>
++#include <linux/workqueue.h>
++#include <linux/platform_device.h>
++#include <asm/pgtable.h>
++
++#define FEC_FLASHMAC 0
++#define SWITCH_EPORT_NUMBER 2
++
++#ifdef CONFIG_SWITCH_DMA_USE_SRAM
++#define TX_RING_SIZE 8 /* Must be power of two */
++#define TX_RING_MOD_MASK 7 /* for this to work */
++#else
++#define TX_RING_SIZE 16 /* Must be power of two */
++#define TX_RING_MOD_MASK 15 /* for this to work */
++#endif
++
++typedef struct l2switch_port_statistics_status {
++ /*outgoing frames discarded due to transmit queue congestion*/
++ unsigned long MCF_ESW_POQC;
++ /*incoming frames discarded due to VLAN domain mismatch*/
++ unsigned long MCF_ESW_PMVID;
++ /*incoming frames discarded due to untagged discard*/
++ unsigned long MCF_ESW_PMVTAG;
++ /*incoming frames discarded due port is in blocking state*/
++ unsigned long MCF_ESW_PBL;
++} esw_port_statistics_status;
++
++typedef struct l2switch {
++ unsigned long ESW_REVISION;
++ unsigned long ESW_SCRATCH;
++ unsigned long ESW_PER;
++ unsigned long reserved0[1];
++ unsigned long ESW_VLANV;
++ unsigned long ESW_DBCR;
++ unsigned long ESW_DMCR;
++ unsigned long ESW_BKLR;
++ unsigned long ESW_BMPC;
++ unsigned long ESW_MODE;
++ unsigned long ESW_VIMSEL;
++ unsigned long ESW_VOMSEL;
++ unsigned long ESW_VIMEN;
++ unsigned long ESW_VID;/*0x34*/
++ /*from 0x38 0x3C*/
++ unsigned long esw_reserved0[2];
++ unsigned long ESW_MCR;/*0x40*/
++ unsigned long ESW_EGMAP;
++ unsigned long ESW_INGMAP;
++ unsigned long ESW_INGSAL;
++ unsigned long ESW_INGSAH;
++ unsigned long ESW_INGDAL;
++ unsigned long ESW_INGDAH;
++ unsigned long ESW_ENGSAL;
++ unsigned long ESW_ENGSAH;
++ unsigned long ESW_ENGDAL;
++ unsigned long ESW_ENGDAH;
++ unsigned long ESW_MCVAL;/*0x6C*/
++ /*from 0x70--0x7C*/
++ unsigned long esw_reserved1[4];
++ unsigned long ESW_MMSR;/*0x80*/
++ unsigned long ESW_LMT;
++ unsigned long ESW_LFC;
++ unsigned long ESW_PCSR;
++ unsigned long ESW_IOSR;
++ unsigned long ESW_QWT;/*0x94*/
++ unsigned long esw_reserved2[1];/*0x98*/
++ unsigned long ESW_P0BCT;/*0x9C*/
++ /*from 0xA0-0xB8*/
++ unsigned long esw_reserved3[7];
++ unsigned long ESW_P0FFEN;/*0xBC*/
++ unsigned long ESW_PSNP[8];
++ unsigned long ESW_IPSNP[8];
++ unsigned long ESW_PVRES[3];
++ /*from 0x10C-0x13C*/
++ unsigned long esw_reserved4[13];
++ unsigned long ESW_IPRES;/*0x140*/
++ /*from 0x144-0x17C*/
++ unsigned long esw_reserved5[15];
++
++ /*port0-port2 Priority Configuration 0xFC0D_C180-C188*/
++ unsigned long ESW_PRES[3];
++ /*from 0x18C-0x1FC*/
++ unsigned long esw_reserved6[29];
++
++ /*port0-port2 VLAN ID 0xFC0D_C200-C208*/
++ unsigned long ESW_PID[3];
++ /*from 0x20C-0x27C*/
++ unsigned long esw_reserved7[29];
++
++ /*port0-port2 VLAN domain resolution entry 0xFC0D_C280-C2FC*/
++ unsigned long ESW_VRES[32];
++
++ unsigned long ESW_DISCN;/*0x300*/
++ unsigned long ESW_DISCB;
++ unsigned long ESW_NDISCN;
++ unsigned long ESW_NDISCB;/*0xFC0DC30C*/
++ /*per port statistics 0xFC0DC310_C33C*/
++ esw_port_statistics_status port_statistics_status[3];
++ /*from 0x340-0x400*/
++ unsigned long esw_reserved8[48];
++
++ /*0xFC0DC400---0xFC0DC418*/
++ /*unsigned long MCF_ESW_ISR;*/
++ unsigned long switch_ievent; /* Interrupt event reg */
++ /*unsigned long MCF_ESW_IMR;*/
++ unsigned long switch_imask; /* Interrupt mask reg */
++ /*unsigned long MCF_ESW_RDSR;*/
++ unsigned long fec_r_des_start; /* Receive descriptor ring */
++ /*unsigned long MCF_ESW_TDSR;*/
++ unsigned long fec_x_des_start; /* Transmit descriptor ring */
++ /*unsigned long MCF_ESW_MRBR;*/
++ unsigned long fec_r_buff_size; /* Maximum receive buff size */
++ /*unsigned long MCF_ESW_RDAR;*/
++ unsigned long fec_r_des_active; /* Receive descriptor reg */
++ /*unsigned long MCF_ESW_TDAR;*/
++ unsigned long fec_x_des_active; /* Transmit descriptor reg */
++ /*from 0x420-0x4FC*/
++ unsigned long esw_reserved9[57];
++
++ /*0xFC0DC500---0xFC0DC508*/
++ unsigned long ESW_LREC0;
++ unsigned long ESW_LREC1;
++ unsigned long ESW_LSR;
++} switch_t;
++
++typedef struct _64bTableEntry {
++ unsigned int lo; /* lower 32 bits */
++ unsigned int hi; /* upper 32 bits */
++} AddrTable64bEntry;
++
++typedef struct l2switchaddrtable {
++ AddrTable64bEntry eswTable64bEntry[2048];
++} eswAddrTable_t;
++
++#define MCF_FEC_MSCR0 (*(volatile unsigned long *)(0xFC0D4044))
++#define MCF_FEC_MSCR1 (*(volatile unsigned long *)(0xFC0D8044))
++#define MCF_FEC_RCR0 (*(volatile unsigned long *)(0xFC0D4084))
++#define MCF_FEC_RCR1 (*(volatile unsigned long *)(0xFC0D8084))
++#define MCF_FEC_TCR0 (*(volatile unsigned long *)(0xFC0D40C4))
++#define MCF_FEC_TCR1 (*(volatile unsigned long *)(0xFC0D80C4))
++#define MCF_FEC_ECR0 (*(volatile unsigned long *)(0xFC0D4024))
++#define MCF_FEC_ECR1 (*(volatile unsigned long *)(0xFC0D8024))
++
++#define MCF_FEC_RCR_PROM (0x00000008)
++#define MCF_FEC_RCR_RMII_MODE (0x00000100)
++#define MCF_FEC_RCR_MAX_FL(x) (((x)&0x00003FFF)<<16)
++#define MCF_FEC_RCR_CRC_FWD (0x00004000)
++
++#define MCF_FEC_TCR_FDEN (0x00000004)
++
++#define MCF_FEC_ECR_ETHER_EN (0x00000002)
++#define MCF_FEC_ECR_ENA_1588 (0x00000010)
++
++
++typedef struct bufdesc {
++ unsigned short cbd_sc; /* Control and status info */
++ unsigned short cbd_datlen; /* Data length */
++ unsigned long cbd_bufaddr; /* Buffer address */
++#ifdef MODELO_BUFFER
++ unsigned long ebd_status;
++ unsigned short length_proto_type;
++ unsigned short payload_checksum;
++ unsigned long bdu;
++ unsigned long timestamp;
++ unsigned long reserverd_word1;
++ unsigned long reserverd_word2;
++#endif
++} cbd_t;
++
++/* Forward declarations of some structures to support different PHYs
++ */
++typedef struct {
++ uint mii_data;
++ void (*funct)(uint mii_reg, struct net_device *dev);
++} phy_cmd_t;
++
++typedef struct {
++ uint id;
++ char *name;
++
++ const phy_cmd_t *config;
++ const phy_cmd_t *startup;
++ const phy_cmd_t *ack_int;
++ const phy_cmd_t *shutdown;
++} phy_info_t;
++
++/* The switch buffer descriptors track the ring buffers. The rx_bd_base and
++ * tx_bd_base always point to the base of the buffer descriptors. The
++ * cur_rx and cur_tx point to the currently available buffer.
++ * The dirty_tx tracks the current buffer that is being sent by the
++ * controller. The cur_tx and dirty_tx are equal under both completely
++ * empty and completely full conditions. The empty/ready indicator in
++ * the buffer descriptor determines the actual condition.
++ */
++struct switch_enet_private {
++ /* Hardware registers of the switch device */
++ volatile switch_t *hwp;
++ volatile eswAddrTable_t *hwentry;
++
++ struct net_device *netdev;
++ struct platform_device *pdev;
++ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
++ unsigned char *tx_bounce[TX_RING_SIZE];
++ struct sk_buff *tx_skbuff[TX_RING_SIZE];
++ ushort skb_cur;
++ ushort skb_dirty;
++
++ /* CPM dual port RAM relative addresses.
++ */
++ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
++ cbd_t *tx_bd_base;
++ cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
++ cbd_t *dirty_tx; /* The ring entries to be free()ed. */
++ uint tx_full;
++ /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
++ spinlock_t hw_lock;
++
++ /* hold while accessing the mii_list_t() elements */
++ spinlock_t mii_lock;
++ struct mii_bus *mdio_bus;
++ struct phy_device *phydev[SWITCH_EPORT_NUMBER];
++
++ uint phy_id;
++ uint phy_id_done;
++ uint phy_status;
++ uint phy_speed;
++ phy_info_t const *phy;
++ struct work_struct phy_task;
++ volatile switch_t *phy_hwp;
++
++ uint sequence_done;
++ uint mii_phy_task_queued;
++
++ uint phy_addr;
++
++ int index;
++ int opened;
++ int full_duplex;
++ int msg_enable;
++ int phy1_link;
++ int phy1_old_link;
++ int phy1_duplex;
++ int phy1_speed;
++
++ int phy2_link;
++ int phy2_old_link;
++ int phy2_duplex;
++ int phy2_speed;
++ /* --------------Statistics--------------------------- */
++ /* when a new element deleted a element with in
++ * a block due to lack of space */
++ int atBlockOverflows;
++ /* Peak number of valid entries in the address table */
++ int atMaxEntries;
++ /* current number of valid entries in the address table */
++ int atCurrEntries;
++ /* maximum entries within a block found
++ * (updated within ageing)*/
++ int atMaxEntriesPerBlock;
++
++ /* -------------------ageing function------------------ */
++ /* maximum age allowed for an entry */
++ int ageMax;
++ /* last LUT entry to block that was
++ * inspected by the Ageing task*/
++ int ageLutIdx;
++ /* last element within block inspected by the Ageing task */
++ int ageBlockElemIdx;
++ /* complete table has been processed by ageing process */
++ int ageCompleted;
++ /* delay setting */
++ int ageDelay;
++ /* current delay Counter */
++ int ageDelayCnt;
++
++ /* ----------------timer related---------------------------- */
++ /* current time (for timestamping) */
++ int currTime;
++ /* flag set by timer when currTime changed
++ * and cleared by serving function*/
++ int timeChanged;
++
++ /* Timer for Aging */
++ struct timer_list timer_aging;
++ int learning_irqhandle_enable;
++};
++
++struct switch_platform_private {
++ struct platform_device *pdev;
++
++ unsigned long quirks;
++ int num_slots; /* Slots on controller */
++ struct switch_enet_private *fep_host[0]; /* Pointers to hosts */
++};
++#endif
+--- a/drivers/net/Kconfig
++++ b/drivers/net/Kconfig
+@@ -1950,6 +1950,14 @@ config FEC
+ Say Y here if you want to use the built-in 10/100 Fast ethernet
+ controller on some Motorola ColdFire and Freescale i.MX processors.
+
++config MODELO_SWITCH
++ bool "ethernet switch controller (of ColdFire CPUs)"
++ depends on !FEC && M5441X
++ help
++ Say Y here if you want to use the built-in ethernet switch
++ controller on some ColdFire processors.
++ The Integrated Ethernet switch engine is compatible with
++ 10/100 MAC-NET core.
+
+ config FEC2
+ bool "Second FEC ethernet controller (on some ColdFire CPUs)"
+--- a/drivers/net/Makefile
++++ b/drivers/net/Makefile
+@@ -127,6 +127,7 @@ ifeq ($(CONFIG_FEC_1588), y)
+ obj-$(CONFIG_FEC) += fec_1588.o
+ endif
+ obj-$(CONFIG_FEC_548x) += fec_m547x.o
++obj-$(CONFIG_MODELO_SWITCH) += modelo_switch.o
+ obj-$(CONFIG_FEC_MPC52xx) += fec_mpc52xx.o
+ ifeq ($(CONFIG_FEC_MPC52xx_MDIO),y)
+ obj-$(CONFIG_FEC_MPC52xx) += fec_mpc52xx_phy.o
+--- /dev/null
++++ b/drivers/net/modelo_switch.c
+@@ -0,0 +1,4293 @@
++/*
++ * L2 switch Controller (Etheren switch) driver for MCF5441x.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
++ * Shrek Wu (B16972@freescale.com)
++ * Alison Wang (b18965@freescale.com)
++ * Jason Jin (Jason.jin@freescale.com)
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License as published by the
++ * Free Software Foundation; either version 2 of the License, or (at your
++ * option) any later version.
++ */
++
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/ptrace.h>
++#include <linux/errno.h>
++#include <linux/ioport.h>
++#include <linux/slab.h>
++#include <linux/interrupt.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/skbuff.h>
++#include <linux/spinlock.h>
++#include <linux/workqueue.h>
++#include <linux/bitops.h>
++#include <linux/platform_device.h>
++#include <linux/fsl_devices.h>
++#include <linux/phy.h>
++#include <linux/kthread.h>
++#include <linux/syscalls.h>
++#include <linux/uaccess.h>
++#include <linux/io.h>
++#include <linux/signal.h>
++
++#include <asm/irq.h>
++#include <asm/pgtable.h>
++#include <asm/cacheflush.h>
++#include <asm/coldfire.h>
++#include <asm/mcfsim.h>
++#include "modelo_switch.h"
++
++#define SWITCH_MAX_PORTS 1
++#define CONFIG_FEC_SHARED_PHY
++
++/* Interrupt events/masks.
++*/
++#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
++#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
++#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
++#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
++#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
++#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
++#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
++#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
++#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
++#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
++
++static int switch_enet_open(struct net_device *dev);
++static int switch_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
++static irqreturn_t switch_enet_interrupt(int irq, void *dev_id);
++static void switch_enet_tx(struct net_device *dev);
++static void switch_enet_rx(struct net_device *dev);
++static int switch_enet_close(struct net_device *dev);
++static void set_multicast_list(struct net_device *dev);
++static void switch_restart(struct net_device *dev, int duplex);
++static void switch_stop(struct net_device *dev);
++static void switch_set_mac_address(struct net_device *dev);
++
++#define NMII 20
++
++/* Make MII read/write commands for the FEC.
++*/
++#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
++#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
++ (VAL & 0xffff))
++
++/* Transmitter timeout.
++*/
++#define TX_TIMEOUT (2*HZ)
++
++/*last read entry from learning interface*/
++eswPortInfo g_info;
++/* switch ports status */
++struct port_status ports_link_status;
++
++/* the user space pid, used to send the link change to user space */
++long user_pid = 1;
++
++/* ----------------------------------------------------------------*/
++/*
++ * Calculate Galois Field Arithmetic CRC for Polynom x^8+x^2+x+1.
++ * It omits the final shift in of 8 zeroes a "normal" CRC would do
++ * (getting the remainder).
++ *
++ * Examples (hexadecimal values):<br>
++ * 10-11-12-13-14-15 => CRC=0xc2
++ * 10-11-cc-dd-ee-00 => CRC=0xe6
++ *
++ * param: pmacaddress
++ * A 6-byte array with the MAC address.
++ * The first byte is the first byte transmitted
++ * return The 8-bit CRC in bits 7:0
++ */
++int crc8_calc(unsigned char *pmacaddress)
++{
++ /* byte index */
++ int byt;
++ /* bit index */
++ int bit;
++ int inval;
++ int crc;
++ /* preset */
++ crc = 0x12;
++ for (byt = 0; byt < 6; byt++) {
++ inval = (((int)pmacaddress[byt]) & 0xff);
++ /*
++ * shift bit 0 to bit 8 so all our bits
++ * travel through bit 8
++ * (simplifies below calc)
++ */
++ inval <<= 8;
++
++ for (bit = 0; bit < 8; bit++) {
++ /* next input bit comes into d7 after shift */
++ crc |= inval & 0x100;
++ if (crc & 0x01)
++ /* before shift */
++ crc ^= 0x1c0;
++
++ crc >>= 1;
++ inval >>= 1;
++ }
++
++ }
++ /* upper bits are clean as we shifted in zeroes! */
++ return crc;
++}
++
++void read_atable(struct switch_enet_private *fep,
++ int index, unsigned long *read_lo, unsigned long *read_hi)
++{
++ unsigned long atable_base = 0xFC0E0000;
++
++ *read_lo = *((volatile unsigned long *)(atable_base + (index<<3)));
++ *read_hi = *((volatile unsigned long *)(atable_base + (index<<3) + 4));
++}
++
++void write_atable(struct switch_enet_private *fep,
++ int index, unsigned long write_lo, unsigned long write_hi)
++{
++ unsigned long atable_base = 0xFC0E0000;
++
++ *((volatile unsigned long *)(atable_base + (index<<3))) = write_lo;
++ *((volatile unsigned long *)(atable_base + (index<<3) + 4)) = write_hi;
++}
++
++/* Check if the Port Info FIFO has data available
++ * for reading. 1 valid, 0 invalid*/
++int esw_portinfofifo_status(struct switch_enet_private *fep)
++{
++ volatile switch_t *fecp;
++ fecp = fep->hwp;
++ return fecp->ESW_LSR;
++}
++
++/* Initialize the Port Info FIFO. */
++void esw_portinfofifo_initialize(struct switch_enet_private *fep)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp;
++ fecp = fep->hwp;
++
++ /*disable all learn*/
++ fecp->switch_imask &= (~MCF_ESW_IMR_LRN);
++ /* remove all entries from FIFO */
++ while (esw_portinfofifo_status(fep)) {
++ /* read one data word */
++ tmp = fecp->ESW_LREC0;
++ tmp = fecp->ESW_LREC1;
++ }
++
++}
++
++/* Read one element from the HW receive FIFO (Queue)
++ * if available and return it.
++ * return ms_HwPortInfo or null if no data is available
++ */
++eswPortInfo *esw_portinfofifo_read(struct switch_enet_private *fep)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp;
++
++ fecp = fep->hwp;
++ /* check learning record valid */
++ if (fecp->ESW_LSR == 0)
++ return NULL;
++
++ /*read word from FIFO*/
++ g_info.maclo = fecp->ESW_LREC0;
++
++ /*but verify that we actually did so
++ * (0=no data available)*/
++ if (g_info.maclo == 0)
++ return NULL;
++
++ /* read 2nd word from FIFO */
++ tmp = fecp->ESW_LREC1;
++ g_info.machi = tmp & 0xffff;
++ g_info.hash = (tmp >> 16) & 0xff;
++ g_info.port = (tmp >> 24) & 0xf;
++
++ return &g_info;
++}
++
++/*
++ * Clear complete MAC Look Up Table
++ */
++void esw_clear_atable(struct switch_enet_private *fep)
++{
++ int index;
++ for (index = 0; index < 2048; index++)
++ write_atable(fep, index, 0, 0);
++}
++
++void esw_dump_atable(struct switch_enet_private *fep)
++{
++ int index;
++ unsigned long read_lo, read_hi;
++ for (index = 0; index < 2048; index++)
++ read_atable(fep, index, &read_lo, &read_hi);
++}
++
++/*
++ * pdates MAC address lookup table with a static entry
++ * Searches if the MAC address is already there in the block and replaces
++ * the older entry with new one. If MAC address is not there then puts a
++ * new entry in the first empty slot available in the block
++ *
++ * mac_addr Pointer to the array containing MAC address to
++ * be put as static entry
++ * port Port bitmask numbers to be added in static entry,
++ * valid values are 1-7
++ * priority Priority for the static entry in table
++ *
++ * return 0 for a successful update else -1 when no slot available
++ */
++int esw_update_atable_static(unsigned char *mac_addr,
++ unsigned int port, unsigned int priority,
++ struct switch_enet_private *fep)
++{
++ unsigned long block_index, entry, index_end;
++ unsigned long read_lo, read_hi;
++ unsigned long write_lo, write_hi;
++
++ write_lo = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) |
++ (mac_addr[1] << 8) |
++ mac_addr[0]);
++ write_hi = (unsigned long)(0 |
++ (port << AT_SENTRY_PORTMASK_shift) |
++ (priority << AT_SENTRY_PRIO_shift) |
++ (AT_ENTRY_TYPE_STATIC << AT_ENTRY_TYPE_shift) |
++ (AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift) |
++ (mac_addr[5] << 8) | (mac_addr[4]));
++
++ block_index = GET_BLOCK_PTR(crc8_calc(mac_addr));
++ index_end = block_index + ATABLE_ENTRY_PER_SLOT;
++ /* Now search all the entries in the selected block */
++ for (entry = block_index; entry < index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ /*
++ * MAC address matched, so update the
++ * existing entry
++ * even if its a dynamic one
++ */
++ if ((read_lo == write_lo) && ((read_hi & 0x0000ffff) ==
++ (write_hi & 0x0000ffff))) {
++ write_atable(fep, entry, write_lo, write_hi);
++ return 0;
++ } else if (!(read_hi & (1 << 16))) {
++ /*
++ * Fill this empty slot (valid bit zero),
++ * assuming no holes in the block
++ */
++ write_atable(fep, entry, write_lo, write_hi);
++ fep->atCurrEntries++;
++ return 0;
++ }
++ }
++
++ /* No space available for this static entry */
++ return -1;
++}
++
++/* lookup entry in given Address Table slot and
++ * insert (learn) it if it is not found.
++ * return 0 if entry was found and updated.
++ * 1 if entry was not found and has been inserted (learned).
++ */
++int esw_update_atable_dynamic(unsigned char *mac_addr, unsigned int port,
++ unsigned int currTime, struct switch_enet_private *fep)
++{
++ unsigned long block_index, entry, index_end;
++ unsigned long read_lo, read_hi;
++ unsigned long write_lo, write_hi;
++ unsigned long tmp;
++ int time, timeold, indexold;
++
++ /* prepare update port and timestamp */
++ write_hi = (mac_addr[5] << 8) | (mac_addr[4]);
++ write_lo = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) |
++ (mac_addr[1] << 8) |
++ mac_addr[0]);
++ tmp = AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift;
++ tmp |= AT_ENTRY_TYPE_DYNAMIC << AT_ENTRY_TYPE_shift;
++ tmp |= currTime << AT_DENTRY_TIME_shift;
++ tmp |= port << AT_DENTRY_PORT_shift;
++ tmp |= write_hi;
++
++ /*
++ * linear search through all slot
++ * entries and update if found
++ */
++ block_index = GET_BLOCK_PTR(crc8_calc(mac_addr));
++ index_end = block_index + ATABLE_ENTRY_PER_SLOT;
++ /* Now search all the entries in the selected block */
++ for (entry = block_index; entry < index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++
++ if ((read_lo == write_lo) &&
++ ((read_hi & 0x0000ffff) ==
++ (write_hi & 0x0000ffff))) {
++ /* found correct address,
++ * update timestamp. */
++ write_atable(fep, entry, write_lo, tmp);
++ return 0;
++ } else if (!(read_hi & (1 << 16))) {
++ /* slot is empty, then use it
++ * for new entry
++ * Note: There are no holes,
++ * therefore cannot be any
++ * more that need to be compared.
++ */
++ write_atable(fep, entry, write_lo, tmp);
++ /* statistics (we do it between writing
++ * .hi an .lo due to
++ * hardware limitation...
++ */
++ fep->atCurrEntries++;
++ /* newly inserted */
++ return 1;
++ }
++ }
++
++ /*
++ * no more entry available in blockk ...
++ * overwrite oldest
++ */
++ timeold = 0;
++ indexold = 0;
++ for (entry = block_index; entry < index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ time = AT_EXTRACT_TIMESTAMP(read_hi);
++ time = TIMEDELTA(currTime, time);
++ if (time > timeold) {
++ /* is it older ?*/
++ timeold = time;
++ indexold = entry;
++ }
++ }
++
++ write_atable(fep, indexold, write_lo, tmp);
++ /* Statistics (do it inbetween
++ * writing to .lo and .hi*/
++ fep->atBlockOverflows++;
++ /* newly inserted */
++ return 1;
++}
++
++int esw_update_atable_dynamic1(unsigned long write_lo, unsigned long write_hi,
++ int block_index, unsigned int port, unsigned int currTime,
++ struct switch_enet_private *fep)
++{
++ unsigned long entry, index_end;
++ unsigned long read_lo, read_hi;
++ unsigned long tmp;
++ int time, timeold, indexold;
++
++ /* prepare update port and timestamp */
++ tmp = AT_ENTRY_RECORD_VALID << AT_ENTRY_VALID_shift;
++ tmp |= AT_ENTRY_TYPE_DYNAMIC << AT_ENTRY_TYPE_shift;
++ tmp |= currTime << AT_DENTRY_TIME_shift;
++ tmp |= port << AT_DENTRY_PORT_shift;
++ tmp |= write_hi;
++
++ /*
++ * linear search through all slot
++ * entries and update if found
++ */
++ index_end = block_index + ATABLE_ENTRY_PER_SLOT;
++ /* Now search all the entries in the selected block */
++ for (entry = block_index; entry < index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ if ((read_lo == write_lo) &&
++ ((read_hi & 0x0000ffff) ==
++ (write_hi & 0x0000ffff))) {
++ /* found correct address,
++ * update timestamp. */
++ write_atable(fep, entry, write_lo, tmp);
++ return 0;
++ } else if (!(read_hi & (1 << 16))) {
++ /* slot is empty, then use it
++ * for new entry
++ * Note: There are no holes,
++ * therefore cannot be any
++ * more that need to be compared.
