diff options
9 files changed, 22799 insertions, 8 deletions
diff --git a/toolchain/binutils/patches/2.20.1/700-avr32.patch b/toolchain/binutils/patches/2.20.1/700-avr32.patch index 58abec976f..646049cc03 100644 --- a/toolchain/binutils/patches/2.20.1/700-avr32.patch +++ b/toolchain/binutils/patches/2.20.1/700-avr32.patch @@ -4661,7 +4661,7 @@ +{ + int i, x; + -+ fprintf (stream, _("Known architecture names:")); ++ fprintf (stream, _("Architectures supported by the assembler:")); + x = 1000; + + for (i = 0; arch_types[i].name; i++) @@ -4771,7 +4771,7 @@ + { + as_warn("Deprecated arch `%s' specified. " + "Please use '-march=ucr1' instead. " -+ "Converting to arch 'ucr1'\n", ++ "Using to arch 'ucr1'\n", + s); + s="ucr1"; + } diff --git a/toolchain/gcc/patches/4.4.5/305-libmudflap-susv3-legacy.patch b/toolchain/gcc/patches/4.4.5/305-libmudflap-susv3-legacy.patch index c5653bc4d4..8e2d15f81a 100644 --- a/toolchain/gcc/patches/4.4.5/305-libmudflap-susv3-legacy.patch +++ b/toolchain/gcc/patches/4.4.5/305-libmudflap-susv3-legacy.patch @@ -36,7 +36,7 @@ } -@@ -459,7 +459,7 @@ WRAPPER2(char *, rindex, const char *s, +@@ -459,7 +459,7 @@ WRAPPER2(char *, rindex, const char *s, size_t n = strlen (s); TRACE ("%s\n", __PRETTY_FUNCTION__); MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "rindex region"); diff --git a/toolchain/gcc/patches/4.4.5/600-ubicom_support.patch b/toolchain/gcc/patches/4.4.5/600-ubicom_support.patch index 875edc5ece..040128f1be 100644 --- a/toolchain/gcc/patches/4.4.5/600-ubicom_support.patch +++ b/toolchain/gcc/patches/4.4.5/600-ubicom_support.patch @@ -9313,7 +9313,7 @@ +#define FATAL_EXIT_CODE 33 --- a/gcc/config.gcc +++ b/gcc/config.gcc -@@ -2321,6 +2321,34 @@ spu-*-elf*) +@@ -2339,6 +2339,34 @@ spu-*-elf*) c_target_objs="${c_target_objs} spu-c.o" cxx_target_objs="${cxx_target_objs} spu-c.o" ;; diff --git a/toolchain/gcc/patches/4.4.5/910-mbsd_multi.patch b/toolchain/gcc/patches/4.4.5/910-mbsd_multi.patch index 90167930ec..1b17e983e9 100644 --- a/toolchain/gcc/patches/4.4.5/910-mbsd_multi.patch +++ b/toolchain/gcc/patches/4.4.5/910-mbsd_multi.patch @@ -216,7 +216,7 @@ -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol -Wformat-security -Wformat-y2k @gol -@@ -4182,6 +4182,22 @@ This option is only supported for C and +@@ -4182,6 +4182,22 @@ This option is only supported for C and @option{-Wall} and by @option{-pedantic}, which can be disabled with @option{-Wno-pointer-sign}. @@ -239,7 +239,7 @@ @item -Wstack-protector @opindex Wstack-protector @opindex Wno-stack-protector -@@ -5720,7 +5736,7 @@ so, the first branch is redirected to ei +@@ -5721,7 +5737,7 @@ so, the first branch is redirected to ei second branch or a point immediately following it, depending on whether the condition is known to be true or false. @@ -248,7 +248,7 @@ @item -fsplit-wide-types @opindex fsplit-wide-types -@@ -5865,7 +5881,7 @@ safely dereference null pointers. Use +@@ -5866,7 +5882,7 @@ safely dereference null pointers. Use @option{-fno-delete-null-pointer-checks} to disable this optimization for programs which depend on that behavior. diff --git a/toolchain/gcc/patches/4.4.5/930-avr32_support.patch b/toolchain/gcc/patches/4.4.5/930-avr32_support.patch new file mode 100644 index 0000000000..a2d1c2f21f --- /dev/null +++ b/toolchain/gcc/patches/4.4.5/930-avr32_support.patch @@ -0,0 +1,22706 @@ +--- a/gcc/builtins.c ++++ b/gcc/builtins.c +@@ -11092,7 +11092,7 @@ validate_gimple_arglist (const_gimple ca + + do + { +- code = va_arg (ap, enum tree_code); ++ code = va_arg (ap, int); + switch (code) + { + case 0: +--- a/gcc/calls.c ++++ b/gcc/calls.c +@@ -3447,7 +3447,7 @@ emit_library_call_value_1 (int retval, r + for (; count < nargs; count++) + { + rtx val = va_arg (p, rtx); +- enum machine_mode mode = va_arg (p, enum machine_mode); ++ enum machine_mode mode = va_arg (p, int); + + /* We cannot convert the arg value to the mode the library wants here; + must do it earlier where we know the signedness of the arg. */ +--- /dev/null ++++ b/gcc/config/avr32/avr32.c +@@ -0,0 +1,8060 @@ ++/* ++ Target hooks and helper functions for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "rtl.h" ++#include "tree.h" ++#include "obstack.h" ++#include "regs.h" ++#include "hard-reg-set.h" ++#include "real.h" ++#include "insn-config.h" ++#include "conditions.h" ++#include "output.h" ++#include "insn-attr.h" ++#include "flags.h" ++#include "reload.h" ++#include "function.h" ++#include "expr.h" ++#include "optabs.h" ++#include "toplev.h" ++#include "recog.h" ++#include "ggc.h" ++#include "except.h" ++#include "c-pragma.h" ++#include "integrate.h" ++#include "tm_p.h" ++#include "langhooks.h" ++#include "hooks.h" ++#include "df.h" ++ ++#include "target.h" ++#include "target-def.h" ++ ++#include <ctype.h> ++ ++ ++ ++/* Global variables. */ ++typedef struct minipool_node Mnode; ++typedef struct minipool_fixup Mfix; ++ ++/* Obstack for minipool constant handling. */ ++static struct obstack minipool_obstack; ++static char *minipool_startobj; ++static rtx minipool_vector_label; ++ ++/* True if we are currently building a constant table. */ ++int making_const_table; ++ ++tree fndecl_attribute_args = NULL_TREE; ++ ++ ++/* Function prototypes. */ ++static unsigned long avr32_isr_value (tree); ++static unsigned long avr32_compute_func_type (void); ++static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs); ++static void avr32_reorg (void); ++bool avr32_return_in_msb (tree type); ++bool avr32_vector_mode_supported (enum machine_mode mode); ++static void avr32_init_libfuncs (void); ++static void avr32_file_end (void); ++static void flashvault_decl_list_add (unsigned int vector_num, const char *name); ++ ++ ++ ++static void ++avr32_add_gc_roots (void) ++{ ++ gcc_obstack_init (&minipool_obstack); ++ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0); ++} ++ ++ ++/* List of all known AVR32 parts */ ++static const struct part_type_s avr32_part_types[] = { ++ /* name, part_type, architecture type, macro */ ++ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"}, ++ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"}, ++ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"}, ++ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"}, ++ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"}, ++ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0128__"}, ++ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0256__"}, ++ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0512__"}, ++ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A0512ES__"}, ++ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1128__"}, ++ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1256__"}, ++ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1512__"}, ++ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A1512ES__"}, ++ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL, "__AVR32_UC3A3256S__"}, ++ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364__"}, ++ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364S__"}, ++ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128__"}, ++ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128S__"}, ++ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256__"}, ++ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256S__"}, ++ {"uc3a464", PART_TYPE_AVR32_UC3A464, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464__"}, ++ {"uc3a464s", PART_TYPE_AVR32_UC3A464S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464S__"}, ++ {"uc3a4128", PART_TYPE_AVR32_UC3A4128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128__"}, ++ {"uc3a4128s", PART_TYPE_AVR32_UC3A4128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128S__"}, ++ {"uc3a4256", PART_TYPE_AVR32_UC3A4256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256__"}, ++ {"uc3a4256s", PART_TYPE_AVR32_UC3A4256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256S__"}, ++ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B064__"}, ++ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0128__"}, ++ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256__"}, ++ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256ES__"}, ++ {"uc3b0512", PART_TYPE_AVR32_UC3B0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512__"}, ++ {"uc3b0512revc", PART_TYPE_AVR32_UC3B0512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512REVC__"}, ++ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B164__"}, ++ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1128__"}, ++ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256__"}, ++ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256ES__"}, ++ {"uc3b1512", PART_TYPE_AVR32_UC3B1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512__"}, ++ {"uc3b1512revc", PART_TYPE_AVR32_UC3B1512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512REVC__"}, ++ {"uc64d3", PART_TYPE_AVR32_UC64D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D3__"}, ++ {"uc128d3", PART_TYPE_AVR32_UC128D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D3__"}, ++ {"uc64d4", PART_TYPE_AVR32_UC64D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D4__"}, ++ {"uc128d4", PART_TYPE_AVR32_UC128D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D4__"}, ++ {"uc3c0512crevc", PART_TYPE_AVR32_UC3C0512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0512CREVC__"}, ++ {"uc3c1512crevc", PART_TYPE_AVR32_UC3C1512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1512CREVC__"}, ++ {"uc3c2512crevc", PART_TYPE_AVR32_UC3C2512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2512CREVC__"}, ++ {"uc3l0256", PART_TYPE_AVR32_UC3L0256, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0256__"}, ++ {"uc3l0128", PART_TYPE_AVR32_UC3L0128, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0128__"}, ++ {"uc3l064", PART_TYPE_AVR32_UC3L064, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064__"}, ++ {"uc3l032", PART_TYPE_AVR32_UC3L032, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L032__"}, ++ {"uc3l016", PART_TYPE_AVR32_UC3L016, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L016__"}, ++ {"uc3l064revb", PART_TYPE_AVR32_UC3L064REVB, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064REVB__"}, ++ {"uc64l3u", PART_TYPE_AVR32_UC64L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L3U__"}, ++ {"uc128l3u", PART_TYPE_AVR32_UC128L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L3U__"}, ++ {"uc256l3u", PART_TYPE_AVR32_UC256L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L3U__"}, ++ {"uc64l4u", PART_TYPE_AVR32_UC64L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L4U__"}, ++ {"uc128l4u", PART_TYPE_AVR32_UC128L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L4U__"}, ++ {"uc256l4u", PART_TYPE_AVR32_UC256L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L4U__"}, ++ {"uc3c064c", PART_TYPE_AVR32_UC3C064C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C064C__"}, ++ {"uc3c0128c", PART_TYPE_AVR32_UC3C0128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0128C__"}, ++ {"uc3c0256c", PART_TYPE_AVR32_UC3C0256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0256C__"}, ++ {"uc3c0512c", PART_TYPE_AVR32_UC3C0512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0512C__"}, ++ {"uc3c164c", PART_TYPE_AVR32_UC3C164C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C164C__"}, ++ {"uc3c1128c", PART_TYPE_AVR32_UC3C1128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1128C__"}, ++ {"uc3c1256c", PART_TYPE_AVR32_UC3C1256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1256C__"}, ++ {"uc3c1512c", PART_TYPE_AVR32_UC3C1512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1512C__"}, ++ {"uc3c264c", PART_TYPE_AVR32_UC3C264C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C264C__"}, ++ {"uc3c2128c", PART_TYPE_AVR32_UC3C2128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2128C__"}, ++ {"uc3c2256c", PART_TYPE_AVR32_UC3C2256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2256C__"}, ++ {"uc3c2512c", PART_TYPE_AVR32_UC3C2512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2512C__"}, ++ {"mxt768e", PART_TYPE_AVR32_MXT768E, ARCH_TYPE_AVR32_UCR3, "__AVR32_MXT768E__"}, ++ {NULL, 0, 0, NULL} ++}; ++ ++/* List of all known AVR32 architectures */ ++static const struct arch_type_s avr32_arch_types[] = { ++ /* name, architecture type, microarchitecture type, feature flags, macro */ ++ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B, ++ (FLAG_AVR32_HAS_DSP ++ | FLAG_AVR32_HAS_SIMD ++ | FLAG_AVR32_HAS_UNALIGNED_WORD ++ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK ++ | FLAG_AVR32_HAS_CACHES), ++ "__AVR32_AP__"}, ++ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW), ++ "__AVR32_UC__=1"}, ++ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr3", ARCH_TYPE_AVR32_UCR3, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {"ucr3fp", ARCH_TYPE_AVR32_UCR3FP, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW | FLAG_AVR32_HAS_FPU ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {NULL, 0, 0, 0, NULL} ++}; ++ ++/* Default arch name */ ++const char *avr32_arch_name = "none"; ++const char *avr32_part_name = "none"; ++ ++const struct part_type_s *avr32_part; ++const struct arch_type_s *avr32_arch; ++ ++ ++/* FIXME: needs to use GC. */ ++struct flashvault_decl_list ++{ ++ struct flashvault_decl_list *next; ++ unsigned int vector_num; ++ const char *name; ++}; ++ ++static struct flashvault_decl_list *flashvault_decl_list_head = NULL; ++ ++ ++/* Set default target_flags. */ ++#undef TARGET_DEFAULT_TARGET_FLAGS ++#define TARGET_DEFAULT_TARGET_FLAGS \ ++ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD) ++ ++void ++avr32_optimization_options (int level, int size) ++{ ++ if (AVR32_ALWAYS_PIC) ++ flag_pic = 1; ++ ++ /* Enable section anchors if optimization is enabled. */ ++ if (level > 0 || size) ++ flag_section_anchors = 2; ++} ++ ++ ++/* Override command line options */ ++void ++avr32_override_options (void) ++{ ++ const struct part_type_s *part; ++ const struct arch_type_s *arch; ++ ++ /*Add backward compability*/ ++ if (strcmp ("uc", avr32_arch_name)== 0) ++ { ++ fprintf (stderr, "Warning: Deprecated arch `%s' specified. " ++ "Please use '-march=ucr1' instead. " ++ "Converting to arch 'ucr1'\n", ++ avr32_arch_name); ++ avr32_arch_name="ucr1"; ++ } ++ ++ /* Check if arch type is set. */ ++ for (arch = avr32_arch_types; arch->name; arch++) ++ { ++ if (strcmp (arch->name, avr32_arch_name) == 0) ++ break; ++ } ++ avr32_arch = arch; ++ ++ if (!arch->name && strcmp("none", avr32_arch_name) != 0) ++ { ++ fprintf (stderr, "Unknown arch `%s' specified\n" ++ "Known arch names:\n" ++ "\tuc (deprecated)\n", ++ avr32_arch_name); ++ for (arch = avr32_arch_types; arch->name; arch++) ++ fprintf (stderr, "\t%s\n", arch->name); ++ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP]; ++ } ++ ++ /* Check if part type is set. */ ++ for (part = avr32_part_types; part->name; part++) ++ if (strcmp (part->name, avr32_part_name) == 0) ++ break; ++ ++ avr32_part = part; ++ if (!part->name) ++ { ++ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n", ++ avr32_part_name); ++ for (part = avr32_part_types; part->name; part++) ++ { ++ if (strcmp("none", part->name) != 0) ++ fprintf (stderr, "\t%s\n", part->name); ++ } ++ /* Set default to NONE*/ ++ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE]; ++ } ++ ++ /* NB! option -march= overrides option -mpart ++ * if both are used at the same time */ ++ if (!arch->name) ++ avr32_arch = &avr32_arch_types[avr32_part->arch_type]; ++ ++ /* If optimization level is two or greater, then align start of loops to a ++ word boundary since this will allow folding the first insn of the loop. ++ Do this only for targets supporting branch prediction. */ ++ if (optimize >= 2 && TARGET_BRANCH_PRED) ++ align_loops = 2; ++ ++ ++ /* Enable fast-float library if unsafe math optimizations ++ are used. */ ++ if (flag_unsafe_math_optimizations) ++ target_flags |= MASK_FAST_FLOAT; ++ ++ /* Check if we should set avr32_imm_in_const_pool ++ based on if caches are present or not. */ ++ if ( avr32_imm_in_const_pool == -1 ) ++ { ++ if ( TARGET_CACHES ) ++ avr32_imm_in_const_pool = 1; ++ else ++ avr32_imm_in_const_pool = 0; ++ } ++ ++ if (TARGET_NO_PIC) ++ flag_pic = 0; ++ avr32_add_gc_roots (); ++} ++ ++ ++/* ++If defined, a function that outputs the assembler code for entry to a ++function. The prologue is responsible for setting up the stack frame, ++initializing the frame pointer register, saving registers that must be ++saved, and allocating size additional bytes of storage for the ++local variables. size is an integer. file is a stdio ++stream to which the assembler code should be output. ++ ++The label for the beginning of the function need not be output by this ++macro. That has already been done when the macro is run. ++ ++To determine which registers to save, the macro can refer to the array ++regs_ever_live: element r is nonzero if hard register ++r is used anywhere within the function. This implies the function ++prologue should save register r, provided it is not one of the ++call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use ++regs_ever_live.) ++ ++On machines that have ``register windows'', the function entry code does ++not save on the stack the registers that are in the windows, even if ++they are supposed to be preserved by function calls; instead it takes ++appropriate steps to ``push'' the register stack, if any non-call-used ++registers are used in the function. ++ ++On machines where functions may or may not have frame-pointers, the ++function entry code must vary accordingly; it must set up the frame ++pointer if one is wanted, and not otherwise. To determine whether a ++frame pointer is in wanted, the macro can refer to the variable ++frame_pointer_needed. The variable's value will be 1 at run ++time in a function that needs a frame pointer. (see Elimination). ++ ++The function entry code is responsible for allocating any stack space ++required for the function. This stack space consists of the regions ++listed below. In most cases, these regions are allocated in the ++order listed, with the last listed region closest to the top of the ++stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and ++the highest address if it is not defined). You can use a different order ++for a machine if doing so is more convenient or required for ++compatibility reasons. Except in cases where required by standard ++or by a debugger, there is no reason why the stack layout used by GCC ++need agree with that used by other compilers for a machine. ++*/ ++ ++#undef TARGET_ASM_FUNCTION_PROLOGUE ++#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue ++ ++#undef TARGET_ASM_FILE_END ++#define TARGET_ASM_FILE_END avr32_file_end ++ ++#undef TARGET_DEFAULT_SHORT_ENUMS ++#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false ++ ++#undef TARGET_PROMOTE_FUNCTION_ARGS ++#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_FUNCTION_RETURN ++#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_PROTOTYPES ++#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true ++ ++#undef TARGET_MUST_PASS_IN_STACK ++#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack ++ ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference ++ ++#undef TARGET_STRICT_ARGUMENT_NAMING ++#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming ++ ++#undef TARGET_VECTOR_MODE_SUPPORTED_P ++#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory ++ ++#undef TARGET_RETURN_IN_MSB ++#define TARGET_RETURN_IN_MSB avr32_return_in_msb ++ ++#undef TARGET_ENCODE_SECTION_INFO ++#define TARGET_ENCODE_SECTION_INFO avr32_encode_section_info ++ ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes ++ ++#undef TARGET_STRIP_NAME_ENCODING ++#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding ++ ++#define streq(string1, string2) (strcmp (string1, string2) == 0) ++ ++#undef TARGET_NARROW_VOLATILE_BITFIELD ++#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false ++ ++#undef TARGET_ATTRIBUTE_TABLE ++#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table ++ ++#undef TARGET_COMP_TYPE_ATTRIBUTES ++#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes ++ ++ ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS avr32_rtx_costs ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem ++ ++#undef TARGET_ASM_INTEGER ++#define TARGET_ASM_INTEGER avr32_assemble_integer ++ ++#undef TARGET_FUNCTION_VALUE ++#define TARGET_FUNCTION_VALUE avr32_function_value ++ ++#undef TARGET_MIN_ANCHOR_OFFSET ++#define TARGET_MIN_ANCHOR_OFFSET (0) ++ ++#undef TARGET_MAX_ANCHOR_OFFSET ++#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1) ++#undef TARGET_SECONDARY_RELOAD ++#define TARGET_SECONDARY_RELOAD avr32_secondary_reload ++ ++ ++/* ++ * Defining the option, -mlist-devices to list the devices supported by gcc. ++ * This option should be used while printing target-help to list all the ++ * supported devices. ++ */ ++#undef TARGET_HELP ++#define TARGET_HELP avr32_target_help ++ ++void avr32_target_help () ++{ ++ if (avr32_list_supported_parts) ++ { ++ const struct part_type_s *list; ++ fprintf (stdout, "List of parts supported by avr32-gcc:\n"); ++ for (list = avr32_part_types; list->name; list++) ++ { ++ if (strcmp("none", list->name) != 0) ++ fprintf (stdout, "%-20s%s\n", list->name, list->macro); ++ } ++ fprintf (stdout, "\n\n"); ++ } ++} ++ ++enum reg_class ++avr32_secondary_reload (bool in_p, rtx x, enum reg_class class, ++ enum machine_mode mode, secondary_reload_info *sri) ++{ ++ ++ if ( avr32_rmw_memory_operand (x, mode) ) ++ { ++ if (!in_p) ++ sri->icode = CODE_FOR_reload_out_rmw_memory_operand; ++ else ++ sri->icode = CODE_FOR_reload_in_rmw_memory_operand; ++ } ++ return NO_REGS; ++ ++} ++/* ++ * Switches to the appropriate section for output of constant pool ++ * entry x in mode. You can assume that x is some kind of constant in ++ * RTL. The argument mode is redundant except in the case of a ++ * const_int rtx. Select the section by calling readonly_data_ section ++ * or one of the alternatives for other sections. align is the ++ * constant alignment in bits. ++ * ++ * The default version of this function takes care of putting symbolic ++ * constants in flag_ pic mode in data_section and everything else in ++ * readonly_data_section. ++ */ ++//#undef TARGET_ASM_SELECT_RTX_SECTION ++//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section ++ ++ ++/* ++ * If non-null, this hook performs a target-specific pass over the ++ * instruction stream. The compiler will run it at all optimization ++ * levels, just before the point at which it normally does ++ * delayed-branch scheduling. ++ * ++ * The exact purpose of the hook varies from target to target. Some ++ * use it to do transformations that are necessary for correctness, ++ * such as laying out in-function constant pools or avoiding hardware ++ * hazards. Others use it as an opportunity to do some ++ * machine-dependent optimizations. ++ * ++ * You need not implement the hook if it has nothing to do. The ++ * default definition is null. ++ */ ++#undef TARGET_MACHINE_DEPENDENT_REORG ++#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg ++ ++/* Target hook for assembling integer objects. ++ Need to handle integer vectors */ ++static bool ++avr32_assemble_integer (rtx x, unsigned int size, int aligned_p) ++{ ++ if (avr32_vector_mode_supported (GET_MODE (x))) ++ { ++ int i, units; ++ ++ if (GET_CODE (x) != CONST_VECTOR) ++ abort (); ++ ++ units = CONST_VECTOR_NUNITS (x); ++ ++ switch (GET_MODE (x)) ++ { ++ case V2HImode: ++ size = 2; ++ break; ++ case V4QImode: ++ size = 1; ++ break; ++ default: ++ abort (); ++ } ++ ++ for (i = 0; i < units; i++) ++ { ++ rtx elt; ++ ++ elt = CONST_VECTOR_ELT (x, i); ++ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1); ++ } ++ ++ return true; ++ } ++ ++ return default_assemble_integer (x, size, aligned_p); ++} ++ ++ ++/* ++ * This target hook describes the relative costs of RTL expressions. ++ * ++ * The cost may depend on the precise form of the expression, which is ++ * available for examination in x, and the rtx code of the expression ++ * in which it is contained, found in outer_code. code is the ++ * expression code--redundant, since it can be obtained with GET_CODE ++ * (x). ++ * ++ * In implementing this hook, you can use the construct COSTS_N_INSNS ++ * (n) to specify a cost equal to n fast instructions. ++ * ++ * On entry to the hook, *total contains a default estimate for the ++ * cost of the expression. The hook should modify this value as ++ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5) ++ * for multiplications, COSTS_N_INSNS (7) for division and modulus ++ * operations, and COSTS_N_INSNS (1) for all other operations. ++ * ++ * When optimizing for code size, i.e. when optimize_size is non-zero, ++ * this target hook should be used to estimate the relative size cost ++ * of an expression, again relative to COSTS_N_INSNS. ++ * ++ * The hook returns true when all subexpressions of x have been ++ * processed, and false when rtx_cost should recurse. ++ */ ++ ++/* Worker routine for avr32_rtx_costs. */ ++static inline int ++avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED, ++ enum rtx_code outer ATTRIBUTE_UNUSED) ++{ ++ enum machine_mode mode = GET_MODE (x); ++ ++ switch (GET_CODE (x)) ++ { ++ case MEM: ++ /* Using pre decrement / post increment memory operations on the ++ avr32_uc architecture means that two writebacks must be performed ++ and hence two cycles are needed. */ ++ if (!optimize_size ++ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD ++ && TARGET_ARCH_UC ++ && (GET_CODE (XEXP (x, 0)) == PRE_DEC ++ || GET_CODE (XEXP (x, 0)) == POST_INC)) ++ return COSTS_N_INSNS (5); ++ ++ /* Memory costs quite a lot for the first word, but subsequent words ++ load at the equivalent of a single insn each. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ++ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD)); ++ ++ return COSTS_N_INSNS (4); ++ case SYMBOL_REF: ++ case CONST: ++ /* These are valid for the pseudo insns: lda.w and call which operates ++ on direct addresses. We assume that the cost of a lda.w is the same ++ as the cost of a ld.w insn. */ ++ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1); ++ case DIV: ++ case MOD: ++ case UDIV: ++ case UMOD: ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ ++ case ROTATE: ++ case ROTATERT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (10); ++ return COSTS_N_INSNS (4); ++ case ASHIFT: ++ case LSHIFTRT: ++ case ASHIFTRT: ++ case NOT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (10); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case PLUS: ++ case MINUS: ++ case NEG: ++ case COMPARE: ++ case ABS: ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (50); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (2); ++ return COSTS_N_INSNS (1); ++ ++ case MULT: ++ { ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (300); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (16); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ ++ if (mode == HImode) ++ return COSTS_N_INSNS (2); ++ ++ return COSTS_N_INSNS (3); ++ } ++ case IF_THEN_ELSE: ++ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case SIGN_EXTEND: ++ case ZERO_EXTEND: ++ /* Sign/Zero extensions of registers cost quite much since these ++ instrcutions only take one register operand which means that gcc ++ often must insert some move instrcutions */ ++ if (mode == QImode || mode == HImode) ++ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1)); ++ return COSTS_N_INSNS (4); ++ case UNSPEC: ++ /* divmod operations */ ++ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL ++ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL) ++ { ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ } ++ /* Fallthrough */ ++ default: ++ return COSTS_N_INSNS (1); ++ } ++} ++ ++ ++static bool ++avr32_rtx_costs (rtx x, int code, int outer_code, int *total) ++{ ++ *total = avr32_rtx_costs_1 (x, code, outer_code); ++ return true; ++} ++ ++ ++bool ++avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) ++{ ++ /* Do not want symbols in the constant pool when compiling pic or if using ++ address pseudo instructions. */ ++ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && avr32_find_symbol (x) != NULL_RTX); ++} ++ ++ ++/* Table of machine attributes. */ ++const struct attribute_spec avr32_attribute_table[] = { ++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ ++ /* Interrupt Service Routines have special prologue and epilogue ++ requirements. */ ++ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute}, ++ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute}, ++ {"rmw_addressable", 0, 0, true, false, false, NULL}, ++ {"flashvault", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {"flashvault_impl", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {NULL, 0, 0, false, false, false, NULL} ++}; ++ ++ ++typedef struct ++{ ++ const char *const arg; ++ const unsigned long return_value; ++} ++isr_attribute_arg; ++ ++ ++static const isr_attribute_arg isr_attribute_args[] = { ++ {"FULL", AVR32_FT_ISR_FULL}, ++ {"full", AVR32_FT_ISR_FULL}, ++ {"HALF", AVR32_FT_ISR_HALF}, ++ {"half", AVR32_FT_ISR_HALF}, ++ {"NONE", AVR32_FT_ISR_NONE}, ++ {"none", AVR32_FT_ISR_NONE}, ++ {"UNDEF", AVR32_FT_ISR_NONE}, ++ {"undef", AVR32_FT_ISR_NONE}, ++ {"SWI", AVR32_FT_ISR_NONE}, ++ {"swi", AVR32_FT_ISR_NONE}, ++ {NULL, AVR32_FT_ISR_NONE} ++}; ++ ++ ++/* Returns the (interrupt) function type of the current ++ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */ ++static unsigned long ++avr32_isr_value (tree argument) ++{ ++ const isr_attribute_arg *ptr; ++ const char *arg; ++ ++ /* No argument - default to ISR_NONE. */ ++ if (argument == NULL_TREE) ++ return AVR32_FT_ISR_NONE; ++ ++ /* Get the value of the argument. */ ++ if (TREE_VALUE (argument) == NULL_TREE ++ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST) ++ return AVR32_FT_UNKNOWN; ++ ++ arg = TREE_STRING_POINTER (TREE_VALUE (argument)); ++ ++ /* Check it against the list of known arguments. */ ++ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++) ++ if (streq (arg, ptr->arg)) ++ return ptr->return_value; ++ ++ /* An unrecognized interrupt type. */ ++ return AVR32_FT_UNKNOWN; ++} ++ ++ ++/* ++These hooks specify assembly directives for creating certain kinds ++of integer object. The TARGET_ASM_BYTE_OP directive creates a ++byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an ++aligned two-byte object, and so on. Any of the hooks may be ++NULL, indicating that no suitable directive is available. ++ ++The compiler will print these strings at the start of a new line, ++followed immediately by the object's initial value. In most cases, ++the string should contain a tab, a pseudo-op, and then another tab. ++*/ ++#undef TARGET_ASM_BYTE_OP ++#define TARGET_ASM_BYTE_OP "\t.byte\t" ++#undef TARGET_ASM_ALIGNED_HI_OP ++#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t" ++#undef TARGET_ASM_ALIGNED_SI_OP ++#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t" ++#undef TARGET_ASM_ALIGNED_DI_OP ++#define TARGET_ASM_ALIGNED_DI_OP NULL ++#undef TARGET_ASM_ALIGNED_TI_OP ++#define TARGET_ASM_ALIGNED_TI_OP NULL ++#undef TARGET_ASM_UNALIGNED_HI_OP ++#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t" ++#undef TARGET_ASM_UNALIGNED_SI_OP ++#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t" ++#undef TARGET_ASM_UNALIGNED_DI_OP ++#define TARGET_ASM_UNALIGNED_DI_OP NULL ++#undef TARGET_ASM_UNALIGNED_TI_OP ++#define TARGET_ASM_UNALIGNED_TI_OP NULL ++ ++#undef TARGET_ASM_OUTPUT_MI_THUNK ++#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk ++ ++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK ++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true ++ ++ ++static void ++avr32_output_mi_thunk (FILE * file, ++ tree thunk ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta, ++ HOST_WIDE_INT vcall_offset, tree function) ++ { ++ int mi_delta = delta; ++ int this_regno = ++ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? ++ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12)); ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpushm\tlr\n", file); ++ } ++ ++ ++ if (mi_delta != 0) ++ { ++ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")) ++ { ++ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta); ++ } ++ else ++ { ++ /* Immediate is larger than k21 we must make us a temp register by ++ pushing a register to the stack. */ ++ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta); ++ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ } ++ ++ ++ if (vcall_offset != 0) ++ { ++ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]); ++ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpopm\tlr\n", file); ++ } ++ ++ /* Jump to the function. We assume that we can use an rjmp since the ++ function to jump to is local and probably not too far away from ++ the thunk. If this assumption proves to be wrong we could implement ++ this jump by calculating the offset between the jump source and destination ++ and put this in the constant pool and then perform an add to pc. ++ This would also be legitimate PIC code. But for now we hope that an rjmp ++ will be sufficient... ++ */ ++ fputs ("\trjmp\t", file); ++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); ++ fputc ('\n', file); ++ } ++ ++ ++/* Implements target hook vector_mode_supported. */ ++bool ++avr32_vector_mode_supported (enum machine_mode mode) ++{ ++ if ((mode == V2HImode) || (mode == V4QImode)) ++ return true; ++ ++ return false; ++} ++ ++ ++#undef TARGET_INIT_LIBFUNCS ++#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS avr32_init_builtins ++ ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN avr32_expand_builtin ++ ++tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int, ++ void_ftype_ptr_int; ++tree void_ftype_int, void_ftype_ulong, void_ftype_void, int_ftype_ptr_int; ++tree short_ftype_short, int_ftype_int_short, int_ftype_short_short, ++ short_ftype_short_short; ++tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short; ++tree void_ftype_int_int_int_int_int, void_ftype_int_int_int; ++tree longlong_ftype_int_int, void_ftype_int_int_longlong; ++tree int_ftype_int_int_int, longlong_ftype_longlong_int_short; ++tree longlong_ftype_longlong_short_short, int_ftype_int_short_short; ++ ++#define def_builtin(NAME, TYPE, CODE) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE) ++ ++#define def_mbuiltin(MASK, NAME, TYPE, CODE) \ ++ do \ ++ { \ ++ if ((MASK)) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE); \ ++ } \ ++ while (0) ++ ++struct builtin_description ++{ ++ const unsigned int mask; ++ const enum insn_code icode; ++ const char *const name; ++ const int code; ++ const enum rtx_code comparison; ++ const unsigned int flag; ++ const tree *ftype; ++}; ++ ++static const struct builtin_description bdesc_2arg[] = { ++ ++#define DSP_BUILTIN(code, builtin, ftype) \ ++ { 1, CODE_FOR_##code, "__builtin_" #code , \ ++ AVR32_BUILTIN_##builtin, 0, 0, ftype } ++ ++ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short), ++ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short), ++ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short), ++ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int), ++ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int), ++ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short), ++ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short) ++}; ++ ++ ++void ++avr32_init_builtins (void) ++{ ++ unsigned int i; ++ const struct builtin_description *d; ++ tree endlink = void_list_node; ++ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink); ++ tree longlong_endlink = ++ tree_cons (NULL_TREE, long_long_integer_type_node, endlink); ++ tree short_endlink = ++ tree_cons (NULL_TREE, short_integer_type_node, endlink); ++ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink); ++ ++ /* int func (int) */ ++ int_ftype_int = build_function_type (integer_type_node, int_endlink); ++ ++ /* short func (short) */ ++ short_ftype_short ++ = build_function_type (short_integer_type_node, short_endlink); ++ ++ /* short func (short, short) */ ++ short_ftype_short_short ++ = build_function_type (short_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* long long func (long long, short, short) */ ++ longlong_ftype_longlong_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* long long func (short, short) */ ++ longlong_ftype_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, int) */ ++ int_ftype_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long func (int, int) */ ++ longlong_ftype_int_int ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long int func (long long, int, short) */ ++ longlong_ftype_longlong_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink))); ++ ++ /* long long int func (int, short) */ ++ longlong_ftype_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short, short) */ ++ int_ftype_int_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* int func (short, short) */ ++ int_ftype_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short) */ ++ int_ftype_int_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* void func (int, int) */ ++ void_ftype_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* void func (int, int, int) */ ++ void_ftype_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* void func (int, int, long long) */ ++ void_ftype_int_int_longlong ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ longlong_endlink))); ++ ++ /* void func (int, int, int, int, int) */ ++ void_ftype_int_int_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ integer_type_node, ++ tree_cons ++ (NULL_TREE, ++ integer_type_node, ++ int_endlink))))); ++ ++ /* void func (void *, int) */ ++ void_ftype_ptr_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* void func (int) */ ++ void_ftype_int = build_function_type (void_type_node, int_endlink); ++ ++ /* void func (ulong) */ ++ void_ftype_ulong = build_function_type_list (void_type_node, ++ long_unsigned_type_node, NULL_TREE); ++ ++ /* void func (void) */ ++ void_ftype_void = build_function_type (void_type_node, void_endlink); ++ ++ /* int func (void) */ ++ int_ftype_void = build_function_type (integer_type_node, void_endlink); ++ ++ /* int func (void *, int) */ ++ int_ftype_ptr_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* int func (int, int, int) */ ++ int_ftype_int_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* Initialize avr32 builtins. */ ++ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR); ++ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR); ++ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR); ++ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR); ++ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE); ++ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC); ++ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF); ++ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF); ++ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR); ++ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS); ++ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW); ++ def_builtin ("__builtin_breakpoint", void_ftype_void, ++ AVR32_BUILTIN_BREAKPOINT); ++ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG); ++ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI); ++ def_builtin ("__builtin_bswap_16", short_ftype_short, ++ AVR32_BUILTIN_BSWAP16); ++ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32); ++ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int, ++ AVR32_BUILTIN_COP); ++ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W); ++ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int, ++ AVR32_BUILTIN_MVRC_W); ++ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int, ++ AVR32_BUILTIN_MVCR_D); ++ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong, ++ AVR32_BUILTIN_MVRC_D); ++ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS); ++ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU); ++ def_builtin ("__builtin_satrnds", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDS); ++ def_builtin ("__builtin_satrndu", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDU); ++ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR); ++ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR); ++ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short, ++ AVR32_BUILTIN_MACSATHH_W); ++ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short, ++ AVR32_BUILTIN_MACWH_D); ++ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short, ++ AVR32_BUILTIN_MACHH_D); ++ def_builtin ("__builtin_mems", void_ftype_ptr_int, AVR32_BUILTIN_MEMS); ++ def_builtin ("__builtin_memt", void_ftype_ptr_int, AVR32_BUILTIN_MEMT); ++ def_builtin ("__builtin_memc", void_ftype_ptr_int, AVR32_BUILTIN_MEMC); ++ def_builtin ("__builtin_sleep", void_ftype_int, AVR32_BUILTIN_SLEEP); ++ def_builtin ("__builtin_avr32_delay_cycles", void_ftype_int, AVR32_BUILTIN_DELAY_CYCLES); ++ ++ /* Add all builtins that are more or less simple operations on two ++ operands. */ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ { ++ /* Use one of the operands; the target can have a different mode for ++ mask-generating compares. */ ++ ++ if (d->name == 0) ++ continue; ++ ++ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code); ++ } ++} ++ ++ ++/* Subroutine of avr32_expand_builtin to take care of binop insns. */ ++static rtx ++avr32_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) ++{ ++ rtx pat; ++ tree arg0 = CALL_EXPR_ARG (exp,0); ++ tree arg1 = CALL_EXPR_ARG (exp,1); ++ rtx op0 = expand_normal (arg0); ++ rtx op1 = expand_normal (arg1); ++ enum machine_mode tmode = insn_data[icode].operand[0].mode; ++ enum machine_mode mode0 = insn_data[icode].operand[1].mode; ++ enum machine_mode mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ /* In case the insn wants input operands in modes different from the ++ result, abort. */ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (mode0, op0, 1); ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode1, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++} ++ ++ ++/* Expand an expression EXP that calls a built-in function, ++ with result going to TARGET if that's convenient ++ (and in mode MODE if that's convenient). ++ SUBTARGET may be used as the target for computing one of EXP's operands. ++ IGNORE is nonzero if the value is to be ignored. */ ++rtx ++avr32_expand_builtin (tree exp, ++ rtx target, ++ rtx subtarget ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ const struct builtin_description *d; ++ unsigned int i; ++ enum insn_code icode = 0; ++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ tree arg0, arg1, arg2; ++ rtx op0, op1, op2, pat; ++ enum machine_mode tmode, mode0, mode1; ++ enum machine_mode arg0_mode; ++ int fcode = DECL_FUNCTION_CODE (fndecl); ++ ++ switch (fcode) ++ { ++ default: ++ break; ++ ++ case AVR32_BUILTIN_SATS: ++ case AVR32_BUILTIN_SATU: ++ case AVR32_BUILTIN_SATRNDS: ++ case AVR32_BUILTIN_SATRNDU: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SATS: ++ icode = CODE_FOR_sats; ++ fname = "sats"; ++ break; ++ case AVR32_BUILTIN_SATU: ++ icode = CODE_FOR_satu; ++ fname = "satu"; ++ break; ++ case AVR32_BUILTIN_SATRNDS: ++ icode = CODE_FOR_satrnds; ++ fname = "satrnds"; ++ break; ++ case AVR32_BUILTIN_SATRNDU: ++ icode = CODE_FOR_satrndu; ++ fname = "satrndu"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0))) ++ { ++ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode)) ++ { ++ error ("Parameter 3 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ emit_move_insn (target, op0); ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MUSTR: ++ icode = CODE_FOR_mustr; ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ ++ case AVR32_BUILTIN_MFSR: ++ icode = CODE_FOR_mfsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfsr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTSR: ++ icode = CODE_FOR_mtsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtsr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_MFDR: ++ icode = CODE_FOR_mfdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfdr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTDR: ++ icode = CODE_FOR_mtdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtdr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_CACHE: ++ icode = CODE_FOR_cache; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ { ++ error ("Parameter 2 to __builtin_cache must be a constant number"); ++ return gen_reg_rtx (mode1); ++ } ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ op0 = copy_to_mode_reg (mode0, op0); ++ ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_SYNC: ++ case AVR32_BUILTIN_MUSFR: ++ case AVR32_BUILTIN_SSRF: ++ case AVR32_BUILTIN_CSRF: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SYNC: ++ icode = CODE_FOR_sync; ++ fname = "sync"; ++ break; ++ case AVR32_BUILTIN_MUSFR: ++ icode = CODE_FOR_musfr; ++ fname = "musfr"; ++ break; ++ case AVR32_BUILTIN_SSRF: ++ icode = CODE_FOR_ssrf; ++ fname = "ssrf"; ++ break; ++ case AVR32_BUILTIN_CSRF: ++ icode = CODE_FOR_csrf; ++ fname = "csrf"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ mode0 = insn_data[icode].operand[0].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ if (icode == CODE_FOR_musfr) ++ op0 = copy_to_mode_reg (mode0, op0); ++ else ++ { ++ error ("Parameter to __builtin_%s is illegal.", fname); ++ return gen_reg_rtx (mode0); ++ } ++ } ++ pat = GEN_FCN (icode) (op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_TLBR: ++ icode = CODE_FOR_tlbr; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBS: ++ icode = CODE_FOR_tlbs; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBW: ++ icode = CODE_FOR_tlbw; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_BREAKPOINT: ++ icode = CODE_FOR_breakpoint; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_XCHG: ++ icode = CODE_FOR_sync_lock_test_and_setsi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ op0 = force_reg (GET_MODE (op0), op0); ++ op0 = gen_rtx_MEM (GET_MODE (op0), op0); ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ++ ("Parameter 1 to __builtin_xchg must be a pointer to an integer."); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_LDXI: ++ icode = CODE_FOR_ldxi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)"); ++ return gen_reg_rtx (mode0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_BSWAP16: ++ { ++ icode = CODE_FOR_bswap_16; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); ++ mode0 = insn_data[icode].operand[1].mode; ++ if (arg0_mode != mode0) ++ arg0 = build1 (NOP_EXPR, ++ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0); ++ ++ op0 = expand_expr (arg0, NULL_RTX, HImode, 0); ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) | ++ ((INTVAL (op0)&0xff00) >> 8) ); ++ /* Sign extend 16-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 16); ++ val >>= (HOST_BITS_PER_WIDE_INT - 16); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ { ++ target = gen_reg_rtx (tmode); ++ } ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_BSWAP32: ++ { ++ icode = CODE_FOR_bswap_32; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) | ++ ((INTVAL (op0)&0x0000ff00) << 8) | ++ ((INTVAL (op0)&0x00ff0000) >> 8) | ++ ((INTVAL (op0)&0xff000000) >> 24) ); ++ /* Sign extend 32-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 32); ++ val >>= (HOST_BITS_PER_WIDE_INT - 32); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MVCR_W: ++ case AVR32_BUILTIN_MVCR_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ ++ if (fcode == AVR32_BUILTIN_MVCR_W) ++ icode = CODE_FOR_mvcrsi; ++ else ++ icode = CODE_FOR_mvcrdi; ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MACSATHH_W: ++ case AVR32_BUILTIN_MACWH_D: ++ case AVR32_BUILTIN_MACHH_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w : ++ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d : ++ CODE_FOR_machh_d); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (tmode, op0, 1); ++ else ++ op0 = copy_to_mode_reg (tmode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode0, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode0, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op2)) ++ op2 = convert_to_mode (mode1, op2, 1); ++ else ++ op2 = copy_to_mode_reg (mode1, op2); ++ } ++ ++ emit_move_insn (target, op0); ++ ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ } ++ case AVR32_BUILTIN_MVRC_W: ++ case AVR32_BUILTIN_MVRC_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ if (fcode == AVR32_BUILTIN_MVRC_W) ++ icode = CODE_FOR_mvrcsi; ++ else ++ icode = CODE_FOR_mvrcdi; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ("Parameter 1 is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (GET_CODE (op2) == CONST_INT ++ || GET_CODE (op2) == CONST ++ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF) ++ { ++ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2))) ++ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); ++ ++ ++ pat = GEN_FCN (icode) (op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_COP: ++ { ++ rtx op3, op4; ++ tree arg3, arg4; ++ icode = CODE_FOR_cop; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ arg3 = CALL_EXPR_ARG (exp,3); ++ arg4 = CALL_EXPR_ARG (exp,4); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ op3 = expand_normal (arg3); ++ op4 = expand_normal (arg4); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode)) ++ { ++ error ++ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode)) ++ { ++ error ++ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation."); ++ error ("Number should be between 0 and 127."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ ++ case AVR32_BUILTIN_MEMS: ++ case AVR32_BUILTIN_MEMC: ++ case AVR32_BUILTIN_MEMT: ++ { ++ if (!TARGET_RMW) ++ error ("Trying to use __builtin_mem(s/c/t) when target does not support RMW insns."); ++ ++ switch (fcode) { ++ case AVR32_BUILTIN_MEMS: ++ icode = CODE_FOR_iorsi3; ++ break; ++ case AVR32_BUILTIN_MEMC: ++ icode = CODE_FOR_andsi3; ++ break; ++ case AVR32_BUILTIN_MEMT: ++ icode = CODE_FOR_xorsi3; ++ break; ++ } ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ if ( GET_CODE (op0) == SYMBOL_REF ) ++ // This symbol must be RMW addressable ++ SYMBOL_REF_FLAGS (op0) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ op0 = gen_rtx_MEM(SImode, op0); ++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mem(s/c/t) must be a Ks15<<2 address or a rmw addressable symbol."); ++ } ++ ++ if ( !CONST_INT_P (op1) ++ || INTVAL (op1) > 31 ++ || INTVAL (op1) < 0 ) ++ error ("Parameter 2 to __builtin_mem(s/c/t) must be a constant between 0 and 31."); ++ ++ if ( fcode == AVR32_BUILTIN_MEMC ) ++ op1 = GEN_INT((~(1 << INTVAL(op1)))&0xffffffff); ++ else ++ op1 = GEN_INT((1 << INTVAL(op1))&0xffffffff); ++ pat = GEN_FCN (icode) (op0, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return op0; ++ } ++ ++ case AVR32_BUILTIN_SLEEP: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_normal (arg0); ++ int intval = INTVAL(op0); ++ ++ /* Check if the argument if integer and if the value of integer ++ is greater than 0. */ ++ ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_sleep() is not a valid integer."); ++ if (intval < 0 ) ++ error ("Parameter 1 to __builtin_sleep() should be an integer greater than 0."); ++ ++ int strncmpval = strncmp (avr32_part_name,"uc3l", 4); ++ ++ /* Check if op0 is less than 7 for uc3l* and less than 6 for other ++ devices. By this check we are avoiding if operand is less than ++ 256. For more devices, add more such checks. */ ++ ++ if ( strncmpval == 0 && intval >= 7) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 7."); ++ else if ( strncmp != 0 && intval >= 6) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 6."); ++ ++ emit_insn (gen_sleep(op0)); ++ return target; ++ ++ } ++ case AVR32_BUILTIN_DELAY_CYCLES: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ ++ if (TARGET_ARCH_AP) ++ error (" __builtin_avr32_delay_cycles() not supported for \'%s\' architecture.", avr32_arch_name); ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_avr32_delay_cycles() should be an integer."); ++ emit_insn (gen_delay_cycles (op0)); ++ return 0; ++ ++ } ++ ++ } ++ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ if (d->code == fcode) ++ return avr32_expand_binop_builtin (d->icode, exp, target); ++ ++ ++ /* @@@ Should really do something sensible here. */ ++ return NULL_RTX; ++} ++ ++ ++/* Handle an "interrupt" or "isr" attribute; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_isr_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs) ++{ ++ if (DECL_P (*node)) ++ { ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ /* FIXME: the argument if any is checked for type attributes; should it ++ be checked for decl ones? */ ++ } ++ else ++ { ++ if (TREE_CODE (*node) == FUNCTION_TYPE ++ || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN) ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ } ++ else if (TREE_CODE (*node) == POINTER_TYPE ++ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE ++ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE) ++ && avr32_isr_value (args) != AVR32_FT_UNKNOWN) ++ { ++ *node = build_variant_type_copy (*node); ++ TREE_TYPE (*node) = build_type_attribute_variant ++ (TREE_TYPE (*node), ++ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node)))); ++ *no_add_attrs = true; ++ } ++ else ++ { ++ /* Possibly pass this attribute on from the type to a decl. */ ++ if (flags & ((int) ATTR_FLAG_DECL_NEXT ++ | (int) ATTR_FLAG_FUNCTION_NEXT ++ | (int) ATTR_FLAG_ARRAY_NEXT)) ++ { ++ *no_add_attrs = true; ++ return tree_cons (name, args, NULL_TREE); ++ } ++ else ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ } ++ } ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an attribute requiring a FUNCTION_DECL; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_fndecl_attribute (tree * node, tree name, ++ tree args, ++ int flags ATTRIBUTE_UNUSED, ++ bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"%qs attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ fndecl_attribute_args = args; ++ if (args == NULL_TREE) ++ return NULL_TREE; ++ ++ tree value = TREE_VALUE (args); ++ if (TREE_CODE (value) != INTEGER_CST) ++ { ++ warning (OPT_Wattributes, ++ "argument of %qs attribute is not an integer constant", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an acall attribute; ++ arguments as in struct attribute_spec.handler. */ ++ ++static tree ++avr32_handle_acall_attribute (tree * node, tree name, ++ tree args ATTRIBUTE_UNUSED, ++ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ warning (OPT_Wattributes,"`%s' attribute not yet supported...", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++} ++ ++ ++bool ++avr32_flashvault_call(tree decl) ++{ ++ tree attributes; ++ tree fv_attribute; ++ tree vector_tree; ++ unsigned int vector; ++ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ attributes = DECL_ATTRIBUTES(decl); ++ fv_attribute = lookup_attribute ("flashvault", attributes); ++ if (fv_attribute != NULL_TREE) ++ { ++ /* Get attribute parameter, for the function vector number. */ ++ /* ++ There is probably an easier, standard way to retrieve the ++ attribute parameter which needs to be done here. ++ */ ++ vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ vector = (unsigned int)TREE_INT_CST_LOW(TREE_VALUE(vector_tree)); ++ fprintf (asm_out_file, ++ "\tmov\tr8, lo(%i)\t# Load vector number for sscall.\n", ++ vector); ++ } ++ ++ fprintf (asm_out_file, ++ "\tsscall\t# Secure system call.\n"); ++ ++ return true; ++ } ++ } ++ ++ return false; ++} ++ ++ ++static bool has_attribute_p (tree decl, const char *name) ++{ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ return (lookup_attribute (name, DECL_ATTRIBUTES(decl)) != NULL_TREE); ++ } ++ return NULL_TREE; ++} ++ ++ ++/* Return 0 if the attributes for two types are incompatible, 1 if they ++ are compatible, and 2 if they are nearly compatible (which causes a ++ warning to be generated). */ ++static int ++avr32_comp_type_attributes (tree type1, tree type2) ++{ ++ bool acall1, acall2, isr1, isr2, naked1, naked2, fv1, fv2, fvimpl1, fvimpl2; ++ ++ /* Check for mismatch of non-default calling convention. */ ++ if (TREE_CODE (type1) != FUNCTION_TYPE) ++ return 1; ++ ++ /* Check for mismatched call attributes. */ ++ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL; ++ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL; ++ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL; ++ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL; ++ fv1 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type1)) != NULL; ++ fv2 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type2)) != NULL; ++ fvimpl1 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type1)) != NULL; ++ fvimpl2 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type2)) != NULL; ++ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL; ++ if (!isr1) ++ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL; ++ ++ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL; ++ if (!isr2) ++ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL; ++ ++ if ((acall1 && isr2) ++ || (acall2 && isr1) ++ || (naked1 && isr2) ++ || (naked2 && isr1) ++ || (fv1 && isr2) ++ || (fv2 && isr1) ++ || (fvimpl1 && isr2) ++ || (fvimpl2 && isr1) ++ || (fv1 && fvimpl2) ++ || (fv2 && fvimpl1) ++ ) ++ return 0; ++ ++ return 1; ++} ++ ++ ++/* Computes the type of the current function. */ ++static unsigned long ++avr32_compute_func_type (void) ++{ ++ unsigned long type = AVR32_FT_UNKNOWN; ++ tree a; ++ tree attr; ++ ++ if (TREE_CODE (current_function_decl) != FUNCTION_DECL) ++ abort (); ++ ++ /* Decide if the current function is volatile. Such functions never ++ return, and many memory cycles can be saved by not storing register ++ values that will never be needed again. This optimization was added to ++ speed up context switching in a kernel application. */ ++ if (optimize > 0 ++ && TREE_NOTHROW (current_function_decl) ++ && TREE_THIS_VOLATILE (current_function_decl)) ++ type |= AVR32_FT_VOLATILE; ++ ++ if (cfun->static_chain_decl != NULL) ++ type |= AVR32_FT_NESTED; ++ ++ attr = DECL_ATTRIBUTES (current_function_decl); ++ ++ a = lookup_attribute ("isr", attr); ++ if (a == NULL_TREE) ++ a = lookup_attribute ("interrupt", attr); ++ ++ if (a == NULL_TREE) ++ type |= AVR32_FT_NORMAL; ++ else ++ type |= avr32_isr_value (TREE_VALUE (a)); ++ ++ ++ a = lookup_attribute ("acall", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_ACALL; ++ ++ a = lookup_attribute ("naked", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_NAKED; ++ ++ a = lookup_attribute ("flashvault", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT; ++ ++ a = lookup_attribute ("flashvault_impl", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT_IMPL; ++ ++ return type; ++} ++ ++ ++/* Returns the type of the current function. */ ++static unsigned long ++avr32_current_func_type (void) ++{ ++ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN) ++ cfun->machine->func_type = avr32_compute_func_type (); ++ ++ return cfun->machine->func_type; ++} ++ ++ ++/* ++This target hook should return true if we should not pass type solely ++in registers. The file expr.h defines a definition that is usually appropriate, ++refer to expr.h for additional documentation. ++*/ ++bool ++avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type) ++{ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* If the alignment is less than the size then pass in the struct on ++ the stack. */ ++ && ((unsigned int) TYPE_ALIGN_UNIT (type) < ++ (unsigned int) int_size_in_bytes (type)) ++ /* If we support unaligned word accesses then structs of size 4 and 8 ++ can have any alignment and still be passed in registers. */ ++ && !