aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch')
-rw-r--r--target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch2443
1 files changed, 0 insertions, 2443 deletions
diff --git a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch
deleted file mode 100644
index 8b6ed43f98..0000000000
--- a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch
+++ /dev/null
@@ -1,2443 +0,0 @@
-This patches adds the SPI-NOR device support code form kernel 3.17-rc1.
-This patch does not contain any further code not in this mainline kernel.
-
---- a/drivers/mtd/Kconfig
-+++ b/drivers/mtd/Kconfig
-@@ -366,6 +366,8 @@ source "drivers/mtd/onenand/Kconfig"
-
- source "drivers/mtd/lpddr/Kconfig"
-
-+source "drivers/mtd/spi-nor/Kconfig"
-+
- source "drivers/mtd/ubi/Kconfig"
-
- endif # MTD
---- a/drivers/mtd/Makefile
-+++ b/drivers/mtd/Makefile
-@@ -35,4 +35,5 @@ inftl-objs := inftlcore.o inftlmount.o
-
- obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
-
-+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
- obj-$(CONFIG_MTD_UBI) += ubi/
---- /dev/null
-+++ b/drivers/mtd/spi-nor/fsl-quadspi.c
-@@ -0,0 +1,1009 @@
-+/*
-+ * Freescale QuadSPI driver.
-+ *
-+ * Copyright (C) 2013 Freescale Semiconductor, Inc.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License as published by
-+ * the Free Software Foundation; either version 2 of the License, or
-+ * (at your option) any later version.
-+ */
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/interrupt.h>
-+#include <linux/errno.h>
-+#include <linux/platform_device.h>
-+#include <linux/sched.h>
-+#include <linux/delay.h>
-+#include <linux/io.h>
-+#include <linux/clk.h>
-+#include <linux/err.h>
-+#include <linux/of.h>
-+#include <linux/of_device.h>
-+#include <linux/timer.h>
-+#include <linux/jiffies.h>
-+#include <linux/completion.h>
-+#include <linux/mtd/mtd.h>
-+#include <linux/mtd/partitions.h>
-+#include <linux/mtd/spi-nor.h>
-+
-+/* The registers */
-+#define QUADSPI_MCR 0x00
-+#define QUADSPI_MCR_RESERVED_SHIFT 16
-+#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
-+#define QUADSPI_MCR_MDIS_SHIFT 14
-+#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
-+#define QUADSPI_MCR_CLR_TXF_SHIFT 11
-+#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
-+#define QUADSPI_MCR_CLR_RXF_SHIFT 10
-+#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
-+#define QUADSPI_MCR_DDR_EN_SHIFT 7
-+#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
-+#define QUADSPI_MCR_END_CFG_SHIFT 2
-+#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
-+#define QUADSPI_MCR_SWRSTHD_SHIFT 1
-+#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
-+#define QUADSPI_MCR_SWRSTSD_SHIFT 0
-+#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
-+
-+#define QUADSPI_IPCR 0x08
-+#define QUADSPI_IPCR_SEQID_SHIFT 24
-+#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
-+
-+#define QUADSPI_BUF0CR 0x10
-+#define QUADSPI_BUF1CR 0x14
-+#define QUADSPI_BUF2CR 0x18
-+#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
-+
-+#define QUADSPI_BUF3CR 0x1c
-+#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
-+#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
-+
-+#define QUADSPI_BFGENCR 0x20
-+#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
-+#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
-+#define QUADSPI_BFGENCR_SEQID_SHIFT 12
-+#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
-+
-+#define QUADSPI_BUF0IND 0x30
-+#define QUADSPI_BUF1IND 0x34
-+#define QUADSPI_BUF2IND 0x38
-+#define QUADSPI_SFAR 0x100
-+
-+#define QUADSPI_SMPR 0x108
-+#define QUADSPI_SMPR_DDRSMP_SHIFT 16
-+#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
-+#define QUADSPI_SMPR_FSDLY_SHIFT 6
-+#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
-+#define QUADSPI_SMPR_FSPHS_SHIFT 5
-+#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
-+#define QUADSPI_SMPR_HSENA_SHIFT 0
-+#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
-+
-+#define QUADSPI_RBSR 0x10c
-+#define QUADSPI_RBSR_RDBFL_SHIFT 8
-+#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
-+
-+#define QUADSPI_RBCT 0x110
-+#define QUADSPI_RBCT_WMRK_MASK 0x1F
-+#define QUADSPI_RBCT_RXBRD_SHIFT 8
-+#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
-+
-+#define QUADSPI_TBSR 0x150
-+#define QUADSPI_TBDR 0x154
-+#define QUADSPI_SR 0x15c
-+#define QUADSPI_SR_IP_ACC_SHIFT 1
-+#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
-+#define QUADSPI_SR_AHB_ACC_SHIFT 2
-+#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
-+
-+#define QUADSPI_FR 0x160
-+#define QUADSPI_FR_TFF_MASK 0x1
-+
-+#define QUADSPI_SFA1AD 0x180
-+#define QUADSPI_SFA2AD 0x184
-+#define QUADSPI_SFB1AD 0x188
-+#define QUADSPI_SFB2AD 0x18c
-+#define QUADSPI_RBDR 0x200
-+
-+#define QUADSPI_LUTKEY 0x300
-+#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
-+
-+#define QUADSPI_LCKCR 0x304
-+#define QUADSPI_LCKER_LOCK 0x1
-+#define QUADSPI_LCKER_UNLOCK 0x2
-+
-+#define QUADSPI_RSER 0x164
-+#define QUADSPI_RSER_TFIE (0x1 << 0)
-+
-+#define QUADSPI_LUT_BASE 0x310
-+
-+/*
-+ * The definition of the LUT register shows below:
-+ *
-+ * ---------------------------------------------------
-+ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
-+ * ---------------------------------------------------
-+ */
-+#define OPRND0_SHIFT 0
-+#define PAD0_SHIFT 8
-+#define INSTR0_SHIFT 10
-+#define OPRND1_SHIFT 16
-+
-+/* Instruction set for the LUT register. */
-+#define LUT_STOP 0
-+#define LUT_CMD 1
-+#define LUT_ADDR 2
-+#define LUT_DUMMY 3
-+#define LUT_MODE 4
-+#define LUT_MODE2 5
-+#define LUT_MODE4 6
-+#define LUT_READ 7
-+#define LUT_WRITE 8
-+#define LUT_JMP_ON_CS 9
-+#define LUT_ADDR_DDR 10
-+#define LUT_MODE_DDR 11
-+#define LUT_MODE2_DDR 12
-+#define LUT_MODE4_DDR 13
-+#define LUT_READ_DDR 14
-+#define LUT_WRITE_DDR 15
-+#define LUT_DATA_LEARN 16
-+
-+/*
-+ * The PAD definitions for LUT register.
-+ *
-+ * The pad stands for the lines number of IO[0:3].
-+ * For example, the Quad read need four IO lines, so you should
-+ * set LUT_PAD4 which means we use four IO lines.
-+ */
-+#define LUT_PAD1 0
-+#define LUT_PAD2 1
-+#define LUT_PAD4 2
-+
-+/* Oprands for the LUT register. */
-+#define ADDR24BIT 0x18
-+#define ADDR32BIT 0x20
-+
-+/* Macros for constructing the LUT register. */
-+#define LUT0(ins, pad, opr) \
-+ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
-+ ((LUT_##ins) << INSTR0_SHIFT))
-+
-+#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
-+
-+/* other macros for LUT register. */
-+#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
-+#define QUADSPI_LUT_NUM 64
-+
-+/* SEQID -- we can have 16 seqids at most. */
-+#define SEQID_QUAD_READ 0
-+#define SEQID_WREN 1
-+#define SEQID_WRDI 2
-+#define SEQID_RDSR 3
-+#define SEQID_SE 4
-+#define SEQID_CHIP_ERASE 5
-+#define SEQID_PP 6
-+#define SEQID_RDID 7
-+#define SEQID_WRSR 8
-+#define SEQID_RDCR 9
-+#define SEQID_EN4B 10
-+#define SEQID_BRWR 11
-+
-+enum fsl_qspi_devtype {
-+ FSL_QUADSPI_VYBRID,
-+ FSL_QUADSPI_IMX6SX,
-+};
-+
-+struct fsl_qspi_devtype_data {
-+ enum fsl_qspi_devtype devtype;
-+ int rxfifo;
-+ int txfifo;
-+};
-+
-+static struct fsl_qspi_devtype_data vybrid_data = {
-+ .devtype = FSL_QUADSPI_VYBRID,
-+ .rxfifo = 128,
-+ .txfifo = 64
-+};
-+
-+static struct fsl_qspi_devtype_data imx6sx_data = {
-+ .devtype = FSL_QUADSPI_IMX6SX,
-+ .rxfifo = 128,
-+ .txfifo = 512
-+};
-+
-+#define FSL_QSPI_MAX_CHIP 4
-+struct fsl_qspi {
-+ struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
-+ struct spi_nor nor[FSL_QSPI_MAX_CHIP];
-+ void __iomem *iobase;
-+ void __iomem *ahb_base; /* Used when read from AHB bus */
-+ u32 memmap_phy;
-+ struct clk *clk, *clk_en;
-+ struct device *dev;
-+ struct completion c;
-+ struct fsl_qspi_devtype_data *devtype_data;
-+ u32 nor_size;
-+ u32 nor_num;
-+ u32 clk_rate;
-+ unsigned int chip_base_addr; /* We may support two chips. */
-+};
-+
-+static inline int is_vybrid_qspi(struct fsl_qspi *q)
-+{
-+ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
-+}
-+
-+static inline int is_imx6sx_qspi(struct fsl_qspi *q)
-+{
-+ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
-+}
-+
-+/*
-+ * An IC bug makes us to re-arrange the 32-bit data.