++ */
++ write_atable(fep, entry, write_lo, tmp);
++ /* statistics (we do it between writing
++ * .hi an .lo due to
++ * hardware limitation...
++ */
++ fep->atCurrEntries++;
++ /* newly inserted */
++ return 1;
++ }
++ }
++
++ /*
++ * no more entry available in block ...
++ * overwrite oldest
++ */
++ timeold = 0;
++ indexold = 0;
++ for (entry = block_index; entry < index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ time = AT_EXTRACT_TIMESTAMP(read_hi);
++ time = TIMEDELTA(currTime, time);
++ if (time > timeold) {
++ /* is it older ?*/
++ timeold = time;
++ indexold = entry;
++ }
++ }
++
++ write_atable(fep, indexold, write_lo, tmp);
++ /* Statistics (do it inbetween
++ * writing to .lo and .hi*/
++ fep->atBlockOverflows++;
++ /* newly inserted */
++ return 1;
++}
++
++/*
++ * Delete one dynamic entry within the given block
++ * of 64-bit entries.
++ * return number of valid entries in the block after deletion.
++ */
++int esw_del_atable_dynamic(struct switch_enet_private *fep,
++ int blockidx, int entryidx)
++{
++ unsigned long index_start, index_end;
++ int i;
++ unsigned long read_lo, read_hi;
++
++ /* the entry to delete */
++ index_start = blockidx + entryidx;
++ /* one after last */
++ index_end = blockidx + ATABLE_ENTRY_PER_SLOT;
++ /* Statistics */
++ fep->atCurrEntries--;
++
++ if (entryidx == (ATABLE_ENTRY_PER_SLOT - 1)) {
++ /* if it is the very last entry,
++ * just delete it without further efford*/
++ write_atable(fep, index_start, 0, 0);
++ /*number of entries left*/
++ i = ATABLE_ENTRY_PER_SLOT - 1;
++ return i;
++ } else {
++ /*not the last in the block, then
++ * shift all that follow the one
++ * that is deleted to avoid "holes".
++ */
++ for (i = index_start; i < (index_end - 1); i++) {
++ read_atable(fep, i + 1, &read_lo, &read_hi);
++ /* move it down */
++ write_atable(fep, i, read_lo, read_hi);
++ if (!(read_hi & (1 << 16))) {
++ /* stop if we just copied the last */
++ return i - blockidx;
++ }
++ }
++
++ /*moved all entries up to the last.
++ * then set invalid flag in the last*/
++ write_atable(fep, index_end - 1, 0, 0);
++ /* number of valid entries left */
++ return i - blockidx;
++ }
++}
++
++void esw_atable_dynamicms_del_entries_for_port(
++ struct switch_enet_private *fep, int port_index)
++{
++ unsigned long read_lo, read_hi;
++ unsigned int port_idx;
++ int i;
++
++ for (i = 0; i < ESW_ATABLE_MEM_NUM_ENTRIES; i++) {
++ read_atable(fep, i, &read_lo, &read_hi);
++ if (read_hi & (1 << 16)) {
++ port_idx = AT_EXTRACT_PORT(read_hi);
++
++ if (port_idx == port_index)
++ write_atable(fep, i, 0, 0);
++ }
++ }
++}
++
++void esw_atable_dynamicms_del_entries_for_other_port(
++ struct switch_enet_private *fep,
++ int port_index)
++{
++ unsigned long read_lo, read_hi;
++ unsigned int port_idx;
++ int i;
++
++ for (i = 0; i < ESW_ATABLE_MEM_NUM_ENTRIES; i++) {
++ read_atable(fep, i, &read_lo, &read_hi);
++ if (read_hi & (1 << 16)) {
++ port_idx = AT_EXTRACT_PORT(read_hi);
++
++ if (port_idx != port_index)
++ write_atable(fep, i, 0, 0);
++ }
++ }
++}
++
++/*
++ * Scan one complete block (Slot) for outdated entries and delete them.
++ * blockidx index of block of entries that should be analyzed.
++ * return number of deleted entries, 0 if nothing was modified.
++ */
++int esw_atable_dynamicms_check_block_age(
++ struct switch_enet_private *fep, int blockidx) {
++
++ int i, tm, tdelta;
++ int deleted = 0, entries = 0;
++ unsigned long read_lo, read_hi;
++ /* Scan all entries from last down to
++ * have faster deletion speed if necessary*/
++ for (i = (blockidx + ATABLE_ENTRY_PER_SLOT - 1);
++ i >= blockidx; i--) {
++ read_atable(fep, i, &read_lo, &read_hi);
++
++ if (read_hi & (1 << 16)) {
++ /* the entry is valide*/
++ tm = AT_EXTRACT_TIMESTAMP(read_hi);
++ tdelta = TIMEDELTA(fep->currTime, tm);
++ if (tdelta > fep->ageMax) {
++ esw_del_atable_dynamic(fep,
++ blockidx, i-blockidx);
++ deleted++;
++ } else {
++ /* statistics */
++ entries++;
++ }
++ }
++ }
++
++ /*update statistics*/
++ if (fep->atMaxEntriesPerBlock < entries)
++ fep->atMaxEntriesPerBlock = entries;
++
++ return deleted;
++}
++
++/* scan the complete address table and find the most current entry.
++ * The time of the most current entry then is used as current time
++ * for the context structure.
++ * In addition the atCurrEntries value is updated as well.
++ * return time that has been set in the context.
++ */
++int esw_atable_dynamicms_find_set_latesttime(
++ struct switch_enet_private *fep) {
++
++ int tm_min, tm_max, tm;
++ int delta, current, i;
++ unsigned long read_lo, read_hi;
++
++ tm_min = (1 << AT_DENTRY_TIMESTAMP_WIDTH) - 1;
++ tm_max = 0;
++ current = 0;
++
++ for (i = 0; i < ESW_ATABLE_MEM_NUM_ENTRIES; i++) {
++ read_atable(fep, i, &read_lo, &read_hi);
++ if (read_hi & (1 << 16)) {
++ /*the entry is valid*/
++ tm = AT_EXTRACT_TIMESTAMP(read_hi);
++ if (tm > tm_max)
++ tm_max = tm;
++ if (tm < tm_min)
++ tm_min = tm;
++ current++;
++ }
++ }
++
++ delta = TIMEDELTA(tm_max, tm_min);
++ if (delta < fep->ageMax) {
++ /*Difference must be in range*/
++ fep->currTime = tm_max;
++ } else {
++ fep->currTime = tm_min;
++ }
++
++ fep->atCurrEntries = current;
++ return fep->currTime;
++}
++
++int esw_atable_dynamicms_get_port(
++ struct switch_enet_private *fep,
++ unsigned long write_lo,
++ unsigned long write_hi,
++ int block_index)
++{
++ int i, index_end;
++ unsigned long read_lo, read_hi, port;
++
++ index_end = block_index + ATABLE_ENTRY_PER_SLOT;
++ /* Now search all the entries in the selected block */
++ for (i = block_index; i < index_end; i++) {
++ read_atable(fep, i, &read_lo, &read_hi);
++
++ if ((read_lo == write_lo) &&
++ ((read_hi & 0x0000ffff) ==
++ (write_hi & 0x0000ffff))) {
++ /* found correct address,*/
++ if (read_hi & (1 << 16)) {
++ /*extract the port index from the valid entry*/
++ port = AT_EXTRACT_PORT(read_hi);
++ return port;
++ }
++ }
++ }
++
++ return -1;
++}
++
++/* Get the port index from the source MAC address
++ * of the received frame
++ * @return port index
++ */
++int esw_atable_dynamicms_get_portindex_from_mac(
++ struct switch_enet_private *fep,
++ unsigned char *mac_addr,
++ unsigned long write_lo,
++ unsigned long write_hi)
++{
++ int blockIdx;
++ int rc;
++ /*compute the block index*/
++ blockIdx = GET_BLOCK_PTR(crc8_calc(mac_addr));
++ /* Get the ingress port index of the received BPDU */
++ rc = esw_atable_dynamicms_get_port(fep,
++ write_lo, write_hi, blockIdx);
++
++ return rc;
++}
++
++/* dynamicms MAC address table learn and migration*/
++int esw_atable_dynamicms_learn_migration(
++ struct switch_enet_private *fep,
++ int currTime)
++{
++ eswPortInfo *pESWPortInfo;
++ int index;
++ int inserted = 0;
++
++ pESWPortInfo = esw_portinfofifo_read(fep);
++ /* Anything to learn */
++ if (pESWPortInfo != 0) {
++ /*get block index from lookup table*/
++ index = GET_BLOCK_PTR(pESWPortInfo->hash);
++ inserted = esw_update_atable_dynamic1(
++ pESWPortInfo->maclo,
++ pESWPortInfo->machi, index,
++ pESWPortInfo->port, currTime, fep);
++ }
++
++ return 0;
++}
++/* -----------------------------------------------------------------*/
++/*
++ * esw_forced_forward
++ * The frame is forwared to the forced destination ports.
++ * It only replace the MAC lookup function,
++ * all other filtering(eg.VLAN verification) act as normal
++ */
++int esw_forced_forward(struct switch_enet_private *fep,
++ int port1, int port2, int enable)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ /* Enable Forced forwarding for port num */
++ if ((port1 == 1) && (port2 == 1))
++ tmp |= MCF_ESW_P0FFEN_FD(3);
++ else if (port1 == 1)
++ /*Enable Forced forwarding for port 1 only*/
++ tmp |= MCF_ESW_P0FFEN_FD(1);
++ else if (port2 == 1)
++ /*Enable Forced forwarding for port 2 only*/
++ tmp |= MCF_ESW_P0FFEN_FD(2);
++ else {
++ printk(KERN_ERR "%s:do not support "
++ "the forced forward mode"
++ "port1 %x port2 %x\n",
++ __func__, port1, port2);
++ return -1;
++ }
++
++ if (enable == 1)
++ tmp |= MCF_ESW_P0FFEN_FEN;
++ else if (enable == 0)
++ tmp &= ~MCF_ESW_P0FFEN_FEN;
++ else {
++ printk(KERN_ERR "%s: the enable %x is error\n",
++ __func__, enable);
++ return -2;
++ }
++
++ fecp->ESW_P0FFEN = tmp;
++ return 0;
++}
++
++void esw_get_forced_forward(
++ struct switch_enet_private *fep,
++ unsigned long *ulForceForward)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulForceForward = fecp->ESW_P0FFEN;
++}
++
++void esw_get_port_enable(
++ struct switch_enet_private *fep,
++ unsigned long *ulPortEnable)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulPortEnable = fecp->ESW_PER;
++}
++/*
++ * enable or disable port n tx or rx
++ * tx_en 0 disable port n tx
++ * tx_en 1 enable port n tx
++ * rx_en 0 disbale port n rx
++ * rx_en 1 enable port n rx
++ */
++int esw_port_enable_config(struct switch_enet_private *fep,
++ int port, int tx_en, int rx_en)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ tmp = fecp->ESW_PER;
++ if (tx_en == 1) {
++ if (port == 0)
++ tmp |= MCF_ESW_PER_TE0;
++ else if (port == 1)
++ tmp |= MCF_ESW_PER_TE1;
++ else if (port == 2)
++ tmp |= MCF_ESW_PER_TE2;
++ else {
++ printk(KERN_ERR "%s:do not support the"
++ " port %x tx enable\n",
++ __func__, port);
++ return -1;
++ }
++ } else if (tx_en == 0) {
++ if (port == 0)
++ tmp &= (~MCF_ESW_PER_TE0);
++ else if (port == 1)
++ tmp &= (~MCF_ESW_PER_TE1);
++ else if (port == 2)
++ tmp &= (~MCF_ESW_PER_TE2);
++ else {
++ printk(KERN_ERR "%s:do not support "
++ "the port %x tx disable\n",
++ __func__, port);
++ return -2;
++ }
++ } else {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " tx op value %x\n",
++ __func__, port, tx_en);
++ return -3;
++ }
++
++ if (rx_en == 1) {
++ if (port == 0)
++ tmp |= MCF_ESW_PER_RE0;
++ else if (port == 1)
++ tmp |= MCF_ESW_PER_RE1;
++ else if (port == 2)
++ tmp |= MCF_ESW_PER_RE2;
++ else {
++ printk(KERN_ERR "%s:do not support the "
++ "port %x rx enable\n",
++ __func__, port);
++ return -4;
++ }
++ } else if (rx_en == 0) {
++ if (port == 0)
++ tmp &= (~MCF_ESW_PER_RE0);
++ else if (port == 1)
++ tmp &= (~MCF_ESW_PER_RE1);
++ else if (port == 2)
++ tmp &= (~MCF_ESW_PER_RE2);
++ else {
++ printk(KERN_ERR "%s:do not support the "
++ "port %x rx disable\n",
++ __func__, port);
++ return -5;
++ }
++ } else {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " rx op value %x\n",
++ __func__, port, tx_en);
++ return -6;
++ }
++
++ fecp->ESW_PER = tmp;
++ return 0;
++}
++
++
++void esw_get_port_broadcast(struct switch_enet_private *fep,
++ unsigned long *ulPortBroadcast)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulPortBroadcast = fecp->ESW_DBCR;
++}
++
++int esw_port_broadcast_config(struct switch_enet_private *fep,
++ int port, int enable)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port > 2) || (port < 0)) {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " default broadcast\n",
++ __func__, port);
++ return -1;
++ }
++
++ tmp = fecp->ESW_DBCR;
++ if (enable == 1) {
++ if (port == 0)
++ tmp |= MCF_ESW_DBCR_P0;
++ else if (port == 1)
++ tmp |= MCF_ESW_DBCR_P1;
++ else if (port == 2)
++ tmp |= MCF_ESW_DBCR_P2;
++ } else if (enable == 0) {
++ if (port == 0)
++ tmp &= ~MCF_ESW_DBCR_P0;
++ else if (port == 1)
++ tmp &= ~MCF_ESW_DBCR_P1;
++ else if (port == 2)
++ tmp &= ~MCF_ESW_DBCR_P2;
++ }
++
++ fecp->ESW_DBCR = tmp;
++ return 0;
++}
++
++
++void esw_get_port_multicast(struct switch_enet_private *fep,
++ unsigned long *ulPortMulticast)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulPortMulticast = fecp->ESW_DMCR;
++}
++
++int esw_port_multicast_config(struct switch_enet_private *fep,
++ int port, int enable)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port > 2) || (port < 0)) {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " default broadcast\n",
++ __func__, port);
++ return -1;
++ }
++
++ tmp = fecp->ESW_DMCR;
++ if (enable == 1) {
++ if (port == 0)
++ tmp |= MCF_ESW_DMCR_P0;
++ else if (port == 1)
++ tmp |= MCF_ESW_DMCR_P1;
++ else if (port == 2)
++ tmp |= MCF_ESW_DMCR_P2;
++ } else if (enable == 0) {
++ if (port == 0)
++ tmp &= ~MCF_ESW_DMCR_P0;
++ else if (port == 1)
++ tmp &= ~MCF_ESW_DMCR_P1;
++ else if (port == 2)
++ tmp &= ~MCF_ESW_DMCR_P2;
++ }
++
++ fecp->ESW_DMCR = tmp;
++ return 0;
++}
++
++
++void esw_get_port_blocking(struct switch_enet_private *fep,
++ unsigned long *ulPortBlocking)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulPortBlocking = (fecp->ESW_BKLR & 0x0000000f);
++}
++
++int esw_port_blocking_config(struct switch_enet_private *fep,
++ int port, int enable)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port > 2) || (port < 0)) {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " default broadcast\n",
++ __func__, port);
++ return -1;
++ }
++
++ tmp = fecp->ESW_BKLR;
++ if (enable == 1) {
++ if (port == 0)
++ tmp |= MCF_ESW_BKLR_BE0;
++ else if (port == 1)
++ tmp |= MCF_ESW_BKLR_BE1;
++ else if (port == 2)
++ tmp |= MCF_ESW_BKLR_BE2;
++ } else if (enable == 0) {
++ if (port == 0)
++ tmp &= ~MCF_ESW_BKLR_BE0;
++ else if (port == 1)
++ tmp &= ~MCF_ESW_BKLR_BE1;
++ else if (port == 2)
++ tmp &= ~MCF_ESW_BKLR_BE2;
++ }
++
++ fecp->ESW_BKLR = tmp;
++ return 0;
++}
++
++
++void esw_get_port_learning(struct switch_enet_private *fep,
++ unsigned long *ulPortLearning)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulPortLearning = (fecp->ESW_BKLR & 0x000f0000) >> 16;
++}
++
++int esw_port_learning_config(struct switch_enet_private *fep,
++ int port, int disable)
++{
++ unsigned long tmp = 0;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port > 2) || (port < 0)) {
++ printk(KERN_ERR "%s:do not support the port %x"
++ " default broadcast\n",
++ __func__, port);
++ return -1;
++ }
++
++ tmp = fecp->ESW_BKLR;
++ if (disable == 0) {
++ fep->learning_irqhandle_enable = 0;
++ if (port == 0)
++ tmp |= MCF_ESW_BKLR_LD0;
++ else if (port == 1)
++ tmp |= MCF_ESW_BKLR_LD1;
++ else if (port == 2)
++ tmp |= MCF_ESW_BKLR_LD2;
++ } else if (disable == 1) {
++ if (port == 0)
++ tmp &= ~MCF_ESW_BKLR_LD0;
++ else if (port == 1)
++ tmp &= ~MCF_ESW_BKLR_LD1;
++ else if (port == 2)
++ tmp &= ~MCF_ESW_BKLR_LD2;
++ }
++
++ fecp->ESW_BKLR = tmp;
++ return 0;
++}
++/*********************************************************************/
++void esw_mac_lookup_table_range(struct switch_enet_private *fep)
++{
++ int index;
++ unsigned long read_lo, read_hi;
++ /* Pointer to switch address look up memory*/
++ for (index = 0; index < 2048; index++)
++ write_atable(fep, index, index, (~index));
++
++ /* Pointer to switch address look up memory*/
++ for (index = 0; index < 2048; index++) {
++ read_atable(fep, index, &read_lo, &read_hi);
++ if (read_lo != index) {
++ printk(KERN_ERR "%s:Mismatch at low %d\n",
++ __func__, index);
++ return;
++ }
++
++ if (read_hi != (~index)) {
++ printk(KERN_ERR "%s:Mismatch at high %d\n",
++ __func__, index);
++ return;
++ }
++ }
++}
++
++/*
++ * Checks IP Snoop options of handling the snooped frame.
++ * mode 0 : The snooped frame is forward only to management port
++ * mode 1 : The snooped frame is copy to management port and
++ * normal forwarding is checked.
++ * mode 2 : The snooped frame is discarded.
++ * mode 3 : Disable the ip snoop function
++ * ip_header_protocol : the IP header protocol field
++ */
++int esw_ip_snoop_config(struct switch_enet_private *fep,
++ int mode, unsigned long ip_header_protocol)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp = 0, protocol_type = 0;
++ int num = 0;
++
++ fecp = fep->hwp;
++ /* Config IP Snooping */
++ if (mode == 0) {
++ /* Enable IP Snooping */
++ tmp = MCF_ESW_IPSNP_EN;
++ tmp |= MCF_ESW_IPSNP_MODE(0);/*For Forward*/
++ } else if (mode == 1) {
++ /* Enable IP Snooping */
++ tmp = MCF_ESW_IPSNP_EN;
++ /*For Forward and copy_to_mangmnt_port*/
++ tmp |= MCF_ESW_IPSNP_MODE(1);
++ } else if (mode == 2) {
++ /* Enable IP Snooping */
++ tmp = MCF_ESW_IPSNP_EN;
++ tmp |= MCF_ESW_IPSNP_MODE(2);/*discard*/
++ } else if (mode == 3) {
++ /* disable IP Snooping */
++ tmp = MCF_ESW_IPSNP_EN;
++ tmp &= ~MCF_ESW_IPSNP_EN;
++ } else {
++ printk(KERN_ERR "%s: the mode %x "
++ "we do not support\n", __func__, mode);
++ return -1;
++ }
++
++ protocol_type = ip_header_protocol;
++ for (num = 0; num < 8; num++) {
++ if (protocol_type ==
++ AT_EXTRACT_IP_PROTOCOL(fecp->ESW_IPSNP[num])) {
++ fecp->ESW_IPSNP[num] =
++ tmp | MCF_ESW_IPSNP_PROTOCOL(protocol_type);
++ break;
++ } else if (!(fecp->ESW_IPSNP[num])) {
++ fecp->ESW_IPSNP[num] =
++ tmp | MCF_ESW_IPSNP_PROTOCOL(protocol_type);
++ break;
++ }
++ }
++ if (num == 8) {
++ printk(KERN_INFO "IP snooping table is full\n");
++ return 0;
++ }
++
++ return 0;
++}
++
++void esw_get_ip_snoop_config(struct switch_enet_private *fep,
++ unsigned long *ulpESW_IPSNP)
++{
++ int i;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ for (i = 0; i < 8; i++)
++ *(ulpESW_IPSNP + i) = fecp->ESW_IPSNP[i];
++}
++/*
++ * Checks TCP/UDP Port Snoop options of handling the snooped frame.
++ * mode 0 : The snooped frame is forward only to management port
++ * mode 1 : The snooped frame is copy to management port and
++ * normal forwarding is checked.
++ * mode 2 : The snooped frame is discarded.