(TARGET_UNALIGNED_WORD ++ && (int_size_in_bytes (type) == 4 ++ || int_size_in_bytes (type) == 8)) ++ /* Double word structs need only a word alignment. */ ++ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4)) ++ return true; ++ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* Structs of size 3,5,6,7 are always passed in registers. */ ++ && (int_size_in_bytes (type) == 3 ++ || int_size_in_bytes (type) == 5 ++ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7)) ++ return true; ++ ++ ++ return (type && TREE_ADDRESSABLE (type)); ++} ++ ++ ++bool ++avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED) ++{ ++ return true; ++} ++ ++ ++/* ++ This target hook should return true if an argument at the position indicated ++ by cum should be passed by reference. This predicate is queried after target ++ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type). ++ ++ If the hook returns true, a copy of that argument is made in memory and a ++ pointer to the argument is passed instead of the argument itself. The pointer ++ is passed in whatever way is appropriate for passing a pointer to that type. ++*/ ++bool ++avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type, bool named ATTRIBUTE_UNUSED) ++{ ++ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)); ++} ++ ++ ++static int ++avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type ATTRIBUTE_UNUSED, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ return 0; ++} ++ ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++/* ++ Table used to convert from register number in the assembler instructions and ++ the register numbers used in gcc. ++*/ ++const int avr32_function_arg_reglist[] = { ++ INTERNAL_REGNUM (12), ++ INTERNAL_REGNUM (11), ++ INTERNAL_REGNUM (10), ++ INTERNAL_REGNUM (9), ++ INTERNAL_REGNUM (8) ++}; ++ ++ ++rtx avr32_compare_op0 = NULL_RTX; ++rtx avr32_compare_op1 = NULL_RTX; ++rtx avr32_compare_operator = NULL_RTX; ++rtx avr32_acc_cache = NULL_RTX; ++/* type of branch to use */ ++enum avr32_cmp_type avr32_branch_type; ++ ++ ++/* ++ Returns nonzero if it is allowed to store a value of mode mode in hard ++ register number regno. ++*/ ++int ++avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode) ++{ ++ switch (mode) ++ { ++ case DImode: /* long long */ ++ case DFmode: /* double */ ++ case SCmode: /* __complex__ float */ ++ case CSImode: /* __complex__ int */ ++ if (regnr < 4) ++ { /* long long int not supported in r12, sp, lr or pc. */ ++ return 0; ++ } ++ else ++ { ++ /* long long int has to be referred in even registers. */ ++ if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ } ++ case CDImode: /* __complex__ long long */ ++ case DCmode: /* __complex__ double */ ++ case TImode: /* 16 bytes */ ++ if (regnr < 7) ++ return 0; ++ else if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ default: ++ return 1; ++ } ++} ++ ++ ++int ++avr32_rnd_operands (rtx add, rtx shift) ++{ ++ if (GET_CODE (shift) == CONST_INT && ++ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0) ++ { ++ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add)) ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str) ++{ ++ switch (c) ++ { ++ case 'K': ++ case 'I': ++ { ++ HOST_WIDE_INT min_value = 0, max_value = 0; ++ char size_str[3]; ++ int const_size; ++ ++ size_str[0] = str[2]; ++ size_str[1] = str[3]; ++ size_str[2] = '\0'; ++ const_size = atoi (size_str); ++ ++ if (TOUPPER (str[1]) == 'U') ++ { ++ min_value = 0; ++ max_value = (1 << const_size) - 1; ++ } ++ else if (TOUPPER (str[1]) == 'S') ++ { ++ min_value = -(1 << (const_size - 1)); ++ max_value = (1 << (const_size - 1)) - 1; ++ } ++ ++ if (c == 'I') ++ { ++ value = -value; ++ } ++ ++ if (value >= min_value && value <= max_value) ++ { ++ return 1; ++ } ++ break; ++ } ++ case 'M': ++ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode); ++ case 'J': ++ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode); ++ case 'O': ++ return one_bit_set_operand (GEN_INT (value), VOIDmode); ++ case 'N': ++ return one_bit_cleared_operand (GEN_INT (value), VOIDmode); ++ case 'L': ++ /* The lower 16-bits are set. */ ++ return ((value & 0xffff) == 0xffff) ; ++ } ++ ++ return 0; ++} ++ ++ ++/* Compute mask of registers which needs saving upon function entry. */ ++static unsigned long ++avr32_compute_save_reg_mask (int push) ++{ ++ unsigned long func_type; ++ unsigned int save_reg_mask = 0; ++ unsigned int reg; ++ ++ func_type = avr32_current_func_type (); ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ unsigned int max_reg = 12; ++ ++ /* Get the banking scheme for the interrupt */ ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ max_reg = 0; ++ break; ++ case AVR32_FT_ISR_HALF: ++ max_reg = 7; ++ break; ++ case AVR32_FT_ISR_NONE: ++ max_reg = 12; ++ break; ++ } ++ ++ /* Interrupt functions must not corrupt any registers, even call ++ clobbered ones. If this is a leaf function we can just examine the ++ registers used by the RTL, but otherwise we have to assume that ++ whatever function is called might clobber anything, and so we have ++ to save all the call-clobbered registers as well. */ ++ ++ /* Need not push the registers r8-r12 for AVR32A architectures, as this ++ is automatially done in hardware. We also do not have any shadow ++ registers. */ ++ if (TARGET_UARCH_AVR32A) ++ { ++ max_reg = 7; ++ func_type = AVR32_FT_ISR_NONE; ++ } ++ ++ /* All registers which are used and are not shadowed must be saved. */ ++ for (reg = 0; reg <= max_reg; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ || (!current_function_is_leaf ++ && call_used_regs[INTERNAL_REGNUM (reg)])) ++ save_reg_mask |= (1 << reg); ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf || frame_pointer_needed) ++ /* Only non-shadowed register models */ ++ && (func_type == AVR32_FT_ISR_NONE)) ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM) ++ && crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ } ++ else ++ { ++ int use_pushm = optimize_size; ++ ++ /* In the normal case we only need to save those registers which are ++ call saved and which are used by this function. */ ++ for (reg = 0; reg <= 7; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ && !call_used_regs[INTERNAL_REGNUM (reg)]) ++ save_reg_mask |= (1 << reg); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ ++ /* If we optimize for size and do not have anonymous arguments: use ++ pushm/popm always. */ ++ if (use_pushm) ++ { ++ if ((save_reg_mask & (1 << 0)) ++ || (save_reg_mask & (1 << 1)) ++ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3))) ++ save_reg_mask |= 0xf; ++ ++ if ((save_reg_mask & (1 << 4)) ++ || (save_reg_mask & (1 << 5)) ++ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7))) ++ save_reg_mask |= 0xf0; ++ ++ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9))) ++ save_reg_mask |= 0x300; ++ } ++ ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf ++ || (optimize_size ++ && save_reg_mask ++ && !crtl->calls_eh_return) ++ || frame_pointer_needed) ++ && !IS_FLASHVAULT (func_type)) ++ { ++ if (push ++ /* Never pop LR into PC for functions which ++ calls __builtin_eh_return, since we need to ++ fix the SP after the restoring of the registers ++ and before returning. */ ++ || crtl->calls_eh_return) ++ { ++ /* Push/Pop LR */ ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ } ++ else ++ { ++ /* Pop PC */ ++ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM)); ++ } ++ } ++ } ++ ++ ++ /* Save registers so the exception handler can modify them. */ ++ if (crtl->calls_eh_return) ++ { ++ unsigned int i; ++ ++ for (i = 0;; i++) ++ { ++ reg = EH_RETURN_DATA_REGNO (i); ++ if (reg == INVALID_REGNUM) ++ break; ++ save_reg_mask |= 1 << ASM_REGNUM (reg); ++ } ++ } ++ ++ return save_reg_mask; ++} ++ ++ ++/* Compute total size in bytes of all saved registers. */ ++static int ++avr32_get_reg_mask_size (int reg_mask) ++{ ++ int reg, size; ++ size = 0; ++ ++ for (reg = 0; reg <= 15; reg++) ++ if (reg_mask & (1 << reg)) ++ size += 4; ++ ++ return size; ++} ++ ++ ++/* Get a register from one of the registers which are saved onto the stack ++ upon function entry. */ ++static int ++avr32_get_saved_reg (int save_reg_mask) ++{ ++ unsigned int reg; ++ ++ /* Find the first register which is saved in the saved_reg_mask */ ++ for (reg = 0; reg <= 15; reg++) ++ if (save_reg_mask & (1 << reg)) ++ return reg; ++ ++ return -1; ++} ++ ++ ++/* Return 1 if it is possible to return using a single instruction. */ ++int ++avr32_use_return_insn (int iscond) ++{ ++ unsigned int func_type = avr32_current_func_type (); ++ unsigned long saved_int_regs; ++ ++ /* Never use a return instruction before reload has run. */ ++ if (!reload_completed) ++ return 0; ++ ++ /* Must adjust the stack for vararg functions. */ ++ if (crtl->args.info.uses_anonymous_args) ++ return 0; ++ ++ /* If there a stack adjstment. */ ++ if (get_frame_size ()) ++ return 0; ++ ++ saved_int_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ /* Conditional returns can not be performed in one instruction if we need ++ to restore registers from the stack */ ++ if (iscond && saved_int_regs) ++ return 0; ++ ++ /* Conditional return can not be used for interrupt handlers. */ ++ if (iscond && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ /* For interrupt handlers which needs to pop registers */ ++ if (saved_int_regs && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ ++ /* If there are saved registers but the LR isn't saved, then we need two ++ instructions for the return. */ ++ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ return 0; ++ ++ ++ return 1; ++} ++ ++ ++/* Generate some function prologue info in the assembly file. */ ++void ++avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size) ++{ ++ unsigned long func_type = avr32_current_func_type (); ++ ++ if (IS_NAKED (func_type)) ++ fprintf (f, ++ "\t# Function is naked: Prologue and epilogue provided by programmer\n"); ++ ++ if (IS_FLASHVAULT (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault attribute.\n"); ++ } ++ ++ if (IS_FLASHVAULT_IMPL (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault_impl attribute.\n"); ++ ++ /* Save information on flashvault function declaration. */ ++ tree fv_attribute = lookup_attribute ("flashvault_impl", DECL_ATTRIBUTES(current_function_decl)); ++ if (fv_attribute != NULL_TREE) ++ { ++ tree vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ unsigned int vector_num; ++ const char * name; ++ ++ vector_num = (unsigned int) TREE_INT_CST_LOW (TREE_VALUE (vector_tree)); ++ ++ name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); ++ ++ flashvault_decl_list_add (vector_num, name); ++ } ++ } ++ } ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ fprintf (f, ++ "\t# Interrupt Function: Fully shadowed register file\n"); ++ break; ++ case AVR32_FT_ISR_HALF: ++ fprintf (f, ++ "\t# Interrupt Function: Half shadowed register file\n"); ++ break; ++ default: ++ case AVR32_FT_ISR_NONE: ++ fprintf (f, "\t# Interrupt Function: No shadowed register file\n"); ++ break; ++ } ++ } ++ ++ ++ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n", ++ crtl->args.size, frame_size, ++ crtl->args.pretend_args_size); ++ ++ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n", ++ frame_pointer_needed, current_function_is_leaf); ++ ++ fprintf (f, "\t# uses_anonymous_args = %i\n", ++ crtl->args.info.uses_anonymous_args); ++ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\t# Calls __builtin_eh_return.\n"); ++ ++} ++ ++ ++/* Generate and emit an insn that we will recognize as a pushm or stm. ++ Unfortunately, since this insn does not reflect very well the actual ++ semantics of the operation, we need to annotate the insn for the benefit ++ of DWARF2 frame unwind information. */ ++ ++int avr32_convert_to_reglist16 (int reglist8_vect); ++ ++static rtx ++emit_multi_reg_push (int reglist, int usePUSHM) ++{ ++ rtx insn; ++ rtx dwarf; ++ rtx tmp; ++ rtx reg; ++ int i; ++ int nr_regs; ++ int index = 0; ++ ++ if (usePUSHM) ++ { ++ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist))); ++ reglist = avr32_convert_to_reglist16 (reglist); ++ } ++ else ++ { ++ insn = emit_insn (gen_stm (stack_pointer_rtx, ++ gen_rtx_CONST_INT (SImode, reglist), ++ gen_rtx_CONST_INT (SImode, 1))); ++ } ++ ++ nr_regs = avr32_get_reg_mask_size (reglist) / 4; ++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1)); ++ ++ for (i = 15; i >= 0; i--) ++ { ++ if (reglist & (1 << i)) ++ { ++ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i)); ++ tmp = gen_rtx_SET (VOIDmode, ++ gen_rtx_MEM (SImode, ++ plus_constant (stack_pointer_rtx, ++ 4 * index)), reg); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 1 + index++) = tmp; ++ } ++ } ++ ++ tmp = gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ GEN_INT (-4 * nr_regs))); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 0) = tmp; ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf, ++ REG_NOTES (insn)); ++ return insn; ++} ++ ++rtx ++avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, int scalar_p) ++{ ++ ++ rtx result; ++ int i = 0, j; ++ ++ result = ++ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0))); ++ ++ if (write_back) ++ { ++ XVECEXP (result, 0, 0) ++ = gen_rtx_SET (GET_MODE (from), from, ++ plus_constant (from, count * 4)); ++ i = 1; ++ count++; ++ } ++ ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx unspec; ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM); ++ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec); ++ } ++ ++ return result; ++} ++ ++ ++rtx ++avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p) ++{ ++ rtx result; ++ int i = 0, j; ++ ++ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count)); ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ XVECEXP (result, 0, i) ++ = gen_rtx_SET (VOIDmode, mem, ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, regs[j]), ++ UNSPEC_STORE_MULTIPLE)); ++ } ++ ++ return result; ++} ++ ++ ++/* Move a block of memory if it is word aligned or we support unaligned ++ word memory accesses. The size must be maximum 64 bytes. */ ++int ++avr32_gen_movmemsi (rtx * operands) ++{ ++ HOST_WIDE_INT bytes_to_go; ++ rtx src, dst; ++ rtx st_src, st_dst; ++ int src_offset = 0, dst_offset = 0; ++ int block_size; ++ int dst_in_struct_p, src_in_struct_p; ++ int dst_scalar_p, src_scalar_p; ++ int unaligned; ++ ++ if (GET_CODE (operands[2]) != CONST_INT ++ || GET_CODE (operands[3]) != CONST_INT ++ || INTVAL (operands[2]) > 64 ++ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD)) ++ return 0; ++ ++ unaligned = (INTVAL (operands[3]) & 3) != 0; ++ ++ block_size = 4; ++ ++ st_dst = XEXP (operands[0], 0); ++ st_src = XEXP (operands[1], 0); ++ ++ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]); ++ dst_scalar_p = MEM_SCALAR_P (operands[0]); ++ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]); ++ src_scalar_p = MEM_SCALAR_P (operands[1]); ++ ++ dst = copy_to_mode_reg (SImode, st_dst); ++ src = copy_to_mode_reg (SImode, st_src); ++ ++ bytes_to_go = INTVAL (operands[2]); ++ ++ while (bytes_to_go) ++ { ++ enum machine_mode move_mode; ++ /* (Seems to be a problem with reloads for the movti pattern so this is ++ disabled until that problem is resolved) ++ UPDATE: Problem seems to be solved now.... */ ++ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned ++ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */ ++ && !TARGET_ARCH_UC) ++ move_mode = TImode; ++ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned) ++ move_mode = DImode; ++ else if (bytes_to_go >= GET_MODE_SIZE (SImode)) ++ move_mode = SImode; ++ else ++ move_mode = QImode; ++ ++ { ++ rtx src_mem; ++ rtx dst_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, dst, ++ GEN_INT (dst_offset))); ++ dst_offset += GET_MODE_SIZE (move_mode); ++ if ( 0 /* This causes an error in GCC. Think there is ++ something wrong in the gcse pass which causes REQ_EQUIV notes ++ to be wrong so disabling it for now. */ ++ && move_mode == TImode ++ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) ) ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_POST_INC (SImode, src)); ++ } ++ else ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, src, ++ GEN_INT (src_offset))); ++ src_offset += GET_MODE_SIZE (move_mode); ++ } ++ ++ bytes_to_go -= GET_MODE_SIZE (move_mode); ++ ++ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p; ++ MEM_SCALAR_P (dst_mem) = dst_scalar_p; ++ ++ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p; ++ MEM_SCALAR_P (src_mem) = src_scalar_p; ++ emit_move_insn (dst_mem, src_mem); ++ ++ } ++ } ++ ++ return 1; ++} ++ ++ ++/* Expand the prologue instruction. */ ++void ++avr32_expand_prologue (void) ++{ ++ rtx insn, dwarf; ++ unsigned long saved_reg_mask; ++ int reglist8 = 0; ++ ++ /* Naked functions do not have a prologue. */ ++ if (IS_NAKED (avr32_current_func_type ())) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ if (saved_reg_mask) ++ { ++ /* Must push used registers. */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePUSHM = TRUE; ++ reglist8 = 0; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be pushed. */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R4-R7 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed. */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ && !IS_FLASHVAULT (avr32_current_func_type ())) ++ { ++ /* Push LR */ ++ reglist8 |= 0x40; ++ } ++ ++ if (usePUSHM) ++ { ++ insn = emit_multi_reg_push (reglist8, TRUE); ++ } ++ else ++ { ++ insn = emit_multi_reg_push (saved_reg_mask, FALSE); ++ } ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* Prevent this instruction from being scheduled after any other ++ instructions. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Set frame pointer */ ++ if (frame_pointer_needed) ++ { ++ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ ++ if (get_frame_size () > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21")) ++ { ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ gen_rtx_CONST_INT ++ (SImode, ++ -get_frame_size ++ ())))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ else ++ { ++ /* Immediate is larger than k21 We must either check if we can use ++ one of the pushed reegisters as temporary storage or we must ++ make us a temp register by pushing a register to the stack. */ ++ rtx temp_reg, const_pool_entry, insn; ++ if (saved_reg_mask) ++ { ++ temp_reg = ++ gen_rtx_REG (SImode, ++ INTERNAL_REGNUM (avr32_get_saved_reg ++ (saved_reg_mask))); ++ } ++ else ++ { ++ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7)); ++ emit_move_insn (gen_rtx_MEM ++ (SImode, ++ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), ++ temp_reg); ++ } ++ ++ const_pool_entry = ++ force_const_mem (SImode, ++ gen_rtx_CONST_INT (SImode, get_frame_size ())); ++ emit_move_insn (temp_reg, const_pool_entry); ++ ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_MINUS (SImode, ++ stack_pointer_rtx, ++ temp_reg))); ++ ++ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, stack_pointer_rtx, ++ GEN_INT (-get_frame_size ()))); ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, ++ dwarf, REG_NOTES (insn)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ if (!saved_reg_mask) ++ { ++ insn = ++ emit_move_insn (temp_reg, ++ gen_rtx_MEM (SImode, ++ gen_rtx_POST_INC (SImode, ++ gen_rtx_REG ++ (SImode, ++ 13)))); ++ } ++ ++ /* Mark the temp register as dead */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg, ++ REG_NOTES (insn)); ++ ++ ++ } ++ ++ /* Prevent the the stack adjustment to be scheduled after any ++ instructions using the frame pointer. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Load GOT */ ++ if (flag_pic) ++ { ++ avr32_load_pic_register (); ++ ++ /* gcc does not know that load or call instructions might use the pic ++ register so it might schedule these instructions before the loading ++ of the pic register. To avoid this emit a barrier for now. TODO! ++ Find out a better way to let gcc know which instructions might use ++ the pic register. */ ++ emit_insn (gen_blockage ()); ++ } ++ return; ++} ++ ++ ++void ++avr32_set_return_address (rtx source, rtx scratch) ++{ ++ rtx addr; ++ unsigned long saved_regs; ++ ++ saved_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source); ++ else ++ { ++ if (frame_pointer_needed) ++ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM); ++ else ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16")) ++ { ++ addr = plus_constant (stack_pointer_rtx, get_frame_size ()); ++ } ++ else ++ { ++ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ()))); ++ addr = scratch; ++ } ++ emit_move_insn (gen_rtx_MEM (Pmode, addr), source); ++ } ++} ++ ++ ++/* Return the length of INSN. LENGTH is the initial length computed by ++ attributes in the machine-description file. */ ++int ++avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED, ++ int length ATTRIBUTE_UNUSED) ++{ ++ return length; ++} ++ ++ ++void ++avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED, ++ int iscond ATTRIBUTE_UNUSED, ++ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm) ++{ ++ ++ unsigned long saved_reg_mask; ++ int insert_ret = TRUE; ++ int reglist8 = 0; ++ int stack_adjustment = get_frame_size (); ++ unsigned int func_type = avr32_current_func_type (); ++ FILE *f = asm_out_file; ++ ++ /* Naked functions does not have an epilogue */ ++ if (IS_NAKED (func_type)) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (FALSE); ++ ++ /* Reset frame pointer */ ++ if (stack_adjustment > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21")) ++ { ++ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n", ++ -stack_adjustment); ++ } ++ else ++ { ++ /* TODO! Is it safe to use r8 as scratch?? */ ++ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n"); ++ } ++ } ++ ++ if (saved_reg_mask) ++ { ++ /* Must pop used registers */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePOPM = TRUE; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be popped */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePOPM) ++ /* All should be popped */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePOPM) ++ /* All should be pushed */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ /* Pop LR */ ++ reglist8 |= 0x40; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ && !IS_FLASHVAULT_IMPL (func_type)) ++ /* Pop LR into PC. */ ++ reglist8 |= 0x80; ++ ++ if (usePOPM) ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist8 (reglist8, (char *) reglist); ++ ++ if (reglist8 & 0x80) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tpopm\t%s\n", reglist); ++ ++ } ++ else ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist16 (saved_reg_mask, (char *) reglist); ++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist, ++ INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tldm\tsp++, %s\n", reglist); ++ ++ } ++ ++ } ++ ++ /* Stack adjustment for exception handler. */ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO)); ++ ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ fprintf (f, "\trete\n"); ++ } ++ else if (IS_FLASHVAULT (func_type)) ++ { ++ /* Normal return from Secure System call, increment SS_RAR before ++ returning. Use R8 as scratch. */ ++ fprintf (f, ++ "\t# Normal return from sscall.\n" ++ "\t# Increment SS_RAR before returning.\n" ++ "\t# Use R8 as scratch.\n" ++ "\tmfsr\tr8, 440\n" ++ "\tsub\tr8, -2\n" ++ "\tmtsr\t440, r8\n" ++ "\tretss\n"); ++ } ++ else if (insert_ret) ++ { ++ if (r12_imm) ++ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tretal\tr12\n"); ++ } ++} ++ ++void ++avr32_make_reglist16 (int reglist16_vect, char *reglist16_string) ++{ ++ int i; ++ bool first_reg = true; ++ /* Make sure reglist16_string is empty. */ ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (reglist16_vect & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat (reglist16_string, reg_names[INTERNAL_REGNUM (i)]); ++ } ++ } ++} ++ ++int ++avr32_convert_to_reglist16 (int reglist8_vect) ++{ ++ int reglist16_vect = 0; ++ if (reglist8_vect & 0x1) ++ reglist16_vect |= 0xF; ++ if (reglist8_vect & 0x2) ++ reglist16_vect |= 0xF0; ++ if (reglist8_vect & 0x4) ++ reglist16_vect |= 0x300; ++ if (reglist8_vect & 0x8) ++ reglist16_vect |= 0x400; ++ if (reglist8_vect & 0x10) ++ reglist16_vect |= 0x800; ++ if (reglist8_vect & 0x20) ++ reglist16_vect |= 0x1000; ++ if (reglist8_vect & 0x40) ++ reglist16_vect |= 0x4000; ++ if (reglist8_vect & 0x80) ++ reglist16_vect |= 0x8000; ++ ++ return reglist16_vect; ++} ++ ++void ++avr32_make_reglist8 (int reglist8_vect, char *reglist8_string) ++{ ++ /* Make sure reglist8_string is empty. */ ++ reglist8_string[0] = '\0'; ++ ++ if (reglist8_vect & 0x1) ++ strcpy (reglist8_string, "r0-r3"); ++ if (reglist8_vect & 0x2) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r4-r7") : ++ strcpy (reglist8_string, "r4-r7"); ++ if (reglist8_vect & 0x4) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r8-r9") : ++ strcpy (reglist8_string, "r8-r9"); ++ if (reglist8_vect & 0x8) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r10") : ++ strcpy (reglist8_string, "r10"); ++ if (reglist8_vect & 0x10) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r11") : ++ strcpy (reglist8_string, "r11"); ++ if (reglist8_vect & 0x20) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r12") : ++ strcpy (reglist8_string, "r12"); ++ if (reglist8_vect & 0x40) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", lr") : ++ strcpy (reglist8_string, "lr"); ++ if (reglist8_vect & 0x80) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", pc") : ++ strcpy (reglist8_string, "pc"); ++} ++ ++ ++int ++avr32_eh_return_data_regno (int n) ++{ ++ if (n >= 0 && n <= 3) ++ return 8 + n; ++ else ++ return INVALID_REGNUM; ++} ++ ++ ++/* Compute the distance from register FROM to register TO. ++ These can be the arg pointer, the frame pointer or ++ the stack pointer. ++ Typical stack layout looks like this: ++ ++ old stack pointer -> | | ++ ---- ++ | | \ ++ | | saved arguments for ++ | | vararg functions ++ arg_pointer -> | | / ++ -- ++ | | \ ++ | | call saved ++ | | registers ++ | | / ++ frame ptr -> -- ++ | | \ ++ | | local ++ | | variables ++ stack ptr --> | | / ++ -- ++ | | \ ++ | | outgoing ++ | | arguments ++ | | / ++ -- ++ ++ For a given funciton some or all of these stack compomnents ++ may not be needed, giving rise to the possibility of ++ eliminating some of the registers. ++ ++ The values returned by this function must reflect the behaviour ++ of avr32_expand_prologue() and avr32_compute_save_reg_mask(). ++ ++ The sign of the number returned reflects the direction of stack ++ growth, so the values are positive for all eliminations except ++ from the soft frame pointer to the hard frame pointer. */ ++int ++avr32_initial_elimination_offset (int from, int to) ++{ ++ int i; ++ int call_saved_regs = 0; ++ unsigned long saved_reg_mask; ++ unsigned int local_vars = get_frame_size (); ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (saved_reg_mask & (1 << i)) ++ call_saved_regs += 4; ++ } ++ ++ switch (from) ++ { ++ case ARG_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return call_saved_regs + local_vars; ++ case FRAME_POINTER_REGNUM: ++ return call_saved_regs; ++ default: ++ abort (); ++ } ++ case FRAME_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return local_vars; ++ default: ++ abort (); ++ } ++ default: ++ abort (); ++ } ++} ++ ++ ++/* ++ Returns a rtx used when passing the next argument to a function. ++ avr32_init_cumulative_args() and avr32_function_arg_advance() sets which ++ register to use. ++*/ ++rtx ++avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named) ++{ ++ int index = -1; ++ //unsigned long func_type = avr32_current_func_type (); ++ //int last_reg_index = (IS_FLASHVAULT(func_type) || IS_FLASHVAULT_IMPL(func_type) || cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ int last_reg_index = (cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* ++ The last time this macro is called, it is called with mode == VOIDmode, ++ and its result is passed to the call or call_value pattern as operands 2 ++ and 3 respectively. */ ++ if (mode == VOIDmode) ++ { ++ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */ ++ } ++ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named) ++ { ++ return NULL_RTX; ++ } ++ ++ if (arg_rsize == 8) ++ { ++ /* use r11:r10 or r9:r8. */ ++ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2))) ++ index = 1; ++ else if ((last_reg_index == 4) && ++ !(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4))) ++ index = 3; ++ else ++ index = -1; ++ } ++ else if (arg_rsize == 4) ++ { /* Use first available register */ ++ index = 0; ++ while (index <= last_reg_index && GET_USED_INDEX (cum, index)) ++ index++; ++ if (index > last_reg_index) ++ index = -1; ++ } ++ ++ SET_REG_INDEX (cum, index); ++ ++ if (GET_REG_INDEX (cum) >= 0) ++ return gen_rtx_REG (mode, avr32_function_arg_reglist[GET_REG_INDEX (cum)]); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Set the register used for passing the first argument to a function. */ ++void ++avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, ++ tree fntype ATTRIBUTE_UNUSED, ++ rtx libname ATTRIBUTE_UNUSED, ++ tree fndecl) ++{ ++ /* Set all registers as unused. */ ++ SET_INDEXES_UNUSED (cum); ++ ++ /* Reset uses_anonymous_args */ ++ cum->uses_anonymous_args = 0; ++ ++ /* Reset size of stack pushed arguments */ ++ cum->stack_pushed_args_size = 0; ++ ++ cum->flashvault_func = (fndecl && (has_attribute_p (fndecl,"flashvault") || has_attribute_p (fndecl,"flashvault_impl"))); ++} ++ ++ ++/* ++ Set register used for passing the next argument to a function. Only the ++ Scratch Registers are used. ++ ++ number name ++ 15 r15 PC ++ 14 r14 LR ++ 13 r13 _SP_________ ++ FIRST_CUM_REG 12 r12 _||_ ++ 10 r11 || ++ 11 r10 _||_ Scratch Registers ++ 8 r9 || ++ LAST_SCRATCH_REG 9 r8 _\/_________ ++ 6 r7 /\ ++ 7 r6 || ++ 4 r5 || ++ 5 r4 || ++ 2 r3 || ++ 3 r2 || ++ 0 r1 || ++ 1 r0 _||_________ ++ ++*/ ++void ++avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named ATTRIBUTE_UNUSED) ++{ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* If the argument had to be passed in stack, no register is used. */ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type)) ++ { ++ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type)); ++ return; ++ } ++ ++ /* Mark the used registers as "used". */ ++ if (GET_REG_INDEX (cum) >= 0) ++ { ++ SET_USED_INDEX (cum, GET_REG_INDEX (cum)); ++ if (arg_rsize == 8) ++ { ++ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1)); ++ } ++ } ++ else ++ { ++ /* Had to use stack */ ++ cum->stack_pushed_args_size += arg_rsize; ++ } ++} ++ ++ ++/* ++ Defines witch direction to go to find the next register to use if the ++ argument is larger then one register or for arguments shorter than an ++ int which is not promoted, such as the last part of structures with ++ size not a multiple of 4. */ ++enum direction ++avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type) ++{ ++ /* Pad upward for all aggregates except byte and halfword sized aggregates ++ which can be passed in registers. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (int_size_in_bytes (type) != 1) ++ && !((int_size_in_bytes (type) == 2) ++ && TYPE_ALIGN_UNIT (type) >= 2) ++ && (int_size_in_bytes (type) & 0x3)) ++ { ++ return upward; ++ } ++ ++ return downward; ++} ++ ++ ++/* Return a rtx used for the return value from a function call. */ ++rtx ++avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED) ++{ ++ if (avr32_return_in_memory (type, func)) ++ return NULL_RTX; ++ ++ if (int_size_in_bytes (type) <= 4) ++ { ++ enum machine_mode mode = TYPE_MODE (type); ++ int unsignedp = 0; ++ PROMOTE_FUNCTION_MODE (mode, unsignedp, type); ++ return gen_rtx_REG (mode, RET_REGISTER); ++ } ++ else if (int_size_in_bytes (type) <= 8) ++ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11)); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Return a rtx used for the return value from a library function call. */ ++rtx ++avr32_libcall_value (enum machine_mode mode) ++{ ++ ++ if (GET_MODE_SIZE (mode) <= 4) ++ return gen_rtx_REG (mode, RET_REGISTER); ++ else if (GET_MODE_SIZE (mode) <= 8) ++ return gen_rtx_REG (mode, INTERNAL_REGNUM (11)); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* Return TRUE if X references a SYMBOL_REF. */ ++int ++symbol_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == SYMBOL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (symbol_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X references a LABEL_REF. */ ++int ++label_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == LABEL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (label_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X contains a MEM expression. */ ++int ++mem_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (MEM_P (x)) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (mem_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++int ++avr32_legitimate_pic_operand_p (rtx x) ++{ ++ ++ /* We can't have const, this must be broken down to a symbol. */ ++ if (GET_CODE (x) == CONST) ++ return FALSE; ++ ++ /* Can't access symbols or labels via the constant pool either */ ++ if ((GET_CODE (x) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (x) ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++rtx ++legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, ++ rtx reg) ++{ ++ ++ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF) ++ { ++ int subregs = 0; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ ++ subregs = 1; ++ } ++ ++ emit_move_insn (reg, orig); ++ ++ /* Only set current function as using pic offset table if flag_pic is ++ set. This is because this function is also used if ++ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */ ++ if (flag_pic) ++ crtl->uses_pic_offset_table = 1; ++ ++ /* Put a REG_EQUAL note on this insn, so that it can be optimized by ++ loop. */ ++ return reg; ++ } ++ else if (GET_CODE (orig) == CONST) ++ { ++ rtx base, offset; ++ ++ if (flag_pic ++ && GET_CODE (XEXP (orig, 0)) == PLUS ++ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) ++ return orig; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ } ++ ++ if (GET_CODE (XEXP (orig, 0)) == PLUS) ++ { ++ base = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); ++ offset = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, ++ base == reg ? 0 : reg); ++ } ++ else ++ abort (); ++ ++ if (GET_CODE (offset) == CONST_INT) ++ { ++ /* The base register doesn't really matter, we only want to test ++ the index for the appropriate mode. */ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21")) ++ { ++ if (can_create_pseudo_p ()) ++ offset = force_reg (Pmode, offset); ++ else ++ abort (); ++ } ++ ++ if (GET_CODE (offset) == CONST_INT) ++ return plus_constant (base, INTVAL (offset)); ++ } ++ ++ return gen_rtx_PLUS (Pmode, base, offset); ++ } ++ ++ return orig; ++} ++ ++ ++/* Generate code to load the PIC register. */ ++void ++avr32_load_pic_register (void) ++{ ++ rtx l1, pic_tmp; ++ rtx global_offset_table; ++ ++ if ((crtl->uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT) ++ return; ++ ++ if (!flag_pic) ++ abort (); ++ ++ l1 = gen_label_rtx (); ++ ++ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ pic_tmp = ++ gen_rtx_CONST (Pmode, ++ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1), ++ global_offset_table)); ++ emit_insn (gen_pic_load_addr ++ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp))); ++ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1)); ++ ++ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp ++ can cause life info to screw up. */ ++ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); ++} ++ ++ ++/* This hook should return true if values of type type are returned at the most ++ significant end of a register (in other words, if they are padded at the ++ least significant end). You can assume that type is returned in a register; ++ the caller is required to check this. Note that the register provided by ++ FUNCTION_VALUE must be able to hold the complete return value. For example, ++ if a 1-, 2- or 3-byte structure is returned at the most significant end of a ++ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */ ++bool ++avr32_return_in_msb (tree type ATTRIBUTE_UNUSED) ++{ ++ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) || ++ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return ++ false; else return true; */ ++ ++ return false; ++} ++ ++ ++/* ++ Returns one if a certain function value is going to be returned in memory ++ and zero if it is going to be returned in a register. ++ ++ BLKmode and all other modes that is larger than 64 bits are returned in ++ memory. ++*/ ++bool ++avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED) ++{ ++ if (TYPE_MODE (type) == VOIDmode) ++ return false; ++ ++ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD) ++ || int_size_in_bytes (type) == -1) ++ { ++ return true; ++ } ++ ++ /* If we have an aggregate then use the same mechanism as when checking if ++ it should be passed on the stack. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type)) ++ return true; ++ ++ return false; ++} ++ ++ ++/* Output the constant part of the trampoline. ++ lddpc r0, pc[0x8:e] ; load static chain register ++ lddpc pc, pc[0x8:e] ; jump to subrutine ++ .long 0 ; Address to static chain, ++ ; filled in by avr32_initialize_trampoline() ++ .long 0 ; Address to subrutine, ++ ; filled in by avr32_initialize_trampoline() ++*/ ++void ++avr32_trampoline_template (FILE * file) ++{ ++ fprintf (file, "\tlddpc r0, pc[8]\n"); ++ fprintf (file, "\tlddpc pc, pc[8]\n"); ++ /* make room for the address of the static chain. */ ++ fprintf (file, "\t.long\t0\n"); ++ /* make room for the address to the subrutine. */ ++ fprintf (file, "\t.long\t0\n"); ++} ++ ++ ++/* Initialize the variable parts of a trampoline. */ ++void ++avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain) ++{ ++ /* Store the address to the static chain. */ ++ emit_move_insn (gen_rtx_MEM ++ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)), ++ static_chain); ++ ++ /* Store the address to the function. */ ++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)), ++ fnaddr); ++ ++ emit_insn (gen_cache (gen_rtx_REG (SImode, 13), ++ gen_rtx_CONST_INT (SImode, ++ AVR32_CACHE_INVALIDATE_ICACHE))); ++} ++ ++ ++/* Return nonzero if X is valid as an addressing register. */ ++int ++avr32_address_register_rtx_p (rtx x, int strict_p) ++{ ++ int regno; ++ ++ if (!register_operand(x, GET_MODE(x))) ++ return 0; ++ ++ /* If strict we require the register to be a hard register. */ ++ if (strict_p ++ && !REG_P(x)) ++ return 0; ++ ++ regno = REGNO (x); ++ ++ if (strict_p) ++ return REGNO_OK_FOR_BASE_P (regno); ++ ++ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER); ++} ++ ++ ++/* Return nonzero if INDEX is valid for an address index operand. */ ++int ++avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p) ++{ ++ enum rtx_code code = GET_CODE (index); ++ ++ if (GET_MODE_SIZE (mode) > 8) ++ return 0; ++ ++ /* Standard coprocessor addressing modes. */ ++ if (code == CONST_INT) ++ { ++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16"); ++ } ++ ++ if (avr32_address_register_rtx_p (index, strict_p)) ++ return 1; ++ ++ if (code == MULT) ++ { ++ rtx xiop0 = XEXP (index, 0); ++ rtx xiop1 = XEXP (index, 1); ++ return ((avr32_address_register_rtx_p (xiop0, strict_p) ++ && power_of_two_operand (xiop1, SImode) ++ && (INTVAL (xiop1) <= 8)) ++ || (avr32_address_register_rtx_p (xiop1, strict_p) ++ && power_of_two_operand (xiop0, SImode) ++ && (INTVAL (xiop0) <= 8))); ++ } ++ else if (code == ASHIFT) ++ { ++ rtx op = XEXP (index, 1); ++ ++ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p) ++ && GET_CODE (op) == CONST_INT ++ && INTVAL (op) > 0 && INTVAL (op) <= 3); ++ } ++ ++ return 0; ++} ++ ++ ++/* ++ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if ++ the RTX x is a legitimate memory address. ++ ++ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS ++ if it is. ++*/ ++ ++ ++/* Forward declaration */ ++int is_minipool_label (rtx label); ++ ++int ++avr32_legitimate_address (enum machine_mode mode, rtx x, int strict) ++{ ++ ++ switch (GET_CODE (x)) ++ { ++ case REG: ++ return avr32_address_register_rtx_p (x, strict); ++ case CONST_INT: ++ return ((mode==SImode) && TARGET_RMW_ADDRESSABLE_DATA ++ && CONST_OK_FOR_CONSTRAINT_P(INTVAL(x), 'K', "Ks17")); ++ case CONST: ++ { ++ rtx label = avr32_find_symbol (x); ++ if (label ++ && ++ (/* ++ If we enable (const (plus (symbol_ref ...))) type constant ++ pool entries we must add support for it in the predicates and ++ in the minipool generation in avr32_reorg(). ++ (CONSTANT_POOL_ADDRESS_P (label) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (label)) ++ || label_mentioned_p (get_pool_constant (label))))) ++ ||*/ ++ ((GET_CODE (label) == LABEL_REF) ++ && GET_CODE (XEXP (label, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (label, 0))) ++ /*|| ((GET_CODE (label) == SYMBOL_REF) ++ && mode == SImode ++ && SYMBOL_REF_RMW_ADDR(label))*/)) ++ { ++ return TRUE; ++ } ++ } ++ break; ++ case LABEL_REF: ++ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (x, 0))) ++ { ++ return TRUE; ++ } ++ break; ++ case SYMBOL_REF: ++ { ++ if (CONSTANT_POOL_ADDRESS_P (x) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return TRUE; ++ else if (SYMBOL_REF_RCALL_FUNCTION_P (x) ++ || (mode == SImode ++ && SYMBOL_REF_RMW_ADDR (x))) ++ return TRUE; ++ break; ++ } ++ case PRE_DEC: /* (pre_dec (...)) */ ++ case POST_INC: /* (post_inc (...)) */ ++ return avr32_address_register_rtx_p (XEXP (x, 0), strict); ++ case PLUS: /* (plus (...) (...)) */ ++ { ++ rtx xop0 = XEXP (x, 0); ++ rtx xop1 = XEXP (x, 1); ++ ++ return ((avr32_address_register_rtx_p (xop0, strict) ++ && avr32_legitimate_index_p (mode, xop1, strict)) ++ || (avr32_address_register_rtx_p (xop1, strict) ++ && avr32_legitimate_index_p (mode, xop0, strict))); ++ } ++ default: ++ break; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_move (HOST_WIDE_INT c) ++{ ++ if ( TARGET_V2_INSNS ) ++ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21") ++ /* movh instruction */ ++ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) ); ++ else ++ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21"); ++} ++ ++ ++int ++avr32_const_double_immediate (rtx value) ++{ ++ HOST_WIDE_INT hi, lo; ++ ++ if (GET_CODE (value) != CONST_DOUBLE) ++ return FALSE; ++ ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (value))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value), ++ GET_MODE (value)); ++ lo = target_float[0]; ++ hi = target_float[1]; ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (value); ++ lo = CONST_DOUBLE_LOW (value); ++ } ++ ++ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21") ++ && (GET_MODE (value) == SFmode ++ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21"))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_legitimate_constant_p (rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ return avr32_const_ok_for_move (INTVAL (x)); ++ case CONST_DOUBLE: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ if (GET_MODE (x) == SFmode ++ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode) ++ return avr32_const_double_immediate (x); ++ else ++ return 0; ++ case LABEL_REF: ++ case SYMBOL_REF: ++ return avr32_find_symbol (x) && (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS); ++ case CONST: ++ case HIGH: ++ case CONST_VECTOR: ++ return 0; ++ default: ++ printf ("%s():\n", __FUNCTION__); ++ debug_rtx (x); ++ return 1; ++ } ++} ++ ++ ++/* Strip any special encoding from labels */ ++const char * ++avr32_strip_name_encoding (const char *name) ++{ ++ const char *stripped = name; ++ ++ while (1) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ break; ++ default: ++ return stripped; ++ } ++ } ++} ++ ++ ++ ++/* Do anything needed before RTL is emitted for each function. */ ++static struct machine_function * ++avr32_init_machine_status (void) ++{ ++ struct machine_function *machine; ++ machine = ++ (machine_function *) ggc_alloc_cleared (sizeof (machine_function)); ++ ++#if AVR32_FT_UNKNOWN != 0 ++ machine->func_type = AVR32_FT_UNKNOWN; ++#endif ++ ++ machine->minipool_label_head = 0; ++ machine->minipool_label_tail = 0; ++ machine->ifcvt_after_reload = 0; ++ return machine; ++} ++ ++ ++void ++avr32_init_expanders (void) ++{ ++ /* Arrange to initialize and mark the machine per-function status. */ ++ init_machine_status = avr32_init_machine_status; ++} ++ ++ ++/* Return an RTX indicating where the return address to the ++ calling function can be found. */ ++rtx ++avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) ++{ ++ if (count != 0) ++ return NULL_RTX; ++ ++ return get_hard_reg_initial_val (Pmode, LR_REGNUM); ++} ++ ++ ++void ++avr32_encode_section_info (tree decl, rtx rtl, int first) ++{ ++ default_encode_section_info(decl, rtl, first); ++ ++ if ( TREE_CODE (decl) == VAR_DECL ++ && (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF) ++ && (lookup_attribute ("rmw_addressable", DECL_ATTRIBUTES (decl)) ++ || TARGET_RMW_ADDRESSABLE_DATA) ){ ++ if ( !TARGET_RMW || flag_pic ) ++ return; ++ // { ++ // warning ("Using RMW addressable data with an arch that does not support RMW instructions."); ++ // return; ++ // } ++ // ++ //if ( flag_pic ) ++ // { ++ // warning ("Using RMW addressable data with together with -fpic switch. Can not use RMW instruction when compiling with -fpic."); ++ // return; ++ // } ++ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ } ++} ++ ++ ++void ++avr32_asm_output_label (FILE * stream, const char *name) ++{ ++ name = avr32_strip_name_encoding (name); ++ ++ /* Print the label. */ ++ assemble_name (stream, name); ++ fprintf (stream, ":\n"); ++} ++ ++ ++void ++avr32_asm_weaken_label (FILE * stream, const char *name) ++{ ++ fprintf (stream, "\t.weak "); ++ assemble_name (stream, name); ++ fprintf (stream, "\n"); ++} ++ ++ ++/* ++ Checks if a labelref is equal to a reserved word in the assembler. If it is, ++ insert a '_' before the label name. ++*/ ++void ++avr32_asm_output_labelref (FILE * stream, const char *name) ++{ ++ int verbatim = FALSE; ++ const char *stripped = name; ++ int strip_finished = FALSE; ++ ++ while (!strip_finished) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ verbatim = TRUE; ++ break; ++ default: ++ strip_finished = TRUE; ++ break; ++ } ++ } ++ ++ if (verbatim) ++ fputs (stripped, stream); ++ else ++ asm_fprintf (stream, "%U%s", stripped); ++} ++ ++ ++/* ++ Check if the comparison in compare_exp is redundant ++ for the condition given in next_cond given that the ++ needed flags are already set by an earlier instruction. ++ Uses cc_prev_status to check this. ++ ++ Returns NULL_RTX if the compare is not redundant ++ or the new condition to use in the conditional ++ instruction if the compare is redundant. ++*/ ++static rtx ++is_compare_redundant (rtx compare_exp, rtx next_cond) ++{ ++ int z_flag_valid = FALSE; ++ int n_flag_valid = FALSE; ++ rtx new_cond; ++ ++ if (GET_CODE (compare_exp) != COMPARE ++ && GET_CODE (compare_exp) != AND) ++ return NULL_RTX; ++ ++ ++ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp)) ++ { ++ /* cc0 already contains the correct comparison -> delete cmp insn */ ++ return next_cond; ++ } ++ ++ if (GET_MODE (compare_exp) != SImode) ++ return NULL_RTX; ++ ++ switch (cc_prev_status.mdep.flags) ++ { ++ case CC_SET_VNCZ: ++ case CC_SET_NCZ: ++ n_flag_valid = TRUE; ++ case CC_SET_CZ: ++ case CC_SET_Z: ++ z_flag_valid = TRUE; ++ } ++ ++ if (cc_prev_status.mdep.value ++ && GET_CODE (compare_exp) == COMPARE ++ && REG_P (XEXP (compare_exp, 0)) ++ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value) ++ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT ++ && next_cond != NULL_RTX) ++ { ++ if (INTVAL (XEXP (compare_exp, 1)) == 0 ++ && z_flag_valid ++ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE)) ++ /* We can skip comparison Z flag is already reflecting ops[0] */ ++ return next_cond; ++ else if (n_flag_valid ++ && ((INTVAL (XEXP (compare_exp, 1)) == 0 ++ && (GET_CODE (next_cond) == GE ++ || GET_CODE (next_cond) == LT)) ++ || (INTVAL (XEXP (compare_exp, 1)) == -1 ++ && (GET_CODE (next_cond) == GT ++ || GET_CODE (next_cond) == LE)))) ++ { ++ /* We can skip comparison N flag is already reflecting ops[0], ++ which means that we can use the mi/pl conditions to check if ++ ops[0] is GE or LT 0. */ ++ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT)) ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_PL); ++ else ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_MI); ++ return new_cond; ++ } ++ } ++ return NULL_RTX; ++} ++ ++ ++/* Updates cc_status. */ ++void ++avr32_notice_update_cc (rtx exp, rtx insn) ++{ ++ enum attr_cc attr_cc = get_attr_cc (insn); ++ ++ if ( attr_cc == CC_SET_Z_IF_NOT_V2 ) ++ { ++ if (TARGET_V2_INSNS) ++ attr_cc = CC_NONE; ++ else ++ attr_cc = CC_SET_Z; ++ } ++ ++ switch (attr_cc) ++ { ++ case CC_CALL_SET: ++ CC_STATUS_INIT; ++ /* Check if the function call returns a value in r12 */ ++ if (REG_P (recog_data.operand[0]) ++ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM) ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.value = ++ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx); ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ ++ } ++ break; ++ case CC_COMPARE: ++ { ++ /* Check that compare will not be optimized away if so nothing should ++ be done */ ++ rtx compare_exp = SET_SRC (exp); ++ /* Check if we have a tst expression. If so convert it to a ++ compare with 0. */ ++ if ( REG_P (SET_SRC (exp)) ) ++ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)), ++ SET_SRC (exp), ++ const0_rtx); ++ ++ if (!next_insn_emits_cmp (insn) ++ && (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) == NULL_RTX)) ++ { ++ ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ cc_status.flags = 0; ++ cc_status.mdep.value = compare_exp; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ } ++ break; ++ case CC_CMP_COND_INSN: ++ { ++ /* Conditional insn that emit the compare itself. */ ++ rtx cmp; ++ rtx cmp_op0, cmp_op1; ++ rtx cond; ++ rtx dest; ++ rtx next_insn = next_nonnote_insn (insn); ++ ++ if ( GET_CODE (exp) == COND_EXEC ) ++ { ++ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0); ++ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1); ++ cond = COND_EXEC_TEST (exp); ++ dest = SET_DEST (COND_EXEC_CODE (exp)); ++ } ++ else ++ { ++ /* If then else conditional. compare operands are in operands ++ 4 and 5. */ ++ cmp_op0 = recog_data.operand[4]; ++ cmp_op1 = recog_data.operand[5]; ++ cond = recog_data.operand[1]; ++ dest = SET_DEST (exp); ++ } ++ ++ if ( GET_CODE (cmp_op0) == AND ) ++ cmp = cmp_op0; ++ else ++ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0), ++ cmp_op0, ++ cmp_op1); ++ ++ /* Check if the conditional insns updates a register present ++ in the comparison, if so then we must reset the cc_status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) != COND_EXEC ) ++ { ++ CC_STATUS_INIT; ++ } ++ else if (is_compare_redundant (cmp, cond) == NULL_RTX) ++ { ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ if ( GET_CODE (cmp_op0) == AND ) ++ { ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.flags = CC_SET_Z; ++ } ++ else ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ } ++ cc_status.mdep.value = cmp; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ ++ ++ /* Check if we have a COND_EXEC insn which updates one ++ of the registers in the compare status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) == COND_EXEC ) ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ ++ if ( cc_status.mdep.cond_exec_cmp_clobbered ++ && GET_CODE (exp) == COND_EXEC ++ && next_insn != NULL ++ && INSN_P (next_insn) ++ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0) ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1) ++ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) ) ++ { ++ /* We have a sequence of conditional insns where the compare status has been clobbered ++ since the compare no longer reflects the content of the values to compare. */ ++ CC_STATUS_INIT; ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ } ++ ++ } ++ break; ++ case CC_BLD: ++ /* Bit load is kind of like an inverted testsi, because the Z flag is ++ inverted */ ++ CC_STATUS_INIT; ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.value = SET_SRC (exp); ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ case CC_NONE: ++ /* Insn does not affect CC at all. Check if the instruction updates ++ some of the register currently reflected in cc0 */ ++ ++ if ((GET_CODE (exp) == SET) ++ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.value2) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ ++ /* If this is a parallel we must step through each of the parallel ++ expressions */ ++ if (GET_CODE (exp) == PARALLEL) ++ { ++ int i; ++ for (i = 0; i < XVECLEN (exp, 0); ++i) ++ { ++ rtx vec_exp = XVECEXP (exp, 0, i); ++ if ((GET_CODE (vec_exp) == SET) ++ && (cc_status.value1 || cc_status.value2 ++ || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.value2) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ } ++ } ++ ++ /* Check if we have memory opartions with post_inc or pre_dec on the ++ register currently reflected in cc0 */ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_SRC (exp)) == MEM ++ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_DEST (exp)) == MEM ++ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ break; ++ ++ case CC_SET_VNCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_NCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_NCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_CZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_CZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_Z: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_CLOBBER: ++ CC_STATUS_INIT; ++ break; ++ ++ default: ++ CC_STATUS_INIT; ++ } ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand x. x is an RTL expression. ++*/ ++void ++avr32_print_operand (FILE * stream, rtx x, int code) ++{ ++ int error = 0; ++ ++ if ( code == '?' ) ++ { ++ /* Predicable instruction, print condition code */ ++ ++ /* If the insn should not be conditional then do nothing. */ ++ if ( current_insn_predicate == NULL_RTX ) ++ return; ++ ++ /* Set x to the predicate to force printing ++ the condition later on. */ ++ x = current_insn_predicate; ++ ++ /* Reverse condition if useing bld insn. */ ++ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND ) ++ x = reversed_condition (current_insn_predicate); ++ } ++ else if ( code == '!' ) ++ { ++ /* Output compare for conditional insn if needed. */ ++ rtx new_cond; ++ gcc_assert ( current_insn_predicate != NULL_RTX ); ++ new_cond = avr32_output_cmp(current_insn_predicate, ++ GET_MODE(XEXP(current_insn_predicate,0)), ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)); ++ ++ /* Check if the new condition is a special avr32 condition ++ specified using UNSPECs. If so we must handle it differently. */ ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ current_insn_predicate = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(current_insn_predicate, GET_CODE(new_cond)); ++ } ++ return; ++ } ++ ++ switch (GET_CODE (x)) ++ { ++ case UNSPEC: ++ switch (XINT (x, 1)) ++ { ++ case UNSPEC_COND_PL: ++ if (code == 'i') ++ fputs ("mi", stream); ++ else ++ fputs ("pl", stream); ++ break; ++ case UNSPEC_COND_MI: ++ if (code == 'i') ++ fputs ("pl", stream); ++ else ++ fputs ("mi", stream); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case EQ: ++ if (code == 'i') ++ fputs ("ne", stream); ++ else ++ fputs ("eq", stream); ++ break; ++ case NE: ++ if (code == 'i') ++ fputs ("eq", stream); ++ else ++ fputs ("ne", stream); ++ break; ++ case GT: ++ if (code == 'i') ++ fputs ("le", stream); ++ else ++ fputs ("gt", stream); ++ break; ++ case GTU: ++ if (code == 'i') ++ fputs ("ls", stream); ++ else ++ fputs ("hi", stream); ++ break; ++ case LT: ++ if (code == 'i') ++ fputs ("ge", stream); ++ else ++ fputs ("lt", stream); ++ break; ++ case LTU: ++ if (code == 'i') ++ fputs ("hs", stream); ++ else ++ fputs ("lo", stream); ++ break; ++ case GE: ++ if (code == 'i') ++ fputs ("lt", stream); ++ else ++ fputs ("ge", stream); ++ break; ++ case GEU: ++ if (code == 'i') ++ fputs ("lo", stream); ++ else ++ fputs ("hs", stream); ++ break; ++ case LE: ++ if (code == 'i') ++ fputs ("gt", stream); ++ else ++ fputs ("le", stream); ++ break; ++ case LEU: ++ if (code == 'i') ++ fputs ("hi", stream); ++ else ++ fputs ("ls", stream); ++ break; ++ case CONST_INT: ++ { ++ HOST_WIDE_INT value = INTVAL (x); ++ ++ switch (code) ++ { ++ case 'm': ++ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD ) ++ { ++ /* A const_int can be used to represent DImode constants. */ ++ value >>= BITS_PER_WORD; ++ } ++ /* We might get a const_int immediate for setting a DI register, ++ we then must then return the correct sign extended DI. The most ++ significant word is just a sign extension. */ ++ else if (value < 0) ++ value = -1; ++ else ++ value = 0; ++ break; ++ case 'i': ++ value++; ++ break; ++ case 'p': ++ { ++ /* Set to bit position of first bit set in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (value & (1 << i)) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'z': ++ { ++ /* Set to bit position of first bit cleared in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (!(value & (1 << i))) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'r': ++ { ++ /* Reglist 8 */ ++ char op[50]; ++ op[0] = '\0'; ++ ++ if (value & 0x01) ++ strcpy (op, "r0-r3"); ++ if (value & 0x02) ++ strlen (op) ? strcat (op, ", r4-r7") : strcpy (op,"r4-r7"); ++ if (value & 0x04) ++ strlen (op) ? strcat (op, ", r8-r9") : strcpy (op,"r8-r9"); ++ if (value & 0x08) ++ strlen (op) ? strcat (op, ", r10") : strcpy (op,"r10"); ++ if (value & 0x10) ++ strlen (op) ? strcat (op, ", r11") : strcpy (op,"r11"); ++ if (value & 0x20) ++ strlen (op) ? strcat (op, ", r12") : strcpy (op,"r12"); ++ if (value & 0x40) ++ strlen (op) ? strcat (op, ", lr") : strcpy (op, "lr"); ++ if (value & 0x80) ++ strlen (op) ? strcat (op, ", pc") : strcpy (op, "pc"); ++ ++ fputs (op, stream); ++ return; ++ } ++ case 's': ++ { ++ /* Reglist 16 */ ++ char reglist16_string[100]; ++ int i; ++ bool first_reg = true; ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (value & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat(reglist16_string,reg_names[INTERNAL_REGNUM(i)]); ++ } ++ } ++ fputs (reglist16_string, stream); ++ return; ++ } ++ case 'h': ++ /* Print halfword part of word */ ++ fputs (value ? "b" : "t", stream); ++ return; ++ } ++ ++ /* Print Value */ ++ fprintf (stream, "%d", value); ++ break; ++ } ++ case CONST_DOUBLE: ++ { ++ HOST_WIDE_INT hi, lo; ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (x))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x), ++ GET_MODE (x)); ++ /* For doubles the most significant part starts at index 0. */ ++ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ++ { ++ hi = target_float[0]; ++ lo = target_float[1]; ++ } ++ else ++ { ++ lo = target_float[0]; ++ } ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (x); ++ lo = CONST_DOUBLE_LOW (x); ++ } ++ ++ if (code == 'm') ++ fprintf (stream, "%ld", hi); ++ else ++ fprintf (stream, "%ld", lo); ++ ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1))); ++ break; ++ case REG: ++ /* Swap register name if the register is DImode or DFmode. */ ++ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode) ++ { ++ /* Double register must have an even numbered address */ ++ gcc_assert (!(REGNO (x) % 2)); ++ if (code == 'm') ++ fputs (reg_names[true_regnum (x)], stream); ++ else ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ } ++ else if (GET_MODE (x) == TImode) ++ { ++ switch (code) ++ { ++ case 'T': ++ fputs (reg_names[true_regnum (x)], stream); ++ break; ++ case 'U': ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ break; ++ case 'L': ++ fputs (reg_names[true_regnum (x) + 2], stream); ++ break; ++ case 'B': ++ fputs (reg_names[true_regnum (x) + 3], stream); ++ break; ++ default: ++ fprintf (stream, "%s, %s, %s, %s", ++ reg_names[true_regnum (x) + 3], ++ reg_names[true_regnum (x) + 2], ++ reg_names[true_regnum (x) + 1], ++ reg_names[true_regnum (x)]); ++ break; ++ } ++ } ++ else ++ { ++ fputs (reg_names[true_regnum (x)], stream); ++ } ++ break; ++ case CODE_LABEL: ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, x); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (x, 0))) ++ { ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (x, 0)); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (XEXP (x, 0), 0))) ++ { ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ break; ++ default: ++ error = 1; ++ break; ++ } ++ break; ++ case REG: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ if (code != 'p') ++ fputs ("[0]", stream); ++ break; ++ case PRE_DEC: ++ fputs ("--", stream); ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ break; ++ case POST_INC: ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ fputs ("++", stream); ++ break; ++ case PLUS: ++ { ++ rtx op0 = XEXP (XEXP (x, 0), 0); ++ rtx op1 = XEXP (XEXP (x, 0), 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, ++ 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0)); ++ fprintf (stream, " + %ld", ++ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))); ++ break; ++ case CONST_INT: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case MULT: ++ { ++ int value = INTVAL (XEXP (x, 1)); ++ ++ /* Convert immediate in multiplication into a shift immediate */ ++ switch (value) ++ { ++ case 2: ++ value = 1; ++ break; ++ case 4: ++ value = 2; ++ break; ++ case 8: ++ value = 3; ++ break; ++ default: ++ value = 0; ++ } ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ value); ++ break; ++ } ++ case ASHIFT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ break; ++ case LSHIFTRT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ fprintf (stream, ">>"); ++ break; ++ case PARALLEL: ++ { ++ /* Load store multiple */ ++ int i; ++ int count = XVECLEN (x, 0); ++ int reglist16 = 0; ++ char reglist16_string[100]; ++ ++ for (i = 0; i < count; ++i) ++ { ++ rtx vec_elm = XVECEXP (x, 0, i); ++ if (GET_MODE (vec_elm) != SET) ++ { ++ debug_rtx (vec_elm); ++ internal_error ("Unknown element in parallel expression!"); ++ } ++ if (GET_MODE (XEXP (vec_elm, 0)) == REG) ++ { ++ /* Load multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0))); ++ } ++ else ++ { ++ /* Store multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1))); ++ } ++ } ++ ++ avr32_make_reglist16 (reglist16, reglist16_string); ++ fputs (reglist16_string, stream); ++ ++ break; ++ } ++ ++ case PLUS: ++ { ++ rtx op0 = XEXP (x, 0); ++ rtx op1 = XEXP (x, 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ ++ default: ++ error = 1; ++ } ++ ++ if (error) ++ { ++ debug_rtx (x); ++ internal_error ("Illegal expression for avr32_print_operand"); ++ } ++} ++ ++rtx ++avr32_get_note_reg_equiv (rtx insn) ++{ ++ rtx note; ++ ++ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); ++ ++ if (note != NULL_RTX) ++ return XEXP (note, 0); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand that is a memory reference whose address is x. x is an RTL ++ expression. ++ ++ ToDo: fixme. ++*/ ++void ++avr32_print_operand_address (FILE * stream, rtx x) ++{ ++ fprintf (stream, "(%d) /* address */", REGNO (x)); ++} ++ ++ ++/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */ ++bool ++avr32_got_mentioned_p (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ if (GET_CODE (addr) == SYMBOL_REF) ++ { ++ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_"); ++ } ++ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS) ++ { ++ bool l1, l2; ++ ++ l1 = avr32_got_mentioned_p (XEXP (addr, 0)); ++ l2 = avr32_got_mentioned_p (XEXP (addr, 1)); ++ return l1 || l2; ++ } ++ return false; ++} ++ ++ ++/* Find the symbol in an address expression. */ ++rtx ++avr32_find_symbol (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ ++ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF) ++ return addr; ++ if (GET_CODE (addr) == PLUS) ++ { ++ rtx l1, l2; ++ ++ l1 = avr32_find_symbol (XEXP (addr, 0)); ++ l2 = avr32_find_symbol (XEXP (addr, 1)); ++ if (l1 != NULL_RTX && l2 == NULL_RTX) ++ return l1; ++ else if (l1 == NULL_RTX && l2 != NULL_RTX) ++ return l2; ++ } ++ ++ return NULL_RTX; ++} ++ ++ ++/* Routines for manipulation of the constant pool. */ ++ ++/* AVR32 instructions cannot load a large constant directly into a ++ register; they have to come from a pc relative load. The constant ++ must therefore be placed in the addressable range of the pc ++ relative load. Depending on the precise pc relative load ++ instruction the range is somewhere between 256 bytes and 4k. This ++ means that we often have to dump a constant inside a function, and ++ generate code to branch around it. ++ ++ It is important to minimize this, since the branches will slow ++ things down and make the code larger. ++ ++ Normally we can hide the table after an existing unconditional ++ branch so that there is no interruption of the flow, but in the ++ worst case the code looks like this: ++ ++ lddpc rn, L1 ++ ... ++ rjmp L2 ++ align ++ L1: .long value ++ L2: ++ ... ++ ++ lddpc rn, L3 ++ ... ++ rjmp L4 ++ align ++ L3: .long value ++ L4: ++ ... ++ ++ We fix this by performing a scan after scheduling, which notices ++ which instructions need to have their operands fetched from the ++ constant table and builds the table. ++ ++ The algorithm starts by building a table of all the constants that ++ need fixing up and all the natural barriers in the function (places ++ where a constant table can be dropped without breaking the flow). ++ For each fixup we note how far the pc-relative replacement will be ++ able to reach and the offset of the instruction into the function. ++ ++ Having built the table we then group the fixes together to form ++ tables that are as large as possible (subject to addressing ++ constraints) and emit each table of constants after the last ++ barrier that is within range of all the instructions in the group. ++ If a group does not contain a barrier, then we forcibly create one ++ by inserting a jump instruction into the flow. Once the table has ++ been inserted, the insns are then modified to reference the ++ relevant entry in the pool. ++ ++ Possible enhancements to the algorithm (not implemented) are: ++ ++ 1) For some processors and object formats, there may be benefit in ++ aligning the pools to the start of cache lines; this alignment ++ would need to be taken into account when calculating addressability ++ of a pool. */ ++ ++/* These typedefs are located at the start of this file, so that ++ they can be used in the prototypes there. This comment is to ++ remind readers of that fact so that the following structures ++ can be understood more easily. ++ ++ typedef struct minipool_node Mnode; ++ typedef struct minipool_fixup Mfix; */ ++ ++struct minipool_node ++{ ++ /* Doubly linked chain of entries. */ ++ Mnode *next; ++ Mnode *prev; ++ /* The maximum offset into the code that this entry can be placed. While ++ pushing fixes for forward references, all entries are sorted in order of ++ increasing max_address. */ ++ HOST_WIDE_INT max_address; ++ /* Similarly for an entry inserted for a backwards ref. */ ++ HOST_WIDE_INT min_address; ++ /* The number of fixes referencing this entry. This can become zero if we ++ "unpush" an entry. In this case we ignore the entry when we come to ++ emit the code. */ ++ int refcount; ++ /* The offset from the start of the minipool. */ ++ HOST_WIDE_INT offset; ++ /* The value in table. */ ++ rtx value; ++ /* The mode of value. */ ++ enum machine_mode mode; ++ /* The size of the value. */ ++ int fix_size; ++}; ++ ++ ++struct minipool_fixup ++{ ++ Mfix *next; ++ rtx insn; ++ HOST_WIDE_INT address; ++ rtx *loc; ++ enum machine_mode mode; ++ int fix_size; ++ rtx value; ++ Mnode *minipool; ++ HOST_WIDE_INT forwards; ++ HOST_WIDE_INT backwards; ++}; ++ ++ ++/* Fixes less than a word need padding out to a word boundary. */ ++#define MINIPOOL_FIX_SIZE(mode, value) \ ++ (IS_FORCE_MINIPOOL(value) ? 