-+ * The following chips, such as IMX6SLX, have fixed this bug.
-+ */
-+static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
-+{
-+ return is_vybrid_qspi(q) ? __swab32(a) : a;
-+}
-+
-+static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
-+{
-+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
-+ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
-+}
-+
-+static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
-+{
-+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
-+ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
-+}
-+
-+static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
-+{
-+ struct fsl_qspi *q = dev_id;
-+ u32 reg;
-+
-+ /* clear interrupt */
-+ reg = readl(q->iobase + QUADSPI_FR);
-+ writel(reg, q->iobase + QUADSPI_FR);
-+
-+ if (reg & QUADSPI_FR_TFF_MASK)
-+ complete(&q->c);
-+
-+ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
-+ return IRQ_HANDLED;
-+}
-+
-+static void fsl_qspi_init_lut(struct fsl_qspi *q)
-+{
-+ void __iomem *base = q->iobase;
-+ int rxfifo = q->devtype_data->rxfifo;
-+ u32 lut_base;
-+ u8 cmd, addrlen, dummy;
-+ int i;
-+
-+ fsl_qspi_unlock_lut(q);
-+
-+ /* Clear all the LUT table */
-+ for (i = 0; i < QUADSPI_LUT_NUM; i++)
-+ writel(0, base + QUADSPI_LUT_BASE + i * 4);
-+
-+ /* Quad Read */
-+ lut_base = SEQID_QUAD_READ * 4;
-+
-+ if (q->nor_size <= SZ_16M) {
-+ cmd = SPINOR_OP_READ_1_1_4;
-+ addrlen = ADDR24BIT;
-+ dummy = 8;
-+ } else {
-+ /* use the 4-byte address */
-+ cmd = SPINOR_OP_READ_1_1_4;
-+ addrlen = ADDR32BIT;
-+ dummy = 8;
-+ }
-+
-+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
-+ base + QUADSPI_LUT(lut_base));
-+ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
-+ base + QUADSPI_LUT(lut_base + 1));
-+
-+ /* Write enable */
-+ lut_base = SEQID_WREN * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
-+
-+ /* Page Program */
-+ lut_base = SEQID_PP * 4;
-+
-+ if (q->nor_size <= SZ_16M) {
-+ cmd = SPINOR_OP_PP;
-+ addrlen = ADDR24BIT;
-+ } else {
-+ /* use the 4-byte address */
-+ cmd = SPINOR_OP_PP;
-+ addrlen = ADDR32BIT;
-+ }
-+
-+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
-+ base + QUADSPI_LUT(lut_base));
-+ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
-+
-+ /* Read Status */
-+ lut_base = SEQID_RDSR * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* Erase a sector */
-+ lut_base = SEQID_SE * 4;
-+
-+ if (q->nor_size <= SZ_16M) {
-+ cmd = SPINOR_OP_SE;
-+ addrlen = ADDR24BIT;
-+ } else {
-+ /* use the 4-byte address */
-+ cmd = SPINOR_OP_SE;
-+ addrlen = ADDR32BIT;
-+ }
-+
-+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* Erase the whole chip */
-+ lut_base = SEQID_CHIP_ERASE * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* READ ID */
-+ lut_base = SEQID_RDID * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* Write Register */
-+ lut_base = SEQID_WRSR * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* Read Configuration Register */
-+ lut_base = SEQID_RDCR * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
-+ base + QUADSPI_LUT(lut_base));
-+
-+ /* Write disable */
-+ lut_base = SEQID_WRDI * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
-+
-+ /* Enter 4 Byte Mode (Micron) */
-+ lut_base = SEQID_EN4B * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
-+
-+ /* Enter 4 Byte Mode (Spansion) */
-+ lut_base = SEQID_BRWR * 4;
-+ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
-+
-+ fsl_qspi_lock_lut(q);
-+}
-+
-+/* Get the SEQID for the command */
-+static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
-+{
-+ switch (cmd) {
-+ case SPINOR_OP_READ_1_1_4:
-+ return SEQID_QUAD_READ;
-+ case SPINOR_OP_WREN:
-+ return SEQID_WREN;
-+ case SPINOR_OP_WRDI:
-+ return SEQID_WRDI;
-+ case SPINOR_OP_RDSR:
-+ return SEQID_RDSR;
-+ case SPINOR_OP_SE:
-+ return SEQID_SE;
-+ case SPINOR_OP_CHIP_ERASE:
-+ return SEQID_CHIP_ERASE;
-+ case SPINOR_OP_PP:
-+ return SEQID_PP;
-+ case SPINOR_OP_RDID:
-+ return SEQID_RDID;
-+ case SPINOR_OP_WRSR:
-+ return SEQID_WRSR;
-+ case SPINOR_OP_RDCR:
-+ return SEQID_RDCR;
-+ case SPINOR_OP_EN4B:
-+ return SEQID_EN4B;
-+ case SPINOR_OP_BRWR:
-+ return SEQID_BRWR;
-+ default:
-+ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
-+ break;
-+ }
-+ return -EINVAL;
-+}
-+
-+static int
-+fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
-+{
-+ void __iomem *base = q->iobase;
-+ int seqid;
-+ u32 reg, reg2;
-+ int err;
-+
-+ init_completion(&q->c);
-+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
-+ q->chip_base_addr, addr, len, cmd);
-+
-+ /* save the reg */
-+ reg = readl(base + QUADSPI_MCR);
-+
-+ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
-+ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
-+ base + QUADSPI_RBCT);
-+ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
-+
-+ do {
-+ reg2 = readl(base + QUADSPI_SR);
-+ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
-+ udelay(1);
-+ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
-+ continue;
-+ }
-+ break;
-+ } while (1);
-+
-+ /* trigger the LUT now */
-+ seqid = fsl_qspi_get_seqid(q, cmd);
-+ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
-+
-+ /* Wait for the interrupt. */
-+ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
-+ if (!err) {
-+ dev_err(q->dev,
-+ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
-+ cmd, addr, readl(base + QUADSPI_FR),
-+ readl(base + QUADSPI_SR));
-+ err = -ETIMEDOUT;
-+ } else {
-+ err = 0;
-+ }
-+
-+ /* restore the MCR */
-+ writel(reg, base + QUADSPI_MCR);
-+
-+ return err;
-+}
-+
-+/* Read out the data from the QUADSPI_RBDR buffer registers. */
-+static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
-+{
-+ u32 tmp;
-+ int i = 0;
-+
-+ while (len > 0) {
-+ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
-+ tmp = fsl_qspi_endian_xchg(q, tmp);
-+ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
-+ q->chip_base_addr, tmp);
-+
-+ if (len >= 4) {
-+ *((u32 *)rxbuf) = tmp;
-+ rxbuf += 4;
-+ } else {
-+ memcpy(rxbuf, &tmp, len);
-+ break;
-+ }
-+
-+ len -= 4;
-+ i++;
-+ }
-+}
-+
-+/*
-+ * If we have changed the content of the flash by writing or erasing,
-+ * we need to invalidate the AHB buffer. If we do not do so, we may read out
-+ * the wrong data. The spec tells us reset the AHB domain and Serial Flash
-+ * domain at the same time.
-+ */
-+static inline void fsl_qspi_invalid(struct fsl_qspi *q)
-+{
-+ u32 reg;
-+
-+ reg = readl(q->iobase + QUADSPI_MCR);
-+ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
-+ writel(reg, q->iobase + QUADSPI_MCR);
-+
-+ /*
-+ * The minimum delay : 1 AHB + 2 SFCK clocks.
-+ * Delay 1 us is enough.