++ * mode 3 : Disable the TCP/UDP port snoop function
++ * compare_port : port number in the TCP/UDP header
++ * compare_num 1: TCP/UDP source port number is compared
++ * compare_num 2: TCP/UDP destination port number is compared
++ * compare_num 3: TCP/UDP source and destination port number is compared
++ */
++int esw_tcpudp_port_snoop_config(struct switch_enet_private *fep,
++ int mode, int compare_port, int compare_num)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp;
++ int num;
++
++ fecp = fep->hwp;
++
++ /* Enable TCP/UDP port Snooping */
++ tmp = MCF_ESW_PSNP_EN;
++ if (mode == 0)
++ tmp |= MCF_ESW_PSNP_MODE(0);/*For Forward*/
++ else if (mode == 1)/*For Forward and copy_to_mangmnt_port*/
++ tmp |= MCF_ESW_PSNP_MODE(1);
++ else if (mode == 2)
++ tmp |= MCF_ESW_PSNP_MODE(2);/*discard*/
++ else if (mode == 3) /*disable the port function*/
++ tmp &= (~MCF_ESW_PSNP_EN);
++ else {
++ printk(KERN_ERR "%s: the mode %x we do not support\n",
++ __func__, mode);
++ return -1;
++ }
++
++ if (compare_num == 1)
++ tmp |= MCF_ESW_PSNP_CS;
++ else if (compare_num == 2)
++ tmp |= MCF_ESW_PSNP_CD;
++ else if (compare_num == 3)
++ tmp |= MCF_ESW_PSNP_CD | MCF_ESW_PSNP_CS;
++ else {
++ printk(KERN_ERR "%s: the compare port address %x"
++ " we do not support\n",
++ __func__, compare_num);
++ return -1;
++ }
++
++ for (num = 0; num < 8; num++) {
++ if (compare_port ==
++ AT_EXTRACT_TCP_UDP_PORT(fecp->ESW_PSNP[num])) {
++ fecp->ESW_PSNP[num] =
++ tmp | MCF_ESW_PSNP_PORT_COMPARE(compare_port);
++ break;
++ } else if (!(fecp->ESW_PSNP[num])) {
++ fecp->ESW_PSNP[num] =
++ tmp | MCF_ESW_PSNP_PORT_COMPARE(compare_port);
++ break;
++ }
++ }
++ if (num == 8) {
++ printk(KERN_INFO "TCP/UDP port snooping table is full\n");
++ return 0;
++ }
++
++ return 0;
++}
++
++void esw_get_tcpudp_port_snoop_config(
++ struct switch_enet_private *fep,
++ unsigned long *ulpESW_PSNP)
++{
++ int i;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ for (i = 0; i < 8; i++)
++ *(ulpESW_PSNP + i) = fecp->ESW_PSNP[i];
++}
++/*-----------------mirror----------------------------------------*/
++void esw_get_port_mirroring(struct switch_enet_private *fep)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ printk(KERN_INFO "Mirror Port: %1ld Egress Port Match:%s "
++ "Ingress Port Match:%s\n", fecp->ESW_MCR & 0xf,
++ (fecp->ESW_MCR >> 6) & 1 ? "Y" : "N",
++ (fecp->ESW_MCR >> 5) & 1 ? "Y" : "N");
++
++ if ((fecp->ESW_MCR >> 6) & 1)
++ printk(KERN_INFO "Egress Port to be mirrored: Port %ld\n",
++ fecp->ESW_EGMAP >> 1);
++ if ((fecp->ESW_MCR >> 5) & 1)
++ printk(KERN_INFO "Ingress Port to be mirrored: Port %ld\n",
++ fecp->ESW_INGMAP >> 1);
++
++ printk(KERN_INFO "Egress Des Address Match:%s "
++ "Egress Src Address Match:%s\n",
++ (fecp->ESW_MCR >> 10) & 1 ? "Y" : "N",
++ (fecp->ESW_MCR >> 9) & 1 ? "Y" : "N");
++ printk(KERN_INFO "Ingress Des Address Match:%s "
++ "Ingress Src Address Match:%s\n",
++ (fecp->ESW_MCR >> 8) & 1 ? "Y" : "N",
++ (fecp->ESW_MCR >> 7) & 1 ? "Y" : "N");
++
++ if ((fecp->ESW_MCR >> 10) & 1)
++ printk(KERN_INFO "Egress Des Address to be mirrored: "
++ "%02lx-%02lx-%02lx-%02lx-%02lx-%02lx\n",
++ fecp->ESW_ENGDAL & 0xff, (fecp->ESW_ENGDAL >> 8) & 0xff,
++ (fecp->ESW_ENGDAL >> 16) & 0xff,
++ (fecp->ESW_ENGDAL >> 24) & 0xff,
++ fecp->ESW_ENGDAH & 0xff,
++ (fecp->ESW_ENGDAH >> 8) & 0xff);
++ if ((fecp->ESW_MCR >> 9) & 1)
++ printk("Egress Src Address to be mirrored: "
++ "%02lx-%02lx-%02lx-%02lx-%02lx-%02lx\n",
++ fecp->ESW_ENGSAL & 0xff, (fecp->ESW_ENGSAL >> 8) & 0xff,
++ (fecp->ESW_ENGSAL >> 16) & 0xff,
++ (fecp->ESW_ENGSAL >> 24) & 0xff,
++ fecp->ESW_ENGSAH & 0xff,
++ (fecp->ESW_ENGSAH >> 8) & 0xff);
++ if ((fecp->ESW_MCR >> 8) & 1)
++ printk("Ingress Des Address to be mirrored: "
++ "%02lx-%02lx-%02lx-%02lx-%02lx-%02lx\n",
++ fecp->ESW_INGDAL & 0xff, (fecp->ESW_INGDAL >> 8) & 0xff,
++ (fecp->ESW_INGDAL >> 16) & 0xff,
++ (fecp->ESW_INGDAL >> 24) & 0xff,
++ fecp->ESW_INGDAH & 0xff,
++ (fecp->ESW_INGDAH >> 8) & 0xff);
++ if ((fecp->ESW_MCR >> 7) & 1)
++ printk("Ingress Src Address to be mirrored: "
++ "%02lx-%02lx-%02lx-%02lx-%02lx-%02lx\n",
++ fecp->ESW_INGSAL & 0xff, (fecp->ESW_INGSAL >> 8) & 0xff,
++ (fecp->ESW_INGSAL >> 16) & 0xff,
++ (fecp->ESW_INGSAL >> 24) & 0xff,
++ fecp->ESW_INGSAH & 0xff,
++ (fecp->ESW_INGSAH >> 8) & 0xff);
++}
++
++int esw_port_mirroring_config_port_match(struct switch_enet_private *fep,
++ int mirror_port, int port_match_en, int port)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp = 0;
++
++ fecp = fep->hwp;
++
++ tmp = fecp->ESW_MCR;
++ if (mirror_port != (tmp & 0xf))
++ tmp = 0;
++
++ switch (port_match_en) {
++ case MIRROR_EGRESS_PORT_MATCH:
++ tmp |= MCF_ESW_MCR_EGMAP;
++ if (port == 0)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG0;
++ else if (port == 1)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG1;
++ else if (port == 2)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG2;
++ break;
++ case MIRROR_INGRESS_PORT_MATCH:
++ tmp |= MCF_ESW_MCR_INGMAP;
++ if (port == 0)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING0;
++ else if (port == 1)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING1;
++ else if (port == 2)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING2;
++ break;
++ default:
++ tmp = 0;
++ break;
++ }
++
++ tmp = tmp & 0x07e0;
++ if (port_match_en)
++ tmp |= MCF_ESW_MCR_MEN | MCF_ESW_MCR_PORT(mirror_port);
++
++ fecp->ESW_MCR = tmp;
++ return 0;
++}
++
++int esw_port_mirroring_config(struct switch_enet_private *fep,
++ int mirror_port, int port, int mirror_enable,
++ unsigned char *src_mac, unsigned char *des_mac,
++ int egress_en, int ingress_en,
++ int egress_mac_src_en, int egress_mac_des_en,
++ int ingress_mac_src_en, int ingress_mac_des_en)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp;
++
++ fecp = fep->hwp;
++
++ /*mirroring config*/
++ tmp = 0;
++ if (egress_en == 1) {
++ tmp |= MCF_ESW_MCR_EGMAP;
++ if (port == 0)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG0;
++ else if (port == 1)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG1;
++ else if (port == 2)
++ fecp->ESW_EGMAP = MCF_ESW_EGMAP_EG2;
++ else {
++ printk(KERN_ERR "%s: the port %x we do not support\n",
++ __func__, port);
++ return -1;
++ }
++ } else if (egress_en == 0) {
++ tmp &= (~MCF_ESW_MCR_EGMAP);
++ } else {
++ printk(KERN_ERR "%s: egress_en %x we do not support\n",
++ __func__, egress_en);
++ return -1;
++ }
++
++ if (ingress_en == 1) {
++ tmp |= MCF_ESW_MCR_INGMAP;
++ if (port == 0)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING0;
++ else if (port == 1)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING1;
++ else if (port == 2)
++ fecp->ESW_INGMAP = MCF_ESW_INGMAP_ING2;
++ else {
++ printk(KERN_ERR "%s: the port %x we do not support\n",
++ __func__, port);
++ return -1;
++ }
++ } else if (ingress_en == 0) {
++ tmp &= ~MCF_ESW_MCR_INGMAP;
++ } else{
++ printk(KERN_ERR "%s: ingress_en %x we do not support\n",
++ __func__, ingress_en);
++ return -1;
++ }
++
++ if (egress_mac_src_en == 1) {
++ tmp |= MCF_ESW_MCR_EGSA;
++ fecp->ESW_ENGSAH = (src_mac[5] << 8) | (src_mac[4]);
++ fecp->ESW_ENGSAL = (unsigned long)((src_mac[3] << 24) |
++ (src_mac[2] << 16) |
++ (src_mac[1] << 8) |
++ src_mac[0]);
++ } else if (egress_mac_src_en == 0) {
++ tmp &= ~MCF_ESW_MCR_EGSA;
++ } else {
++ printk(KERN_ERR "%s: egress_mac_src_en %x we do not support\n",
++ __func__, egress_mac_src_en);
++ return -1;
++ }
++
++ if (egress_mac_des_en == 1) {
++ tmp |= MCF_ESW_MCR_EGDA;
++ fecp->ESW_ENGDAH = (des_mac[5] << 8) | (des_mac[4]);
++ fecp->ESW_ENGDAL = (unsigned long)((des_mac[3] << 24) |
++ (des_mac[2] << 16) |
++ (des_mac[1] << 8) |
++ des_mac[0]);
++ } else if (egress_mac_des_en == 0) {
++ tmp &= ~MCF_ESW_MCR_EGDA;
++ } else {
++ printk(KERN_ERR "%s: egress_mac_des_en %x we do not support\n",
++ __func__, egress_mac_des_en);
++ return -1;
++ }
++
++ if (ingress_mac_src_en == 1) {
++ tmp |= MCF_ESW_MCR_INGSA;
++ fecp->ESW_INGSAH = (src_mac[5] << 8) | (src_mac[4]);
++ fecp->ESW_INGSAL = (unsigned long)((src_mac[3] << 24) |
++ (src_mac[2] << 16) |
++ (src_mac[1] << 8) |
++ src_mac[0]);
++ } else if (ingress_mac_src_en == 0) {
++ tmp &= ~MCF_ESW_MCR_INGSA;
++ } else {
++ printk(KERN_ERR "%s: ingress_mac_src_en %x we do not support\n",
++ __func__, ingress_mac_src_en);
++ return -1;
++ }
++
++ if (ingress_mac_des_en == 1) {
++ tmp |= MCF_ESW_MCR_INGDA;
++ fecp->ESW_INGDAH = (des_mac[5] << 8) | (des_mac[4]);
++ fecp->ESW_INGDAL = (unsigned long)((des_mac[3] << 24) |
++ (des_mac[2] << 16) |
++ (des_mac[1] << 8) |
++ des_mac[0]);
++ } else if (ingress_mac_des_en == 0) {
++ tmp &= ~MCF_ESW_MCR_INGDA;
++ } else {
++ printk(KERN_ERR "%s: ingress_mac_des_en %x we do not support\n",
++ __func__, ingress_mac_des_en);
++ return -1;
++ }
++
++ if (mirror_enable == 1)
++ tmp |= MCF_ESW_MCR_MEN | MCF_ESW_MCR_PORT(mirror_port);
++ else if (mirror_enable == 0)
++ tmp &= ~MCF_ESW_MCR_MEN;
++ else
++ printk(KERN_ERR "%s: the mirror enable %x is error\n",
++ __func__, mirror_enable);
++
++
++ fecp->ESW_MCR = tmp;
++ return 0;
++}
++
++int esw_port_mirroring_config_addr_match(struct switch_enet_private *fep,
++ int mirror_port, int addr_match_enable, unsigned char *mac_addr)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp = 0;
++
++ fecp = fep->hwp;
++
++ tmp = fecp->ESW_MCR;
++ if (mirror_port != (tmp & 0xf))
++ tmp = 0;
++
++ switch (addr_match_enable) {
++ case MIRROR_EGRESS_SOURCE_MATCH:
++ tmp |= MCF_ESW_MCR_EGSA;
++ fecp->ESW_ENGSAH = (mac_addr[5] << 8) | (mac_addr[4]);
++ fecp->ESW_ENGSAL = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) | (mac_addr[1] << 8) | mac_addr[0]);
++ break;
++ case MIRROR_INGRESS_SOURCE_MATCH:
++ tmp |= MCF_ESW_MCR_INGSA;
++ fecp->ESW_INGSAH = (mac_addr[5] << 8) | (mac_addr[4]);
++ fecp->ESW_INGSAL = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) | (mac_addr[1] << 8) | mac_addr[0]);
++ break;
++ case MIRROR_EGRESS_DESTINATION_MATCH:
++ tmp |= MCF_ESW_MCR_EGDA;
++ fecp->ESW_ENGDAH = (mac_addr[5] << 8) | (mac_addr[4]);
++ fecp->ESW_ENGDAL = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) | (mac_addr[1] << 8) | mac_addr[0]);
++ break;
++ case MIRROR_INGRESS_DESTINATION_MATCH:
++ tmp |= MCF_ESW_MCR_INGDA;
++ fecp->ESW_INGDAH = (mac_addr[5] << 8) | (mac_addr[4]);
++ fecp->ESW_INGDAL = (unsigned long)((mac_addr[3] << 24) |
++ (mac_addr[2] << 16) | (mac_addr[1] << 8) | mac_addr[0]);
++ break;
++ default:
++ tmp = 0;
++ break;
++ }
++
++ tmp = tmp & 0x07e0;
++ if (addr_match_enable)
++ tmp |= MCF_ESW_MCR_MEN | MCF_ESW_MCR_PORT(mirror_port);
++
++ fecp->ESW_MCR = tmp;
++ return 0;
++}
++
++void esw_get_vlan_verification(struct switch_enet_private *fep,
++ unsigned long *ulValue)
++{
++ volatile switch_t *fecp;
++ fecp = fep->hwp;
++ *ulValue = fecp->ESW_VLANV;
++}
++
++int esw_set_vlan_verification(struct switch_enet_private *fep, int port,
++ int vlan_domain_verify_en, int vlan_discard_unknown_en)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ if ((port < 0) || (port > 2)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ if (vlan_domain_verify_en == 1) {
++ if (port == 0)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_VV0;
++ else if (port == 1)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_VV1;
++ else if (port == 2)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_VV2;
++ } else if (vlan_domain_verify_en == 0) {
++ if (port == 0)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_VV0;
++ else if (port == 1)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_VV1;
++ else if (port == 2)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_VV2;
++ } else {
++ printk(KERN_INFO "%s: donot support "
++ "vlan_domain_verify %x\n",
++ __func__, vlan_domain_verify_en);
++ return -2;
++ }
++
++ if (vlan_discard_unknown_en == 1) {
++ if (port == 0)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_DU0;
++ else if (port == 1)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_DU1;
++ else if (port == 2)
++ fecp->ESW_VLANV |= MCF_ESW_VLANV_DU2;
++ } else if (vlan_discard_unknown_en == 0) {
++ if (port == 0)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_DU0;
++ else if (port == 1)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_DU1;
++ else if (port == 2)
++ fecp->ESW_VLANV &= ~MCF_ESW_VLANV_DU2;
++ } else {
++ printk(KERN_INFO "%s: donot support "
++ "vlan_discard_unknown %x\n",
++ __func__, vlan_discard_unknown_en);
++ return -3;
++ }
++
++ return 0;
++}
++
++void esw_get_vlan_resolution_table(struct switch_enet_private *fep,
++ struct eswVlanTableItem *tableaddr)
++{
++ volatile switch_t *fecp;
++ int vnum = 0;
++ int i;
++
++ fecp = fep->hwp;
++ for (i = 0; i < 32; i++) {
++ if (fecp->ESW_VRES[i]) {
++ tableaddr->table[i].port_vlanid =
++ fecp->ESW_VRES[i] >> 3;
++ tableaddr->table[i].vlan_domain_port =
++ fecp->ESW_VRES[i] & 7;
++ vnum++;
++ }
++ }
++ tableaddr->valid_num = vnum;
++}
++
++int esw_set_vlan_id(struct switch_enet_private *fep, unsigned long configData)
++{
++ volatile switch_t *fecp;
++ int i;
++
++ fecp = fep->hwp;
++
++ for (i = 0; i < 32; i++) {
++ if (fecp->ESW_VRES[i] == 0) {
++ fecp->ESW_VRES[i] = MCF_ESW_VRES_VLANID(configData);
++ return 0;
++ } else if (((fecp->ESW_VRES[i] >> 3) & 0xfff) == configData) {
++ printk(KERN_INFO "The VLAN already exists\n");
++ return 0;
++ }
++ }
++
++ printk(KERN_INFO "The VLAN can't create, because VLAN table is full\n");
++ return 0;
++}
++
++int esw_set_vlan_id_cleared(struct switch_enet_private *fep,
++ unsigned long configData)
++{
++ volatile switch_t *fecp;
++ int i;
++
++ fecp = fep->hwp;
++
++ for (i = 0; i < 32; i++) {
++ if (((fecp->ESW_VRES[i] >> 3) & 0xfff) == configData) {
++ fecp->ESW_VRES[i] = 0;
++ break;
++ }
++ }
++ return 0;
++}
++
++int esw_set_port_in_vlan_id(struct switch_enet_private *fep,
++ eswIoctlVlanResoultionTable configData)
++{
++ volatile switch_t *fecp;
++ int i;
++ int lastnum = 0;
++
++ fecp = fep->hwp;
++
++ for (i = 0; i < 32; i++) {
++ if (fecp->ESW_VRES[i] == 0) {
++ lastnum = i;
++ break;
++ } else if (((fecp->ESW_VRES[i] >> 3) & 0xfff) ==
++ configData.port_vlanid) {
++ /* update the port members of this vlan */
++ fecp->ESW_VRES[i] |= 1 << configData.vlan_domain_port;
++ return 0;
++ }
++ }
++ /* creat a new vlan in vlan table */
++ fecp->ESW_VRES[lastnum] = MCF_ESW_VRES_VLANID(configData.port_vlanid) |
++ (1 << configData.vlan_domain_port);
++ return 0;
++}
++
++int esw_set_vlan_resolution_table(struct switch_enet_private *fep,
++ unsigned short port_vlanid, int vlan_domain_num,
++ int vlan_domain_port)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ if ((vlan_domain_num < 0)
++ || (vlan_domain_num > 31)) {
++ printk(KERN_ERR "%s: do not support the "
++ "vlan_domain_num %d\n",
++ __func__, vlan_domain_num);
++ return -1;
++ }
++
++ if ((vlan_domain_port < 0)
++ || (vlan_domain_port > 7)) {
++ printk(KERN_ERR "%s: do not support the "
++ "vlan_domain_port %d\n",
++ __func__, vlan_domain_port);
++ return -2;
++ }
++
++ fecp->ESW_VRES[vlan_domain_num] =
++ MCF_ESW_VRES_VLANID(port_vlanid)
++ | vlan_domain_port;
++
++ return 0;
++}
++
++void esw_get_vlan_input_config(struct switch_enet_private *fep,
++ eswIoctlVlanInputStatus *pVlanInputConfig)
++{
++ volatile switch_t *fecp;
++ int i;
++
++ fecp = fep->hwp;
++ for (i = 0; i < 3; i++)
++ pVlanInputConfig->ESW_PID[i] = fecp->ESW_PID[i];
++
++ pVlanInputConfig->ESW_VLANV = fecp->ESW_VLANV;
++ pVlanInputConfig->ESW_VIMSEL = fecp->ESW_VIMSEL;
++ pVlanInputConfig->ESW_VIMEN = fecp->ESW_VIMEN;
++
++ for (i = 0; i < 32; i++)
++ pVlanInputConfig->ESW_VRES[i] = fecp->ESW_VRES[i];
++}
++
++
++int esw_vlan_input_process(struct switch_enet_private *fep,
++ int port, int mode, unsigned short port_vlanid)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((mode < 0) || (mode > 5)) {
++ printk(KERN_ERR "%s: do not support the"
++ " VLAN input processing mode %d\n",
++ __func__, mode);
++ return -1;
++ }
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, mode);
++ return -2;
++ }
++
++ fecp->ESW_PID[port] = MCF_ESW_PID_VLANID(port_vlanid);
++ if (port == 0) {
++ if (mode == 4)
++ fecp->ESW_VIMEN &= ~MCF_ESW_VIMEN_EN0;
++ else
++ fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN0;
++
++ fecp->ESW_VIMSEL &= ~MCF_ESW_VIMSEL_IM0(3);
++ fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM0(mode);
++ } else if (port == 1) {
++ if (mode == 4)
++ fecp->ESW_VIMEN &= ~MCF_ESW_VIMEN_EN1;
++ else
++ fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN1;
++
++ fecp->ESW_VIMSEL &= ~MCF_ESW_VIMSEL_IM1(3);
++ fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM1(mode);
++ } else if (port == 2) {
++ if (mode == 4)
++ fecp->ESW_VIMEN &= ~MCF_ESW_VIMEN_EN2;
++ else
++ fecp->ESW_VIMEN |= MCF_ESW_VIMEN_EN2;
++
++ fecp->ESW_VIMSEL &= ~MCF_ESW_VIMSEL_IM2(3);
++ fecp->ESW_VIMSEL |= MCF_ESW_VIMSEL_IM2(mode);
++ } else {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -2;
++ }
++
++ return 0;
++}
++
++void esw_get_vlan_output_config(struct switch_enet_private *fep,
++ unsigned long *ulVlanOutputConfig)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulVlanOutputConfig = fecp->ESW_VOMSEL;
++}
++
++int esw_vlan_output_process(struct switch_enet_private *fep,
++ int port, int mode)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port < 0) || (port > 2)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, mode);
++ return -1;
++ }
++
++ if (port == 0) {
++ fecp->ESW_VOMSEL &= ~MCF_ESW_VOMSEL_OM0(3);
++ fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM0(mode);
++ } else if (port == 1) {
++ fecp->ESW_VOMSEL &= ~MCF_ESW_VOMSEL_OM1(3);
++ fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM1(mode);
++ } else if (port == 2) {
++ fecp->ESW_VOMSEL &= ~MCF_ESW_VOMSEL_OM2(3);
++ fecp->ESW_VOMSEL |= MCF_ESW_VOMSEL_OM2(mode);
++ } else {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ return 0;
++}
++
++/*------------frame calssify and priority resolution------------*/
++/*vlan priority lookup*/
++int esw_framecalssify_vlan_priority_lookup(struct switch_enet_private *fep,
++ int port, int func_enable, int vlan_pri_table_num,
++ int vlan_pri_table_value)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ if (func_enable == 0) {
++ fecp->ESW_PRES[port] &= ~MCF_ESW_PRES_VLAN;
++ printk(KERN_ERR "%s: disable port %d VLAN priority "
++ "lookup function\n", __func__, port);
++ return 0;
++ }
++
++ if ((vlan_pri_table_num < 0) || (vlan_pri_table_num > 7)) {
++ printk(KERN_ERR "%s: do not support the priority %d\n",
++ __func__, vlan_pri_table_num);
++ return -1;
++ }
++
++ fecp->ESW_PVRES[port] |= ((vlan_pri_table_value & 0x3)
++ << (vlan_pri_table_num*3));
++ /* enable port VLAN priority lookup function*/
++ fecp->ESW_PRES[port] |= MCF_ESW_PRES_VLAN;
++ return 0;
++}
++
++int esw_framecalssify_ip_priority_lookup(struct switch_enet_private *fep,
++ int port, int func_enable, int ipv4_en, int ip_priority_num,
++ int ip_priority_value)
++{
++ volatile switch_t *fecp;
++ unsigned long tmp = 0, tmp_prio = 0;
++
++ fecp = fep->hwp;
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ if (func_enable == 0) {
++ fecp->ESW_PRES[port] &= ~MCF_ESW_PRES_IP;
++ printk(KERN_ERR "%s: disable port %d ip priority "
++ "lookup function\n", __func__, port);
++ return 0;
++ }
++
++ /* IPV4 priority 64 entry table lookup*/
++ /* IPv4 head 6 bit TOS field*/
++ if (ipv4_en == 1) {
++ if ((ip_priority_num < 0) || (ip_priority_num > 63)) {
++ printk(KERN_ERR "%s: do not support the table entry %d\n",
++ __func__, ip_priority_num);
++ return -2;
++ }
++ } else { /* IPV6 priority 256 entry table lookup*/
++ /* IPv6 head 8 bit COS field*/
++ if ((ip_priority_num < 0) || (ip_priority_num > 255)) {
++ printk(KERN_ERR "%s: do not support the table entry %d\n",
++ __func__, ip_priority_num);
++ return -3;
++ }
++ }
++
++ /* IP priority table lookup : address*/
++ tmp = MCF_ESW_IPRES_ADDRESS(ip_priority_num);
++ /* IP priority table lookup : ipv4sel*/
++ if (ipv4_en == 1)
++ tmp = tmp | MCF_ESW_IPRES_IPV4SEL;
++ /* IP priority table lookup : priority*/
++ if (port == 0)
++ tmp |= MCF_ESW_IPRES_PRI0(ip_priority_value);
++ else if (port == 1)
++ tmp |= MCF_ESW_IPRES_PRI1(ip_priority_value);
++ else if (port == 2)
++ tmp |= MCF_ESW_IPRES_PRI2(ip_priority_value);
++
++ /* configure*/
++ fecp->ESW_IPRES = MCF_ESW_IPRES_READ |
++ MCF_ESW_IPRES_ADDRESS(ip_priority_num);
++ tmp_prio = fecp->ESW_IPRES;
++
++ fecp->ESW_IPRES = tmp | tmp_prio;
++
++ fecp->ESW_IPRES = MCF_ESW_IPRES_READ |
++ MCF_ESW_IPRES_ADDRESS(ip_priority_num);
++ tmp_prio = fecp->ESW_IPRES;
++
++ /* enable port IP priority lookup function*/
++ fecp->ESW_PRES[port] |= MCF_ESW_PRES_IP;
++ return 0;
++}
++
++int esw_framecalssify_mac_priority_lookup(
++ struct switch_enet_private *fep, int port)
++{
++ volatile switch_t *fecp;
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ fecp = fep->hwp;
++ fecp->ESW_PRES[port] |= MCF_ESW_PRES_MAC;
++
++ return 0;
++}
++
++int esw_frame_calssify_priority_init(struct switch_enet_private *fep,
++ int port, unsigned char priority_value)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++ /*disable all priority lookup function*/
++ fecp->ESW_PRES[port] = 0;
++ fecp->ESW_PRES[port] = MCF_ESW_PRES_DFLT_PRI(priority_value & 0x7);
++
++ return 0;
++}
++
++/*---------------------------------------------------------------------------*/
++int esw_get_statistics_status(struct switch_enet_private *fep,
++ esw_statistics_status *pStatistics)
++{
++ volatile switch_t *fecp;
++ fecp = fep->hwp;
++
++ pStatistics->ESW_DISCN = fecp->ESW_DISCN;
++ pStatistics->ESW_DISCB = fecp->ESW_DISCB;