0 : \ ++ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)) ++ ++#define IS_FORCE_MINIPOOL(x) \ ++ (GET_CODE(x) == UNSPEC && \ ++ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL) ++ ++static Mnode *minipool_vector_head; ++static Mnode *minipool_vector_tail; ++ ++/* The linked list of all minipool fixes required for this function. */ ++Mfix *minipool_fix_head; ++Mfix *minipool_fix_tail; ++/* The fix entry for the current minipool, once it has been placed. */ ++Mfix *minipool_barrier; ++ ++ ++/* Determines if INSN is the start of a jump table. Returns the end ++ of the TABLE or NULL_RTX. */ ++static rtx ++is_jump_table (rtx insn) ++{ ++ rtx table; ++ ++ if (GET_CODE (insn) == JUMP_INSN ++ && JUMP_LABEL (insn) != NULL ++ && ((table = next_real_insn (JUMP_LABEL (insn))) ++ == next_real_insn (insn)) ++ && table != NULL ++ && GET_CODE (table) == JUMP_INSN ++ && (GET_CODE (PATTERN (table)) == ADDR_VEC ++ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC)) ++ return table; ++ ++ return NULL_RTX; ++} ++ ++ ++static HOST_WIDE_INT ++get_jump_table_size (rtx insn) ++{ ++ /* ADDR_VECs only take room if read-only data does into the text section. */ ++ if (JUMP_TABLES_IN_TEXT_SECTION ++#if !defined(READONLY_DATA_SECTION_ASM_OP) ++ || 1 ++#endif ++ ) ++ { ++ rtx body = PATTERN (insn); ++ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0; ++ ++ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt); ++ } ++ ++ return 0; ++} ++ ++ ++/* Move a minipool fix MP from its current location to before MAX_MP. ++ If MAX_MP is NULL, then MP doesn't need moving, but the addressing ++ constraints may need updating. */ ++static Mnode * ++move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp, ++ HOST_WIDE_INT max_address) ++{ ++ /* This should never be true and the code below assumes these are ++ different. */ ++ if (mp == max_mp) ++ abort (); ++ ++ if (max_mp == NULL) ++ { ++ if (max_address < mp->max_address) ++ mp->max_address = max_address; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ /* Unlink MP from its current position. Since max_mp is non-null, ++ mp->prev must be non-null. */ ++ mp->prev->next = mp->next; ++ if (mp->next != NULL) ++ mp->next->prev = mp->prev; ++ else ++ minipool_vector_tail = mp->prev; ++ ++ /* Re-insert it before MAX_MP. */ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++/* Add a constant to the minipool for a forward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. */ ++static Mnode * ++add_minipool_forward_ref (Mfix * fix) ++{ ++ /* If set, max_mp is the first pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *max_mp = NULL; ++ HOST_WIDE_INT max_address = fix->address + fix->forwards; ++ Mnode *mp; ++ ++ /* If this fix's address is greater than the address of the first entry, ++ then we can't put the fix in this pool. We subtract the size of the ++ current fix to ensure that if the table is fully packed we still have ++ enough room to insert this value by suffling the other fixes forwards. */ ++ if (minipool_vector_head && ++ fix->address >= minipool_vector_head->max_address - fix->fix_size) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value)) ++ { ++ /* More than one fix references this entry. */ ++ mp->refcount++; ++ return move_minipool_fix_forward_ref (mp, max_mp, max_address); ++ } ++ ++ /* Note the insertion point if necessary. */ ++ if (max_mp == NULL && mp->max_address > max_address) ++ max_mp = mp; ++ ++ } ++ ++ /* The value is not currently in the minipool, so we need to create a new ++ entry for it. If MAX_MP is NULL, the entry will be put on the end of ++ the list since the placement is less constrained than any existing ++ entry. Otherwise, we insert the new fix before MAX_MP and, if ++ necessary, adjust the constraints on the other entries. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ /* Not yet required for a backwards ref. */ ++ mp->min_address = -65536; ++ ++ if (max_mp == NULL) ++ { ++ mp->max_address = max_address; ++ mp->next = NULL; ++ mp->prev = minipool_vector_tail; ++ ++ if (mp->prev == NULL) ++ { ++ minipool_vector_head = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->prev->next = mp; ++ ++ minipool_vector_tail = mp; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++static Mnode * ++move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp, ++ HOST_WIDE_INT min_address) ++{ ++ HOST_WIDE_INT offset; ++ ++ /* This should never be true, and the code below assumes these are ++ different. */ ++ if (mp == min_mp) ++ abort (); ++ ++ if (min_mp == NULL) ++ { ++ if (min_address > mp->min_address) ++ mp->min_address = min_address; ++ } ++ else ++ { ++ /* We will adjust this below if it is too loose. */ ++ mp->min_address = min_address; ++ ++ /* Unlink MP from its current position. Since min_mp is non-null, ++ mp->next must be non-null. */ ++ mp->next->prev = mp->prev; ++ if (mp->prev != NULL) ++ mp->prev->next = mp->next; ++ else ++ minipool_vector_head = mp->next; ++ ++ /* Reinsert it after MIN_MP. */ ++ mp->prev = min_mp; ++ mp->next = min_mp->next; ++ min_mp->next = mp; ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ min_mp = mp; ++ ++ offset = 0; ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ ++ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ } ++ ++ return min_mp; ++} ++ ++ ++/* Add a constant to the minipool for a backward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. ++ ++ Note that the code for insertion for a backwards reference can be ++ somewhat confusing because the calculated offsets for each fix do ++ not take into account the size of the pool (which is still under ++ construction. */ ++static Mnode * ++add_minipool_backward_ref (Mfix * fix) ++{ ++ /* If set, min_mp is the last pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *min_mp = NULL; ++ /* This can be negative, since it is only a constraint. */ ++ HOST_WIDE_INT min_address = fix->address - fix->backwards; ++ Mnode *mp; ++ ++ /* If we can't reach the current pool from this insn, or if we can't insert ++ this entry at the end of the pool without pushing other fixes out of ++ range, then we don't try. This ensures that we can't fail later on. */ ++ if (min_address >= minipool_barrier->address ++ || (minipool_vector_tail->min_address + fix->fix_size ++ >= minipool_barrier->address)) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value) ++ /* Check that there is enough slack to move this entry to the end ++ of the table (this is conservative). */ ++ && (mp->max_address ++ > (minipool_barrier->address ++ + minipool_vector_tail->offset ++ + minipool_vector_tail->fix_size))) ++ { ++ mp->refcount++; ++ return move_minipool_fix_backward_ref (mp, min_mp, min_address); ++ } ++ ++ if (min_mp != NULL) ++ mp->min_address += fix->fix_size; ++ else ++ { ++ /* Note the insertion point if necessary. */ ++ if (mp->min_address < min_address) ++ { ++ min_mp = mp; ++ } ++ else if (mp->max_address ++ < minipool_barrier->address + mp->offset + fix->fix_size) ++ { ++ /* Inserting before this entry would push the fix beyond its ++ maximum address (which can happen if we have re-located a ++ forwards fix); force the new fix to come after it. */ ++ min_mp = mp; ++ min_address = mp->min_address + fix->fix_size; ++ } ++ } ++ } ++ ++ /* We need to create a new entry. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ mp->max_address = minipool_barrier->address + 65536; ++ ++ mp->min_address = min_address; ++ ++ if (min_mp == NULL) ++ { ++ mp->prev = NULL; ++ mp->next = minipool_vector_head; ++ ++ if (mp->next == NULL) ++ { ++ minipool_vector_tail = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->next->prev = mp; ++ ++ minipool_vector_head = mp; ++ } ++ else ++ { ++ mp->next = min_mp->next; ++ mp->prev = min_mp; ++ min_mp->next = mp; ++ ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ /* Save the new entry. */ ++ min_mp = mp; ++ ++ if (mp->prev) ++ mp = mp->prev; ++ else ++ mp->offset = 0; ++ ++ /* Scan over the following entries and adjust their offsets. */ ++ while (mp->next != NULL) ++ { ++ if (mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ ++ if (mp->refcount) ++ mp->next->offset = mp->offset + mp->fix_size; ++ else ++ mp->next->offset = mp->offset; ++ ++ mp = mp->next; ++ } ++ ++ return min_mp; ++} ++ ++ ++static void ++assign_minipool_offsets (Mfix * barrier) ++{ ++ HOST_WIDE_INT offset = 0; ++ Mnode *mp; ++ ++ minipool_barrier = barrier; ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ } ++} ++ ++ ++/* Print a symbolic form of X to the debug file, F. */ ++static void ++avr32_print_value (FILE * f, rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ fprintf (f, "0x%x", (int) INTVAL (x)); ++ return; ++ ++ case CONST_DOUBLE: ++ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3)); ++ return; ++ ++ case CONST_VECTOR: ++ { ++ int i; ++ ++ fprintf (f, "<"); ++ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++) ++ { ++ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i))); ++ if (i < (CONST_VECTOR_NUNITS (x) - 1)) ++ fputc (',', f); ++ } ++ fprintf (f, ">"); ++ } ++ return; ++ ++ case CONST_STRING: ++ fprintf (f, "\"%s\"", XSTR (x, 0)); ++ return; ++ ++ case SYMBOL_REF: ++ fprintf (f, "`%s'", XSTR (x, 0)); ++ return; ++ ++ case LABEL_REF: ++ fprintf (f, "L%d", INSN_UID (XEXP (x, 0))); ++ return; ++ ++ case CONST: ++ avr32_print_value (f, XEXP (x, 0)); ++ return; ++ ++ case PLUS: ++ avr32_print_value (f, XEXP (x, 0)); ++ fprintf (f, "+"); ++ avr32_print_value (f, XEXP (x, 1)); ++ return; ++ ++ case PC: ++ fprintf (f, "pc"); ++ return; ++ ++ default: ++ fprintf (f, "????"); ++ return; ++ } ++} ++ ++ ++int ++is_minipool_label (rtx label) ++{ ++ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head; ++ ++ if (GET_CODE (label) != CODE_LABEL) ++ return FALSE; ++ ++ while (cur_mp_label) ++ { ++ if (CODE_LABEL_NUMBER (label) ++ == CODE_LABEL_NUMBER (cur_mp_label->label)) ++ return TRUE; ++ cur_mp_label = cur_mp_label->next; ++ } ++ return FALSE; ++} ++ ++ ++static void ++new_minipool_label (rtx label) ++{ ++ if (!cfun->machine->minipool_label_head) ++ { ++ cfun->machine->minipool_label_head = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head; ++ cfun->machine->minipool_label_head->label = label; ++ cfun->machine->minipool_label_head->next = 0; ++ cfun->machine->minipool_label_head->prev = 0; ++ } ++ else ++ { ++ cfun->machine->minipool_label_tail->next = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail->next->label = label; ++ cfun->machine->minipool_label_tail->next->next = 0; ++ cfun->machine->minipool_label_tail->next->prev = ++ cfun->machine->minipool_label_tail; ++ cfun->machine->minipool_label_tail = ++ cfun->machine->minipool_label_tail->next; ++ } ++} ++ ++ ++/* Output the literal table */ ++static void ++dump_minipool (rtx scan) ++{ ++ Mnode *mp; ++ Mnode *nmp; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n", ++ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4); ++ ++ scan = emit_insn_after (gen_consttable_start (), scan); ++ scan = emit_insn_after (gen_align_4 (), scan); ++ scan = emit_label_after (minipool_vector_label, scan); ++ new_minipool_label (minipool_vector_label); ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = nmp) ++ { ++ if (mp->refcount > 0) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Offset %u, min %ld, max %ld ", ++ (unsigned) mp->offset, (unsigned long) mp->min_address, ++ (unsigned long) mp->max_address); ++ avr32_print_value (dump_file, mp->value); ++ fputc ('\n', dump_file); ++ } ++ ++ switch (mp->fix_size) ++ { ++#ifdef HAVE_consttable_4 ++ case 4: ++ scan = emit_insn_after (gen_consttable_4 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_8 ++ case 8: ++ scan = emit_insn_after (gen_consttable_8 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_16 ++ case 16: ++ scan = emit_insn_after (gen_consttable_16 (mp->value), scan); ++ break; ++ ++#endif ++ case 0: ++ /* This can happen for force-minipool entries which just are ++ there to force the minipool to be generate. */ ++ break; ++ default: ++ abort (); ++ break; ++ } ++ } ++ ++ nmp = mp->next; ++ free (mp); ++ } ++ ++ minipool_vector_head = minipool_vector_tail = NULL; ++ scan = emit_insn_after (gen_consttable_end (), scan); ++ scan = emit_barrier_after (scan); ++} ++ ++ ++/* Return the cost of forcibly inserting a barrier after INSN. */ ++static int ++avr32_barrier_cost (rtx insn) ++{ ++ /* Basing the location of the pool on the loop depth is preferable, but at ++ the moment, the basic block information seems to be corrupt by this ++ stage of the compilation. */ ++ int base_cost = 50; ++ rtx next = next_nonnote_insn (insn); ++ ++ if (next != NULL && GET_CODE (next) == CODE_LABEL) ++ base_cost -= 20; ++ ++ switch (GET_CODE (insn)) ++ { ++ case CODE_LABEL: ++ /* It will always be better to place the table before the label, rather ++ than after it. */ ++ return 50; ++ ++ case INSN: ++ case CALL_INSN: ++ return base_cost; ++ ++ case JUMP_INSN: ++ return base_cost - 10; ++ ++ default: ++ return base_cost + 10; ++ } ++} ++ ++ ++/* Find the best place in the insn stream in the range ++ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier. ++ Create the barrier by inserting a jump and add a new fix entry for ++ it. */ ++static Mfix * ++create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address) ++{ ++ HOST_WIDE_INT count = 0; ++ rtx barrier; ++ rtx from = fix->insn; ++ rtx selected = from; ++ int selected_cost; ++ HOST_WIDE_INT selected_address; ++ Mfix *new_fix; ++ HOST_WIDE_INT max_count = max_address - fix->address; ++ rtx label = gen_label_rtx (); ++ ++ selected_cost = avr32_barrier_cost (from); ++ selected_address = fix->address; ++ ++ while (from && count < max_count) ++ { ++ rtx tmp; ++ int new_cost; ++ ++ /* This code shouldn't have been called if there was a natural barrier ++ within range. */ ++ if (GET_CODE (from) == BARRIER) ++ abort (); ++ ++ /* Count the length of this insn. */ ++ count += get_attr_length (from); ++ ++ /* If there is a jump table, add its length. */ ++ tmp = is_jump_table (from); ++ if (tmp != NULL) ++ { ++ count += get_jump_table_size (tmp); ++ ++ /* Jump tables aren't in a basic block, so base the cost on the ++ dispatch insn. If we select this location, we will still put ++ the pool after the table. */ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = tmp; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ /* Continue after the dispatch table. */ ++ from = NEXT_INSN (tmp); ++ continue; ++ } ++ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = from; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ from = NEXT_INSN (from); ++ } ++ ++ /* Create a new JUMP_INSN that branches around a barrier. */ ++ from = emit_jump_insn_after (gen_jump (label), selected); ++ JUMP_LABEL (from) = label; ++ barrier = emit_barrier_after (from); ++ emit_label_after (label, barrier); ++ ++ /* Create a minipool barrier entry for the new barrier. */ ++ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix)); ++ new_fix->insn = barrier; ++ new_fix->address = selected_address; ++ new_fix->next = fix->next; ++ fix->next = new_fix; ++ ++ return new_fix; ++} ++ ++ ++/* Record that there is a natural barrier in the insn stream at ++ ADDRESS. */ ++static void ++push_minipool_barrier (rtx insn, HOST_WIDE_INT address) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ ++ fix->insn = insn; ++ fix->address = address; ++ ++ fix->next = NULL; ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Record INSN, which will need fixing up to load a value from the ++ minipool. ADDRESS is the offset of the insn since the start of the ++ function; LOC is a pointer to the part of the insn which requires ++ fixing; VALUE is the constant that must be loaded, which is of type ++ MODE. */ ++static void ++push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc, ++ enum machine_mode mode, rtx value) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ rtx body = PATTERN (insn); ++ ++ fix->insn = insn; ++ fix->address = address; ++ fix->loc = loc; ++ fix->mode = mode; ++ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value); ++ fix->value = value; ++ ++ if (GET_CODE (body) == PARALLEL) ++ { ++ /* Mcall : Ks16 << 2 */ ++ fix->forwards = ((1 << 15) - 1) << 2; ++ fix->backwards = (1 << 15) << 2; ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4) ++ { ++ if (optimize_size) ++ { ++ /* Lddpc : Ku7 << 2 */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Ld.w : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8) ++ { ++ /* Ld.d : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ else if (GET_CODE (body) == UNSPEC_VOLATILE ++ && XINT (body, 1) == VUNSPEC_MVRC) ++ { ++ /* Coprocessor load */ ++ /* Ldc : Ku8 << 2 */ ++ fix->forwards = ((1 << 8) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Assume worst case which is lddpc insn. */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ ++ fix->minipool = NULL; ++ ++ /* If an insn doesn't have a range defined for it, then it isn't expecting ++ to be reworked by this code. Better to abort now than to generate duff ++ assembly code. */ ++ if (fix->forwards == 0 && fix->backwards == 0) ++ abort (); ++ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ", ++ GET_MODE_NAME (mode), ++ INSN_UID (insn), (unsigned long) address, ++ -1 * (long) fix->backwards, (long) fix->forwards); ++ avr32_print_value (dump_file, fix->value); ++ fprintf (dump_file, "\n"); ++ } ++ ++ /* Add it to the chain of fixes. */ ++ fix->next = NULL; ++ ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Scan INSN and note any of its operands that need fixing. ++ If DO_PUSHES is false we do not actually push any of the fixups ++ needed. The function returns TRUE is any fixups were needed/pushed. ++ This is used by avr32_memory_load_p() which needs to know about loads ++ of constants that will be converted into minipool loads. */ ++static bool ++note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes) ++{ ++ bool result = false; ++ int opno; ++ ++ extract_insn (insn); ++ ++ if (!constrain_operands (1)) ++ fatal_insn_not_found (insn); ++ ++ if (recog_data.n_alternatives == 0) ++ return false; ++ ++ /* Fill in recog_op_alt with information about the constraints of this ++ insn. */ ++ preprocess_constraints (); ++ ++ for (opno = 0; opno < recog_data.n_operands; opno++) ++ { ++ rtx op; ++ ++ /* Things we need to fix can only occur in inputs. */ ++ if (recog_data.operand_type[opno] != OP_IN) ++ continue; ++ ++ op = recog_data.operand[opno]; ++ ++ if (avr32_const_pool_ref_operand (op, GET_MODE (op))) ++ { ++ if (do_pushes) ++ { ++ rtx cop = avoid_constant_pool_reference (op); ++ ++ /* Casting the address of something to a mode narrower than a ++ word can cause avoid_constant_pool_reference() to return the ++ pool reference itself. That's no good to us here. Lets ++ just hope that we can use the constant pool value directly. ++ */ ++ if (op == cop) ++ cop = get_pool_constant (XEXP (op, 0)); ++ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], cop); ++ } ++ ++ result = true; ++ } ++ else if (TARGET_HAS_ASM_ADDR_PSEUDOS ++ && avr32_address_operand (op, GET_MODE (op))) ++ { ++ /* Handle pseudo instructions using a direct address. These pseudo ++ instructions might need entries in the constant pool and we must ++ therefor create a constant pool for them, in case the ++ assembler/linker needs to insert entries. */ ++ if (do_pushes) ++ { ++ /* Push a dummy constant pool entry so that the .cpool ++ directive should be inserted on the appropriate place in the ++ code even if there are no real constant pool entries. This ++ is used by the assembler and linker to know where to put ++ generated constant pool entries. */ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, const0_rtx), ++ UNSPEC_FORCE_MINIPOOL)); ++ result = true; ++ } ++ } ++ } ++ return result; ++} ++ ++ ++static int ++avr32_insn_is_cast (rtx insn) ++{ ++ ++ if (NONJUMP_INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND ++ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0)) ++ && REG_P (SET_DEST (PATTERN (insn)))) ++ return true; ++ return false; ++} ++ ++ ++/* Replace all occurances of reg FROM with reg TO in X. */ ++rtx ++avr32_replace_reg (rtx x, rtx from, rtx to) ++{ ++ int i, j; ++ const char *fmt; ++ ++ gcc_assert ( REG_P (from) && REG_P (to) ); ++ ++ /* Allow this function to make replacements in EXPR_LISTs. */ ++ if (x == 0) ++ return 0; ++ ++ if (rtx_equal_p (x, from)) ++ return to; ++ ++ if (GET_CODE (x) == SUBREG) ++ { ++ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_subreg (GET_MODE (x), new, ++ GET_MODE (SUBREG_REG (x)), ++ SUBREG_BYTE (x)); ++ gcc_assert (x); ++ } ++ else ++ SUBREG_REG (x) = new; ++ ++ return x; ++ } ++ else if (GET_CODE (x) == ZERO_EXTEND) ++ { ++ rtx new = avr32_replace_reg (XEXP (x, 0), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), ++ new, GET_MODE (XEXP (x, 0))); ++ gcc_assert (x); ++ } ++ else ++ XEXP (x, 0) = new; ++ ++ return x; ++ } ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'e') ++ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to); ++ else if (fmt[i] == 'E') ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to); ++ } ++ ++ return x; ++} ++ ++ ++/* FIXME: The level of nesting in this function is way too deep. It needs to be ++ torn apart. */ ++static void ++avr32_reorg_optimization (void) ++{ ++ rtx first = get_first_nonnote_insn (); ++ rtx insn; ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for cast operations. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ";; Deleting redundant cast operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, src_reg, scan; ++ enum machine_mode mode; ++ int unused_cast; ++ rtx label_ref; ++ ++ if (avr32_insn_is_cast (insn) ++ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode ++ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode)) ++ { ++ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)); ++ reg = SET_DEST (PATTERN (insn)); ++ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ } ++ else ++ { ++ continue; ++ } ++ ++ unused_cast = false; ++ label_ref = NULL_RTX; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Check if we have reached the destination of a simple ++ conditional jump which we have already scanned past. If so, ++ we can safely continue scanning. */ ++ if (LABEL_P (scan) && label_ref != NULL_RTX) ++ { ++ if (CODE_LABEL_NUMBER (scan) == ++ CODE_LABEL_NUMBER (XEXP (label_ref, 0))) ++ label_ref = NULL_RTX; ++ else ++ break; ++ } ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* For conditional jumps we can manage to keep on scanning if ++ we meet the destination label later on before any new jump ++ insns occure. */ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ if (any_condjump_p (scan) && label_ref == NULL_RTX) ++ label_ref = condjump_label (scan); ++ else ++ break; ++ } ++ ++ /* Check if we have a call and the register is used as an argument. */ ++ if (CALL_P (scan) ++ && find_reg_fusage (scan, USE, reg) ) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* Check if casted register is used in this insn */ ++ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX) ++ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) == ++ GET_MODE (reg))) ++ { ++ /* If not used in the source to the set or in a memory ++ expression in the destiantion then the register is used ++ as a destination and is really dead. */ ++ if (single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan))) ++ && label_ref == NULL_RTX) ++ { ++ unused_cast = true; ++ } ++ break; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ unused_cast = true; ++ break; ++ } ++ } ++ ++ /* Check if we have unresolved conditional jumps */ ++ if (label_ref != NULL_RTX) ++ continue; ++ ++ if (unused_cast) ++ { ++ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0))) ++ { ++ /* One operand cast, safe to delete */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted register %i value not used.\n", ++ INSN_UID (insn), REGNO (reg)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ } ++ else ++ { ++ /* Two operand cast, which really could be substituted with ++ a move, if the source register is dead after the cast ++ insn and then the insn which sets the source register ++ could instead directly set the destination register for ++ the cast. As long as there are no insns in between which ++ uses the register. */ ++ rtx link = NULL_RTX; ++ rtx set; ++ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ unused_cast = false; ++ ++ if (!find_reg_note (insn, REG_DEAD, src_reg)) ++ continue; ++ ++ /* Search for the insn which sets the source register */ ++ for (scan = PREV_INSN (insn); ++ scan && GET_CODE (scan) != CODE_LABEL; ++ scan = PREV_INSN (scan)) ++ { ++ if (! INSN_P (scan)) ++ continue; ++ ++ set = single_set (scan); ++ // Fix for bug #11763 : the following if condition ++ // has been modified and else part is included to ++ // set the link to NULL_RTX. ++ // if (set && rtx_equal_p (src_reg, SET_DEST (set))) ++ if (set && (REGNO(src_reg) == REGNO(SET_DEST(set)))) ++ { ++ if (rtx_equal_p (src_reg, SET_DEST (set))) ++ { ++ link = scan; ++ break; ++ } ++ else ++ { ++ link = NULL_RTX; ++ break; ++ } ++ } ++ } ++ ++ ++ /* Found no link or link is a call insn where we can not ++ change the destination register */ ++ if (link == NULL_RTX || CALL_P (link)) ++ continue; ++ ++ /* Scan through all insn between link and insn */ ++ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Don't try to trace forward past a CODE_LABEL if we ++ haven't seen INSN yet. Ordinarily, we will only ++ find the setting insn in LOG_LINKS if it is in the ++ same basic block. However, cross-jumping can insert ++ code labels in between the load and the call, and ++ can result in situations where a single call insn ++ may have two targets depending on where we came ++ from. */ ++ ++ if (GET_CODE (scan) == CODE_LABEL) ++ break; ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP. To optimize ++ safely, we would have to check that all the ++ instructions at the jump destination did not use REG. ++ */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ if (!reg_mentioned_p (src_reg, PATTERN (scan))) ++ continue; ++ ++ /* We have reached the cast insn */ ++ if (scan == insn) ++ { ++ /* We can remove cast and replace the destination ++ register of the link insn with the destination ++ of the cast */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted value unused. " ++ "Destination of removed cast operation: register %i, folded into INSN %i.\n", ++ INSN_UID (insn), REGNO (reg), ++ INSN_UID (link)); ++ } ++ /* Update link insn */ ++ SET_DEST (PATTERN (link)) = ++ gen_rtx_REG (mode, REGNO (reg)); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (link) = -1; ++ ++ /* Delete insn */ ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ } ++ } ++ } ++ } ++ } ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for shifted add operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting redundant shifted add operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, mem_expr, scan, op0, op1; ++ int add_only_used_as_pointer; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS ++ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT ++ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT) ++ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) == ++ CONST_INT && REG_P (SET_DEST (PATTERN (insn))) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1)) ++ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0))) ++ { ++ reg = SET_DEST (PATTERN (insn)); ++ mem_expr = SET_SRC (PATTERN (insn)); ++ op0 = XEXP (XEXP (mem_expr, 0), 0); ++ op1 = XEXP (mem_expr, 1); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan forward the check if the result of the shifted add ++ operation is only used as an address in memory operations and ++ that the operands to the shifted add are not clobbered. */ ++ add_only_used_as_pointer = false; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP or CALL. To optimize ++ safely, we would have to check that all the instructions at ++ the jump destination did not use REG. */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ /* If used in a call insn then we cannot optimize it away */ ++ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg))) ++ break; ++ ++ /* If any of the operands of the shifted add are clobbered we ++ cannot optimize the shifted adda away */ ++ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg))) ++ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg)))) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if (!(single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg)) ++ || (MEM_P (SET_SRC (PATTERN (scan))) ++ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0)) ++ && REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg)))) ++ && !(GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), ++ SET_SRC (PATTERN (scan))))) ++ break; ++ ++ /* We cannot replace the pointer in TImode insns ++ as these has a differene addressing mode than the other ++ memory insns. */ ++ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode ) ++ break; ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ add_only_used_as_pointer = true; ++ break; ++ } ++ } ++ ++ if (add_only_used_as_pointer) ++ { ++ /* Lets delete the add insn and replace all memory references ++ which uses the pointer with the full expression. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since address expression can be folded into all " ++ "memory references using this expression\n", ++ INSN_UID (insn)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if ((single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == ++ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan))) ++ && ++ REG_P (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) ++ && ++ REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) == REGNO (reg))))) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Register %i replaced by indexed address in INSN %i\n", ++ REGNO (reg), INSN_UID (scan)); ++ } ++ if (MEM_P (SET_DEST (PATTERN (scan)))) ++ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr; ++ else ++ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ break; ++ } ++ ++ } ++ } ++ } ++ } ++ ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for conditional register to ++ register move operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Folding redundant conditional move operations:\n"); ++ } ++ for (insn = first; insn; insn = next_nonnote_insn (insn)) ++ { ++ rtx src_reg, dst_reg, scan, test; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == COND_EXEC ++ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET ++ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn)))) ++ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn)))) ++ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn))))) ++ { ++ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn))); ++ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn))); ++ test = COND_EXEC_TEST (PATTERN (insn)); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan backward through the rest of insns in this if-then or if-else ++ block and check if we can fold the move into another of the conditional ++ insns in the same block. */ ++ scan = prev_nonnote_insn (insn); ++ while (INSN_P (scan) ++ && GET_CODE (PATTERN (scan)) == COND_EXEC ++ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test)) ++ { ++ rtx pattern = COND_EXEC_CODE (PATTERN (scan)); ++ if ( GET_CODE (pattern) == PARALLEL ) ++ pattern = XVECEXP (pattern, 0, 0); ++ ++ if ( reg_set_p (src_reg, pattern) ) ++ { ++ /* Fold in the destination register for the cond. move ++ into this insn. */ ++ SET_DEST (pattern) = dst_reg; ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since this operation can be folded into INSN %i\n", ++ INSN_UID (insn), INSN_UID (scan)); ++ } ++ ++ /* Scan and check if any of the insns in between uses the src_reg. We ++ must then replace it with the dst_reg. */ ++ while ( (scan = next_nonnote_insn (scan)) != insn ){ ++ avr32_replace_reg (scan, src_reg, dst_reg); ++ } ++ /* Delete the insn. */ ++ SET_INSN_DELETED (insn); ++ ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ ++ /* If the destination register is used but not set in this insn ++ we cannot fold. */ ++ if ( reg_mentioned_p (dst_reg, pattern) ) ++ break; ++ ++ scan = prev_nonnote_insn (scan); ++ } ++ } ++ } ++ ++} ++ ++ ++/* Exported to toplev.c. ++ ++ Do a final pass over the function, just before delayed branch ++ scheduling. */ ++static void ++avr32_reorg (void) ++{ ++ rtx insn; ++ HOST_WIDE_INT address = 0; ++ Mfix *fix; ++ ++ minipool_fix_head = minipool_fix_tail = NULL; ++ ++ /* The first insn must always be a note, or the code below won't scan it ++ properly. */ ++ insn = get_insns (); ++ if (GET_CODE (insn) != NOTE) ++ abort (); ++ ++ /* Scan all the insns and record the operands that will need fixing. */ ++ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn)) ++ { ++ if (GET_CODE (insn) == BARRIER) ++ push_minipool_barrier (insn, address); ++ else if (INSN_P (insn)) ++ { ++ rtx table; ++ ++ note_invalid_constants (insn, address, true); ++ address += get_attr_length (insn); ++ ++ /* If the insn is a vector jump, add the size of the table and skip ++ the table. */ ++ if ((table = is_jump_table (insn)) != NULL) ++ { ++ address += get_jump_table_size (table); ++ insn = table; ++ } ++ } ++ } ++ ++ fix = minipool_fix_head; ++ ++ /* Now scan the fixups and perform the required changes. */ ++ while (fix) ++ { ++ Mfix *ftmp; ++ Mfix *fdel; ++ Mfix *last_added_fix; ++ Mfix *last_barrier = NULL; ++ Mfix *this_fix; ++ ++ /* Skip any further barriers before the next fix. */ ++ while (fix && GET_CODE (fix->insn) == BARRIER) ++ fix = fix->next; ++ ++ /* No more fixes. */ ++ if (fix == NULL) ++ break; ++ ++ last_added_fix = NULL; ++ ++ for (ftmp = fix; ftmp; ftmp = ftmp->next) ++ { ++ if (GET_CODE (ftmp->insn) == BARRIER) ++ { ++ if (ftmp->address >= minipool_vector_head->max_address) ++ break; ++ ++ last_barrier = ftmp; ++ } ++ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL) ++ break; ++ ++ last_added_fix = ftmp; /* Keep track of the last fix added. ++ */ ++ } ++ ++ /* If we found a barrier, drop back to that; any fixes that we could ++ have reached but come after the barrier will now go in the next ++ mini-pool. */ ++ if (last_barrier != NULL) ++ { ++ /* Reduce the refcount for those fixes that won't go into this pool ++ after all. */ ++ for (fdel = last_barrier->next; ++ fdel && fdel != ftmp; fdel = fdel->next) ++ { ++ fdel->minipool->refcount--; ++ fdel->minipool = NULL; ++ } ++ ++ ftmp = last_barrier; ++ } ++ else ++ { ++ /* ftmp is first fix that we can't fit into this pool and there no ++ natural barriers that we could use. Insert a new barrier in the ++ code somewhere between the previous fix and this one, and ++ arrange to jump around it. */ ++ HOST_WIDE_INT max_address; ++ ++ /* The last item on the list of fixes must be a barrier, so we can ++ never run off the end of the list of fixes without last_barrier ++ being set. */ ++ if (ftmp == NULL) ++ abort (); ++ ++ max_address = minipool_vector_head->max_address; ++ /* Check that there isn't another fix that is in range that we ++ couldn't fit into this pool because the pool was already too ++ large: we need to put the pool before such an instruction. */ ++ if (ftmp->address < max_address) ++ max_address = ftmp->address; ++ ++ last_barrier = create_fix_barrier (last_added_fix, max_address); ++ } ++ ++ assign_minipool_offsets (last_barrier); ++ ++ while (ftmp) ++ { ++ if (GET_CODE (ftmp->insn) != BARRIER ++ && ((ftmp->minipool = add_minipool_backward_ref (ftmp)) ++ == NULL)) ++ break; ++ ++ ftmp = ftmp->next; ++ } ++ ++ /* Scan over the fixes we have identified for this pool, fixing them up ++ and adding the constants to the pool itself. */ ++ for (this_fix = fix; this_fix && ftmp != this_fix; ++ this_fix = this_fix->next) ++ if (GET_CODE (this_fix->insn) != BARRIER ++ /* Do nothing for entries present just to force the insertion of ++ a minipool. */ ++ && !IS_FORCE_MINIPOOL (this_fix->value)) ++ { ++ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode, ++ minipool_vector_label), ++ this_fix->minipool->offset); ++ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr); ++ } ++ ++ dump_minipool (last_barrier->insn); ++ fix = ftmp; ++ } ++ ++ /* Free the minipool memory. */ ++ obstack_free (&minipool_obstack, minipool_startobj); ++ ++ avr32_reorg_optimization (); ++} ++ ++ ++/* Hook for doing some final scanning of instructions. Does nothing yet...*/ ++void ++avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED, ++ rtx * opvec ATTRIBUTE_UNUSED, ++ int noperands ATTRIBUTE_UNUSED) ++{ ++ return; ++} ++ ++ ++/* Function for changing the condition on the next instruction, ++ should be used when emmiting compare instructions and ++ the condition of the next instruction needs to change. ++*/ ++int ++set_next_insn_cond (rtx cur_insn, rtx new_cond) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ if ((next_insn != NULL_RTX) ++ && (INSN_P (next_insn))) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch instructions */ ++ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ SET_SRC (PATTERN (next_insn)) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ COND_EXEC_TEST (PATTERN (next_insn)) = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond)); ++ } ++ } ++ } ++ ++ return FALSE; ++} ++ ++ ++/* Function for obtaining the condition for the next instruction after cur_insn. ++*/ ++rtx ++get_next_insn_cond (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch and cond if then else instructions */ ++ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0); ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ cond = SET_SRC (PATTERN (next_insn)); ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ cond = COND_EXEC_TEST (PATTERN (next_insn)); ++ } ++ } ++ return cond; ++} ++ ++ ++/* Check if the next insn is a conditional insn that will emit a compare ++ for itself. ++*/ ++rtx ++next_insn_emits_cmp (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ( ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE) ++ && (XEXP (XEXP (SET_SRC (PATTERN (next_insn)), 0),0) != cc0_rtx)) ++ || GET_CODE (PATTERN (next_insn)) == COND_EXEC ) ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++rtx ++avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1) ++{ ++ ++ rtx new_cond = NULL_RTX; ++ rtx ops[2]; ++ rtx compare_pattern; ++ ops[0] = op0; ++ ops[1] = op1; ++ ++ if ( GET_CODE (op0) == AND ) ++ compare_pattern = op0; ++ else ++ compare_pattern = gen_rtx_COMPARE (mode, op0, op1); ++ ++ new_cond = is_compare_redundant (compare_pattern, cond); ++ ++ if (new_cond != NULL_RTX) ++ return new_cond; ++ ++ /* Check if we are inserting a bit-load instead of a compare. */ ++ if ( GET_CODE (op0) == AND ) ++ { ++ ops[0] = XEXP (op0, 0); ++ ops[1] = XEXP (op0, 1); ++ output_asm_insn ("bld\t%0, %p1", ops); ++ return cond; ++ } ++ ++ /* Insert compare */ ++ switch (mode) ++ { ++ case QImode: ++ output_asm_insn ("cp.b\t%0, %1", ops); ++ break; ++ case HImode: ++ output_asm_insn ("cp.h\t%0, %1", ops); ++ break; ++ case SImode: ++ output_asm_insn ("cp.w\t%0, %1", ops); ++ break; ++ case DImode: ++ if (GET_CODE (op1) != REG) ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops); ++ else ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops); ++ break; ++ default: ++ internal_error ("Unknown comparison mode"); ++ break; ++ } ++ ++ return cond; ++} ++ ++ ++int ++avr32_load_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ unsigned int dest_regno; ++ rtx src_addr; ++ rtx elt; ++ int i = 1, base = 0; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Check to see if this might be a write-back. */ ++ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS) ++ { ++ i++; ++ base = 1; ++ ++ /* Now check it more carefully. */ ++ if (GET_CODE (SET_DEST (elt)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT ++ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4) ++ return 0; ++ } ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= 1 ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1))); ++ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != REG ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_store_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ int src_regno; ++ rtx dest_addr; ++ rtx elt; ++ int i = 1; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= i ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1))); ++ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != MEM ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if they use the same accumulator */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the mul instruction produces the accumulator for the mac ++ instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++int ++avr32_store_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Only valid bypass if the output result is used as an src in the store ++ instruction, NOT if used as a pointer or base. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_mul_waw_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the register holding the result from the mul instruction is ++ used as a result register in the input instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the first loaded word in insn_out is used in insn_in. */ ++ rtx dst_reg; ++ rtx second_loaded_reg; ++ ++ /* If this is a double alu operation then the bypass is not valid */ ++ if ((get_attr_type (insn_in) == TYPE_ALU ++ || get_attr_type (insn_in) == TYPE_ALU2) ++ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4)) ++ return FALSE; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1); ++ ++ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in))) ++ return TRUE; ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the two first loaded word in insn_out are used in insn_in. */ ++ rtx dst_reg; ++ rtx third_loaded_reg, fourth_loaded_reg; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2); ++ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3); ++ ++ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in)) ++ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++rtx ++avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ) ++{ ++ rtx branch_insn; ++ rtx cmp_test; ++ rtx compare_op0; ++ rtx compare_op1; ++ ++ ++ if ( !ce_info ++ || test == NULL_RTX ++ || !reg_mentioned_p (cc0_rtx, test)) ++ return test; ++ ++ branch_insn = BB_END (ce_info->test_bb); ++ cmp_test = PATTERN(prev_nonnote_insn (branch_insn)); ++ ++ if (GET_CODE(cmp_test) != SET ++ || !CC0_P(XEXP(cmp_test, 0)) ) ++ return cmp_test; ++ ++ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){ ++ compare_op0 = XEXP(SET_SRC(cmp_test), 0); ++ compare_op1 = XEXP(SET_SRC(cmp_test), 1); ++ } else { ++ compare_op0 = SET_SRC(cmp_test); ++ compare_op1 = const0_rtx; ++ } ++ ++ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0), ++ compare_op0, compare_op1); ++} ++ ++ ++rtx ++avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes) ++{ ++ rtx test = COND_EXEC_TEST(pattern); ++ rtx op = COND_EXEC_CODE(pattern); ++ rtx cmp_insn; ++ rtx cond_exec_insn; ++ int inputs_set_outside_ifblock = 1; ++ basic_block current_bb = BLOCK_FOR_INSN (insn); ++ rtx bb_insn ; ++ enum machine_mode mode = GET_MODE (XEXP (op, 0)); ++ ++ if (CC0_P(XEXP(test, 0))) ++ test = avr32_ifcvt_modify_test (ce_info, ++ test ); ++ ++ /* We do not support multiple tests. */ ++ if ( ce_info ++ && ce_info->num_multiple_test_blocks > 0 ) ++ return NULL_RTX; ++ ++ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op); ++ ++ if ( !reload_completed ) ++ { ++ rtx start; ++ int num_insns; ++ int max_insns = MAX_CONDITIONAL_EXECUTE; ++ ++ if ( !ce_info ) ++ return op; ++ ++ /* Check if the insn is not suitable for conditional ++ execution. */ ++ start_sequence (); ++ cond_exec_insn = emit_insn (pattern); ++ if ( recog_memoized (cond_exec_insn) < 0 ++ && can_create_pseudo_p () ) ++ { ++ /* Insn is not suitable for conditional execution, try ++ to fix it up by using an extra scratch register or ++ by pulling the operation outside the if-then-else ++ and then emiting a conditional move inside the if-then-else. */ ++ end_sequence (); ++ if ( GET_CODE (op) != SET ++ || !REG_P (SET_DEST (op)) ++ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE ++ || GET_MODE_SIZE (mode) > UNITS_PER_WORD ) ++ return NULL_RTX; ++ ++ /* Check if any of the input operands to the insn is set inside the ++ current block. */ ++ if ( current_bb->index == ce_info->then_bb->index ) ++ start = PREV_INSN (BB_HEAD (ce_info->then_bb)); ++ else ++ start = PREV_INSN (BB_HEAD (ce_info->else_bb)); ++ ++ ++ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) ) ++ { ++ rtx set = single_set (bb_insn); ++ ++ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op))) ++ { ++ inputs_set_outside_ifblock = 0; ++ break; ++ } ++ } ++ ++ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb)); ++ ++ ++ /* Check if we can insert more insns. */ ++ num_insns = ( ce_info->num_then_insns + ++ ce_info->num_else_insns + ++ ce_info->num_cond_clobber_insns + ++ ce_info->num_extra_move_insns ); ++ ++ if ( ce_info->num_else_insns != 0 ) ++ max_insns *=2; ++ ++ if ( num_insns >= max_insns ) ++ return NULL_RTX; ++ ++ /* Check if we have an instruction which might be converted to ++ conditional form if we give it a scratch register to clobber. */ ++ { ++ rtx clobber_insn; ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx new_pattern = copy_rtx (pattern); ++ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern)); ++ ++ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg); ++ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber }; ++ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec)); ++ ++ start_sequence (); ++ clobber_insn = emit_insn (new_pattern); ++ ++ if ( recog_memoized (clobber_insn) >= 0 ++ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2 ++ && CONST_INT_P (XEXP (set_src, 1)) ++ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") ) ++ || !ce_info->else_bb ++ || current_bb->index == ce_info->else_bb->index )) ++ { ++ end_sequence (); ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_cond_clobber_insns++; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n", ++ INSN_UID (insn)); ++ ++ return COND_EXEC_CODE (new_pattern); ++ } ++ end_sequence (); ++ } ++ ++ if ( inputs_set_outside_ifblock ) ++ { ++ /* Check if the insn before the cmp is an and which used ++ together with the cmp can be optimized into a bld. If ++ so then we should try to put the insn before the and ++ so that we can catch the bld peephole. */ ++ rtx set; ++ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn); ++ if (insn_before_cmp_insn ++ && (set = single_set (insn_before_cmp_insn)) ++ && GET_CODE (SET_SRC (set)) == AND ++ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode) ++ /* Also make sure that the insn does not set any ++ of the input operands to the insn we are pulling out. */ ++ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) ) ++ cmp_insn = prev_nonnote_insn (cmp_insn); ++ ++ /* We can try to put the operation outside the if-then-else ++ blocks and insert a move. */ ++ if ( !insn_invalid_p (insn) ++ /* Do not allow conditional insns to be moved outside the ++ if-then-else. */ ++ && !reg_mentioned_p (cc0_rtx, insn) ++ /* We cannot move memory loads outside of the if-then-else ++ since the memory access should not be perfomed if the ++ condition is not met. */ ++ && !mem_mentioned_p (SET_SRC (op)) ) ++ { ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx op_pattern = copy_rtx (op); ++ rtx new_insn, seq; ++ rtx link, prev_link; ++ op = copy_rtx (op); ++ /* Emit the operation to a temp reg before the compare, ++ and emit a move inside the if-then-else, hoping that the ++ whole if-then-else can be converted to conditional ++ execution. */ ++ SET_DEST (op_pattern) = scratch_reg; ++ start_sequence (); ++ new_insn = emit_insn (op_pattern); ++ seq = get_insns(); ++ end_sequence (); ++ ++ /* Check again that the insn is valid. For some insns the insn might ++ become invalid if the destination register is changed. Ie. for mulacc ++ operations. */ ++ if ( insn_invalid_p (new_insn) ) ++ return NULL_RTX; ++ ++ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn)); ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nMoving INSN %d out of IF-block by adding INSN %d...\n", ++ INSN_UID (insn), INSN_UID (new_insn)); ++ ++ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn; ++ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn; ++ XEXP (op, 1) = scratch_reg; ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* Move REG_DEAD notes to the moved insn. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ /* Add the REG_DEAD note to the new insn. */ ++ rtx dead_reg = XEXP (link, 0); ++ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn)); ++ /* Remove the REG_DEAD note from the insn we convert to a move. */ ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (insn) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ /* Add a REG_DEAD note to signal that the scratch register is dead. */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn)); ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_extra_move_insns++; ++ return op; ++ } ++ } ++ ++ /* We failed to fixup the insns, so this if-then-else can not be made ++ conditional. Just return NULL_RTX so that the if-then-else conversion ++ for this if-then-else will be cancelled. */ ++ return NULL_RTX; ++ } ++ end_sequence (); ++ return op; ++ } ++ ++ /* Signal that we have started if conversion after reload, which means ++ that it should be safe to split all the predicable clobber insns which ++ did not become cond_exec back into a simpler form if possible. */ ++ cfun->machine->ifcvt_after_reload = 1; ++ ++ return pattern; ++} ++ ++ ++void ++avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes) ++{ ++ int n; ++ ++ if ( ce_info->num_extra_move_insns > 0 ++ && ce_info->num_cond_clobber_insns == 0) ++ /* Signal that we did not do any changes after all. */ ++ *num_true_changes -= 1; ++ ++ /* Remove any inserted move insns. */ ++ for ( n = 0; n < ce_info->num_extra_move_insns; n++ ) ++ { ++ rtx link, prev_link; ++ ++ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ ++ /* Revert all reg_notes for the moved insn. */ ++ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1)) ++ { ++ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link), ++ XEXP (link, 0), ++ REG_NOTES (ce_info->extra_move_insns[n])); ++ } ++ ++ /* Remove the moved insn. */ ++ remove_insn ( ce_info->moved_insns[n] ); ++ } ++} ++ ++ ++/* Function returning TRUE if INSN with OPERANDS is a splittable ++ conditional immediate clobber insn. We assume that the insn is ++ already a conditional immediate clobber insns and do not check ++ for that. */ ++int ++avr32_cond_imm_clobber_splittable (rtx insn, rtx operands[]) ++{ ++ if ( REGNO (operands[0]) == REGNO (operands[1]) ) ++ { ++ if ( (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is21")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21"))) ++ return FALSE; ++ } ++ else if ( (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) ) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++/* Function for getting an integer value from a const_int or const_double ++ expression regardless of the HOST_WIDE_INT size. Each target cpu word ++ will be put into the val array where the LSW will be stored at the lowest ++ address and so forth. Assumes that const_expr is either a const_int or ++ const_double. Only valid for modes which have sizes that are a multiple ++ of the word size. ++*/ ++void ++avr32_get_intval (enum machine_mode mode, rtx const_expr, HOST_WIDE_INT *val) ++{ ++ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ ++ if ( GET_CODE(const_expr) == CONST_DOUBLE ){ ++ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr); ++ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr); ++ /* Evaluate hi and lo values of const_double. */ ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (lo), ++ &val[0]); ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (hi), ++ &val[words_in_const_int]); ++ } else if ( GET_CODE(const_expr) == CONST_INT ){ ++ HOST_WIDE_INT value = INTVAL(const_expr); ++ int word; ++ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){ ++ /* Shift word up to the MSW and shift down again to extract the ++ word and sign-extend. */ ++ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD; ++ int rshift = (words_in_const_int-1) * BITS_PER_WORD; ++ val[word] = (value << lshift) >> rshift; ++ } ++ ++ for ( ; word < words_in_mode; word++ ){ ++ /* Just put the sign bits in the remaining words. */ ++ val[word] = value < 0 ? -1 : 0; ++ } ++ } ++} ++ ++ ++void ++avr32_split_const_expr (enum machine_mode mode, enum machine_mode new_mode, ++ rtx expr, rtx *split_expr) ++{ ++ int i, word; ++ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD); ++ ++ avr32_get_intval (mode, expr, val); ++ ++ for ( i=0; i < (words_in_intval/words_in_split_values); i++ ) ++ { ++ HOST_WIDE_INT value_lo = 0, value_hi = 0; ++ for ( word = 0; word < words_in_split_values; word++ ) ++ { ++ if ( word >= words_in_const_int ) ++ value_hi |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * (word - words_in_const_int))); ++ else ++ value_lo |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * word)); ++ } ++ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode); ++ } ++} ++ ++ ++/* Set up library functions to comply to AVR32 ABI */ ++static void ++avr32_init_libfuncs (void) ++{ ++ /* Convert gcc run-time function names to AVR32 ABI names */ ++ ++ /* Double-precision floating-point arithmetic. */ ++ set_optab_libfunc (neg_optab, DFmode, NULL); ++ ++ /* Double-precision comparisons. */ ++ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq"); ++ set_optab_libfunc (ne_optab, DFmode, NULL); ++ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt"); ++ set_optab_libfunc (le_optab, DFmode, NULL); ++ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge"); ++ set_optab_libfunc (gt_optab, DFmode, NULL); ++ ++ /* Single-precision floating-point arithmetic. */ ++ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul"); ++ set_optab_libfunc (neg_optab, SFmode, NULL); ++ ++ /* Single-precision comparisons. */ ++ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq"); ++ set_optab_libfunc (ne_optab, SFmode, NULL); ++ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt"); ++ set_optab_libfunc (le_optab, SFmode, NULL); ++ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge"); ++ set_optab_libfunc (gt_optab, SFmode, NULL); ++ ++ /* Floating-point to integer conversions. */ ++ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64"); ++ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64"); ++ ++ /* Conversions between floating types. */ ++ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32"); ++ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64"); ++ ++ /* Integer to floating-point conversions. Table 8. */ ++ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64"); ++ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64"); ++ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32"); ++ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32"); ++ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64"); ++ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32"); ++ /* TODO: Add these to gcc library functions */ ++ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL); ++ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL); ++ ++ /* Long long. Table 9. */ ++ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64"); ++ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64"); ++ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64"); ++ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64"); ++ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64"); ++ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64"); ++ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64"); ++ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64"); ++ ++ /* Floating point library functions which have fast versions. */ ++ if ( TARGET_FAST_FLOAT ) ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast"); ++ } ++ else ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div"); ++ } ++} ++ ++ ++/* Record a flashvault declaration. */ ++static void ++flashvault_decl_list_add (unsigned int vector_num, const char *name) ++{ ++ struct flashvault_decl_list *p; ++ ++ p = (struct flashvault_decl_list *) ++ xmalloc (sizeof (struct flashvault_decl_list)); ++ p->next = flashvault_decl_list_head; ++ p->name = name; ++ p->vector_num = vector_num; ++ flashvault_decl_list_head = p; ++} ++ ++ ++static void ++avr32_file_end (void) ++{ ++ struct flashvault_decl_list *p; ++ unsigned int num_entries = 0; ++ ++ /* Check if a list of flashvault declarations exists. */ ++ if (flashvault_decl_list_head != NULL) ++ { ++ /* Calculate the number of entries in the table. */ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ num_entries++; ++ } ++ ++ /* Generate the beginning of the flashvault data table. */ ++ fputs ("\t.global __fv_table\n" ++ "\t.data\n" ++ "\t.align 2\n" ++ "\t.set .LFVTABLE, . + 0\n" ++ "\t.type __fv_table, @object\n", asm_out_file); ++ /* Each table entry is 8 bytes. */ ++ fprintf (asm_out_file, "\t.size __fv_table, %u\n", (num_entries * 8)); ++ ++ fputs("__fv_table:\n", asm_out_file); ++ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ /* Output table entry. */ ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %u\n", p->vector_num); ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %s\n", p->name); ++ } ++ } ++} +--- /dev/null ++++ b/gcc/config/avr32/avr32-elf.h +@@ -0,0 +1,91 @@ ++/* ++ Elf specific definitions. ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/***************************************************************************** ++ * Controlling the Compiler Driver, 'gcc' ++ *****************************************************************************/ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr); ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that STARTFILE_SPEC is used at ++the very beginning of the command given to the linker. ++ ++If this macro is not defined, a default is provided that loads the ++standard C startup file from the usual place. See gcc.c. ++*/ ++#if 0 ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s" ++#endif ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "%{mflashvault: crtfv.o%s} %{!mflashvault: crt0.o%s} \ ++ crti.o%s crtbegin.o%s" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}" ++ ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that ENDFILE_SPEC is used at ++the very end of the command given to the linker. ++ ++Do not define this macro if it does not need to do anything. ++*/ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s crtn%O%s" ++ ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_ELF__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ if (TARGET_FLASHVAULT) \ ++ builtin_define ("__AVR32_FLASHVAULT__"); \ ++ if (TARGET_NO_MUL_INSNS) \ ++ builtin_define ("__AVR32_NO_MUL__"); \ ++ } \ ++ while (0) +--- /dev/null ++++ b/gcc/config/avr32/avr32.h +@@ -0,0 +1,3316 @@ ++/* ++ Definitions of target machine for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#ifndef GCC_AVR32_H ++#define GCC_AVR32_H ++ ++ ++#ifndef OBJECT_FORMAT_ELF ++#error avr32.h included before elfos.h ++#endif ++ ++#ifndef LOCAL_LABEL_PREFIX ++#define LOCAL_LABEL_PREFIX "." ++#endif ++ ++#ifndef SUBTARGET_CPP_SPEC ++#define SUBTARGET_CPP_SPEC "-D__ELF__" ++#endif ++ ++ ++extern struct rtx_def *avr32_compare_op0; ++extern struct rtx_def *avr32_compare_op1; ++ ++/* comparison type */ ++enum avr32_cmp_type { ++ CMP_QI, /* 1 byte ->char */ ++ CMP_HI, /* 2 byte->half word */ ++ CMP_SI, /* four byte->word*/ ++ CMP_DI, /* eight byte->double word */ ++ CMP_SF, /* single precision floats */ ++ CMP_MAX /* max comparison type */ ++}; ++ ++extern enum avr32_cmp_type avr32_branch_type; /* type of branch to use */ ++ ++ ++extern struct rtx_def *avr32_acc_cache; ++ ++/* cache instruction op5 codes */ ++#define AVR32_CACHE_INVALIDATE_ICACHE 1 ++ ++/* ++These bits describe the different types of function supported by the AVR32 ++backend. They are exclusive, e.g. a function cannot be both a normal function ++and an interworked function. Knowing the type of a function is important for ++determining its prologue and epilogue sequences. Note value 7 is currently ++unassigned. Also note that the interrupt function types all have bit 2 set, ++so that they can be tested for easily. Note that 0 is deliberately chosen for ++AVR32_FT_UNKNOWN so that when the machine_function structure is initialized ++(to zero) func_type will default to unknown. This will force the first use of ++avr32_current_func_type to call avr32_compute_func_type. ++*/ ++#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined. */ ++#define AVR32_FT_NORMAL 1 /* Normal function. */ ++#define AVR32_FT_ACALL 2 /* An acall function. */ ++#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */ ++#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */ ++#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */ ++#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */ ++ ++#define AVR32_FT_TYPE_MASK ((1 << 3) - 1) ++ ++/* In addition functions can have several type modifiers, outlined by these bit masks: */ ++#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ ++#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */ ++#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */ ++#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another func. */ ++#define AVR32_FT_FLASHVAULT (1 << 6) /* Flashvault function call. */ ++#define AVR32_FT_FLASHVAULT_IMPL (1 << 7) /* Function definition in FlashVault. */ ++ ++ ++/* Some macros to test these flags. */ ++#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK) ++#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT) ++#define IS_NAKED(t) (t & AVR32_FT_NAKED) ++#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE) ++#define IS_NESTED(t) (t & AVR32_FT_NESTED) ++#define IS_FLASHVAULT(t) (t & AVR32_FT_FLASHVAULT) ++#define IS_FLASHVAULT_IMPL(t) (t & AVR32_FT_FLASHVAULT_IMPL) ++ ++#define SYMBOL_FLAG_RMW_ADDR_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT ++#define SYMBOL_REF_RMW_ADDR(RTX) \ ++ ((SYMBOL_REF_FLAGS (RTX) & (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT)) != 0) ++ ++ ++typedef struct minipool_labels ++GTY ((chain_next ("%h.next"), chain_prev ("%h.prev"))) ++{ ++ rtx label; ++ struct minipool_labels *prev; ++ struct minipool_labels *next; ++} minipool_labels; ++ ++/* A C structure for machine-specific, per-function data. ++ This is added to the cfun structure. */ ++ ++typedef struct machine_function ++GTY (()) ++{ ++ /* Records the type of the current function. */ ++ unsigned long func_type; ++ /* List of minipool labels, use for checking if code label is valid in a ++ memory expression */ ++ minipool_labels *minipool_label_head; ++ minipool_labels *minipool_label_tail; ++ int ifcvt_after_reload; ++} machine_function; ++ ++/* Initialize data used by insn expanders. This is called from insn_emit, ++ once for every function before code is generated. */ ++#define INIT_EXPANDERS avr32_init_expanders () ++ ++/****************************************************************************** ++ * SPECS ++ *****************************************************************************/ ++ ++#ifndef ASM_SPEC ++#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}" ++#endif ++ ++#ifndef MULTILIB_DEFAULTS ++#define MULTILIB_DEFAULTS { "march=ap", "" } ++#endif ++ ++/****************************************************************************** ++ * Run-time Target Specification ++ *****************************************************************************/ ++#ifndef TARGET_VERSION ++#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)"); ++#endif ++ ++ ++/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/ ++enum part_type ++{ ++ PART_TYPE_AVR32_NONE, ++ PART_TYPE_AVR32_AP7000, ++ PART_TYPE_AVR32_AP7001, ++ PART_TYPE_AVR32_AP7002, ++ PART_TYPE_AVR32_AP7200, ++ PART_TYPE_AVR32_UC3A0128, ++ PART_TYPE_AVR32_UC3A0256, ++ PART_TYPE_AVR32_UC3A0512, ++ PART_TYPE_AVR32_UC3A0512ES, ++ PART_TYPE_AVR32_UC3A1128, ++ PART_TYPE_AVR32_UC3A1256, ++ PART_TYPE_AVR32_UC3A1512, ++ PART_TYPE_AVR32_UC3A1512ES, ++ PART_TYPE_AVR32_UC3A3REVD, ++ PART_TYPE_AVR32_UC3A364, ++ PART_TYPE_AVR32_UC3A364S, ++ PART_TYPE_AVR32_UC3A3128, ++ PART_TYPE_AVR32_UC3A3128S, ++ PART_TYPE_AVR32_UC3A3256, ++ PART_TYPE_AVR32_UC3A3256S, ++ PART_TYPE_AVR32_UC3A464, ++ PART_TYPE_AVR32_UC3A464S, ++ PART_TYPE_AVR32_UC3A4128, ++ PART_TYPE_AVR32_UC3A4128S, ++ PART_TYPE_AVR32_UC3A4256, ++ PART_TYPE_AVR32_UC3A4256S, ++ PART_TYPE_AVR32_UC3B064, ++ PART_TYPE_AVR32_UC3B0128, ++ PART_TYPE_AVR32_UC3B0256, ++ PART_TYPE_AVR32_UC3B0256ES, ++ PART_TYPE_AVR32_UC3B0512, ++ PART_TYPE_AVR32_UC3B0512REVC, ++ PART_TYPE_AVR32_UC3B164, ++ PART_TYPE_AVR32_UC3B1128, ++ PART_TYPE_AVR32_UC3B1256, ++ PART_TYPE_AVR32_UC3B1256ES, ++ PART_TYPE_AVR32_UC3B1512, ++ PART_TYPE_AVR32_UC3B1512REVC, ++ PART_TYPE_AVR32_UC64D3, ++ PART_TYPE_AVR32_UC128D3, ++ PART_TYPE_AVR32_UC64D4, ++ PART_TYPE_AVR32_UC128D4, ++ PART_TYPE_AVR32_UC3C0512CREVC, ++ PART_TYPE_AVR32_UC3C1512CREVC, ++ PART_TYPE_AVR32_UC3C2512CREVC, ++ PART_TYPE_AVR32_UC3L0256, ++ PART_TYPE_AVR32_UC3L0128, ++ PART_TYPE_AVR32_UC3L064, ++ PART_TYPE_AVR32_UC3L032, ++ PART_TYPE_AVR32_UC3L016, ++ PART_TYPE_AVR32_UC3L064REVB, ++ PART_TYPE_AVR32_UC64L3U, ++ PART_TYPE_AVR32_UC128L3U, ++ PART_TYPE_AVR32_UC256L3U, ++ PART_TYPE_AVR32_UC64L4U, ++ PART_TYPE_AVR32_UC128L4U, ++ PART_TYPE_AVR32_UC256L4U, ++ PART_TYPE_AVR32_UC3C064C, ++ PART_TYPE_AVR32_UC3C0128C, ++ PART_TYPE_AVR32_UC3C0256C, ++ PART_TYPE_AVR32_UC3C0512C, ++ PART_TYPE_AVR32_UC3C164C, ++ PART_TYPE_AVR32_UC3C1128C, ++ PART_TYPE_AVR32_UC3C1256C, ++ PART_TYPE_AVR32_UC3C1512C, ++ PART_TYPE_AVR32_UC3C264C, ++ PART_TYPE_AVR32_UC3C2128C, ++ PART_TYPE_AVR32_UC3C2256C, ++ PART_TYPE_AVR32_UC3C2512C, ++ PART_TYPE_AVR32_MXT768E ++}; ++ ++/* Microarchitectures. */ ++enum microarchitecture_type ++{ ++ UARCH_TYPE_AVR32A, ++ UARCH_TYPE_AVR32B, ++ UARCH_TYPE_NONE ++}; ++ ++/* Architectures types which specifies the pipeline. ++ Keep this in sync with avr32_arch_types in avr32.c ++ and the pipeline attribute in avr32.md */ ++enum architecture_type ++{ ++ ARCH_TYPE_AVR32_AP, ++ ARCH_TYPE_AVR32_UCR1, ++ ARCH_TYPE_AVR32_UCR2, ++ ARCH_TYPE_AVR32_UCR2NOMUL, ++ ARCH_TYPE_AVR32_UCR3, ++ ARCH_TYPE_AVR32_UCR3FP, ++ ARCH_TYPE_AVR32_NONE ++}; ++ ++/* Flag specifying if the cpu has support for DSP instructions.