-+ */
-+ udelay(1);
-+
-+ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
-+ writel(reg, q->iobase + QUADSPI_MCR);
-+}
-+
-+static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
-+ u8 opcode, unsigned int to, u32 *txbuf,
-+ unsigned count, size_t *retlen)
-+{
-+ int ret, i, j;
-+ u32 tmp;
-+
-+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
-+ q->chip_base_addr, to, count);
-+
-+ /* clear the TX FIFO. */
-+ tmp = readl(q->iobase + QUADSPI_MCR);
-+ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
-+
-+ /* fill the TX data to the FIFO */
-+ for (j = 0, i = ((count + 3) / 4); j < i; j++) {
-+ tmp = fsl_qspi_endian_xchg(q, *txbuf);
-+ writel(tmp, q->iobase + QUADSPI_TBDR);
-+ txbuf++;
-+ }
-+
-+ /* Trigger it */
-+ ret = fsl_qspi_runcmd(q, opcode, to, count);
-+
-+ if (ret == 0 && retlen)
-+ *retlen += count;
-+
-+ return ret;
-+}
-+
-+static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
-+{
-+ int nor_size = q->nor_size;
-+ void __iomem *base = q->iobase;
-+
-+ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
-+ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
-+ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
-+ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
-+}
-+
-+/*
-+ * There are two different ways to read out the data from the flash:
-+ * the "IP Command Read" and the "AHB Command Read".
-+ *
-+ * The IC guy suggests we use the "AHB Command Read" which is faster
-+ * then the "IP Command Read". (What's more is that there is a bug in
-+ * the "IP Command Read" in the Vybrid.)
-+ *
-+ * After we set up the registers for the "AHB Command Read", we can use
-+ * the memcpy to read the data directly. A "missed" access to the buffer
-+ * causes the controller to clear the buffer, and use the sequence pointed
-+ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
-+ */
-+static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
-+{
-+ void __iomem *base = q->iobase;
-+ int seqid;
-+
-+ /* AHB configuration for access buffer 0/1/2 .*/
-+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
-+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
-+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
-+ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
-+
-+ /* We only use the buffer3 */
-+ writel(0, base + QUADSPI_BUF0IND);
-+ writel(0, base + QUADSPI_BUF1IND);
-+ writel(0, base + QUADSPI_BUF2IND);
-+
-+ /* Set the default lut sequence for AHB Read. */
-+ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
-+ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
-+ q->iobase + QUADSPI_BFGENCR);
-+}
-+
-+/* We use this function to do some basic init for spi_nor_scan(). */
-+static int fsl_qspi_nor_setup(struct fsl_qspi *q)
-+{
-+ void __iomem *base = q->iobase;
-+ u32 reg;
-+ int ret;
-+
-+ /* the default frequency, we will change it in the future.*/
-+ ret = clk_set_rate(q->clk, 66000000);
-+ if (ret)
-+ return ret;
-+
-+ /* Init the LUT table. */
-+ fsl_qspi_init_lut(q);
-+
-+ /* Disable the module */
-+ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
-+ base + QUADSPI_MCR);
-+
-+ reg = readl(base + QUADSPI_SMPR);
-+ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
-+ | QUADSPI_SMPR_FSPHS_MASK
-+ | QUADSPI_SMPR_HSENA_MASK
-+ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
-+
-+ /* Enable the module */
-+ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
-+ base + QUADSPI_MCR);
-+
-+ /* enable the interrupt */
-+ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
-+
-+ return 0;
-+}
-+
-+static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
-+{
-+ unsigned long rate = q->clk_rate;
-+ int ret;
-+
-+ if (is_imx6sx_qspi(q))
-+ rate *= 4;
-+
-+ ret = clk_set_rate(q->clk, rate);
-+ if (ret)
-+ return ret;
-+
-+ /* Init the LUT table again. */
-+ fsl_qspi_init_lut(q);
-+
-+ /* Init for AHB read */
-+ fsl_qspi_init_abh_read(q);
-+
-+ return 0;
-+}
-+
-+static struct of_device_id fsl_qspi_dt_ids[] = {
-+ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
-+ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
-+ { /* sentinel */ }
-+};
-+MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
-+
-+static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
-+{
-+ q->chip_base_addr = q->nor_size * (nor - q->nor);
-+}
-+
-+static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
-+{
-+ int ret;
-+ struct fsl_qspi *q = nor->priv;
-+
-+ ret = fsl_qspi_runcmd(q, opcode, 0, len);
-+ if (ret)
-+ return ret;
-+
-+ fsl_qspi_read_data(q, len, buf);
-+ return 0;
-+}
-+
-+static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
-+ int write_enable)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+ int ret;
-+
-+ if (!buf) {
-+ ret = fsl_qspi_runcmd(q, opcode, 0, 1);
-+ if (ret)
-+ return ret;
-+
-+ if (opcode == SPINOR_OP_CHIP_ERASE)
-+ fsl_qspi_invalid(q);
-+
-+ } else if (len > 0) {
-+ ret = fsl_qspi_nor_write(q, nor, opcode, 0,
-+ (u32 *)buf, len, NULL);
-+ } else {
-+ dev_err(q->dev, "invalid cmd %d\n", opcode);
-+ ret = -EINVAL;
-+ }
-+
-+ return ret;
-+}
-+
-+static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
-+ size_t len, size_t *retlen, const u_char *buf)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+
-+ fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
-+ (u32 *)buf, len, retlen);
-+
-+ /* invalid the data in the AHB buffer. */
-+ fsl_qspi_invalid(q);
-+}
-+
-+static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
-+ size_t len, size_t *retlen, u_char *buf)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+ u8 cmd = nor->read_opcode;
-+ int ret;
-+
-+ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
-+ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
-+
-+ /* Wait until the previous command is finished. */
-+ ret = nor->wait_till_ready(nor);
-+ if (ret)
-+ return ret;
-+
-+ /* Read out the data directly from the AHB buffer.*/
-+ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
-+
-+ *retlen += len;
-+ return 0;
-+}
-+
-+static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+ int ret;
-+
-+ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
-+ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
-+
-+ /* Wait until finished previous write command. */
-+ ret = nor->wait_till_ready(nor);
-+ if (ret)
-+ return ret;
-+
-+ /* Send write enable, then erase commands. */
-+ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
-+ if (ret)
-+ return ret;
-+
-+ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
-+ if (ret)
-+ return ret;
-+
-+ fsl_qspi_invalid(q);
-+ return 0;
-+}
-+
-+static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+ int ret;
-+
-+ ret = clk_enable(q->clk_en);
-+ if (ret)
-+ return ret;
-+
-+ ret = clk_enable(q->clk);
-+ if (ret) {
-+ clk_disable(q->clk_en);
-+ return ret;
-+ }
-+
-+ fsl_qspi_set_base_addr(q, nor);
-+ return 0;
-+}
-+
-+static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
-+{
-+ struct fsl_qspi *q = nor->priv;
-+
-+ clk_disable(q->clk);
-+ clk_disable(q->clk_en);
-+}
-+
-+static int fsl_qspi_probe(struct platform_device *pdev)
-+{
-+ struct device_node *np = pdev->dev.of_node;
-+ struct mtd_part_parser_data ppdata;
-+ struct device *dev = &pdev->dev;
-+ struct fsl_qspi *q;
-+ struct resource *res;
-+ struct spi_nor *nor;
-+ struct mtd_info *mtd;
-+ int ret, i = 0;
-+ bool has_second_chip = false;
-+ const struct of_device_id *of_id =
-+ of_match_device(fsl_qspi_dt_ids, &pdev->dev);
-+
-+ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
-+ if (!q)
-+ return -ENOMEM;
-+
-+ q->nor_num = of_get_child_count(dev->of_node);
-+ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
-+ return -ENODEV;
-+
-+ /* find the resources */
-+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
-+ q->iobase = devm_ioremap_resource(dev, res);
-+ if (IS_ERR(q->iobase)) {
-+ ret = PTR_ERR(q->iobase);
-+ goto map_failed;
-+ }
-+
-+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
-+ "QuadSPI-memory");
-+ q->ahb_base = devm_ioremap_resource(dev, res);
