diff options
Diffstat (limited to 'package/ead/src/tinysrp/t_conf.c')
-rw-r--r-- | package/ead/src/tinysrp/t_conf.c | 1080 |
1 files changed, 1080 insertions, 0 deletions
diff --git a/package/ead/src/tinysrp/t_conf.c b/package/ead/src/tinysrp/t_conf.c new file mode 100644 index 0000000000..fbe6f410e2 --- /dev/null +++ b/package/ead/src/tinysrp/t_conf.c @@ -0,0 +1,1080 @@ +/* + * Copyright (c) 1997-1999 The Stanford SRP Authentication Project + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + * + * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL, + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + * In addition, the following conditions apply: + * + * 1. Any software that incorporates the SRP authentication technology + * must display the following acknowlegment: + * "This product uses the 'Secure Remote Password' cryptographic + * authentication system developed by Tom Wu (tjw@CS.Stanford.EDU)." + * + * 2. Any software that incorporates all or part of the SRP distribution + * itself must also display the following acknowledgment: + * "This product includes software developed by Tom Wu and Eugene + * Jhong for the SRP Distribution (http://srp.stanford.edu/srp/)." + * + * 3. Redistributions in source or binary form must retain an intact copy + * of this copyright notice and list of conditions. + */ + +#include <stdio.h> + +#include "t_defines.h" +#include "t_pwd.h" +#include "t_read.h" +#include "bn.h" +#include "bn_lcl.h" +#include "bn_prime.h" + +#define TABLE_SIZE 32 + +static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, + const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); + +/* + * This is the safe prime generation logic. + * To generate a safe prime p (where p = 2q+1 and q is prime), we start + * with a random odd q that is one bit shorter than the desired length + * of p. We use a simple 30-element sieve to filter the values of q + * and consider only those that are 11, 23, or 29 (mod 30). (If q were + * anything else, either q or p would be divisible by 2, 3, or 5). + * For the values of q that are left, we apply the following tests in + * this order: + * + * trial divide q + * let p = 2q + 1 + * trial divide p + * apply Fermat test to q (2^q == 2 (mod q)) + * apply Fermat test to p (2^p == 2 (mod p)) + * apply real probablistic primality test to q + * apply real probablistic primality test to p + * + * A number that passes all these tests is considered a safe prime for + * our purposes. The tests are ordered this way for efficiency; the + * slower tests are run rarely if ever at all. + */ + +static int +trialdiv(x) + const BigInteger x; +{ + static int primes[] = { /* All odd primes < 256 */ + 3, 5, 7, 11, 13, 17, 19, 23, 29, + 31, 37, 41, 43, 47, 53, 59, 61, 67, + 71, 73, 79, 83, 89, 97, 101, 103, + 107, 109, 113, 127, 131, 137, 139, 149, 151, + 157, 163, 167, 173, 179, 181, 191, 193, 197, + 199, 211, 223, 227, 229, 233, 239, 241, 251 + }; + static int nprimes = sizeof(primes) / sizeof(int); + int i; + + for(i = 0; i < nprimes; ++i) { + if(BigIntegerModInt(x, primes[i]) == 0) + return primes[i]; + } + return 1; +} + +/* x + sieve30[x%30] == 11, 23, or 29 (mod 30) */ + +static int sieve30[] = +{ 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, + 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, + 3, 2, 1, 6, 5, 