*/ ++#define FLAG_AVR32_HAS_DSP (1 << 0) ++/* Flag specifying if the cpu has support for Read-Modify-Write ++ instructions.*/ ++#define FLAG_AVR32_HAS_RMW (1 << 1) ++/* Flag specifying if the cpu has support for SIMD instructions. */ ++#define FLAG_AVR32_HAS_SIMD (1 << 2) ++/* Flag specifying if the cpu has support for unaligned memory word access. */ ++#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3) ++/* Flag specifying if the cpu has support for branch prediction. */ ++#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4) ++/* Flag specifying if the cpu has support for a return stack. */ ++#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5) ++/* Flag specifying if the cpu has caches. */ ++#define FLAG_AVR32_HAS_CACHES (1 << 6) ++/* Flag specifying if the cpu has support for v2 insns. */ ++#define FLAG_AVR32_HAS_V2_INSNS (1 << 7) ++/* Flag specifying that the cpu has buggy mul insns. */ ++#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8) ++/* Flag specifying that the device has FPU instructions according ++ to AVR32002 specifications*/ ++#define FLAG_AVR32_HAS_FPU (1 << 9) ++ ++/* Structure for holding information about different avr32 CPUs/parts */ ++struct part_type_s ++{ ++ const char *const name; ++ enum part_type part_type; ++ enum architecture_type arch_type; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++/* Structure for holding information about different avr32 pipeline ++ architectures. */ ++struct arch_type_s ++{ ++ const char *const name; ++ enum architecture_type arch_type; ++ enum microarchitecture_type uarch_type; ++ const unsigned long feature_flags; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++extern const struct part_type_s *avr32_part; ++extern const struct arch_type_s *avr32_arch; ++ ++#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD) ++#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP) ++#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW) ++#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD) ++#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED) ++#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK) ++#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS) ++#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES) ++#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS) ++#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP) ++#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1) ++#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2) ++#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2) ++#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) ++#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B) ++#define TARGET_ARCH_FPU (avr32_arch->feature_flags & FLAG_AVR32_HAS_FPU) ++ ++#define CAN_DEBUG_WITHOUT_FP ++ ++ ++ ++ ++/****************************************************************************** ++ * Storage Layout ++ *****************************************************************************/ ++ ++/* ++Define this macro to have the value 1 if the most significant bit in a ++byte has the lowest number; otherwise define it to have the value zero. ++This means that bit-field instructions count from the most significant ++bit. If the machine has no bit-field instructions, then this must still ++be defined, but it doesn't matter which value it is defined to. This ++macro need not be a constant. ++ ++This macro does not affect the way structure fields are packed into ++bytes or words; that is controlled by BYTES_BIG_ENDIAN. ++*/ ++#define BITS_BIG_ENDIAN 0 ++ ++/* ++Define this macro to have the value 1 if the most significant byte in a ++word has the lowest number. This macro need not be a constant. ++*/ ++/* ++ Data is stored in an big-endian way. ++*/ ++#define BYTES_BIG_ENDIAN 1 ++ ++/* ++Define this macro to have the value 1 if, in a multiword object, the ++most significant word has the lowest number. This applies to both ++memory locations and registers; GCC fundamentally assumes that the ++order of words in memory is the same as the order in registers. This ++macro need not be a constant. ++*/ ++/* ++ Data is stored in an bin-endian way. ++*/ ++#define WORDS_BIG_ENDIAN 1 ++ ++/* ++Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a ++constant value with the same meaning as WORDS_BIG_ENDIAN, which will be ++used only when compiling libgcc2.c. Typically the value will be set ++based on preprocessor defines. ++*/ ++#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN ++ ++/* ++Define this macro to have the value 1 if DFmode, XFmode or ++TFmode floating point numbers are stored in memory with the word ++containing the sign bit at the lowest address; otherwise define it to ++have the value 0. This macro need not be a constant. ++ ++You need not define this macro if the ordering is the same as for ++multi-word integers. ++*/ ++/* #define FLOAT_WORDS_BIG_ENDIAN 1 */ ++ ++/* ++Define this macro to be the number of bits in an addressable storage ++unit (byte); normally 8. ++*/ ++#define BITS_PER_UNIT 8 ++ ++/* ++Number of bits in a word; normally 32. ++*/ ++#define BITS_PER_WORD 32 ++ ++/* ++Maximum number of bits in a word. If this is undefined, the default is ++BITS_PER_WORD. Otherwise, it is the constant value that is the ++largest value that BITS_PER_WORD can have at run-time. ++*/ ++/* MAX_BITS_PER_WORD not defined*/ ++ ++/* ++Number of storage units in a word; normally 4. ++*/ ++#define UNITS_PER_WORD 4 ++ ++/* ++Minimum number of units in a word. If this is undefined, the default is ++UNITS_PER_WORD. Otherwise, it is the constant value that is the ++smallest value that UNITS_PER_WORD can have at run-time. ++*/ ++/* MIN_UNITS_PER_WORD not defined */ ++ ++/* ++Width of a pointer, in bits. You must specify a value no wider than the ++width of Pmode. If it is not equal to the width of Pmode, ++you must define POINTERS_EXTEND_UNSIGNED. ++*/ ++#define POINTER_SIZE 32 ++ ++/* ++A C expression whose value is greater than zero if pointers that need to be ++extended from being POINTER_SIZE bits wide to Pmode are to ++be zero-extended and zero if they are to be sign-extended. If the value ++is less then zero then there must be an "ptr_extend" instruction that ++extends a pointer from POINTER_SIZE to Pmode. ++ ++You need not define this macro if the POINTER_SIZE is equal ++to the width of Pmode. ++*/ ++/* #define POINTERS_EXTEND_UNSIGNED */ ++ ++/* ++A Macro to update M and UNSIGNEDP when an object whose type ++is TYPE and which has the specified mode and signedness is to be ++stored in a register. This macro is only called when TYPE is a ++scalar type. ++ ++On most RISC machines, which only have operations that operate on a full ++register, define this macro to set M to word_mode if ++M is an integer mode narrower than BITS_PER_WORD. In most ++cases, only integer modes should be widened because wider-precision ++floating-point operations are usually more expensive than their narrower ++counterparts. ++ ++For most machines, the macro definition does not change UNSIGNEDP. ++However, some machines, have instructions that preferentially handle ++either signed or unsigned quantities of certain modes. For example, on ++the DEC Alpha, 32-bit loads from memory and 32-bit add instructions ++sign-extend the result to 64 bits. On such machines, set ++UNSIGNEDP according to which kind of extension is more efficient. ++ ++Do not define this macro if it would never modify M. ++*/ ++#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \ ++ { \ ++ if (!AGGREGATE_TYPE_P (TYPE) \ ++ && GET_MODE_CLASS (mode) == MODE_INT \ ++ && GET_MODE_SIZE (mode) < 4) \ ++ { \ ++ if (M == QImode) \ ++ (UNSIGNEDP) = 1; \ ++ else if (M == HImode) \ ++ (UNSIGNEDP) = 0; \ ++ (M) = SImode; \ ++ } \ ++ } ++ ++#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \ ++ PROMOTE_MODE(M, UNSIGNEDP, TYPE) ++ ++/* Define if operations between registers always perform the operation ++ on the full register even if a narrower mode is specified. */ ++#define WORD_REGISTER_OPERATIONS ++ ++/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD ++ will either zero-extend or sign-extend. The value of this macro should ++ be the code that says which one of the two operations is implicitly ++ done, UNKNOWN if not known. */ ++#define LOAD_EXTEND_OP(MODE) \ ++ (((MODE) == QImode) ? ZERO_EXTEND \ ++ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN) ++ ++ ++/* ++Normal alignment required for function parameters on the stack, in ++bits. All stack parameters receive at least this much alignment ++regardless of data type. On most machines, this is the same as the ++size of an integer. ++*/ ++#define PARM_BOUNDARY 32 ++ ++/* ++Define this macro to the minimum alignment enforced by hardware for the ++stack pointer on this machine. The definition is a C expression for the ++desired alignment (measured in bits). This value is used as a default ++if PREFERRED_STACK_BOUNDARY is not defined. On most machines, ++this should be the same as PARM_BOUNDARY. ++*/ ++#define STACK_BOUNDARY 32 ++ ++/* ++Define this macro if you wish to preserve a certain alignment for the ++stack pointer, greater than what the hardware enforces. The definition ++is a C expression for the desired alignment (measured in bits). This ++macro must evaluate to a value equal to or larger than ++STACK_BOUNDARY. ++*/ ++#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++Alignment required for a function entry point, in bits. ++*/ ++#define FUNCTION_BOUNDARY 16 ++ ++/* ++Biggest alignment that any data type can require on this machine, in bits. ++*/ ++#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++If defined, the smallest alignment, in bits, that can be given to an ++object that can be referenced in one operation, without disturbing any ++nearby object. Normally, this is BITS_PER_UNIT, but may be larger ++on machines that don't have byte or half-word store operations. ++*/ ++#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT ++ ++ ++/* ++An integer expression for the size in bits of the largest integer machine mode that ++should actually be used. All integer machine modes of this size or smaller can be ++used for structures and unions with the appropriate sizes. If this macro is undefined, ++GET_MODE_BITSIZE (DImode) is assumed.*/ ++#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode) ++ ++ ++/* ++If defined, a C expression to compute the alignment given to a constant ++that is being placed in memory. CONSTANT is the constant and ++BASIC_ALIGN is the alignment that the object would ordinarily ++have. The value of this macro is used instead of that alignment to ++align the object. ++ ++If this macro is not defined, then BASIC_ALIGN is used. ++ ++The typical use of this macro is to increase alignment for string ++constants to be word aligned so that strcpy calls that copy ++constants can be done inline. ++*/ ++#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \ ++ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN) ++ ++/* Try to align string to a word. */ ++#define DATA_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* Try to align local store strings to a word. */ ++#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* ++Define this macro to be the value 1 if instructions will fail to work ++if given data not on the nominal alignment. If instructions will merely ++go slower in that case, define this macro as 0. ++*/ ++#define STRICT_ALIGNMENT 1 ++ ++/* ++Define this if you wish to imitate the way many other C compilers handle ++alignment of bit-fields and the structures that contain them. ++ ++The behavior is that the type written for a bit-field (int, ++short, or other integer type) imposes an alignment for the ++entire structure, as if the structure really did contain an ordinary ++field of that type. In addition, the bit-field is placed within the ++structure so that it would fit within such a field, not crossing a ++boundary for it. ++ ++Thus, on most machines, a bit-field whose type is written as int ++would not cross a four-byte boundary, and would force four-byte ++alignment for the whole structure. (The alignment used may not be four ++bytes; it is controlled by the other alignment parameters.) ++ ++If the macro is defined, its definition should be a C expression; ++a nonzero value for the expression enables this behavior. ++ ++Note that if this macro is not defined, or its value is zero, some ++bit-fields may cross more than one alignment boundary. The compiler can ++support such references if there are insv, extv, and ++extzv insns that can directly reference memory. ++ ++The other known way of making bit-fields work is to define ++STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. ++Then every structure can be accessed with fullwords. ++ ++Unless the machine has bit-field instructions or you define ++STRUCTURE_SIZE_BOUNDARY that way, you must define ++PCC_BITFIELD_TYPE_MATTERS to have a nonzero value. ++ ++If your aim is to make GCC use the same conventions for laying out ++bit-fields as are used by another compiler, here is how to investigate ++what the other compiler does. Compile and run this program: ++ ++struct foo1 ++{ ++ char x; ++ char :0; ++ char y; ++}; ++ ++struct foo2 ++{ ++ char x; ++ int :0; ++ char y; ++}; ++ ++main () ++{ ++ printf ("Size of foo1 is %d\n", ++ sizeof (struct foo1)); ++ printf ("Size of foo2 is %d\n", ++ sizeof (struct foo2)); ++ exit (0); ++} ++ ++If this prints 2 and 5, then the compiler's behavior is what you would ++get from PCC_BITFIELD_TYPE_MATTERS. ++*/ ++#define PCC_BITFIELD_TYPE_MATTERS 1 ++ ++ ++/****************************************************************************** ++ * Layout of Source Language Data Types ++ *****************************************************************************/ ++ ++/* ++A C expression for the size in bits of the type int on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define INT_TYPE_SIZE 32 ++ ++/* ++A C expression for the size in bits of the type short on the ++target machine. If you don't define this, the default is half a word. (If ++this would be less than one storage unit, it is rounded up to one unit.) ++*/ ++#define SHORT_TYPE_SIZE 16 ++ ++/* ++A C expression for the size in bits of the type long on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define LONG_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for the size in bits of the type long long on the ++target machine. If you don't define this, the default is two ++words. If you want to support GNU Ada on your machine, the value of this ++macro must be at least 64. ++*/ ++#define LONG_LONG_TYPE_SIZE 64 ++ ++/* ++A C expression for the size in bits of the type char on the ++target machine. If you don't define this, the default is ++BITS_PER_UNIT. ++*/ ++#define CHAR_TYPE_SIZE 8 ++ ++ ++/* ++A C expression for the size in bits of the C++ type bool and ++C99 type _Bool on the target machine. If you don't define ++this, and you probably shouldn't, the default is CHAR_TYPE_SIZE. ++*/ ++#define BOOL_TYPE_SIZE 8 ++ ++ ++/* ++An expression whose value is 1 or 0, according to whether the type ++char should be signed or unsigned by default. The user can ++always override this default with the options -fsigned-char ++and -funsigned-char. ++*/ ++/* We are using unsigned char */ ++#define DEFAULT_SIGNED_CHAR 0 ++ ++ ++/* ++A C expression for a string describing the name of the data type to use ++for size values. The typedef name size_t is defined using the ++contents of the string. ++ ++The string can contain more than one keyword. If so, separate them with ++spaces, and write first any length keyword, then unsigned if ++appropriate, and finally int. The string must exactly match one ++of the data type names defined in the function ++init_decl_processing in the file c-decl.c. You may not ++omit int or change the order - that would cause the compiler to ++crash on startup. ++ ++If you don't define this macro, the default is "long unsigned int". ++*/ ++#define SIZE_TYPE "long unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type to use ++for the result of subtracting two pointers. The typedef name ++ptrdiff_t is defined using the contents of the string. See ++SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is "long int". ++*/ ++#define PTRDIFF_TYPE "long int" ++ ++ ++/* ++A C expression for the size in bits of the data type for wide ++characters. This is used in cpp, which cannot make use of ++WCHAR_TYPE. ++*/ ++#define WCHAR_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for a string describing the name of the data type to ++use for wide characters passed to printf and returned from ++getwc. The typedef name wint_t is defined using the ++contents of the string. See SIZE_TYPE above for more ++information. ++ ++If you don't define this macro, the default is "unsigned int". ++*/ ++#define WINT_TYPE "unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended signed integer type. ++The typedef name intmax_t is defined using the contents of the ++string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"int", "long int", or "long long int" that has as ++much precision as long long int. ++*/ ++#define INTMAX_TYPE "long long int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended unsigned integer ++type. The typedef name uintmax_t is defined using the contents ++of the string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"unsigned int", "long unsigned int", or "long long unsigned int" ++that has as much precision as long long unsigned int. ++*/ ++#define UINTMAX_TYPE "long long unsigned int" ++ ++ ++/****************************************************************************** ++ * Register Usage ++ *****************************************************************************/ ++ ++/* Convert from gcc internal register number to register number ++ used in assembly code */ ++#define ASM_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/* Convert between register number used in assembly to gcc ++ internal register number */ ++#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/** Basic Characteristics of Registers **/ ++ ++/* ++Number of hardware registers known to the compiler. They receive ++numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first ++pseudo register's number really is assigned the number ++FIRST_PSEUDO_REGISTER. ++*/ ++#define FIRST_PSEUDO_REGISTER (LAST_REGNUM + 1) ++ ++#define FIRST_REGNUM 0 ++#define LAST_REGNUM 15 ++ ++/* ++An initializer that says which registers are used for fixed purposes ++all throughout the compiled code and are therefore not available for ++general allocation. These would include the stack pointer, the frame ++pointer (except on machines where that can be used as a general ++register when no frame pointer is needed), the program counter on ++machines where that is considered one of the addressable registers, ++and any other numbered register with a standard use. ++ ++This information is expressed as a sequence of numbers, separated by ++commas and surrounded by braces. The nth number is 1 if ++register n is fixed, 0 otherwise. ++ ++The table initialized from this macro, and the table initialized by ++the following one, may be overridden at run time either automatically, ++by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by ++the user with the command options -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg]. ++*/ ++ ++/* The internal gcc register numbers are reversed ++ compared to the real register numbers since ++ gcc expects data types stored over multiple ++ registers in the register file to be big endian ++ if the memory layout is big endian. But this ++ is not the case for avr32 so we fake a big ++ endian register file. */ ++ ++#define FIXED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 0, /* r12 */ \ ++ 0, /* r11 */ \ ++ 0, /* r10 */ \ ++ 0, /* r9 */ \ ++ 0, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* ++Like FIXED_REGISTERS but has 1 for each register that is ++clobbered (in general) by function calls as well as for fixed ++registers. This macro therefore identifies the registers that are not ++available for general allocation of values that must live across ++function calls. ++ ++If a register has 0 in CALL_USED_REGISTERS, the compiler ++automatically saves it on function entry and restores it on function ++exit, if the register is used within the function. ++*/ ++#define CALL_USED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 1, /* r12 */ \ ++ 1, /* r11 */ \ ++ 1, /* r10 */ \ ++ 1, /* r9 */ \ ++ 1, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* Interrupt functions can only use registers that have already been ++ saved by the prologue, even if they would normally be ++ call-clobbered. */ ++#define HARD_REGNO_RENAME_OK(SRC, DST) \ ++ (! IS_INTERRUPT (cfun->machine->func_type) || \ ++ df_regs_ever_live_p (DST)) ++ ++ ++/* ++Zero or more C statements that may conditionally modify five variables ++fixed_regs, call_used_regs, global_regs, ++reg_names, and reg_class_contents, to take into account ++any dependence of these register sets on target flags. The first three ++of these are of type char [] (interpreted as Boolean vectors). ++global_regs is a const char *[], and ++reg_class_contents is a HARD_REG_SET. Before the macro is ++called, fixed_regs, call_used_regs, ++reg_class_contents, and reg_names have been initialized ++from FIXED_REGISTERS, CALL_USED_REGISTERS, ++REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively. ++global_regs has been cleared, and any -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg] ++command options have been applied. ++ ++You need not define this macro if it has no work to do. ++ ++If the usage of an entire class of registers depends on the target ++flags, you may indicate this to GCC by using this macro to modify ++fixed_regs and call_used_regs to 1 for each of the ++registers in the classes which should not be used by GCC. Also define ++the macro REG_CLASS_FROM_LETTER to return NO_REGS if it ++is called with a letter for a class that shouldn't be used. ++ ++ (However, if this class is not included in GENERAL_REGS and all ++of the insn patterns whose constraints permit this class are ++controlled by target switches, then GCC will automatically avoid using ++these registers when the target switches are opposed to them.) ++*/ ++#define CONDITIONAL_REGISTER_USAGE \ ++ do \ ++ { \ ++ if (flag_pic) \ ++ { \ ++ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ } \ ++ } \ ++ while (0) ++ ++ ++/* ++If the program counter has a register number, define this as that ++register number. Otherwise, do not define it. ++*/ ++ ++#define LAST_AVR32_REGNUM 16 ++ ++ ++/** Order of Allocation of Registers **/ ++ ++/* ++If defined, an initializer for a vector of integers, containing the ++numbers of hard registers in the order in which GCC should prefer ++to use them (from most preferred to least). ++ ++If this macro is not defined, registers are used lowest numbered first ++(all else being equal). ++ ++One use of this macro is on machines where the highest numbered ++registers must always be saved and the save-multiple-registers ++instruction supports only sequences of consecutive registers. On such ++machines, define REG_ALLOC_ORDER to be an initializer that lists ++the highest numbered allocable register first. ++*/ ++#define REG_ALLOC_ORDER \ ++{ \ ++ INTERNAL_REGNUM(8), \ ++ INTERNAL_REGNUM(9), \ ++ INTERNAL_REGNUM(10), \ ++ INTERNAL_REGNUM(11), \ ++ INTERNAL_REGNUM(12), \ ++ LR_REGNUM, \ ++ INTERNAL_REGNUM(7), \ ++ INTERNAL_REGNUM(6), \ ++ INTERNAL_REGNUM(5), \ ++ INTERNAL_REGNUM(4), \ ++ INTERNAL_REGNUM(3), \ ++ INTERNAL_REGNUM(2), \ ++ INTERNAL_REGNUM(1), \ ++ INTERNAL_REGNUM(0), \ ++ SP_REGNUM, \ ++ PC_REGNUM \ ++} ++ ++ ++/** How Values Fit in Registers **/ ++ ++/* ++A C expression for the number of consecutive hard registers, starting ++at register number REGNO, required to hold a value of mode ++MODE. ++ ++On a machine where all registers are exactly one word, a suitable ++definition of this macro is ++ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ ++ / UNITS_PER_WORD) ++*/ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD)) ++ ++/* ++A C expression that is nonzero if it is permissible to store a value ++of mode MODE in hard register number REGNO (or in several ++registers starting with that one). For a machine where all registers ++are equivalent, a suitable definition is ++ ++ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 ++ ++You need not include code to check for the numbers of fixed registers, ++because the allocation mechanism considers them to be always occupied. ++ ++On some machines, double-precision values must be kept in even/odd ++register pairs. You can implement that by defining this macro to reject ++odd register numbers for such modes. ++ ++The minimum requirement for a mode to be OK in a register is that the ++mov[mode] instruction pattern support moves between the ++register and other hard register in the same class and that moving a ++value into the register and back out not alter it. ++ ++Since the same instruction used to move word_mode will work for ++all narrower integer modes, it is not necessary on any machine for ++HARD_REGNO_MODE_OK to distinguish between these modes, provided ++you define patterns movhi, etc., to take advantage of this. This ++is useful because of the interaction between HARD_REGNO_MODE_OK ++and MODES_TIEABLE_P; it is very desirable for all integer modes ++to be tieable. ++ ++Many machines have special registers for floating point arithmetic. ++Often people assume that floating point machine modes are allowed only ++in floating point registers. This is not true. Any registers that ++can hold integers can safely hold a floating point machine ++mode, whether or not floating arithmetic can be done on it in those ++registers. Integer move instructions can be used to move the values. ++ ++On some machines, though, the converse is true: fixed-point machine ++modes may not go in floating registers. This is true if the floating ++registers normalize any value stored in them, because storing a ++non-floating value there would garble it. In this case, ++HARD_REGNO_MODE_OK should reject fixed-point machine modes in ++floating registers. But if the floating registers do not automatically ++normalize, if you can store any bit pattern in one and retrieve it ++unchanged without a trap, then any machine mode may go in a floating ++register, so you can define this macro to say so. ++ ++The primary significance of special floating registers is rather that ++they are the registers acceptable in floating point arithmetic ++instructions. However, this is of no concern to ++HARD_REGNO_MODE_OK. You handle it by writing the proper ++constraints for those instructions. ++ ++On some machines, the floating registers are especially slow to access, ++so that it is better to store a value in a stack frame than in such a ++register if floating point arithmetic is not being done. As long as the ++floating registers are not in class GENERAL_REGS, they will not ++be used unless some pattern's constraint asks for one. ++*/ ++#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE) ++ ++/* ++A C expression that is nonzero if a value of mode ++MODE1 is accessible in mode MODE2 without copying. ++ ++If HARD_REGNO_MODE_OK(R, MODE1) and ++HARD_REGNO_MODE_OK(R, MODE2) are always the same for ++any R, then MODES_TIEABLE_P(MODE1, MODE2) ++should be nonzero. If they differ for any R, you should define ++this macro to return zero unless some other mechanism ensures the ++accessibility of the value in a narrower mode. ++ ++You should define this macro to return nonzero in as many cases as ++possible since doing so will allow GCC to perform better register ++allocation. ++*/ ++#define MODES_TIEABLE_P(MODE1, MODE2) \ ++ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) ++ ++ ++ ++/****************************************************************************** ++ * Register Classes ++ *****************************************************************************/ ++ ++/* ++An enumeral type that must be defined with all the register class names ++as enumeral values. NO_REGS must be first. ALL_REGS ++must be the last register class, followed by one more enumeral value, ++LIM_REG_CLASSES, which is not a register class but rather ++tells how many classes there are. ++ ++Each register class has a number, which is the value of casting ++the class name to type int. The number serves as an index ++in many of the tables described below. ++*/ ++enum reg_class ++{ ++ NO_REGS, ++ GENERAL_REGS, ++ ALL_REGS, ++ LIM_REG_CLASSES ++}; ++ ++/* ++The number of distinct register classes, defined as follows: ++ #define N_REG_CLASSES (int) LIM_REG_CLASSES ++*/ ++#define N_REG_CLASSES (int)LIM_REG_CLASSES ++ ++/* ++An initializer containing the names of the register classes as C string ++constants. These names are used in writing some of the debugging dumps. ++*/ ++#define REG_CLASS_NAMES \ ++{ \ ++ "NO_REGS", \ ++ "GENERAL_REGS", \ ++ "ALL_REGS" \ ++} ++ ++/* ++An initializer containing the contents of the register classes, as integers ++which are bit masks. The nth integer specifies the contents of class ++n. The way the integer mask is interpreted is that ++register r is in the class if mask & (1 << r) is 1. ++ ++When the machine has more than 32 registers, an integer does not suffice. ++Then the integers are replaced by sub-initializers, braced groupings containing ++several integers. Each sub-initializer must be suitable as an initializer ++for the type HARD_REG_SET which is defined in hard-reg-set.h. ++In this situation, the first integer in each sub-initializer corresponds to ++registers 0 through 31, the second integer to registers 32 through 63, and ++so on. ++*/ ++#define REG_CLASS_CONTENTS { \ ++ {0x00000000}, /* NO_REGS */ \ ++ {0x0000FFFF}, /* GENERAL_REGS */ \ ++ {0x7FFFFFFF}, /* ALL_REGS */ \ ++} ++ ++ ++/* ++A C expression whose value is a register class containing hard register ++REGNO. In general there is more than one such class; choose a class ++which is minimal, meaning that no smaller class also contains the ++register. ++*/ ++#define REGNO_REG_CLASS(REGNO) (GENERAL_REGS) ++ ++/* ++A macro whose definition is the name of the class to which a valid ++base register must belong. A base register is one used in an address ++which is the register value plus a displacement. ++*/ ++#define BASE_REG_CLASS GENERAL_REGS ++ ++/* ++This is a variation of the BASE_REG_CLASS macro which allows ++the selection of a base register in a mode depenedent manner. If ++mode is VOIDmode then it should return the same value as ++BASE_REG_CLASS. ++*/ ++#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS ++ ++/* ++A macro whose definition is the name of the class to which a valid ++index register must belong. An index register is one used in an ++address where its value is either multiplied by a scale factor or ++added to another register (as well as added to a displacement). ++*/ ++#define INDEX_REG_CLASS BASE_REG_CLASS ++ ++/* ++A C expression which defines the machine-dependent operand constraint ++letters for register classes. If CHAR is such a letter, the ++value should be the register class corresponding to it. Otherwise, ++the value should be NO_REGS. The register letter r, ++corresponding to class GENERAL_REGS, will not be passed ++to this macro; you do not need to handle it. ++*/ ++#define REG_CLASS_FROM_LETTER(CHAR) NO_REGS ++ ++/* These assume that REGNO is a hard or pseudo reg number. ++ They give nonzero only if REGNO is a hard reg of the suitable class ++ or a pseudo reg currently allocated to a suitable hard reg. ++ Since they use reg_renumber, they are safe only once reg_renumber ++ has been allocated, which happens in local-alloc.c. */ ++#define TEST_REGNO(R, TEST, VALUE) \ ++ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) ++ ++/* ++A C expression which is nonzero if register number num is suitable for use as a base ++register in operand addresses. It may be either a suitable hard register or a pseudo ++register that has been allocated such a hard register. ++*/ ++#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* The following macro defines cover classes for Integrated Register ++ Allocator. Cover classes is a set of non-intersected register ++ classes covering all hard registers used for register allocation ++ purpose. Any move between two registers of a cover class should be ++ cheaper than load or store of the registers. The macro value is ++ array of register classes with LIM_REG_CLASSES used as the end ++ marker. */ ++ ++#define IRA_COVER_CLASSES \ ++{ \ ++ GENERAL_REGS, LIM_REG_CLASSES \ ++} ++ ++/* ++A C expression which is nonzero if register number NUM is ++suitable for use as an index register in operand addresses. It may be ++either a suitable hard register or a pseudo register that has been ++allocated such a hard register. ++ ++The difference between an index register and a base register is that ++the index register may be scaled. If an address involves the sum of ++two registers, neither one of them scaled, then either one may be ++labeled the ``base'' and the other the ``index''; but whichever ++labeling is used must fit the machine's constraints of which registers ++may serve in each capacity. The compiler will try both labelings, ++looking for one that is valid, and will reload one or both registers ++only if neither labeling works. ++*/ ++#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* ++A C expression that places additional restrictions on the register class ++to use when it is necessary to copy value X into a register in class ++CLASS. The value is a register class; perhaps CLASS, or perhaps ++another, smaller class. On many machines, the following definition is ++safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS ++ ++Sometimes returning a more restrictive class makes better code. For ++example, on the 68000, when X is an integer constant that is in range ++for a 'moveq' instruction, the value of this macro is always ++DATA_REGS as long as CLASS includes the data registers. ++Requiring a data register guarantees that a 'moveq' will be used. ++ ++If X is a const_double, by returning NO_REGS ++you can force X into a memory constant. This is useful on ++certain machines where immediate floating values cannot be loaded into ++certain kinds of registers. ++*/ ++#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS ++ ++ ++ ++/* ++A C expression for the maximum number of consecutive registers ++of class CLASS needed to hold a value of mode MODE. ++ ++This is closely related to the macro HARD_REGNO_NREGS. In fact, ++the value of the macro CLASS_MAX_NREGS(CLASS, MODE) ++should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE) ++for all REGNO values in the class CLASS. ++ ++This macro helps control the handling of multiple-word values ++in the reload pass. ++*/ ++#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \ ++ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) ++ ++ ++/* ++ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P ++ in order to support constraints with more than one letter. ++ Only two letters are then used for constant constraints, ++ the letter 'K' and the letter 'I'. The constraint starting with ++ these letters must consist of four characters. The character following ++ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify ++ if the constant is zero or sign extended. The last two characters specify ++ the length in bits of the constant. The base constraint letter 'I' means ++ that this is an negated constant, meaning that actually -VAL should be ++ checked to lie withing the valid range instead of VAL which is used when ++ 'K' is the base constraint letter. ++ ++*/ ++ ++#define CONSTRAINT_LEN(C, STR) \ ++ ( ((C) == 'K' || (C) == 'I') ? 4 : \ ++ ((C) == 'R') ? 5 : \ ++ ((C) == 'P') ? -1 : \ ++ DEFAULT_CONSTRAINT_LEN((C), (STR)) ) ++ ++#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \ ++ avr32_const_ok_for_constraint_p(VALUE, C, STR) ++ ++/* ++A C expression that defines the machine-dependent operand constraint ++letters that specify particular ranges of const_double values ('G' or 'H'). ++ ++If C is one of those letters, the expression should check that ++VALUE, an RTX of code const_double, is in the appropriate ++range and return 1 if so, 0 otherwise. If C is not one of those ++letters, the value should be 0 regardless of VALUE. ++ ++const_double is used for all floating-point constants and for ++DImode fixed-point constants. A given letter can accept either ++or both kinds of values. It can use GET_MODE to distinguish ++between these kinds. ++*/ ++#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \ ++ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0) ++ ++/* ++A C expression that defines the optional machine-dependent constraint ++letters that can be used to segregate specific types of operands, usually ++memory references, for the target machine. Any letter that is not ++elsewhere defined and not matched by REG_CLASS_FROM_LETTER ++may be used. Normally this macro will not be defined. ++ ++If it is required for a particular target machine, it should return 1 ++if VALUE corresponds to the operand type represented by the ++constraint letter C. If C is not defined as an extra ++constraint, the value returned should be 0 regardless of VALUE. ++ ++For example, on the ROMP, load instructions cannot have their output ++in r0 if the memory reference contains a symbolic address. Constraint ++letter 'Q' is defined as representing a memory address that does ++not contain a symbolic address. An alternative is specified with ++a 'Q' constraint on the input and 'r' on the output. The next ++alternative specifies 'm' on the input and a register class that ++does not include r0 on the output. ++*/ ++#define EXTRA_CONSTRAINT_STR(OP, C, STR) \ ++ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \ ++ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \ ++ && avr32_const_ok_for_constraint_p( \ ++ INTVAL(XEXP(XEXP(OP, 0), 1)), \ ++ (STR)[1], &(STR)[1]))) : \ ++ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \ ++ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Q' ? avr32_non_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Y' ? avr32_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ 0) ++ ++ ++#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \ ++ ((C) == 'Q') || \ ++ ((C) == 'S') || \ ++ ((C) == 'Y') || \ ++ ((C) == 'Z') ) ++ ++ ++/* Returns nonzero if op is a function SYMBOL_REF which ++ can be called using an rcall instruction */ ++#define SYMBOL_REF_RCALL_FUNCTION_P(op) \ ++ ( GET_CODE(op) == SYMBOL_REF \ ++ && SYMBOL_REF_FUNCTION_P(op) \ ++ && SYMBOL_REF_LOCAL_P(op) \ ++ && !SYMBOL_REF_EXTERNAL_P(op) \ ++ && !TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ ++/****************************************************************************** ++ * Stack Layout and Calling Conventions ++ *****************************************************************************/ ++ ++/** Basic Stack Layout **/ ++ ++/* ++Define this macro if pushing a word onto the stack moves the stack ++pointer to a smaller address. ++ ++When we say, ``define this macro if ...,'' it means that the ++compiler checks this macro only with #ifdef so the precise ++definition used does not matter. ++*/ ++/* pushm decrece SP: *(--SP) <-- Rx */ ++#define STACK_GROWS_DOWNWARD ++ ++/* ++This macro defines the operation used when something is pushed ++on the stack. In RTL, a push operation will be ++(set (mem (STACK_PUSH_CODE (reg sp))) ...) ++ ++The choices are PRE_DEC, POST_DEC, PRE_INC, ++and POST_INC. Which of these is correct depends on ++the stack direction and on whether the stack pointer points ++to the last item on the stack or whether it points to the ++space for the next item on the stack. ++ ++The default is PRE_DEC when STACK_GROWS_DOWNWARD is ++defined, which is almost always right, and PRE_INC otherwise, ++which is often wrong. ++*/ ++/* pushm: *(--SP) <-- Rx */ ++#define STACK_PUSH_CODE PRE_DEC ++ ++/* Define this to nonzero if the nominal address of the stack frame ++ is at the high-address end of the local variables; ++ that is, each additional local variable allocated ++ goes at a more negative offset in the frame. */ ++#define FRAME_GROWS_DOWNWARD 1 ++ ++ ++/* ++Offset from the frame pointer to the first local variable slot to be allocated. ++ ++If FRAME_GROWS_DOWNWARD, find the next slot's offset by ++subtracting the first slot's length from STARTING_FRAME_OFFSET. ++Otherwise, it is found by adding the length of the first slot to the ++value STARTING_FRAME_OFFSET. ++ (i'm not sure if the above is still correct.. had to change it to get ++ rid of an overfull. --mew 2feb93 ) ++*/ ++#define STARTING_FRAME_OFFSET 0 ++ ++/* ++Offset from the stack pointer register to the first location at which ++outgoing arguments are placed. If not specified, the default value of ++zero is used. This is the proper value for most machines. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first location at which outgoing arguments are placed. ++*/ ++#define STACK_POINTER_OFFSET 0 ++ ++/* ++Offset from the argument pointer register to the first argument's ++address. On some machines it may depend on the data type of the ++function. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first argument's address. ++*/ ++#define FIRST_PARM_OFFSET(FUNDECL) 0 ++ ++ ++/* ++A C expression whose value is RTL representing the address in a stack ++frame where the pointer to the caller's frame is stored. Assume that ++FRAMEADDR is an RTL expression for the address of the stack frame ++itself. ++ ++If you don't define this macro, the default is to return the value ++of FRAMEADDR - that is, the stack frame address is also the ++address of the stack word that points to the previous frame. ++*/ ++#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4) ++ ++ ++/* ++A C expression whose value is RTL representing the value of the return ++address for the frame COUNT steps up from the current frame, after ++the prologue. FRAMEADDR is the frame pointer of the COUNT ++frame, or the frame pointer of the COUNT - 1 frame if ++RETURN_ADDR_IN_PREVIOUS_FRAME is defined. ++ ++The value of the expression must always be the correct address when ++COUNT is zero, but may be NULL_RTX if there is not way to ++determine the return address of other frames. ++*/ ++#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR) ++ ++ ++/* ++A C expression whose value is RTL representing the location of the ++incoming return address at the beginning of any function, before the ++prologue. This RTL is either a REG, indicating that the return ++value is saved in 'REG', or a MEM representing a location in ++the stack. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++ ++If this RTL is a REG, you should also define ++DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). ++*/ ++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) ++ ++/* ++A C expression whose value is an integer giving the offset, in bytes, ++from the value of the stack pointer register to the top of the stack ++frame at the beginning of any function, before the prologue. The top of ++the frame is defined to be the value of the stack pointer in the ++previous frame, just before the call instruction. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++*/ ++#define INCOMING_FRAME_SP_OFFSET 0 ++ ++ ++/** Exception Handling Support **/ ++ ++/* Use setjump/longjump for exception handling. */ ++#define DWARF2_UNWIND_INFO 0 ++#define MUST_USE_SJLJ_EXCEPTIONS 1 ++ ++/* ++A C expression whose value is the Nth register number used for ++data by exception handlers, or INVALID_REGNUM if fewer than ++N registers are usable. ++ ++The exception handling library routines communicate with the exception ++handlers via a set of agreed upon registers. Ideally these registers ++should be call-clobbered; it is possible to use call-saved registers, ++but may negatively impact code size. The target must support at least ++2 data registers, but should define 4 if there are enough free registers. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r9-r11 ++*/ ++#define EH_RETURN_DATA_REGNO(N) \ ++ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store a stack adjustment to be applied before function return. ++This is used to unwind the stack to an exception handler's call frame. ++It will be assigned zero on code paths that return normally. ++ ++Typically this is a call-clobbered hard register that is otherwise ++untouched by the epilogue, but could also be a stack slot. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r8 ++*/ ++#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8) ++#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store the address of an exception handler to which we should ++return. It will not be assigned on code paths that return normally. ++ ++Typically this is the location in the call frame at which the normal ++return address is stored. For targets that return by popping an ++address off the stack, this might be a memory address just below ++the target call frame rather than inside the current call ++frame. EH_RETURN_STACKADJ_RTX will have already been assigned, ++so it may be used to calculate the location of the target call frame. ++ ++Some targets have more complex requirements than storing to an ++address calculable during initial code generation. In that case ++the eh_return instruction pattern should be used instead. ++ ++If you want to support call frame exception handling, you must ++define either this macro or the eh_return instruction pattern. ++*/ ++/* ++ We define the eh_return instruction pattern, so this isn't needed. ++*/ ++/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */ ++ ++/* ++ This macro chooses the encoding of pointers embedded in the ++ exception handling sections. If at all possible, this should be ++ defined such that the exception handling section will not require ++ dynamic relocations, and so may be read-only. ++ ++ code is 0 for data, 1 for code labels, 2 for function ++ pointers. global is true if the symbol may be affected by dynamic ++ relocations. The macro should return a combination of the DW_EH_PE_* ++ defines as found in dwarf2.h. ++ ++ If this macro is not defined, pointers will not be encoded but ++ represented directly. ++*/ ++#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ ++ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \ ++ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \ ++ | DW_EH_PE_sdata4) ++ ++/* ToDo: The rest of this subsection */ ++ ++/** Specifying How Stack Checking is Done **/ ++/* ToDo: All in this subsection */ ++ ++/** Registers That Address the Stack Frame **/ ++ ++/* ++The register number of the stack pointer register, which must also be a ++fixed register according to FIXED_REGISTERS. On most machines, ++the hardware determines which register this is. ++*/ ++/* Using r13 as stack pointer. */ ++#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13) ++ ++/* ++The register number of the frame pointer register, which is used to ++access automatic variables in the stack frame. On some machines, the ++hardware determines which register this is. On other machines, you can ++choose any register you wish for this purpose. ++*/ ++/* Use r7 */ ++#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7) ++ ++/* ++The register number of the arg pointer register, which is used to access ++the function's argument list. On some machines, this is the same as the ++frame pointer register. On some machines, the hardware determines which ++register this is. On other machines, you can choose any register you ++wish for this purpose. If this is not the same register as the frame ++pointer register, then you must mark it as a fixed register according to ++FIXED_REGISTERS, or arrange to be able to eliminate it (see Section ++10.10.5 [Elimination], page 224). ++*/ ++/* Using r5 */ ++#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4) ++ ++ ++/* ++Register numbers used for passing a function's static chain pointer. If ++register windows are used, the register number as seen by the called ++function is STATIC_CHAIN_INCOMING_REGNUM, while the register ++number as seen by the calling function is STATIC_CHAIN_REGNUM. If ++these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need ++not be defined. ++ ++The static chain register need not be a fixed register. ++ ++If the static chain is passed in memory, these macros should not be ++defined; instead, the next two macros should be defined. ++*/ ++/* Using r0 */ ++#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0) ++ ++/** Eliminating Frame Pointer and Arg Pointer **/ ++ ++/* ++A C expression which is nonzero if a function must have and use a frame ++pointer. This expression is evaluated in the reload pass. If its value is ++nonzero the function will have a frame pointer. ++ ++The expression can in principle examine the current function and decide ++according to the facts, but on most machines the constant 0 or the ++constant 1 suffices. Use 0 when the machine allows code to be generated ++with no frame pointer, and doing so saves some time or space. Use 1 ++when there is no possible advantage to avoiding a frame pointer. ++ ++In certain cases, the compiler does not know how to produce valid code ++without a frame pointer. The compiler recognizes those cases and ++automatically gives the function a frame pointer regardless of what ++FRAME_POINTER_REQUIRED says. You don't need to worry about ++them. ++ ++In a function that does not require a frame pointer, the frame pointer ++register can be allocated for ordinary usage, unless you mark it as a ++fixed register. See FIXED_REGISTERS for more information. ++*/ ++/* We need the frame pointer when compiling for profiling */ ++#define FRAME_POINTER_REQUIRED (crtl->profile) ++ ++/* ++A C statement to store in the variable DEPTH_VAR the difference ++between the frame pointer and the stack pointer values immediately after ++the function prologue. The value would be computed from information ++such as the result of get_frame_size () and the tables of ++registers regs_ever_live and call_used_regs. ++ ++If ELIMINABLE_REGS is defined, this macro will be not be used and ++need not be defined. Otherwise, it must be defined even if ++FRAME_POINTER_REQUIRED is defined to always be true; in that ++case, you may set DEPTH_VAR to anything. ++*/ ++#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size()) ++ ++/* ++If defined, this macro specifies a table of register pairs used to ++eliminate unneeded registers that point into the stack frame. If it is not ++defined, the only elimination attempted by the compiler is to replace ++references to the frame pointer with references to the stack pointer. ++ ++The definition of this macro is a list of structure initializations, each ++of which specifies an original and replacement register. ++ ++On some machines, the position of the argument pointer is not known until ++the compilation is completed. In such a case, a separate hard register ++must be used for the argument pointer. This register can be eliminated by ++replacing it with either the frame pointer or the argument pointer, ++depending on whether or not the frame pointer has been eliminated. ++ ++In this case, you might specify: ++ #define ELIMINABLE_REGS \ ++ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ ++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} ++ ++Note that the elimination of the argument pointer with the stack pointer is ++specified first since that is the preferred elimination. ++*/ ++#define ELIMINABLE_REGS \ ++{ \ ++ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \ ++} ++ ++/* ++A C expression that returns nonzero if the compiler is allowed to try ++to replace register number FROM with register number ++TO. This macro need only be defined if ELIMINABLE_REGS ++is defined, and will usually be the constant 1, since most of the cases ++preventing register elimination are things that the compiler already ++knows about. ++*/ ++#define CAN_ELIMINATE(FROM, TO) 1 ++ ++/* ++This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It ++specifies the initial difference between the specified pair of ++registers. This macro must be defined if ELIMINABLE_REGS is ++defined. ++*/ ++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ++ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO)) ++ ++/** Passing Function Arguments on the Stack **/ ++ ++ ++/* ++A C expression. If nonzero, push insns will be used to pass ++outgoing arguments. ++If the target machine does not have a push instruction, set it to zero. ++That directs GCC to use an alternate strategy: to ++allocate the entire argument block and then store the arguments into ++it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too. ++*/ ++#define PUSH_ARGS 1 ++ ++/* ++A C expression that is the number of bytes actually pushed onto the ++stack when an instruction attempts to push NPUSHED bytes. ++ ++On some machines, the definition ++ ++ #define PUSH_ROUNDING(BYTES) (BYTES) ++ ++will suffice. But on other machines, instructions that appear ++to push one byte actually push two bytes in an attempt to maintain ++alignment. Then the definition should be ++ ++ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) ++*/ ++/* Push 4 bytes at the time. */ ++#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) ++ ++/* ++A C expression. If nonzero, the maximum amount of space required for ++outgoing arguments will be computed and placed into the variable ++current_function_outgoing_args_size. No space will be pushed ++onto the stack for each call; instead, the function prologue should ++increase the stack frame size by this amount. ++ ++Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper. ++*/ ++#define ACCUMULATE_OUTGOING_ARGS 0 ++ ++/* ++A C expression that should indicate the number of bytes of its own ++arguments that a function pops on returning, or 0 if the ++function pops no arguments and the caller must therefore pop them all ++after the function returns. ++ ++FUNDECL is a C variable whose value is a tree node that describes ++the function in question. Normally it is a node of type ++FUNCTION_DECL that describes the declaration of the function. ++From this you can obtain the DECL_ATTRIBUTES of the function. ++ ++FUNTYPE is a C variable whose value is a tree node that ++describes the function in question. Normally it is a node of type ++FUNCTION_TYPE that describes the data type of the function. ++From this it is possible to obtain the data types of the value and ++arguments (if known). ++ ++When a call to a library function is being considered, FUNDECL ++will contain an identifier node for the library function. Thus, if ++you need to distinguish among various library functions, you can do so ++by their names. Note that ``library function'' in this context means ++a function used to perform arithmetic, whose name is known specially ++in the compiler and was not mentioned in the C code being compiled. ++ ++STACK_SIZE is the number of bytes of arguments passed on the ++stack. If a variable number of bytes is passed, it is zero, and ++argument popping will always be the responsibility of the calling function. ++ ++On the VAX, all functions always pop their arguments, so the definition ++of this macro is STACK_SIZE. On the 68000, using the standard ++calling convention, no functions pop their arguments, so the value of ++the macro is always 0 in this case. But an alternative calling ++convention is available in which functions that take a fixed number of ++arguments pop them but other functions (such as printf) pop ++nothing (the caller pops all). When this convention is in use, ++FUNTYPE is examined to determine whether a function takes a fixed ++number of arguments. ++*/ ++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 ++ ++ ++/*Return true if this function can we use a single return instruction*/ ++#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND) ++ ++/* ++A C expression that should indicate the number of bytes a call sequence ++pops off the stack. It is added to the value of RETURN_POPS_ARGS ++when compiling a function call. ++ ++CUM is the variable in which all arguments to the called function ++have been accumulated. ++ ++On certain architectures, such as the SH5, a call trampoline is used ++that pops certain registers off the stack, depending on the arguments ++that have been passed to the function. Since this is a property of the ++call site, not of the called function, RETURN_POPS_ARGS is not ++appropriate. ++*/ ++#define CALL_POPS_ARGS(CUM) 0 ++ ++/* Passing Arguments in Registers */ ++ ++/* ++A C expression that controls whether a function argument is passed ++in a register, and which register. ++ ++The arguments are CUM, which summarizes all the previous ++arguments; MODE, the machine mode of the argument; TYPE, ++the data type of the argument as a tree node or 0 if that is not known ++(which happens for C support library functions); and NAMED, ++which is 1 for an ordinary argument and 0 for nameless arguments that ++correspond to '...' in the called function's prototype. ++TYPE can be an incomplete type if a syntax error has previously ++occurred. ++ ++The value of the expression is usually either a reg RTX for the ++hard register in which to pass the argument, or zero to pass the ++argument on the stack. ++ ++For machines like the VAX and 68000, where normally all arguments are ++pushed, zero suffices as a definition. ++ ++The value of the expression can also be a parallel RTX. This is ++used when an argument is passed in multiple locations. The mode of the ++of the parallel should be the mode of the entire argument. The ++parallel holds any number of expr_list pairs; each one ++describes where part of the argument is passed. In each ++expr_list the first operand must be a reg RTX for the hard ++register in which to pass this part of the argument, and the mode of the ++register RTX indicates how large this part of the argument is. The ++second operand of the expr_list is a const_int which gives ++the offset in bytes into the entire argument of where this part starts. ++As a special exception the first expr_list in the parallel ++RTX may have a first operand of zero. This indicates that the entire ++argument is also stored on the stack. ++ ++The last time this macro is called, it is called with MODE == VOIDmode, ++and its result is passed to the call or call_value ++pattern as operands 2 and 3 respectively. ++ ++The usual way to make the ISO library 'stdarg.h' work on a machine ++where some arguments are usually passed in registers, is to cause ++nameless arguments to be passed on the stack instead. This is done ++by making FUNCTION_ARG return 0 whenever NAMED is 0. ++ ++You may use the macro MUST_PASS_IN_STACK (MODE, TYPE) ++in the definition of this macro to determine if this argument is of a ++type that must be passed in the stack. If REG_PARM_STACK_SPACE ++is not defined and FUNCTION_ARG returns nonzero for such an ++argument, the compiler will abort. If REG_PARM_STACK_SPACE is ++defined, the argument will be computed in the stack and then loaded into ++a register. */ ++ ++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++A C type for declaring a variable that is used as the first argument of ++FUNCTION_ARG and other related values. For some target machines, ++the type int suffices and can hold the number of bytes of ++argument so far. ++ ++There is no need to record in CUMULATIVE_ARGS anything about the ++arguments that have been passed on the stack. The compiler has other ++variables to keep track of that. For target machines on which all ++arguments are passed on the stack, there is no need to store anything in ++CUMULATIVE_ARGS; however, the data structure must exist and ++should not be empty, so use int. ++*/ ++typedef struct avr32_args ++{ ++ /* Index representing the argument register the current function argument ++ will occupy */ ++ int index; ++ /* A mask with bits representing the argument registers: if a bit is set ++ then this register is used for an argument */ ++ int used_index; ++ /* TRUE if this function has anonymous arguments */ ++ int uses_anonymous_args; ++ /* The size in bytes of the named arguments pushed on the stack */ ++ int stack_pushed_args_size; ++ /* Set to true if this function needs a Return Value Pointer */ ++ int use_rvp; ++ /* Set to true if function is a flashvault function. */ ++ int flashvault_func; ++ ++} CUMULATIVE_ARGS; ++ ++ ++#define FIRST_CUM_REG_INDEX 0 ++#define LAST_CUM_REG_INDEX 4 ++#define GET_REG_INDEX(CUM) ((CUM)->index) ++#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX)); ++#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX))) ++#define SET_USED_INDEX(CUM, INDEX) \ ++ do \ ++ { \ ++ if (INDEX >= 0) \ ++ (CUM)->used_index |= (1 << (INDEX)); \ ++ } \ ++ while (0) ++#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0) ++ ++/* ++ A C statement (sans semicolon) for initializing the variable cum for the ++ state at the beginning of the argument list. The variable has type ++ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of ++ the function which will receive the args, or 0 if the args are to a compiler ++ support library function. For direct calls that are not libcalls, FNDECL ++ contain the declaration node of the function. FNDECL is also set when ++ INIT_CUMULATIVE_ARGS is used to find arguments for the function being ++ compiled. N_NAMED_ARGS is set to the number of named arguments, including a ++ structure return address if it is passed as a parameter, when making a call. ++ When processing incoming arguments, N_NAMED_ARGS is set to -1. ++ ++ When processing a call to a compiler support library function, LIBNAME ++ identifies which one. It is a symbol_ref rtx which contains the name of the ++ function, as a string. LIBNAME is 0 when an ordinary C function call is ++ being processed. Thus, each time this macro is called, either LIBNAME or ++ FNTYPE is nonzero, but never both of them at once. ++*/ ++#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ ++ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL) ++ ++/* ++A C statement (sans semicolon) to update the summarizer variable ++CUM to advance past an argument in the argument list. The ++values MODE, TYPE and NAMED describe that argument. ++Once this is done, the variable CUM is suitable for analyzing ++the following argument with FUNCTION_ARG, etc. ++ ++This macro need not do anything if the argument in question was passed ++on the stack. The compiler knows how to track the amount of stack space ++used for arguments without any special help. ++*/ ++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++If defined, a C expression which determines whether, and in which direction, ++to pad out an argument with extra space. The value should be of type ++enum direction: either 'upward' to pad above the argument, ++'downward' to pad below, or 'none' to inhibit padding. ++ ++The amount of padding is always just enough to reach the next ++multiple of FUNCTION_ARG_BOUNDARY; this macro does not control ++it. ++ ++This macro has a default definition which is right for most systems. ++For little-endian machines, the default is to pad upward. For ++big-endian machines, the default is to pad downward for an argument of ++constant size shorter than an int, and upward otherwise. ++*/ ++#define FUNCTION_ARG_PADDING(MODE, TYPE) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++ Specify padding for the last element of a block move between registers ++ and memory. First is nonzero if this is the only element. Defining ++ this macro allows better control of register function