++ pStatistics->ESW_NDISCN = fecp->ESW_NDISCN;
++ pStatistics->ESW_NDISCB = fecp->ESW_NDISCB;
++ return 0;
++}
++
++int esw_get_port_statistics_status(struct switch_enet_private *fep,
++ int port, esw_port_statistics_status *pPortStatistics)
++{
++ volatile switch_t *fecp;
++
++ if ((port < 0) || (port > 3)) {
++ printk(KERN_ERR "%s: do not support the port %d\n",
++ __func__, port);
++ return -1;
++ }
++
++ fecp = fep->hwp;
++
++ pPortStatistics->MCF_ESW_POQC =
++ fecp->port_statistics_status[port].MCF_ESW_POQC;
++ pPortStatistics->MCF_ESW_PMVID =
++ fecp->port_statistics_status[port].MCF_ESW_PMVID;
++ pPortStatistics->MCF_ESW_PMVTAG =
++ fecp->port_statistics_status[port].MCF_ESW_PMVTAG;
++ pPortStatistics->MCF_ESW_PBL =
++ fecp->port_statistics_status[port].MCF_ESW_PBL;
++ return 0;
++}
++/*----------------------------------------------------------------------*/
++int esw_get_output_queue_status(struct switch_enet_private *fep,
++ esw_output_queue_status *pOutputQueue)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ pOutputQueue->ESW_MMSR = fecp->ESW_MMSR;
++ pOutputQueue->ESW_LMT = fecp->ESW_LMT;
++ pOutputQueue->ESW_LFC = fecp->ESW_LFC;
++ pOutputQueue->ESW_IOSR = fecp->ESW_IOSR;
++ pOutputQueue->ESW_PCSR = fecp->ESW_PCSR;
++ pOutputQueue->ESW_QWT = fecp->ESW_QWT;
++ pOutputQueue->ESW_P0BCT = fecp->ESW_P0BCT;
++ return 0;
++}
++
++/* set output queue memory status and configure*/
++int esw_set_output_queue_memory(struct switch_enet_private *fep,
++ int fun_num, esw_output_queue_status *pOutputQueue)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if (fun_num == 1) {
++ /* memory manager status*/
++ fecp->ESW_MMSR = pOutputQueue->ESW_MMSR;
++ } else if (fun_num == 2) {
++ /*low memory threshold*/
++ fecp->ESW_LMT = pOutputQueue->ESW_LMT;
++ } else if (fun_num == 3) {
++ /*lowest number of free cells*/
++ fecp->ESW_LFC = pOutputQueue->ESW_LFC;
++ } else if (fun_num == 4) {
++ /*queue weights*/
++ fecp->ESW_QWT = pOutputQueue->ESW_QWT;
++ } else if (fun_num == 5) {
++ /*port 0 backpressure congenstion thresled*/
++ fecp->ESW_P0BCT = pOutputQueue->ESW_P0BCT;
++ } else {
++ printk(KERN_ERR "%s: do not support the cmd %x\n",
++ __func__, fun_num);
++ return -1;
++ }
++ return 0;
++}
++/*--------------------------------------------------------------------*/
++int esw_get_irq_status(struct switch_enet_private *fep,
++ eswIoctlIrqStatus *pIrqStatus)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ pIrqStatus->isr = fecp->switch_ievent;
++ pIrqStatus->imr = fecp->switch_imask;
++ pIrqStatus->rx_buf_pointer = fecp->fec_r_des_start;
++ pIrqStatus->tx_buf_pointer = fecp->fec_x_des_start;
++ pIrqStatus->rx_max_size = fecp->fec_r_buff_size;
++ pIrqStatus->rx_buf_active = fecp->fec_r_des_active;
++ pIrqStatus->tx_buf_active = fecp->fec_x_des_active;
++ return 0;
++}
++
++int esw_set_irq_mask(struct switch_enet_private *fep,
++ unsigned long mask, int enable)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++
++ if (enable == 1)
++ fecp->switch_imask |= mask;
++ else if (enable == 1)
++ fecp->switch_imask &= (~mask);
++ else {
++ printk(KERN_INFO "%s: enable %lx is error value\n",
++ __func__, mask);
++ return -1;
++ }
++ return 0;
++}
++
++void esw_clear_irq_event(struct switch_enet_private *fep,
++ unsigned long mask)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ fecp->switch_ievent |= mask;
++}
++
++void esw_get_switch_mode(struct switch_enet_private *fep,
++ unsigned long *ulModeConfig)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulModeConfig = fecp->ESW_MODE;
++}
++
++void esw_switch_mode_configure(struct switch_enet_private *fep,
++ unsigned long configure)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ fecp->ESW_MODE |= configure;
++}
++
++void esw_get_bridge_port(struct switch_enet_private *fep,
++ unsigned long *ulBMPConfig)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ *ulBMPConfig = fecp->ESW_BMPC;
++}
++
++void esw_bridge_port_configure(struct switch_enet_private *fep,
++ unsigned long configure)
++{
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ fecp->ESW_BMPC = configure;
++}
++
++int esw_get_port_all_status(struct switch_enet_private *fep,
++ unsigned char portnum, struct port_all_status *port_alstatus)
++{
++ volatile switch_t *fecp;
++ unsigned long PortBlocking;
++ unsigned long PortLearning;
++ unsigned long VlanVerify;
++ unsigned long DiscardUnknown;
++ unsigned long MultiReso;
++ unsigned long BroadReso;
++ unsigned long FTransmit;
++ unsigned long FReceive;
++
++ fecp = fep->hwp;
++ PortBlocking = fecp->ESW_BKLR & 0x0000000f;
++ PortLearning = (fecp->ESW_BKLR & 0x000f0000) >> 16;
++ VlanVerify = fecp->ESW_VLANV & 0x0000000f;
++ DiscardUnknown = (fecp->ESW_VLANV & 0x000f0000) >> 16;
++ MultiReso = fecp->ESW_DMCR & 0x0000000f;
++ BroadReso = fecp->ESW_DBCR & 0x0000000f;
++ FTransmit = fecp->ESW_PER & 0x0000000f;
++ FReceive = (fecp->ESW_PER & 0x000f0000) >> 16;
++
++ switch (portnum) {
++ case 0:
++ port_alstatus->link_status = 1;
++ port_alstatus->block_status = PortBlocking & 1;
++ port_alstatus->learn_status = PortLearning & 1;
++ port_alstatus->vlan_verify = VlanVerify & 1;
++ port_alstatus->discard_unknown = DiscardUnknown & 1;
++ port_alstatus->multi_reso = MultiReso & 1;
++ port_alstatus->broad_reso = BroadReso & 1;
++ port_alstatus->ftransmit = FTransmit & 1;
++ port_alstatus->freceive = FReceive & 1;
++ break;
++ case 1:
++ port_alstatus->link_status =
++ ports_link_status.port1_link_status;
++ port_alstatus->block_status = (PortBlocking >> 1) & 1;
++ port_alstatus->learn_status = (PortLearning >> 1) & 1;
++ port_alstatus->vlan_verify = (VlanVerify >> 1) & 1;
++ port_alstatus->discard_unknown = (DiscardUnknown >> 1) & 1;
++ port_alstatus->multi_reso = (MultiReso >> 1) & 1;
++ port_alstatus->broad_reso = (BroadReso >> 1) & 1;
++ port_alstatus->ftransmit = (FTransmit >> 1) & 1;
++ port_alstatus->freceive = (FReceive >> 1) & 1;
++ break;
++ case 2:
++ port_alstatus->link_status =
++ ports_link_status.port2_link_status;
++ port_alstatus->block_status = (PortBlocking >> 2) & 1;
++ port_alstatus->learn_status = (PortLearning >> 2) & 1;
++ port_alstatus->vlan_verify = (VlanVerify >> 2) & 1;
++ port_alstatus->discard_unknown = (DiscardUnknown >> 2) & 1;
++ port_alstatus->multi_reso = (MultiReso >> 2) & 1;
++ port_alstatus->broad_reso = (BroadReso >> 2) & 1;
++ port_alstatus->ftransmit = (FTransmit >> 2) & 1;
++ port_alstatus->freceive = (FReceive >> 2) & 1;
++ break;
++ default:
++ printk(KERN_ERR "%s:do not support the port %d",
++ __func__, portnum);
++ break;
++ }
++ return 0;
++}
++
++int esw_atable_get_entry_port_number(struct switch_enet_private *fep,
++ unsigned char *mac_addr, unsigned char *port)
++{
++ int block_index, block_index_end, entry;
++ unsigned long read_lo, read_hi;
++ unsigned long mac_addr_lo, mac_addr_hi;
++
++ mac_addr_lo = (unsigned long)((mac_addr[3]<<24) | (mac_addr[2]<<16) |
++ (mac_addr[1]<<8) | mac_addr[0]);
++ mac_addr_hi = (unsigned long)((mac_addr[5]<<8) | (mac_addr[4]));
++
++ block_index = GET_BLOCK_PTR(crc8_calc(mac_addr));
++ block_index_end = block_index + ATABLE_ENTRY_PER_SLOT;
++
++ /* now search all the entries in the selected block */
++ for (entry = block_index; entry < block_index_end; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ if ((read_lo == mac_addr_lo) &&
++ ((read_hi & 0x0000ffff) ==
++ (mac_addr_hi & 0x0000ffff))) {
++ /* found the correct address */
++ if ((read_hi & (1 << 16)) && (!(read_hi & (1 << 17))))
++ *port = AT_EXTRACT_PORT(read_hi);
++ break;
++ } else
++ *port = -1;
++ }
++
++ return 0;
++}
++
++int esw_get_mac_address_lookup_table(struct switch_enet_private *fep,
++ unsigned long *tableaddr, unsigned long *dnum, unsigned long *snum)
++{
++ unsigned long read_lo, read_hi;
++ unsigned long entry;
++ unsigned long dennum = 0;
++ unsigned long sennum = 0;
++
++ for (entry = 0; entry < ESW_ATABLE_MEM_NUM_ENTRIES; entry++) {
++ read_atable(fep, entry, &read_lo, &read_hi);
++ if ((read_hi & (1 << 17)) && (read_hi & (1 << 16))) {
++ /* static entry */
++ *(tableaddr + (2047 - sennum) * 11) = entry;
++ *(tableaddr + (2047 - sennum) * 11 + 2) =
++ read_lo & 0x000000ff;
++ *(tableaddr + (2047 - sennum) * 11 + 3) =
++ (read_lo & 0x0000ff00) >> 8;
++ *(tableaddr + (2047 - sennum) * 11 + 4) =
++ (read_lo & 0x00ff0000) >> 16;
++ *(tableaddr + (2047 - sennum) * 11 + 5) =
++ (read_lo & 0xff000000) >> 24;
++ *(tableaddr + (2047 - sennum) * 11 + 6) =
++ read_hi & 0x000000ff;
++ *(tableaddr + (2047 - sennum) * 11 + 7) =
++ (read_hi & 0x0000ff00) >> 8;
++ *(tableaddr + (2047 - sennum) * 11 + 8) =
++ AT_EXTRACT_PORTMASK(read_hi);
++ *(tableaddr + (2047 - sennum) * 11 + 9) =
++ AT_EXTRACT_PRIO(read_hi);
++ sennum++;
++ } else if ((read_hi & (1 << 16)) && (!(read_hi & (1 << 17)))) {
++ /* dynamic entry */
++ *(tableaddr + dennum * 11) = entry;
++ *(tableaddr + dennum * 11 + 2) = read_lo & 0xff;
++ *(tableaddr + dennum * 11 + 3) =
++ (read_lo & 0x0000ff00) >> 8;
++ *(tableaddr + dennum * 11 + 4) =
++ (read_lo & 0x00ff0000) >> 16;
++ *(tableaddr + dennum * 11 + 5) =
++ (read_lo & 0xff000000) >> 24;
++ *(tableaddr + dennum * 11 + 6) = read_hi & 0xff;
++ *(tableaddr + dennum * 11 + 7) =
++ (read_hi & 0x0000ff00) >> 8;
++ *(tableaddr + dennum * 11 + 8) =
++ AT_EXTRACT_PORT(read_hi);
++ *(tableaddr + dennum * 11 + 9) =
++ AT_EXTRACT_TIMESTAMP(read_hi);
++ dennum++;
++ }
++ }
++
++ *dnum = dennum;
++ *snum = sennum;
++ return 0;
++}
++
++/*----------------------------------------------------------------------------*/
++/* The timer should create an interrupt every 4 seconds*/
++static void l2switch_aging_timer(unsigned long data)
++{
++ struct switch_enet_private *fep;
++
++ fep = (struct switch_enet_private *)data;
++
++ if (fep) {
++ TIMEINCREMENT(fep->currTime);
++ fep->timeChanged++;
++ }
++
++ mod_timer(&fep->timer_aging, jiffies + LEARNING_AGING_TIMER);
++}
++
++/* ----------------------------------------------------------------------- */
++void esw_check_rxb_txb_interrupt(struct switch_enet_private *fep)
++{
++ volatile switch_t *fecp;
++ fecp = fep->hwp;
++
++ /*Enable Forced forwarding for port 1*/
++ fecp->ESW_P0FFEN = MCF_ESW_P0FFEN_FEN |
++ MCF_ESW_P0FFEN_FD(1);
++ /*Disable learning for all ports*/
++ MCF_ESW_IMR = MCF_ESW_IMR_TXB | MCF_ESW_IMR_TXF |
++ MCF_ESW_IMR_RXB | MCF_ESW_IMR_RXF;
++}
++
++/*----------------------------------------------------------------*/
++static int switch_enet_learning(void *arg)
++{
++ struct switch_enet_private *fep = arg;
++ volatile switch_t *fecp;
++
++ fecp = fep->hwp;
++ while (!kthread_should_stop()) {
++ set_current_state(TASK_INTERRUPTIBLE);
++
++ /* check learning record valid */
++ if (fecp->ESW_LSR)
++ esw_atable_dynamicms_learn_migration(fep,
++ fep->currTime);
++ else
++ schedule_timeout(HZ/100);
++ }
++
++ return 0;
++}
++
++static int switch_enet_ioctl(struct net_device *dev,
++ struct ifreq *ifr, int cmd)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++ volatile switch_t *fecp;
++ int ret = 0;
++
++ fecp = (volatile switch_t *)dev->base_addr;
++
++ switch (cmd) {
++ /*------------------------------------------------------------*/
++ case ESW_SET_PORTENABLE_CONF:
++ {
++ eswIoctlPortEnableConfig configData;
++ ret = copy_from_user(&configData,
++ ifr->ifr_data,
++ sizeof(eswIoctlPortEnableConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_enable_config(fep,
++ configData.port,
++ configData.tx_enable,
++ configData.rx_enable);
++ }
++ break;
++ case ESW_SET_BROADCAST_CONF:
++ {
++ eswIoctlPortConfig configData;
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_broadcast_config(fep,
++ configData.port, configData.enable);
++ }
++ break;
++
++ case ESW_SET_MULTICAST_CONF:
++ {
++ eswIoctlPortConfig configData;
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_multicast_config(fep,
++ configData.port, configData.enable);
++ }
++ break;
++
++ case ESW_SET_BLOCKING_CONF:
++ {
++ eswIoctlPortConfig configData;
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortConfig));
++
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_blocking_config(fep,
++ configData.port, configData.enable);
++ }
++ break;
++
++ case ESW_SET_LEARNING_CONF:
++ {
++ eswIoctlPortConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_learning_config(fep,
++ configData.port, configData.enable);
++ }
++ break;
++
++ case ESW_SET_PORT_ENTRY_EMPTY:
++ {
++ unsigned long portnum;
++
++ ret = copy_from_user(&portnum,
++ ifr->ifr_data, sizeof(portnum));
++ if (ret)
++ return -EFAULT;
++ esw_atable_dynamicms_del_entries_for_port(fep, portnum);
++ }
++ break;
++
++ case ESW_SET_OTHER_PORT_ENTRY_EMPTY:
++ {
++ unsigned long portnum;
++
++ ret = copy_from_user(&portnum,
++ ifr->ifr_data, sizeof(portnum));
++ if (ret)
++ return -EFAULT;
++
++ esw_atable_dynamicms_del_entries_for_other_port(fep, portnum);
++ }
++ break;
++
++ case ESW_SET_IP_SNOOP_CONF:
++ {
++ eswIoctlIpsnoopConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlIpsnoopConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_ip_snoop_config(fep, configData.mode,
++ configData.ip_header_protocol);
++ }
++ break;
++
++ case ESW_SET_PORT_SNOOP_CONF:
++ {
++ eswIoctlPortsnoopConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortsnoopConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_tcpudp_port_snoop_config(fep, configData.mode,
++ configData.compare_port,
++ configData.compare_num);
++ }
++ break;
++
++ case ESW_SET_PORT_MIRROR_CONF_PORT_MATCH:
++ {
++ struct eswIoctlMirrorCfgPortMatch configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(configData));
++ if (ret)
++ return -EFAULT;
++ ret = esw_port_mirroring_config_port_match(fep,
++ configData.mirror_port, configData.port_match_en,
++ configData.port);
++ }
++ break;
++
++ case ESW_SET_PORT_MIRROR_CONF:
++ {
++ eswIoctlPortMirrorConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPortMirrorConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_mirroring_config(fep,
++ configData.mirror_port, configData.port,
++ configData.mirror_enable,
++ configData.src_mac, configData.des_mac,
++ configData.egress_en, configData.ingress_en,
++ configData.egress_mac_src_en,
++ configData.egress_mac_des_en,
++ configData.ingress_mac_src_en,
++ configData.ingress_mac_des_en);
++ }
++ break;
++
++ case ESW_SET_PORT_MIRROR_CONF_ADDR_MATCH:
++ {
++ struct eswIoctlMirrorCfgAddrMatch configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(configData));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_port_mirroring_config_addr_match(fep,
++ configData.mirror_port, configData.addr_match_en,
++ configData.mac_addr);
++ }
++ break;
++
++ case ESW_SET_PIRORITY_VLAN:
++ {
++ eswIoctlPriorityVlanConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPriorityVlanConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_framecalssify_vlan_priority_lookup(fep,
++ configData.port, configData.func_enable,
++ configData.vlan_pri_table_num,
++ configData.vlan_pri_table_value);
++ }
++ break;
++
++ case ESW_SET_PIRORITY_IP:
++ {
++ eswIoctlPriorityIPConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPriorityIPConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_framecalssify_ip_priority_lookup(fep,
++ configData.port, configData.func_enable,
++ configData.ipv4_en, configData.ip_priority_num,
++ configData.ip_priority_value);
++ }
++ break;
++
++ case ESW_SET_PIRORITY_MAC:
++ {
++ eswIoctlPriorityMacConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPriorityMacConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_framecalssify_mac_priority_lookup(fep,
++ configData.port);
++ }
++ break;
++
++ case ESW_SET_PIRORITY_DEFAULT:
++ {
++ eswIoctlPriorityDefaultConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlPriorityDefaultConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_frame_calssify_priority_init(fep,
++ configData.port, configData.priority_value);
++ }
++ break;
++
++ case ESW_SET_P0_FORCED_FORWARD:
++ {
++ eswIoctlP0ForcedForwardConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlP0ForcedForwardConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_forced_forward(fep, configData.port1,
++ configData.port2, configData.enable);
++ }
++ break;
++
++ case ESW_SET_BRIDGE_CONFIG:
++ {
++ unsigned long configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++
++ esw_bridge_port_configure(fep, configData);
++ }
++ break;
++
++ case ESW_SET_SWITCH_MODE:
++ {
++ unsigned long configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++
++ esw_switch_mode_configure(fep, configData);
++ }
++ break;
++
++ case ESW_SET_OUTPUT_QUEUE_MEMORY:
++ {
++ eswIoctlOutputQueue configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlOutputQueue));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_output_queue_memory(fep,
++ configData.fun_num, &configData.sOutputQueue);
++ }
++ break;
++
++ case ESW_SET_VLAN_OUTPUT_PROCESS:
++ {
++ eswIoctlVlanOutputConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlVlanOutputConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_vlan_output_process(fep,
++ configData.port, configData.mode);
++ }
++ break;
++
++ case ESW_SET_VLAN_INPUT_PROCESS:
++ {
++ eswIoctlVlanInputConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data,
++ sizeof(eswIoctlVlanInputConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_vlan_input_process(fep, configData.port,
++ configData.mode, configData.port_vlanid);
++ }
++ break;
++
++ case ESW_SET_VLAN_DOMAIN_VERIFICATION:
++ {
++ eswIoctlVlanVerificationConfig configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data,
++ sizeof(eswIoctlVlanVerificationConfig));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_vlan_verification(
++ fep, configData.port,
++ configData.vlan_domain_verify_en,
++ configData.vlan_discard_unknown_en);
++ }
++ break;
++
++ case ESW_SET_VLAN_RESOLUTION_TABLE:
++ {
++ eswIoctlVlanResoultionTable configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data,
++ sizeof(eswIoctlVlanResoultionTable));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_vlan_resolution_table(
++ fep, configData.port_vlanid,
++ configData.vlan_domain_num,
++ configData.vlan_domain_port);
++
++ }
++ break;
++
++ case ESW_SET_VLAN_ID:
++ {
++ unsigned long configData;
++ ret = copy_from_user(&configData, ifr->ifr_data,
++ sizeof(configData));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_vlan_id(fep, configData);
++ }
++ break;
++
++ case ESW_SET_VLAN_ID_CLEARED:
++ {
++ unsigned long configData;
++ ret = copy_from_user(&configData, ifr->ifr_data,
++ sizeof(configData));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_vlan_id_cleared(fep, configData);
++ }
++ break;
++
++ case ESW_SET_PORT_IN_VLAN_ID:
++ {
++ eswIoctlVlanResoultionTable configData;
++
++ ret = copy_from_user(&configData, ifr->ifr_data,
++ sizeof(configData));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_set_port_in_vlan_id(fep, configData);
++ }
++ break;
++
++ /*--------------------------------------------------------------------*/
++ case ESW_UPDATE_STATIC_MACTABLE:
++ {
++ eswIoctlUpdateStaticMACtable configData;
++
++ ret = copy_from_user(&configData,
++ ifr->ifr_data, sizeof(eswIoctlUpdateStaticMACtable));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_update_atable_static(configData.mac_addr,
++ configData.port, configData.priority, fep);
++ }
++ break;
++
++ case ESW_CLEAR_ALL_MACTABLE:
++ {
++ esw_clear_atable(fep);
++ }
++ break;
++
++ /*-------------------get----------------------------------------------*/
++ case ESW_GET_STATISTICS_STATUS:
++ {
++ esw_statistics_status Statistics;
++ esw_port_statistics_status PortSta;
++ int i;
++
++ ret = esw_get_statistics_status(fep, &Statistics);
++ if (ret != 0) {
++ printk(KERN_ERR "%s: cmd %x fail\n", __func__, cmd);
++ return -1;
++ }
++ printk(KERN_INFO "DISCN : %10ld DISCB : %10ld\n",
++ Statistics.ESW_DISCN, Statistics.ESW_DISCB);
++ printk(KERN_INFO "NDISCN: %10ld NDISCB: %10ld\n",
++ Statistics.ESW_NDISCN, Statistics.ESW_NDISCB);
++
++ for (i = 0; i < 3; i++) {
++ ret = esw_get_port_statistics_status(fep, i,
++ &PortSta);
++ if (ret != 0) {
++ printk(KERN_ERR "%s: cmd %x fail\n",
++ __func__, cmd);
++ return -1;
++ }
++ printk(KERN_INFO "port %d: POQC : %ld\n",
++ i, PortSta.MCF_ESW_POQC);
++ printk(KERN_INFO " PMVID : %ld\n",
++ PortSta.MCF_ESW_PMVID);
++ printk(KERN_INFO " PMVTAG: %ld\n",
++ PortSta.MCF_ESW_PMVTAG);
++ printk(KERN_INFO " PBL : %ld\n",
++ PortSta.MCF_ESW_PBL);
++ }
++ }
++ break;
++
++ case ESW_GET_LEARNING_CONF:
++ {
++ unsigned long PortLearning;
++
++ esw_get_port_learning(fep, &PortLearning);
++ ret = copy_to_user(ifr->ifr_data, &PortLearning,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_BLOCKING_CONF:
++ {
++ unsigned long PortBlocking;
++
++ esw_get_port_blocking(fep, &PortBlocking);
++ ret = copy_to_user(ifr->ifr_data, &PortBlocking,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_MULTICAST_CONF:
++ {
++ unsigned long PortMulticast;
++
++ esw_get_port_multicast(fep, &PortMulticast);
++ ret = copy_to_user(ifr->ifr_data, &PortMulticast,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_BROADCAST_CONF:
++ {
++ unsigned long PortBroadcast;
++
++ esw_get_port_broadcast(fep, &PortBroadcast);
++ ret = copy_to_user(ifr->ifr_data, &PortBroadcast,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_PORTENABLE_CONF:
++ {
++ unsigned long PortEnable;
++
++ esw_get_port_enable(fep, &PortEnable);
++ ret = copy_to_user(ifr->ifr_data, &PortEnable,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_IP_SNOOP_CONF:
++ {
++ unsigned long ESW_IPSNP[8];