4, 3, 2, 1, 12 +}; + +/* Find a Sophie-Germain prime between "lo" and "hi". NOTE: this is not + a "safe prime", but the smaller prime. Take 2q+1 to get the safe prime. */ + +static void +sophie_germain(q, lo, hi) + BigInteger q; /* assumed initialized */ + const BigInteger lo; + const BigInteger hi; +{ + BigInteger m, p, r; + char parambuf[MAXPARAMLEN]; + int foundprime = 0; + int i, mod30; + + m = BigIntegerFromInt(0); + BigIntegerSub(m, hi, lo); + i = (BigIntegerBitLen(m) + 7) / 8; + t_random(parambuf, i); + r = BigIntegerFromBytes(parambuf, i); + BigIntegerMod(r, r, m); + + BigIntegerAdd(q, r, lo); + if(BigIntegerModInt(q, 2) == 0) + BigIntegerAddInt(q, q, 1); /* make q odd */ + + mod30 = BigIntegerModInt(q, 30); /* mod30 = q % 30 */ + + BigIntegerFree(m); + m = BigIntegerFromInt(2); /* m = 2 */ + p = BigIntegerFromInt(0); + + while(BigIntegerCmp(q, hi) < 0) { + if(trialdiv(q) < 2) { + BigIntegerMulInt(p, q, 2); /* p = 2 * q */ + BigIntegerAddInt(p, p, 1); /* p += 1 */ + if(trialdiv(p) < 2) { + BigIntegerModExp(r, m, q, q); /* r = 2^q % q */ + if(BigIntegerCmpInt(r, 2) == 0) { /* if(r == 2) */ + BigIntegerModExp(r, m, p, p); /* r = 2^p % p */ + if(BigIntegerCmpInt(r, 2) == 0) { /* if(r == 2) */ + if(BigIntegerCheckPrime(q) && BigIntegerCheckPrime(p)) { + ++foundprime; + break; + } + } + } + } + } + + i = sieve30[mod30]; + BigIntegerAddInt(q, q, i); /* q += i */ + mod30 = (mod30 + i) % 30; + } + + /* should wrap around on failure */ + if(!foundprime) { + fprintf(stderr, "Prime generation failed!\n"); + exit(1); + } + + BigIntegerFree(r); + BigIntegerFree(m); + BigIntegerFree(p); +} + +_TYPE( struct t_confent * ) +t_makeconfent(tc, nsize) + struct t_conf * tc; + int nsize; +{ + BigInteger n, g, q, t, u; + + t = BigIntegerFromInt(0); + u = BigIntegerFromInt(1); /* u = 1 */ + BigIntegerLShift(t, u, nsize - 2); /* t = 2^(nsize-2) */ + BigIntegerMulInt(u, t, 2); /* u = 2^(nsize-1) */ + + q = BigIntegerFromInt(0); + sophie_germain(q, t, u); + + n = BigIntegerFromInt(0); + BigIntegerMulInt(n, q, 2); + BigIntegerAddInt(n, n, 1); + + /* Look for a generator mod n */ + g = BigIntegerFromInt(2); + while(1) { + BigIntegerModExp(t, g, q, n); /* t = g^q % n */ + if(BigIntegerCmpInt(t, 1) == 0) /* if(t == 1) */ + BigIntegerAddInt(g, g, 1); /* ++g */ + else + break; + } + BigIntegerFree(t); + BigIntegerFree(u); + BigIntegerFree(q); + + tc->tcbuf.modulus.data = tc->modbuf; + tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data); + BigIntegerFree(n); + + tc->tcbuf.generator.data = tc->genbuf; + tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data); + BigIntegerFree(g); + + tc->tcbuf.index = 1; + return &tc->tcbuf; +} + +_TYPE( struct t_confent * ) +t_makeconfent_c(tc, nsize) + struct t_conf * tc; + int nsize; +{ + BigInteger g, n, p, q, j, k, t, u; + int psize, qsize; + + psize = nsize / 2; + qsize = nsize - psize; + + t = BigIntegerFromInt(1); /* t = 1 */ + u = BigIntegerFromInt(0); + BigIntegerLShift(u, t, psize - 3); /* u = t*2^(psize-3) = 2^(psize-3) */ + BigIntegerMulInt(t, u, 3); /* t = 3*u = 1.5*2^(psize-2) */ + BigIntegerAdd(u, u, t); /* u += t [u = 2^(psize-1)] */ + j = BigIntegerFromInt(0); + sophie_germain(j, t, u); + + k = BigIntegerFromInt(0); + if(qsize != psize) { + BigIntegerFree(t); + t = BigIntegerFromInt(1); /* t = 1 */ + BigIntegerLShift(u, t, qsize - 3); /* u = t*2^(qsize-3) = 2^(qsize-3) */ + BigIntegerMulInt(t, u, 3); /* t = 3*u = 1.5*2^(qsize-2) */ + BigIntegerAdd(u, u, t); /* u += t [u = 2^(qsize-1)] */ + } + sophie_germain(k, t, u); + + p = BigIntegerFromInt(0); + BigIntegerMulInt(p, j, 2); /* p = 2 * j */ + BigIntegerAddInt(p, p, 1); /* p += 1 */ + + q = BigIntegerFromInt(0); + BigIntegerMulInt(q, k, 2); /* q = 2 * k */ + BigIntegerAddInt(q, q, 1); /* q += 1 */ + + n = BigIntegerFromInt(0); + BigIntegerMul(n, p, q); /* n = p * q */ + BigIntegerMul(u, j, k); /* u = j * k */ + + BigIntegerFree(p); + BigIntegerFree(q); + BigIntegerFree(j); + BigIntegerFree(k); + + g = BigIntegerFromInt(2); /* g = 2 */ + + /* Look for a generator mod n */ + while(1) { + BigIntegerModExp(t, g, u, n); /* t = g^u % n */ + if(BigIntegerCmpInt(t, 1) == 0) + BigIntegerAddInt(g, g, 1); /* ++g */ + else + break; + } + + BigIntegerFree(u); + BigIntegerFree(t); + + tc->tcbuf.modulus.data = tc->modbuf; + tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data); + BigIntegerFree(n); + + tc->tcbuf.generator.data = tc->genbuf; + tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data); + BigIntegerFree(g); + + tc->tcbuf.index = 1; + return &tc->tcbuf; +} + +_TYPE( struct t_confent * ) +t_newconfent(tc) + struct t_conf * tc; +{ + tc->tcbuf.index = 0; + tc->tcbuf.modulus.data = tc->modbuf; + tc->tcbuf.modulus.len = 0; + tc->tcbuf.generator.data = tc->genbuf; + tc->tcbuf.generator.len = 0; + return &tc->tcbuf; +} + +_TYPE( void ) +t_putconfent(ent, fp) + const struct t_confent * ent; + FILE * fp; +{ + char strbuf[MAXB64PARAMLEN]; + + fprintf(fp, "%d:%s:", ent->index, + t_tob64(strbuf, ent->modulus.data, ent->modulus.len)); + fprintf(fp, "%s\n", + t_tob64(strbuf, ent->generator.data, ent->generator.len)); +} + +int +BigIntegerBitLen(b) + BigInteger b; +{ + return BN_num_bits(b); +} + +int +BigIntegerCheckPrime(n) + BigInteger n; +{ + BN_CTX * ctx = BN_CTX_new(); + int rv = BN_is_prime(n, 25, NULL, ctx, NULL); + BN_CTX_free(ctx); + return rv; +} + +unsigned int +BigIntegerModInt(d, m) + BigInteger d; + unsigned int m; +{ + return BN_mod_word(d, m); +} + +void +BigIntegerMod(result, d, m) + BigInteger result, d, m; +{ + BN_CTX * ctx = BN_CTX_new(); + BN_mod(result, d, m, ctx); + BN_CTX_free(ctx); +} + +void +BigIntegerMul(result, m1, m2) + BigInteger result, m1, m2; +{ + BN_CTX * ctx = BN_CTX_new(); + BN_mul(result, m1, m2, ctx); + BN_CTX_free(ctx); +} + +void +BigIntegerLShift(result, x, bits) + BigInteger result, x; + unsigned int bits; +{ + BN_lshift(result, x, bits); +} + +int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), + BN_CTX *ctx_passed, void *cb_arg) + { + return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0); + } + +int BN_is_prime_fasttest(const BIGNUM *a, int checks, + void (*callback)(int,int,void *), + BN_CTX *ctx_passed, void *cb_arg, + int do_trial_division) + { + int i, j, ret = -1; + int k; + BN_CTX *ctx = NULL; + BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ + BN_MONT_CTX *mont = NULL; + const BIGNUM *A = NULL; + + if (checks == BN_prime_checks) + checks = BN_prime_checks_for_size(BN_num_bits(a)); + + /* first look for small factors */ + if (!BN_is_odd(a)) + return(0); + if (do_trial_division) + { + for (i = 1; i < NUMPRIMES; i++) + if (BN_mod_word(a, primes[i]) == 0) + return 0; + if (callback != NULL) callback(1, -1, cb_arg); + } + + if (ctx_passed != NULL) + ctx = ctx_passed; + else + if ((ctx=BN_CTX_new()) == NULL) + goto err; + BN_CTX_start(ctx); + + /* A := abs(a) */ + if (a->neg) + { + BIGNUM *t; + if ((t = BN_CTX_get(ctx)) == NULL) goto err; + BN_copy(t, a); + t->neg = 0; + A = t; + } + else + A = a; + A1 = BN_CTX_get(ctx); + A1_odd = BN_CTX_get(ctx); + check = BN_CTX_get(ctx); + if (check == NULL) goto err; + + /* compute A1 := A - 1 */ + if (!BN_copy(A1, A)) + goto err; + if (!BN_sub_word(A1, 1)) + goto err; + if (BN_is_zero(A1)) + { + ret = 0; + goto err; + } + + /* write A1 as A1_odd * 2^k */ + k = 1; + while (!BN_is_bit_set(A1, k)) + k++; + if (!BN_rshift(A1_odd, A1, k)) + goto err; + + /* Montgomery setup for computations mod A */ + mont = BN_MONT_CTX_new(); + if (mont == NULL) + goto err; + if (!BN_MONT_CTX_set(mont, A, ctx)) + goto err; + + for (i = 0; i < checks; i++) + { + if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0)) + goto err; + if (BN_cmp(check, A1) >= 0) + if (!BN_sub(check, check, A1)) + goto err; + if (!BN_add_word(check, 1)) + goto err; + /* now 1 <= check < A */ + + j = witness(check, A, A1, A1_odd, k, ctx, mont); + if (j == -1) goto err; + if (j) + { + ret=0; + goto err; + } + if (callback != NULL) callback(1,i,cb_arg); + } + ret=1; +err: + if (ctx != NULL) + { + BN_CTX_end(ctx); + if (ctx_passed == NULL) + BN_CTX_free(ctx); + } + if (mont != NULL) + BN_MONT_CTX_free(mont); + + return(ret); + } + +static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, + const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) + { + if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ + return -1; + if (BN_is_one(w)) + return 0; /* probably prime */ + if (BN_cmp(w, a1) == 0) + return 0; /* w == -1 (mod a), 'a' is probably prime */ + while (--k) + { + if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ + return -1; + if (BN_is_one(w)) + return 1; /* 'a' is composite, otherwise a previous 'w' would + * have been == -1 (mod 'a') */ + if (BN_cmp(w, a1) == 0) + return 0; /* w == -1 (mod a), 'a' is probably prime */ + } + /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', + * and it is neither -1 nor +1 -- so 'a' cannot be prime */ + return 1; + } + +int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p, + const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) + { + int i,j,bits,ret=0,wstart,wend,window,wvalue; + int start=1,ts=0; + BIGNUM *d,*r; + BIGNUM *aa; + BIGNUM val[TABLE_SIZE]; + BN_MONT_CTX *mont=NULL; + + bn_check_top(a); + bn_check_top(p); + bn_check_top(m); + + if (!(m->d[0] & 1)) + { + return(0); + } + bits=BN_num_bits(p); + if (bits == 0) + { + BN_one(rr); + return(1); + } + BN_CTX_start(ctx); + d = BN_CTX_get(ctx); + r = BN_CTX_get(ctx); + if (d == NULL || r == NULL) goto err; + + /* If this is not done, things will break in the montgomery + * part */ + + if (in_mont != NULL) + mont=in_mont; + else + { + if ((mont=BN_MONT_CTX_new()) == NULL) goto err; + if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; + } + + BN_init(&val[0]); + ts=1; + if (BN_ucmp(a,m) >= 0) + { + if (!BN_mod(&(val[0]),a,m,ctx)) + goto err; + aa= &(val[0]); + } + else + aa=a; + if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */ + + window = BN_window_bits_for_exponent_size(bits); + if (window > 