parameters on ++ big-endian machines, without using PARALLEL rtl. In particular, ++ MUST_PASS_IN_STACK need not test padding and mode of types in registers, ++ as there is no longer a "wrong" part of a register; For example, a three ++ byte aggregate may be passed in the high part of a register if so required. ++*/ ++#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++If defined, a C expression which determines whether the default ++implementation of va_arg will attempt to pad down before reading the ++next argument, if that argument is smaller than its aligned space as ++controlled by PARM_BOUNDARY. If this macro is not defined, all such ++arguments are padded down if BYTES_BIG_ENDIAN is true. ++*/ ++#define PAD_VARARGS_DOWN \ ++ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which function arguments are sometimes passed. This does ++not include implicit arguments such as the static chain and ++the structure-value address. On many machines, no registers can be ++used for this purpose since all function arguments are pushed on the ++stack. ++*/ ++/* ++ Use r8 - r12 for function arguments. ++*/ ++#define FUNCTION_ARG_REGNO_P(REGNO) \ ++ (REGNO >= 3 && REGNO <= 7) ++ ++/* Number of registers used for passing function arguments */ ++#define NUM_ARG_REGS 5 ++ ++/* ++If defined, the order in which arguments are loaded into their ++respective argument registers is reversed so that the last ++argument is loaded first. This macro only affects arguments ++passed in registers. ++*/ ++/* #define LOAD_ARGS_REVERSED */ ++ ++/** How Scalar Function Values Are Returned **/ ++ ++/* AVR32 is using r12 as return register. */ ++#define RET_REGISTER (15 - 12) ++ ++/* ++A C expression to create an RTX representing the place where a library ++function returns a value of mode MODE. If the precise function ++being called is known, FUNC is a tree node ++(FUNCTION_DECL) for it; otherwise, func is a null ++pointer. This makes it possible to use a different value-returning ++convention for specific functions when all their calls are ++known. ++ ++Note that "library function" in this context means a compiler ++support routine, used to perform arithmetic, whose name is known ++specially by the compiler and was not mentioned in the C code being ++compiled. ++ ++The definition of LIBRARY_VALUE need not be concerned aggregate ++data types, because none of the library functions returns such types. ++*/ ++#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which the values of called function may come back. ++ ++A register whose use for returning values is limited to serving as the ++second of a pair (for a value of type double, say) need not be ++recognized by this macro. So for most machines, this definition ++suffices: ++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) ++ ++If the machine has register windows, so that the caller and the called ++function use different registers for the return value, this macro ++should recognize only the caller's register numbers. ++*/ ++/* ++ When returning a value of mode DImode, r11:r10 is used, else r12 is used. ++*/ ++#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \ ++ || (REGNO) == INTERNAL_REGNUM(11)) ++ ++ ++/** How Large Values Are Returned **/ ++ ++ ++/* ++Define this macro to be 1 if all structure and union return values must be ++in memory. Since this results in slower code, this should be defined ++only if needed for compatibility with other compilers or with an ABI. ++If you define this macro to be 0, then the conventions used for structure ++and union return values are decided by the RETURN_IN_MEMORY macro. ++ ++If not defined, this defaults to the value 1. ++*/ ++#define DEFAULT_PCC_STRUCT_RETURN 0 ++ ++ ++ ++ ++/** Generating Code for Profiling **/ ++ ++/* ++A C statement or compound statement to output to FILE some ++assembler code to call the profiling subroutine mcount. ++ ++The details of how mcount expects to be called are determined by ++your operating system environment, not by GCC. To figure them out, ++compile a small program for profiling using the system's installed C ++compiler and look at the assembler code that results. ++ ++Older implementations of mcount expect the address of a counter ++variable to be loaded into some register. The name of this variable is ++'LP' followed by the number LABELNO, so you would generate ++the name using 'LP%d' in a fprintf. ++*/ ++/* ToDo: fixme */ ++#ifndef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(FILE, LABELNO) \ ++ fprintf((FILE), "/* profiler %d */", (LABELNO)) ++#endif ++ ++ ++/***************************************************************************** ++ * Trampolines for Nested Functions * ++ *****************************************************************************/ ++ ++/* ++A C statement to output, on the stream FILE, assembler code for a ++block of data that contains the constant parts of a trampoline. This ++code should not include a label - the label is taken care of ++automatically. ++ ++If you do not define this macro, it means no template is needed ++for the target. Do not define this macro on systems where the block move ++code to copy the trampoline into place would be larger than the code ++to generate it on the spot. ++*/ ++/* ToDo: correct? */ ++#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE); ++ ++ ++/* ++A C expression for the size in bytes of the trampoline, as an integer. ++*/ ++/* ToDo: fixme */ ++#define TRAMPOLINE_SIZE 0x0C ++ ++/* ++Alignment required for trampolines, in bits. ++ ++If you don't define this macro, the value of BIGGEST_ALIGNMENT ++is used for aligning trampolines. ++*/ ++#define TRAMPOLINE_ALIGNMENT 16 ++ ++/* ++A C statement to initialize the variable parts of a trampoline. ++ADDR is an RTX for the address of the trampoline; FNADDR is ++an RTX for the address of the nested function; STATIC_CHAIN is an ++RTX for the static chain value that should be passed to the function ++when it is called. ++*/ ++#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \ ++ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN) ++ ++ ++/****************************************************************************** ++ * Implicit Calls to Library Routines ++ *****************************************************************************/ ++ ++/* Tail calling. */ ++ ++/* A C expression that evaluates to true if it is ok to perform a sibling ++ call to DECL. */ ++#define FUNCTION_OK_FOR_SIBCALL(DECL) 0 ++ ++#define OVERRIDE_OPTIONS avr32_override_options () ++ ++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE) ++ ++/****************************************************************************** ++ * Addressing Modes ++ *****************************************************************************/ ++ ++/* ++A C expression that is nonzero if the machine supports pre-increment, ++pre-decrement, post-increment, or post-decrement addressing respectively. ++*/ ++/* ++ AVR32 supports Rp++ and --Rp ++*/ ++#define HAVE_PRE_INCREMENT 0 ++#define HAVE_PRE_DECREMENT 1 ++#define HAVE_POST_INCREMENT 1 ++#define HAVE_POST_DECREMENT 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving constants other than ++the size of the memory operand. ++*/ ++#define HAVE_PRE_MODIFY_DISP 0 ++#define HAVE_POST_MODIFY_DISP 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving a register displacement. ++*/ ++#define HAVE_PRE_MODIFY_REG 0 ++#define HAVE_POST_MODIFY_REG 0 ++ ++/* ++A C expression that is 1 if the RTX X is a constant which ++is a valid address. On most machines, this can be defined as ++CONSTANT_P (X), but a few machines are more restrictive ++in which constant addresses are supported. ++ ++CONSTANT_P accepts integer-values expressions whose values are ++not explicitly known, such as symbol_ref, label_ref, and ++high expressions and const arithmetic expressions, in ++addition to const_int and const_double expressions. ++*/ ++#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X) ++ ++/* ++A number, the maximum number of registers that can appear in a valid ++memory address. Note that it is up to you to specify a value equal to ++the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever ++accept. ++*/ ++#define MAX_REGS_PER_ADDRESS 2 ++ ++/* ++A C compound statement with a conditional goto LABEL; ++executed if X (an RTX) is a legitimate memory address on the ++target machine for a memory operand of mode MODE. ++ ++It usually pays to define several simpler macros to serve as ++subroutines for this one. Otherwise it may be too complicated to ++understand. ++ ++This macro must exist in two variants: a strict variant and a ++non-strict one. The strict variant is used in the reload pass. It ++must be defined so that any pseudo-register that has not been ++allocated a hard register is considered a memory reference. In ++contexts where some kind of register is required, a pseudo-register ++with no hard register must be rejected. ++ ++The non-strict variant is used in other passes. It must be defined to ++accept all pseudo-registers in every context where some kind of ++register is required. ++ ++Compiler source files that want to use the strict variant of this ++macro define the macro REG_OK_STRICT. You should use an ++#ifdef REG_OK_STRICT conditional to define the strict variant ++in that case and the non-strict variant otherwise. ++ ++Subroutines to check for acceptable registers for various purposes (one ++for base registers, one for index registers, and so on) are typically ++among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. ++Then only these subroutine macros need have two variants; the higher ++levels of macros may be the same whether strict or not. ++ ++Normally, constant addresses which are the sum of a symbol_ref ++and an integer are stored inside a const RTX to mark them as ++constant. Therefore, there is no need to recognize such sums ++specifically as legitimate addresses. Normally you would simply ++recognize any const as legitimate. ++ ++Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant ++sums that are not marked with const. It assumes that a naked ++plus indicates indexing. If so, then you must reject such ++naked constant sums as illegitimate addresses, so that none of them will ++be given to PRINT_OPERAND_ADDRESS. ++ ++On some machines, whether a symbolic address is legitimate depends on ++the section that the address refers to. On these machines, define the ++macro ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. When you see a ++const, you will have to look inside it to find the ++symbol_ref in order to determine the section. ++ ++The best way to modify the name string is by adding text to the ++beginning, with suitable punctuation to prevent any ambiguity. Allocate ++the new name in saveable_obstack. You will have to modify ++ASM_OUTPUT_LABELREF to remove and decode the added text and ++output the name accordingly, and define STRIP_NAME_ENCODING to ++access the original name string. ++ ++You can check the information stored here into the symbol_ref in ++the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and ++PRINT_OPERAND_ADDRESS. ++*/ ++#ifdef REG_OK_STRICT ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 1)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#else ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 0)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#endif ++ ++ ++ ++/* ++A C compound statement that attempts to replace X with a valid ++memory address for an operand of mode MODE. win will be a ++C statement label elsewhere in the code; the macro definition may use ++ ++ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); ++ ++to avoid further processing if the address has become legitimate. ++ ++X will always be the result of a call to break_out_memory_refs, ++and OLDX will be the operand that was given to that function to produce ++X. ++ ++The code generated by this macro should not alter the substructure of ++X. If it transforms X into a more legitimate form, it ++should assign X (which will always be a C variable) a new value. ++ ++It is not necessary for this macro to come up with a legitimate ++address. The compiler has standard ways of doing so in all cases. In ++fact, it is safe for this macro to do nothing. But often a ++machine-dependent strategy can generate better code. ++*/ ++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ ++ do \ ++ { \ ++ if (GET_CODE(X) == PLUS \ ++ && GET_CODE(XEXP(X, 0)) == REG \ ++ && GET_CODE(XEXP(X, 1)) == CONST_INT \ ++ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \ ++ 'K', "Ks16")) \ ++ { \ ++ rtx index = force_reg(SImode, XEXP(X, 1)); \ ++ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \ ++ } \ ++ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \ ++ } \ ++ while(0) ++ ++ ++/* ++A C statement or compound statement with a conditional ++goto LABEL; executed if memory address X (an RTX) can have ++different meanings depending on the machine mode of the memory ++reference it is used for or if the address is valid for some modes ++but not others. ++ ++Autoincrement and autodecrement addresses typically have mode-dependent ++effects because the amount of the increment or decrement is the size ++of the operand being addressed. Some machines have other mode-dependent ++addresses. Many RISC machines have no mode-dependent addresses. ++ ++You may assume that ADDR is a valid address for the machine. ++*/ ++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ ++ do \ ++ { \ ++ if (GET_CODE (ADDR) == POST_INC \ ++ || GET_CODE (ADDR) == PRE_DEC) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++ ++/* ++A C expression that is nonzero if X is a legitimate constant for ++an immediate operand on the target machine. You can assume that ++X satisfies CONSTANT_P, so you need not check this. In fact, ++'1' is a suitable definition for this macro on machines where ++anything CONSTANT_P is valid. ++*/ ++#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X) ++ ++ ++/****************************************************************************** ++ * Condition Code Status ++ *****************************************************************************/ ++ ++/* ++C code for a data type which is used for declaring the mdep ++component of cc_status. It defaults to int. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++typedef struct ++{ ++ int flags; ++ rtx value; ++ int cond_exec_cmp_clobbered; ++} avr32_status_reg; ++ ++ ++#define CC_STATUS_MDEP avr32_status_reg ++ ++/* ++A C expression to initialize the mdep field to "empty". ++The default definition does nothing, since most machines don't use ++the field anyway. If you want to use the field, you should probably ++define this macro to initialize it. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++#define CC_STATUS_MDEP_INIT \ ++ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0) ++ ++/* ++A C compound statement to set the components of cc_status ++appropriately for an insn INSN whose body is EXP. It is ++this macro's responsibility to recognize insns that set the condition ++code as a byproduct of other activity as well as those that explicitly ++set (cc0). ++ ++This macro is not used on machines that do not use cc0. ++ ++If there are insns that do not set the condition code but do alter ++other machine registers, this macro must check to see whether they ++invalidate the expressions that the condition code is recorded as ++reflecting. For example, on the 68000, insns that store in address ++registers do not set the condition code, which means that usually ++NOTICE_UPDATE_CC can leave cc_status unaltered for such ++insns. But suppose that the previous insn set the condition code ++based on location 'a4@@(102)' and the current insn stores a new ++value in 'a4'. Although the condition code is not changed by ++this, it will no longer be true that it reflects the contents of ++'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter ++cc_status in this case to say that nothing is known about the ++condition code value. ++ ++The definition of NOTICE_UPDATE_CC must be prepared to deal ++with the results of peephole optimization: insns whose patterns are ++parallel RTXs containing various reg, mem or ++constants which are just the operands. The RTL structure of these ++insns is not sufficient to indicate what the insns actually do. What ++NOTICE_UPDATE_CC should do when it sees one is just to run ++CC_STATUS_INIT. ++ ++A possible definition of NOTICE_UPDATE_CC is to call a function ++that looks at an attribute (see Insn Attributes) named, for example, ++'cc'. This avoids having detailed information about patterns in ++two places, the 'md' file and in NOTICE_UPDATE_CC. ++*/ ++ ++#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN) ++ ++ ++ ++ ++/****************************************************************************** ++ * Describing Relative Costs of Operations ++ *****************************************************************************/ ++ ++ ++ ++/* ++A C expression for the cost of moving data of mode MODE from a ++register in class FROM to one in class TO. The classes are ++expressed using the enumeration values such as GENERAL_REGS. A ++value of 2 is the default; other values are interpreted relative to ++that. ++ ++It is not required that the cost always equal 2 when FROM is the ++same as TO; on some machines it is expensive to move between ++registers if they are not general registers. ++ ++If reload sees an insn consisting of a single set between two ++hard registers, and if REGISTER_MOVE_COST applied to their ++classes returns a value of 2, reload does not check to ensure that the ++constraints of the insn are met. Setting a cost of other than 2 will ++allow reload to verify that the constraints are met. You should do this ++if the movm pattern's constraints do not allow such copying. ++*/ ++#define REGISTER_MOVE_COST(MODE, FROM, TO) \ ++ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \ ++ (GET_MODE_SIZE(MODE) <= 8) ? 3: \ ++ 4) ++ ++/* ++A C expression for the cost of moving data of mode MODE between a ++register of class CLASS and memory; IN is zero if the value ++is to be written to memory, nonzero if it is to be read in. This cost ++is relative to those in REGISTER_MOVE_COST. If moving between ++registers and memory is more expensive than between two registers, you ++should define this macro to express the relative cost. ++ ++If you do not define this macro, GCC uses a default cost of 4 plus ++the cost of copying via a secondary reload register, if one is ++needed. If your machine requires a secondary reload register to copy ++between memory and a register of CLASS but the reload mechanism is ++more complex than copying via an intermediate, define this macro to ++reflect the actual cost of the move. ++ ++GCC defines the function memory_move_secondary_cost if ++secondary reloads are needed. It computes the costs due to copying via ++a secondary register. If your machine copies from memory using a ++secondary register in the conventional way but the default base value of ++4 is not correct for your machine, define this macro to add some other ++value to the result of that function. The arguments to that function ++are the same as to this macro. ++*/ ++/* ++ Memory moves are costly ++*/ ++#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ ++ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \ ++ (GET_MODE_SIZE(MODE) > 8) ? 6 : \ ++ 3) \ ++ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3))) ++ ++/* ++A C expression for the cost of a branch instruction. A value of 1 is ++the default; other values are interpreted relative to that. ++*/ ++ /* Try to use conditionals as much as possible */ ++#define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_PRED ? 3 : 4) ++ ++/*A C expression for the maximum number of instructions to execute via conditional ++ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default ++ if the machine does not use cc0, and 1 if it does use cc0.*/ ++#define MAX_CONDITIONAL_EXECUTE 4 ++ ++/* ++Define this macro as a C expression which is nonzero if accessing less ++than a word of memory (i.e.: a char or a short) is no ++faster than accessing a word of memory, i.e., if such access ++require more than one instruction or if there is no difference in cost ++between byte and (aligned) word loads. ++ ++When this macro is not defined, the compiler will access a field by ++finding the smallest containing object; when it is defined, a fullword ++load will be used if alignment permits. Unless bytes accesses are ++faster than word accesses, using word accesses is preferable since it ++may eliminate subsequent memory access if subsequent accesses occur to ++other fields in the same word of the structure, but to different bytes. ++*/ ++#define SLOW_BYTE_ACCESS 1 ++ ++ ++/* ++Define this macro if it is as good or better to call a constant ++function address than to call an address kept in a register. ++*/ ++#define NO_FUNCTION_CSE ++ ++ ++/****************************************************************************** ++ * Adjusting the Instruction Scheduler ++ *****************************************************************************/ ++ ++/***************************************************************************** ++ * Dividing the Output into Sections (Texts, Data, ...) * ++ *****************************************************************************/ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation that should precede instructions and read-only data. ++Normally "\t.text" is right. ++*/ ++#define TEXT_SECTION_ASM_OP "\t.text" ++/* ++A C statement that switches to the default section containing instructions. ++Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP ++is enough. The MIPS port uses this to sort all functions after all data ++declarations. ++*/ ++/* #define TEXT_SECTION */ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation to identify the following data as writable initialized ++data. Normally "\t.data" is right. ++*/ ++#define DATA_SECTION_ASM_OP "\t.data" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++shared data. If not defined, DATA_SECTION_ASM_OP will be used. ++*/ ++ ++/* ++A C expression whose value is a string, including spacing, containing ++the assembler operation to identify the following data as read-only ++initialized data. ++*/ ++#undef READONLY_DATA_SECTION_ASM_OP ++#define READONLY_DATA_SECTION_ASM_OP \ ++ ((TARGET_USE_RODATA_SECTION) ? \ ++ "\t.section\t.rodata" : \ ++ TEXT_SECTION_ASM_OP ) ++ ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global data. If not defined, and neither ++ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined, ++uninitialized global data will be output in the data section if ++-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be ++used. ++*/ ++#define BSS_SECTION_ASM_OP "\t.section\t.bss" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global shared data. If not defined, and ++BSS_SECTION_ASM_OP is, the latter will be used. ++*/ ++/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++initialization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef INIT_SECTION_ASM_OP ++#define INIT_SECTION_ASM_OP "\t.section\t.init" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++finalization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef FINI_SECTION_ASM_OP ++#define FINI_SECTION_ASM_OP "\t.section\t.fini" ++ ++/* ++If defined, an ASM statement that switches to a different section ++via SECTION_OP, calls FUNCTION, and switches back to ++the text section. This is used in crtstuff.c if ++INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls ++to initialization and finalization functions from the init and fini ++sections. By default, this macro uses a simple function call. Some ++ports need hand-crafted assembly code to avoid dependencies on ++registers initialized in the function prologue or to ensure that ++constant pools don't end up too far way in the text section. ++*/ ++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ ++ asm ( SECTION_OP "\n" \ ++ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \ ++ TEXT_SECTION_ASM_OP); ++ ++ ++/* ++Define this macro to be an expression with a nonzero value if jump ++tables (for tablejump insns) should be output in the text ++section, along with the assembler instructions. Otherwise, the ++readonly data section is used. ++ ++This macro is irrelevant if there is no separate readonly data section. ++*/ ++/* Put jump tables in text section if we have caches. Otherwise assume that ++ loading data from code memory is slow. */ ++#define JUMP_TABLES_IN_TEXT_SECTION \ ++ (TARGET_CACHES ? 1 : 0) ++ ++ ++/****************************************************************************** ++ * Position Independent Code (PIC) ++ *****************************************************************************/ ++ ++#ifndef AVR32_ALWAYS_PIC ++#define AVR32_ALWAYS_PIC 0 ++#endif ++ ++/* GOT is set to r6 */ ++#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6) ++ ++/* ++A C expression that is nonzero if X is a legitimate immediate ++operand on the target machine when generating position independent code. ++You can assume that X satisfies CONSTANT_P, so you need not ++check this. You can also assume flag_pic is true, so you need not ++check it either. You need not define this macro if all constants ++(including SYMBOL_REF) can be immediate operands when generating ++position independent code. ++*/ ++/* We can't directly access anything that contains a symbol, ++ nor can we indirect via the constant pool. */ ++#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X) ++ ++ ++/* We need to know when we are making a constant pool; this determines ++ whether data needs to be in the GOT or can be referenced via a GOT ++ offset. */ ++extern int making_const_table; ++ ++/****************************************************************************** ++ * Defining the Output Assembler Language ++ *****************************************************************************/ ++ ++ ++/* ++A C string constant describing how to begin a comment in the target ++assembler language. The compiler assumes that the comment will end at ++the end of the line. ++*/ ++#define ASM_COMMENT_START "# " ++ ++/* ++A C string constant for text to be output before each asm ++statement or group of consecutive ones. Normally this is ++"#APP", which is a comment that has no effect on most ++assemblers but tells the GNU assembler that it must check the lines ++that follow for all valid assembler constructs. ++*/ ++#undef ASM_APP_ON ++#define ASM_APP_ON "#APP\n" ++ ++/* ++A C string constant for text to be output after each asm ++statement or group of consecutive ones. Normally this is ++"#NO_APP", which tells the GNU assembler to resume making the ++time-saving assumptions that are valid for ordinary compiler output. ++*/ ++#undef ASM_APP_OFF ++#define ASM_APP_OFF "#NO_APP\n" ++ ++ ++ ++#define FILE_ASM_OP "\t.file\n" ++#define IDENT_ASM_OP "\t.ident\t" ++#define SET_ASM_OP "\t.set\t" ++ ++ ++/* ++ * Output assembly directives to switch to section name. The section ++ * should have attributes as specified by flags, which is a bit mask ++ * of the SECTION_* flags defined in 'output.h'. If align is nonzero, ++ * it contains an alignment in bytes to be used for the section, ++ * otherwise some target default should be used. Only targets that ++ * must specify an alignment within the section directive need pay ++ * attention to align -- we will still use ASM_OUTPUT_ALIGN. ++ * ++ * NOTE: This one must not be moved to avr32.c ++ */ ++#undef TARGET_ASM_NAMED_SECTION ++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section ++ ++ ++/* ++You may define this macro as a C expression. You should define the ++expression to have a nonzero value if GCC should output the constant ++pool for a function before the code for the function, or a zero value if ++GCC should output the constant pool after the function. If you do ++not define this macro, the usual case, GCC will output the constant ++pool before the function. ++*/ ++#define CONSTANT_POOL_BEFORE_FUNCTION 0 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if the constant ++EXP, of type tree, should be output after the code for a ++function. The compiler will normally output all constants before the ++function; you need not define this macro if this is OK. ++*/ ++#define CONSTANT_AFTER_FUNCTION_P(EXP) 1 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if C is ++as a logical line separator by the assembler. STR points to the ++position in the string where C was found; this can be used if a ++line separator uses multiple characters. ++ ++If you do not define this macro, the default is that only ++the character ';' is treated as a logical line separator. ++*/ ++#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) (((C) == '\n') || ((C) == ';')) ++ ++ ++/** Output of Uninitialized Variables **/ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++common global variables are output. ++*/ ++/* ++#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \ ++ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED) ++*/ ++ ++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.comm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d\n", (SIZE)); \ ++ } \ ++ while (0) ++ ++/* ++ * Like ASM_OUTPUT_BSS except takes the required alignment as a ++ * separate, explicit argument. If you define this macro, it is used ++ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in ++ * handling the required alignment of the variable. The alignment is ++ * specified as the number of bits. ++ * ++ * Try to use function asm_output_aligned_bss defined in file varasm.c ++ * when defining this macro. ++ */ ++#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \ ++ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT) ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a local-common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++static variables are output. ++*/ ++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.lcomm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \ ++ } \ ++ while (0) ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a label named NAME. ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++*/ ++#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME) ++ ++/* A C string containing the appropriate assembler directive to ++ * specify the size of a symbol, without any arguments. On systems ++ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; ++ * on other systems, the default is not to define this macro. ++ * ++ * Define this macro only if it is correct to use the default ++ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and ++ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own ++ * custom definitions of those macros, or if you do not need explicit ++ * symbol sizes at all, do not define this macro. ++ */ ++#define SIZE_ASM_OP "\t.size\t" ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM some commands that will make the label NAME global; ++that is, available for reference from other files. Use the expression ++assemble_name(STREAM, NAME) to output the name ++itself; before and after that, output the additional assembler syntax ++for making that name global, and a newline. ++*/ ++#define GLOBAL_ASM_OP "\t.global\t" ++ ++ ++ ++/* ++A C expression which evaluates to true if the target supports weak symbols. ++ ++If you don't define this macro, defaults.h provides a default ++definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL ++is defined, the default definition is '1'; otherwise, it is ++'0'. Define this macro if you want to control weak symbol support ++with a compiler flag such as -melf. ++*/ ++#define SUPPORTS_WEAK 1 ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM a reference in assembler syntax to a label named ++NAME. This should add '_' to the front of the name, if that ++is customary on your operating system, as it is in most Berkeley Unix ++systems. This macro is used in assemble_name. ++*/ ++#define ASM_OUTPUT_LABELREF(STREAM, NAME) \ ++ avr32_asm_output_labelref(STREAM, NAME) ++ ++ ++ ++/* ++A C expression to assign to OUTVAR (which is a variable of type ++char *) a newly allocated string made from the string ++NAME and the number NUMBER, with some suitable punctuation ++added. Use alloca to get space for the string. ++ ++The string will be used as an argument to ASM_OUTPUT_LABELREF to ++produce an assembler label for an internal static variable whose name is ++NAME. Therefore, the string must be such as to result in valid ++assembler code. The argument NUMBER is different each time this ++macro is executed; it prevents conflicts between similarly-named ++internal static variables in different scopes. ++ ++Ideally this string should not be a valid C identifier, to prevent any ++conflict with the user's own symbols. Most assemblers allow periods ++or percent signs in assembler symbols; putting at least one of these ++between the name and the number will suffice. ++*/ ++#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \ ++ do \ ++ { \ ++ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \ ++ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \ ++ } \ ++ while (0) ++ ++ ++/** Macros Controlling Initialization Routines **/ ++ ++ ++/* ++If defined, main will not call __main as described above. ++This macro should be defined for systems that control start-up code ++on a symbol-by-symbol basis, such as OSF/1, and should not ++be defined explicitly for systems that support INIT_SECTION_ASM_OP. ++*/ ++/* ++ __main is not defined when debugging. ++*/ ++#define HAS_INIT_SECTION ++ ++ ++/** Output of Assembler Instructions **/ ++ ++/* ++A C initializer containing the assembler's names for the machine ++registers, each one as a C string constant. This is what translates ++register numbers in the compiler into assembler language. ++*/ ++ ++#define REGISTER_NAMES \ ++{ \ ++ "pc", "lr", \ ++ "sp", "r12", \ ++ "r11", "r10", \ ++ "r9", "r8", \ ++ "r7", "r6", \ ++ "r5", "r4", \ ++ "r3", "r2", \ ++ "r1", "r0", \ ++} ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand X. X is an ++RTL expression. ++ ++CODE is a value that can be used to specify one of several ways ++of printing the operand. It is used when identical operands must be ++printed differently depending on the context. CODE comes from ++the '%' specification that was used to request printing of the ++operand. If the specification was just '%digit' then ++CODE is 0; if the specification was '%ltr digit' ++then CODE is the ASCII code for ltr. ++ ++If X is a register, this macro should print the register's name. ++The names can be found in an array reg_names whose type is ++char *[]. reg_names is initialized from REGISTER_NAMES. ++ ++When the machine description has a specification '%punct' ++(a '%' followed by a punctuation character), this macro is called ++with a null pointer for X and the punctuation character for ++CODE. ++*/ ++#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE) ++ ++/* A C statement to be executed just prior to the output of ++ assembler code for INSN, to modify the extracted operands so ++ they will be output differently. ++ ++ Here the argument OPVEC is the vector containing the operands ++ extracted from INSN, and NOPERANDS is the number of elements of ++ the vector which contain meaningful data for this insn. ++ The contents of this vector are what will be used to convert the insn ++ template into assembler code, so you can change the assembler output ++ by changing the contents of the vector. */ ++#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ ++ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS)) ++ ++/* ++A C expression which evaluates to true if CODE is a valid ++punctuation character for use in the PRINT_OPERAND macro. If ++PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no ++punctuation characters (except for the standard one, '%') are used ++in this way. ++*/ ++#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ++ (((CODE) == '?') \ ++ || ((CODE) == '!')) ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand that is a memory reference ++whose address is X. X is an RTL expression. ++ ++On some machines, the syntax for a symbolic address depends on the ++section that the address refers to. On these machines, define the macro ++ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. (see Assembler Format.) ++*/ ++#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X) ++ ++ ++/** Output of Dispatch Tables **/ ++ ++/* ++ * A C statement to output to the stdio stream stream an assembler ++ * pseudo-instruction to generate a difference between two ++ * labels. value and rel are the numbers of two internal labels. The ++ * definitions of these labels are output using ++ * (*targetm.asm_out.internal_label), and they must be printed in the ++ * same way here. For example, ++ * ++ * fprintf (stream, "\t.word L%d-L%d\n", ++ * value, rel) ++ * ++ * You must provide this macro on machines where the addresses in a ++ * dispatch table are relative to the table's own address. If defined, ++ * GCC will also use this macro on all machines when producing ++ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that ++ * the mode and flags can be read. ++ */ ++#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ ++ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/* ++This macro should be provided on machines where the addresses ++in a dispatch table are absolute. ++ ++The definition should be a C statement to output to the stdio stream ++STREAM an assembler pseudo-instruction to generate a reference to ++a label. VALUE is the number of an internal label whose ++definition is output using ASM_OUTPUT_INTERNAL_LABEL. ++For example, ++ ++fprintf(STREAM, "\t.word L%d\n", VALUE) ++*/ ++ ++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ ++ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/** Assembler Commands for Exception Regions */ ++ ++/* ToDo: All of this subsection */ ++ ++/** Assembler Commands for Alignment */ ++ ++ ++/* ++A C statement to output to the stdio stream STREAM an assembler ++command to advance the location counter to a multiple of 2 to the ++POWER bytes. POWER will be a C expression of type int. ++*/ ++#define ASM_OUTPUT_ALIGN(STREAM, POWER) \ ++ do \ ++ { \ ++ if ((POWER) != 0) \ ++ fprintf(STREAM, "\t.align\t%d\n", POWER); \ ++ } \ ++ while (0) ++ ++/* ++Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if ++necessary. ++*/ ++#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \ ++ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER)) ++ ++ ++ ++/****************************************************************************** ++ * Controlling Debugging Information Format ++ *****************************************************************************/ ++ ++/* How to renumber registers for dbx and gdb. */ ++#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO) ++ ++/* The DWARF 2 CFA column which tracks the return address. */ ++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM) ++ ++/* ++Define this macro if GCC should produce dwarf version 2 format ++debugging output in response to the -g option. ++ ++To support optional call frame debugging information, you must also ++define INCOMING_RETURN_ADDR_RTX and either set ++RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the ++prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save ++as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't. ++*/ ++#define DWARF2_DEBUGGING_INFO 1 ++ ++ ++#define DWARF2_ASM_LINE_DEBUG_INFO 1 ++#define DWARF2_FRAME_INFO 1 ++ ++ ++/****************************************************************************** ++ * Miscellaneous Parameters ++ *****************************************************************************/ ++ ++/* ToDo: a lot */ ++ ++/* ++An alias for a machine mode name. This is the machine mode that ++elements of a jump-table should have. ++*/ ++#define CASE_VECTOR_MODE SImode ++ ++/* ++Define this macro to be a C expression to indicate when jump-tables ++should contain relative addresses. If jump-tables never contain ++relative addresses, then you need not define this macro. ++*/ ++#define CASE_VECTOR_PC_RELATIVE 0 ++ ++/* Increase the threshold for using table jumps on the UC arch. */ ++#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7) ++ ++/* ++The maximum number of bytes that a single instruction can move quickly ++between memory and registers or between two memory locations. ++*/ ++#define MOVE_MAX (2*UNITS_PER_WORD) ++ ++ ++/* A C expression that is nonzero if on this machine the number of bits actually used ++ for the count of a shift operation is equal to the number of bits needed to represent ++ the size of the object being shifted. When this macro is nonzero, the compiler will ++ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and' ++ instructions that truncates the count of a shift operation. On machines that have ++ instructions that act on bit-fields at variable positions, which may include 'bit test' ++ 378 GNU Compiler Collection (GCC) Internals ++ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations ++ of the values that serve as arguments to bit-field instructions. ++ If both types of instructions truncate the count (for shifts) and position (for bit-field ++ operations), or if no variable-position bit-field instructions exist, you should define ++ this macro. ++ However, on some machines, such as the 80386 and the 680x0, truncation only applies ++ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_ ++ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file ++ that include the implied truncation of the shift instructions. ++ You need not dene this macro if it would always have the value of zero. */ ++#define SHIFT_COUNT_TRUNCATED 1 ++ ++/* ++A C expression which is nonzero if on this machine it is safe to ++convert an integer of INPREC bits to one of OUTPREC ++bits (where OUTPREC is smaller than INPREC) by merely ++operating on it as if it had only OUTPREC bits. ++ ++On many machines, this expression can be 1. ++ ++When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for ++modes for which MODES_TIEABLE_P is 0, suboptimal code can result. ++If this is the case, making TRULY_NOOP_TRUNCATION return 0 in ++such cases may improve things. ++*/ ++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 ++ ++/* ++An alias for the machine mode for pointers. On most machines, define ++this to be the integer mode corresponding to the width of a hardware ++pointer; SImode on 32-bit machine or DImode on 64-bit machines. ++On some machines you must define this to be one of the partial integer ++modes, such as PSImode. ++ ++The width of Pmode must be at least as large as the value of ++POINTER_SIZE. If it is not equal, you must define the macro ++POINTERS_EXTEND_UNSIGNED to specify how pointers are extended ++to Pmode. ++*/ ++#define Pmode SImode ++ ++/* ++An alias for the machine mode used for memory references to functions ++being called, in call RTL expressions. On most machines this ++should be QImode. ++*/ ++#define FUNCTION_MODE SImode ++ ++ ++#define REG_S_P(x) \ ++ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0)))) ++ ++ ++/* If defined, modifies the length assigned to instruction INSN as a ++ function of the context in which it is used. LENGTH is an lvalue ++ that contains the initially computed length of the insn and should ++ be updated with the correct length of the insn. */ ++#define ADJUST_INSN_LENGTH(INSN, LENGTH) \ ++ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH))) ++ ++ ++#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define UNITS_PER_SIMD_WORD(mode) UNITS_PER_WORD ++ ++#define STORE_FLAG_VALUE 1 ++ ++ ++/* IF-conversion macros. */ ++#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \ ++ { \ ++ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \ ++ } ++ ++#define IFCVT_EXTRA_FIELDS \ ++ int num_cond_clobber_insns; \ ++ int num_extra_move_insns; \ ++ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \ ++ rtx moved_insns[MAX_CONDITIONAL_EXECUTE]; ++ ++#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \ ++ { \ ++ (CE_INFO)->num_cond_clobber_insns = 0; \ ++ (CE_INFO)->num_extra_move_insns = 0; \ ++ } ++ ++ ++#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes) ++ ++#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1 ++#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD) ++ ++enum avr32_builtins ++{ ++ AVR32_BUILTIN_MTSR, ++ AVR32_BUILTIN_MFSR, ++ AVR32_BUILTIN_MTDR, ++ AVR32_BUILTIN_MFDR, ++ AVR32_BUILTIN_CACHE, ++ AVR32_BUILTIN_SYNC, ++ AVR32_BUILTIN_SSRF, ++ AVR32_BUILTIN_CSRF, ++ AVR32_BUILTIN_TLBR, ++ AVR32_BUILTIN_TLBS, ++ AVR32_BUILTIN_TLBW, ++ AVR32_BUILTIN_BREAKPOINT, ++ AVR32_BUILTIN_XCHG, ++ AVR32_BUILTIN_LDXI, ++ AVR32_BUILTIN_BSWAP16, ++ AVR32_BUILTIN_BSWAP32, ++ AVR32_BUILTIN_COP, ++ AVR32_BUILTIN_MVCR_W, ++ AVR32_BUILTIN_MVRC_W, ++ AVR32_BUILTIN_MVCR_D, ++ AVR32_BUILTIN_MVRC_D, ++ AVR32_BUILTIN_MULSATHH_H, ++ AVR32_BUILTIN_MULSATHH_W, ++ AVR32_BUILTIN_MULSATRNDHH_H, ++ AVR32_BUILTIN_MULSATRNDWH_W, ++ AVR32_BUILTIN_MULSATWH_W, ++ AVR32_BUILTIN_MACSATHH_W, ++ AVR32_BUILTIN_SATADD_H, ++ AVR32_BUILTIN_SATSUB_H, ++ AVR32_BUILTIN_SATADD_W, ++ AVR32_BUILTIN_SATSUB_W, ++ AVR32_BUILTIN_MULWH_D, ++ AVR32_BUILTIN_MULNWH_D, ++ AVR32_BUILTIN_MACWH_D, ++ AVR32_BUILTIN_MACHH_D, ++ AVR32_BUILTIN_MUSFR, ++ AVR32_BUILTIN_MUSTR, ++ AVR32_BUILTIN_SATS, ++ AVR32_BUILTIN_SATU, ++ AVR32_BUILTIN_SATRNDS, ++ AVR32_BUILTIN_SATRNDU, ++ AVR32_BUILTIN_MEMS, ++ AVR32_BUILTIN_MEMC, ++ AVR32_BUILTIN_MEMT, ++ AVR32_BUILTIN_SLEEP, ++ AVR32_BUILTIN_DELAY_CYCLES ++}; ++ ++ ++#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \ ++ ((MODE == SFmode) || (MODE == DFmode)) ++ ++#define RENAME_LIBRARY_SET ".set" ++ ++/* Make ABI_NAME an alias for __GCC_NAME. */ ++#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \ ++ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \ ++ ".set\t__avr32_" #ABI_NAME \ ++ ", __" #GCC_NAME "\n"); ++ ++/* Give libgcc functions avr32 ABI name. */ ++#ifdef L_muldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64) ++#endif ++#ifdef L_divdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64) ++#endif ++#ifdef L_udivdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64) ++#endif ++#ifdef L_moddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64) ++#endif ++#ifdef L_umoddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64) ++#endif ++#ifdef L_ashldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64) ++#endif ++#ifdef L_lshrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64) ++#endif ++#ifdef L_ashrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64) ++#endif ++ ++#ifdef L_fixsfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64) ++#endif ++#ifdef L_fixunssfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64) ++#endif ++#ifdef L_floatdidf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64) ++#endif ++#ifdef L_floatdisf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32) ++#endif ++ ++#endif +--- /dev/null ++++ b/gcc/config/avr32/avr32.md +@@ -0,0 +1,5198 @@ ++;; AVR32 machine description file. ++;; Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm" ++ (const_string "alu")) ++ ++ ++(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc" ++ (const_string "none")) ++ ++ ++; NB! Keep this in sync with enum architecture_type in avr32.h ++(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul,ucr3,ucr3fp" ++ (const (symbol_ref "avr32_arch->arch_type"))) ++ ++; Insn length in bytes ++(define_attr "length" "" ++ (const_int 4)) ++ ++; Signal if an insn is predicable and hence can be conditionally executed. ++(define_attr "predicable" "no,yes" (const_string "no")) ++ ++;; Uses of UNSPEC in this file: ++(define_constants ++ [(UNSPEC_PUSHM 0) ++ (UNSPEC_POPM 1) ++ (UNSPEC_UDIVMODSI4_INTERNAL 2) ++ (UNSPEC_DIVMODSI4_INTERNAL 3) ++ (UNSPEC_STM 4) ++ (UNSPEC_LDM 5) ++ (UNSPEC_MOVSICC 6) ++ (UNSPEC_ADDSICC 7) ++ (UNSPEC_COND_MI 8) ++ (UNSPEC_COND_PL 9) ++ (UNSPEC_PIC_SYM 10) ++ (UNSPEC_PIC_BASE 11) ++ (UNSPEC_STORE_MULTIPLE 12) ++ (UNSPEC_STMFP 13) ++ (UNSPEC_FRCPA 14) ++ (UNSPEC_REG_TO_CC 15) ++ (UNSPEC_FORCE_MINIPOOL 16) ++ (UNSPEC_SATS 17) ++ (UNSPEC_SATU 18) ++ (UNSPEC_SATRNDS 19) ++ (UNSPEC_SATRNDU 20) ++ ]) ++ ++(define_constants ++ [(VUNSPEC_EPILOGUE 0) ++ (VUNSPEC_CACHE 1) ++ (VUNSPEC_MTSR 2) ++ (VUNSPEC_MFSR 3) ++ (VUNSPEC_BLOCKAGE 4) ++ (VUNSPEC_SYNC 5) ++ (VUNSPEC_TLBR 6) ++ (VUNSPEC_TLBW 7) ++ (VUNSPEC_TLBS 8) ++ (VUNSPEC_BREAKPOINT 9) ++ (VUNSPEC_MTDR 10) ++ (VUNSPEC_MFDR 11) ++ (VUNSPEC_MVCR 12) ++ (VUNSPEC_MVRC 13) ++ (VUNSPEC_COP 14) ++ (VUNSPEC_ALIGN 15) ++ (VUNSPEC_POOL_START 16) ++ (VUNSPEC_POOL_END 17) ++ (VUNSPEC_POOL_4 18) ++ (VUNSPEC_POOL_8 19) ++ (VUNSPEC_POOL_16 20) ++ (VUNSPEC_MUSFR 21) ++ (VUNSPEC_MUSTR 22) ++ (VUNSPEC_SYNC_CMPXCHG 23) ++ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24) ++ (VUNSPEC_SYNC_STORE_IF_LOCK 25) ++ (VUNSPEC_EH_RETURN 26) ++ (VUNSPEC_FRS 27) ++ (VUNSPEC_CSRF 28) ++ (VUNSPEC_SSRF 29) ++ (VUNSPEC_SLEEP 30) ++ (VUNSPEC_DELAY_CYCLES 31) ++ (VUNSPEC_DELAY_CYCLES_1 32) ++ (VUNSPEC_DELAY_CYCLES_2 33) ++ (VUNSPEC_NOP 34) ++ (VUNSPEC_NOP3 35) ++ ]) ++ ++(define_constants ++ [ ++ ;; R7 = 15-7 = 8 ++ (FP_REGNUM 8) ++ ;; Return Register = R12 = 15 - 12 = 3 ++ (RETVAL_REGNUM 3) ++ ;; SP = R13 = 15 - 13 = 2 ++ (SP_REGNUM 2) ++ ;; LR = R14 = 15 - 14 = 1 ++ (LR_REGNUM 1) ++ ;; PC = R15 = 15 - 15 = 0 ++ (PC_REGNUM 0) ++ ;; FPSR = GENERAL_REGS + 1 = 17 ++ (FPCC_REGNUM 17) ++ ]) ++ ++ ++ ++ ++;;****************************************************************************** ++;; Macros ++;;****************************************************************************** ++ ++;; Integer Modes for basic alu insns ++(define_mode_iterator INTM [SI HI QI]) ++(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")]) ++ ++;; Move word modes ++(define_mode_iterator MOVM [SI V2HI V4QI]) ++ ++;; For mov/addcc insns ++(define_mode_iterator ADDCC [SI HI QI]) ++(define_mode_iterator MOVCC [SF SI HI QI]) ++(define_mode_iterator CMP [DI SI HI QI]) ++(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")]) ++(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")]) ++(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")]) ++(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")]) ++(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")]) ++(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")]) ++(define_mode_attr cmp_predicate [(DI "register_immediate_operand") ++ (SI "register_const_int_operand") ++ (HI "register_operand") ++ (QI "register_operand")]) ++(define_mode_attr cmp_length [(DI "6") ++ (SI "4") ++ (HI "4") ++ (QI "4")]) ++ ++;; For all conditional insns ++(define_code_iterator any_cond_b [ge lt geu ltu]) ++(define_code_iterator any_cond [gt ge lt le gtu geu ltu leu]) ++(define_code_iterator any_cond4 [gt le gtu leu]) ++(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le") ++ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")]) ++(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt") ++ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")]) ++ ++;; For logical operations ++(define_code_iterator logical [and ior xor]) ++(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")]) ++ ++;; Predicable operations with three register operands ++(define_code_iterator predicable_op3 [and ior xor plus minus]) ++(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")]) ++(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")]) ++ ++;; Load the predicates ++(include "predicates.md") ++ ++ ++;;****************************************************************************** ++;; Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_automaton "avr32_ap") ++ ++ ++(define_cpu_unit "is" "avr32_ap") ++(define_cpu_unit "a1,m1,da" "avr32_ap") ++(define_cpu_unit "a2,m2,d" "avr32_ap") ++ ++;;Alu instructions ++(define_insn_reservation "alu_op" 1 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu")) ++ "is,a1,a2") ++ ++(define_insn_reservation "alu2_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu2")) ++ "is,is+a1,a1+a2,a2") ++ ++(define_insn_reservation "alu_sat_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu_sat")) ++ "is,a1,a2") ++ ++ ++;;Mul instructions ++(define_insn_reservation "mulhh_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulhh,mulwh")) ++ "is,m1,m2") ++ ++(define_insn_reservation "mulww_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_w")) ++ "is,m1,m1+m2,m2") ++ ++(define_insn_reservation "mulww_d_op" 5 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_d")) ++ "is,m1,m1+m2,m1+m2,m2,m2") ++ ++(define_insn_reservation "div_op" 33 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "div")) ++ "is,m1,m1*31 + m2*31,m2") ++ ++(define_insn_reservation "machh_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "machh_w")) ++ "is*2,m1,m2") ++ ++ ++(define_insn_reservation "macww_w_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_w")) ++ "is*2,m1,m1,m2") ++ ++ ++(define_insn_reservation "macww_d_op" 6 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_d")) ++ "is*2,m1,m1+m2,m1+m2,m2") ++ ++;;Bypasses for Mac instructions, because of accumulator cache. ++;;Set latency as low as possible in order to let the compiler let ++;;mul -> mac and mac -> mac combinations which use the same ++;;accumulator cache be placed close together to avoid any ++;;instructions which can ruin the accumulator cache come inbetween. ++(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++ ++;;Bypasses for all mul/mac instructions followed by an instruction ++;;which reads the output AND writes the result to the same register. ++;;This will generate an Write After Write hazard which gives an ++;;extra cycle before the result is ready. ++(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass") ++ ++(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass") ++ ++;;Branch and call instructions ++;;We assume that all branches and rcalls are predicted correctly :-) ++;;while calls use a lot of cycles. ++(define_insn_reservation "branch_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "branch")) ++ "nothing") ++ ++(define_insn_reservation "call_op" 10 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "call")) ++ "nothing") ++ ++ ++;;Load store instructions ++(define_insn_reservation "load_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load")) ++ "is,da,d") ++ ++(define_insn_reservation "load_rm_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load_rm")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "store_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "load_double_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load2")) ++ "is,da,da+d,d") ++ ++(define_insn_reservation "load_quad_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load4")) ++ "is,da,da+d,da+d,d") ++ ++(define_insn_reservation "store_double_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store2")) ++ "is,da,da+d,d") ++ ++ ++(define_insn_reservation "store_quad_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store4")) ++ "is,da,da+d,da+d,d") ++ ++;;For store the operand to write to memory is read in d and ++;;the real latency between any instruction and a store is therefore ++;;one less than for the instructions which reads the operands in the first ++;;excecution stage ++(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass") ++(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass") ++(define_bypass 1 "load_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" ) ++(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass") ++ ++ ++; Bypass for load double operation. If only the first loaded word is needed ++; then the latency is 2 ++(define_bypass 2 "load_double_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_double_bypass") ++ ++; Bypass for load quad operation. If only the first or second loaded word is needed ++; we set the latency to 2 ++(define_bypass 2 "load_quad_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_quad_bypass") ++ ++ ++;;****************************************************************************** ++;; End of Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(match_operand:CMP 1 "register_operand" "r") ++ (match_operand:CMP 2 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])] ++ "TARGET_V2_INSNS" ++ "%!" ++) ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(and:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "one_bit_set_operand" "i")) ++ (const_int 0)])] ++ "TARGET_V2_INSNS" ++ "%!" ++ ) ++ ++;;============================================================================= ++;; move ++;;----------------------------------------------------------------------------- ++ ++ ++;;== char - 8 bits ============================================================ ++(define_expand "movqi" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_zero_extendqisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (QImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (QImode, operands[1]); ++ } ++ ++ }) ++ ++(define_insn "*movqi_internal" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], QImode) ++ || register_operand (operands[1], QImode)" ++ "@ ++ mov\t%0, %1 ++ ld.ub\t%0, %1 ++ st.b\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++ ++;;== short - 16 bits ========================================================== ++(define_expand "movhi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_extendhisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (HImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (HImode, operands[1]); ++ } ++ ++ }) ++ ++ ++(define_insn "*movhi_internal" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], HImode) ++ || register_operand (operands[1], HImode)" ++ "@ ++ mov\t%0, %1 ++ ld.sh\t%0, %1 ++ st.h\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++;;== int - 32 bits ============================================================ ++ ++(define_expand "movmisalignsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" ""))] ++ "TARGET_UNALIGNED_WORD" ++ { ++ } ++) ++ ++(define_expand "mov<mode>" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (<MODE>mode, operands[1]); ++ ++ /* Check for out of range immediate constants as these may ++ occur during reloading, since it seems like reload does ++ not check if the immediate is legitimate. Don't know if ++ this is a bug? */ ++ if ( reload_in_progress ++ && avr32_imm_in_const_pool ++ && GET_CODE(operands[1]) == CONST_INT ++ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){ ++ operands[1] = force_const_mem(SImode, operands[1]); ++ } ++ /* Check for RMW memory operands. They are not allowed for mov operations ++ only the atomic memc/s/t operations */ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[0], <MODE>mode) ){ ++ operands[0] = copy_rtx (operands[0]); ++ XEXP(operands[0], 0) = force_reg (<MODE>mode, XEXP(operands[0], 0)); ++ } ++ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[1], <MODE>mode) ){ ++ operands[1] = copy_rtx (operands[1]); ++ XEXP(operands[1], 0) = force_reg (<MODE>mode, XEXP(operands[1], 0)); ++ } ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && !avr32_legitimate_pic_operand_p(operands[1]) ) ++ operands[1] = legitimize_pic_address (operands[1], <MODE>mode, ++ (can_create_pseudo_p () ? 