++ int i;
++
++ esw_get_ip_snoop_config(fep, (unsigned long *)ESW_IPSNP);
++ printk(KERN_INFO "IP Protocol Mode Type\n");
++ for (i = 0; i < 8; i++) {
++ if (ESW_IPSNP[i] != 0)
++ printk(KERN_INFO "%3ld "
++ "%1ld %s\n",
++ (ESW_IPSNP[i] >> 8) & 0xff,
++ (ESW_IPSNP[i] >> 1) & 3,
++ ESW_IPSNP[i] & 1 ? "Active" :
++ "Inactive");
++ }
++ }
++ break;
++
++ case ESW_GET_PORT_SNOOP_CONF:
++ {
++ unsigned long ESW_PSNP[8];
++ int i;
++
++ esw_get_tcpudp_port_snoop_config(fep,
++ (unsigned long *)ESW_PSNP);
++ printk(KERN_INFO "TCP/UDP Port SrcCompare DesCompare "
++ "Mode Type\n");
++ for (i = 0; i < 8; i++) {
++ if (ESW_PSNP[i] != 0)
++ printk(KERN_INFO "%5ld %s "
++ "%s %1ld %s\n",
++ (ESW_PSNP[i] >> 16) & 0xffff,
++ (ESW_PSNP[i] >> 4) & 1 ? "Y" : "N",
++ (ESW_PSNP[i] >> 3) & 1 ? "Y" : "N",
++ (ESW_PSNP[i] >> 1) & 3,
++ ESW_PSNP[i] & 1 ? "Active" :
++ "Inactive");
++ }
++ }
++ break;
++
++ case ESW_GET_PORT_MIRROR_CONF:
++ esw_get_port_mirroring(fep);
++ break;
++
++ case ESW_GET_P0_FORCED_FORWARD:
++ {
++ unsigned long ForceForward;
++
++ esw_get_forced_forward(fep, &ForceForward);
++ ret = copy_to_user(ifr->ifr_data, &ForceForward,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_SWITCH_MODE:
++ {
++ unsigned long Config;
++
++ esw_get_switch_mode(fep, &Config);
++ ret = copy_to_user(ifr->ifr_data, &Config,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_BRIDGE_CONFIG:
++ {
++ unsigned long Config;
++
++ esw_get_bridge_port(fep, &Config);
++ ret = copy_to_user(ifr->ifr_data, &Config,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++ case ESW_GET_OUTPUT_QUEUE_STATUS:
++ {
++ esw_output_queue_status Config;
++ esw_get_output_queue_status(fep,
++ &Config);
++ ret = copy_to_user(ifr->ifr_data, &Config,
++ sizeof(esw_output_queue_status));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_VLAN_OUTPUT_PROCESS:
++ {
++ unsigned long Config;
++ int tmp;
++ int i;
++
++ esw_get_vlan_output_config(fep, &Config);
++
++ for (i = 0; i < 3; i++) {
++ tmp = (Config >> (i << 1)) & 3;
++
++ if (tmp != 0)
++ printk(KERN_INFO "port %d: vlan output "
++ "manipulation enable (mode %d)\n",
++ i, tmp);
++ else
++ printk(KERN_INFO "port %d: vlan output "
++ "manipulation disable\n", i);
++ }
++ }
++ break;
++
++ case ESW_GET_VLAN_INPUT_PROCESS:
++ {
++ eswIoctlVlanInputStatus Config;
++ int i;
++
++ esw_get_vlan_input_config(fep, &Config);
++
++ for (i = 0; i < 3; i++) {
++ if (((Config.ESW_VIMEN >> i) & 1) == 0)
++ printk(KERN_INFO "port %d: vlan input "
++ "manipulation disable\n", i);
++ else
++ printk("port %d: vlan input manipulation enable"
++ " (mode %ld, vlan id %ld)\n", i,
++ (((Config.ESW_VIMSEL >> (i << 1)) & 3)
++ + 1), Config.ESW_PID[i]);
++ }
++ }
++ break;
++
++ case ESW_GET_VLAN_RESOLUTION_TABLE:
++ {
++ struct eswVlanTableItem vtableitem;
++ unsigned char tmp0, tmp1, tmp2;
++ int i;
++
++ esw_get_vlan_resolution_table(fep, &vtableitem);
++
++ printk(KERN_INFO "VLAN Name VLAN Id Ports\n");
++ for (i = 0; i < vtableitem.valid_num; i++) {
++ tmp0 = vtableitem.table[i].vlan_domain_port & 1;
++ tmp1 = (vtableitem.table[i].vlan_domain_port >> 1) & 1;
++ tmp2 = (vtableitem.table[i].vlan_domain_port >> 2) & 1;
++ printk(KERN_INFO "%2d %4d %s%s%s\n",
++ i, vtableitem.table[i].port_vlanid,
++ tmp0 ? "0 " : "", tmp1 ? "1 " : "",
++ tmp2 ? "2" : "");
++ }
++ }
++ break;
++
++ case ESW_GET_VLAN_DOMAIN_VERIFICATION:
++ {
++ unsigned long Config;
++
++ esw_get_vlan_verification(fep, &Config);
++ ret = copy_to_user(ifr->ifr_data, &Config,
++ sizeof(unsigned long));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_ENTRY_PORT_NUMBER:
++ {
++ unsigned char mac_addr[6];
++ unsigned char portnum;
++
++ ret = copy_from_user(mac_addr,
++ ifr->ifr_data, sizeof(mac_addr));
++ if (ret)
++ return -EFAULT;
++
++ ret = esw_atable_get_entry_port_number(fep, mac_addr,
++ &portnum);
++
++ ret = copy_to_user(ifr->ifr_data, &portnum,
++ sizeof(unsigned char));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_LOOKUP_TABLE:
++ {
++ unsigned long *ConfigData;
++ unsigned long dennum, sennum;
++ int i;
++ int tmp;
++
++ ConfigData = kmalloc(sizeof(struct eswAddrTableEntryExample) *
++ ESW_ATABLE_MEM_NUM_ENTRIES, GFP_KERNEL);
++ ret = esw_get_mac_address_lookup_table(fep, ConfigData,
++ &dennum, &sennum);
++ printk(KERN_INFO "Dynamic entries number: %ld\n", dennum);
++ printk(KERN_INFO "Static entries number: %ld\n", sennum);
++ printk(KERN_INFO "Type MAC address Port Timestamp\n");
++ for (i = 0; i < dennum; i++) {
++ printk(KERN_INFO "dynamic "
++ "%02lx-%02lx-%02lx-%02lx-%02lx-%02lx "
++ "%01lx %4ld\n", *(ConfigData + i * 11 + 2),
++ *(ConfigData + i * 11 + 3),
++ *(ConfigData + i * 11 + 4),
++ *(ConfigData + i * 11 + 5),
++ *(ConfigData + i * 11 + 6),
++ *(ConfigData + i * 11 + 7),
++ *(ConfigData + i * 11 + 8),
++ *(ConfigData + i * 11 + 9));
++ }
++
++ if (sennum != 0)
++ printk(KERN_INFO "Type MAC address"
++ " Port Priority\n");
++
++ for (i = 0; i < sennum; i++) {
++ printk(KERN_INFO "static %02lx-%02lx-%02lx-%02lx"
++ "-%02lx-%02lx ",
++ *(ConfigData + (2047 - i) * 11 + 2),
++ *(ConfigData + (2047 - i) * 11 + 3),
++ *(ConfigData + (2047 - i) * 11 + 4),
++ *(ConfigData + (2047 - i) * 11 + 5),
++ *(ConfigData + (2047 - i) * 11 + 6),
++ *(ConfigData + (2047 - i) * 11 + 7));
++
++ tmp = *(ConfigData + (2047 - i) * 11 + 8);
++ if ((tmp == 0) || (tmp == 2) || (tmp == 4))
++ printk("%01x ", tmp >> 1);
++ else if (tmp == 3)
++ printk("0,1 ");
++ else if (tmp == 5)
++ printk("0,2 ");
++ else if (tmp == 6)
++ printk("1,2 ");
++
++ printk("%4ld\n", *(ConfigData + (2047 - i) * 11 + 9));
++ }
++ kfree(ConfigData);
++ }
++ break;
++
++ case ESW_GET_PORT_STATUS:
++ {
++ unsigned long PortBlocking;
++
++ esw_get_port_blocking(fep, &PortBlocking);
++
++ ports_link_status.port0_block_status = PortBlocking & 1;
++ ports_link_status.port1_block_status = (PortBlocking >> 1) & 1;
++ ports_link_status.port2_block_status = PortBlocking >> 2;
++
++ ret = copy_to_user(ifr->ifr_data, &ports_link_status,
++ sizeof(ports_link_status));
++ if (ret)
++ return -EFAULT;
++ }
++ break;
++
++ case ESW_GET_PORT_ALL_STATUS:
++ {
++ unsigned char portnum;
++ struct port_all_status port_astatus;
++
++ ret = copy_from_user(&portnum,
++ ifr->ifr_data, sizeof(portnum));
++ if (ret)
++ return -EFAULT;
++
++ esw_get_port_all_status(fep, portnum, &port_astatus);
++ printk(KERN_INFO "Port %d status:\n", portnum);
++ printk(KERN_INFO "Link:%-4s Blocking:%1s "
++ "Learning:%1s\n",
++ port_astatus.link_status ? "Up" : "Down",
++ port_astatus.block_status ? "Y" : "N",
++ port_astatus.learn_status ? "N" : "Y");
++ printk(KERN_INFO "VLAN Verify:%1s Discard Unknown:%1s "
++ "Multicast Res:%1s\n",
++ port_astatus.vlan_verify ? "Y" : "N",
++ port_astatus.discard_unknown ? "Y" : "N",
++ port_astatus.multi_reso ? "Y" : "N");
++ printk(KERN_INFO "Broadcast Res:%1s Transmit:%-7s "
++ "Receive:%7s\n",
++ port_astatus.broad_reso ? "Y" : "N",
++ port_astatus.ftransmit ? "Enable" : "Disable",
++ port_astatus.freceive ? "Enable" : "Disable");
++
++ }
++ break;
++
++ case ESW_GET_USER_PID:
++ {
++ long get_pid = 0;
++ ret = copy_from_user(&get_pid,
++ ifr->ifr_data, sizeof(get_pid));
++
++ if (ret)
++ return -EFAULT;
++ user_pid = get_pid;
++ }
++ break;
++ /*------------------------------------------------------------------*/
++ default:
++ return -EOPNOTSUPP;
++ }
++
++ return ret;
++}
++
++static netdev_tx_t switch_enet_start_xmit(struct sk_buff *skb,
++ struct net_device *dev)
++{
++ struct switch_enet_private *fep;
++ volatile switch_t *fecp;
++ cbd_t *bdp;
++ unsigned short status;
++ unsigned long flags;
++
++ fep = netdev_priv(dev);
++ fecp = (switch_t *)fep->hwp;
++
++ spin_lock_irqsave(&fep->hw_lock, flags);
++ /* Fill in a Tx ring entry */
++ bdp = fep->cur_tx;
++
++ status = bdp->cbd_sc;
++
++ /* Clear all of the status flags.
++ */
++ status &= ~BD_ENET_TX_STATS;
++
++ /* Set buffer length and buffer pointer.
++ */
++ bdp->cbd_bufaddr = __pa(skb->data);
++ bdp->cbd_datlen = skb->len;
++
++ /*
++ * On some FEC implementations data must be aligned on
++ * 4-byte boundaries. Use bounce buffers to copy data
++ * and get it aligned. Ugh.
++ */
++ if (bdp->cbd_bufaddr & 0x3) {
++ unsigned int index1;
++ index1 = bdp - fep->tx_bd_base;
++
++ memcpy(fep->tx_bounce[index1],
++ (void *)skb->data, bdp->cbd_datlen);
++ bdp->cbd_bufaddr = __pa(fep->tx_bounce[index1]);
++ }
++
++ /* Save skb pointer. */
++ fep->tx_skbuff[fep->skb_cur] = skb;
++
++ dev->stats.tx_bytes += skb->len;
++ fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
++
++ /* Push the data cache so the CPM does not get stale memory
++ * data.
++ */
++ flush_dcache_range((unsigned long)skb->data,
++ (unsigned long)skb->data + skb->len);
++
++ /* Send it on its way. Tell FEC it's ready, interrupt when done,
++ * it's the last BD of the frame, and to put the CRC on the end.
++ */
++
++ status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
++ | BD_ENET_TX_LAST | BD_ENET_TX_TC);
++ bdp->cbd_sc = status;
++ dev->trans_start = jiffies;
++
++ /* Trigger transmission start */
++ fecp->fec_x_des_active = MCF_ESW_TDAR_X_DES_ACTIVE;
++
++ /* If this was the last BD in the ring,
++ * start at the beginning again.*/
++ if (status & BD_ENET_TX_WRAP)
++ bdp = fep->tx_bd_base;
++ else
++ bdp++;
++
++ if (bdp == fep->dirty_tx) {
++ fep->tx_full = 1;
++ netif_stop_queue(dev);
++ printk(KERN_ERR "%s: net stop\n", __func__);
++ }
++
++ fep->cur_tx = (cbd_t *)bdp;
++
++ spin_unlock_irqrestore(&fep->hw_lock, flags);
++
++ return NETDEV_TX_OK;
++}
++
++static void switch_timeout(struct net_device *dev)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++
++ printk(KERN_ERR "%s: transmit timed out.\n", dev->name);
++ dev->stats.tx_errors++;
++ switch_restart(dev, fep->full_duplex);
++ netif_wake_queue(dev);
++}
++
++/* The interrupt handler.
++ * This is called from the MPC core interrupt.
++ */
++static irqreturn_t switch_enet_interrupt(int irq, void *dev_id)
++{
++ struct net_device *dev = dev_id;
++ volatile switch_t *fecp;
++ uint int_events;
++ irqreturn_t ret = IRQ_NONE;
++
++ fecp = (switch_t *)dev->base_addr;
++
++ /* Get the interrupt events that caused us to be here.
++ */
++ do {
++ int_events = fecp->switch_ievent;
++ fecp->switch_ievent = int_events;
++ /* Handle receive event in its own function. */
++
++ /* Transmit OK, or non-fatal error. Update the buffer
++ descriptors. Switch handles all errors, we just discover
++ them as part of the transmit process.
++ */
++ if (int_events & MCF_ESW_ISR_OD0)
++ ret = IRQ_HANDLED;
++
++ if (int_events & MCF_ESW_ISR_OD1)
++ ret = IRQ_HANDLED;
++
++ if (int_events & MCF_ESW_ISR_OD2)
++ ret = IRQ_HANDLED;
++
++ if (int_events & MCF_ESW_ISR_RXB)
++ ret = IRQ_HANDLED;
++
++ if (int_events & MCF_ESW_ISR_RXF) {
++ ret = IRQ_HANDLED;
++ switch_enet_rx(dev);
++ }
++
++ if (int_events & MCF_ESW_ISR_TXB)
++ ret = IRQ_HANDLED;
++
++ if (int_events & MCF_ESW_ISR_TXF) {
++ ret = IRQ_HANDLED;
++ switch_enet_tx(dev);
++ }
++
++ } while (int_events);
++
++ return ret;
++}
++
++static void switch_enet_tx(struct net_device *dev)
++{
++ struct switch_enet_private *fep;
++ cbd_t *bdp;
++ unsigned short status;
++ struct sk_buff *skb;
++
++ fep = netdev_priv(dev);
++ spin_lock_irq(&fep->hw_lock);
++ bdp = fep->dirty_tx;
++
++ while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
++ if (bdp == fep->cur_tx && fep->tx_full == 0)
++ break;
++
++ skb = fep->tx_skbuff[fep->skb_dirty];
++ /* Check for errors. */
++ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
++ BD_ENET_TX_RL | BD_ENET_TX_UN |
++ BD_ENET_TX_CSL)) {
++ dev->stats.tx_errors++;
++ if (status & BD_ENET_TX_HB) /* No heartbeat */
++ dev->stats.tx_heartbeat_errors++;
++ if (status & BD_ENET_TX_LC) /* Late collision */
++ dev->stats.tx_window_errors++;
++ if (status & BD_ENET_TX_RL) /* Retrans limit */
++ dev->stats.tx_aborted_errors++;
++ if (status & BD_ENET_TX_UN) /* Underrun */
++ dev->stats.tx_fifo_errors++;
++ if (status & BD_ENET_TX_CSL) /* Carrier lost */
++ dev->stats.tx_carrier_errors++;
++ } else {
++ dev->stats.tx_packets++;
++ }
++
++ /* Deferred means some collisions occurred during transmit,
++ * but we eventually sent the packet OK.
++ */
++ if (status & BD_ENET_TX_DEF)
++ dev->stats.collisions++;
++
++ /* Free the sk buffer associated with this last transmit.
++ */
++ dev_kfree_skb_any(skb);
++ fep->tx_skbuff[fep->skb_dirty] = NULL;
++ fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
++
++ /* Update pointer to next buffer descriptor to be transmitted.
++ */
++ if (status & BD_ENET_TX_WRAP)
++ bdp = fep->tx_bd_base;
++ else
++ bdp++;
++
++ /* Since we have freed up a buffer, the ring is no longer
++ * full.
++ */
++ if (fep->tx_full) {
++ fep->tx_full = 0;
++ printk(KERN_ERR "%s: tx full is zero\n", __func__);
++ if (netif_queue_stopped(dev))
++ netif_wake_queue(dev);
++ }
++ }
++ fep->dirty_tx = (cbd_t *)bdp;
++ spin_unlock_irq(&fep->hw_lock);
++}
++
++
++/* During a receive, the cur_rx points to the current incoming buffer.
++ * When we update through the ring, if the next incoming buffer has
++ * not been given to the system, we just set the empty indicator,
++ * effectively tossing the packet.
++ */
++static void switch_enet_rx(struct net_device *dev)
++{
++ struct switch_enet_private *fep;
++ volatile switch_t *fecp;
++ cbd_t *bdp;
++ unsigned short status;
++ struct sk_buff *skb;
++ ushort pkt_len;
++ __u8 *data;
++
++ fep = netdev_priv(dev);
++ /*fecp = (volatile switch_t *)dev->base_addr;*/
++ fecp = (volatile switch_t *)fep->hwp;
++
++ spin_lock_irq(&fep->hw_lock);
++ /* First, grab all of the stats for the incoming packet.
++ * These get messed up if we get called due to a busy condition.
++ */
++ bdp = fep->cur_rx;
++
++ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
++
++ /* Since we have allocated space to hold a complete frame,
++ * the last indicator should be set.
++ * */
++ if ((status & BD_ENET_RX_LAST) == 0)
++ printk(KERN_ERR "SWITCH ENET: rcv is not +last\n");
++
++ if (!fep->opened)
++ goto rx_processing_done;
++
++ /* Check for errors. */
++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
++ BD_ENET_RX_CR | BD_ENET_RX_OV)) {
++ dev->stats.rx_errors++;
++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
++ /* Frame too long or too short. */
++ dev->stats.rx_length_errors++;
++ }
++ if (status & BD_ENET_RX_NO) /* Frame alignment */
++ dev->stats.rx_frame_errors++;
++ if (status & BD_ENET_RX_CR) /* CRC Error */
++ dev->stats.rx_crc_errors++;
++ if (status & BD_ENET_RX_OV) /* FIFO overrun */
++ dev->stats.rx_fifo_errors++;
++ }
++ /* Report late collisions as a frame error.
++ * On this error, the BD is closed, but we don't know what we
++ * have in the buffer. So, just drop this frame on the floor.
++ * */
++ if (status & BD_ENET_RX_CL) {
++ dev->stats.rx_errors++;
++ dev->stats.rx_frame_errors++;
++ goto rx_processing_done;
++ }
++ /* Process the incoming frame */
++ dev->stats.rx_packets++;
++ pkt_len = bdp->cbd_datlen;
++ dev->stats.rx_bytes += pkt_len;
++ data = (__u8 *)__va(bdp->cbd_bufaddr);
++
++ /* This does 16 byte alignment, exactly what we need.
++ * The packet length includes FCS, but we don't want to
++ * include that when passing upstream as it messes up
++ * bridging applications.
++ * */
++ skb = dev_alloc_skb(pkt_len);
++
++ if (skb == NULL)
++ dev->stats.rx_dropped++;
++ else {
++ skb_put(skb, pkt_len); /* Make room */
++ skb_copy_to_linear_data(skb, data, pkt_len);
++ skb->protocol = eth_type_trans(skb, dev);
++ netif_rx(skb);
++ }
++rx_processing_done:
++
++ /* Clear the status flags for this buffer */
++ status &= ~BD_ENET_RX_STATS;
++
++ /* Mark the buffer empty */
++ status |= BD_ENET_RX_EMPTY;
++ bdp->cbd_sc = status;
++
++ /* Update BD pointer to next entry */
++ if (status & BD_ENET_RX_WRAP)
++ bdp = fep->rx_bd_base;
++ else
++ bdp++;
++
++ /* Doing this here will keep the FEC running while we process
++ * incoming frames. On a heavily loaded network, we should be
++ * able to keep up at the expense of system resources.
++ * */
++ fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE;
++ }
++ fep->cur_rx = (cbd_t *)bdp;
++
++ spin_unlock_irq(&fep->hw_lock);
++}
++
++static int fec_mdio_transfer(struct mii_bus *bus, int phy_id,
++ int reg, int regval)
++{
++ struct net_device *dev = bus->priv;
++ unsigned long flags;
++ struct switch_enet_private *fep;
++ int tries = 100;
++ int retval = 0;
++
++ fep = netdev_priv(dev);
++ spin_lock_irqsave(&fep->mii_lock, flags);
++
++ regval |= phy_id << 23;
++ MCF_FEC_MMFR0 = regval;
++
++ /* wait for it to finish, this takes about 23 us on lite5200b */
++ while (!(MCF_FEC_EIR0 & FEC_ENET_MII) && --tries)
++ udelay(5);
++
++ if (!tries) {
++ printk(KERN_ERR "%s timeout\n", __func__);
++ return -ETIMEDOUT;
++ }
++
++ MCF_FEC_EIR0 = FEC_ENET_MII;
++ retval = MCF_FEC_MMFR0;
++ spin_unlock_irqrestore(&fep->mii_lock, flags);
++
++ return retval;
++}
++
++
++static int coldfire_fec_mdio_read(struct mii_bus *bus,
++ int phy_id, int reg)
++{
++ int ret;
++ ret = fec_mdio_transfer(bus, phy_id, reg,
++ mk_mii_read(reg));
++ return ret;
++}
++
++static int coldfire_fec_mdio_write(struct mii_bus *bus,
++ int phy_id, int reg, u16 data)
++{
++ return fec_mdio_transfer(bus, phy_id, reg,
++ mk_mii_write(reg, data));
++}
++
++static void switch_adjust_link1(struct net_device *dev)
++{
++ struct switch_enet_private *priv = netdev_priv(dev);
++ struct phy_device *phydev1 = priv->phydev[0];
++ int new_state = 0;
++
++ if (phydev1->link != PHY_DOWN) {
++ if (phydev1->duplex != priv->phy1_duplex) {
++ new_state = 1;
++ priv->phy1_duplex = phydev1->duplex;
++ }
++
++ if (phydev1->speed != priv->phy1_speed) {
++ new_state = 1;
++ priv->phy1_speed = phydev1->speed;
++ }
++
++ if (priv->phy1_old_link == PHY_DOWN) {
++ new_state = 1;
++ priv->phy1_old_link = phydev1->link;
++ }
++ } else if (priv->phy1_old_link) {
++ new_state = 1;
++ priv->phy1_old_link = PHY_DOWN;
++ priv->phy1_speed = 0;
++ priv->phy1_duplex = -1;
++ }
++
++ if (new_state) {
++ ports_link_status.port1_link_status = phydev1->link;
++ if (phydev1->link == PHY_DOWN)
++ esw_atable_dynamicms_del_entries_for_port(priv, 1);
++
++ /*Send the new status to user space*/
++ if (user_pid != 1)
++ sys_tkill(user_pid, SIGUSR1);
++ }
++}
++
++static void switch_adjust_link2(struct net_device *dev)
++{
++ struct switch_enet_private *priv = netdev_priv(dev);
++ struct phy_device *phydev2 = priv->phydev[1];
++ int new_state = 0;
++
++ if (phydev2->link != PHY_DOWN) {
++ if (phydev2->duplex != priv->phy2_duplex) {
++ new_state = 1;
++ priv->phy2_duplex = phydev2->duplex;
++ }
++
++ if (phydev2->speed != priv->phy2_speed) {
++ new_state = 1;
++ priv->phy2_speed = phydev2->speed;
++ }
++
++ if (priv->phy2_old_link == PHY_DOWN) {
++ new_state = 1;
++ priv->phy2_old_link = phydev2->link;
++ }
++ } else if (priv->phy2_old_link) {
++ new_state = 1;
++ priv->phy2_old_link = PHY_DOWN;
++ priv->phy2_speed = 0;
++ priv->phy2_duplex = -1;
++ }
++
++ if (new_state) {
++ ports_link_status.port2_link_status = phydev2->link;
++ if (phydev2->link == PHY_DOWN)
++ esw_atable_dynamicms_del_entries_for_port(priv, 2);
++
++ /*Send the new status to user space*/
++ if (user_pid != 1)
++ sys_tkill(user_pid, SIGUSR1);
++ }
++}
++
++static int coldfire_switch_init_phy(struct net_device *dev)
++{
++ struct switch_enet_private *priv = netdev_priv(dev);
++ struct phy_device *phydev[SWITCH_EPORT_NUMBER] = {NULL, NULL};
++ int i, startnode = 0;
++
++ /* search for connect PHY device */
++ for (i = 0; i < PHY_MAX_ADDR; i++) {
++ struct phy_device *const tmp_phydev =
++ priv->mdio_bus->phy_map[i];
++
++ if (!tmp_phydev)
++ continue;
++
++#ifdef CONFIG_FEC_SHARED_PHY
++ if (priv->index == 0)
++ phydev[i] = tmp_phydev;
++ else if (priv->index == 1) {
++ if (startnode == 1) {
++ phydev[i] = tmp_phydev;
++ startnode = 0;
++ } else {
++ startnode++;
++ continue;
++ }
++ } else
++ printk(KERN_INFO "%s now we do not"
++ "support (%d) more than"
++ "2 phys shared "
++ "one mdio bus\n",
++ __func__, startnode);
++#else
++ phydev[i] = tmp_phydev;
++#endif
++ }
++
++ /* now we are supposed to have a proper phydev, to attach to... */
++ if ((!phydev[0]) && (!phydev[1])) {
++ printk(KERN_INFO "%s: Don't found any phy device at all\n",
++ dev->name);
++ return -ENODEV;
++ }
++
++ priv->phy1_link = PHY_DOWN;
++ priv->phy1_old_link = PHY_DOWN;
++ priv->phy1_speed = 0;
++ priv->phy1_duplex = -1;
++
++ priv->phy2_link = PHY_DOWN;
++ priv->phy2_old_link = PHY_DOWN;
++ priv->phy2_speed = 0;
++ priv->phy2_duplex = -1;
++
++ phydev[0] = phy_connect(dev, dev_name(&phydev[0]->dev),
++ &switch_adjust_link1, 0, PHY_INTERFACE_MODE_MII);
++ if (IS_ERR(phydev[0])) {
++ printk(KERN_ERR " %s phy_connect failed\n", __func__);
++ return PTR_ERR(phydev[0]);
++ }
++
++ phydev[1] = phy_connect(dev, dev_name(&phydev[1]->dev),
++ &switch_adjust_link2, 0, PHY_INTERFACE_MODE_MII);
++ if (IS_ERR(phydev[1])) {
++ printk(KERN_ERR " %s phy_connect failed\n", __func__);
++ return PTR_ERR(phydev[1]);
++ }
++
++ for (i = 0; i < SWITCH_EPORT_NUMBER; i++) {
++ printk(KERN_INFO "attached phy %i to driver %s\n",
++ phydev[i]->addr, phydev[i]->drv->name);
++ priv->phydev[i] = phydev[i];
++ }
++
++ return 0;
++}
++/* -----------------------------------------------------------------------*/
++static int switch_enet_open(struct net_device *dev)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++ volatile switch_t *fecp;
++ int i;
++
++ fecp = (volatile switch_t *)fep->hwp;
++ /* I should reset the ring buffers here, but I don't yet know
++ * a simple way to do that.