-+ if (IS_ERR(q->ahb_base)) {
-+ ret = PTR_ERR(q->ahb_base);
-+ goto map_failed;
-+ }
-+ q->memmap_phy = res->start;
-+
-+ /* find the clocks */
-+ q->clk_en = devm_clk_get(dev, "qspi_en");
-+ if (IS_ERR(q->clk_en)) {
-+ ret = PTR_ERR(q->clk_en);
-+ goto map_failed;
-+ }
-+
-+ q->clk = devm_clk_get(dev, "qspi");
-+ if (IS_ERR(q->clk)) {
-+ ret = PTR_ERR(q->clk);
-+ goto map_failed;
-+ }
-+
-+ ret = clk_prepare_enable(q->clk_en);
-+ if (ret) {
-+ dev_err(dev, "can not enable the qspi_en clock\n");
-+ goto map_failed;
-+ }
-+
-+ ret = clk_prepare_enable(q->clk);
-+ if (ret) {
-+ clk_disable_unprepare(q->clk_en);
-+ dev_err(dev, "can not enable the qspi clock\n");
-+ goto map_failed;
-+ }
-+
-+ /* find the irq */
-+ ret = platform_get_irq(pdev, 0);
-+ if (ret < 0) {
-+ dev_err(dev, "failed to get the irq\n");
-+ goto irq_failed;
-+ }
-+
-+ ret = devm_request_irq(dev, ret,
-+ fsl_qspi_irq_handler, 0, pdev->name, q);
-+ if (ret) {
-+ dev_err(dev, "failed to request irq.\n");
-+ goto irq_failed;
-+ }
-+
-+ q->dev = dev;
-+ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
-+ platform_set_drvdata(pdev, q);
-+
-+ ret = fsl_qspi_nor_setup(q);
-+ if (ret)
-+ goto irq_failed;
-+
-+ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
-+ has_second_chip = true;
-+
-+ /* iterate the subnodes. */
-+ for_each_available_child_of_node(dev->of_node, np) {
-+ const struct spi_device_id *id;
-+ char modalias[40];
-+
-+ /* skip the holes */
-+ if (!has_second_chip)
-+ i *= 2;
-+
-+ nor = &q->nor[i];
-+ mtd = &q->mtd[i];
-+
-+ nor->mtd = mtd;
-+ nor->dev = dev;
-+ nor->priv = q;
-+ mtd->priv = nor;
-+
-+ /* fill the hooks */
-+ nor->read_reg = fsl_qspi_read_reg;
-+ nor->write_reg = fsl_qspi_write_reg;
-+ nor->read = fsl_qspi_read;
-+ nor->write = fsl_qspi_write;
-+ nor->erase = fsl_qspi_erase;
-+
-+ nor->prepare = fsl_qspi_prep;
-+ nor->unprepare = fsl_qspi_unprep;
-+
-+ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0)
-+ goto map_failed;
-+
-+ id = spi_nor_match_id(modalias);
-+ if (!id)
-+ goto map_failed;
-+
-+ ret = of_property_read_u32(np, "spi-max-frequency",
-+ &q->clk_rate);
-+ if (ret < 0)
-+ goto map_failed;
-+
-+ /* set the chip address for READID */
-+ fsl_qspi_set_base_addr(q, nor);
-+
-+ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD);
-+ if (ret)
-+ goto map_failed;
-+
-+ ppdata.of_node = np;
-+ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
-+ if (ret)
-+ goto map_failed;
-+
-+ /* Set the correct NOR size now. */
-+ if (q->nor_size == 0) {
-+ q->nor_size = mtd->size;
-+
-+ /* Map the SPI NOR to accessiable address */
-+ fsl_qspi_set_map_addr(q);
-+ }
-+
-+ /*
-+ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
-+ * may writes 265 bytes per time. The write is working in the
-+ * unit of the TX FIFO, not in the unit of the SPI NOR's page
-+ * size.
-+ *
-+ * So shrink the spi_nor->page_size if it is larger then the
-+ * TX FIFO.
-+ */
-+ if (nor->page_size > q->devtype_data->txfifo)
-+ nor->page_size = q->devtype_data->txfifo;
-+
-+ i++;
-+ }
-+
-+ /* finish the rest init. */
-+ ret = fsl_qspi_nor_setup_last(q);
-+ if (ret)
-+ goto last_init_failed;
-+
-+ clk_disable(q->clk);
-+ clk_disable(q->clk_en);
-+ dev_info(dev, "QuadSPI SPI NOR flash driver\n");
-+ return 0;
-+
-+last_init_failed:
-+ for (i = 0; i < q->nor_num; i++)
-+ mtd_device_unregister(&q->mtd[i]);
-+
-+irq_failed:
-+ clk_disable_unprepare(q->clk);
-+ clk_disable_unprepare(q->clk_en);
-+map_failed:
-+ dev_err(dev, "Freescale QuadSPI probe failed\n");
-+ return ret;
-+}
-+
-+static int fsl_qspi_remove(struct platform_device *pdev)
-+{
-+ struct fsl_qspi *q = platform_get_drvdata(pdev);
-+ int i;
-+
-+ for (i = 0; i < q->nor_num; i++)
-+ mtd_device_unregister(&q->mtd[i]);
-+
-+ /* disable the hardware */
-+ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
-+ writel(0x0, q->iobase + QUADSPI_RSER);
-+
-+ clk_unprepare(q->clk);
-+ clk_unprepare(q->clk_en);
-+ return 0;
-+}
-+
-+static struct platform_driver fsl_qspi_driver = {
-+ .driver = {
-+ .name = "fsl-quadspi",
-+ .bus = &platform_bus_type,
-+ .owner = THIS_MODULE,
-+ .of_match_table = fsl_qspi_dt_ids,
-+ },
-+ .probe = fsl_qspi_probe,
-+ .remove = fsl_qspi_remove,
-+};
-+module_platform_driver(fsl_qspi_driver);
-+
-+MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
-+MODULE_AUTHOR("Freescale Semiconductor Inc.");
-+MODULE_LICENSE("GPL v2");
---- /dev/null
-+++ b/drivers/mtd/spi-nor/Kconfig
-@@ -0,0 +1,17 @@
-+menuconfig MTD_SPI_NOR
-+ tristate "SPI-NOR device support"
-+ depends on MTD
-+ help
-+ This is the framework for the SPI NOR which can be used by the SPI
-+ device drivers and the SPI-NOR device driver.
-+
-+if MTD_SPI_NOR
-+
-+config SPI_FSL_QUADSPI
-+ tristate "Freescale Quad SPI controller"
-+ depends on ARCH_MXC
-+ help
-+ This enables support for the Quad SPI controller in master mode.
-+ We only connect the NOR to this controller now.
-+
-+endif # MTD_SPI_NOR
---- /dev/null
-+++ b/drivers/mtd/spi-nor/Makefile
-@@ -0,0 +1,2 @@
-+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
-+obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
---- /dev/null
-+++ b/drivers/mtd/spi-nor/spi-nor.c
-@@ -0,0 +1,1160 @@
-+/*
-+ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
-+ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
-+ *
-+ * Copyright (C) 2005, Intec Automation Inc.
-+ * Copyright (C) 2014, Freescale Semiconductor, Inc.
-+ *
-+ * This code is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License version 2 as
-+ * published by the Free Software Foundation.
-+ */
-+
-+#include <linux/err.h>
-+#include <linux/errno.h>
-+#include <linux/module.h>
-+#include <linux/device.h>
-+#include <linux/mutex.h>
-+#include <linux/math64.h>
-+
-+#include <linux/mtd/cfi.h>
-+#include <linux/mtd/mtd.h>
-+#include <linux/of_platform.h>
-+#include <linux/spi/flash.h>
-+#include <linux/mtd/spi-nor.h>
-+
-+/* Define max times to check status register before we give up. */
-+#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
-+
-+#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
-+
-+/*
-+ * Read the status register, returning its value in the location
-+ * Return the status register value.
-+ * Returns negative if error occurred.
-+ */
-+static int read_sr(struct spi_nor *nor)
-+{
-+ int ret;
-+ u8 val;
-+
-+ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
-+ if (ret < 0) {
-+ pr_err("error %d reading SR\n", (int) ret);
-+ return ret;
-+ }
-+
-+ return val;
-+}
-+
-+/*
-+ * Read the flag status register, returning its value in the location
-+ * Return the status register value.
-+ * Returns negative if error occurred.
-+ */
-+static int read_fsr(struct spi_nor *nor)
-+{
-+ int ret;
-+ u8 val;
-+
-+ ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
-+ if (ret < 0) {
-+ pr_err("error %d reading FSR\n", ret);
-+ return ret;
-+ }
-+
-+ return val;
-+}
-+
-+/*
-+ * Read configuration register, returning its value in the
-+ * location. Return the configuration register value.
-+ * Returns negative if error occured.
-+ */
-+static int read_cr(struct spi_nor *nor)
-+{
-+ int ret;
-+ u8 val;
-+
-+ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
-+ if (ret < 0) {
-+ dev_err(nor->dev, "error %d reading CR\n", ret);
-+ return ret;
-+ }
-+
-+ return val;
-+}
-+
-+/*
-+ * Dummy Cycle calculation for different type of read.
-+ * It can be used to support more commands with
-+ * different dummy cycle requirements.
-+ */
-+static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
-+{
-+ switch (nor->flash_read) {
-+ case SPI_NOR_FAST:
-+ case SPI_NOR_DUAL:
-+ case SPI_NOR_QUAD:
-+ return 1;
-+ case SPI_NOR_NORMAL:
-+ return 0;
-+ }
-+ return 0;
-+}
-+
-+/*
-+ * Write status register 1 byte
-+ * Returns negative if error occurred.
-+ */
-+static inline int write_sr(struct spi_nor *nor, u8 val)
-+{
-+ nor->cmd_buf[0] = val;
-+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
-+}
-+
-+/*
-+ * Set write enable latch with Write Enable command.