0: operands[0])); ++ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "mov<mode>_internal" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "=r, r, r,r,r,Q,r") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" "rKs08,Ks21,J,n,Q,r,W"))] ++ "(register_operand (operands[0], <MODE>mode) ++ || register_operand (operands[1], <MODE>mode)) ++ && !avr32_rmw_memory_operand (operands[0], <MODE>mode) ++ && !avr32_rmw_memory_operand (operands[1], <MODE>mode)" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ if ( TARGET_V2_INSNS ) ++ return "movh\t%0, hi(%1)"; ++ /* Fallthrough */ ++ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)"; ++ case 4: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 5: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ case 6: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "lda.w\t%0, %1"; ++ else ++ return "ld.w\t%0, r6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,4,8,4,4,8") ++ (set_attr "type" "alu,alu,alu,alu2,load,store,load") ++ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")]) ++ ++ ++(define_expand "reload_out_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 0 "address_operand" "")) ++ (set (mem:SI (match_dup 2)) ++ (match_operand:SI 1 "register_operand" ""))] ++ "" ++ { ++ operands[0] = XEXP(operands[0], 0); ++ } ++) ++ ++(define_expand "reload_in_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 1 "address_operand" "")) ++ (set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (match_dup 2)))] ++ "" ++ { ++ operands[1] = XEXP(operands[1], 0); ++ } ++) ++ ++ ++;; These instructions are for loading constants which cannot be loaded ++;; directly from the constant pool because the offset is too large ++;; high and lo_sum are used even tough for our case it should be ++;; low and high sum :-) ++(define_insn "mov_symbol_lo" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "mov\t%0, lo(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "add_symbol_hi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "orh\t%0, hi(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++ ++ ++;; When generating pic, we need to load the symbol offset into a register. ++;; So that the optimizer does not confuse this with a normal symbol load ++;; we use an unspec. The offset will be loaded from a constant pool entry, ++;; since that is the only type of relocation we can use. ++(define_insn "pic_load_addr" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))] ++ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))" ++ "lddpc\t%0, %1" ++ [(set_attr "type" "load") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "pic_compute_got_from_pc" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(minus:SI (pc) ++ (match_dup 0))] UNSPEC_PIC_BASE)) ++ (use (label_ref (match_operand 1 "" "")))] ++ "flag_pic" ++ { ++ (*targetm.asm_out.internal_label) (asm_out_file, "L", ++ CODE_LABEL_NUMBER (operands[1])); ++ return \"rsub\t%0, pc\"; ++ } ++ [(set_attr "cc" "clobber") ++ (set_attr "length" "2")] ++) ++ ++;;== long long int - 64 bits ================================================== ++ ++(define_expand "movdi" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (match_operand:DI 1 "general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (DImode, operands[1]); ++ ++ }) ++ ++ ++(define_insn_and_split "*movdi_internal" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m") ++ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))] ++ "register_operand (operands[0], DImode) ++ || register_operand (operands[1], DImode)" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ case 3: ++ case 4: ++ return "#"; ++ case 5: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 6: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++;; Lets split all reg->reg or imm->reg transfers into two SImode transfers ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (DImode, SImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else { ++ internal_error("Illegal operand[1] for movdi split!"); ++ } ++ } ++ ++ [(set_attr "length" "*,*,*,*,*,4,4") ++ (set_attr "type" "*,*,*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,*,*,none,none")]) ++ ++ ++;;== 128 bits ================================================== ++(define_expand "movti" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "") ++ (match_operand:TI 1 "nonimmediate_operand" ""))] ++ "TARGET_ARCH_AP" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (TImode, operands[1]); ++ ++ /* We must fix any pre_dec for loads and post_inc stores */ ++ if ( GET_CODE (operands[0]) == MEM ++ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){ ++ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]); ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode)))); ++ DONE; ++ } ++ ++ if ( GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){ ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode)))); ++ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0))); ++ DONE; ++ } ++ }) ++ ++ ++(define_insn_and_split "*movti_internal" ++ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, <RKu00,r,r") ++ (match_operand:TI 1 "avr32_movti_src_operand" " r,RKu00>,RKu00,r, n,T"))] ++ "(register_operand (operands[0], TImode) ++ || register_operand (operands[1], TImode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 2: ++ case 4: ++ return "#"; ++ case 1: ++ return "ldm\t%p1, %0"; ++ case 3: ++ return "stm\t%p0, %1"; ++ case 5: ++ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]"; ++ } ++ } ++ ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ /* If this is a load from the constant pool we split it into ++ two double loads. */ ++ || (GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) ++ /* If this is a load where the pointer register is a part ++ of the register list, we must split it into two double ++ loads in order for it to be exception safe. */ ++ || (GET_CODE (operands[1]) == MEM ++ && register_operand (XEXP (operands[1], 0), SImode) ++ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 0 ); ++ operands[0] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 8 ); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 0 ); ++ operands[1] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 8 ); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (TImode, DImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){ ++ rtx split_const[2]; ++ rtx cop = avoid_constant_pool_reference (operands[1]); ++ if (operands[1] == cop) ++ cop = get_pool_constant (XEXP (operands[1], 0)); ++ avr32_split_const_expr (TImode, DImode, cop, split_const); ++ operands[3] = force_const_mem (DImode, split_const[1]); ++ operands[1] = force_const_mem (DImode, split_const[0]); ++ } else { ++ rtx ptr_reg = XEXP (operands[1], 0); ++ operands[1] = gen_rtx_MEM (DImode, ++ gen_rtx_PLUS ( SImode, ++ ptr_reg, ++ GEN_INT (8) )); ++ operands[3] = gen_rtx_MEM (DImode, ++ ptr_reg); ++ ++ /* Check if the first load will clobber the pointer. ++ If so, we must switch the order of the operations. */ ++ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) ) ++ { ++ /* We need to switch the order of the operations ++ so that the pointer register does not get clobbered ++ after the first double word load. */ ++ rtx tmp; ++ tmp = operands[0]; ++ operands[0] = operands[2]; ++ operands[2] = tmp; ++ tmp = operands[1]; ++ operands[1] = operands[3]; ++ operands[3] = tmp; ++ } ++ ++ ++ } ++ } ++ [(set_attr "length" "*,*,4,4,*,8") ++ (set_attr "type" "*,*,load4,store4,*,load4")]) ++ ++ ++;;== float - 32 bits ========================================================== ++(define_expand "movsf" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "") ++ (match_operand:SF 1 "general_operand" ""))] ++ "" ++ { ++ ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (SFmode, operands[1]); ++ ++ }) ++ ++(define_insn "*movsf_internal" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))] ++ "(register_operand (operands[0], SFmode) ++ || register_operand (operands[1], SFmode))" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ { ++ HOST_WIDE_INT target_float[2]; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode); ++ if ( TARGET_V2_INSNS ++ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) ) ++ return "movh\t%0, hi(%1)"; ++ else ++ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)"; ++ } ++ case 3: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 4: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,8,4,4") ++ (set_attr "type" "alu,alu,alu2,load,store") ++ (set_attr "cc" "none,none,clobber,none,none")]) ++ ++ ++ ++;;== double - 64 bits ========================================================= ++(define_expand "movdf" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "") ++ (match_operand:DF 1 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG){ ++ operands[1] = force_reg (DFmode, operands[1]); ++ } ++ }) ++ ++ ++(define_insn_and_split "*movdf_internal" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))] ++ "(register_operand (operands[0], DFmode) ++ || register_operand (operands[1], DFmode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ return "#"; ++ case 3: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 4: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "reload_completed ++ && (REG_P (operands[0]) ++ && (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ " ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } ++ " ++ ++ [(set_attr "length" "*,*,*,4,4") ++ (set_attr "type" "*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,none,none")]) ++ ++ ++;;============================================================================= ++;; Conditional Moves ++;;============================================================================= ++(define_insn "ld<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_non_rmw_memory_operand" "<MOVCC:pred_mem_constraint>"))] ++ "TARGET_V2_INSNS" ++ "ld<MOVCC:load_postfix>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++(define_insn "st<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "avr32_non_rmw_memory_operand" "=<MOVCC:pred_mem_constraint>") ++ (match_operand:MOVCC 1 "register_operand" "r"))] ++ "TARGET_V2_INSNS" ++ "st<MOVCC:store_postfix>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "store") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "mov<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))] ++ "" ++ "mov%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "alu") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++;;============================================================================= ++;; Move chunks of memory ++;;============================================================================= ++ ++(define_expand "movmemsi" ++ [(match_operand:BLK 0 "general_operand" "") ++ (match_operand:BLK 1 "general_operand" "") ++ (match_operand:SI 2 "const_int_operand" "") ++ (match_operand:SI 3 "const_int_operand" "")] ++ "" ++ " ++ if (avr32_gen_movmemsi (operands)) ++ DONE; ++ FAIL; ++ " ++ ) ++ ++ ++ ++ ++;;============================================================================= ++;; Bit field instructions ++;;----------------------------------------------------------------------------- ++;; Instructions to insert or extract bit-fields ++;;============================================================================= ++ ++(define_insn "insv" ++ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") ++ (match_operand:SI 1 "immediate_operand" "Ku05") ++ (match_operand:SI 2 "immediate_operand" "Ku05")) ++ (match_operand 3 "register_operand" "r"))] ++ "" ++ "bfins\t%0, %3, %2, %1" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++(define_expand "extv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_expand "extzv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_insn "extv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfexts\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++(define_insn "extzv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfextu\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++;;============================================================================= ++;; Some peepholes for avoiding unnecessary cast instructions ++;; followed by bfins. ++;;----------------------------------------------------------------------------- ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 8)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 16)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++;;============================================================================= ++;; push bytes ++;;----------------------------------------------------------------------------- ++;; Implements the push instruction ++;;============================================================================= ++(define_insn "pushm" ++ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM))) ++ (unspec:BLK [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_PUSHM))] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "pushm\t%r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "stm" ++ [(unspec [(match_operand 0 "register_operand" "r") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" "")] ++ UNSPEC_STM)] ++ "" ++ { ++ if (INTVAL(operands[1])) { ++ if (INTVAL(operands[2]) != 0) ++ return "stm\t--%0, %s1"; ++ else ++ return "stm\t%0, %s1"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "popm" ++ [(unspec [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_POPM)] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "popm %r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "2")]) ++ ++ ++ ++;;============================================================================= ++;; add ++;;----------------------------------------------------------------------------- ++;; Adds reg1 with reg2 and puts the result in reg0. ++;;============================================================================= ++(define_insn "add<mode>3" ++ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0") ++ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))] ++ "" ++ "@ ++ add %0, %2 ++ add %0, %1, %2 ++ sub %0, %n2 ++ sub %0, %1, %n2 ++ sub %0, %n2" ++ ++ [(set_attr "length" "2,4,2,4,4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02")) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "" ++ "add %0, %2, %1 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_lsl2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "add %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_insn "add<mode>3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" )) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %2, %1 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_mul2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_insn "adddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ add %0, %2\;adc %m0, %m0, %m2 ++ add %0, %1, %2\;adc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "add<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (plus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))] ++ "" ++ "sub%?\t%0, -%1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; subtract ++;;----------------------------------------------------------------------------- ++;; Subtract reg2 or immediate value from reg0 and puts the result in reg0. ++;;============================================================================= ++ ++(define_insn "sub<mode>3" ++ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r") ++ (minus:INTM (match_operand:INTM 1 "register_const_int_operand" "0,r,0,r,0,r,Ks08") ++ (match_operand:INTM 2 "register_const_int_operand" "r,r,Ks08,Ks16,Ks21,0,r")))] ++ "" ++ "@ ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ rsub %0, %1 ++ rsub %0, %2, %1" ++ [(set_attr "length" "2,4,2,4,4,2,4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "*sub<mode>3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "sub %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "*sub<mode>3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "sub %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_insn "subdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (minus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ sub %0, %2\;sbc %m0, %m0, %m2 ++ sub %0, %1, %2\;sbc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "sub<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))] ++ "" ++ "sub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "rsub<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08") ++ (match_dup 0)))] ++ "" ++ "rsub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; multiply ++;;----------------------------------------------------------------------------- ++;; Multiply op1 and op2 and put the value in op0. ++;;============================================================================= ++ ++ ++(define_insn "mulqi3" ++ [(set (match_operand:QI 0 "register_operand" "=r,r,r") ++ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r") ++ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "mulsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r") ++ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++ ++(define_insn "mulhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_peephole2 ++ [(match_scratch:DI 6 "r") ++ (set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "")))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (ashiftrt:SI (match_dup 0) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP ++ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))" ++ [(set (match_dup 4) (sign_extend:SI (match_dup 1))) ++ (set (match_dup 6) ++ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4)) ++ (sign_extend:DI (match_dup 2))) ++ (const_int 16))) ++ (set (match_dup 3) (match_dup 5))] ++ ++ "{ ++ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1])); ++ operands[5] = gen_highpart (SImode, operands[4]); ++ }" ++ ) ++ ++(define_insn "mulnhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r"))) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "machisi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.w %0, %1:b, %2:b" ++ [(set_attr "type" "machh_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "mulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "muls.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "umulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "mulu.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "register_operand" "r")) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "mac %0, %1, %2" ++ [(set_attr "type" "macww_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macs.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*umulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macu.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;; Try to avoid Write-After-Write hazards for mul operations ++;; if it can be done ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand 1 "general_operand" "")) ++ (sign_extend:SI (match_operand 2 "general_operand" "")))) ++ (set (match_dup 0) ++ (match_operator:SI 3 "alu_operator" [(match_dup 0) ++ (match_operand 4 "general_operand" "")]))] ++ "peep2_reg_dead_p(1, operands[2])" ++ [(set (match_dup 5) ++ (mult:SI ++ (sign_extend:SI (match_dup 1)) ++ (sign_extend:SI (match_dup 2)))) ++ (set (match_dup 0) ++ (match_op_dup 3 [(match_dup 5) ++ (match_dup 4)]))] ++ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}" ++ ) ++ ++ ++ ++;;============================================================================= ++;; DSP instructions ++;;============================================================================= ++(define_insn "mulsathh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatrndhh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI ++ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndhh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "mulsatrndwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (match_dup 0) ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1)))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++ ++(define_insn "mulwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++ ++(define_insn "mulnwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macwh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "machh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.d\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "satadd_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_plus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_minus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satadd_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++ ++;;============================================================================= ++;; smin ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "sminsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smin:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "min %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; smax ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the largest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "smaxsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smax:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "max %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; Logical operations ++;;----------------------------------------------------------------------------- ++ ++ ++;; Split up simple DImode logical operations. Simply perform the logical ++;; operation on the upper and lower halves of the registers. ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operator:DI 6 "logical_binary_operator" ++ [(match_operand:DI 1 "register_operand" "") ++ (match_operand:DI 2 "register_operand" "")]))] ++ "reload_completed" ++ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)])) ++ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))] ++ " ++ { ++ operands[3] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[1]); ++ operands[1] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[2]); ++ operands[2] = gen_lowpart (SImode, operands[2]); ++ }" ++) ++ ++;;============================================================================= ++;; Logical operations with shifted operand ++;;============================================================================= ++(define_insn "<code>si_lshift" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (logical:SI (match_operator:SI 4 "logical_shift_operator" ++ [(match_operand:SI 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku05")]) ++ (match_operand:SI 1 "register_operand" "r")))] ++ "" ++ { ++ if ( GET_CODE(operands[4]) == ASHIFT ) ++ return "<logical_insn>\t%0, %1, %2 << %3"; ++ else ++ return "<logical_insn>\t%0, %1, %2 >> %3"; ++ } ++ ++ [(set_attr "cc" "set_z")] ++) ++ ++ ++;;************************************************ ++;; Peepholes for detecting logical operantions ++;; with shifted operands ++;;************************************************ ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 3)))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "<logical_insn>\t%0, %4, %1 << %2"; ++ else ++ return "<logical_insn>\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_dup 3) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "<logical_insn>\t%0, %4, %1 << %2"; ++ else ++ return "<logical_insn>\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++ ++;;============================================================================= ++;; and ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "andnsi" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (and:SI (match_dup 0) ++ (not:SI (match_operand:SI 1 "register_operand" "r"))))] ++ "" ++ "andn %0, %1" ++ [(set_attr "cc" "set_z") ++ (set_attr "length" "2")] ++) ++ ++ ++(define_insn "andsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r,r, r, r,r,r,r,r") ++ (and:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,r,0,0, 0, 0,0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " N,M,N,Ku16,Ks17,J,L,r,i,r")))] ++ "" ++ "@ ++ memc\t%0, %z2 ++ bfextu\t%0, %1, 0, %z2 ++ cbr\t%0, %z2 ++ andl\t%0, %2, COH ++ andl\t%0, lo(%2) ++ andh\t%0, hi(%2), COH ++ andh\t%0, hi(%2) ++ and\t%0, %2 ++ andh\t%0, hi(%2)\;andl\t%0, lo(%2) ++ and\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,2,4,4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++ ++(define_insn "anddi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (and:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; or ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "iorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r, r,r,r,r") ++ (ior:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ mems\t%0, %p2 ++ sbr\t%0, %p2 ++ orl\t%0, %2 ++ orh\t%0, hi(%2) ++ or\t%0, %2 ++ orh\t%0, hi(%2)\;orl\t%0, lo(%2) ++ or\t%0, %1, %2" ++ ++ [(set_attr "length" "4,2,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++(define_insn "iordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (ior:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; xor bytes ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "xorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r, r,r,r,r") ++ (xor:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ memt\t%0, %p2 ++ eorl\t%0, %2 ++ eorh\t%0, hi(%2) ++ eor\t%0, %2 ++ eorh\t%0, hi(%2)\;eorl\t%0, lo(%2) ++ eor\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z")]) ++ ++(define_insn "xordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (xor:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; Three operand predicable insns ++;;============================================================================= ++ ++(define_insn "<predicable_insn3><mode>_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r") ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "TARGET_V2_INSNS" ++ "<predicable_insn3>%?\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn_and_split "<predicable_insn3><mode>_imm_clobber_predicable" ++ [(parallel ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r") ++ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21"))) ++ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "%! mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "%! mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else ++ return "%! movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3"; ++ } ++ else ++ { ++ if ( !avr32_cond_imm_clobber_splittable (insn, operands) ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else ++ return "movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3"; ++ } ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload ++ && avr32_cond_imm_clobber_splittable (insn, operands))" ++ [(set (match_dup 0) ++ (predicable_op3:INTM (match_dup 1) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++ ++;;============================================================================= ++;; Zero extend predicable insns ++;;============================================================================= ++(define_insn_and_split "zero_extendhisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqihi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:HI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++;;============================================================================= ++;; divmod ++;;----------------------------------------------------------------------------- ++;; Signed division that produces both a quotient and a remainder. ++;;============================================================================= ++ ++(define_expand "divmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (mod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++ ++(define_insn "divmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_DIVMODSI4_INTERNAL))] ++ "" ++ "divs %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; udivmod ++;;----------------------------------------------------------------------------- ++;; Unsigned division that produces both a quotient and a remainder. ++;;============================================================================= ++(define_expand "udivmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (udiv:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (umod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ ++ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++(define_insn "udivmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_UDIVMODSI4_INTERNAL))] ++ "" ++ "divu %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Arithmetic-shift left ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 left by reg2 or immediate value. ++;;============================================================================= ++ ++(define_insn "ashlsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsl %0, %1, %2 ++ lsl %0, %2 ++ lsl %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Arithmetic-shift right ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "ashrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ asr %0, %1, %2 ++ asr %0, %2 ++ asr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Logical shift right ++;;----------------------------------------------------------------------------- ++;; Logical shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "lshrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsr %0, %1, %2 ++ lsr %0, %2 ++ lsr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++;;============================================================================= ++;; neg ++;;----------------------------------------------------------------------------- ++;; Negate operand 1 and store the result in operand 0. ++;;============================================================================= ++(define_insn "negsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ neg\t%0 ++ rsub\t%0, %1, 0" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_vncz")]) ++ ++(define_insn "negsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (neg:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, 0" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; abs ++;;----------------------------------------------------------------------------- ++;; Store the absolute value of operand 1 into operand 0. ++;;============================================================================= ++(define_insn "abssi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "0")))] ++ "" ++ "abs\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;============================================================================= ++;; one_cmpl ++;;----------------------------------------------------------------------------- ++;; Store the bitwise-complement of operand 1 into operand 0. ++;;============================================================================= ++ ++(define_insn "one_cmplsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (not:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ com\t%0 ++ rsub\t%0, %1, -1" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_z")]) ++ ++ ++(define_insn "one_cmplsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (not:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, -1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++ ++;;============================================================================= ++;; Bit load ++;;----------------------------------------------------------------------------- ++;; Load a bit into Z and C flags ++;;============================================================================= ++(define_insn "bldsi" ++ [(set (cc0) ++ (and:SI (match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "one_bit_set_operand" "i")))] ++ "" ++ "bld\t%0, %p1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "bld")] ++ ) ++ ++ ++;;============================================================================= ++;; Compare ++;;----------------------------------------------------------------------------- ++;; Compare reg0 with reg1 or an immediate value. ++;;============================================================================= ++ ++(define_expand "cmp<mode>" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "") ++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "")))] ++ "" ++ "{ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ }" ++) ++ ++(define_insn "cmp<mode>_internal" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "r") ++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")))] ++ "" ++ { ++switch(GET_MODE(operands[0])) ++ { ++ case QImode: ++ avr32_branch_type = CMP_QI; ++ break; ++ case HImode: ++ avr32_branch_type = CMP_HI; ++ break; ++ case SImode: ++ avr32_branch_type = CMP_SI; ++ break; ++ case DImode: ++ avr32_branch_type = CMP_DI; ++ break; ++ default: ++ abort(); ++ } ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1])); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "cmpsf" ++ [(set (cc0) ++ (compare:SF ++ (match_operand:SF 0 "general_operand" "") ++ (match_operand:SF 1 "general_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "{ ++ if ( !REG_P(operands[0]) ) ++ operands[0] = force_reg(SFmode, operands[0]); ++ ++ if ( !REG_P(operands[1]) ) ++ operands[1] = force_reg(SFmode, operands[1]); ++ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ emit_insn(gen_cmpsf_internal_uc3fp(operands[0], operands[1])); ++ DONE; ++ }" ++) ++ ++;;;============================================================================= ++;; Test if zero ++;;----------------------------------------------------------------------------- ++;; Compare reg against zero and set the condition codes. ++;;============================================================================= ++ ++ ++(define_expand "tstsi" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstsi_internal" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx)); ++ ++ return ""; ++ } ++ [(set_attr "length" "2") ++ (set_attr "cc" "compare")]) ++ ++ ++(define_expand "tstdi" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstdi_internal" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx)); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "compare")]) ++ ++ ++ ++;;============================================================================= ++;; Convert operands ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++(define_insn "truncdisi2" ++ [(set (match_operand:SI 0 "general_operand" "") ++ (truncate:SI (match_operand:DI 1 "general_operand" "")))] ++ "" ++ "truncdisi2") ++ ++;;============================================================================= ++;; Extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++ ++(define_insn "extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.h\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++ ++;;============================================================================= ++;; Zero-extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++(define_insn "zero_extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.h\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.uh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "zero_extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++(define_insn "zero_extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++ ++;;============================================================================= ++;; Conditional load and extend insns ++;;============================================================================= ++(define_insn "ldsi<mode>_predicable_se" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI ++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))] ++ "TARGET_V2_INSNS" ++ "ld<INTM:load_postfix_s>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldsi<mode>_predicable_ze" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))] ++ "TARGET_V2_INSNS" ++ "ld<INTM:load_postfix_u>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_ze" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.ub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_se" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.sb%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; Conditional set register ++;; sr{cond4} rd ++;;----------------------------------------------------------------------------- ++ ++;;Because of the same issue as with conditional moves and adds we must ++;;not separate the compare instrcution from the scc instruction as ++;;they might be sheduled "badly". ++ ++(define_expand "s<code>" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++"" ++{ ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU) ++ FAIL; ++}) ++ ++(define_insn "*s<code>" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++ "" ++{ ++ return "sr<cond>\t%0"; ++} ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "seq" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(eq:SI (cc0) ++ (const_int 0)))] ++ "" ++"sreq\t%0" ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "sne" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(ne:SI (cc0) ++ (const_int 0)))] ++ "" ++"srne\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "smi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_MI))] ++ "" ++ "srmi\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "spl" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_PL))] ++ "" ++ "srpl\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Conditional branch ++;;----------------------------------------------------------------------------- ++;; Branch to label if the specified condition codes are set. ++;;============================================================================= ++; branch if negative ++(define_insn "bmi" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bmi-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if positive ++(define_insn "bpl" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bpl-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if equal ++(define_insn "b<code>" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return get_attr_length(insn) == 6 ? "brvs .+6\;br<cond> %0" : "brvs .+8\;br<cond> %0"; ++ else ++ return "br<cond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "beq" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "bne" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "b<code>" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs .+8\;br<cond> %l0"; ++ else ++ return "br<cond> %l0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b<code>-reverse" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %0\;br<invcond> %0"; ++ else ++ return "br<invcond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*beq-reverse" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bne-reverse" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b<code>-reverse" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %l0\;br<invcond> %l0"; ++ else ++ return "br<invcond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++;============================================================================= ++; Conditional Add/Subtract ++;----------------------------------------------------------------------------- ++; sub{cond4} Rd, imm ++;============================================================================= ++ ++ ++(define_expand "add<mode>cc" ++ [(set (match_operand:ADDCC 0 "register_operand" "") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:ADDCC 2 "register_operand" "") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "" ""))))] ++ "" ++ { ++ if ( !(GET_CODE (operands[3]) == CONST_INT ++ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){ ++ FAIL; ++ } ++ ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ ++ if ( TARGET_V2_INSNS ++ && REG_P(operands[3]) ++ && REGNO(operands[0]) != REGNO(operands[2]) ){ ++ emit_move_insn (operands[0], operands[2]); ++ operands[2] = operands[0]; ++ } ++ } ++ ) ++ ++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>_reg" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")]) ++ (match_dup 0) ++ (plus:ADDCC ++ (match_operand:ADDCC 2 "register_operand" "r") ++ (match_operand:ADDCC 3 "register_operand" "r"))))] ++ "TARGET_V2_INSNS" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "add%i1\t%0, %2, %3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")]) ++ (match_operand:ADDCC 2 "register_operand" "0") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "sub%i1\t%0, -%3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++;============================================================================= ++; Conditional Move ++;----------------------------------------------------------------------------- ++; mov{cond4} Rd, (Rs/imm) ++;============================================================================= ++(define_expand "mov<mode>cc" ++ [(set (match_operand:MOVCC 0 "register_operand" "") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))] ++ "" ++ { ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ } ++ ) ++ ++ ++(define_insn "mov<MOVCC:mode>cc_cmp<CMP:mode>" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r,r,r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>,<CMP:cmp_constraint>,<CMP:cmp_constraint>")]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ switch( which_alternative ){ ++ case 0: ++ return "mov%i1 %0, %3"; ++ case 1: ++ return "mov%1 %0, %2"; ++ case 2: ++ return "mov%1 %0, %2\;mov%i1 %0, %3"; ++ default: ++ abort(); ++ } ++ ++ } ++ [(set_attr "length" "8,8,12") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++ ++ ++ ++;;============================================================================= ++;; jump ++;;----------------------------------------------------------------------------- ++;; Jump inside a function; an unconditional branch to a label. ++;;============================================================================= ++(define_insn "jump" ++ [(set (pc) ++ (label_ref (match_operand 0 "" "")))] ++ "" ++ { ++ if (get_attr_length(insn) > 4) ++ return "Can't jump this far"; ++ return (get_attr_length(insn) == 2 ? ++ "rjmp %0" : "bral %0"); ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022)) ++ (le (minus (pc) (match_dup 0)) (const_int 1024))) ++ (const_int 2) ; use rjmp ++ (le (match_dup 0) (const_int 1048575)) ++ (const_int 4)] ; use bral ++ (const_int 8))) ; do something else ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; call ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning no value. ++;;============================================================================= ++(define_insn "call_internal" ++ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[0]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%0"; ++ case 1: ++ return "rcall\t%0"; ++ case 2: ++ return "mcall\t%0"; ++ case 3: ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS) ++ return "call\t%0"; ++ else ++ return "mcall\tr6[%0@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_expand "call" ++ [(parallel [(call (match_operand:SI 0 "" "") ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[0]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[0], 0); ++ ++ /* If assembler supports call pseudo insn and the call address is a symbol then nothing special needs to be done. */ ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS && (GET_CODE(call_address) == SYMBOL_REF) ) ++ { ++ /* We must however mark the function as using the GOT if flag_pic is set, since the call insn might turn into a mcall using the GOT ptr register. */ ++ if (flag_pic) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ } ++ else ++ { ++ if (flag_pic && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ ++ if (!SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ) ++ { ++ if (optimize_size && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ call_address = force_const_mem(SImode, call_address); ++ } ++ else ++ { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ ++ } ++) ++ ++;;============================================================================= ++;; call_value ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning a value. ++;;============================================================================= ++(define_expand "call_value" ++ [(parallel [(set (match_operand:SI 0 "" "") ++ (call (match_operand:SI 1 "" "") ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[1]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[1], 0); ++ ++ /* Check for a flashvault call. ++ if (GET_CODE (call_address) == SYMBOL_REF ++ && avr32_flashvault_call (SYMBOL_REF_DECL (call_address))) ++ DONE; ++ ++ */ ++ ++ /* If assembler supports call pseudo insn and the call ++ address is a symbol then nothing special needs to be done. */ ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ++ && (GET_CODE(call_address) == SYMBOL_REF) ){ ++ /* We must however mark the function as using the GOT if ++ flag_pic is set, since the call insn might turn into ++ a mcall using the GOT ptr register. */ ++ if ( flag_pic ) { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ } else { ++ if ( flag_pic && ++ GET_CODE(call_address) == SYMBOL_REF ){ ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ ++ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){ ++ if ( optimize_size && ++ GET_CODE(call_address) == SYMBOL_REF){ ++ call_address = force_const_mem(SImode, call_address); ++ } else { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, ++ operands[2])); ++ DONE; ++ ++ }) ++ ++(define_insn "call_value_internal" ++ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r") ++ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ ;; Operand 2 not used on the AVR32. ++ "" ++ { ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[1]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%1"; ++ case 1: ++ return "rcall\t%1"; ++ case 2: ++ return "mcall\t%1"; ++ case 3: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "call\t%1"; ++ else ++ return "mcall\tr6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "call_set")]) ++ ++ ++;;============================================================================= ++;; untyped_call ++;;----------------------------------------------------------------------------- ++;; Subrutine call instruction returning a value of any type. ++;; The code is copied from m68k.md (except gen_blockage is removed) ++;; Fixme! ++;;============================================================================= ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "avr32_call_operand" "") ++ (const_int 0)) ++ (match_operand 1 "" "") ++ (match_operand 2 "" "")])] ++ "" ++ { ++ int i; ++ ++ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); ++ ++ for (i = 0; i < XVECLEN (operands[2], 0); i++) { ++ rtx set = XVECEXP (operands[2], 0, i); ++ emit_move_insn (SET_DEST (set), SET_SRC (set)); ++ } ++ ++ /* The optimizer does not know that the call sets the function value ++ registers we stored in the result block. We avoid problems by ++ claiming that all hard registers are used and clobbered at this ++ point. */ ++ emit_insn (gen_blockage ()); ++ ++ DONE; ++ }) ++ ++ ++;;============================================================================= ++;; return ++;;============================================================================= ++ ++(define_insn "return" ++ [(return)] ++ "USE_RETURN_INSN (FALSE)" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++ ++(define_insn "return_cond" ++ [(set (pc) ++ (if_then_else (match_operand 0 "avr32_comparison_operand" "") ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%0\tr12"; ++ [(set_attr "type" "call")]) ++ ++(define_insn "return_cond_predicable" ++ [(return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\tr12"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++ ++(define_insn "return_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (FALSE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_cond" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operand 1 "avr32_comparison_operand" "") ++ (return) ++ (pc)))])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_predicable" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_<mode>reg" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_<mode>reg_cond" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(cc0) (const_int 0)]) ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")]) ++ ++;;============================================================================= ++;; nonlocal_goto_receiver ++;;----------------------------------------------------------------------------- ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will be corrupt after a nonlocal goto. ++;;============================================================================= ++(define_expand "nonlocal_goto_receiver" ++ [(const_int 0)] ++ "TARGET_RETURN_STACK" ++ " ++ { ++ emit_insn ( gen_frs() ); ++ DONE; ++ } ++ " ++ ) ++ ++ ++;;============================================================================= ++;; builtin_setjmp_receiver ++;;----------------------------------------------------------------------------- ++;; For pic code we need to reload the pic register. ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will probably be corrupted. ++;;============================================================================= ++(define_expand "builtin_setjmp_receiver" ++ [(label_ref (match_operand 0 "" ""))] ++ "flag_pic" ++ " ++ { ++ if ( TARGET_RETURN_STACK ) ++ emit_insn ( gen_frs() ); ++ ++ avr32_load_pic_register (); ++ DONE; ++ } ++ " ++) ++ ++ ++;;============================================================================= ++;; indirect_jump ++;;----------------------------------------------------------------------------- ++;; Jump to an address in reg or memory. ++;;============================================================================= ++(define_expand "indirect_jump" ++ [(set (pc) ++ (match_operand:SI 0 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ && !avr32_legitimate_pic_operand_p(operands[0]) ) ++ operands[0] = legitimize_pic_address (operands[0], SImode, 0); ++ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "indirect_jump_internal" ++ [(set (pc) ++ (match_operand:SI 0 "avr32_non_rmw_general_operand" "r,m,W"))] ++ "" ++ { ++ switch( which_alternative ){ ++ case 0: ++ return "mov\tpc, %0"; ++ case 1: ++ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) ) ++ return "lddpc\tpc, %0"; ++ else ++ return "ld.w\tpc, %0"; ++ case 2: ++ if ( flag_pic ) ++ return "ld.w\tpc, r6[%0@got]"; ++ else ++ return "lda.w\tpc, %0"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,8") ++ (set_attr "type" "call,call,call") ++ (set_attr "cc" "none,none,clobber")]) ++ ++ ++ ++;;============================================================================= ++;; casesi and tablejump ++;;============================================================================= ++(define_insn "tablejump_add" ++ [(set (pc) ++ (plus:SI (match_operand:SI 0 "register_operand" "r") ++ (mult:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04" )))) ++ (use (label_ref (match_operand 3 "" "")))] ++ "flag_pic && ++ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) || ++ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))" ++ "add\tpc, %0, %1 << %p2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "tablejump_insn" ++ [(set (pc) (match_operand:SI 0 "memory_operand" "m")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "!flag_pic" ++ "ld.w\tpc, %0" ++ [(set_attr "length" "4") ++ (set_attr "type" "call") ++ (set_attr "cc" "none")]) ++ ++(define_expand "casesi" ++ [(match_operand:SI 0 "register_operand" "") ; index to jump on ++ (match_operand:SI 1 "const_int_operand" "") ; lower bound ++ (match_operand:SI 2 "const_int_operand" "") ; total range ++ (match_operand:SI 3 "" "") ; table label ++ (match_operand:SI 4 "" "")] ; Out of range label ++ "" ++ " ++ { ++ rtx reg; ++ rtx index = operands[0]; ++ rtx low_bound = operands[1]; ++ rtx range = operands[2]; ++ rtx table_label = operands[3]; ++ rtx oor_label = operands[4]; ++ ++ index = force_reg ( SImode, index ); ++ if (low_bound != const0_rtx) ++ { ++ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){ ++ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound))); ++ emit_insn (gen_subsi3 (reg, index, ++ reg)); ++ } else { ++ reg = gen_reg_rtx (SImode); ++ emit_insn (gen_addsi3 (reg, index, ++ GEN_INT (-INTVAL (low_bound)))); ++ } ++ index = reg; ++ } ++ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\")) ++ range = force_reg (SImode, range); ++ ++ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label ); ++ reg = gen_reg_rtx (SImode); ++ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label)); ++ ++ if ( flag_pic ) ++ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label)); ++ else ++ emit_jump_insn ( ++ gen_tablejump_insn ( gen_rtx_MEM ( SImode, ++ gen_rtx_PLUS ( SImode, ++ reg, ++ gen_rtx_MULT ( SImode, ++ index, ++ GEN_INT(4)))), ++ table_label)); ++ DONE; ++ }" ++) ++ ++ ++ ++(define_insn "prefetch" ++ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" ""))] ++ "" ++ { ++ return "pref\t%0"; ++ } ++ ++ [(set_attr "length" "4") ++ (set_attr "type" "load") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; prologue ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, emits RTL for entry to a function. The function ++;; entry i responsible for setting up the stack frame, initializing the frame ++;; pointer register, saving callee saved registers, etc. ++;;============================================================================= ++(define_expand "prologue" ++ [(clobber (const_int 0))] ++ "" ++ " ++ avr32_expand_prologue(); ++ DONE; ++ " ++ ) ++ ++;;============================================================================= ++;; eh_return ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, affects the way __builtin_eh_return, and ++;; thence the call frame exception handling library routines, are ++;; built. It is intended to handle non-trivial actions needed along ++;; the abnormal return path. ++;; ++;; The address of the exception handler to which the function should ++;; return is passed as operand to this pattern. It will normally need ++;; to copied by the pattern to some special register or memory ++;; location. If the pattern needs to determine the location of the ++;; target call frame in order to do so, it may use ++;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been ++;; assigned. ++;; ++;; If this pattern is not defined, the default action will be to ++;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either ++;; that macro or this pattern needs to be defined if call frame ++;; exception handling is to be used. ++ ++;; We can't expand this before we know where the link register is stored. ++(define_insn_and_split "eh_return" ++ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] ++ VUNSPEC_EH_RETURN) ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "#" ++ "reload_completed" ++ [(const_int 0)] ++ " ++ { ++ avr32_set_return_address (operands[0], operands[1]); ++ DONE; ++ }" ++ ) ++ ++ ++;;============================================================================= ++;; ffssi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ffssi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "mov %0, %1 ++ brev %0 ++ clz %0, %0 ++ sub %0, -1 ++ cp %0, 33 ++ moveq %0, 0" ++ [(set_attr "length" "18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++;;============================================================================= ++;; swap_h ++;;----------------------------------------------------------------------------- ++(define_insn "*swap_h" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ior:SI (ashift:SI (match_dup 0) (const_int 16)) ++ (lshiftrt:SI (match_dup 0) (const_int 16))))] ++ "" ++ "swap.h %0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn_and_split "bswap_16" ++ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r") ++ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13") ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 1) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.bh\t%0"; ++ else ++ return "mov\t%0, %1\;swap.bh\t%0"; ++ case 1: ++ return "stswp.h\t%0, %1"; ++ case 2: ++ return "ldswp.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:HI (and:HI (lshiftrt:HI (match_dup 0) ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 0) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++(define_insn_and_split "bswap_32" ++ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r") ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14") ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 1) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 1) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 1) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.b\t%0"; ++ else ++ return "#"; ++ case 1: ++ return "stswp.w\t%0, %1"; ++ case 2: ++ return "ldswp.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 0) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 0) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++ ++;;============================================================================= ++;; blockage ++;;----------------------------------------------------------------------------- ++;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ++;; all of memory. This blocks insns from being moved across this point. ++ ++(define_insn "blockage" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)] ++ "" ++ "" ++ [(set_attr "length" "0")] ++) ++ ++;;============================================================================= ++;; clzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "clzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "clz %0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; ctzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ctzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r,r") ++ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ] ++ "" ++ "@ ++ brev\t%0\;clz\t%0, %0 ++ mov\t%0, %1\;brev\t%0\;clz\t%0, %0" ++ [(set_attr "length" "8") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; cache instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cache" ++ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p") ++ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)] ++ "" ++ "cache %0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "sync" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)] ++ "" ++ "sync %0" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; TLB instructions ++;;----------------------------------------------------------------------------- ++(define_insn "tlbr" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)] ++ "" ++ "tlbr" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbw" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)] ++ "" ++ "tlbw" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)] ++ "" ++ "tlbs" ++ [(set_attr "length" "2")] ++ ) ++ ++;;============================================================================= ++;; Breakpoint instruction ++;;----------------------------------------------------------------------------- ++(define_insn "breakpoint" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)] ++ "" ++ "breakpoint" ++ [(set_attr "length" "2")] ++ ) ++ ++ ++;;============================================================================= ++;; mtsr/mfsr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtsr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)] ++ "" ++ "mtsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfsr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ] ++ "" ++ "mfsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; mtdr/mfdr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtdr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)] ++ "" ++ "mtdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfdr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ] ++ "" ++ "mfdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; musfr ++;;----------------------------------------------------------------------------- ++(define_insn "musfr" ++ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)] ++ "" ++ "musfr\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "mustr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ] ++ "" ++ "mustr\t%0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "ssrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)] ++ "" ++ "ssrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "csrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)] ++ "" ++ "csrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++;;============================================================================= ++;; Flush Return Stack instruction ++;;----------------------------------------------------------------------------- ++(define_insn "frs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)] ++ "" ++ "frs" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")] ++ ) ++ ++ ++;;============================================================================= ++;; Saturation Round Scale instruction ++;;----------------------------------------------------------------------------- ++(define_insn "sats" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATS)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATU)) ] ++ "TARGET_DSP" ++ "satu\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrnds" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDS)) ] ++ "TARGET_DSP" ++ "satrnds\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrndu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDU)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "sleep" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_SLEEP) ++ (match_operand:SI 0 "const_int_operand" "")] ++ "" ++ "sleep %0" ++ [(set_attr "length" "1") ++ (set_attr "cc" "none") ++ ]) ++ ++(define_expand "delay_cycles" ++ [(unspec_volatile [(match_operand:SI 0 "const_int_operand" "i")] ++ VUNSPEC_DELAY_CYCLES)] ++ "" ++ " ++ unsigned int cycles = UINTVAL (operands[0]); ++ if (IN_RANGE(cycles,0x10000 ,0xFFFFFFFF)) ++ { ++ unsigned int msb = (cycles & 0xFFFF0000); ++ unsigned int shift = 16; ++ msb = (msb >> shift); ++ unsigned int cycles_used = (msb*0x10000); ++ emit_insn (gen_delay_cycles_2 (gen_int_mode (msb, SImode))); ++ cycles -= cycles_used; ++ } ++ if (IN_RANGE(cycles, 4, 0xFFFF)) ++ { ++ unsigned int loop_count = (cycles/ 4); ++ unsigned int cycles_used = (loop_count*4); ++ emit_insn (gen_delay_cycles_1 (gen_int_mode (loop_count, SImode))); ++ cycles -= cycles_used; ++ } ++ while (cycles >= 3) ++ { ++ emit_insn (gen_nop3 ()); ++ cycles -= 3; ++ } ++ if (cycles == 1 || cycles == 2) ++ { ++ while (cycles--) ++ emit_insn (gen_nop ()); ++ } ++ DONE; ++ ") ++ ++(define_insn "delay_cycles_1" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_1) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++(define_insn "delay_cycles_2" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_2) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r")) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: mov\t%2, 16383 ++ 2: sub\t%2, 1 ++ brne\t2b ++ nop ++ sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++;; CPU instructions ++ ++;;============================================================================= ++;; nop ++;;----------------------------------------------------------------------------- ++;; No-op instruction. ++;;============================================================================= ++(define_insn "nop" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP)] ++ "" ++ "nop" ++ [(set_attr "length" "1") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; NOP3 ++(define_insn "nop3" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP3)] ++ "" ++ "rjmp\t2" ++ [(set_attr "length" "3") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; Special patterns for dealing with the constant pool ++ ++(define_insn "align_4" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)] ++ "" ++ { ++ assemble_align (32); ++ return ""; ++ } ++ [(set_attr "length" "2")] ++) ++ ++ ++(define_insn "consttable_start" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)] ++ "" ++ { ++ return ".cpool"; ++ } ++ [(set_attr "length" "0")] ++ ) ++ ++(define_insn "consttable_end" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)] ++ "" ++ { ++ making_const_table = FALSE; ++ return ""; ++ } ++ [(set_attr "length" "0")] ++) ++ ++ ++(define_insn "consttable_4" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer (operands[0], 4, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "4")] ++) ++ ++(define_insn "consttable_8" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer(operands[0], 8, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "8")] ++) ++ ++(define_insn "consttable_16" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)] ++ "" ++ { ++ making_const_table = TRUE; ++ assemble_integer(operands[0], 16, 0, 1); ++ return ""; ++ } ++ [(set_attr "length" "16")] ++) ++ ++;;============================================================================= ++;; coprocessor instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cop" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03") ++ (match_operand 1 "immediate_operand" "Ku04") ++ (match_operand 2 "immediate_operand" "Ku04") ++ (match_operand 3 "immediate_operand" "Ku04") ++ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)] ++ "" ++ "cop\tcp%0, cr%1, cr%2, cr%3, %4" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrsi" ++ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.w\tcp%1, %0, cr%2 ++ stcm.w\tcp%1, %0, cr%2 ++ stc.w\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrdi" ++ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.d\tcp%1, %0, cr%2 ++ stcm.d\tcp%1, %0, cr%2-cr%i2 ++ stc.d\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcsi" ++ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.w\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.w\tcp%0, %2, cr%1"; ++ case 2: ++ return "ldc.w\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcdi" ++ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.d\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.d\tcp%0, %2, cr%1-cr%i1"; ++ case 2: ++ return "ldc.d\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; epilogue ++;;----------------------------------------------------------------------------- ++;; This pattern emits RTL for exit from a function. The function exit is ++;; responsible for deallocating the stack frame, restoring callee saved ++;; registers and emitting the return instruction. ++;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead. ++;;============================================================================= ++(define_expand "epilogue" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ " ++ if (USE_RETURN_INSN (FALSE)){ ++ emit_jump_insn (gen_return ()); ++ DONE; ++ } ++ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode, ++ gen_rtvec (1, ++ gen_rtx_RETURN (VOIDmode)), ++ VUNSPEC_EPILOGUE)); ++ DONE; ++ " ++ ) ++ ++(define_insn "*epilogue_insns" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "sibcall_epilogue" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++;; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*sibcall_epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "ldxi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mem:SI (plus:SI ++ (match_operand:SI 1 "register_operand" "r") ++ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r") ++ (const_int 8) ++ (match_operand:SI 3 "immediate_operand" "Ku05")) ++ (const_int 4)))))] ++ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8 ++ || INTVAL(operands[3]) == 0)" ++ { ++ switch ( INTVAL(operands[3]) ){ ++ case 0: ++ return "ld.w %0, %1[%2:b << 2]"; ++ case 8: ++ return "ld.w %0, %1[%2:l << 2]"; ++ case 16: ++ return "ld.w %0, %1[%2:u << 2]"; ++ case 24: ++ return "ld.w %0, %1[%2:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++ ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r8, r7, 8 ++;; st.w r8[0x0], r12 ++;; to ++;; sub r8, r7, 8 ++;; st.w r7[-0x8], r12 ++;;============================================================================= ++; (set (reg:SI 9 r8) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int ...))) ++; (set (mem:SI (reg:SI 9 r8)) ++; (reg:SI 12 r12)) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (mem:SI (match_dup 0)) ++ (match_operand:SI 3 "register_operand" ""))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (match_dup 3))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r6, r7, 4 ++;; ld.w r6, r6[0x0] ++;; to ++;; sub r6, r7, 4 ++;; ld.w r6, r7[-0x4] ++;;============================================================================= ++; (set (reg:SI 7 r6) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int -4 [0xfffffffc]))) ++; (set (reg:SI 7 r6) ++; (mem:SI (reg:SI 7 r6))) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (match_dup 0)))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (match_dup 3) ++ (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sb r0, r7[-0x6] ++;; cashs.b r0 ++;; to ++;; ld.sb r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "load_sb_memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.ub r0, r7[-0x6] ++;; cashu.b r0 ++;; to ++;; ld.ub r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sh r0, r7[-0x6] ++;; casts.h r0 ++;; to ++;; ld.sh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.uh r0, r7[-0x6] ++;; castu.h r0 ++;; to ++;; ld.uh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; mul rd, rx, ry ++;; add rd2, rd ++;; or ++;; add rd2, rd, rd2 ++;; to ++;; mac rd2, rx, ry ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 3) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_dup 3)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask ++;; to ++;; bld rs, k5 ++;; ++;; If rd is dead after the operation. ++;;============================================================================= ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 1) ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));") ++ ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "one_bit_set_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2] ++;; ++;;============================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "ld.w %3, %4[%1:b << 2]"; ++ case 8: ++ return "ld.w %3, %4[%1:l << 2]"; ++ case 16: ++ return "ld.w %3, %4[%1:u << 