++ */
++ switch_set_mac_address(dev);
++
++ fep->phy1_link = 0;
++ fep->phy2_link = 0;
++
++ coldfire_switch_init_phy(dev);
++ for (i = 0; i < SWITCH_EPORT_NUMBER; i++) {
++ phy_write(fep->phydev[i], MII_BMCR, BMCR_RESET);
++ phy_start(fep->phydev[i]);
++ }
++
++ fep->phy1_old_link = 0;
++ fep->phy2_old_link = 0;
++ fep->phy1_link = 1;
++ fep->phy2_link = 1;
++
++ /* no phy, go full duplex, it's most likely a hub chip */
++ switch_restart(dev, 1);
++
++ /* if the fec is the fist open, we need to do nothing*/
++ /* if the fec is not the fist open, we need to restart the FEC*/
++ if (fep->sequence_done == 0)
++ switch_restart(dev, 1);
++ else
++ fep->sequence_done = 0;
++
++ fep->currTime = 0;
++ fep->learning_irqhandle_enable = 0;
++
++ MCF_ESW_PER = 0x70007;
++ fecp->ESW_DBCR = MCF_ESW_DBCR_P0 | MCF_ESW_DBCR_P1 | MCF_ESW_DBCR_P2;
++ fecp->ESW_DMCR = MCF_ESW_DMCR_P0 | MCF_ESW_DMCR_P1 | MCF_ESW_DMCR_P2;
++
++ netif_start_queue(dev);
++ fep->opened = 1;
++
++ return 0;
++}
++
++static int switch_enet_close(struct net_device *dev)
++{
++ struct switch_enet_private *fep = netdev_priv(dev);
++ int i;
++
++ /* Don't know what to do yet.*/
++ fep->opened = 0;
++ netif_stop_queue(dev);
++ switch_stop(dev);
++
++ for (i = 0; i < SWITCH_EPORT_NUMBER; i++) {
++ phy_disconnect(fep->phydev[i]);
++ phy_stop(fep->phydev[i]);
++ phy_write(fep->phydev[i], MII_BMCR, BMCR_PDOWN);
++ }
++
++ return 0;
++}
++
++/* Set or clear the multicast filter for this adaptor.
++ * Skeleton taken from sunlance driver.
++ * The CPM Ethernet implementation allows Multicast as well as individual
++ * MAC address filtering. Some of the drivers check to make sure it is
++ * a group multicast address, and discard those that are not. I guess I
++ * will do the same for now, but just remove the test if you want
++ * individual filtering as well (do the upper net layers want or support
++ * this kind of feature?).
++ */
++
++#define HASH_BITS 6 /* #bits in hash */
++#define CRC32_POLY 0xEDB88320
++
++static void set_multicast_list(struct net_device *dev)
++{
++ struct switch_enet_private *fep;
++ volatile switch_t *ep;
++ unsigned int i, bit, data, crc;
++ struct netdev_hw_addr *ha;
++
++ fep = netdev_priv(dev);
++ ep = fep->hwp;
++
++ if (dev->flags & IFF_PROMISC) {
++ printk(KERN_INFO "%s IFF_PROMISC\n", __func__);
++ } else {
++ if (dev->flags & IFF_ALLMULTI)
++ /* Catch all multicast addresses, so set the
++ * filter to all 1's.
++ */
++ printk(KERN_INFO "%s IFF_ALLMULTI\n", __func__);
++ else {
++ netdev_for_each_mc_addr(ha, dev) {
++ if (!(ha->addr[0] & 1))
++ continue;
++
++ /* calculate crc32 value of mac address
++ */
++ crc = 0xffffffff;
++
++ for (i = 0; i < dev->addr_len; i++) {
++ data = ha->addr[i];
++ for (bit = 0; bit < 8; bit++,
++ data >>= 1) {
++ crc = (crc >> 1) ^
++ (((crc ^ data) & 1) ?
++ CRC32_POLY : 0);
++ }
++ }
++
++ }
++ }
++ }
++}
++
++/* Set a MAC change in hardware.*/
++static void switch_set_mac_address(struct net_device *dev)
++{
++ volatile switch_t *fecp;
++
++ fecp = ((struct switch_enet_private *)netdev_priv(dev))->hwp;
++}
++
++static void switch_hw_init(void)
++{
++ /* GPIO config - RMII mode for both MACs */
++ MCF_GPIO_PAR_FEC = (MCF_GPIO_PAR_FEC &
++ MCF_GPIO_PAR_FEC_FEC_MASK) |
++ MCF_GPIO_PAR_FEC_FEC_RMII0FUL_1FUL;
++
++ /* Initialize MAC 0/1 */
++ /* RCR */
++ MCF_FEC_RCR0 = (MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE |
++ MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD);
++ MCF_FEC_RCR1 = (MCF_FEC_RCR_PROM | MCF_FEC_RCR_RMII_MODE |
++ MCF_FEC_RCR_MAX_FL(1522) | MCF_FEC_RCR_CRC_FWD);
++ /* TCR */
++ MCF_FEC_TCR0 = MCF_FEC_TCR_FDEN;
++ MCF_FEC_TCR1 = MCF_FEC_TCR_FDEN;
++ /* ECR */
++#ifdef MODELO_BUFFER
++ MCF_FEC_ECR0 = MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588;
++ MCF_FEC_ECR1 = MCF_FEC_ECR_ETHER_EN | MCF_FEC_ECR_ENA_1588;
++#else
++ MCF_FEC_ECR0 = MCF_FEC_ECR_ETHER_EN;
++ MCF_FEC_ECR1 = MCF_FEC_ECR_ETHER_EN;
++#endif
++ MCF_FEC_MSCR0 = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
++ MCF_FEC_MSCR1 = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
++
++ MCF_FEC_EIMR0 = FEC_ENET_TXF | FEC_ENET_RXF;
++ MCF_FEC_EIMR1 = FEC_ENET_TXF | FEC_ENET_RXF;
++ /*MCF_PPMHR0*/
++ MCF_PPMCR0 = 0;
++}
++
++static const struct net_device_ops switch_netdev_ops = {
++ .ndo_open = switch_enet_open,
++ .ndo_stop = switch_enet_close,
++ .ndo_start_xmit = switch_enet_start_xmit,
++ .ndo_set_multicast_list = set_multicast_list,
++ .ndo_do_ioctl = switch_enet_ioctl,
++ .ndo_tx_timeout = switch_timeout,
++};
++
++/* Initialize the FEC Ethernet.
++ */
++ /*
++ * XXX: We need to clean up on failure exits here.
++ */
++static int switch_enet_init(struct platform_device *pdev)
++{
++ struct net_device *dev = platform_get_drvdata(pdev);
++ struct switch_enet_private *fep = netdev_priv(dev);
++ unsigned long mem_addr;
++ cbd_t *bdp;
++ cbd_t *cbd_base;
++ volatile switch_t *fecp;
++ int i, j;
++ struct coldfire_switch_platform_data *plat =
++ pdev->dev.platform_data;
++
++ /* Allocate memory for buffer descriptors.
++ */
++ mem_addr = __get_free_page(GFP_DMA);
++ if (mem_addr == 0) {
++ printk(KERN_ERR "Switch: allocate descriptor memory failed?\n");
++ return -ENOMEM;
++ }
++
++ spin_lock_init(&fep->hw_lock);
++ spin_lock_init(&fep->mii_lock);
++
++ /* Create an Ethernet device instance.
++ */
++ fecp = (volatile switch_t *)plat->switch_hw[0];
++ fep->hwp = fecp;
++ fep->netdev = dev;
++
++ /*
++ * SWITCH CONFIGURATION
++ */
++ fecp->ESW_MODE = MCF_ESW_MODE_SW_RST;
++ udelay(10);
++ /* enable switch*/
++ fecp->ESW_MODE = MCF_ESW_MODE_STATRST;
++ fecp->ESW_MODE = MCF_ESW_MODE_SW_EN;
++
++ /* Enable transmit/receive on all ports */
++ fecp->ESW_PER = 0xffffffff;
++
++ /* Management port configuration,
++ * make port 0 as management port */
++ fecp->ESW_BMPC = 0;
++
++ /* clear all switch irq*/
++ fecp->switch_ievent = 0xffffffff;
++ fecp->switch_imask = 0;
++
++ udelay(10);
++
++ /* Set the Ethernet address. If using multiple Enets on the 8xx,
++ * this needs some work to get unique addresses.
++ *
++ * This is our default MAC address unless the user changes
++ * it via eth_mac_addr (our dev->set_mac_addr handler).
++ */
++ if (plat && plat->get_mac)
++ plat->get_mac(dev);
++
++ cbd_base = (cbd_t *)mem_addr;
++ /* XXX: missing check for allocation failure */
++ if (plat && plat->uncache)
++ plat->uncache(mem_addr);
++
++ /* Set receive and transmit descriptor base.
++ */
++ fep->rx_bd_base = cbd_base;
++ fep->tx_bd_base = cbd_base + RX_RING_SIZE;
++
++ dev->base_addr = (unsigned long)fecp;
++
++ /* The FEC Ethernet specific entries in the device structure. */
++ dev->watchdog_timeo = TX_TIMEOUT;
++ dev->netdev_ops = &switch_netdev_ops;
++
++ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
++ fep->cur_rx = fep->rx_bd_base;
++
++ fep->skb_cur = fep->skb_dirty = 0;
++
++ /* Initialize the receive buffer descriptors. */
++ bdp = fep->rx_bd_base;
++
++ for (i = 0; i < SWITCH_ENET_RX_PAGES; i++) {
++
++ /* Allocate a page.
++ */
++ mem_addr = __get_free_page(GFP_DMA);
++ /* XXX: missing check for allocation failure */
++ if (plat && plat->uncache)
++ plat->uncache(mem_addr);
++
++ /* Initialize the BD for every fragment in the page.
++ */
++ for (j = 0; j < SWITCH_ENET_RX_FRPPG; j++) {
++ bdp->cbd_sc = BD_ENET_RX_EMPTY;
++ bdp->cbd_bufaddr = __pa(mem_addr);
++#ifdef MODELO_BUFFER
++ bdp->bdu = 0x00000000;
++ bdp->ebd_status = RX_BD_INT;
++#endif
++ mem_addr += SWITCH_ENET_RX_FRSIZE;
++ bdp++;
++ }
++ }
++
++ /* Set the last buffer to wrap.
++ */
++ bdp--;
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ /* ...and the same for transmmit.
++ */
++ bdp = fep->tx_bd_base;
++ for (i = 0, j = SWITCH_ENET_TX_FRPPG; i < TX_RING_SIZE; i++) {
++ if (j >= SWITCH_ENET_TX_FRPPG) {
++ mem_addr = __get_free_page(GFP_DMA);
++ j = 1;
++ } else {
++ mem_addr += SWITCH_ENET_TX_FRSIZE;
++ j++;
++ }
++ fep->tx_bounce[i] = (unsigned char *) mem_addr;
++
++ /* Initialize the BD for every fragment in the page.
++ */
++ bdp->cbd_sc = 0;
++ bdp->cbd_bufaddr = 0;
++ bdp++;
++ }
++
++ /* Set the last buffer to wrap.
++ */
++ bdp--;
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ /* Set receive and transmit descriptor base.
++ */
++ fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
++ fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
++
++ /* Install our interrupt handlers. This varies depending on
++ * the architecture.
++ */
++ if (plat && plat->request_intrs)
++ plat->request_intrs(dev, switch_enet_interrupt, dev);
++
++ fecp->fec_r_buff_size = RX_BUFFER_SIZE;
++ fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE;
++
++ /* setup MII interface */
++ if (plat && plat->set_mii)
++ plat->set_mii(dev);
++
++ /* Clear and enable interrupts */
++ fecp->switch_ievent = 0xffffffff;
++ fecp->switch_imask = MCF_ESW_IMR_RXB | MCF_ESW_IMR_TXB |
++ MCF_ESW_IMR_RXF | MCF_ESW_IMR_TXF;
++ esw_clear_atable(fep);
++ /* Queue up command to detect the PHY and initialize the
++ * remainder of the interface.
++ */
++#ifndef CONFIG_FEC_SHARED_PHY
++ fep->phy_addr = 0;
++#else
++ fep->phy_addr = fep->index;
++#endif
++
++ fep->sequence_done = 1;
++ return 0;
++}
++
++/* This function is called to start or restart the FEC during a link
++ * change. This only happens when switching between half and full
++ * duplex.
++ */
++static void switch_restart(struct net_device *dev, int duplex)
++{
++ struct switch_enet_private *fep;
++ cbd_t *bdp;
++ volatile switch_t *fecp;
++ int i;
++ struct coldfire_switch_platform_data *plat;
++
++ fep = netdev_priv(dev);
++ fecp = fep->hwp;
++ plat = fep->pdev->dev.platform_data;
++ /* Whack a reset. We should wait for this.*/
++ MCF_FEC_ECR0 = 1;
++ MCF_FEC_ECR1 = 1;
++ udelay(10);
++
++ fecp->ESW_MODE = MCF_ESW_MODE_SW_RST;
++ udelay(10);
++ fecp->ESW_MODE = MCF_ESW_MODE_STATRST;
++ fecp->ESW_MODE = MCF_ESW_MODE_SW_EN;
++
++ /* Enable transmit/receive on all ports */
++ fecp->ESW_PER = 0xffffffff;
++
++ /* Management port configuration,
++ * make port 0 as management port */
++ fecp->ESW_BMPC = 0;
++
++ /* Clear any outstanding interrupt.
++ */
++ fecp->switch_ievent = 0xffffffff;
++
++ /* Set station address.*/
++ switch_set_mac_address(dev);
++
++ switch_hw_init();
++
++ /* Reset all multicast.*/
++
++ /* Set maximum receive buffer size.
++ */
++ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
++
++ if (plat && plat->localhw_setup)
++ plat->localhw_setup();
++ /* Set receive and transmit descriptor base.
++ */
++ fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
++ fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
++
++ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
++ fep->cur_rx = fep->rx_bd_base;
++
++ /* Reset SKB transmit buffers.
++ */
++ fep->skb_cur = fep->skb_dirty = 0;
++ for (i = 0; i <= TX_RING_MOD_MASK; i++) {
++ if (fep->tx_skbuff[i] != NULL) {
++ dev_kfree_skb_any(fep->tx_skbuff[i]);
++ fep->tx_skbuff[i] = NULL;
++ }
++ }
++
++ /* Initialize the receive buffer descriptors.
++ */
++ bdp = fep->rx_bd_base;
++ for (i = 0; i < RX_RING_SIZE; i++) {
++
++ /* Initialize the BD for every fragment in the page.
++ */
++ bdp->cbd_sc = BD_ENET_RX_EMPTY;
++#ifdef MODELO_BUFFER
++ bdp->bdu = 0x00000000;
++ bdp->ebd_status = RX_BD_INT;
++#endif
++ bdp++;
++ }
++
++ /* Set the last buffer to wrap.
++ */
++ bdp--;
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ /* ...and the same for transmmit.
++ */
++ bdp = fep->tx_bd_base;
++ for (i = 0; i < TX_RING_SIZE; i++) {
++
++ /* Initialize the BD for every fragment in the page.*/
++ bdp->cbd_sc = 0;
++ bdp->cbd_bufaddr = 0;
++ bdp++;
++ }
++
++ /* Set the last buffer to wrap.*/
++ bdp--;
++ bdp->cbd_sc |= BD_SC_WRAP;
++
++ fep->full_duplex = duplex;
++
++ /* And last, enable the transmit and receive processing.*/
++ fecp->fec_r_buff_size = RX_BUFFER_SIZE;
++ fecp->fec_r_des_active = MCF_ESW_RDAR_R_DES_ACTIVE;
++
++ /* Enable interrupts we wish to service.
++ */
++ fecp->switch_ievent = 0xffffffff;
++ fecp->switch_imask = MCF_ESW_IMR_RXF | MCF_ESW_IMR_TXF |
++ MCF_ESW_IMR_RXB | MCF_ESW_IMR_TXB;
++}
++
++static void switch_stop(struct net_device *dev)
++{
++ volatile switch_t *fecp;
++ struct switch_enet_private *fep;
++ struct coldfire_switch_platform_data *plat;
++
++ fep = netdev_priv(dev);
++ fecp = fep->hwp;
++ plat = fep->pdev->dev.platform_data;
++ /*
++ ** We cannot expect a graceful transmit stop without link !!!
++ */
++ if (fep->phy1_link)
++ udelay(10);
++ if (fep->phy2_link)
++ udelay(10);
++
++ /* Whack a reset. We should wait for this.
++ */
++ udelay(10);
++}
++
++static int fec_mdio_register(struct net_device *dev)
++{
++ int err = 0;
++ struct switch_enet_private *fep = netdev_priv(dev);
++
++ fep->mdio_bus = mdiobus_alloc();
++ if (!fep->mdio_bus) {
++ printk(KERN_ERR "ethernet switch mdiobus_alloc fail\n");
++ return -ENOMEM;
++ }
++
++ fep->mdio_bus->name = "Coldfire switch MII 0 Bus";
++ strcpy(fep->mdio_bus->id, "0");
++
++ fep->mdio_bus->read = &coldfire_fec_mdio_read;
++ fep->mdio_bus->write = &coldfire_fec_mdio_write;
++ fep->mdio_bus->priv = dev;
++ err = mdiobus_register(fep->mdio_bus);
++ if (err) {
++ mdiobus_free(fep->mdio_bus);
++ printk(KERN_ERR "%s: ethernet mdiobus_register fail\n",
++ dev->name);
++ return -EIO;
++ }
++
++ printk(KERN_INFO "mdiobus_register %s ok\n",
++ fep->mdio_bus->name);
++ return err;
++}
++
++static int __devinit eth_switch_probe(struct platform_device *pdev)
++{
++ struct net_device *dev;
++ int err;
++ struct switch_enet_private *fep;
++ struct task_struct *task;
++
++ printk(KERN_INFO "Ethernet Switch Version 1.0\n");
++
++ dev = alloc_etherdev(sizeof(struct switch_enet_private));
++ if (!dev) {
++ printk(KERN_ERR "%s: ethernet switch alloc_etherdev fail\n",
++ dev->name);
++ return -ENOMEM;
++ }
++
++ SET_NETDEV_DEV(dev, &pdev->dev);
++
++ fep = netdev_priv(dev);
++ memset(fep, 0, sizeof(*fep));
++
++ fep->pdev = pdev;
++ platform_set_drvdata(pdev, dev);
++ printk(KERN_ERR "%s: ethernet switch port 0 init\n",
++ __func__);
++ err = switch_enet_init(pdev);
++ if (err) {
++ free_netdev(dev);
++ platform_set_drvdata(pdev, NULL);
++ }
++
++ err = fec_mdio_register(dev);
++ if (err) {
++ printk(KERN_ERR "%s: ethernet switch fec_mdio_register\n",
++ dev->name);
++ free_netdev(dev);
++ platform_set_drvdata(pdev, NULL);
++ return -ENOMEM;
++ }
++
++ /* setup timer for Learning Aging function */
++ init_timer(&fep->timer_aging);
++ fep->timer_aging.function = l2switch_aging_timer;
++ fep->timer_aging.data = (unsigned long) fep;
++ fep->timer_aging.expires = jiffies + LEARNING_AGING_TIMER;
++ add_timer(&fep->timer_aging);
++
++ /* register network device*/
++ if (register_netdev(dev) != 0) {
++ /* XXX: missing cleanup here */
++ free_netdev(dev);
++ platform_set_drvdata(pdev, NULL);
++ printk(KERN_ERR "%s: ethernet switch register_netdev fail\n",
++ dev->name);
++ return -EIO;
++ }
++
++ task = kthread_run(switch_enet_learning, fep,
++ "modelo l2switch");
++ if (IS_ERR(task)) {
++ err = PTR_ERR(task);
++ return err;
++ }
++
++ printk(KERN_INFO "%s: ethernet switch %pM\n",
++ dev->name, dev->dev_addr);
++ return 0;
++}
++
++static int __devexit eth_switch_remove(struct platform_device *pdev)
++{
++ int i;
++ struct net_device *dev;
++ struct switch_enet_private *fep;
++ struct switch_platform_private *chip;
++
++ chip = platform_get_drvdata(pdev);
++ if (chip) {
++ for (i = 0; i < chip->num_slots; i++) {
++ fep = chip->fep_host[i];
++ dev = fep->netdev;
++ fep->sequence_done = 1;
++ unregister_netdev(dev);
++ free_netdev(dev);
++
++ del_timer_sync(&fep->timer_aging);
++ }
++
++ platform_set_drvdata(pdev, NULL);
++ kfree(chip);
++
++ } else
++ printk(KERN_ERR "%s: can not get the "
++ "switch_platform_private %x\n", __func__,
++ (unsigned int)chip);
++
++ return 0;
++}
++
++static struct platform_driver eth_switch_driver = {
++ .probe = eth_switch_probe,
++ .remove = __devexit_p(eth_switch_remove),
++ .driver = {
++ .name = "coldfire-switch",
++ .owner = THIS_MODULE,
++ },
++};
++
++static int __init coldfire_switch_init(void)
++{
++ return platform_driver_register(&eth_switch_driver);
++}
++
++static void __exit coldfire_switch_exit(void)
++{
++ platform_driver_unregister(&eth_switch_driver);
++}
++
++module_init(coldfire_switch_init);
++module_exit(coldfire_switch_exit);
++MODULE_LICENSE("GPL");
+--- /dev/null
++++ b/drivers/net/modelo_switch.h
+@@ -0,0 +1,1141 @@
++/****************************************************************************/
++
++/*
++ * mcfswitch -- L2 Switch Controller for Modelo ColdFire SoC
++ * processors.
++ *
++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or (at
++ * your option) any later version.
++ *
++ */
++
++/****************************************************************************/
++#ifndef SWITCH_H
++#define SWITCH_H
++/****************************************************************************/
++/* The Switch stores dest/src/type, data, and checksum for receive packets.
++ */
++#define PKT_MAXBUF_SIZE 1518
++#define PKT_MINBUF_SIZE 64
++#define PKT_MAXBLR_SIZE 1520
++
++/*
++ * The 5441x RX control register also contains maximum frame
++ * size bits.
++ */
++#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
++
++/*
++ * Some hardware gets it MAC address out of local flash memory.
++ * if this is non-zero then assume it is the address to get MAC from.
++ */
++#define FEC_FLASHMAC 0
++
++/* The number of Tx and Rx buffers. These are allocated from the page
++ * pool. The code may assume these are power of two, so it it best
++ * to keep them that size.
++ * We don't need to allocate pages for the transmitter. We just use
++ * the skbuffer directly.