-+ * Returns negative if error occurred.
-+ */
-+static inline int write_enable(struct spi_nor *nor)
-+{
-+ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
-+}
-+
-+/*
-+ * Send write disble instruction to the chip.
-+ */
-+static inline int write_disable(struct spi_nor *nor)
-+{
-+ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
-+}
-+
-+static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
-+{
-+ return mtd->priv;
-+}
-+
-+/* Enable/disable 4-byte addressing mode. */
-+static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
-+{
-+ int status;
-+ bool need_wren = false;
-+ u8 cmd;
-+
-+ switch (JEDEC_MFR(jedec_id)) {
-+ case CFI_MFR_ST: /* Micron, actually */
-+ /* Some Micron need WREN command; all will accept it */
-+ need_wren = true;
-+ case CFI_MFR_MACRONIX:
-+ case 0xEF /* winbond */:
-+ if (need_wren)
-+ write_enable(nor);
-+
-+ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
-+ status = nor->write_reg(nor, cmd, NULL, 0, 0);
-+ if (need_wren)
-+ write_disable(nor);
-+
-+ return status;
-+ default:
-+ /* Spansion style */
-+ nor->cmd_buf[0] = enable << 7;
-+ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
-+ }
-+}
-+
-+static int spi_nor_wait_till_ready(struct spi_nor *nor)
-+{
-+ unsigned long deadline;
-+ int sr;
-+
-+ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
-+
-+ do {
-+ cond_resched();
-+
-+ sr = read_sr(nor);
-+ if (sr < 0)
-+ break;
-+ else if (!(sr & SR_WIP))
-+ return 0;
-+ } while (!time_after_eq(jiffies, deadline));
-+
-+ return -ETIMEDOUT;
-+}
-+
-+static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
-+{
-+ unsigned long deadline;
-+ int sr;
-+ int fsr;
-+
-+ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
-+
-+ do {
-+ cond_resched();
-+
-+ sr = read_sr(nor);
-+ if (sr < 0) {
-+ break;
-+ } else if (!(sr & SR_WIP)) {
-+ fsr = read_fsr(nor);
-+ if (fsr < 0)
-+ break;
-+ if (fsr & FSR_READY)
-+ return 0;
-+ }
-+ } while (!time_after_eq(jiffies, deadline));
-+
-+ return -ETIMEDOUT;
-+}
-+
-+/*
-+ * Service routine to read status register until ready, or timeout occurs.
-+ * Returns non-zero if error.
-+ */
-+static int wait_till_ready(struct spi_nor *nor)
-+{
-+ return nor->wait_till_ready(nor);
-+}
-+
-+/*
-+ * Erase the whole flash memory
-+ *
-+ * Returns 0 if successful, non-zero otherwise.
-+ */
-+static int erase_chip(struct spi_nor *nor)
-+{
-+ int ret;
-+
-+ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
-+
-+ /* Wait until finished previous write command. */
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ return ret;
-+
-+ /* Send write enable, then erase commands. */
-+ write_enable(nor);
-+
-+ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
-+}
-+
-+static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
-+{
-+ int ret = 0;
-+
-+ mutex_lock(&nor->lock);
-+
-+ if (nor->prepare) {
-+ ret = nor->prepare(nor, ops);
-+ if (ret) {
-+ dev_err(nor->dev, "failed in the preparation.\n");
-+ mutex_unlock(&nor->lock);
-+ return ret;
-+ }
-+ }
-+ return ret;
-+}
-+
-+static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
-+{
-+ if (nor->unprepare)
-+ nor->unprepare(nor, ops);
-+ mutex_unlock(&nor->lock);
-+}
-+
-+/*
-+ * Erase an address range on the nor chip. The address range may extend
-+ * one or more erase sectors. Return an error is there is a problem erasing.
-+ */
-+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ u32 addr, len;
-+ uint32_t rem;
-+ int ret;
-+
-+ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
-+ (long long)instr->len);
-+
-+ div_u64_rem(instr->len, mtd->erasesize, &rem);
-+ if (rem)
-+ return -EINVAL;
-+
-+ addr = instr->addr;
-+ len = instr->len;
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
-+ if (ret)
-+ return ret;
-+
-+ /* whole-chip erase? */
-+ if (len == mtd->size) {
-+ if (erase_chip(nor)) {
-+ ret = -EIO;
-+ goto erase_err;
-+ }
-+
-+ /* REVISIT in some cases we could speed up erasing large regions
-+ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
-+ * to use "small sector erase", but that's not always optimal.
-+ */
-+
-+ /* "sector"-at-a-time erase */
-+ } else {
-+ while (len) {
-+ if (nor->erase(nor, addr)) {
-+ ret = -EIO;
-+ goto erase_err;
-+ }
-+
-+ addr += mtd->erasesize;
-+ len -= mtd->erasesize;
-+ }
-+ }
-+
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
-+
-+ instr->state = MTD_ERASE_DONE;
-+ mtd_erase_callback(instr);
-+
-+ return ret;
-+
-+erase_err:
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
-+ instr->state = MTD_ERASE_FAILED;
-+ return ret;
-+}
-+
-+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ uint32_t offset = ofs;
-+ uint8_t status_old, status_new;
-+ int ret = 0;
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
-+ if (ret)
-+ return ret;
-+
-+ /* Wait until finished previous command */
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto err;
-+
-+ status_old = read_sr(nor);
-+
-+ if (offset < mtd->size - (mtd->size / 2))
-+ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
-+ else if (offset < mtd->size - (mtd->size / 4))
-+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
-+ else if (offset < mtd->size - (mtd->size / 8))
-+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
-+ else if (offset < mtd->size - (mtd->size / 16))
-+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
-+ else if (offset < mtd->size - (mtd->size / 32))
-+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
-+ else if (offset < mtd->size - (mtd->size / 64))
-+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
-+ else
-+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
-+
-+ /* Only modify protection if it will not unlock other areas */
-+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
-+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
-+ write_enable(nor);
-+ ret = write_sr(nor, status_new);
-+ if (ret)
-+ goto err;
-+ }
-+
-+err:
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
-+ return ret;
-+}
-+
-+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ uint32_t offset = ofs;
-+ uint8_t status_old, status_new;
-+ int ret = 0;
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
-+ if (ret)
-+ return ret;
-+
-+ /* Wait until finished previous command */
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto err;
-+
-+ status_old = read_sr(nor);
-+
-+ if (offset+len > mtd->size - (mtd->size / 64))
-+ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
-+ else if (offset+len > mtd->size - (mtd->size / 32))
-+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
-+ else if (offset+len > mtd->size - (mtd->size / 16))
-+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
-+ else if (offset+len > mtd->size - (mtd->size / 8))
-+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
-+ else if (offset+len > mtd->size - (mtd->size / 4))
-+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
-+ else if (offset+len > mtd->size - (mtd->size / 2))
-+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
-+ else
-+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
-+
-+ /* Only modify protection if it will not lock other areas */
-+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
-+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
-+ write_enable(nor);
-+ ret = write_sr(nor, status_new);
-+ if (ret)
-+ goto err;
-+ }
-+
-+err:
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
-+ return ret;
-+}
-+
-+struct flash_info {
-+ /* JEDEC id zero means "no ID" (most older chips); otherwise it has
-+ * a high byte of zero plus three data bytes: the manufacturer id,
-+ * then a two byte device id.
-+ */
-+ u32 jedec_id;
-+ u16 ext_id;
-+
-+ /* The size listed here is what works with SPINOR_OP_SE, which isn't
-+ * necessarily called a "sector" by the vendor.
-+ */
-+ unsigned sector_size;
-+ u16 n_sectors;
-+
-+ u16 page_size;
-+ u16 addr_width;
-+
-+ u16 flags;
-+#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
-+#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
-+#define SST_WRITE 0x04 /* use SST byte programming */
-+#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
-+#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
-+#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
-+#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
-+#define USE_FSR 0x80 /* use flag status register */
-+};
-+
-+#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
-+ ((kernel_ulong_t)&(struct flash_info) { \
-+ .jedec_id = (_jedec_id), \
-+ .ext_id = (_ext_id), \
-+ .sector_size = (_sector_size), \
-+ .n_sectors = (_n_sectors), \
-+ .page_size = 256, \
-+ .flags = (_flags), \
-+ })
-+
-+#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
-+ ((kernel_ulong_t)&(struct flash_info) { \
-+ .sector_size = (_sector_size), \
-+ .n_sectors = (_n_sectors), \
-+ .page_size = (_page_size), \
-+ .addr_width = (_addr_width), \
-+ .flags = (_flags), \
-+ })
-+
-+/* NOTE: double check command sets and memory organization when you add
-+ * more nor chips. This current list focusses on newer chips, which
-+ * have been converging on command sets which including JEDEC ID.