1) + { + if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */ + j=1<<(window-1); + for (i=1; i<j; i++) + { + BN_init(&(val[i])); + if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx)) + goto err; + } + ts=i; + } + + start=1; /* This is used to avoid multiplication etc + * when there is only the value '1' in the + * buffer. */ + wvalue=0; /* The 'value' of the window */ + wstart=bits-1; /* The top bit of the window */ + wend=0; /* The bottom bit of the window */ + + if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; + for (;;) + { + if (BN_is_bit_set(p,wstart) == 0) + { + if (!start) + { + if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) + goto err; + } + if (wstart == 0) break; + wstart--; + continue; + } + /* We now have wstart on a 'set' bit, we now need to work out + * how bit a window to do. To do this we need to scan + * forward until the last set bit before the end of the + * window */ + j=wstart; + wvalue=1; + wend=0; + for (i=1; i<window; i++) + { + if (wstart-i < 0) break; + if (BN_is_bit_set(p,wstart-i)) + { + wvalue<<=(i-wend); + wvalue|=1; + wend=i; + } + } + + /* wend is the size of the current window */ + j=wend+1; + /* add the 'bytes above' */ + if (!start) + for (i=0; i<j; i++) + { + if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) + goto err; + } + + /* wvalue will be an odd number < 2^window */ + if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx)) + goto err; + + /* move the 'window' down further */ + wstart-=wend+1; + wvalue=0; + start=0; + if (wstart < 0) break; + } + if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; + ret=1; +err: + if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); + BN_CTX_end(ctx); + for (i=0; i<ts; i++) + BN_clear_free(&(val[i])); + return(ret); + } + +BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) + { +#ifndef BN_LLONG + BN_ULONG ret=0; +#else + BN_ULLONG ret=0; +#endif + int i; + + w&=BN_MASK2; + for (i=a->top-1; i>=0; i--) + { +#ifndef BN_LLONG + ret=((ret<<BN_BITS4)|((a->d[i]>>BN_BITS4)&BN_MASK2l))%w; + ret=((ret<<BN_BITS4)|(a->d[i]&BN_MASK2l))%w; +#else + ret=(BN_ULLONG)(((ret<<(BN_ULLONG)BN_BITS2)|a->d[i])% + (BN_ULLONG)w); +#endif + } + return((BN_ULONG)ret); + } + +static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom) + { + unsigned char *buf=NULL; + int ret=0,bit,bytes,mask; + + if (bits == 0) + { + BN_zero(rnd); + return 1; + } + + bytes=(bits+7)/8; + bit=(bits-1)%8; + mask=0xff<<bit; + + buf=(unsigned char *)malloc(bytes); + if (buf == NULL) + { + goto err; + } + + /* make a random number and set the top and bottom bits */ + /* this ignores the pseudorand flag */ + + t_random(buf, bytes); + + if (top) + { + if (bit == 0) + { + buf[0]=1; + buf[1]|=0x80; + } + else + { + buf[0]|=(3<<(bit-1)); + buf[0]&= ~(mask<<1); + } + } + else + { + buf[0]|=(1<<bit); + buf[0]&= ~(mask<<1); + } + if (bottom) /* set bottom bits to whatever odd is */ + buf[bytes-1]|=1; + if (!BN_bin2bn(buf,bytes,rnd)) goto err; + ret=1; +err: + if (buf != NULL) + { + memset(buf,0,bytes); + free(buf); + } + return(ret); + } + +/* BN_pseudo_rand is the same as BN_rand, now. */ + +int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) + { + return bnrand(1, rnd, bits, top, bottom); + } + +#define MONT_WORD /* use the faster word-based algorithm */ + +int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b, + BN_MONT_CTX *mont, BN_CTX *ctx) + { + BIGNUM *tmp,*tmp2; + int ret=0; + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + tmp2 = BN_CTX_get(ctx); + if (tmp == NULL || tmp2 == NULL) goto err; + + bn_check_top(tmp); + bn_check_top(tmp2); + + if (a == b) + { + if (!BN_sqr(tmp,a,ctx)) goto err; + } + else + { + if (!BN_mul(tmp,a,b,ctx)) goto err; + } + /* reduce from aRR to aR */ + if (!BN_from_montgomery(r,tmp,mont,ctx)) goto err; + ret=1; +err: + BN_CTX_end(ctx); + return(ret); + } + +int BN_from_montgomery(BIGNUM *ret, BIGNUM *a, BN_MONT_CTX *mont, + BN_CTX *ctx) + { + int retn=0; + +#ifdef MONT_WORD + BIGNUM *n,*r; + BN_ULONG *ap,*np,*rp,n0,v,*nrp; + int al,nl,max,i,x,ri; + + BN_CTX_start(ctx); + if ((r = BN_CTX_get(ctx)) == NULL) goto err; + + if (!BN_copy(r,a)) goto err; + n= &(mont->N); + + ap=a->d; + /* mont->ri is the size of mont->N in bits (rounded up + to the word size) */ + al=ri=mont->ri/BN_BITS2; + + nl=n->top; + if ((al == 0) || (nl == 0)) { r->top=0; return(1); } + + max=(nl+al+1); /* allow for overflow (no?) XXX */ + if (bn_wexpand(r,max) == NULL) goto err; + if (bn_wexpand(ret,max) == NULL) goto err; + + r->neg=a->neg^n->neg; + np=n->d; + rp=r->d; + nrp= &(r->d[nl]); + + /* clear the top words of T */ +#if 1 + for (i=r->top; i<max; i++) /* memset? XXX */ + r->d[i]=0; +#else + memset(&(r->d[r->top]),0,(max-r->top)*sizeof(BN_ULONG)); +#endif + + r->top=max; + n0=mont->n0; + +#ifdef BN_COUNT + printf("word BN_from_montgomery %d * %d\n",nl,nl); +#endif + for (i=0; i<nl; i++) + { +#ifdef __TANDEM + { + long long t1; + long long t2; + long long t3; + t1 = rp[0] * (n0 & 0177777); + t2 = 037777600000l; + t2 = n0 & t2; + t3 = rp[0] & 0177777; + t2 = (t3 * t2) & BN_MASK2; + t1 = t1 + t2; + v=bn_mul_add_words(rp,np,nl,(BN_ULONG) t1); + } +#else + v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); +#endif + nrp++; + rp++; + if (((nrp[-1]+=v)&BN_MASK2) >= v) + continue; + else + { + if (((++nrp[0])&BN_MASK2) != 0) continue; + if (((++nrp[1])&BN_MASK2) != 0) continue; + for (x=2; (((++nrp[x])&BN_MASK2) == 0); x++) ; + } + } + bn_fix_top(r); + + /* mont->ri will be a multiple of the word size */ +#if 0 + BN_rshift(ret,r,mont->ri); +#else + ret->neg = r->neg; + x=ri; + rp=ret->d; + ap= &(r->d[x]); + if (r->top < x) + al=0; + else + al=r->top-x; + ret->top=al; + al-=4; + for (i=0; i<al; i+=4) + { + BN_ULONG t1,t2,t3,t4; + + t1=ap[i+0]; + t2=ap[i+1]; + t3=ap[i+2]; + t4=ap[i+3]; + rp[i+0]=t1; + rp[i+1]=t2; + rp[i+2]=t3; + rp[i+3]=t4; + } + al+=4; + for (; i<al; i++) + rp[i]=ap[i]; +#endif +#else /* !MONT_WORD */ + BIGNUM *t1,*t2; + + BN_CTX_start(ctx); + t1 = BN_CTX_get(ctx); + t2 = BN_CTX_get(ctx); + if (t1 == NULL || t2 == NULL) goto err; + + if (!BN_copy(t1,a)) goto err; + BN_mask_bits(t1,mont->ri); + + if (!BN_mul(t2,t1,&mont->Ni,ctx)) goto err; + BN_mask_bits(t2,mont->ri); + + if (!BN_mul(t1,t2,&mont->N,ctx)) goto err; + if (!BN_add(t2,a,t1)) goto err; + BN_rshift(ret,t2,mont->ri); +#endif /* MONT_WORD */ + + if (BN_ucmp(ret, &(mont->N)) >= 0) + { + BN_usub(ret,ret,&(mont->N)); + } + retn=1; + err: + BN_CTX_end(ctx); + return(retn); + } + +void BN_MONT_CTX_init(BN_MONT_CTX *ctx) + { + ctx->ri=0; + BN_init(&(ctx->RR)); + BN_init(&(ctx->N)); + BN_init(&(ctx->Ni)); + ctx->flags=0; + } + +BN_MONT_CTX *BN_MONT_CTX_new(void) + { + BN_MONT_CTX *ret; + + if ((ret=(BN_MONT_CTX *)malloc(sizeof(BN_MONT_CTX))) == NULL) + return(NULL); + + BN_MONT_CTX_init(ret); + ret->flags=BN_FLG_MALLOCED; + return(ret); + } + +void BN_MONT_CTX_free(BN_MONT_CTX *mont) + { + if(mont == NULL) + return; + + BN_free(&(mont->RR)); + BN_free(&(mont->N)); + BN_free(&(mont->Ni)); + if (mont->flags & BN_FLG_MALLOCED) + free(mont); + } + +int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) + { + BIGNUM Ri,*R; + + BN_init(&Ri); + R= &(mont->RR); /* grab RR as a temp */ + BN_copy(&(mont->N),mod); /* Set N */ + +#ifdef MONT_WORD + { + BIGNUM tmod; + BN_ULONG buf[2]; + + mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2; + BN_zero(R); + BN_set_bit(R,BN_BITS2); /* R */ + + buf[0]=mod->d[0]; /* tmod = N mod word size */ + buf[1]=0; + tmod.d=buf; + tmod.top=1; + tmod.dmax=2; + tmod.neg=mod->neg; + /* Ri = R^-1 mod N*/ + if ((BN_mod_inverse(&Ri,R,&tmod,ctx)) == NULL) + goto err; + BN_lshift(&Ri,&Ri,BN_BITS2); /* R*Ri */ + if (!BN_is_zero(&Ri)) + BN_sub_word(&Ri,1); + else /* if N mod word size == 1 */ + BN_set_word(&Ri,BN_MASK2); /* Ri-- (mod word size) */ + BN_div(&Ri,NULL,&Ri,&tmod,ctx); /* Ni = (R*Ri-1)/N, + * keep only least significant word: */ + mont->n0=Ri.d[0]; + BN_free(&Ri); + } +#else /* !MONT_WORD */ + { /* bignum version */ + mont->ri=BN_num_bits(mod); + BN_zero(R); + BN_set_bit(R,mont->ri); /* R = 2^ri */ + /* Ri = R^-1 mod N*/ + if ((BN_mod_inverse(&Ri,R,mod,ctx)) == NULL) + goto err; + BN_lshift(&Ri,&Ri,mont->ri); /* R*Ri */ + BN_sub_word(&Ri,1); + /* Ni = (R*Ri-1) / N */ + BN_div(&(mont->Ni),NULL,&Ri,mod,ctx); + BN_free(&Ri); + } +#endif + + /* setup RR for conversions */ + BN_zero(&(mont->RR)); + BN_set_bit(&(mont->RR),mont->ri*2); + BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx); + + return(1); +err: + return(0); + } + +BIGNUM *BN_value_one(void) + { + static BN_ULONG data_one=1L; + static BIGNUM const_one={&data_one,1,1,0}; + + return(&const_one); + } + +/* solves ax == 1 (mod n) */ +BIGNUM *BN_mod_inverse(BIGNUM *in, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) + { + BIGNUM *A,*B,*X,*Y,*M,*D,*R=NULL; + BIGNUM *T,*ret=NULL; + int sign; + + bn_check_top(a); + bn_check_top(n); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + X = BN_CTX_get(ctx); + D = BN_CTX_get(ctx); + M = BN_CTX_get(ctx); + Y = BN_CTX_get(ctx); + if (Y == NULL) goto err; + + if (in == NULL) + R=BN_new(); + else + R=in; + if (R == NULL) goto err; + + BN_zero(X); + BN_one(Y); + if (BN_copy(A,a) == NULL) goto err; + if (BN_copy(B,n) == NULL) goto err; + sign=1; + + while (!BN_is_zero(B)) + { + if (!BN_div(D,M,A,B,ctx)) goto err; + T=A; + A=B; + B=M; + /* T has a struct, M does not */ + + if (!BN_mul(T,D,X,ctx)) goto err; + if (!BN_add(T,T,Y)) goto err; + M=Y; + Y=X; + X=T; + sign= -sign; + } + if (sign < 0) + { + if (!BN_sub(Y,n,Y)) goto err; + } + + if (BN_is_one(A)) + { if (!BN_mod(R,Y,n,ctx)) goto err; } + else + { + goto err; + } + ret=R; +err: + if ((ret == NULL) && (in == NULL)) BN_free(R); + BN_CTX_end(ctx); + return(ret); + } + +int BN_set_bit(BIGNUM *a, int n) + { + int i,j,k; + + i=n/BN_BITS2; + j=n%BN_BITS2; + if (a->top <= i) + { + if (bn_wexpand(a,i+1) == NULL) return(0); + for(k=a->top; k<i+1; k++) + a->d[k]=0; + a->top=i+1; + } + + a->d[i]|=(((BN_ULONG)1)<<j); + return(1); + } + |