++ */
++#ifdef CONFIG_SWITCH_DMA_USE_SRAM
++#define SWITCH_ENET_RX_PAGES 6
++#else
++#define SWITCH_ENET_RX_PAGES 8
++#endif
++
++#define SWITCH_ENET_RX_FRSIZE 2048
++#define SWITCH_ENET_RX_FRPPG (PAGE_SIZE / SWITCH_ENET_RX_FRSIZE)
++#define RX_RING_SIZE (SWITCH_ENET_RX_FRPPG * SWITCH_ENET_RX_PAGES)
++#define SWITCH_ENET_TX_FRSIZE 2048
++#define SWITCH_ENET_TX_FRPPG (PAGE_SIZE / SWITCH_ENET_TX_FRSIZE)
++
++#ifdef CONFIG_SWITCH_DMA_USE_SRAM
++#define TX_RING_SIZE 8 /* Must be power of two */
++#define TX_RING_MOD_MASK 7 /* for this to work */
++#else
++#define TX_RING_SIZE 16 /* Must be power of two */
++#define TX_RING_MOD_MASK 15 /* for this to work */
++#endif
++
++#define SWITCH_EPORT_NUMBER 2
++
++#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
++#error "L2SWITCH: descriptor ring size constants too large"
++#endif
++/*-----------------------------------------------------------------------*/
++typedef struct l2switch_output_queue_status {
++ unsigned long ESW_MMSR;
++ unsigned long ESW_LMT;
++ unsigned long ESW_LFC;
++ unsigned long ESW_PCSR;
++ unsigned long ESW_IOSR;
++ unsigned long ESW_QWT;
++ unsigned long esw_reserved;
++ unsigned long ESW_P0BCT;
++} esw_output_queue_status;
++
++typedef struct l2switch_statistics_status {
++ /*
++ * Total number of incoming frames processed
++ * but discarded in switch
++ */
++ unsigned long ESW_DISCN;
++ /*Sum of bytes of frames counted in ESW_DISCN*/
++ unsigned long ESW_DISCB;
++ /*
++ * Total number of incoming frames processed
++ * but not discarded in switch
++ */
++ unsigned long ESW_NDISCN;
++ /*Sum of bytes of frames counted in ESW_NDISCN*/
++ unsigned long ESW_NDISCB;
++} esw_statistics_status;
++
++typedef struct l2switch_port_statistics_status {
++ /*outgoing frames discarded due to transmit queue congestion*/
++ unsigned long MCF_ESW_POQC;
++ /*incoming frames discarded due to VLAN domain mismatch*/
++ unsigned long MCF_ESW_PMVID;
++ /*incoming frames discarded due to untagged discard*/
++ unsigned long MCF_ESW_PMVTAG;
++ /*incoming frames discarded due port is in blocking state*/
++ unsigned long MCF_ESW_PBL;
++} esw_port_statistics_status;
++
++typedef struct l2switch {
++ unsigned long ESW_REVISION;
++ unsigned long ESW_SCRATCH;
++ unsigned long ESW_PER;
++ unsigned long reserved0[1];
++ unsigned long ESW_VLANV;
++ unsigned long ESW_DBCR;
++ unsigned long ESW_DMCR;
++ unsigned long ESW_BKLR;
++ unsigned long ESW_BMPC;
++ unsigned long ESW_MODE;
++ unsigned long ESW_VIMSEL;
++ unsigned long ESW_VOMSEL;
++ unsigned long ESW_VIMEN;
++ unsigned long ESW_VID;/*0x34*/
++ /*from 0x38 0x3C*/
++ unsigned long esw_reserved0[2];
++ unsigned long ESW_MCR;/*0x40*/
++ unsigned long ESW_EGMAP;
++ unsigned long ESW_INGMAP;
++ unsigned long ESW_INGSAL;
++ unsigned long ESW_INGSAH;
++ unsigned long ESW_INGDAL;
++ unsigned long ESW_INGDAH;
++ unsigned long ESW_ENGSAL;
++ unsigned long ESW_ENGSAH;
++ unsigned long ESW_ENGDAL;
++ unsigned long ESW_ENGDAH;
++ unsigned long ESW_MCVAL;/*0x6C*/
++ /*from 0x70--0x7C*/
++ unsigned long esw_reserved1[4];
++ unsigned long ESW_MMSR;/*0x80*/
++ unsigned long ESW_LMT;
++ unsigned long ESW_LFC;
++ unsigned long ESW_PCSR;
++ unsigned long ESW_IOSR;
++ unsigned long ESW_QWT;/*0x94*/
++ unsigned long esw_reserved2[1];/*0x98*/
++ unsigned long ESW_P0BCT;/*0x9C*/
++ /*from 0xA0-0xB8*/
++ unsigned long esw_reserved3[7];
++ unsigned long ESW_P0FFEN;/*0xBC*/
++ unsigned long ESW_PSNP[8];
++ unsigned long ESW_IPSNP[8];
++ /*port0-port2 VLAN Priority resolution map 0xFC0D_C100-C108*/
++ unsigned long ESW_PVRES[3];
++ /*from 0x10C-0x13C*/
++ unsigned long esw_reserved4[13];
++ unsigned long ESW_IPRES;/*0x140*/
++ /*from 0x144-0x17C*/
++ unsigned long esw_reserved5[15];
++
++ /*port0-port2 Priority Configuration 0xFC0D_C180-C188*/
++ unsigned long ESW_PRES[3];
++ /*from 0x18C-0x1FC*/
++ unsigned long esw_reserved6[29];
++
++ /*port0-port2 VLAN ID 0xFC0D_C200-C208*/
++ unsigned long ESW_PID[3];
++ /*from 0x20C-0x27C*/
++ unsigned long esw_reserved7[29];
++
++ /*port0-port2 VLAN domain resolution entry 0xFC0D_C280-C2FC*/
++ unsigned long ESW_VRES[32];
++
++ unsigned long ESW_DISCN;/*0x300*/
++ unsigned long ESW_DISCB;
++ unsigned long ESW_NDISCN;
++ unsigned long ESW_NDISCB;/*0xFC0DC30C*/
++ /*per port statistics 0xFC0DC310_C33C*/
++ esw_port_statistics_status port_statistics_status[3];
++ /*from 0x340-0x400*/
++ unsigned long esw_reserved8[48];
++
++ /*0xFC0DC400---0xFC0DC418*/
++ /*unsigned long MCF_ESW_ISR;*/
++ unsigned long switch_ievent; /* Interrupt event reg */
++ /*unsigned long MCF_ESW_IMR;*/
++ unsigned long switch_imask; /* Interrupt mask reg */
++ /*unsigned long MCF_ESW_RDSR;*/
++ unsigned long fec_r_des_start; /* Receive descriptor ring */
++ /*unsigned long MCF_ESW_TDSR;*/
++ unsigned long fec_x_des_start; /* Transmit descriptor ring */
++ /*unsigned long MCF_ESW_MRBR;*/
++ unsigned long fec_r_buff_size; /* Maximum receive buff size */
++ /*unsigned long MCF_ESW_RDAR;*/
++ unsigned long fec_r_des_active; /* Receive descriptor reg */
++ /*unsigned long MCF_ESW_TDAR;*/
++ unsigned long fec_x_des_active; /* Transmit descriptor reg */
++ /*from 0x420-0x4FC*/
++ unsigned long esw_reserved9[57];
++
++ /*0xFC0DC500---0xFC0DC508*/
++ unsigned long ESW_LREC0;
++ unsigned long ESW_LREC1;
++ unsigned long ESW_LSR;
++} switch_t;
++
++typedef struct _64bTableEntry {
++ unsigned int lo; /* lower 32 bits */
++ unsigned int hi; /* upper 32 bits */
++} AddrTable64bEntry;
++
++typedef struct l2switchaddrtable {
++ AddrTable64bEntry eswTable64bEntry[2048];
++} eswAddrTable_t;
++
++/*unsigned long MCF_ESW_LOOKUP_MEM;*/
++#define MCF_ESW_REVISION (*(volatile unsigned long *)(0xFC0DC000))
++#define MCF_ESW_PER (*(volatile unsigned long *)(0xFC0DC008))
++#define MCF_ESW_VLANV (*(volatile unsigned long *)(0xFC0DC010))
++#define MCF_ESW_DBCR (*(volatile unsigned long *)(0xFC0DC014))
++#define MCF_ESW_DMCR (*(volatile unsigned long *)(0xFC0DC018))
++#define MCF_ESW_BKLR (*(volatile unsigned long *)(0xFC0DC01C))
++#define MCF_ESW_BMPC (*(volatile unsigned long *)(0xFC0DC020))
++#define MCF_ESW_MODE (*(volatile unsigned long *)(0xFC0DC024))
++
++#define MCF_ESW_ISR (*(volatile unsigned long *)(0xFC0DC400))
++#define MCF_ESW_IMR (*(volatile unsigned long *)(0xFC0DC404))
++#define MCF_ESW_TDAR (*(volatile unsigned long *)(0xFC0DC418))
++#define MCF_ESW_LOOKUP_MEM (*(volatile unsigned long *)(0xFC0E0000))
++
++#define MCF_PPMCR0 (*(volatile unsigned short *)(0xFC04002D))
++#define MCF_PPMHR0 (*(volatile unsigned long *)(0xFC040030))
++
++#define MCF_FEC_EIR0 (*(volatile unsigned long *)(0xFC0D4004))
++#define MCF_FEC_EIR1 (*(volatile unsigned long *)(0xFC0D8004))
++#define MCF_FEC_EIMR0 (*(volatile unsigned long *)(0xFC0D4008))
++#define MCF_FEC_EIMR1 (*(volatile unsigned long *)(0xFC0D8008))
++#define MCF_FEC_MMFR0 (*(volatile unsigned long *)(0xFC0D4040))
++#define MCF_FEC_MMFR1 (*(volatile unsigned long *)(0xFC0D8040))
++#define MCF_FEC_MSCR0 (*(volatile unsigned long *)(0xFC0D4044))
++#define MCF_FEC_MSCR1 (*(volatile unsigned long *)(0xFC0D8044))
++#define MCF_FEC_RCR0 (*(volatile unsigned long *)(0xFC0D4084))
++#define MCF_FEC_RCR1 (*(volatile unsigned long *)(0xFC0D8084))
++#define MCF_FEC_TCR0 (*(volatile unsigned long *)(0xFC0D40C4))
++#define MCF_FEC_TCR1 (*(volatile unsigned long *)(0xFC0D80C4))
++#define MCF_FEC_ECR0 (*(volatile unsigned long *)(0xFC0D4024))
++#define MCF_FEC_ECR1 (*(volatile unsigned long *)(0xFC0D8024))
++
++
++#define MCF_FEC_RCR_PROM (0x00000008)
++#define MCF_FEC_RCR_RMII_MODE (0x00000100)
++#define MCF_FEC_RCR_MAX_FL(x) (((x)&0x00003FFF)<<16)
++#define MCF_FEC_RCR_CRC_FWD (0x00004000)
++
++#define MCF_FEC_TCR_FDEN (0x00000004)
++
++#define MCF_FEC_ECR_ETHER_EN (0x00000002)
++#define MCF_FEC_ECR_ENA_1588 (0x00000010)
++
++/*-------------ioctl command ---------------------------------------*/
++#define ESW_SET_LEARNING_CONF 0x9101
++#define ESW_GET_LEARNING_CONF 0x9201
++#define ESW_SET_BLOCKING_CONF 0x9102
++#define ESW_GET_BLOCKING_CONF 0x9202
++#define ESW_SET_MULTICAST_CONF 0x9103
++#define ESW_GET_MULTICAST_CONF 0x9203
++#define ESW_SET_BROADCAST_CONF 0x9104
++#define ESW_GET_BROADCAST_CONF 0x9204
++#define ESW_SET_PORTENABLE_CONF 0x9105
++#define ESW_GET_PORTENABLE_CONF 0x9205
++#define ESW_SET_IP_SNOOP_CONF 0x9106
++#define ESW_GET_IP_SNOOP_CONF 0x9206
++#define ESW_SET_PORT_SNOOP_CONF 0x9107
++#define ESW_GET_PORT_SNOOP_CONF 0x9207
++#define ESW_SET_PORT_MIRROR_CONF 0x9108
++#define ESW_GET_PORT_MIRROR_CONF 0x9208
++#define ESW_SET_PIRORITY_VLAN 0x9109
++#define ESW_GET_PIRORITY_VLAN 0x9209
++#define ESW_SET_PIRORITY_IP 0x910A
++#define ESW_GET_PIRORITY_IP 0x920A
++#define ESW_SET_PIRORITY_MAC 0x910B
++#define ESW_GET_PIRORITY_MAC 0x920B
++#define ESW_SET_PIRORITY_DEFAULT 0x910C
++#define ESW_GET_PIRORITY_DEFAULT 0x920C
++#define ESW_SET_P0_FORCED_FORWARD 0x910D
++#define ESW_GET_P0_FORCED_FORWARD 0x920D
++#define ESW_SET_SWITCH_MODE 0x910E
++#define ESW_GET_SWITCH_MODE 0x920E
++#define ESW_SET_BRIDGE_CONFIG 0x910F
++#define ESW_GET_BRIDGE_CONFIG 0x920F
++#define ESW_SET_VLAN_OUTPUT_PROCESS 0x9110
++#define ESW_GET_VLAN_OUTPUT_PROCESS 0x9210
++#define ESW_SET_VLAN_INPUT_PROCESS 0x9111
++#define ESW_GET_VLAN_INPUT_PROCESS 0x9211
++#define ESW_SET_VLAN_DOMAIN_VERIFICATION 0x9112
++#define ESW_GET_VLAN_DOMAIN_VERIFICATION 0x9212
++#define ESW_SET_VLAN_RESOLUTION_TABLE 0x9113
++#define ESW_GET_VLAN_RESOLUTION_TABLE 0x9213
++#define ESW_GET_ENTRY_PORT_NUMBER 0x9214
++#define ESW_GET_LOOKUP_TABLE 0x9215
++#define ESW_GET_PORT_STATUS 0x9216
++#define ESW_SET_VLAN_ID 0x9114
++#define ESW_SET_VLAN_ID_CLEARED 0x9115
++#define ESW_SET_PORT_IN_VLAN_ID 0x9116
++#define ESW_SET_PORT_ENTRY_EMPTY 0x9117
++#define ESW_SET_OTHER_PORT_ENTRY_EMPTY 0x9118
++#define ESW_GET_PORT_ALL_STATUS 0x9217
++#define ESW_SET_PORT_MIRROR_CONF_PORT_MATCH 0x9119
++#define ESW_SET_PORT_MIRROR_CONF_ADDR_MATCH 0x911A
++
++#define ESW_GET_STATISTICS_STATUS 0x9221
++#define ESW_SET_OUTPUT_QUEUE_MEMORY 0x9125
++#define ESW_GET_OUTPUT_QUEUE_STATUS 0x9225
++#define ESW_UPDATE_STATIC_MACTABLE 0x9226
++#define ESW_CLEAR_ALL_MACTABLE 0x9227
++#define ESW_GET_USER_PID 0x9228
++
++typedef struct _eswIOCTL_PORT_CONF {
++ int port;
++ int enable;
++} eswIoctlPortConfig;
++
++typedef struct _eswIOCTL_PORT_EN_CONF {
++ int port;
++ int tx_enable;
++ int rx_enable;
++} eswIoctlPortEnableConfig;
++
++typedef struct _eswIOCTL_IP_SNOOP_CONF {
++ int mode;
++ unsigned long ip_header_protocol;
++} eswIoctlIpsnoopConfig;
++
++typedef struct _eswIOCTL_P0_FORCED_FORWARD_CONF {
++ int port1;
++ int port2;
++ int enable;
++} eswIoctlP0ForcedForwardConfig;
++
++typedef struct _eswIOCTL_PORT_SNOOP_CONF {
++ int mode;
++ unsigned short compare_port;
++ int compare_num;
++} eswIoctlPortsnoopConfig;
++
++typedef struct _eswIOCTL_PORT_Mirror_CONF {
++ int mirror_port;
++ int port;
++ int egress_en;
++ int ingress_en;
++ int egress_mac_src_en;
++ int egress_mac_des_en;
++ int ingress_mac_src_en;
++ int ingress_mac_des_en;
++ unsigned char *src_mac;
++ unsigned char *des_mac;
++ int mirror_enable;
++} eswIoctlPortMirrorConfig;
++
++struct eswIoctlMirrorCfgPortMatch {
++ int mirror_port;
++ int port_match_en;
++ int port;
++};
++
++struct eswIoctlMirrorCfgAddrMatch {
++ int mirror_port;
++ int addr_match_en;
++ unsigned char *mac_addr;
++};
++
++typedef struct _eswIOCTL_PRIORITY_VLAN_CONF {
++ int port;
++ int func_enable;
++ int vlan_pri_table_num;
++ int vlan_pri_table_value;
++} eswIoctlPriorityVlanConfig;
++
++typedef struct _eswIOCTL_PRIORITY_IP_CONF {
++ int port;
++ int func_enable;
++ int ipv4_en;
++ int ip_priority_num;
++ int ip_priority_value;
++} eswIoctlPriorityIPConfig;
++
++typedef struct _eswIOCTL_PRIORITY_MAC_CONF {
++ int port;
++} eswIoctlPriorityMacConfig;
++
++typedef struct _eswIOCTL_PRIORITY_DEFAULT_CONF {
++ int port;
++ unsigned char priority_value;
++} eswIoctlPriorityDefaultConfig;
++
++typedef struct _eswIOCTL_IRQ_STATUS {
++ unsigned long isr;
++ unsigned long imr;
++ unsigned long rx_buf_pointer;
++ unsigned long tx_buf_pointer;
++ unsigned long rx_max_size;
++ unsigned long rx_buf_active;
++ unsigned long tx_buf_active;
++} eswIoctlIrqStatus;
++
++typedef struct _eswIOCTL_PORT_Mirror_STATUS {
++ unsigned long ESW_MCR;
++ unsigned long ESW_EGMAP;
++ unsigned long ESW_INGMAP;
++ unsigned long ESW_INGSAL;
++ unsigned long ESW_INGSAH;
++ unsigned long ESW_INGDAL;
++ unsigned long ESW_INGDAH;
++ unsigned long ESW_ENGSAL;
++ unsigned long ESW_ENGSAH;
++ unsigned long ESW_ENGDAL;
++ unsigned long ESW_ENGDAH;
++ unsigned long ESW_MCVAL;
++} eswIoctlPortMirrorStatus;
++
++typedef struct _eswIOCTL_VLAN_OUTPUT_CONF {
++ int port;
++ int mode;
++} eswIoctlVlanOutputConfig;
++
++typedef struct _eswIOCTL_VLAN_INPUT_CONF {
++ int port;
++ int mode;
++ unsigned short port_vlanid;
++} eswIoctlVlanInputConfig;
++
++typedef struct _eswIOCTL_VLAN_DOMAIN_VERIFY_CONF {
++ int port;
++ int vlan_domain_verify_en;
++ int vlan_discard_unknown_en;
++} eswIoctlVlanVerificationConfig;
++
++typedef struct _eswIOCTL_VLAN_RESOULATION_TABLE {
++ unsigned short port_vlanid;
++ unsigned char vlan_domain_port;
++ unsigned char vlan_domain_num;
++} eswIoctlVlanResoultionTable;
++
++struct eswVlanTableItem {
++ eswIoctlVlanResoultionTable table[32];
++ unsigned char valid_num;
++};
++
++typedef struct _eswIOCTL_VLAN_INPUT_STATUS {
++ unsigned long ESW_VLANV;
++ unsigned long ESW_PID[3];
++ unsigned long ESW_VIMSEL;
++ unsigned long ESW_VIMEN;
++ unsigned long ESW_VRES[32];
++} eswIoctlVlanInputStatus;
++
++typedef struct _eswIOCTL_Static_MACTable {
++ unsigned char *mac_addr;
++ int port;
++ int priority;
++} eswIoctlUpdateStaticMACtable;
++
++typedef struct _eswIOCTL_OUTPUT_QUEUE {
++ int fun_num;
++ esw_output_queue_status sOutputQueue;
++} eswIoctlOutputQueue;
++
++/*=============================================================*/
++#define LEARNING_AGING_TIMER (10 * HZ)
++/*
++ * Info received from Hardware Learning FIFO,
++ * holding MAC address and corresponding Hash Value and
++ * port number where the frame was received (disassembled).
++ */
++typedef struct _eswPortInfo {
++ /* MAC lower 32 bits (first byte is 7:0). */
++ unsigned int maclo;
++ /* MAC upper 16 bits (47:32). */
++ unsigned int machi;
++ /* the hash value for this MAC address. */
++ unsigned int hash;
++ /* the port number this MAC address is associated with. */
++ unsigned int port;
++} eswPortInfo;
++
++/*
++ * Hardware Look up Address Table 64-bit element.
++ */
++typedef volatile struct _64bitTableEntry {
++ unsigned int lo; /* lower 32 bits */
++ unsigned int hi; /* upper 32 bits */
++} eswTable64bitEntry;
++
++struct eswAddrTableEntryExample {
++ /* the entry number */
++ unsigned short entrynum;
++ /* mac address array */
++ unsigned char mac_addr[6];
++ unsigned char item1;
++ unsigned short item2;
++};
++
++/*
++ * Define the buffer descriptor structure.
++ */
++typedef struct bufdesc {
++ unsigned short cbd_sc; /* Control and status info */
++ unsigned short cbd_datlen; /* Data length */
++ unsigned long cbd_bufaddr; /* Buffer address */
++#ifdef MODELO_BUFFER
++ unsigned long ebd_status;
++ unsigned short length_proto_type;
++ unsigned short payload_checksum;
++ unsigned long bdu;
++ unsigned long timestamp;
++ unsigned long reserverd_word1;
++ unsigned long reserverd_word2;
++#endif
++} cbd_t;
++
++/* Forward declarations of some structures to support different PHYs
++ */
++typedef struct {
++ uint mii_data;
++ void (*funct)(uint mii_reg, struct net_device *dev);
++} phy_cmd_t;
++
++typedef struct {
++ uint id;
++ char *name;
++
++ const phy_cmd_t *config;
++ const phy_cmd_t *startup;
++ const phy_cmd_t *ack_int;
++ const phy_cmd_t *shutdown;
++} phy_info_t;
++
++struct port_status {
++ /* 1: link is up, 0: link is down */
++ int port1_link_status;
++ int port2_link_status;
++ /* 1: blocking, 0: unblocking */
++ int port0_block_status;
++ int port1_block_status;
++ int port2_block_status;
++};
++
++struct port_all_status {
++ /* 1: link is up, 0: link is down */
++ int link_status;
++ /* 1: blocking, 0: unblocking */
++ int block_status;
++ /* 1: unlearning, 0: learning */
++ int learn_status;
++ /* vlan domain verify 1: enable 0: disable */
++ int vlan_verify;
++ /* discard unknow 1: enable 0: disable */
++ int discard_unknown;
++ /* multicast resolution 1: enable 0: disable */
++ int multi_reso;
++ /* broadcast resolution 1: enable 0: disalbe */
++ int broad_reso;
++ /* transmit 1: enable 0: disable */
++ int ftransmit;
++ /* receive 1: enable 0: disable */
++ int freceive;
++};
++
++/* The switch buffer descriptors track the ring buffers. The rx_bd_base and
++ * tx_bd_base always point to the base of the buffer descriptors. The
++ * cur_rx and cur_tx point to the currently available buffer.
++ * The dirty_tx tracks the current buffer that is being sent by the
++ * controller. The cur_tx and dirty_tx are equal under both completely
++ * empty and completely full conditions. The empty/ready indicator in
++ * the buffer descriptor determines the actual condition.
++ */
++struct switch_enet_private {
++ /* Hardware registers of the switch device */
++ volatile switch_t *hwp;
++ volatile eswAddrTable_t *hwentry;
++
++ struct net_device *netdev;
++ struct platform_device *pdev;
++ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
++ unsigned char *tx_bounce[TX_RING_SIZE];
++ struct sk_buff *tx_skbuff[TX_RING_SIZE];
++ ushort skb_cur;
++ ushort skb_dirty;
++
++ /* CPM dual port RAM relative addresses.
++ */
++ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
++ cbd_t *tx_bd_base;
++ cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
++ cbd_t *dirty_tx; /* The ring entries to be free()ed. */
++ uint tx_full;
++ /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
++ spinlock_t hw_lock;
++
++ /* hold while accessing the mii_list_t() elements */
++ spinlock_t mii_lock;
++ struct mii_bus *mdio_bus;
++ struct phy_device *phydev[SWITCH_EPORT_NUMBER];
++
++ uint phy_id;
++ uint phy_id_done;
++ uint phy_status;
++ uint phy_speed;
++ phy_info_t const *phy;
++ struct work_struct phy_task;
++ volatile switch_t *phy_hwp;
++
++ uint sequence_done;
++ uint mii_phy_task_queued;
++
++ uint phy_addr;
++
++ int index;
++ int opened;
++ int full_duplex;
++ int msg_enable;
++ int phy1_link;
++ int phy1_old_link;
++ int phy1_duplex;
++ int phy1_speed;
++
++ int phy2_link;
++ int phy2_old_link;
++ int phy2_duplex;
++ int phy2_speed;
++ /* --------------Statistics--------------------------- */
++ /* when a new element deleted a element with in
++ * a block due to lack of space */
++ int atBlockOverflows;
++ /* Peak number of valid entries in the address table */
++ int atMaxEntries;
++ /* current number of valid entries in the address table */
++ int atCurrEntries;
++ /* maximum entries within a block found
++ * (updated within ageing)*/
++ int atMaxEntriesPerBlock;
++
++ /* -------------------ageing function------------------ */
++ /* maximum age allowed for an entry */
++ int ageMax;
++ /* last LUT entry to block that was
++ * inspected by the Ageing task*/
++ int ageLutIdx;
++ /* last element within block inspected by the Ageing task */
++ int ageBlockElemIdx;
++ /* complete table has been processed by ageing process */
++ int ageCompleted;
++ /* delay setting */
++ int ageDelay;
++ /* current delay Counter */
++ int ageDelayCnt;
++
++ /* ----------------timer related---------------------------- */
++ /* current time (for timestamping) */
++ int currTime;
++ /* flag set by timer when currTime changed
++ * and cleared by serving function*/
++ int timeChanged;
++
++ /**/
++ /* Timer for Aging */
++ struct timer_list timer_aging;
++ int learning_irqhandle_enable;
++};
++
++struct switch_platform_private {
++ unsigned long quirks;
++ int num_slots; /* Slots on controller */
++ struct switch_enet_private *fep_host[0]; /* Pointers to hosts */
++};
++
++/******************************************************************************/
++/* Recieve is empty */
++#define BD_SC_EMPTY ((unsigned short)0x8000)
++/* Transmit is ready */
++#define BD_SC_READY ((unsigned short)0x8000)
++/* Last buffer descriptor */
++#define BD_SC_WRAP ((unsigned short)0x2000)
++/* Interrupt on change */
++#define BD_SC_INTRPT ((unsigned short)0x1000)
++/* Continous mode */
++#define BD_SC_CM ((unsigned short)0x0200)
++/* Rec'd too many idles */
++#define BD_SC_ID ((unsigned short)0x0100)
++/* xmt preamble */
++#define BD_SC_P ((unsigned short)0x0100)
++/* Break received */
++#define BD_SC_BR ((unsigned short)0x0020)
++/* Framing error */
++#define BD_SC_FR ((unsigned short)0x0010)
++/* Parity error */
++#define BD_SC_PR ((unsigned short)0x0008)
++/* Overrun */
++#define BD_SC_OV ((unsigned short)0x0002)
++#define BD_SC_CD ((unsigned short)0x0001)
++
++/* Buffer descriptor control/status used by Ethernet receive.