-+ */
-+const struct spi_device_id spi_nor_ids[] = {
-+ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
-+ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
-+ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
-+
-+ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
-+ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
-+ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
-+
-+ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
-+ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
-+ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
-+ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
-+
-+ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
-+
-+ /* EON -- en25xxx */
-+ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
-+ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
-+ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
-+ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
-+ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
-+ { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
-+ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
-+
-+ /* ESMT */
-+ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
-+
-+ /* Everspin */
-+ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+
-+ /* GigaDevice */
-+ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
-+ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
-+
-+ /* Intel/Numonyx -- xxxs33b */
-+ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
-+ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
-+ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
-+
-+ /* Macronix */
-+ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
-+ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
-+ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
-+ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
-+ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
-+ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
-+ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
-+ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
-+ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
-+ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
-+ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
-+ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
-+ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
-+
-+ /* Micron */
-+ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
-+ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
-+ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
-+ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
-+ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
-+ { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
-+ { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
-+
-+ /* PMC */
-+ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
-+ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
-+ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
-+
-+ /* Spansion -- single (large) sector size only, at least
-+ * for the chips listed here (without boot sectors).
-+ */
-+ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
-+ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
-+ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
-+ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
-+ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
-+ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
-+ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
-+ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
-+ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
-+ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
-+ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
-+ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
-+ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
-+ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
-+ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
-+ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
-+ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
-+ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
-+
-+ /* SST -- large erase sizes are "overlays", "sectors" are 4K */
-+ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
-+ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
-+ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
-+ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
-+ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
-+ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
-+ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
-+ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
-+ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
-+
-+ /* ST Microelectronics -- newer production may have feature updates */
-+ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
-+ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
-+ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
-+ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
-+ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
-+ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
-+ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
-+ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
-+ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
-+ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
-+
-+ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
-+ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
-+ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
-+ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
-+ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
-+ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
-+ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
-+ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
-+ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
-+
-+ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
-+ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
-+ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
-+
-+ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
-+ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
-+ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
-+
-+ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
-+ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
-+ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
-+ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
-+ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
-+
-+ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
-+ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
-+ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
-+ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
-+ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
-+ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
-+ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
-+ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
-+ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
-+ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
-+ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
-+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
-+ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
-+ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
-+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
-+ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
-+
-+ /* Catalyst / On Semiconductor -- non-JEDEC */
-+ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
-+ { },
-+};
-+EXPORT_SYMBOL_GPL(spi_nor_ids);
-+
-+static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
-+{
-+ int tmp;
-+ u8 id[5];
-+ u32 jedec;
-+ u16 ext_jedec;
-+ struct flash_info *info;
-+
-+ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
-+ if (tmp < 0) {
-+ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
-+ return ERR_PTR(tmp);
-+ }
-+ jedec = id[0];
-+ jedec = jedec << 8;
-+ jedec |= id[1];
-+ jedec = jedec << 8;
-+ jedec |= id[2];
-+
-+ ext_jedec = id[3] << 8 | id[4];
-+
-+ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
-+ info = (void *)spi_nor_ids[tmp].driver_data;
-+ if (info->jedec_id == jedec) {
-+ if (info->ext_id == 0 || info->ext_id == ext_jedec)
-+ return &spi_nor_ids[tmp];
-+ }
-+ }
-+ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
-+ return ERR_PTR(-ENODEV);
-+}
-+
-+static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
-+{
-+ return nor->read_id(nor);
-+}
-+
-+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
-+ size_t *retlen, u_char *buf)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ int ret;
-+
-+ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
-+ if (ret)
-+ return ret;
-+
-+ ret = nor->read(nor, from, len, retlen, buf);
-+
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
-+ return ret;
-+}
-+
-+static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
-+ size_t *retlen, const u_char *buf)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ size_t actual;
-+ int ret;
-+
-+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
-+ if (ret)
-+ return ret;
-+
-+ /* Wait until finished previous write command. */
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto time_out;
-+
-+ write_enable(nor);
-+
-+ nor->sst_write_second = false;
-+
-+ actual = to % 2;
-+ /* Start write from odd address. */
-+ if (actual) {
-+ nor->program_opcode = SPINOR_OP_BP;
-+
-+ /* write one byte. */
-+ nor->write(nor, to, 1, retlen, buf);
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto time_out;
-+ }
-+ to += actual;
-+
-+ /* Write out most of the data here. */
-+ for (; actual < len - 1; actual += 2) {
-+ nor->program_opcode = SPINOR_OP_AAI_WP;
-+
-+ /* write two bytes. */
-+ nor->write(nor, to, 2, retlen, buf + actual);
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto time_out;
-+ to += 2;
-+ nor->sst_write_second = true;
-+ }
-+ nor->sst_write_second = false;
-+
-+ write_disable(nor);
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto time_out;
-+
-+ /* Write out trailing byte if it exists. */
-+ if (actual != len) {
-+ write_enable(nor);
-+
-+ nor->program_opcode = SPINOR_OP_BP;
-+ nor->write(nor, to, 1, retlen, buf + actual);
-+
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto time_out;
-+ write_disable(nor);
-+ }
-+time_out:
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
-+ return ret;
-+}
-+
-+/*
-+ * Write an address range to the nor chip. Data must be written in
-+ * FLASH_PAGESIZE chunks. The address range may be any size provided
-+ * it is within the physical boundaries.
-+ */
-+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
-+ size_t *retlen, const u_char *buf)
-+{
-+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
-+ u32 page_offset, page_size, i;
-+ int ret;
-+
-+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
-+
-+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
-+ if (ret)
-+ return ret;
-+
-+ /* Wait until finished previous write command. */
-+ ret = wait_till_ready(nor);
-+ if (ret)
-+ goto write_err;
-+
-+ write_enable(nor);
-+
-+ page_offset = to & (nor->page_size - 1);
-+
-+ /* do all the bytes fit onto one page? */
-+ if (page_offset + len <= nor->page_size) {
-+ nor->write(nor, to, len, retlen, buf);
-+ } else {
-+ /* the size of data remaining on the first page */
-+ page_size = nor->page_size - page_offset;
-+ nor->write(nor, to, page_size, retlen, buf);
-+
-+ /* write everything in nor->page_size chunks */
-+ for (i = page_size; i < len; i += page_size) {
-+ page_size = len - i;
-+ if (page_size > nor->page_size)
-+ page_size = nor->page_size;
-+
-+ wait_till_ready(nor);
-+ write_enable(nor);
-+
-+ nor->write(nor, to + i, page_size, retlen, buf + i);
-+ }
-+ }
-+
-+write_err:
-+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
-+ return 0;
-+}
-+
-+static int macronix_quad_enable(struct spi_nor *nor)
-+{
-+ int ret, val;
-+
-+ val = read_sr(nor);
-+ write_enable(nor);
-+
-+ nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
-+ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
-+
-+ if (wait_till_ready(nor))
-+ return 1;
-+
-+ ret = read_sr(nor);
-+ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
-+ dev_err(nor->dev, "Macronix Quad bit not set\n");
-+ return -EINVAL;
-+ }
-+
-+ return 0;
-+}
-+
-+/*
-+ * Write status Register and configuration register with 2 bytes
-+ * The first byte will be written to the status register, while the
-+ * second byte will be written to the configuration register.
-+ * Return negative if error occured.
-+ */
-+static int write_sr_cr(struct spi_nor *nor, u16 val)
-+{
-+ nor->cmd_buf[0] = val & 0xff;
-+ nor->cmd_buf[1] = (val >> 8);
-+
-+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
-+}
-+
-+static int spansion_quad_enable(struct spi_nor *nor)
-+{
-+ int ret;
-+ int quad_en = CR_QUAD_EN_SPAN << 8;
-+
-+ write_enable(nor);
-+
-+ ret = write_sr_cr(nor, quad_en);
-+ if (ret < 0) {
-+ dev_err(nor->dev,
-+ "error while writing configuration register\n");
-+ return -EINVAL;
-+ }
-+
-+ /* read back and check it */
-+ ret = read_cr(nor);
-+ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
-+ dev_err(nor->dev, "Spansion Quad bit not set\n");
-+ return -EINVAL;
-+ }
-+
-+ return 0;
-+}
-+
-+static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
-+{
-+ int status;
-+
-+ switch (JEDEC_MFR(jedec_id)) {
-+ case CFI_MFR_MACRONIX:
-+ status = macronix_quad_enable(nor);
-+ if (status) {
-+ dev_err(nor->dev, "Macronix quad-read not enabled\n");
-+ return -EINVAL;
-+ }
-+ return status;
-+ default:
-+ status = spansion_quad_enable(nor);
-+ if (status) {
-+ dev_err(nor->dev, "Spansion quad-read not enabled\n");
-+ return -EINVAL;
-+ }
-+ return status;
-+ }
-+}
-+
-+static int spi_nor_check(struct spi_nor *nor)
-+{
-+ if (!nor->dev || !nor->read || !nor->write ||
-+ !nor->read_reg || !nor->write_reg || !nor->erase) {
-+ pr_err("spi-nor: please fill all the necessary fields!\n");
-+ return -EINVAL;
-+ }
-+
-+ if (!nor->read_id)
-+ nor->read_id = spi_nor_read_id;
-+ if (!nor->wait_till_ready)
-+ nor->wait_till_ready = spi_nor_wait_till_ready;
-+
-+ return 0;
-+}
-+
-+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
-+ enum read_mode mode)
-+{
-+ struct flash_info *info;
-+ struct flash_platform_data *data;
-+ struct device *dev = nor->dev;
-+ struct mtd_info *mtd = nor->mtd;
-+ struct device_node *np = dev->of_node;
-+ int ret;
-+ int i;
-+
-+ ret = spi_nor_check(nor);
-+ if (ret)
-+ return ret;
-+
-+ /* Platform data helps sort out which chip type we have, as
-+ * well as how this board partitions it. If we don't have
-+ * a chip ID, try the JEDEC id commands; they'll work for most
-+ * newer chips, even if we don't recognize the particular chip.