2]"; ++ case 24: ++ return "ld.w %3, %4[%1:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ ++ "ld.w %2, %3[%1:b << 2]" ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[3]))" ++ [(set (match_dup 3) ++ (mem:SI (plus:SI ++ (match_dup 4) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (match_dup 2)) ++ (const_int 4)))))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));" ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 24))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 24)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++;;************************************************ ++;; ANDN ++;; ++;;************************************************ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 2) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 0) ++ (match_dup 2) ++ ))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ ++ "" ++) ++ ++ ++;;================================================================= ++;; Addabs peephole ++;;================================================================= ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 3 "register_operand" "r") ++ (match_dup 2)))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_dup 2) ++ (match_operand:SI 3 "register_operand" "r")))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;================================================================= ++;; Detect roundings ++;;================================================================= ++ ++(define_insn "*round" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i")) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" ""))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ [(set (match_dup 0) ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_dup 1)) ++ (match_dup 2)))] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "r") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i"))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ++ ) ++ ++ ++;;================================================================= ++;; mcall ++;;================================================================= ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[0])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_dup 2)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[2])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "call_set")] ++) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(parallel [(call (mem:SI (match_dup 1)) ++ (match_dup 2)) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 2 "register_operand" "") ++ (call (mem:SI (match_dup 0)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))" ++ [(parallel [(set (match_dup 2) ++ (call (mem:SI (match_dup 1)) ++ (match_dup 3))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++;;================================================================= ++;; Returning a value ++;;================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "") ++ (match_operand 1 "register_operand" "")) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM) ++ && (REGNO(operands[1]) != LR_REGNUM) ++ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)" ++ "retal %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "2")] ++ ) ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (return)] ++ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))" ++ { ++ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "4")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "(REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "=r") ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(match_operand 4 "register_operand" "r") ++ (match_operand 5 "register_immediate_operand" "rKs21")]) ++ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08") ++ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08"))) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == REG ++ && REGNO(operands[2]) != LR_REGNUM ++ && REGNO(operands[3]) != LR_REGNUM ){ ++ return "ret%1 %2\;ret%i1 %3"; ++ } else if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == CONST_INT ){ ++ if ( INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 ){ ++ return "ret%1 %2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else if ( GET_CODE(operands[2]) == CONST_INT ++ && GET_CODE(operands[3]) == REG ){ ++ if ( INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ){ ++ return "ret%1 %d2\;ret%i1 %3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else { ++ if ( (INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ) ++ && (INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 )){ ++ return "ret%1 %d2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } ++ } ++ ++ [(set_attr "length" "10") ++ (set_attr "cc" "none") ++ (set_attr "type" "call")]) ++ ++ ++ ++;;================================================================= ++;; mulnhh.w ++;;================================================================= ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_dup 0)) ++ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 3 "register_operand" "")) ++ (sign_extend:SI (match_dup 0))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++ ++ ++;;================================================================= ++;; Vector set and extract operations ++;;================================================================= ++(define_insn "vec_setv2hi_hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 1)))] ++ "" ++ "bfins\t%0, %1, 16, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_setv2hi_lo" ++ [(set (match_operand:V2HI 0 "register_operand" "+r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 2)))] ++ "" ++ "bfins\t%0, %1, 0, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_expand "vec_setv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "")) ++ (match_operand 2 "immediate_operand" "")))] ++ "" ++ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); } ++ ) ++ ++(define_insn "vec_extractv2hi" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (vec_select:HI ++ (match_operand:V2HI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ if ( INTVAL(operands[2]) == 0 ) ++ return "bfextu\t%0, %1, 16, 16"; ++ else ++ return "bfextu\t%0, %1, 0, 16"; ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_extractv4qi" ++ [(set (match_operand:QI 0 "register_operand" "=r") ++ (vec_select:QI ++ (match_operand:V4QI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "bfextu\t%0, %1, 24, 8"; ++ case 1: ++ return "bfextu\t%0, %1, 16, 8"; ++ case 2: ++ return "bfextu\t%0, %1, 8, 8"; ++ case 3: ++ return "bfextu\t%0, %1, 0, 8"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_insn "concatv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r") ++ (vec_concat:V2HI ++ (match_operand:HI 1 "register_operand" "r, r, 0") ++ (match_operand:HI 2 "register_operand" "r, 0, r")))] ++ "" ++ "@ ++ mov\t%0, %1\;bfins\t%0, %2, 0, 16 ++ bfins\t%0, %2, 0, 16 ++ bfins\t%0, %1, 16, 16" ++ [(set_attr "length" "6, 4, 4") ++ (set_attr "type" "alu")]) ++ ++ ++;; Load the atomic operation description ++(include "sync.md") ++ ++;; Load the SIMD description ++(include "simd.md") ++ ++;; Include the FPU for uc3 ++(include "uc3fpu.md") +--- /dev/null ++++ b/gcc/config/avr32/avr32-modes.def +@@ -0,0 +1 @@ ++VECTOR_MODES (INT, 4); /* V4QI V2HI */ +--- /dev/null ++++ b/gcc/config/avr32/avr32.opt +@@ -0,0 +1,93 @@ ++; Options for the ATMEL AVR32 port of the compiler. ++ ++; Copyright 2007 Atmel Corporation. ++; ++; This file is part of GCC. ++; ++; GCC is free software; you can redistribute it and/or modify it under ++; the terms of the GNU General Public License as published by the Free ++; Software Foundation; either version 2, or (at your option) any later ++; version. ++; ++; GCC is distributed in the hope that it will be useful, but WITHOUT ANY ++; WARRANTY; without even the implied warranty of MERCHANTABILITY or ++; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++; for more details. ++; ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING. If not, write to the Free ++; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA ++; 02110-1301, USA. ++ ++muse-rodata-section ++Target Report Mask(USE_RODATA_SECTION) ++Use section .rodata for read-only data instead of .text. ++ ++mhard-float ++Target Report Mask(HARD_FLOAT) ++Use FPU instructions instead of floating point emulation. ++ ++msoft-float ++Target Report InverseMask(HARD_FLOAT, SOFT_FLOAT) ++Use floating point emulation for floating point operations. ++ ++mforce-double-align ++Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN) ++Force double-word alignment for double-word memory accesses. ++ ++mno-init-got ++Target Report RejectNegative Mask(NO_INIT_GOT) ++Do not initialize GOT register before using it when compiling PIC code. ++ ++mrelax ++Target Report Mask(RELAX) ++Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1). ++ ++mmd-reorg-opt ++Target Report Undocumented Mask(MD_REORG_OPTIMIZATION) ++Perform machine dependent optimizations in reorg stage. ++ ++masm-addr-pseudos ++Target Report Mask(HAS_ASM_ADDR_PSEUDOS) ++Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default) ++ ++mpart= ++Target Report RejectNegative Joined Var(avr32_part_name) ++Specify the AVR32 part name ++ ++mcpu= ++Target Report RejectNegative Joined Undocumented Var(avr32_part_name) ++Specify the AVR32 part name (deprecated) ++ ++march= ++Target Report RejectNegative Joined Var(avr32_arch_name) ++Specify the AVR32 architecture name ++ ++mfast-float ++Target Report Mask(FAST_FLOAT) ++Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++mimm-in-const-pool ++Target Report Var(avr32_imm_in_const_pool) Init(-1) ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++ ++mno-pic ++Target Report RejectNegative Mask(NO_PIC) ++Do not generate position-independent code. (deprecated, use -fno-pic instead) ++ ++mcond-exec-before-reload ++Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD) ++Enable experimental conditional execution preparation before the reload stage. ++ ++mrmw-addressable-data ++Target Report Mask(RMW_ADDRESSABLE_DATA) ++Signal that all data is in range for the Atomic Read-Modify-Write memory instructions, and that ++gcc can safely generate these whenever possible. ++ ++mflashvault ++Target Var(TARGET_FLASHVAULT) ++Generate code for flashvault ++ ++mlist-devices ++Target RejectNegative Var(avr32_list_supported_parts) ++Print the list of parts supported while printing --target-help. +--- /dev/null ++++ b/gcc/config/avr32/avr32-protos.h +@@ -0,0 +1,196 @@ ++/* ++ Prototypes for exported functions defined in avr32.c ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++#ifndef AVR32_PROTOS_H ++#define AVR32_PROTOS_H ++ ++extern const int swap_reg[]; ++ ++extern int avr32_valid_macmac_bypass (rtx, rtx); ++extern int avr32_valid_mulmac_bypass (rtx, rtx); ++ ++extern int avr32_decode_lcomm_symbol_offset (rtx, int *); ++extern void avr32_encode_lcomm_symbol_offset (tree, char *, int); ++ ++extern const char *avr32_strip_name_encoding (const char *); ++ ++extern rtx avr32_get_note_reg_equiv (rtx insn); ++ ++extern int avr32_use_return_insn (int iscond); ++ ++extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string); ++ ++extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string); ++extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string); ++extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string); ++ ++extern void avr32_output_return_instruction (int single_ret_inst, ++ int iscond, rtx cond, ++ rtx r12_imm); ++extern void avr32_expand_prologue (void); ++extern void avr32_set_return_address (rtx source, rtx scratch); ++ ++extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode); ++extern int avr32_extra_constraint_s (rtx value, const int strict); ++extern int avr32_eh_return_data_regno (const int n); ++extern int avr32_initial_elimination_offset (const int from, const int to); ++extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named); ++extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype, ++ rtx libname, tree fndecl); ++extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, int named); ++#ifdef ARGS_SIZE_RTX ++/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */ ++extern enum direction avr32_function_arg_padding (enum machine_mode mode, ++ tree type); ++#endif /* ARGS_SIZE_RTX */ ++extern rtx avr32_function_value (tree valtype, tree func, bool outgoing); ++extern rtx avr32_libcall_value (enum machine_mode mode); ++extern int avr32_sched_use_dfa_pipeline_interface (void); ++extern bool avr32_return_in_memory (tree type, tree fntype); ++extern void avr32_regs_to_save (char *operand); ++extern void avr32_target_asm_function_prologue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_target_asm_function_epilogue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_trampoline_template (FILE * file); ++extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr, ++ rtx static_chain); ++extern int avr32_legitimate_address (enum machine_mode mode, rtx x, ++ int strict); ++extern int avr32_legitimate_constant_p (rtx x); ++ ++extern int avr32_legitimate_pic_operand_p (rtx x); ++ ++extern rtx avr32_find_symbol (rtx x); ++extern void avr32_select_section (rtx exp, int reloc, int align); ++extern void avr32_encode_section_info (tree decl, rtx rtl, int first); ++extern void avr32_asm_file_end (FILE * stream); ++extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len); ++extern void avr32_asm_output_common (FILE * stream, const char *name, ++ int size, int rounded); ++extern void avr32_asm_output_label (FILE * stream, const char *name); ++extern void avr32_asm_declare_object_name (FILE * stream, char *name, ++ tree decl); ++extern void avr32_asm_globalize_label (FILE * stream, const char *name); ++extern void avr32_asm_weaken_label (FILE * stream, const char *name); ++extern void avr32_asm_output_external (FILE * stream, tree decl, ++ const char *name); ++extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref); ++extern void avr32_asm_output_labelref (FILE * stream, const char *name); ++extern void avr32_notice_update_cc (rtx exp, rtx insn); ++extern void avr32_print_operand (FILE * stream, rtx x, int code); ++extern void avr32_print_operand_address (FILE * stream, rtx x); ++ ++extern int avr32_symbol (rtx x); ++ ++extern void avr32_select_rtx_section (enum machine_mode mode, rtx x, ++ unsigned HOST_WIDE_INT align); ++ ++extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode); ++extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode); ++ ++extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, ++ const char *str); ++ ++extern bool avr32_cannot_force_const_mem (rtx x); ++ ++extern void avr32_init_builtins (void); ++ ++extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget, ++ enum machine_mode mode, int ignore); ++ ++extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type); ++ ++extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca); ++ ++extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, bool named); ++ ++extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, ++ int scalar_p); ++extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p); ++extern int avr32_gen_movmemsi (rtx * operands); ++ ++extern int avr32_rnd_operands (rtx add, rtx shift); ++extern int avr32_adjust_insn_length (rtx insn, int length); ++ ++extern int symbol_mentioned_p (rtx x); ++extern int label_mentioned_p (rtx x); ++extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg); ++extern int avr32_address_register_rtx_p (rtx x, int strict_p); ++extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index, ++ int strict_p); ++ ++extern int avr32_const_double_immediate (rtx value); ++extern void avr32_init_expanders (void); ++extern rtx avr32_return_addr (int count, rtx frame); ++extern bool avr32_got_mentioned_p (rtx addr); ++ ++extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands); ++ ++extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]); ++extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]); ++#ifdef RTX_CODE ++extern int avr32_expand_scc (RTX_CODE cond, rtx * operands); ++#endif ++ ++extern int avr32_store_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in); ++extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode, ++ rtx op0, rtx op1); ++ ++rtx get_next_insn_cond (rtx cur_insn); ++int set_next_insn_cond (rtx cur_insn, rtx cond); ++rtx next_insn_emits_cmp (rtx cur_insn); ++void avr32_override_options (void); ++void avr32_load_pic_register (void); ++#ifdef GCC_BASIC_BLOCK_H ++rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes); ++rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ); ++void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes); ++#endif ++void avr32_optimization_options (int level, int size); ++int avr32_const_ok_for_move (HOST_WIDE_INT c); ++ ++void avr32_split_const_expr (enum machine_mode mode, ++ enum machine_mode new_mode, ++ rtx expr, ++ rtx *split_expr); ++void avr32_get_intval (enum machine_mode mode, ++ rtx const_expr, ++ HOST_WIDE_INT *val); ++ ++int avr32_cond_imm_clobber_splittable (rtx insn, ++ rtx operands[]); ++ ++bool avr32_flashvault_call(tree decl); ++extern void avr32_emit_swdivsf (rtx, rtx, rtx); ++ ++#endif /* AVR32_PROTOS_H */ +--- /dev/null ++++ b/gcc/config/avr32/crti.asm +@@ -0,0 +1,64 @@ ++/* ++ Init/fini stuff for AVR32. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/* The code in sections .init and .fini is supposed to be a single ++ regular function. The function in .init is called directly from ++ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm ++ too. ++ ++ crti.asm contributes the prologue of a function to these sections, ++ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list ++ crti.o before any other object files that might add code to .init ++ or .fini sections, and ENDFILE_SPEC should list crtn.o after any ++ such object files. */ ++ ++ .file "crti.asm" ++ ++ .section ".init" ++/* Just load the GOT */ ++ .align 2 ++ .global _init ++_init: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ ++ .section ".fini" ++/* Just load the GOT */ ++ .align 2 ++ .global _fini ++_fini: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ +--- /dev/null ++++ b/gcc/config/avr32/crtn.asm +@@ -0,0 +1,44 @@ ++/* Copyright (C) 2001 Free Software Foundation, Inc. ++ Written By Nick Clifton ++ ++ This file is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published by the ++ Free Software Foundation; either version 2, or (at your option) any ++ later version. ++ ++ In addition to the permissions in the GNU General Public License, the ++ Free Software Foundation gives you unlimited permission to link the ++ compiled version of this file with other programs, and to distribute ++ those programs without any restriction coming from the use of this ++ file. (The General Public License restrictions do apply in other ++ respects; for example, they cover modification of the file, and ++ distribution when not linked into another program.) ++ ++ This file is distributed in the hope that it will be useful, but ++ WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; see the file COPYING. If not, write to ++ the Free Software Foundation, 59 Temple Place - Suite 330, ++ Boston, MA 02111-1307, USA. ++ ++ As a special exception, if you link this library with files ++ compiled with GCC to produce an executable, this does not cause ++ the resulting executable to be covered by the GNU General Public License. ++ This exception does not however invalidate any other reasons why ++ the executable file might be covered by the GNU General Public License. ++*/ ++ ++ ++ ++ ++ .file "crtn.asm" ++ ++ .section ".init" ++ ldm sp++, r6, pc ++ ++ .section ".fini" ++ ldm sp++, r6, pc ++ +--- /dev/null ++++ b/gcc/config/avr32/lib1funcs.S +@@ -0,0 +1,2903 @@ ++/* Macro for moving immediate value to register. */ ++.macro mov_imm reg, imm ++.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm)) ++ mov \reg, \imm ++#if __AVR32_UC__ >= 2 ++.elseif ((\imm & 0xffff) == 0) ++ movh \reg, hi(\imm) ++ ++#endif ++.else ++ mov \reg, lo(\imm) ++ orh \reg, hi(\imm) ++.endif ++.endm ++ ++ ++ ++/* Adjust the unpacked double number if it is a subnormal number. ++ The exponent and mantissa pair are stored ++ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in ++ the MSB is passed in [sign]. Needs two scratch ++ registers [scratch1] and [scratch2]. An adjusted and packed double float ++ is present in [mant_hi,mant_lo] after macro has executed */ ++.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2 ++ /* We have an exponent which is <=0 indicating a subnormal number ++ As it should be stored as if the exponent was 1 (although the ++ exponent field is all zeros to indicate a subnormal number) ++ we have to shift down the mantissa to its correct position. */ ++ neg \exp ++ sub \exp,-1 /* amount to shift down */ ++ cp.w \exp,54 ++ brlo 50f /* if more than 53 shift steps, the ++ entire mantissa will disappear ++ without any rounding to occur */ ++ mov \mant_hi, 0 ++ mov \mant_lo, 0 ++ rjmp 52f ++50: ++ sub \exp,-10 /* do the shift to position the ++ mantissa at the same time ++ note! this does not include the ++ final 1 step shift to add the sign */ ++ ++ /* when shifting, save all shifted out bits in [scratch2]. we may need to ++ look at them to make correct rounding. */ ++ ++ rsub \scratch1,\exp,32 /* get inverted shift count */ ++ cp.w \exp,32 /* handle shifts >= 32 separately */ ++ brhs 51f ++ ++ /* small (<32) shift amount, both words are part of the shift */ ++ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/ ++ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/ ++ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */ ++ lsr \mant_hi,\mant_hi,\exp /* shift down msw */ ++ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */ ++ rjmp 50f ++ ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++51: ++ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */ ++ or \scratch2,\mant_lo /* also save all bits from lsw */ ++ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */ ++ mov \mant_hi,0 /* clear msw */ ++ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */ ++ ++50: ++ /* result is almost ready to return, except that least significant bit ++ and the part we already shifted out may cause the result to be ++ rounded */ ++ bld \mant_lo,0 /* get bit to be shifted out */ ++ brcc 51f /* if bit was 0, no rounding */ ++ ++ /* msb of part to remove is 1, so rounding depends on rest of bits */ ++ tst \scratch2,\scratch2 /* get shifted out tail */ ++ brne 50f /* if rest > 0, do round */ ++ bld \mant_lo,1 /* we have to look at lsb in result */ ++ brcc 51f /* if lsb is 0, don't round */ ++ ++50: ++ /* subnormal result requires rounding ++ rounding may cause subnormal to become smallest normal number ++ luckily, smallest normal number has exactly the representation ++ we got by rippling a one bit up from mantissa into exponent field. */ ++ sub \mant_lo,-1 ++ subcc \mant_hi,-1 ++ ++51: ++ /* shift and return packed double with correct sign */ ++ rol \sign ++ ror \mant_hi ++ ror \mant_lo ++52: ++.endm ++ ++ ++/* Adjust subnormal single float number with exponent [exp] ++ and mantissa [mant] and round. */ ++.macro adjust_subnormal_sf sf, exp, mant, sign, scratch ++ /* subnormal number */ ++ rsub \exp,\exp, 1 /* shift amount */ ++ cp.w \exp, 25 ++ movhs \mant, 0 ++ brhs 90f /* Return zero */ ++ rsub \scratch, \exp, 32 ++ lsl \scratch, \mant,\scratch/* Check if there are any bits set ++ in the bits discarded in the mantissa */ ++ srne \scratch /* If so set the lsb of the shifted mantissa */ ++ lsr \mant,\mant,\exp /* Shift the mantissa */ ++ or \mant, \scratch /* Round lsb if any bits were shifted out */ ++ /* Rounding : For explaination, see round_sf. */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */ ++ add \mant, \scratch /* Add rounding constant to mantissa */ ++ /* We can't overflow because mantissa is at least shifted one position ++ to the right so the implicit bit is zero. We can however get the implicit ++ bit set after rounding which means that we have the lowest normal number ++ but this is ok since this bit has the same position as the LSB of the ++ exponent */ ++ lsr \sf, \mant, 7 ++ /* Rotate in sign */ ++ lsl \sign, 1 ++ ror \sf ++90: ++.endm ++ ++ ++/* Round the unpacked df number with exponent [exp] and ++ mantissa [mant_hi, mant_lo]. Uses scratch register ++ [scratch] */ ++.macro round_df exp, mant_lo, mant_hi, scratch ++ mov \scratch, 0x3ff /* Rounding constant */ ++ bld \mant_lo,11 /* Check if lsb in the final result is ++ set */ ++ subeq \scratch, -1 /* Adjust rounding constant to 0x400 ++ if rounding 0.5 upwards */ ++ add \mant_lo, \scratch /* Round */ ++ acr \mant_hi /* If overflowing we know that ++ we have all zeros in the bits not ++ scaled out so we can leave them ++ but we must increase the exponent with ++ two since we had an implicit bit ++ which is lost + the extra overflow bit */ ++ subcs \exp, -2 /* Update exponent */ ++.endm ++ ++/* Round single float number stored in [mant] and [exp] */ ++.macro round_sf exp, mant, scratch ++ /* Round: ++ For 0.5 we round to nearest even integer ++ for all other cases we round to nearest integer. ++ This means that if the digit left of the "point" (.) ++ is 1 we can add 0x80 to the mantissa since the ++ corner case 0x180 will round up to 0x200. If the ++ digit left of the "point" is 0 we will have to ++ add 0x7f since this will give 0xff and hence a ++ truncation/rounding downwards for the corner ++ case when the 9 lowest bits are 0x080 */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ /* Check if the mantissa is even or odd */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* Rounding constant should be 0x80 */ ++ add \mant, \scratch ++ subcs \exp, -2 /* Adjust exponent if we overflowed */ ++.endm ++ ++ ++ ++/* Pack a single float number stored in [mant] and [exp] ++ into a single float number in [sf] */ ++.macro pack_sf sf, exp, mant ++ bld \mant,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \sf, \mant, 7 ++ bfins \sf, \exp, 24, 8 ++.endm ++ ++/* Pack exponent [exp] and mantissa [mant_hi, mant_lo] ++ into [df_hi, df_lo]. [df_hi] is shifted ++ one bit up so the sign bit can be shifted into it */ ++ ++.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi ++ bld \mant_hi,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \mant_lo,11 /* shift back lsw */ ++ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */ ++ lsl \mant_hi,1 /* get rid of implicit bit */ ++ lsr \mant_hi,11 /* shift back msw except for one step*/ ++ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */ ++.endm ++ ++/* Normalize single float number stored in [mant] and [exp] ++ using scratch register [scratch] */ ++.macro normalize_sf exp, mant, scratch ++ /* Adjust exponent and mantissa */ ++ clz \scratch, \mant ++ sub \exp, \scratch ++ lsl \mant, \mant, \scratch ++.endm ++ ++/* Normalize the exponent and mantissa pair stored ++ in [mant_hi,mant_lo] and [exp]. Needs two scratch ++ registers [scratch1] and [scratch2]. */ ++.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2 ++ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */ ++ breq 80f /* No need for scaling if no zeros in high bits */ ++ brcs 81f /* Check for all zeros */ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub \scratch2,\scratch1,32 /* shift mantissa */ ++ lsl \mant_hi,\mant_hi,\scratch1 ++ lsr \scratch2,\mant_lo,\scratch2 ++ or \mant_hi,\scratch2 ++ lsl \mant_lo,\mant_lo,\scratch1 ++ sub \exp,\scratch1 /* adjust exponent */ ++ rjmp 80f /* Finished */ ++81: ++ /* shift amount is greater than 32 */ ++ clz \scratch1,\mant_lo /* shift mantissa */ ++ movcs \scratch1, 0 ++ subcc \scratch1,-32 ++ lsl \mant_hi,\mant_lo,\scratch1 ++ mov \mant_lo,0 ++ sub \exp,\scratch1 /* adjust exponent */ ++80: ++.endm ++ ++ ++/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result. ++ The multiplication of [al]x[bl] is discarded. ++ Operands in [ah], [al], [bh], [bl]. ++ Scratch registers in [sh], [sl]. ++ Returns results in registers [rh], [rl].*/ ++.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl ++ mulu.d \sl, \ah, \bl ++ macu.d \sl, \al, \bh ++ mulu.d \rl, \ah, \bh ++ add \rl, \sh ++ acr \rh ++.endm ++ ++ ++ ++#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast) ++ .align 2 ++#if defined(L_avr32_f64_mul) ++ .global __avr32_f64_mul ++ .type __avr32_f64_mul,@function ++__avr32_f64_mul: ++#else ++ .global __avr32_f64_mul_fast ++ .type __avr32_f64_mul_fast,@function ++__avr32_f64_mul_fast: ++#endif ++ or r12, r10, r11 << 1 ++ breq __avr32_f64_mul_op1_zero ++ ++#if defined(L_avr32_f64_mul) ++ pushm r4-r7, lr ++#else ++ stm --sp, r5,r6,r7,lr ++#endif ++ ++#define AVR32_F64_MUL_OP1_INT_BITS 1 ++#define AVR32_F64_MUL_OP2_INT_BITS 10 ++#define AVR32_F64_MUL_RES_INT_BITS 11 ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack op1 to 1.63 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu r7, r11, 20, 11 /* Extract exponent */ ++ ++ mov r5, 1 ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1)) ++ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1) ++ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */ ++ ++ ++22: ++ /* Unpack op2 to 10.54 format */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu r6, r9, 20, 11 /* Extract exponent */ ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */ ++ rol r9 ++ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */ ++ ++23: ++ ++ /* Check if any operands are NaN or INF */ ++ cp r7, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */ ++ cp r6, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */ ++ ++ ++ /* Calculate new exponent in r12*/ ++ add r12, r7, r6 ++ sub r12, (1023-1) ++ ++#if defined(L_avr32_f64_mul) ++ /* Do the multiplication. ++ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */ ++ mulu.d r4, r11, r8 ++ macu.d r4, r10, r9 ++ mulu.d r6, r10, r8 ++ mulu.d r10, r11, r9 ++ add r7, r4 ++ adc r10, r10, r5 ++ acr r11 ++#else ++ /* Do the multiplication using approximate calculation. discard the al x bl ++ calculation. ++ Place result in [r11, r10, r7]. The result is in 11.85 format. */ ++ ++ /* Do the multiplication using approximate calculation. ++ Place result in r11, r10. Use r7, r6 as scratch registers */ ++ mulu.d r6, r11, r8 ++ macu.d r6, r10, r9 ++ mulu.d r10, r11, r9 ++ add r10, r7 ++ acr r11 ++#endif ++ /* Adjust exponent and mantissa */ ++ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */ ++ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1 ++ breq 0f ++ lsl r7, 1 ++ rol r10 ++ rol r11 ++ sub r12, 1 ++0: ++ cp r12, 0 ++ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/ ++ ++ /* Check for Inf. */ ++ cp.w r12, 0x7ff ++ brge __avr32_f64_mul_res_inf ++ ++ /* Insert exponent. */ ++ bfins r11, r12, 20, 11 ++ ++ /* Result was not subnormal. Perform rounding. */ ++ /* For the fast version we discard the sticky bits and always round ++ the halfwaycase up. */ ++24: ++#if defined(L_avr32_f64_mul) ++ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */ ++ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb ++ of r7 represent the halfway bit. */ ++ eorh r7, 0x8000 /* Toggle halfway bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu r7 >> 0, 1 ++#else ++ lsr r7, 31 ++#endif ++ add r10, r7 ++ acr r11 ++ ++ /* Insert sign bit*/ ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Return result in [r11,r10] */ ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++ ++__avr32_f64_mul_op1_subnormal: ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r10 /* Count leading zeros in lsw */ ++ clz r6, r11 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS ++ movcs r6, r12 ++ subcc r6, AVR32_F64_MUL_OP1_INT_BITS ++ cp.w r6, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r6, 32 /* shift mantissa */ ++ lsl r11, r11, r6 ++ lsr r12, r10, r12 ++ or r11, r12 ++ lsl r10, r10, r6 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r11, r10, r6 ++ breq __avr32_f64_mul_res_zero ++ mov r10, 0 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b ++ ++ ++__avr32_f64_mul_op2_subnormal: ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r8 /* Count leading zeros in lsw */ ++ clz r5, r9 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS ++ movcs r5, r12 ++ subcc r5, AVR32_F64_MUL_OP2_INT_BITS ++ cp.w r5, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r5, 32 /* shift mantissa */ ++ lsl r9, r9, r5 ++ lsr r12, r8, r12 ++ or r9, r12 ++ lsl r8, r8, r5 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r9, r8, r5 ++ breq __avr32_f64_mul_res_zero ++ mov r8, 0 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b ++ ++ ++__avr32_f64_mul_op_nan_or_inf: ++ /* Same code for OP1 and OP2*/ ++ /* Since we are here, at least one of the OPs were NaN or INF*/ ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ /* Merge the regs in each operand to check for zero*/ ++ or r11, r10 /* op1 */ ++ or r9, r8 /* op2 */ ++ /* Check if op1 is NaN or INF */ ++ cp r7, 0x7ff ++ brne __avr32_f64_mul_op1_not_naninf ++ /* op1 was NaN or INF.*/ ++ cp r11, 0 ++ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/ ++ /*op1 was INF. check if op2 is NaN or INF*/ ++ cp r6, 0x7ff ++ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/ ++ /* op1 is INF, op2 is either NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was also INF*/ ++ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/ ++ ++__avr32_f64_mul_op1_not_naninf: ++ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/ ++ rjmp __avr32_f64_mul_res_nan /*else return NaN*/ ++ ++__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */ ++#if defined(L_avr32_f64_mul) ++ /* Check how much we must scale down the mantissa. */ ++ neg r12 ++ sub r12, -1 /* We do no longer have an implicit bit. */ ++ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r12, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r12, 32 ++ or r6, r7 ++ lsr r7, r7, r12 ++ lsl r9, r10, r8 ++ or r7, r9 ++ lsr r10, r10, r12 ++ lsl r9, r11, r8 ++ or r10, r9 ++ lsr r11, r11, r12 ++ rjmp 24b ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r12, 32 ++ moveq r9, 0 ++ breq 0f ++ lsl r9, r11, r8 ++0: ++ or r6, r7 ++ or r6, r6, r10 << 1 ++ lsr r10, r10, r12 ++ or r7, r9, r10 ++ lsr r10, r11, r12 ++ mov r11, 0 ++ rjmp 24b ++#else ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_zero:/* Multiply result is zero. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_nan: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, -1 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_inf: /* Return INF. */ ++ mov r11, 0xfff00000 ++ bld lr, 31 ++ bst r11, 31 ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_op1_zero: ++ /* Get sign */ ++ eor r11, r11, r9 ++ andh r11, 0x8000, COH ++ /* Check if op2 is Inf or NaN. */ ++ bfextu r12, r9, 20, 11 ++ cp.w r12, 0x7ff ++ retne r12 /* Return 0.0 */ ++ /* Return NaN */ ++ mov r10, -1 ++ mov r11, -1 ++ ret r12 ++ ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast) ++ .align 2 ++ ++__avr32_f64_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_sub_fast ++ .type __avr32_f64_sub_fast,@function ++__avr32_f64_sub_fast: ++#else ++ .global __avr32_f64_sub ++ .type __avr32_f64_sub,@function ++__avr32_f64_sub: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use addition. */ ++ brmi __avr32_f64_add_from_sub ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the largest number in [r11, r10] ++ and the smallest number in [r9, r8] */ ++ cp r10, r8 ++ cpc r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered*/ ++ /* Operands were not correctly ordered, swap them*/ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++ eorh r12, 0x8000 /* Invert sign in r12*/ ++1: ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>21 ++ lsl r10, 11 ++ sbr r11, 31 /* Insert implicit bit */ ++ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ sbr r9, 31 /* Insert implicit bit */ ++ ++ ++__avr32_f64_sub_opL_subnormal_done: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_sub_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_sub_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ ++__avr32_f64_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r10, r8 ++ sbc r11, r11, r9 ++ ++ /* Normalize the exponent and mantissa pair stored in ++ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */ ++ clz r6,r11 /* Check if we have zeros in high bits */ ++ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */ ++ brcs __avr32_f64_sub_longnormalize ++ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub lr,r6,32 /* shift mantissa */ ++ lsl r11,r11,r6 ++ lsr lr,r10,lr ++ or r11,lr ++ lsl r10,r10,r6 ++ ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++__avr32_f64_sub_longnormalize_done: ++ ++#if defined(L_avr32_f64_addsub) ++ /* Insert the bits we will remove from the mantissa r9[31:21] */ ++ lsl r9, r10, (32 - 11) ++#else ++ /* Keep the last bit shifted out. */ ++ bfextu r9, r10, 10, 1 ++#endif ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert mantissa */ ++ lsr r10, 11 ++ or r10, r10, r11<<21 ++ lsr r11, 11 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_sub_round: ++#if defined(L_avr32_f64_addsub) ++ mov_imm r7, 0x80000000 ++ bld r10, 0 ++ subne r7, -1 ++ ++ cp.w r9, r7 ++ srhs r9 ++#endif ++ add r10, r9 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++__avr32_f64_sub_opL_subnormal: ++ /* Extract the of mantissa */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ ++ /* Set exponent to 1 if we do not have a zero. */ ++ or lr, r9, r8 ++ movne r6,1 ++ ++ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/ ++ rsub lr, r7, 0 ++ moveq r7,1 ++ bst r11, 31 ++ ++ /* Check if op1 is zero, if so set exponent to 0. */ ++ or lr, r11, r10 ++ moveq r7,0 ++ ++ rjmp __avr32_f64_sub_opL_subnormal_done ++ ++__avr32_f64_sub_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 31 ++ or lr, r11, r10 ++ brne __avr32_f64_sub_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_sub_return_nan ++ /* Return infinity with correct sign. */ ++ or r11, r12, r7 << 20 ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_sub_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_sub_subnormal_result: ++#if defined(L_avr32_f64_addsub) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r7, 32 ++ lsl r9, r10, r8 ++ srne r6 ++ lsr r10, r10, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ lsl r9, r11, r8 ++ or r10, r10, r9 ++ lsr r11, r10, r7 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r7, 64 ++ lsl r9, r11, r8 ++ or r9, r10 ++ srne r6 ++ lsr r10, r11, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ mov r11, 0 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++#else ++ /* Just flush subnormals to zero. */ ++ mov r10, 0 ++ mov r11, 0 ++#endif ++ ldm sp++, r5, r6, r7, pc ++ ++__avr32_f64_sub_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ ++#if defined(L_avr32_f64_addsub) ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */ ++ breq 0f ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* Move msw to lsw and shift. */ ++ mov r9,0 /* clear msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ rjmp __avr32_f64_sub_shift_done ++ ++__avr32_f64_sub_longnormalize: ++ /* shift amount is greater than 32 */ ++ clz r6,r10 /* shift mantissa */ ++ /* If the resulting mantissa is zero the result is ++ zero so force exponent to zero. */ ++ movcs r7, 0 ++ movcs r6, 0 ++ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction ++ always is +0.0 */ ++ subcc r6,-32 ++ lsl r11,r10,r6 ++ mov r10,0 ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++ rjmp __avr32_f64_sub_longnormalize_done ++ ++ ++ ++ .align 2 ++__avr32_f64_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_add_fast ++ .type __avr32_f64_add_fast,@function ++__avr32_f64_add_fast: ++#else ++ .global __avr32_f64_add ++ .type __avr32_f64_add,@function ++__avr32_f64_add: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f64_sub_from_add ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the number with the largest exponent in [r11, r10] ++ and the number with the smallest exponent in [r9, r8] */ ++ cp r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered */ ++ /* Operands were not correctly ordered, swap them */ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++1: ++ mov lr, 0 /* Set sticky bits to zero */ ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu R7, R11, 20, 11 /* Extract exponent */ ++ bfextu r11, r11, 0, 20 /* Extract mantissa */ ++ sbr r11, 20 /* Insert implicit bit */ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu R6, R9, 20, 11 /* Extract exponent */ ++ breq __avr32_f64_add_op2_subnormal ++ bfextu r9, r9, 0, 20 /* Extract mantissa */ ++ sbr r9, 20 /* Insert implicit bit */ ++ ++2: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_add_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_add_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++ ++__avr32_f64_add_shift_done: ++ /* Now add the mantissas. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Check if we overflowed. */ ++ bld r11, 21 ++ breq __avr32_f64_add_res_of: ++ ++__avr32_f64_add_res_of_done: ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_add_round: ++#if defined(L_avr32_f64_addsub) ++ bfextu r12, r10, 0, 1 /* Extract parity bit.*/ ++ or lr, r12 /* or it together with the sticky bits. */ ++ eorh lr, 0x8000 /* Toggle round bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu lr >> 0, 1 ++#else ++ lsr lr, 31 ++#endif ++ add r10, lr ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++__avr32_f64_add_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 20 ++ or lr, r11, r10 ++ brne __avr32_f64_add_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_add_opL_nan_or_inf ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_add_opL_nan_or_inf: ++ cbr r9, 20 ++ or lr, r9, r8 ++ brne __avr32_f64_add_return_nan ++ mov r10, 0 /* Generate Inf in r11, r10 */ ++ mov_imm r11, 0x7ff00000 ++ or r11, r12 /* Put sign bit back */ ++ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */ ++__avr32_f64_add_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_add_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ /* If shift amount is 32 there are no bits from the msw that are lost. */ ++ moveq lr, r8 ++ breq 0f ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w r8, 0 ++ srne r8 ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/ ++ mov r9,0 /* clear msw */ ++ rjmp __avr32_f64_add_shift_done ++ ++__avr32_f64_add_res_of: ++ /* We overflowed. Scale down mantissa by shifting right one position. */ ++ or lr, lr, lr << 1 /* Remember stickybits*/ ++ lsr r11, 1 ++ ror r10 ++ ror lr ++ sub r7, -1 /* Increment exponent */ ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r7, 0x7ff ++ moveq r10, 0 ++ moveq r11, 0 ++ moveq lr, 0 ++ rjmp __avr32_f64_add_res_of_done ++ ++__avr32_f64_add_op2_subnormal: ++ /* Set epxponent to 1 */ ++ mov r6, 1 ++ ++ /* Check if op2 is also subnormal. */ ++ cp.w r7, 0 ++ brne 2b ++ ++ cbr r11, 20 ++ /* Both operands are subnormal. Just addd the mantissas ++ and the exponent will automatically be set to 1 if ++ we overflow into a normal number. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Add sign bit */ ++ or r11, r12 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++#endif ++ ++#ifdef L_avr32_f64_to_u32 ++ /* This goes into L_fixdfsi */ ++#endif ++ ++ ++#ifdef L_avr32_f64_to_s32 ++ .global __avr32_f64_to_u32 ++ .type __avr32_f64_to_u32,@function ++__avr32_f64_to_u32: ++ cp.w r11, 0 ++ retmi 0 /* Negative returns 0 */ ++ ++ /* Fallthrough to df to signed si conversion */ ++ .global __avr32_f64_to_s32 ++ .type __avr32_f64_to_s32,@function ++__avr32_f64_to_s32: ++ lsl r12,r11,1 ++ lsr r12,21 /* extract exponent*/ ++ sub r12,1023 /* convert to unbiased exponent.*/ ++ retlo 0 /* too small exponent implies zero. */ ++ ++1: ++ rsub r12,r12,31 /* shift count = 31 - exponent */ ++ mov r9,r11 /* save sign for later...*/ ++ lsl r11,11 /* remove exponent and sign*/ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double */ ++ lsr r11,r11,r12 /* shift down mantissa to final place */ ++ lsl r9,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ neg r11 /* if negative float, negate result */ ++ ret r11 ++ ++#endif /* L_fixdfsi*/ ++ ++#ifdef L_avr32_f64_to_u64 ++ /* Actual function is in L_fixdfdi */ ++#endif ++ ++#ifdef L_avr32_f64_to_s64 ++ .global __avr32_f64_to_u64 ++ .type __avr32_f64_to_u64,@function ++__avr32_f64_to_u64: ++ cp.w r11,0 ++ /* Negative numbers return zero */ ++ movmi r10, 0 ++ movmi r11, 0 ++ retmi r11 ++ ++ ++ ++ /* Fallthrough */ ++ .global __avr32_f64_to_s64 ++ .type __avr32_f64_to_s64,@function ++__avr32_f64_to_s64: ++ lsl r9,r11,1 ++ lsr r9,21 /* get exponent*/ ++ sub r9,1023 /* convert to correct range*/ ++ /* Return zero if exponent to small */ ++ movlo r10, 0 ++ movlo r11, 0 ++ retlo r11 ++ ++ mov r8,r11 /* save sign for later...*/ ++1: ++ lsl r11,11 /* remove exponent */ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/ ++ lsl r10,11 /* align lsw correctly as well */ ++ rsub r9,r9,63 /* shift count = 63 - exponent */ ++ breq 1f ++ ++ cp.w r9,32 /* is shift count more than one reg? */ ++ brhs 0f ++ ++ mov r12,r11 /* save msw */ ++ lsr r10,r10,r9 /* small shift count, shift down lsw */ ++ lsr r11,r11,r9 /* small shift count, shift down msw */ ++ rsub r9,r9,32 /* get 32-size of shifted out tail */ ++ lsl r12,r12,r9 /* align part to move from msw to lsw */ ++ or r10,r12 /* combine to get new lsw */ ++ rjmp 1f ++ ++0: ++ lsr r10,r11,r9 /* large shift count,only lsw get bits ++ note that shift count is modulo 32*/ ++ mov r11,0 /* msw will be 0 */ ++ ++1: ++ lsl r8,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ ++ neg r11 /* if negative float, negate result */ ++ neg r10 ++ scr r11 ++ ret r11 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f64 ++ /* Code located in L_floatsidf */ ++#endif ++ ++#ifdef L_avr32_s32_to_f64 ++ .global __avr32_u32_to_f64 ++ .type __avr32_u32_to_f64,@function ++__avr32_u32_to_f64: ++ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */ ++ mov r12, 0 /* always positive */ ++ rjmp 0f /* Jump to common code for floatsidf */ ++ ++ .global __avr32_s32_to_f64 ++ .type __avr32_s32_to_f64,@function ++__avr32_s32_to_f64: ++ mov r11, r12 /* Keep original value in r12 for sign */ ++ abs r11 /* Absolute value if r12 */ ++0: ++ mov r10,0 /* let remaining bits be zero */ ++ reteq r11 /* zero long will return zero float */ ++ ++ pushm lr ++ mov r9,31+1023 /* set exponent */ ++ ++ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */ ++ ++ /* Check if a subnormal result was created */ ++ cp.w r9, 0 ++ brgt 0f ++ ++ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */ ++ popm pc ++0: ++ ++ /* Round result */ ++ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/ ++ cp.w r9,0x7ff ++ brlt 0f ++ /*Return infinity */ ++ mov r10, 0 ++ mov_imm r11, 0xffe00000 ++ rjmp __floatsidf_return_op1 ++ ++0: ++ ++ /* Pack */ ++ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/ ++__floatsidf_return_op1: ++ lsl r12,1 /* shift in sign bit */ ++ ror r11 ++ ++ popm pc ++#endif ++ ++ ++#ifdef L_avr32_f32_cmp_eq ++ .global __avr32_f32_cmp_eq ++ .type __avr32_f32_cmp_eq,@function ++__avr32_f32_cmp_eq: ++ cp.w r12, r11 ++ breq 0f ++ /* If not equal check for +/-0 */ ++ /* Or together the two values and shift out the sign bit. ++ If the result is zero, then the two values are both zero. */ ++ or r12, r11 ++ lsl r12, 1 ++ reteq 1 ++ ret 0 ++0: ++ /* Numbers were equal. Check for NaN or Inf */ ++ mov_imm r11, 0xff000000 ++ lsl r12, 1 ++ cp.w r12, r11 ++ retls 1 /* 0 if NaN, 1 otherwise */ ++ ret 0 ++#endif ++ ++#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt) ++#ifdef L_avr32_f32_cmp_ge ++ .global __avr32_f32_cmp_ge ++ .type __avr32_f32_cmp_ge,@function ++__avr32_f32_cmp_ge: ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ .global __avr32_f32_cmp_lt ++ .type __avr32_f32_cmp_lt,@function ++__avr32_f32_cmp_lt: ++#endif ++ lsl r10, r12, 1 /* Remove sign bits */ ++ lsl r9, r11, 1 ++ subfeq r10, 0 ++#ifdef L_avr32_f32_cmp_ge ++ reteq 1 /* Both number are zero. Return true. */ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reteq 0 /* Both number are zero. Return false. */ ++#endif ++ mov_imm r8, 0xff000000 ++ cp.w r10, r8 ++ rethi 0 /* Op0 is NaN */ ++ cp.w r9, r8 ++ rethi 0 /* Op1 is Nan */ ++ ++ eor r8, r11, r12 ++ bld r12, 31 ++#ifdef L_avr32_f32_cmp_ge ++ srcc r8 /* Set result to true if op0 is positive*/ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ srcs r8 /* Set result to true if op0 is negative*/ ++#endif ++ retmi r8 /* Return if signs are different */ ++ brcs 0f /* Both signs negative? */ ++ ++ /* Both signs positive */ ++ cp.w r12, r11 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++0: ++ /* Both signs negative */ ++ cp.w r11, r12 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++#endif ++ ++ ++#ifdef L_avr32_f64_cmp_eq ++ .global __avr32_f64_cmp_eq ++ .type __avr32_f64_cmp_eq,@function ++__avr32_f64_cmp_eq: ++ cp.w r10,r8 ++ cpc r11,r9 ++ breq 0f ++ ++ /* Args were not equal*/ ++ /* Both args could be zero with different sign bits */ ++ lsl r11,1 /* get rid of sign bits */ ++ lsl r9,1 ++ or r11,r10 /* Check if all bits are zero */ ++ or r11,r9 ++ or r11,r8 ++ reteq 1 /* If all zeros the arguments are equal ++ so return 1 else return 0 */ ++ ret 0 ++0: ++ /* check for NaN */ ++ lsl r11,1 ++ mov_imm r12, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,r12 /* check if nan or inf */ ++ retls 1 /* If Arg is NaN return 0 else 1*/ ++ ret 0 /* Return */ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt) ++ ++#ifdef L_avr32_f64_cmp_ge ++ .global __avr32_f64_cmp_ge ++ .type __avr32_f64_cmp_ge,@function ++__avr32_f64_cmp_ge: ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ .global __avr32_f64_cmp_lt ++ .type __avr32_f64_cmp_lt,@function ++__avr32_f64_cmp_lt: ++#endif ++ ++ /* compare magnitude of op1 and op2 */ ++ st.w --sp, lr ++ st.w --sp, r7 ++ lsl r11,1 /* Remove sign bit of op1 */ ++ srcs r12 /* Sign op1 to lsb of r12*/ ++ lsl r9,1 /* Remove sign bit of op2 */ ++ srcs r7 ++ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/ ++ ++ ++ /* Check for Nan */ ++ mov_imm lr, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,lr ++ brhi 0f /* We have NaN */ ++ cp.w r8,0 ++ cpc r9,lr ++ brhi 0f /* We have NaN */ ++ ++ cp.w r11, 0 ++ subfeq r10, 0 ++ breq 3f /* op1 zero */ ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++ ++ cp.w r12,3 /* both operands negative ?*/ ++ breq 1f ++ ++ cp.w r12,1 /* both operands positive? */ ++ brlo 2f ++ ++ /* Different signs. If sign of op1 is negative the difference ++ between op1 and op2 will always be negative, and if op1 is ++ positive the difference will always be positive */ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 ++ retne 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 ++ retne 1 ++#endif ++ ++2: ++ /* Both operands positive. Just compute the difference */ ++ cp.w r10,r8 ++ cpc r11,r9 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++1: ++ /* Both operands negative. Compute the difference with operands switched */ ++ cp r8,r10 ++ cpc r9,r11 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++0: ++ ld.w r7, sp++ ++ popm pc, r12=0 ++#endif ++ ++3: ++ cp.w r7, 1 /* Check sign bit from r9 */ ++#ifdef L_avr32_f64_cmp_ge ++ sreq r12 /* If op2 is negative then op1 >= op2. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ srne r12 /* If op2 is positve then op1 <= op2. */ ++#endif ++ cp.w r9, 0 ++ subfeq r8, 0 ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 /* Both operands are zero. Return true. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 /* Both operands are zero. Return false. */ ++#endif ++ ret r12 ++ ++ ++#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f64_div_fast) ++ .global __avr32_f64_div_fast ++ .type __avr32_f64_div_fast,@function ++__avr32_f64_div_fast: ++#else ++ .global __avr32_f64_div ++ .type __avr32_f64_div,@function ++__avr32_f64_div: ++#endif ++ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ ++ /* Unpack op1 to 2.62 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ ++ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>23 ++ lsl r10, 9 ++ sbr r11, 29 /* Insert implicit bit */ ++ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r7, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 11f /*If number is subnormal, normalize it */ ++22: ++ cp r7, 0x7ff ++ brge 2f /* Check op1 for NaN or Inf */ ++ ++ /* Unpack op2 to 2.62 format*/ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ ++ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>23 ++ lsl r8, 9 ++ sbr r9, 29 /* Insert implicit bit */ ++ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r6, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 13f /*If number is subnormal, normalize it */ ++23: ++ cp r6, 0x7ff ++ brge 3f /* Check op2 for NaN or Inf */ ++ ++ /* Calculate new exponent */ ++ sub r7, r6 ++ sub r7,-1023 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.62 format */ ++ /* TWO: r12 */ ++ /* d = op2 = divisor (2.62 format): r9,r8 */ ++ /* Multiply result : r5, r4 */ ++ /* Initial guess : r3, r2 */ ++ /* New approximations : r3, r2 */ ++ /* op1 = Dividend (2.62 format) : r11, r10 */ ++ ++ mov_imm r12, 0x80000000 ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ /* r2 is also part of the reg pair forming initial guess, but it*/ ++ /* is kept uninitialized to save one cycle since it has so low significance*/ ++ ++ lsr r3, r12, 1 ++ bfextu r4, r9, 27, 2 ++ com r4 ++ bfins r3, r4, 28, 2 ++ ++ /* First approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Second approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Third approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Fourth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Fifth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Multiply with dividend to get quotient */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ ++ ++ /* To increase speed, this result is not corrected before final rounding.*/ ++ /* This may give a difference to IEEE compliant code of 1 ULP.*/ ++ ++ ++ /* Adjust exponent and mantissa */ ++ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/ ++ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r3, 31-3 ++ breq 0f ++ lsl r2, 1 ++ rol r3 ++ sub r7, 1 ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 5.59 format. */ ++ lsr r10, 3 ++ or r10, r10, r11 << 29 ++ lsr r11, 3 ++ rjmp 1f ++#endif ++0: ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 6.58 format. */ ++ lsr r10, 4 ++ or r10, r10, r11 << 28 ++ lsr r11, 4 ++1: ++#endif ++ cp r7, 0 ++ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f64_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ ++ /* Now do the multiplication. The quotient has the format 4.60 ++ while the divisor has the format 2.62 which gives a result ++ of 6.58 */ ++ mulu.d r0, r3, r8 ++ macu.d r0, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r0 ++ adc r8, r8, r1 ++ acr r9 ++ ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, 0 ++ cpc r5 ++__avr32_f64_div_round_subnormal: ++ cpc r8, r10 ++ cpc r9, r11 ++ srlo r6 /* Remainder positive: we need to round up.*/ ++ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r6, r2, 7, 1 /* Get guard bit */ ++#endif ++ /* Final packing, scale down mantissa. */ ++ lsr r10, r2, 8 ++ or r10, r10, r3<<24 ++ lsr r11, r3, 8 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Final rounding */ ++ add r10, r6 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ andh r11, 0x000f /* Extract mantissa */ ++ or r11, r10 ++ brne 16f /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ cbr r6, 11 /* Clear sign bit */ ++ cp r6, 0x7ff ++ brne 17f /* Inf/number gives inf, return inf */ ++ rjmp 16f /* The rest gives NaN*/ ++ ++3: ++ /* Op1 is a valid number. Op 2 is NaN or inf */ ++ andh r9, 0x000f /* Extract mantissa */ ++ or r9, r8 ++ brne 16f /* Return NaN if op2 is NaN */ ++ rjmp 15f /* Op2 was inf, return zero*/ ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r11, 3 ++ or r11, r11, r10 >> 29 ++ lsl r10, 3 ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r10, 2 ++ or r10, r10, r11 << 30 ++ lsr r11, 2 ++ rjmp 22b ++ ++ ++13: /* Op2 was denormal. Fix it */ ++ lsl r9, 3 ++ or r9, r9, r8 >> 29 ++ lsl r8, 3 ++ /* Check if op2 is zero. */ ++ or r4, r9, r8 ++ breq 17f /* Divisor is zero -> return Inf */ ++ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r8, 2 ++ or r8, r8, r9 << 30 ++ lsr r9, 2 ++ rjmp 23b ++ ++ ++__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */ ++#if defined(L_avr32_f64_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ /* Scale down quotient */ ++ rsub r6, r7, 32 ++ lsr r2, r2, r7 ++ lsl r12, r3, r6 ++ or r2, r12 ++ lsr r3, r3, r7 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r1, r10, r6 ++ lsr r10, r10, r7 ++ lsl r12, r11, r6 ++ or r10, r12 ++ lsr r11, r11, r7 ++ mov r0, 0 ++ rjmp 1f ++0: ++ /* Shift amount >=32 */ ++ rsub r6, r7, 32 ++ moveq r0, 0 ++ moveq r12, 0 ++ breq 0f ++ lsl r0, r10, r6 ++ lsl r12, r11, r6 ++0: ++ lsr r2, r3, r7 ++ mov r3, 0 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsr r1, r10, r7 ++ or r1, r12 ++ lsr r10, r11, r7 ++ mov r11, 0 ++1: ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ /* Now do the multiplication. */ ++ mulu.d r6, r3, r8 ++ macu.d r6, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r6 ++ adc r8, r8, r7 ++ acr r9 ++ ++ /* Set exponent to 0 */ ++ mov r7, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, r0 ++ cpc r5, r1 ++ /* Now the rest of the rounding is the same as for normals. */ ++ rjmp __avr32_f64_div_round_subnormal ++ ++#endif ++15: ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++16: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++17: ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ /* Return INF. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ orh r11, 0x7ff0 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++__avr32_f64_div_op1_zero: ++ or r5, r8, r9 << 1 ++ breq 16b /* 0.0/0.0 -> NaN */ ++ bfextu r4, r9, 20, 11 ++ cp r4, 0x7ff ++ brne 15b /* Return zero */ ++ /* Check if divisor is Inf or NaN */ ++ or r5, r8, r9 << 12 ++ breq 15b /* Divisor is inf -> return zero */ ++ rjmp 16b /* Return NaN */ ++ ++ ++ ++ ++#endif ++ ++#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast) ++ ++ .align 2 ++__avr32_f32_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_sub_fast ++ .type __avr32_f32_sub_fast,@function ++__avr32_f32_sub_fast: ++#else ++ .global __avr32_f32_sub ++ .type __avr32_f32_sub,@function ++__avr32_f32_sub: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_add_from_sub ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/ ++ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/ ++ andh r12, 0x8000, COH /*Mask all but MSB*/ ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_sub_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ sub r12, r10, r9 ++ ++ breq __avr32_f32_sub_shift_done ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r12 >> 0, 5 ++ ++ /* Put the remaining bits into r9.*/ ++ rsub r9, r12, 32 ++ lsl r9, r11, r9 ++ ++ /* If the remaining bits are non-zero then we must subtract one ++ more from opL. */ ++ subne r8, 1 ++ srne r9 /* LSB of r9 represents sticky bits. */ ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r12 ++ ++ ++__avr32_f32_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ ld.w r12, sp++ ++ ++ /* Normalize resulting mantissa. */ ++ clz r11, r8 ++ ++ retcs 0 ++ lsl r8, r8, r11 ++ sub r10, r11 ++ brle __avr32_f32_sub_subnormal_result ++ ++ /* Insert the bits we will remove from the mantissa into r9[31:24] */ ++ or r9, r9, r8 << 24 ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ /* Normalize resulting mantissa. */ ++ clz r9, r8 ++ retcs 0 ++ lsl r8, r8, r9 ++ sub r10, r9 ++ brle __avr32_f32_sub_subnormal_result ++#endif ++ ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++__avr32_f32_sub_round: ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r9, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++ ++__avr32_f32_sub_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ ++ cbr r8, 31 ++ /* If op1 is not zero set exponent to 1. */ ++ movne r10,1 ++ ++ rjmp 0b ++ ++__avr32_f32_sub_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ ret -1 /* op2 Inf or NaN, return NaN */ ++ ++__avr32_f32_sub_subnormal_result: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r10, r10, 9 ++ rsub r11, r10, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r10, r8, r10 ++ /* Add sign bit. */ ++ or r12, r10 ++ ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r8, r8, r11 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Add all the remainder bits used for rounding into r9 */ ++ or r9, r8 ++#else ++ lsr r8, 24 ++#endif ++ rjmp __avr32_f32_sub_round ++ ++ ++ .align 2 ++ ++__avr32_f32_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_add_fast ++ .type __avr32_f32_add_fast,@function ++__avr32_f32_add_fast: ++#else ++ .global __avr32_f32_add ++ .type __avr32_f32_add,@function ++__avr32_f32_add: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_sub_from_add ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_add_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r12, r11, r9 ++ ++ /* Put the remainding bits into r11[23:..].*/ ++ rsub r9, r9, (32-8) ++ lsl r11, r11, r9 ++ /* Insert the bits we will remove from the mantissa into r11[31:24] */ ++ bfins r11, r12, 24, 8 ++ ++ /* Now add the mantissas. */ ++ add r8, r12 ++ ++ ld.w r12, sp++ ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now add the mantissas. */ ++ add r8, r11 ++ ++#endif ++ /* Check if we overflowed. */ ++ brcs __avr32_f32_add_res_of ++1: ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r11, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++__avr32_f32_add_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ /* Both operands subnormal, just add the mantissas and ++ pack. If the addition of the subnormal numbers results ++ in a normal number then the exponent will automatically ++ be set to 1 by the addition. */ ++ cbr r8, 31 ++ add r11, r8 ++ or r12, r12, r11 >> 8 ++ ret r12 ++ ++__avr32_f32_add_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return op1 */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_add_res_of: ++ /* We overflowed. Increase exponent and shift mantissa.*/ ++ lsr r8, 1 ++ sub r10, -1 ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r10, 255 ++ moveq r8, 0 ++ moveq r11, 0 ++ rjmp 1b ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f32_div_fast) ++ .global __avr32_f32_div_fast ++ .type __avr32_f32_div_fast,@function ++__avr32_f32_div_fast: ++#else ++ .global __avr32_f32_div ++ .type __avr32_f32_div,@function ++__avr32_f32_div: ++#endif ++ ++ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack */ ++ lsl r12,1 ++ lsl r11,1 ++ breq 4f /* Check op2 for zero */ ++ ++ tst r12, r12 ++ moveq r9, 0 ++ breq 12f ++ ++ /* Unpack op1*/ ++ /* exp: r9 */ ++ /* sf: r12 */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2f /* Check op1 for NaN or Inf */ ++ lsl r12, 7 ++ sbr r12, 31 /*Implicit bit*/ ++12: ++ ++ /* Unpack op2*/ ++ /* exp: r10 */ ++ /* sf: r11 */ ++ lsr r10, r11, 24 ++ breq 13f /*If number is subnormal*/ ++ cp r10, 0xff ++ brhs 3f /* Check op2 for NaN or Inf */ ++ lsl r11,7 ++ sbr r11, 31 /*Implicit bit*/ ++ ++ cp.w r9, 0 ++ subfeq r12, 0 ++ reteq 0 /* op1 is zero and op2 is not zero */ ++ /* or NaN so return zero */ ++ ++14: ++ ++ /* For UC3, store with predecrement is faster than stm */ ++ st.w --sp, r5 ++ st.d --sp, r6 ++ ++ /* Calculate new exponent */ ++ sub r9, r10 ++ sub r9,-127 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.30 format */ ++ /* TWO: r10 */ ++ /* d: r5 */ ++ /* Multiply result : r6, r7 */ ++ /* Initial guess : r11 */ ++ /* New approximations : r11 */ ++ /* Dividend : r12 */ ++ ++ /* Load TWO */ ++ mov_imm r10, 0x80000000 ++ ++ lsr r12, 2 /* Get significand of Op1 in 2.30 format */ ++ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */ ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ ++ lsr r11, r10, 1 ++ bfextu r6, r5, 27, 2 ++ com r6 ++ bfins r11, r6, 28, 2 ++ ++ /* First approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Second approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Third approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Fourth approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ ++ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */ ++ mulu.d r6, r11, r12 ++ ++ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */ ++ /* Note that 1.31 format is already used by the exponent in r9, since */ ++ /* a bias of 127 was added to the result exponent, even though the implicit */ ++ /* bit was inserted. This gives the exponent an additional bias of 1, which */ ++ /* supports 1.31 format. */ ++ //lsl r10, r7, 3 ++ ++ /* Adjust exponent and mantissa in case the result is of format ++ 0000.1xxx to 0001.xxx*/ ++#if defined(L_avr32_f32_div) ++ lsr r12, 4 /* Scale dividend to 6.26 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++ bld r7, 31-3 ++ breq 0f ++ lsl r7, 1 ++ sub r9, 1 ++#if defined(L_avr32_f32_div) ++ lsl r12, 1 /* Scale dividend to 5.27 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++0: ++ cp r9, 0 ++ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f32_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[r12] - divisor[r5]*quotient[r7] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, 0 ++__avr32_f32_div_round_subnormal: ++ cpc r11, r12 ++ srlo r11 /* Remainder positive: we need to round up.