++*/
++#define BD_ENET_RX_EMPTY ((unsigned short)0x8000)
++#define BD_ENET_RX_WRAP ((unsigned short)0x2000)
++#define BD_ENET_RX_INTR ((unsigned short)0x1000)
++#define BD_ENET_RX_LAST ((unsigned short)0x0800)
++#define BD_ENET_RX_FIRST ((unsigned short)0x0400)
++#define BD_ENET_RX_MISS ((unsigned short)0x0100)
++#define BD_ENET_RX_LG ((unsigned short)0x0020)
++#define BD_ENET_RX_NO ((unsigned short)0x0010)
++#define BD_ENET_RX_SH ((unsigned short)0x0008)
++#define BD_ENET_RX_CR ((unsigned short)0x0004)
++#define BD_ENET_RX_OV ((unsigned short)0x0002)
++#define BD_ENET_RX_CL ((unsigned short)0x0001)
++/* All status bits */
++#define BD_ENET_RX_STATS ((unsigned short)0x013f)
++
++/* Buffer descriptor control/status used by Ethernet transmit.
++*/
++#define BD_ENET_TX_READY ((unsigned short)0x8000)
++#define BD_ENET_TX_PAD ((unsigned short)0x4000)
++#define BD_ENET_TX_WRAP ((unsigned short)0x2000)
++#define BD_ENET_TX_INTR ((unsigned short)0x1000)
++#define BD_ENET_TX_LAST ((unsigned short)0x0800)
++#define BD_ENET_TX_TC ((unsigned short)0x0400)
++#define BD_ENET_TX_DEF ((unsigned short)0x0200)
++#define BD_ENET_TX_HB ((unsigned short)0x0100)
++#define BD_ENET_TX_LC ((unsigned short)0x0080)
++#define BD_ENET_TX_RL ((unsigned short)0x0040)
++#define BD_ENET_TX_RCMASK ((unsigned short)0x003c)
++#define BD_ENET_TX_UN ((unsigned short)0x0002)
++#define BD_ENET_TX_CSL ((unsigned short)0x0001)
++/* All status bits */
++#define BD_ENET_TX_STATS ((unsigned short)0x03ff)
++
++/*Copy from validation code */
++#define RX_BUFFER_SIZE 1520
++#define TX_BUFFER_SIZE 1520
++#define NUM_RXBDS 20
++#define NUM_TXBDS 20
++
++#define TX_BD_R 0x8000
++#define TX_BD_TO1 0x4000
++#define TX_BD_W 0x2000
++#define TX_BD_TO2 0x1000
++#define TX_BD_L 0x0800
++#define TX_BD_TC 0x0400
++
++#define TX_BD_INT 0x40000000
++#define TX_BD_TS 0x20000000
++#define TX_BD_PINS 0x10000000
++#define TX_BD_IINS 0x08000000
++#define TX_BD_TXE 0x00008000
++#define TX_BD_UE 0x00002000
++#define TX_BD_EE 0x00001000
++#define TX_BD_FE 0x00000800
++#define TX_BD_LCE 0x00000400
++#define TX_BD_OE 0x00000200
++#define TX_BD_TSE 0x00000100
++#define TX_BD_BDU 0x80000000
++
++#define RX_BD_E 0x8000
++#define RX_BD_R01 0x4000
++#define RX_BD_W 0x2000
++#define RX_BD_R02 0x1000
++#define RX_BD_L 0x0800
++#define RX_BD_M 0x0100
++#define RX_BD_BC 0x0080
++#define RX_BD_MC 0x0040
++#define RX_BD_LG 0x0020
++#define RX_BD_NO 0x0010
++#define RX_BD_CR 0x0004
++#define RX_BD_OV 0x0002
++#define RX_BD_TR 0x0001
++
++#define RX_BD_ME 0x80000000
++#define RX_BD_PE 0x04000000
++#define RX_BD_CE 0x02000000
++#define RX_BD_UC 0x01000000
++#define RX_BD_INT 0x00800000
++#define RX_BD_ICE 0x00000020
++#define RX_BD_PCR 0x00000010
++#define RX_BD_VLAN 0x00000004
++#define RX_BD_IPV6 0x00000002
++#define RX_BD_FRAG 0x00000001
++#define RX_BD_BDU 0x80000000
++/****************************************************************************/
++
++/* Address Table size in bytes(2048 64bit entry ) */
++#define ESW_ATABLE_MEM_SIZE (2048*8)
++/* How many 64-bit elements fit in the address table */
++#define ESW_ATABLE_MEM_NUM_ENTRIES (2048)
++/* Address Table Maximum number of entries in each Slot */
++#define ATABLE_ENTRY_PER_SLOT 8
++/* log2(ATABLE_ENTRY_PER_SLOT)*/
++#define ATABLE_ENTRY_PER_SLOT_bits 3
++/* entry size in byte */
++#define ATABLE_ENTRY_SIZE 8
++/* slot size in byte */
++#define ATABLE_SLOT_SIZE (ATABLE_ENTRY_PER_SLOT * ATABLE_ENTRY_SIZE)
++/* width of timestamp variable (bits) within address table entry */
++#define AT_DENTRY_TIMESTAMP_WIDTH 10
++/* number of bits for port number storage */
++#define AT_DENTRY_PORT_WIDTH 4
++/* number of bits for port bitmask number storage */
++#define AT_SENTRY_PORT_WIDTH 7
++/* address table static entry port bitmask start address bit */
++#define AT_SENTRY_PORTMASK_shift 21
++/* number of bits for port priority storage */
++#define AT_SENTRY_PRIO_WIDTH 7
++/* address table static entry priority start address bit */
++#define AT_SENTRY_PRIO_shift 18
++/* address table dynamic entry port start address bit */
++#define AT_DENTRY_PORT_shift 28
++/* address table dynamic entry timestamp start address bit */
++#define AT_DENTRY_TIME_shift 18
++/* address table entry record type start address bit */
++#define AT_ENTRY_TYPE_shift 17
++/* address table entry record type bit: 1 static, 0 dynamic */
++#define AT_ENTRY_TYPE_STATIC 1
++#define AT_ENTRY_TYPE_DYNAMIC 0
++/* address table entry record valid start address bit */
++#define AT_ENTRY_VALID_shift 16
++#define AT_ENTRY_RECORD_VALID 1
++
++#define AT_EXTRACT_VALID(x) \
++ ((x >> AT_ENTRY_VALID_shift) & AT_ENTRY_RECORD_VALID)
++
++#define AT_EXTRACT_PORTMASK(x) \
++ ((x >> AT_SENTRY_PORTMASK_shift) & AT_SENTRY_PORT_WIDTH)
++
++#define AT_EXTRACT_PRIO(x) \
++ ((x >> AT_SENTRY_PRIO_shift) & AT_SENTRY_PRIO_WIDTH)
++
++/* return block corresponding to the 8 bit hash value calculated */
++#define GET_BLOCK_PTR(hash) (hash << 3)
++#define AT_EXTRACT_TIMESTAMP(x) \
++ ((x >> AT_DENTRY_TIME_shift) & ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1))
++#define AT_EXTRACT_PORT(x) \
++ ((x >> AT_DENTRY_PORT_shift) & ((1 << AT_DENTRY_PORT_WIDTH)-1))
++#define AT_SEXTRACT_PORT(x) \
++ ((~((x >> AT_SENTRY_PORTMASK_shift) & \
++ ((1 << AT_DENTRY_PORT_WIDTH)-1))) >> 1)
++#define TIMEDELTA(newtime, oldtime) \
++ ((newtime - oldtime) & \
++ ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1))
++
++#define AT_EXTRACT_IP_PROTOCOL(x) ((x >> 8) & 0xff)
++#define AT_EXTRACT_TCP_UDP_PORT(x) ((x >> 16) & 0xffff)
++
++/* increment time value respecting modulo. */
++#define TIMEINCREMENT(time) \
++ ((time) = ((time)+1) & ((1 << AT_DENTRY_TIMESTAMP_WIDTH)-1))
++/* ------------------------------------------------------------------------- */
++/* Bit definitions and macros for MCF_ESW_REVISION */
++#define MCF_ESW_REVISION_CORE_REVISION(x) (((x)&0x0000FFFF)<<0)
++#define MCF_ESW_REVISION_CUSTOMER_REVISION(x) (((x)&0x0000FFFF)<<16)
++
++/* Bit definitions and macros for MCF_ESW_PER */
++#define MCF_ESW_PER_TE0 (0x00000001)
++#define MCF_ESW_PER_TE1 (0x00000002)
++#define MCF_ESW_PER_TE2 (0x00000004)
++#define MCF_ESW_PER_RE0 (0x00010000)
++#define MCF_ESW_PER_RE1 (0x00020000)
++#define MCF_ESW_PER_RE2 (0x00040000)
++
++/* Bit definitions and macros for MCF_ESW_VLANV */
++#define MCF_ESW_VLANV_VV0 (0x00000001)
++#define MCF_ESW_VLANV_VV1 (0x00000002)
++#define MCF_ESW_VLANV_VV2 (0x00000004)
++#define MCF_ESW_VLANV_DU0 (0x00010000)
++#define MCF_ESW_VLANV_DU1 (0x00020000)
++#define MCF_ESW_VLANV_DU2 (0x00040000)
++
++/* Bit definitions and macros for MCF_ESW_DBCR */
++#define MCF_ESW_DBCR_P0 (0x00000001)
++#define MCF_ESW_DBCR_P1 (0x00000002)
++#define MCF_ESW_DBCR_P2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_DMCR */
++#define MCF_ESW_DMCR_P0 (0x00000001)
++#define MCF_ESW_DMCR_P1 (0x00000002)
++#define MCF_ESW_DMCR_P2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_BKLR */
++#define MCF_ESW_BKLR_BE0 (0x00000001)
++#define MCF_ESW_BKLR_BE1 (0x00000002)
++#define MCF_ESW_BKLR_BE2 (0x00000004)
++#define MCF_ESW_BKLR_LD0 (0x00010000)
++#define MCF_ESW_BKLR_LD1 (0x00020000)
++#define MCF_ESW_BKLR_LD2 (0x00040000)
++
++/* Bit definitions and macros for MCF_ESW_BMPC */
++#define MCF_ESW_BMPC_PORT(x) (((x)&0x0000000F)<<0)
++#define MCF_ESW_BMPC_MSG_TX (0x00000020)
++#define MCF_ESW_BMPC_EN (0x00000040)
++#define MCF_ESW_BMPC_DIS (0x00000080)
++#define MCF_ESW_BMPC_PRIORITY(x) (((x)&0x00000007)<<13)
++#define MCF_ESW_BMPC_PORTMASK(x) (((x)&0x00000007)<<16)
++
++/* Bit definitions and macros for MCF_ESW_MODE */
++#define MCF_ESW_MODE_SW_RST (0x00000001)
++#define MCF_ESW_MODE_SW_EN (0x00000002)
++#define MCF_ESW_MODE_STOP (0x00000080)
++#define MCF_ESW_MODE_CRC_TRAN (0x00000100)
++#define MCF_ESW_MODE_P0CT (0x00000200)
++#define MCF_ESW_MODE_STATRST (0x80000000)
++
++/* Bit definitions and macros for MCF_ESW_VIMSEL */
++#define MCF_ESW_VIMSEL_IM0(x) (((x)&0x00000003)<<0)
++#define MCF_ESW_VIMSEL_IM1(x) (((x)&0x00000003)<<2)
++#define MCF_ESW_VIMSEL_IM2(x) (((x)&0x00000003)<<4)
++
++/* Bit definitions and macros for MCF_ESW_VOMSEL */
++#define MCF_ESW_VOMSEL_OM0(x) (((x)&0x00000003)<<0)
++#define MCF_ESW_VOMSEL_OM1(x) (((x)&0x00000003)<<2)
++#define MCF_ESW_VOMSEL_OM2(x) (((x)&0x00000003)<<4)
++
++/* Bit definitions and macros for MCF_ESW_VIMEN */
++#define MCF_ESW_VIMEN_EN0 (0x00000001)
++#define MCF_ESW_VIMEN_EN1 (0x00000002)
++#define MCF_ESW_VIMEN_EN2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_VID */
++#define MCF_ESW_VID_TAG(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_MCR */
++#define MCF_ESW_MCR_PORT(x) (((x)&0x0000000F)<<0)
++#define MCF_ESW_MCR_MEN (0x00000010)
++#define MCF_ESW_MCR_INGMAP (0x00000020)
++#define MCF_ESW_MCR_EGMAP (0x00000040)
++#define MCF_ESW_MCR_INGSA (0x00000080)
++#define MCF_ESW_MCR_INGDA (0x00000100)
++#define MCF_ESW_MCR_EGSA (0x00000200)
++#define MCF_ESW_MCR_EGDA (0x00000400)
++
++/* Bit definitions and macros for MCF_ESW_EGMAP */
++#define MCF_ESW_EGMAP_EG0 (0x00000001)
++#define MCF_ESW_EGMAP_EG1 (0x00000002)
++#define MCF_ESW_EGMAP_EG2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_INGMAP */
++#define MCF_ESW_INGMAP_ING0 (0x00000001)
++#define MCF_ESW_INGMAP_ING1 (0x00000002)
++#define MCF_ESW_INGMAP_ING2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_INGSAL */
++#define MCF_ESW_INGSAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_INGSAH */
++#define MCF_ESW_INGSAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_INGDAL */
++#define MCF_ESW_INGDAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_INGDAH */
++#define MCF_ESW_INGDAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_ENGSAL */
++#define MCF_ESW_ENGSAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_ENGSAH */
++#define MCF_ESW_ENGSAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_ENGDAL */
++#define MCF_ESW_ENGDAL_ADDLOW(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_ENGDAH */
++#define MCF_ESW_ENGDAH_ADDHIGH(x) (((x)&0x0000FFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_MCVAL */
++#define MCF_ESW_MCVAL_COUNT(x) (((x)&0x000000FF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_MMSR */
++#define MCF_ESW_MMSR_BUSY (0x00000001)
++#define MCF_ESW_MMSR_NOCELL (0x00000002)
++#define MCF_ESW_MMSR_MEMFULL (0x00000004)
++#define MCF_ESW_MMSR_MFLATCH (0x00000008)
++#define MCF_ESW_MMSR_DQ_GRNT (0x00000040)
++#define MCF_ESW_MMSR_CELLS_AVAIL(x) (((x)&0x000000FF)<<16)
++
++/* Bit definitions and macros for MCF_ESW_LMT */
++#define MCF_ESW_LMT_THRESH(x) (((x)&0x000000FF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_LFC */
++#define MCF_ESW_LFC_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_PCSR */
++#define MCF_ESW_PCSR_PC0 (0x00000001)
++#define MCF_ESW_PCSR_PC1 (0x00000002)
++#define MCF_ESW_PCSR_PC2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_IOSR */
++#define MCF_ESW_IOSR_OR0 (0x00000001)
++#define MCF_ESW_IOSR_OR1 (0x00000002)
++#define MCF_ESW_IOSR_OR2 (0x00000004)
++
++/* Bit definitions and macros for MCF_ESW_QWT */
++#define MCF_ESW_QWT_Q0WT(x) (((x)&0x0000001F)<<0)
++#define MCF_ESW_QWT_Q1WT(x) (((x)&0x0000001F)<<8)
++#define MCF_ESW_QWT_Q2WT(x) (((x)&0x0000001F)<<16)
++#define MCF_ESW_QWT_Q3WT(x) (((x)&0x0000001F)<<24)
++
++/* Bit definitions and macros for MCF_ESW_P0BCT */
++#define MCF_ESW_P0BCT_THRESH(x) (((x)&0x000000FF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_P0FFEN */
++#define MCF_ESW_P0FFEN_FEN (0x00000001)
++#define MCF_ESW_P0FFEN_FD(x) (((x)&0x00000003)<<2)
++
++/* Bit definitions and macros for MCF_ESW_PSNP */
++#define MCF_ESW_PSNP_EN (0x00000001)
++#define MCF_ESW_PSNP_MODE(x) (((x)&0x00000003)<<1)
++#define MCF_ESW_PSNP_CD (0x00000008)
++#define MCF_ESW_PSNP_CS (0x00000010)
++#define MCF_ESW_PSNP_PORT_COMPARE(x) (((x)&0x0000FFFF)<<16)
++
++/* Bit definitions and macros for MCF_ESW_IPSNP */
++#define MCF_ESW_IPSNP_EN (0x00000001)
++#define MCF_ESW_IPSNP_MODE(x) (((x)&0x00000003)<<1)
++#define MCF_ESW_IPSNP_PROTOCOL(x) (((x)&0x000000FF)<<8)
++
++/* Bit definitions and macros for MCF_ESW_PVRES */
++#define MCF_ESW_PVRES_PRI0(x) (((x)&0x00000007)<<0)
++#define MCF_ESW_PVRES_PRI1(x) (((x)&0x00000007)<<3)
++#define MCF_ESW_PVRES_PRI2(x) (((x)&0x00000007)<<6)
++#define MCF_ESW_PVRES_PRI3(x) (((x)&0x00000007)<<9)
++#define MCF_ESW_PVRES_PRI4(x) (((x)&0x00000007)<<12)
++#define MCF_ESW_PVRES_PRI5(x) (((x)&0x00000007)<<15)
++#define MCF_ESW_PVRES_PRI6(x) (((x)&0x00000007)<<18)
++#define MCF_ESW_PVRES_PRI7(x) (((x)&0x00000007)<<21)
++
++/* Bit definitions and macros for MCF_ESW_IPRES */
++#define MCF_ESW_IPRES_ADDRESS(x) (((x)&0x000000FF)<<0)
++#define MCF_ESW_IPRES_IPV4SEL (0x00000100)
++#define MCF_ESW_IPRES_PRI0(x) (((x)&0x00000003)<<9)
++#define MCF_ESW_IPRES_PRI1(x) (((x)&0x00000003)<<11)
++#define MCF_ESW_IPRES_PRI2(x) (((x)&0x00000003)<<13)
++#define MCF_ESW_IPRES_READ (0x80000000)
++
++/* Bit definitions and macros for MCF_ESW_PRES */
++#define MCF_ESW_PRES_VLAN (0x00000001)
++#define MCF_ESW_PRES_IP (0x00000002)
++#define MCF_ESW_PRES_MAC (0x00000004)
++#define MCF_ESW_PRES_DFLT_PRI(x) (((x)&0x00000007)<<4)
++
++/* Bit definitions and macros for MCF_ESW_PID */
++#define MCF_ESW_PID_VLANID(x) (((x)&0x0000FFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_VRES */
++#define MCF_ESW_VRES_P0 (0x00000001)
++#define MCF_ESW_VRES_P1 (0x00000002)
++#define MCF_ESW_VRES_P2 (0x00000004)
++#define MCF_ESW_VRES_VLANID(x) (((x)&0x00000FFF)<<3)
++
++/* Bit definitions and macros for MCF_ESW_DISCN */
++#define MCF_ESW_DISCN_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_DISCB */
++#define MCF_ESW_DISCB_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_NDISCN */
++#define MCF_ESW_NDISCN_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_NDISCB */
++#define MCF_ESW_NDISCB_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_POQC */
++#define MCF_ESW_POQC_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_PMVID */
++#define MCF_ESW_PMVID_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_PMVTAG */
++#define MCF_ESW_PMVTAG_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_PBL */
++#define MCF_ESW_PBL_COUNT(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_ISR */
++#define MCF_ESW_ISR_EBERR (0x00000001)
++#define MCF_ESW_ISR_RXB (0x00000002)
++#define MCF_ESW_ISR_RXF (0x00000004)
++#define MCF_ESW_ISR_TXB (0x00000008)
++#define MCF_ESW_ISR_TXF (0x00000010)
++#define MCF_ESW_ISR_QM (0x00000020)
++#define MCF_ESW_ISR_OD0 (0x00000040)
++#define MCF_ESW_ISR_OD1 (0x00000080)
++#define MCF_ESW_ISR_OD2 (0x00000100)
++#define MCF_ESW_ISR_LRN (0x00000200)
++
++/* Bit definitions and macros for MCF_ESW_IMR */
++#define MCF_ESW_IMR_EBERR (0x00000001)
++#define MCF_ESW_IMR_RXB (0x00000002)
++#define MCF_ESW_IMR_RXF (0x00000004)
++#define MCF_ESW_IMR_TXB (0x00000008)
++#define MCF_ESW_IMR_TXF (0x00000010)
++#define MCF_ESW_IMR_QM (0x00000020)
++#define MCF_ESW_IMR_OD0 (0x00000040)
++#define MCF_ESW_IMR_OD1 (0x00000080)
++#define MCF_ESW_IMR_OD2 (0x00000100)
++#define MCF_ESW_IMR_LRN (0x00000200)
++
++/* Bit definitions and macros for MCF_ESW_RDSR */
++#define MCF_ESW_RDSR_ADDRESS(x) (((x)&0x3FFFFFFF)<<2)
++
++/* Bit definitions and macros for MCF_ESW_TDSR */
++#define MCF_ESW_TDSR_ADDRESS(x) (((x)&0x3FFFFFFF)<<2)
++
++/* Bit definitions and macros for MCF_ESW_MRBR */
++#define MCF_ESW_MRBR_SIZE(x) (((x)&0x000003FF)<<4)
++
++/* Bit definitions and macros for MCF_ESW_RDAR */
++#define MCF_ESW_RDAR_R_DES_ACTIVE (0x01000000)
++
++/* Bit definitions and macros for MCF_ESW_TDAR */
++#define MCF_ESW_TDAR_X_DES_ACTIVE (0x01000000)
++
++/* Bit definitions and macros for MCF_ESW_LREC0 */
++#define MCF_ESW_LREC0_MACADDR0(x) (((x)&0xFFFFFFFF)<<0)
++
++/* Bit definitions and macros for MCF_ESW_LREC1 */
++#define MCF_ESW_LREC1_MACADDR1(x) (((x)&0x0000FFFF)<<0)
++#define MCF_ESW_LREC1_HASH(x) (((x)&0x000000FF)<<16)
++#define MCF_ESW_LREC1_SWPORT(x) (((x)&0x00000003)<<24)
++
++/* Bit definitions and macros for MCF_ESW_LSR */
++#define MCF_ESW_LSR_DA (0x00000001)
++
++/* port mirroring port number match */
++#define MIRROR_EGRESS_PORT_MATCH 1
++#define MIRROR_INGRESS_PORT_MATCH 2
++
++/* port mirroring mac address match */
++#define MIRROR_EGRESS_SOURCE_MATCH 1
++#define MIRROR_INGRESS_SOURCE_MATCH 2
++#define MIRROR_EGRESS_DESTINATION_MATCH 3
++#define MIRROR_INGRESS_DESTINATION_MATCH 4
++
++#endif /* SWITCH_H */
+--- a/include/linux/fsl_devices.h
++++ b/include/linux/fsl_devices.h
+@@ -129,4 +129,21 @@ struct fsl_ata_platform_data {
+ void (*exit)(void);
+ int (*get_clk_rate)(void);
+ };
++
++struct net_device;
++struct coldfire_switch_platform_data {
++ int hash_table;
++ unsigned int *switch_hw;
++ void (*request_intrs)(struct net_device *dev,
++ irqreturn_t (*)(int, void *),
++ void *irq_privatedata);
++ void (*set_mii)(struct net_device *dev);
++ void (*get_mac)(struct net_device *dev);
++ void (*enable_phy_intr)(void);
++ void (*disable_phy_intr)(void);
++ void (*phy_ack_intr)(void);
++ void (*localhw_setup)(void);
++ void (*uncache)(unsigned long addr);
++ void (*platform_flush_cache)(void);
++};
+ #endif /* _FSL_DEVICE_H_ */
+--- a/net/core/dev.c
++++ b/net/core/dev.c
+@@ -4756,6 +4756,10 @@ static int dev_ifsioc(struct net *net, s
+ default:
+ if ((cmd >= SIOCDEVPRIVATE &&
+ cmd <= SIOCDEVPRIVATE + 15) ||
++#if defined(CONFIG_MODELO_SWITCH)
++ (cmd >= 0x9101 &&
++ cmd <= 0x92ff) ||
++#endif
+ cmd == SIOCBONDENSLAVE ||
+ cmd == SIOCBONDRELEASE ||
+ cmd == SIOCBONDSETHWADDR ||
+@@ -4948,6 +4952,10 @@ int dev_ioctl(struct net *net, unsigned
+ */
+ default:
+ if (cmd == SIOCWANDEV ||
++#if defined(CONFIG_MODELO_SWITCH)
++ (cmd >= 0x9101 &&
++ cmd <= 0x92ff) ||
++#endif
+ (cmd >= SIOCDEVPRIVATE &&
+ cmd <= SIOCDEVPRIVATE + 15)) {
+ dev_load(net, ifr.ifr_name);