-+ */
-+ data = dev_get_platdata(dev);
-+ if (data && data->type) {
-+ const struct spi_device_id *plat_id;
-+
-+ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
-+ plat_id = &spi_nor_ids[i];
-+ if (strcmp(data->type, plat_id->name))
-+ continue;
-+ break;
-+ }
-+
-+ if (i < ARRAY_SIZE(spi_nor_ids) - 1)
-+ id = plat_id;
-+ else
-+ dev_warn(dev, "unrecognized id %s\n", data->type);
-+ }
-+
-+ info = (void *)id->driver_data;
-+
-+ if (info->jedec_id) {
-+ const struct spi_device_id *jid;
-+
-+ jid = jedec_probe(nor);
-+ if (IS_ERR(jid)) {
-+ return PTR_ERR(jid);
-+ } else if (jid != id) {
-+ /*
-+ * JEDEC knows better, so overwrite platform ID. We
-+ * can't trust partitions any longer, but we'll let
-+ * mtd apply them anyway, since some partitions may be
-+ * marked read-only, and we don't want to lose that
-+ * information, even if it's not 100% accurate.
-+ */
-+ dev_warn(dev, "found %s, expected %s\n",
-+ jid->name, id->name);
-+ id = jid;
-+ info = (void *)jid->driver_data;
-+ }
-+ }
-+
-+ mutex_init(&nor->lock);
-+
-+ /*
-+ * Atmel, SST and Intel/Numonyx serial nor tend to power
-+ * up with the software protection bits set
-+ */
-+
-+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
-+ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
-+ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
-+ write_enable(nor);
-+ write_sr(nor, 0);
-+ }
-+
-+ if (data && data->name)
-+ mtd->name = data->name;
-+ else
-+ mtd->name = dev_name(dev);
-+
-+ mtd->type = MTD_NORFLASH;
-+ mtd->writesize = 1;
-+ mtd->flags = MTD_CAP_NORFLASH;
-+ mtd->size = info->sector_size * info->n_sectors;
-+ mtd->_erase = spi_nor_erase;
-+ mtd->_read = spi_nor_read;
-+
-+ /* nor protection support for STmicro chips */
-+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
-+ mtd->_lock = spi_nor_lock;
-+ mtd->_unlock = spi_nor_unlock;
-+ }
-+
-+ /* sst nor chips use AAI word program */
-+ if (info->flags & SST_WRITE)
-+ mtd->_write = sst_write;
-+ else
-+ mtd->_write = spi_nor_write;
-+
-+ if ((info->flags & USE_FSR) &&
-+ nor->wait_till_ready == spi_nor_wait_till_ready)
-+ nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
-+
-+ /* prefer "small sector" erase if possible */
-+ if (info->flags & SECT_4K) {
-+ nor->erase_opcode = SPINOR_OP_BE_4K;
-+ mtd->erasesize = 4096;
-+ } else if (info->flags & SECT_4K_PMC) {
-+ nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
-+ mtd->erasesize = 4096;
-+ } else {
-+ nor->erase_opcode = SPINOR_OP_SE;
-+ mtd->erasesize = info->sector_size;
-+ }
-+
-+ if (info->flags & SPI_NOR_NO_ERASE)
-+ mtd->flags |= MTD_NO_ERASE;
-+
-+ mtd->dev.parent = dev;
-+ nor->page_size = info->page_size;
-+ mtd->writebufsize = nor->page_size;
-+
-+ if (np) {
-+ /* If we were instantiated by DT, use it */
-+ if (of_property_read_bool(np, "m25p,fast-read"))
-+ nor->flash_read = SPI_NOR_FAST;
-+ else
-+ nor->flash_read = SPI_NOR_NORMAL;
-+ } else {
-+ /* If we weren't instantiated by DT, default to fast-read */
-+ nor->flash_read = SPI_NOR_FAST;
-+ }
-+
-+ /* Some devices cannot do fast-read, no matter what DT tells us */
-+ if (info->flags & SPI_NOR_NO_FR)
-+ nor->flash_read = SPI_NOR_NORMAL;
-+
-+ /* Quad/Dual-read mode takes precedence over fast/normal */
-+ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
-+ ret = set_quad_mode(nor, info->jedec_id);
-+ if (ret) {
-+ dev_err(dev, "quad mode not supported\n");
-+ return ret;
-+ }
-+ nor->flash_read = SPI_NOR_QUAD;
-+ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
-+ nor->flash_read = SPI_NOR_DUAL;
-+ }
-+
-+ /* Default commands */
-+ switch (nor->flash_read) {
-+ case SPI_NOR_QUAD:
-+ nor->read_opcode = SPINOR_OP_READ_1_1_4;
-+ break;
-+ case SPI_NOR_DUAL:
-+ nor->read_opcode = SPINOR_OP_READ_1_1_2;
-+ break;
-+ case SPI_NOR_FAST:
-+ nor->read_opcode = SPINOR_OP_READ_FAST;
-+ break;
-+ case SPI_NOR_NORMAL:
-+ nor->read_opcode = SPINOR_OP_READ;
-+ break;
-+ default:
-+ dev_err(dev, "No Read opcode defined\n");
-+ return -EINVAL;
-+ }
-+
-+ nor->program_opcode = SPINOR_OP_PP;
-+
-+ if (info->addr_width)
-+ nor->addr_width = info->addr_width;
-+ else if (mtd->size > 0x1000000) {
-+ /* enable 4-byte addressing if the device exceeds 16MiB */
-+ nor->addr_width = 4;
-+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
-+ /* Dedicated 4-byte command set */
-+ switch (nor->flash_read) {
-+ case SPI_NOR_QUAD:
-+ nor->read_opcode = SPINOR_OP_READ4_1_1_4;
-+ break;
-+ case SPI_NOR_DUAL:
-+ nor->read_opcode = SPINOR_OP_READ4_1_1_2;
-+ break;
-+ case SPI_NOR_FAST:
-+ nor->read_opcode = SPINOR_OP_READ4_FAST;
-+ break;
-+ case SPI_NOR_NORMAL:
-+ nor->read_opcode = SPINOR_OP_READ4;
-+ break;
-+ }
-+ nor->program_opcode = SPINOR_OP_PP_4B;
-+ /* No small sector erase for 4-byte command set */
-+ nor->erase_opcode = SPINOR_OP_SE_4B;
-+ mtd->erasesize = info->sector_size;
-+ } else
-+ set_4byte(nor, info->jedec_id, 1);
-+ } else {
-+ nor->addr_width = 3;
-+ }
-+
-+ nor->read_dummy = spi_nor_read_dummy_cycles(nor);
-+
-+ dev_info(dev, "%s (%lld Kbytes)\n", id->name,
-+ (long long)mtd->size >> 10);
-+
-+ dev_dbg(dev,
-+ "mtd .name = %s, .size = 0x%llx (%lldMiB), "
-+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
-+ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
-+ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
-+
-+ if (mtd->numeraseregions)
-+ for (i = 0; i < mtd->numeraseregions; i++)
-+ dev_dbg(dev,
-+ "mtd.eraseregions[%d] = { .offset = 0x%llx, "
-+ ".erasesize = 0x%.8x (%uKiB), "
-+ ".numblocks = %d }\n",
-+ i, (long long)mtd->eraseregions[i].offset,
-+ mtd->eraseregions[i].erasesize,
-+ mtd->eraseregions[i].erasesize / 1024,
-+ mtd->eraseregions[i].numblocks);
-+ return 0;
-+}
-+EXPORT_SYMBOL_GPL(spi_nor_scan);
-+
-+const struct spi_device_id *spi_nor_match_id(char *name)
-+{
-+ const struct spi_device_id *id = spi_nor_ids;
-+
-+ while (id->name[0]) {
-+ if (!strcmp(name, id->name))
-+ return id;
-+ id++;
-+ }
-+ return NULL;
-+}
-+EXPORT_SYMBOL_GPL(spi_nor_match_id);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
-+MODULE_AUTHOR("Mike Lavender");
-+MODULE_DESCRIPTION("framework for SPI NOR");
---- /dev/null
-+++ b/include/linux/mtd/spi-nor.h
-@@ -0,0 +1,218 @@
-+/*
-+ * Copyright (C) 2014 Freescale Semiconductor, Inc.
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License as published by
-+ * the Free Software Foundation; either version 2 of the License, or
-+ * (at your option) any later version.
-+ */
-+
-+#ifndef __LINUX_MTD_SPI_NOR_H
-+#define __LINUX_MTD_SPI_NOR_H
-+
-+/*
-+ * Note on opcode nomenclature: some opcodes have a format like
-+ * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
-+ * of I/O lines used for the opcode, address, and data (respectively). The
-+ * FUNCTION has an optional suffix of '4', to represent an opcode which
-+ * requires a 4-byte (32-bit) address.
-+ */
-+
-+/* Flash opcodes. */
-+#define SPINOR_OP_WREN 0x06 /* Write enable */
-+#define SPINOR_OP_RDSR 0x05 /* Read status register */
-+#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */
-+#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */
-+#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */
-+#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual SPI) */
-+#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad SPI) */
-+#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */
-+#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */
-+#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
-+#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */
-+#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */
-+#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */
-+#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */
-+#define SPINOR_OP_RDCR 0x35 /* Read configuration register */
-+#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
-+
-+/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
-+#define SPINOR_OP_READ4 0x13 /* Read data bytes (low frequency) */
-+#define SPINOR_OP_READ4_FAST 0x0c /* Read data bytes (high frequency) */
-+#define SPINOR_OP_READ4_1_1_2 0x3c /* Read data bytes (Dual SPI) */
-+#define SPINOR_OP_READ4_1_1_4 0x6c /* Read data bytes (Quad SPI) */
-+#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */
-+#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */
-+
-+/* Used for SST flashes only. */
-+#define SPINOR_OP_BP 0x02 /* Byte program */
-+#define SPINOR_OP_WRDI 0x04 /* Write disable */
-+#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */
-+
-+/* Used for Macronix and Winbond flashes. */
-+#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */
-+#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */
-+
-+/* Used for Spansion flashes only. */
-+#define SPINOR_OP_BRWR 0x17 /* Bank register write */
-+
-+/* Status Register bits. */
-+#define SR_WIP 1 /* Write in progress */
-+#define SR_WEL 2 /* Write enable latch */
-+/* meaning of other SR_* bits may differ between vendors */
-+#define SR_BP0 4 /* Block protect 0 */
-+#define SR_BP1 8 /* Block protect 1 */
-+#define SR_BP2 0x10 /* Block protect 2 */
-+#define SR_SRWD 0x80 /* SR write protect */
-+
-+#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
-+
-+/* Flag Status Register bits */
-+#define FSR_READY 0x80
-+
-+/* Configuration Register bits. */
-+#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
-+
-+enum read_mode {
-+ SPI_NOR_NORMAL = 0,
-+ SPI_NOR_FAST,
-+ SPI_NOR_DUAL,
-+ SPI_NOR_QUAD,
-+};
-+
-+/**
-+ * struct spi_nor_xfer_cfg - Structure for defining a Serial Flash transfer
-+ * @wren: command for "Write Enable", or 0x00 for not required
-+ * @cmd: command for operation
-+ * @cmd_pins: number of pins to send @cmd (1, 2, 4)
-+ * @addr: address for operation
-+ * @addr_pins: number of pins to send @addr (1, 2, 4)
-+ * @addr_width: number of address bytes
-+ * (3,4, or 0 for address not required)
-+ * @mode: mode data
-+ * @mode_pins: number of pins to send @mode (1, 2, 4)
-+ * @mode_cycles: number of mode cycles (0 for mode not required)
-+ * @dummy_cycles: number of dummy cycles (0 for dummy not required)
-+ */
-+struct spi_nor_xfer_cfg {
-+ u8 wren;
-+ u8 cmd;
-+ u8 cmd_pins;
-+ u32 addr;
-+ u8 addr_pins;
-+ u8 addr_width;
-+ u8 mode;
-+ u8 mode_pins;
-+ u8 mode_cycles;
-+ u8 dummy_cycles;
-+};
-+
-+#define SPI_NOR_MAX_CMD_SIZE 8
-+enum spi_nor_ops {
-+ SPI_NOR_OPS_READ = 0,
-+ SPI_NOR_OPS_WRITE,
-+ SPI_NOR_OPS_ERASE,
-+ SPI_NOR_OPS_LOCK,
-+ SPI_NOR_OPS_UNLOCK,
-+};
-+
-+/**
-+ * struct spi_nor - Structure for defining a the SPI NOR layer
-+ * @mtd: point to a mtd_info structure
-+ * @lock: the lock for the read/write/erase/lock/unlock operations
-+ * @dev: point to a spi device, or a spi nor controller device.
-+ * @page_size: the page size of the SPI NOR
-+ * @addr_width: number of address bytes
-+ * @erase_opcode: the opcode for erasing a sector
-+ * @read_opcode: the read opcode
-+ * @read_dummy: the dummy needed by the read operation
-+ * @program_opcode: the program opcode
-+ * @flash_read: the mode of the read
-+ * @sst_write_second: used by the SST write operation
-+ * @cfg: used by the read_xfer/write_xfer
-+ * @cmd_buf: used by the write_reg
-+ * @prepare: [OPTIONAL] do some preparations for the
-+ * read/write/erase/lock/unlock operations
-+ * @unprepare: [OPTIONAL] do some post work after the
-+ * read/write/erase/lock/unlock operations
-+ * @read_xfer: [OPTIONAL] the read fundamental primitive
-+ * @write_xfer: [OPTIONAL] the writefundamental primitive
-+ * @read_reg: [DRIVER-SPECIFIC] read out the register
-+ * @write_reg: [DRIVER-SPECIFIC] write data to the register
-+ * @read_id: [REPLACEABLE] read out the ID data, and find
-+ * the proper spi_device_id
-+ * @wait_till_ready: [REPLACEABLE] wait till the NOR becomes ready
-+ * @read: [DRIVER-SPECIFIC] read data from the SPI NOR
-+ * @write: [DRIVER-SPECIFIC] write data to the SPI NOR
-+ * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR
-+ * at the offset @offs
-+ * @priv: the private data
-+ */
-+struct spi_nor {
-+ struct mtd_info *mtd;
-+ struct mutex lock;
-+ struct device *dev;
-+ u32 page_size;
-+ u8 addr_width;
-+ u8 erase_opcode;
-+ u8 read_opcode;
-+ u8 read_dummy;
-+ u8 program_opcode;
-+ enum read_mode flash_read;
-+ bool sst_write_second;
-+ struct spi_nor_xfer_cfg cfg;
-+ u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
-+
-+ int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
-+ void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
-+ int (*read_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
-+ u8 *buf, size_t len);
-+ int (*write_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
-+ u8 *buf, size_t len);
-+ int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
-+ int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
-+ int write_enable);
-+ const struct spi_device_id *(*read_id)(struct spi_nor *nor);
-+ int (*wait_till_ready)(struct spi_nor *nor);
-+
-+ int (*read)(struct spi_nor *nor, loff_t from,
-+ size_t len, size_t *retlen, u_char *read_buf);
-+ void (*write)(struct spi_nor *nor, loff_t to,
-+ size_t len, size_t *retlen, const u_char *write_buf);
-+ int (*erase)(struct spi_nor *nor, loff_t offs);
-+
-+ void *priv;
-+};
-+
-+/**
-+ * spi_nor_scan() - scan the SPI NOR
-+ * @nor: the spi_nor structure
-+ * @id: the spi_device_id provided by the driver
-+ * @mode: the read mode supported by the driver
-+ *
-+ * The drivers can use this fuction to scan the SPI NOR.
-+ * In the scanning, it will try to get all the necessary information to
-+ * fill the mtd_info{} and the spi_nor{}.
-+ *
-+ * The board may assigns a spi_device_id with @id which be used to compared with
-+ * the spi_device_id detected by the scanning.
-+ *
-+ * Return: 0 for success, others for failure.
-+ */
-+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
-+ enum read_mode mode);
-+extern const struct spi_device_id spi_nor_ids[];
-+
-+/**
-+ * spi_nor_match_id() - find the spi_device_id by the name
-+ * @name: the name of the spi_device_id
-+ *
-+ * The drivers use this function to find the spi_device_id
-+ * specified by the @name.
-+ *
-+ * Return: returns the right spi_device_id pointer on success,
-+ * and returns NULL on failure.
-+ */
-+const struct spi_device_id *spi_nor_match_id(char *name);
-+
-+#endif