*/ ++ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r11, r7, 4, 1 /* Get guard bit */ ++#endif ++ ++ /* Pack final result*/ ++ lsr r12, r7, 5 ++ bfins r12, r9, 23, 8 ++ /* For UC3, load with postincrement is faster than ldm */ ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ bld r8, 31 ++ bst r12, 31 ++ /* Rounding add. */ ++ add r12, r11 ++ ret r12 ++ ++__divsf_return_op1: ++ lsl r8, 1 ++ ror r12 ++ ret r12 ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ retne -1 /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ mov_imm r9, 0xff000000 ++ cp r11, r9 ++ brlo __divsf_return_op1 /* inf/number gives inf */ ++ ret -1 /* The rest gives NaN*/ ++3: ++ /* Op2 is NaN or inf */ ++ reteq 0 /* Return zero if number/inf*/ ++ ret -1 /* Return NaN*/ ++4: ++ /* Op1 is zero ? */ ++ tst r12,r12 ++ reteq -1 /* 0.0/0.0 is NaN */ ++ /* Op1 is Nan? */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2b /* Check op1 for NaN or Inf */ ++ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/ ++ mov_imm r12, 0xff000000 ++ rjmp __divsf_return_op1 ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r12,7 ++ clz r9,r12 ++ lsl r12,r12,r9 ++ rsub r9,r9,1 ++ rjmp 12b ++ ++13: /* Op2 was denormal. Fix it. */ ++ lsl r11,7 ++ clz r10,r11 ++ lsl r11,r11,r10 ++ rsub r10,r10,1 ++ rjmp 14b ++ ++ ++__avr32_f32_div_res_subnormal: /* Divide result was subnormal */ ++#if defined(L_avr32_f32_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r9 ++ sub r9, -1 /* We do no longer have an implicit bit. */ ++ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */ ++ /* Scale down quotient */ ++ rsub r10, r9, 32 ++ lsr r7, r7, r9 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */ ++ lsr r12, r12, r9 ++ ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Set exponent to 0 */ ++ mov r9, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, r6 ++ rjmp __avr32_f32_div_round_subnormal ++ ++#else ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ /*Flush to zero*/ ++ ret 0 ++#endif ++#endif ++ ++#ifdef L_avr32_f32_mul ++ .global __avr32_f32_mul ++ .type __avr32_f32_mul,@function ++ ++ ++__avr32_f32_mul: ++ mov r8, r12 ++ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ andh r12, 0x8000, COH ++ ++ /* arrange operands so that that op1 >= op2 */ ++ cbr r8, 31 ++ breq __avr32_f32_mul_op1_zero ++ cbr r11, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_mul_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_mul_op2_subnormal ++0: ++ /* Calculate new exponent */ ++ add r9,r10 ++ ++ /* Do the multiplication */ ++ mulu.d r10,r8,r11 ++ ++ /* We might need to scale up by two if the MSB of the result is ++ zero. */ ++ lsl r8, r11, 1 ++ movcc r11, r8 ++ subcc r9, 1 ++ ++ /* Put the shifted out bits of the mantissa into r10 */ ++ lsr r10, 8 ++ bfins r10, r11, 24, 8 ++ ++ sub r9,(127-1) /* remove extra exponent bias */ ++ brle __avr32_f32_mul_res_subnormal ++ ++ /* Check for Inf. */ ++ cp.w r9, 0xff ++ brge 1f ++ ++ /* Pack result. */ ++ or r12, r12, r11 >> 8 ++ bfins r12, r9, 23, 8 ++ ++ /* Round */ ++__avr32_f32_mul_round: ++ mov_imm r8, 0x80000000 ++ bld r12, 0 ++ subne r8, -1 ++ ++ cp.w r10, r8 ++ subhs r12, -1 ++ ++ ret r12 ++ ++1: ++ /* Return Inf */ ++ orh r12, 0x7f80 ++ ret r12 ++ ++__avr32_f32_mul_op2_subnormal: ++ cbr r11, 31 ++ clz r9, r11 ++ retcs 0 /* op2 is zero. Return 0 */ ++ sub r9, 8 ++ lsl r11, r11, r9 ++ rsub r9, r9, 1 ++ ++ /* Check if op2 is subnormal. */ ++ tst r10, r10 ++ brne 0b ++ ++ /* op2 is subnormal */ ++ cbr r8, 31 ++ clz r10, r11 ++ retcs 0 /* op1 is zero. Return 0 */ ++ lsl r8, r8, r10 ++ rsub r10, r10, 1 ++ ++ rjmp 0b ++ ++ ++__avr32_f32_mul_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ tst r9, r9 ++ reteq -1 /* Inf * 0 -> NaN */ ++ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return Info */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return Inf */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_mul_res_subnormal: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r9, r9, 9 ++ rsub r8, r9, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r9, r11, r9 ++ /* Add sign bit. */ ++ or r12, r9 ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r11, r11, r8 ++ ++ /* Add all the remainder bits used for rounding into r11 */ ++ andh r10, 0x00FF ++ or r10, r11 ++ rjmp __avr32_f32_mul_round ++ ++__avr32_f32_mul_op1_zero: ++ bfextu r10, r11, 23, 8 ++ cp.w r10, 0xff ++ retne r12 ++ reteq -1 ++ ++#endif ++ ++ ++#ifdef L_avr32_s32_to_f32 ++ .global __avr32_s32_to_f32 ++ .type __avr32_s32_to_f32,@function ++__avr32_s32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r11, r12 /* Keep the sign */ ++ abs r12 /* Compute the absolute value */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_s32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++__avr32_s32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f32 ++ .global __avr32_u32_to_f32 ++ .type __avr32_u32_to_f32,@function ++__avr32_u32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_u32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsr r12,1 /* Sign bit is 0 for unsigned int */ ++ ret r12 ++ ++__avr32_u32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ mov r8, 0 ++ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++ ++#ifdef L_avr32_f32_to_s32 ++ .global __avr32_f32_to_s32 ++ .type __avr32_f32_to_s32,@function ++__avr32_f32_to_s32: ++ bfextu r11, r12, 23, 8 ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r10,r12,8 /* Get mantissa */ ++ sbr r10,31 /* Add implicit bit */ ++ lsr r10,r10,r11 /* Perform shift */ ++ lsl r12,1 /* Check sign */ ++ retcc r10 /* if positive, we are done */ ++ neg r10 /* if negative float, negate result */ ++ ret r10 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_u32 ++ .global __avr32_f32_to_u32 ++ .type __avr32_f32_to_u32,@function ++__avr32_f32_to_u32: ++ cp r12,0 ++ retmi 0 /* Negative numbers gives 0 */ ++ bfextu r11, r12, 23, 8 /* Extract exponent */ ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r12,8 /* Get mantissa */ ++ sbr r12,31 /* Add implicit bit */ ++ lsr r12,r12,r11 /* Perform shift */ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_f64 ++ .global __avr32_f32_to_f64 ++ .type __avr32_f32_to_f64,@function ++ ++__avr32_f32_to_f64: ++ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/ ++ moveq r10, 0 ++ reteq r11 /* Return zero if input is zero */ ++ ++ bfextu r9,r11,24,8 /* Get exponent */ ++ cp.w r9,0xff /* check for NaN or inf */ ++ breq 0f ++ ++ lsl r11,7 /* Convert sf mantissa to df format */ ++ mov r10,0 ++ ++ /* Check if implicit bit should be set */ ++ cp.w r9, 0 ++ subeq r9,-1 /* Adjust exponent if it was 0 */ ++ srne r8 ++ or r11, r11, r8 << 31 /* Set implicit bit if needed */ ++ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */ ++ ++ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/ ++ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/ ++ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/ ++ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/ ++ ++__extendsfdf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r12, 1 ++ ror r11 ++ ret r11 ++ ++0: ++ /* Inf or NaN*/ ++ mov_imm r10, 0xffe00000 ++ lsl r11,8 /* check mantissa */ ++ movne r11, -1 /* Return NaN */ ++ moveq r11, r10 /* Return inf */ ++ mov r10, 0 ++ rjmp __extendsfdf_return_op1 ++#endif ++ ++ ++#ifdef L_avr32_f64_to_f32 ++ .global __avr32_f64_to_f32 ++ .type __avr32_f64_to_f32,@function ++ ++__avr32_f64_to_f32: ++ /* Unpack */ ++ lsl r9,r11,1 /* Unpack exponent */ ++ lsr r9,21 ++ ++ reteq 0 /* If exponent is 0 the number is so small ++ that the conversion to single float gives ++ zero */ ++ ++ lsl r8,r11,10 /* Adjust mantissa */ ++ or r12,r8,r10>>22 ++ ++ lsl r10,10 /* Check if there are any remaining bits ++ in the low part of the mantissa.*/ ++ neg r10 ++ rol r12 /* If there were remaining bits then set lsb ++ of mantissa to 1 */ ++ ++ cp r9,0x7ff ++ breq 2f /* Check for NaN or inf */ ++ ++ sub r9,(0x3ff-127) /* Adjust bias of exponent */ ++ sbr r12,31 /* set the implicit bit.*/ ++ ++ cp.w r9, 0 /* Check for subnormal number */ ++ brle 3f ++ ++ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/ ++ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/ ++__truncdfsf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++2: ++ /* NaN or inf */ ++ cbr r12,31 /* clear implicit bit */ ++ retne -1 /* Return NaN if mantissa not zero */ ++ mov_imm r12, 0x7f800000 ++ ret r12 /* Return inf */ ++ ++3: /* Result is subnormal. Adjust it.*/ ++ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++#if defined(L_mulsi3) && defined(__AVR32_NO_MUL__) ++ .global __mulsi3 ++ .type __mulsi3,@function ++ ++__mulsi3: ++ mov r9, 0 ++0: ++ lsr r11, 1 ++ addcs r9, r9, r12 ++ breq 1f ++ lsl r12, 1 ++ rjmp 0b ++1: ++ ret r9 ++#endif +--- /dev/null ++++ b/gcc/config/avr32/lib2funcs.S +@@ -0,0 +1,21 @@ ++ .align 4 ++ .global __nonlocal_goto ++ .type __nonlocal_goto,@function ++ ++/* __nonlocal_goto: This function handles nonlocal_goto's in gcc. ++ ++ parameter 0 (r12) = New Frame Pointer ++ parameter 1 (r11) = Address to goto ++ parameter 2 (r10) = New Stack Pointer ++ ++ This function invalidates the return stack, since it returns from a ++ function without using a return instruction. ++*/ ++__nonlocal_goto: ++ mov r7, r12 ++ mov sp, r10 ++ frs # Flush return stack ++ mov pc, r11 ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/linux-elf.h +@@ -0,0 +1,151 @@ ++/* ++ Linux/Elf specific definitions. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++ and H�vard Skinnemoen, Atmel Norway, <hskinnemoen@atmel.com> ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++ ++/* elfos.h should have already been included. Now just override ++ any conflicting definitions and add any extras. */ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr); ++ ++/* Do not assume anything about header files. */ ++#define NO_IMPLICIT_EXTERN_C ++ ++/* The GNU C++ standard library requires that these macros be defined. */ ++#undef CPLUSPLUS_CPP_SPEC ++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" ++ ++/* Now we define the strings used to build the spec file. */ ++#undef LIB_SPEC ++#define LIB_SPEC \ ++ "%{pthread:-lpthread} \ ++ %{shared:-lc} \ ++ %{!shared:%{profile:-lc_p}%{!profile:-lc}}" ++ ++/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add ++ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main'. */ ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: \ ++ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ ++ %{!p:%{profile:gcrt1.o%s} \ ++ %{!profile:crt1.o%s}}}} \ ++ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" ++ ++/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on ++ the GNU/Linux magical crtend.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main', followed by a normal ++ GNU/Linux "finalizer" file, `crtn.o'. */ ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC \ ++ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" ++ ++#undef ASM_SPEC ++#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{version:-v} \ ++ %{static:-Bstatic} \ ++ %{shared:-shared} \ ++ %{symbolic:-Bsymbolic} \ ++ %{rdynamic:-export-dynamic} \ ++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \ ++ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}" ++ ++#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS() ++ ++/* This is how we tell the assembler that two symbols have the same value. */ ++#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \ ++ do \ ++ { \ ++ assemble_name (FILE, NAME1); \ ++ fputs (" = ", FILE); \ ++ assemble_name (FILE, NAME2); \ ++ fputc ('\n', FILE); \ ++ } \ ++ while (0) ++ ++ ++ ++#undef CC1_SPEC ++#define CC1_SPEC "%{profile:-p}" ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_LINUX__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ } \ ++ while (0) ++ ++ ++ ++/* Call the function profiler with a given profile label. */ ++#undef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(STREAM, LABELNO) \ ++ do \ ++ { \ ++ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \ ++ fprintf (STREAM, "\ticall lr\n"); \ ++ } \ ++ while (0) ++ ++#define NO_PROFILE_COUNTERS 1 ++ ++/* For dynamic libraries to work */ ++/* #define PLT_REG_CALL_CLOBBERED 1 */ ++#define AVR32_ALWAYS_PIC 1 ++ ++/* uclibc does not implement sinf, cosf etc. */ ++#undef TARGET_C99_FUNCTIONS ++#define TARGET_C99_FUNCTIONS 0 ++ ++#define LINK_GCC_C_SEQUENCE_SPEC \ ++ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}" +--- /dev/null ++++ b/gcc/config/avr32/predicates.md +@@ -0,0 +1,422 @@ ++;; AVR32 predicates file. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++ ++;; True if the operand is a memory reference which contains an ++;; Address consisting of a single pointer register ++(define_predicate "avr32_indirect_register_operand" ++ (and (match_code "mem") ++ (match_test "register_operand(XEXP(op, 0), SImode)"))) ++ ++ ++ ++;; Address expression with a base pointer offset with ++;; a register displacement ++(define_predicate "avr32_indexed_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS")) ++ { ++ ++ rtx op0 = XEXP(XEXP(op, 0), 0); ++ rtx op1 = XEXP(XEXP(op, 0), 1); ++ ++ return ((avr32_address_register_rtx_p (op0, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op1, 0)) ++ || (avr32_address_register_rtx_p (op1, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op0, 0))); ++ ++ }) ++ ++;; Operand suitable for the ld.sb instruction ++(define_predicate "load_sb_memory_operand" ++ (ior (match_operand 0 "avr32_indirect_register_operand") ++ (match_operand 0 "avr32_indexed_memory_operand"))) ++ ++ ++;; Operand suitable as operand to insns sign extending QI values ++(define_predicate "extendqi_operand" ++ (ior (match_operand 0 "load_sb_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "post_inc_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++(define_predicate "pre_dec_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++;; Operand suitable for add instructions ++(define_predicate "avr32_add_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")")))) ++ ++;; Operand is a power of two immediate ++(define_predicate "power_of_two_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return value != 0 && (value & (value - 1)) == 0; ++}) ++ ++;; Operand is a multiple of 8 immediate ++(define_predicate "multiple_of_8_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0x7) == 0 ; ++}) ++ ++;; Operand is a multiple of 16 immediate ++(define_predicate "multiple_of_16_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0xf) == 0 ; ++}) ++ ++;; Operand is a mask used for masking away upper bits of a reg ++(define_predicate "avr32_mask_upper_bits_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op) + 1; ++ ++ return value != 1 && value != 0 && (value & (value - 1)) == 0; ++}) ++ ++ ++;; Operand suitable for mul instructions ++(define_predicate "avr32_mul_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++;; True for logical binary operators. ++(define_predicate "logical_binary_operator" ++ (match_code "ior,xor,and")) ++ ++;; True for logical shift operators ++(define_predicate "logical_shift_operator" ++ (match_code "ashift,lshiftrt")) ++ ++;; True for shift operand for logical and, or and eor insns ++(define_predicate "avr32_logical_shift_operand" ++ (and (match_code "ashift,lshiftrt") ++ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))")) ++ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))")))) ++ ) ++ ++ ++;; Predicate for second operand to and, ior and xor insn patterns ++(define_predicate "avr32_logical_insn_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_logical_shift_operand")) ++) ++ ++ ++;; True for avr32 comparison operators ++(define_predicate "avr32_comparison_operator" ++ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++(define_predicate "avr32_cond3_comparison_operator" ++ (ior (match_code "eq, ne, ge, lt, geu, ltu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True for avr32 comparison operand ++(define_predicate "avr32_comparison_operand" ++ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))")) ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True if this is a const_int with one bit set ++(define_predicate "one_bit_set_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int ones = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( value & ( 1 << i ) ){ ++ ones++; ++ } ++ } ++ ++ return ( ones == 1 ); ++ }) ++ ++ ++;; True if this is a const_int with one bit cleared ++(define_predicate "one_bit_cleared_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int zeroes = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( !(value & ( 1 << i )) ){ ++ zeroes++; ++ } ++ } ++ ++ return ( zeroes == 1 ); ++ }) ++ ++ ++;; Immediate all the low 16-bits cleared ++(define_predicate "avr32_hi16_immediate_operand" ++ (match_code "const_int") ++ { ++ /* If the low 16-bits are zero then this ++ is a hi16 immediate. */ ++ return ((INTVAL(op) & 0xffff) == 0); ++ } ++) ++ ++;; True if this is a register or immediate operand ++(define_predicate "register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "immediate_operand"))) ++ ++;; True if this is a register or const_int operand ++(define_predicate "register_const_int_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "const_int_operand") ++ (match_operand 0 "immediate_operand")))) ++ ++;; True if this is a register or const_double operand ++(define_predicate "register_const_double_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "const_double_operand"))) ++ ++;; True if this is an operand containing a label_ref. ++(define_predicate "avr32_label_ref_operand" ++ (and (match_code "mem") ++ (match_test "avr32_find_symbol(op) ++ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)"))) ++ ++;; True if this is a valid symbol pointing to the constant pool. ++(define_predicate "avr32_const_pool_operand" ++ (and (match_code "symbol_ref") ++ (match_test "CONSTANT_POOL_ADDRESS_P(op)")) ++ { ++ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op)) ++ || label_mentioned_p (get_pool_constant (op))) ++ || avr32_got_mentioned_p(get_pool_constant (op))) ++ : true); ++ } ++) ++ ++;; True if this is a memory reference to the constant or mini pool. ++(define_predicate "avr32_const_pool_ref_operand" ++ (ior (match_operand 0 "avr32_label_ref_operand") ++ (and (match_code "mem") ++ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))")))) ++ ++ ++;; Legal source operand for movti insns ++(define_predicate "avr32_movti_src_operand" ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (ior (ior (match_operand 0 "register_immediate_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "post_inc_memory_operand")))) ++ ++;; Legal destination operand for movti insns ++(define_predicate "avr32_movti_dst_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "pre_dec_memory_operand"))) ++ ++ ++;; True if this is a k12 offseted memory operand. ++(define_predicate "avr32_k12_memory_operand" ++ (and (match_code "mem") ++ (ior (match_test "REG_P(XEXP(op, 0))") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), ++ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))")))) ++ ++;; True if this is a memory operand with an immediate displacement. ++(define_predicate "avr32_imm_disp_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)"))) ++ ++;; True if this is a bswap operand. ++(define_predicate "avr32_bswap_operand" ++ (ior (match_operand 0 "avr32_k12_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++;; True if this is a valid coprocessor insn memory operand. ++(define_predicate "avr32_cop_memory_operand" ++ (and (match_operand 0 "memory_operand") ++ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))")))) ++ ++;; True if this is a valid source/destination operand. ++;; for moving values to/from a coprocessor ++(define_predicate "avr32_cop_move_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_cop_memory_operand"))) ++ ++ ++;; True if this is a valid extract byte offset for use in ++;; load extracted index insns. ++(define_predicate "avr32_extract_shift_operand" ++ (and (match_operand 0 "const_int_operand") ++ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8) ++ || (INTVAL(op) == 16) || (INTVAL(op) == 24)"))) ++ ++;; True if this is a valid avr32 symbol operand. ++(define_predicate "avr32_symbol_operand" ++ (and (match_code "label_ref, symbol_ref, const") ++ (match_test "avr32_find_symbol(op)"))) ++ ++;; True if this is a valid operand for the lda.w and call pseudo insns. ++(define_predicate "avr32_address_operand" ++ (and (and (match_code "label_ref, symbol_ref") ++ (match_test "avr32_find_symbol(op)")) ++ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS") ++ (match_test "flag_pic")) )) ++ ++;; An immediate k16 address operand ++(define_predicate "avr32_ks16_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && ((GET_CODE(XEXP(op,0)) == CONST_INT) ++ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) )) ++ ++;; An offset k16 memory operand ++(define_predicate "avr32_ks16_memory_operand" ++ (and (match_code "mem") ++ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))"))) ++ ++;; An immediate k11 address operand ++(define_predicate "avr32_ks11_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && (((GET_CODE(XEXP(op,0)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\")) ++ || ((GET_CODE(XEXP(op,1)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) )) ++ ++;; True if this is a avr32 call operand ++(define_predicate "avr32_call_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (match_operand 0 "avr32_address_operand"))) ++ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)"))) ++ ++;; Return true for operators performing ALU operations ++ ++(define_predicate "alu_operator" ++ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt")) ++ ++(define_predicate "avr32_add_shift_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")"))) ++ ++(define_predicate "avr32_cond_register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++(define_predicate "avr32_cond_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")"))) ++ ++ ++(define_predicate "avr32_cond_move_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))) ++ (and (match_test "TARGET_V2_INSNS") ++ (match_operand 0 "memory_operand")))) ++ ++(define_predicate "avr32_mov_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "avr32_const_ok_for_move(INTVAL(op))"))) ++ ++ ++(define_predicate "avr32_rmw_address_operand" ++ (ior (and (match_code "symbol_ref") ++ (match_test "({rtx symbol = avr32_find_symbol(op); \ ++ symbol && (GET_CODE (symbol) == SYMBOL_REF) && SYMBOL_REF_RMW_ADDR(symbol);})")) ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks17\")"))) ++ { ++ return TARGET_RMW && !flag_pic; ++ } ++) ++ ++(define_predicate "avr32_rmw_memory_operand" ++ (and (match_code "mem") ++ (match_test "!volatile_refs_p(op) && (GET_MODE(op) == SImode) && ++ avr32_rmw_address_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))) ++ ++(define_predicate "avr32_rmw_memory_or_register_operand" ++ (ior (match_operand 0 "avr32_rmw_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "avr32_non_rmw_memory_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "memory_operand"))) ++ ++(define_predicate "avr32_non_rmw_general_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "general_operand"))) ++ ++(define_predicate "avr32_non_rmw_nonimmediate_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "nonimmediate_operand"))) ++ ++;; Return true if the operand is the 1.0f constant. ++ ++(define_predicate "const_1f_operand" ++ (match_code "const_int,const_double") ++{ ++ return (op == CONST1_RTX (SFmode)); ++}) +--- /dev/null ++++ b/gcc/config/avr32/simd.md +@@ -0,0 +1,145 @@ ++;; AVR32 machine description file for SIMD instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++ ++;; Vector modes ++(define_mode_iterator VECM [V2HI V4QI]) ++(define_mode_attr size [(V2HI "h") (V4QI "b")]) ++ ++(define_insn "add<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (plus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "padd.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "sub<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (minus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "psub.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "abs<mode>2" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "pabs.s<size>\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashl<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashift:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsl.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashr<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "pasr.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "lshr<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsr.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "smaxv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "sminv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "umaxv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "uminv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "addsubv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (minus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "paddsub.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "subaddv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (plus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "psubadd.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) +--- /dev/null ++++ b/gcc/config/avr32/sync.md +@@ -0,0 +1,244 @@ ++;;================================================================= ++;; Atomic operations ++;;================================================================= ++ ++ ++(define_insn "sync_compare_and_swapsi" ++ [(set (match_operand:SI 0 "register_operand" "=&r,&r") ++ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16")) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 1) ++ (match_operand:SI 2 "register_immediate_operand" "r,Ks21") ++ (match_operand:SI 3 "register_operand" "r,r")] ++ VUNSPEC_SYNC_CMPXCHG)) ] ++ "" ++ "0: ++ ssrf\t5 ++ ld.w\t%0,%1 ++ cp.w\t%0,%2 ++ brne\t0f ++ stcond\t%1, %3 ++ brne\t0b ++ 0: ++ " ++ [(set_attr "length" "16,18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_code_iterator atomic_op [plus minus and ior xor]) ++(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")]) ++(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")]) ++ ++(define_insn "sync_loadsi" ++ ; NB! Put an early clobber on the destination operand to ++ ; avoid gcc using the same register in the source and ++ ; destination. This is done in order to avoid gcc to ++ ; clobber the source operand since these instructions ++ ; are actually inside a "loop". ++ [(set (match_operand:SI 0 "register_operand" "=&r") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )] ++ "" ++ "%2: ++ ssrf\t5 ++ ld.w\t%0,%1" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "sync_store_if_lock" ++ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "register_operand" "r") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_STORE_IF_LOCK) )] ++ "" ++ "stcond\t%0, %1 ++ brne\t%2" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_expand "sync_<atomic_insn>si" ++ [(set (match_dup 2) ++ (unspec_volatile:SI ++ [(match_operand:SI 0 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 2) ++ (atomic_op:SI (match_dup 2) ++ (match_operand:SI 1 "register_immediate_operand" ""))) ++ (set (match_dup 0) ++ (unspec_volatile:SI ++ [(match_dup 2) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 1)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[0]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[2] = gen_reg_rtx (SImode); ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ ++ } ++ ) ++ ++ ++ ++(define_expand "sync_old_<atomic_insn>si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 4)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 3) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 3) ++ (match_dup 4)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 5))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_reg_rtx (SImode); ++ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[5] = ptr_reg; ++ } ++ ) ++ ++(define_expand "sync_new_<atomic_insn>si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 0) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 0) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ } ++ ) ++ ++ ++;(define_insn "sync_<atomic_insn>si" ++; [(set (match_operand:SI 0 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 0) ++; (match_operand:SI 1 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (clobber (match_scratch:SI 2 "=&r"))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%2,%0 ++; <atomic_asm_insn>\t%2,%1 ++; stcond\t%0, %2 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++; ++;(define_insn "sync_new_<atomic_insn>si" ++; [(set (match_operand:SI 1 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 1) ++; (match_operand:SI 2 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (set (match_operand:SI 0 "register_operand" "=&r") ++; (atomic_op:SI (match_dup 1) ++; (match_dup 2)))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%0,%1 ++; <atomic_asm_insn>\t%0,%2 ++; stcond\t%1, %0 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++ ++(define_insn "sync_lock_test_and_setsi" ++ [ (set (match_operand:SI 0 "register_operand" "=&r") ++ (match_operand:SI 1 "memory_operand" "+RKu00")) ++ (set (match_dup 1) ++ (match_operand:SI 2 "register_operand" "r")) ] ++ "" ++ "xchg\t%0, %p1, %2" ++ [(set_attr "length" "4")] ++ ) +--- /dev/null ++++ b/gcc/config/avr32/t-avr32 +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/t-avr32-linux +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/t-elf +@@ -0,0 +1,16 @@ ++ ++# Assemble startup files. ++$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm ++ ++$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm ++ ++ ++# Build the libraries for both hard and soft floating point ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib +--- /dev/null ++++ b/gcc/config/avr32/uc3fpu.md +@@ -0,0 +1,199 @@ ++;; AVR32 machine description file for Floating-Point instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++(define_insn "*movsf_uc3fp" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r,G,m,r"))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "@ ++ mov\t%0, %1 ++ mov\t%0, %1 ++ ld.w\t%0, %1 ++ st.w\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,alu,load,store")]) ++ ++(define_insn "mulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "macsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmac.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++;(define_insn "nmacsf3" ++; [(set (match_operand:SF 0 "register_operand" "=r") ++; (plus:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) ++; (mult:SF(match_operand:SF 2 "register_operand" "r") ++; (match_operand:SF 3 "register_operand" "r"))))] ++; "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++; "fnmac.s\t%0, %1, %2, %3" ++; [(set_attr "length" "4") ++; (set_attr "type" "fmul")]) ++ ++(define_insn "nmacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (mult:SF (match_operand:SF 2 "register_operand" "r") ++ (match_operand:SF 3 "register_operand" "r")) ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmac.s\t%0, %1, %2, %3" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "msubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 3 "register_operand" "r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmsubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "addsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fadd.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "subsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fsub.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "fixuns_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.uw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "fix_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.sw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatunssisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastuw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatsisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastsw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "cmpsf_internal_uc3fp" ++ [(set (cc0) ++ (compare:CC ++ (match_operand:SF 0 "register_operand" "r") ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ { ++ avr32_branch_type = CMP_SF; ++ if (!rtx_equal_p(cc_prev_status.mdep.value, SET_SRC(PATTERN (insn))) ) ++ return "fcmp.s\t%0, %1"; ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "divsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ "{ ++ emit_insn(gen_frcpa_internal(operands[0],operands[2])); ++ emit_insn(gen_mulsf3(operands[0],operands[0],operands[1])); ++ DONE; ++ }" ++) ++ ++(define_insn "frcpa_internal" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unspec:SF [(match_operand:SF 1 "register_operand" "r")] UNSPEC_FRCPA))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frcpa.s %0,%1" ++ [(set_attr "length" "4")]) ++ ++(define_expand "sqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ " ++{ ++ rtx scratch = gen_reg_rtx (SFmode); ++ emit_insn (gen_rsqrtsf2 (scratch, operands[1], CONST1_RTX (SFmode))); ++ emit_insn (gen_divsf3(operands[0], force_reg (SFmode, CONST1_RTX (SFmode)), ++ scratch)); ++ DONE; ++}") ++ ++(define_insn "rsqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 2 "const_1f_operand" "F") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "?r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frsqrta.s %1, %0") +--- /dev/null ++++ b/gcc/config/avr32/uclinux-elf.h +@@ -0,0 +1,20 @@ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr) ++ ++/* We don't want a .jcr section on uClinux. As if this makes a difference... */ ++#define TARGET_USE_JCR_SECTION 0 ++ ++/* Here we go. Drop the crtbegin/crtend stuff completely. */ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \ ++ " %{!p:%{profile:gcrt1.o%s}" \ ++ " %{!profile:crt1.o%s}}}} crti.o%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtn.o%s" ++ ++#undef TARGET_DEFAULT ++#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT) +--- a/gcc/config/host-linux.c ++++ b/gcc/config/host-linux.c +@@ -25,6 +25,9 @@ + #include "hosthooks.h" + #include "hosthooks-def.h" + ++#ifndef SSIZE_MAX ++#define SSIZE_MAX LONG_MAX ++#endif + + /* Linux has a feature called exec-shield-randomize that perturbs the + address of non-fixed mapped segments by a (relatively) small amount. +--- a/gcc/config.gcc ++++ b/gcc/config.gcc +@@ -810,6 +810,24 @@ avr-*-rtems*) + avr-*-*) + tm_file="avr/avr.h dbxelf.h" + ;; ++avr32*-*-linux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h " ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32*-*-uclinux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h" ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32-*-*) ++ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h" ++ tmake_file="avr32/t-avr32 avr32/t-elf" ++ extra_modes=avr32/avr32-modes.def ++ ;; + bfin*-elf*) + tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" + tmake_file=bfin/t-bfin-elf +@@ -2763,6 +2781,32 @@ case "${target}" in + fi + ;; + ++ avr32*-*-*) ++ supported_defaults="part arch" ++ ++ case "$with_part" in ++ "" \ ++ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" ) ++ # OK ++ ;; ++ *) ++ echo "Unknown part used in --with-part=$with_part" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_arch" in ++ "" \ ++ | "ap" | "uc") ++ # OK ++ ;; ++ *) ++ echo "Unknown arch used in --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ + fr*-*-*linux*) + supported_defaults=cpu + case "$with_cpu" in +--- a/gcc/configure.ac ++++ b/gcc/configure.ac +@@ -2240,10 +2240,9 @@ L2:], + as_ver=`$gcc_cv_as --version 2>/dev/null | sed 1q` + if echo "$as_ver" | grep GNU > /dev/null; then + changequote(,)dnl +- as_vers=`echo $as_ver | sed -n \ +- -e 's,^.*[ ]\([0-9][0-9]*\.[0-9][0-9]*.*\)$,\1,p'` +- as_major=`expr "$as_vers" : '\([0-9]*\)'` +- as_minor=`expr "$as_vers" : '[0-9]*\.\([0-9]*\)'` ++ as_ver=`echo $as_ver | sed -e 's/GNU assembler\( (GNU Binutils)\)\? \([0-9.][0-9.]*\).*/\2/'` ++ as_major=`echo $as_ver | sed 's/\..*//'` ++ as_minor=`echo $as_ver | sed 's/[^.]*\.\([0-9]*\).*/\1/'` + changequote([,])dnl + if test $as_major -eq 2 && test $as_minor -lt 11 + then : +@@ -3296,7 +3295,7 @@ case "$target" in + i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \ + | x86_64*-*-* | hppa*-*-* | arm*-*-* \ + | xstormy16*-*-* | cris-*-* | crisv32-*-* | xtensa*-*-* | bfin-*-* | score*-*-* \ +- | spu-*-* | fido*-*-* | m32c-*-*) ++ | spu-*-* | fido*-*-* | m32c-*-* | avr32-*-*) + insn="nop" + ;; + ia64*-*-* | s390*-*-*) +--- a/gcc/doc/extend.texi ++++ b/gcc/doc/extend.texi +@@ -2397,7 +2397,7 @@ This attribute is ignored for R8C target + + @item interrupt + @cindex interrupt handler functions +-Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, ++Use this attribute on the ARM, AVR, AVR32, CRX, M32C, M32R/D, m68k, + and Xstormy16 ports to indicate that the specified function is an + interrupt handler. The compiler will generate function entry and exit + sequences suitable for use in an interrupt handler when this attribute +@@ -2417,6 +2417,15 @@ void f () __attribute__ ((interrupt ("IR + + Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@. + ++Note, for the AVR32, you can specify which banking scheme is used for ++the interrupt mode this interrupt handler is used in like this: ++ ++@smallexample ++void f () __attribute__ ((interrupt ("FULL"))); ++@end smallexample ++ ++Permissible values for this parameter are: FULL, HALF, NONE and UNDEF. ++ + On ARMv7-M the interrupt type is ignored, and the attribute means the function + may be called with a word aligned stack pointer. + +@@ -4224,6 +4233,23 @@ placed in either the @code{.bss_below100 + + @end table + ++@subsection AVR32 Variable Attributes ++ ++One attribute is currently defined for AVR32 configurations: ++@code{rmw_addressable} ++ ++@table @code ++@item rmw_addressable ++@cindex @code{rmw_addressable} attribute ++ ++This attribute can be used to signal that a variable can be accessed ++with the addressing mode of the AVR32 Atomic Read-Modify-Write memory ++instructions and hence make it possible for gcc to generate these ++instructions without using built-in functions or inline assembly statements. ++Variables used within the AVR32 Atomic Read-Modify-Write built-in ++functions will automatically get the @code{rmw_addressable} attribute. ++@end table ++ + @subsection AVR Variable Attributes + + @table @code +@@ -7042,6 +7068,7 @@ instructions, but allow the compiler to + * Alpha Built-in Functions:: + * ARM iWMMXt Built-in Functions:: + * ARM NEON Intrinsics:: ++* AVR32 Built-in Functions:: + * Blackfin Built-in Functions:: + * FR-V Built-in Functions:: + * X86 Built-in Functions:: +@@ -7284,6 +7311,7 @@ long long __builtin_arm_wxor (long long, + long long __builtin_arm_wzero () + @end smallexample + ++ + @node ARM NEON Intrinsics + @subsection ARM NEON Intrinsics + +@@ -7292,6 +7320,74 @@ when the @option{-mfpu=neon} switch is u + + @include arm-neon-intrinsics.texi + ++@node AVR32 Built-in Functions ++@subsection AVR32 Built-in Functions ++ ++Built-in functions for atomic memory (RMW) instructions. Note that these ++built-ins will fail for targets where the RMW instructions are not ++implemented. Also note that these instructions only that a Ks15 << 2 ++memory address and will therefor not work with any runtime computed ++memory addresses. The user is responsible for making sure that any ++pointers used within these functions points to a valid memory address. ++ ++@smallexample ++void __builtin_mems(int */*ptr*/, int /*bit*/) ++void __builtin_memc(int */*ptr*/, int /*bit*/) ++void __builtin_memt(int */*ptr*/, int /*bit*/) ++@end smallexample ++ ++Built-in functions for DSP instructions. Note that these built-ins will ++fail for targets where the DSP instructions are not implemented. ++ ++@smallexample ++int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/) ++short __builtin_mulsathh_h (short, short) ++int __builtin_mulsathh_w (short, short) ++short __builtin_mulsatrndhh_h (short, short) ++int __builtin_mulsatrndwh_w (int, short) ++int __builtin_mulsatwh_w (int, short) ++int __builtin_macsathh_w (int, short, short) ++short __builtin_satadd_h (short, short) ++short __builtin_satsub_h (short, short) ++int __builtin_satadd_w (int, int) ++int __builtin_satsub_w (int, int) ++long long __builtin_mulwh_d(int, short) ++long long __builtin_mulnwh_d(int, short) ++long long __builtin_macwh_d(long long, int, short) ++long long __builtin_machh_d(long long, short, short) ++@end smallexample ++ ++Other built-in functions for instructions that cannot easily be ++generated by the compiler. ++ ++@smallexample ++void __builtin_ssrf(int); ++void __builtin_csrf(int); ++void __builtin_musfr(int); ++int __builtin_mustr(void); ++int __builtin_mfsr(int /*Status Register Address*/) ++void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/) ++int __builtin_mfdr(int /*Debug Register Address*/) ++void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/) ++void __builtin_cache(void * /*Address*/, int /*Cache Operation*/) ++void __builtin_sync(int /*Sync Operation*/) ++void __builtin_tlbr(void) ++void __builtin_tlbs(void) ++void __builtin_tlbw(void) ++void __builtin_breakpoint(void) ++int __builtin_xchg(void * /*Address*/, int /*Value*/ ) ++short __builtin_bswap_16(short) ++int __builtin_bswap_32(int) ++void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/) ++int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/) ++long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/) ++@end smallexample ++ + @node Blackfin Built-in Functions + @subsection Blackfin Built-in Functions + +--- a/gcc/doc/invoke.texi ++++ b/gcc/doc/invoke.texi +@@ -195,7 +195,7 @@ in the following sections. + -fvisibility-ms-compat @gol + -Wabi -Wctor-dtor-privacy @gol + -Wnon-virtual-dtor -Wreorder @gol +--Weffc++ -Wstrict-null-sentinel @gol ++-Weffc++ -Wno-deprecated @gol + -Wno-non-template-friend -Wold-style-cast @gol + -Woverloaded-virtual -Wno-pmf-conversions @gol + -Wsign-promo} +@@ -637,6 +637,12 @@ Objective-C and Objective-C++ Dialects}. + -mauto-incdec -minmax -mlong-calls -mshort @gol + -msoft-reg-count=@var{count}} + ++@emph{AVR32 Options} ++@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol ++-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol ++-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol ++-mfast-float -mimm-in-const-pool} ++ + @emph{MCore Options} + @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol + -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol +@@ -3256,13 +3262,11 @@ appears in a class without constructors. + If you want to warn about code which uses the uninitialized value of the + variable in its own initializer, use the @option{-Winit-self} option. + +-These warnings occur for individual uninitialized or clobbered +-elements of structure, union or array variables as well as for +-variables which are uninitialized or clobbered as a whole. They do +-not occur for variables or elements declared @code{volatile}. Because +-these warnings depend on optimization, the exact variables or elements +-for which there are warnings will depend on the precise optimization +-options and version of GCC used. ++These warnings occur only for variables that are candidates for ++register allocation. Therefore, they do not occur for a variable that ++is declared @code{volatile}, or whose address is taken, or whose size ++is other than 1, 2, 4 or 8 bytes. Also, they do not occur for ++structures, unions or arrays, even when they are in registers. + + Note that there may be no warning about a variable that is used only + to compute a value that itself is never used, because such +@@ -7461,10 +7465,6 @@ If number of candidates in the set is sm + we always try to remove unnecessary ivs from the set during its + optimization when a new iv is added to the set. + +-@item scev-max-expr-size +-Bound on size of expressions used in the scalar evolutions analyzer. +-Large expressions slow the analyzer. +- + @item omega-max-vars + The maximum number of variables in an Omega constraint system. + The default value is 128. +@@ -8860,6 +8860,7 @@ platform. + * ARC Options:: + * ARM Options:: + * AVR Options:: ++* AVR32 Options:: + * Blackfin Options:: + * CRIS Options:: + * CRX Options:: +@@ -9348,6 +9349,145 @@ comply to the C standards, but it will p + size. + @end table + ++@node AVR32 Options ++@subsection AVR32 Options ++@cindex AVR32 Options ++ ++These options are defined for AVR32 implementations: ++ ++@table @gcctabopt ++@item -muse-rodata-section ++@opindex muse-rodata-section ++Use section @samp{.rodata} for read-only data instead of @samp{.text}. ++ ++@item -mhard-float ++@opindex mhard-float ++Use floating point coprocessor instructions. ++ ++@item -msoft-float ++@opindex msoft-float ++Use software floating-point library for floating-point operations. ++ ++@item -mforce-double-align ++@opindex mforce-double-align ++Force double-word alignment for double-word memory accesses. ++ ++@item -masm-addr-pseudos ++@opindex masm-addr-pseudos ++Use assembler pseudo-instructions lda.w and call for handling direct ++addresses. (Enabled by default) ++ ++@item -mno-init-got ++@opindex mno-init-got ++Do not initialize the GOT register before using it when compiling PIC ++code. ++ ++@item -mrelax ++@opindex mrelax ++Let invoked assembler and linker do relaxing ++(Enabled by default when optimization level is >1). ++This means that when the address of symbols are known at link time, ++the linker can optimize @samp{icall} and @samp{mcall} ++instructions into a @samp{rcall} instruction if possible. ++Loading the address of a symbol can also be optimized. ++ ++@item -mmd-reorg-opt ++@opindex mmd-reorg-opt ++Perform machine dependent optimizations in reorg stage. ++ ++@item -mpart=@var{part} ++@opindex mpart ++Generate code for the specified part. Permissible parts are: ++@samp{ap7000}, ++@samp{ap7001}, ++@samp{ap7002}, ++@samp{ap7200}, ++@samp{uc3a0128}, ++@samp{uc3a0256}, ++@samp{uc3a0512}, ++@samp{uc3a0512es}, ++@samp{uc3a1128}, ++@samp{uc3a1256}, ++@samp{uc3a1512}, ++@samp{uc3a1512es}, ++@samp{uc3a3revd}, ++@samp{uc3a364}, ++@samp{uc3a364s}, ++@samp{uc3a3128}, ++@samp{uc3a3128s}, ++@samp{uc3a3256}, ++@samp{uc3a3256s}, ++@samp{uc3a464}, ++@samp{uc3a464s}, ++@samp{uc3a4128}, ++@samp{uc3a4128s}, ++@samp{uc3a4256}, ++@samp{uc3a4256s}, ++@samp{uc3b064}, ++@samp{uc3b0128}, ++@samp{uc3b0256}, ++@samp{uc3b0256es}, ++@samp{uc3b0512}, ++@samp{uc3b0512revc}, ++@samp{uc3b164}, ++@samp{uc3b1128}, ++@samp{uc3b1256}, ++@samp{uc3b1256es}, ++@samp{uc3b1512}, ++@samp{uc3b1512revc} ++@samp{uc64d3}, ++@samp{uc128d3}, ++@samp{uc64d4}, ++@samp{uc128d4}, ++@samp{uc3c0512crevc}, ++@samp{uc3c1512crevc}, ++@samp{uc3c2512crevc}, ++@samp{uc3l0256}, ++@samp{uc3l0128}, ++@samp{uc3l064}, ++@samp{uc3l032}, ++@samp{uc3l016}, ++@samp{uc3l064revb}, ++@samp{uc64l3u}, ++@samp{uc128l3u}, ++@samp{uc256l3u}, ++@samp{uc64l4u}, ++@samp{uc128l4u}, ++@samp{uc256l4u}, ++@samp{uc3c064c}, ++@samp{uc3c0128c}, ++@samp{uc3c0256c}, ++@samp{uc3c0512c}, ++@samp{uc3c164c}, ++@samp{uc3c1128c}, ++@samp{uc3c1256c}, ++@samp{uc3c1512c}, ++@samp{uc3c264c}, ++@samp{uc3c2128c}, ++@samp{uc3c2256c}, ++@samp{uc3c2512c}, ++@samp{mxt768e}. ++ ++@item -mcpu=@var{cpu-type} ++@opindex mcpu ++Same as -mpart. Obsolete. ++ ++@item -march=@var{arch} ++@opindex march ++Generate code for the specified architecture. Permissible architectures are: ++@samp{ap}, @samp{uc} and @samp{ucr2}. ++ ++@item -mfast-float ++@opindex mfast-float ++Enable fast floating-point library that does not conform to IEEE-754 but is still good enough ++for most applications. The fast floating-point library does not round to the nearest even ++but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++@item -mimm-in-const-pool ++@opindex mimm-in-const-pool ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++@end table ++ + @node Blackfin Options + @subsection Blackfin Options + @cindex Blackfin Options +@@ -9403,29 +9543,12 @@ When enabled, the compiler will ensure t + contain speculative loads after jump instructions. If this option is used, + @code{__WORKAROUND_SPECULATIVE_LOADS} is defined. + +-@item -mno-specld-anomaly +-@opindex mno-specld-anomaly +-Don't generate extra code to prevent speculative loads from occurring. +- + @item -mcsync-anomaly + @opindex mcsync-anomaly + When enabled, the compiler will ensure that the generated code does not + contain CSYNC or SSYNC instructions too soon after conditional branches. + If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined. + +-@item -mno-csync-anomaly +-@opindex mno-csync-anomaly +-Don't generate extra code to prevent CSYNC or SSYNC instructions from +-occurring too soon after a conditional branch. +- +-@item -mlow-64k +-@opindex mlow-64k +-When enabled, the compiler is free to take advantage of the knowledge that +-the entire program fits into the low 64k of memory. +- +-@item -mno-low-64k +-@opindex mno-low-64k +-Assume that the program is arbitrarily large. This is the default. + + @item -mstack-check-l1 + @opindex mstack-check-l1 +@@ -9439,11 +9562,6 @@ This allows for execute in place and sha + without virtual memory management. This option implies @option{-fPIC}. + With a @samp{bfin-elf} target, this option implies @option{-msim}. + +-@item -mno-id-shared-library +-@opindex mno-id-shared-library +-Generate code that doesn't assume ID based shared libraries are being used. +-This is the default. +- + @item -mleaf-id-shared-library + @opindex mleaf-id-shared-library + Generate code that supports shared libraries via the library ID method, +@@ -9485,11 +9603,6 @@ call on this register. This switch is n + will lie outside of the 24 bit addressing range of the offset based + version of subroutine call instruction. + +-This feature is not enabled by default. Specifying +-@option{-mno-long-calls} will restore the default behavior. Note these +-switches have no effect on how the compiler generates code to handle +-function calls via function pointers. +- + @item -mfast-fp + @opindex mfast-fp + Link with the fast floating-point library. This library relaxes some of +--- a/gcc/doc/md.texi ++++ b/gcc/doc/md.texi +@@ -4,6 +4,7 @@ + @c This is part of the GCC manual. + @c For copying conditions, see the file gcc.texi. + ++ + @ifset INTERNALS + @node Machine Desc + @chapter Machine Descriptions +@@ -1685,6 +1686,58 @@ A memory reference suitable for iWMMXt l + A memory reference suitable for the ARMv4 ldrsb instruction. + @end table + ++@item AVR32 family---@file{avr32.h} ++@table @code ++@item f ++Floating-point registers (f0 to f15) ++ ++@item Ku@var{bits} ++Unsigned constant representable with @var{bits} number of bits (Must be ++two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08} ++ ++@item Ks@var{bits} ++Signed constant representable with @var{bits} number of bits (Must be ++two digits). I.e: A signed 12-bit constant is written as @samp{Ks12} ++ ++@item Is@var{bits} ++The negated range of a signed constant representable with @var{bits} ++number of bits. The same as @samp{Ks@var{bits}} with a negated range. ++This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}} ++ ++@item G ++A single/double precision floating-point immediate or 64-bit integer ++immediate where the least and most significant words both can be ++loaded with a move instruction. That is the the integer form of the ++values in the least and most significant words both are in the range ++@math{-2^{20}} to @math{2^{20}-1}. ++ ++@item RKs@var{bits} ++A memory reference where the address consists of a base register ++plus a signed immediate displacement with range given by @samp{Ks@var{bits}} ++which has the same format as for the signed immediate integer constraint ++given above. ++ ++@item RKu@var{bits} ++A memory reference where the address consists of a base register ++plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}} ++which has the same format as for the unsigned immediate integer constraint ++given above. ++ ++@item S ++A memory reference with an immediate or register offset ++ ++@item T ++A memory reference to a constant pool entry ++ ++@item W ++A valid operand for use in the @samp{lda.w} instruction macro when ++relaxing is enabled ++ ++@item Z ++A memory reference valid for coprocessor memory instructions ++ ++@end table ++ + @item AVR family---@file{config/avr/constraints.md} + @table @code + @item l +--- a/gcc/expmed.c ++++ b/gcc/expmed.c +@@ -472,9 +472,9 @@ store_bit_field_1 (rtx str_rtx, unsigned + ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD + || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode)) + && byte_offset % GET_MODE_SIZE (fieldmode) == 0) +- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) ++ : ( (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) + || (offset * BITS_PER_UNIT % bitsize == 0 +- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))) ++ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))) + { + if (MEM_P (op0)) + op0 = adjust_address (op0, fieldmode, offset); +--- a/gcc/expr.c ++++ b/gcc/expr.c +@@ -52,6 +52,7 @@ along with GCC; see the file COPYING3. + #include "tree-flow.h" + #include "target.h" + #include "timevar.h" ++#include "c-common.h" + #include "df.h" + #include "diagnostic.h" + +@@ -3647,16 +3648,17 @@ emit_single_push_insn (enum machine_mode + } + else + { ++ emit_move_insn (stack_pointer_rtx, ++ expand_binop (Pmode, + #ifdef STACK_GROWS_DOWNWARD +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (-(HOST_WIDE_INT) rounded_size)); ++ sub_optab, + #else +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (rounded_size)); ++ add_optab, + #endif +- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); ++ stack_pointer_rtx, ++ GEN_INT (rounded_size), ++ NULL_RTX, 0, OPTAB_LIB_WIDEN)); ++ dest_addr = stack_pointer_rtx; + } + + dest = gen_rtx_MEM (mode, dest_addr); +@@ -5772,7 +5774,8 @@ store_field (rtx target, HOST_WIDE_INT b + is a bit field, we cannot use addressing to access it. + Use bit-field techniques or SUBREG to store in it. */ + +- if (mode == VOIDmode ++ if ( ++ mode == VOIDmode + || (mode != BLKmode && ! direct_store[(int) mode] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT + && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) +@@ -5929,7 +5932,18 @@ get_inner_reference (tree exp, HOST_WIDE + { + tree field = TREE_OPERAND (exp, 1); + size_tree = DECL_SIZE (field); +- if (!DECL_BIT_FIELD (field)) ++ if (!DECL_BIT_FIELD (field) ++ /* Added for AVR32: ++ Bitfields with a size equal to a target storage ++ type might not cause DECL_BIT_FIELD to return ++ true since it can be optimized into a normal array ++ access operation. But for volatile bitfields we do ++ not allow this when targetm.narrow_volatile_bitfield () ++ is false. We can use DECL_C_BIT_FIELD to check if this ++ really is a c-bitfield. */ ++ && !(TREE_THIS_VOLATILE (exp) ++ && !targetm.narrow_volatile_bitfield () ++ && DECL_C_BIT_FIELD (field)) ) + mode = DECL_MODE (field); + else if (DECL_MODE (field) == BLKmode) + blkmode_bitfield = true; +@@ -7912,7 +7926,8 @@ expand_expr_real_1 (tree exp, rtx target + by doing the extract into an object as wide as the field + (which we know to be the width of a basic mode), then + storing into memory, and changing the mode to BLKmode. */ +- if (mode1 == VOIDmode ++ if ( ++ mode1 == VOIDmode + || REG_P (op0) || GET_CODE (op0) == SUBREG + || (mode1 != BLKmode && ! direct_load[(int) mode1] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT +--- a/gcc/function.c ++++ b/gcc/function.c +@@ -2810,7 +2810,11 @@ assign_parm_setup_reg (struct assign_par + assign_parm_remove_parallels (data); + + /* Copy the value into the register. */ +- if (data->nominal_mode != data->passed_mode ++ if ( (data->nominal_mode != data->passed_mode ++ /* Added for AVR32: If passed_mode is equal ++ to promoted nominal mode why should be convert? ++ The conversion should make no difference. */ ++ && data->passed_mode != promoted_nominal_mode) + || promoted_nominal_mode != data->promoted_mode) + { + int save_tree_used; +--- a/gcc/genemit.c ++++ b/gcc/genemit.c +@@ -121,6 +121,24 @@ max_operand_vec (rtx insn, int arg) + } + + static void ++gen_vararg_prologue(int operands) ++{ ++ int i; ++ ++ if (operands > 1) ++ { ++ for (i = 1; i < operands; i++) ++ printf(" rtx operand%d ATTRIBUTE_UNUSED;\n", i); ++ ++ printf(" va_list args;\n\n"); ++ printf(" va_start(args, operand0);\n"); ++ for (i = 1; i < operands; i++) ++ printf(" operand%d = va_arg(args, rtx);\n", i); ++ printf(" va_end(args);\n\n"); ++ } ++} ++ ++static void + print_code (RTX_CODE code) + { + const char *p1; +@@ -406,18 +424,16 @@ gen_insn (rtx insn, int lineno) + fatal ("match_dup operand number has no match_operand"); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (insn, 0)); ++ printf ("rtx\ngen_%s ", XSTR (insn, 0)); ++ + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d ATTRIBUTE_UNUSED", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("rtx operand%d ATTRIBUTE_UNUSED", i); +- else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); + printf ("{\n"); + ++ gen_vararg_prologue(operands); ++ + /* Output code to construct and return the rtl for the instruction body. */ + + if (XVECLEN (insn, 1) == 1) +@@ -461,16 +477,12 @@ gen_expand (rtx expand) + operands = max_operand_vec (expand, 1); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (expand, 0)); ++ printf ("rtx\ngen_%s ", XSTR (expand, 0)); + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d", i); +- else +- printf ("rtx operand%d", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); ++ + printf ("{\n"); + + /* If we don't have any C code to write, only one insn is being written, +@@ -480,6 +492,8 @@ gen_expand (rtx expand) + && operands > max_dup_opno + && XVECLEN (expand, 1) == 1) + { ++ gen_vararg_prologue(operands); ++ + printf (" return "); + gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL); + printf (";\n}\n\n"); +@@ -493,6 +507,7 @@ gen_expand (rtx expand) + for (; i <= max_scratch_opno; i++) + printf (" rtx operand%d ATTRIBUTE_UNUSED;\n", i); + printf (" rtx _val = 0;\n"); ++ gen_vararg_prologue(operands); + printf (" start_sequence ();\n"); + + /* The fourth operand of DEFINE_EXPAND is some code to be executed +--- a/gcc/genflags.c ++++ b/gcc/genflags.c +@@ -127,7 +127,6 @@ static void + gen_proto (rtx insn) + { + int num = num_operands (insn); +- int i; + const char *name = XSTR (insn, 0); + int truth = maybe_eval_c_test (XSTR (insn, 2)); + +@@ -158,12 +157,7 @@ gen_proto (rtx insn) + if (num == 0) + fputs ("void", stdout); + else +- { +- for (i = 1; i < num; i++) +- fputs ("rtx, ", stdout); +- +- fputs ("rtx", stdout); +- } ++ fputs("rtx, ...", stdout); + + puts (");"); + +@@ -173,12 +167,7 @@ gen_proto (rtx insn) + { + printf ("static inline rtx\ngen_%s", name); + if (num > 0) +- { +- putchar ('('); +- for (i = 0; i < num-1; i++) +- printf ("rtx ARG_UNUSED (%c), ", 'a' + i); +- printf ("rtx ARG_UNUSED (%c))\n", 'a' + i); +- } ++ puts("(rtx ARG_UNUSED(a), ...)"); + else + puts ("(void)"); + puts ("{\n return 0;\n}"); +--- a/gcc/genoutput.c ++++ b/gcc/genoutput.c +@@ -386,7 +386,7 @@ output_insn_data (void) + } + + if (d->name && d->name[0] != '*') +- printf (" (insn_gen_fn) gen_%s,\n", d->name); ++ printf (" gen_%s,\n", d->name); + else + printf (" 0,\n"); + +--- a/gcc/ifcvt.c ++++ b/gcc/ifcvt.c +@@ -84,7 +84,7 @@ static int num_possible_if_blocks; + static int num_updated_if_blocks; + + /* # of changes made. */ +-static int num_true_changes; ++int num_true_changes; + + /* Whether conditional execution changes were made. */ + static int cond_exec_changed_p; +@@ -290,6 +290,9 @@ cond_exec_process_insns (ce_if_block_t * + if (must_be_last) + return FALSE; + ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN ) ++#endif + if (modified_in_p (test, insn)) + { + if (!mod_ok) +@@ -570,15 +573,18 @@ cond_exec_process_if_block (ce_if_block_ + IFCVT_MODIFY_FINAL (ce_info); + #endif + ++ /* Merge the blocks! */ ++ if ( reload_completed ){ + /* Conversion succeeded. */ + if (dump_file) + fprintf (dump_file, "%d insn%s converted to conditional execution.\n", + n_insns, (n_insns == 1) ? " was" : "s were"); + +- /* Merge the blocks! */ + merge_if_block (ce_info); + cond_exec_changed_p = TRUE; + return TRUE; ++ } ++ return FALSE; + + fail: + #ifdef IFCVT_MODIFY_CANCEL +@@ -1087,7 +1093,11 @@ noce_try_addcc (struct noce_if_info *if_ + != UNKNOWN)) + { + rtx cond = if_info->cond; +- enum rtx_code code = reversed_comparison_code (cond, if_info->jump); ++ /* This generates wrong code for AVR32. The cond code need not be reversed ++ since the addmodecc patterns add if the condition is NOT met. */ ++ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/ ++ enum rtx_code code = GET_CODE(cond); ++ + + /* First try to use addcc pattern. */ + if (general_operand (XEXP (cond, 0), VOIDmode) +@@ -3039,7 +3049,12 @@ find_if_header (basic_block test_bb, int + && noce_find_if_block (test_bb, then_edge, else_edge, pass)) + goto success; + +- if (HAVE_conditional_execution && reload_completed ++ if (HAVE_conditional_execution && ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD) ++#else ++ reload_completed ++#endif + && cond_exec_find_if_block (&ce_info)) + goto success; + +@@ -3154,7 +3169,11 @@ cond_exec_find_if_block (struct ce_if_bl + + /* We only ever should get here after reload, + and only if we have conditional execution. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ gcc_assert (HAVE_conditional_execution && (reload_completed||IFCVT_COND_EXEC_BEFORE_RELOAD)); ++#else + gcc_assert (HAVE_conditional_execution && reload_completed); ++#endif + + /* Discover if any fall through predecessors of the current test basic block + were && tests (which jump to the else block) or || tests (which jump to +@@ -4259,6 +4278,14 @@ gate_handle_if_after_reload (void) + static unsigned int + rest_of_handle_if_after_reload (void) + { ++ /* Hack for the AVR32 experimental ifcvt processing before reload. ++ The AVR32 specific ifcvt code needs to know when ifcvt after reload ++ has begun. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ if ( IFCVT_COND_EXEC_BEFORE_RELOAD ) ++ cfun->machine->ifcvt_after_reload = 1; ++#endif ++ + if_convert (); + return 0; + } +--- a/gcc/longlong.h ++++ b/gcc/longlong.h +@@ -250,6 +250,41 @@ UDItype __umulsidi3 (USItype, USItype); + #define COUNT_LEADING_ZEROS_0 32 + #endif + ++#if defined (__avr32__) && W_TYPE_SIZE == 32 ++#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++ ++#if !defined (__AVR32_NO_MUL__) ++#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b)) ++ ++#define umul_ppmm(w1, w0, u, v) \ ++{ \ ++ DWunion __w; \ ++ __w.ll = __umulsidi3 (u, v); \ ++ w1 = __w.s.high; \ ++ w0 = __w.s.low; \ ++} ++#endif ++ ++#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X)) ++#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X)) ++#define COUNT_LEADING_ZEROS_0 32 ++#endif ++ + #if defined (__CRIS__) && __CRIS_arch_version >= 3 + #define count_leading_zeros(COUNT, X) ((COUNT) = __builtin_clz (X)) + #if __CRIS_arch_version >= 8 +--- a/gcc/optabs.h ++++ b/gcc/optabs.h +@@ -603,7 +603,7 @@ extern enum insn_code reload_out_optab[N + extern optab code_to_optab[NUM_RTX_CODE + 1]; + + +-typedef rtx (*rtxfun) (rtx); ++typedef rtx (*rtxfun) (rtx, ...); + + /* Indexed by the rtx-code for a conditional (e.g. EQ, LT,...) + gives the gen_function to make a branch to test that condition. */ +--- a/gcc/regrename.c ++++ b/gcc/regrename.c +@@ -1582,6 +1582,9 @@ copyprop_hardreg_forward_1 (basic_block + bool changed = false; + rtx insn; + ++ rtx prev_pred_test; ++ int prev_pred_insn_skipped = 0; ++ + for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) + { + int n_ops, i, alt, predicated; +@@ -1621,6 +1624,58 @@ copyprop_hardreg_forward_1 (basic_block + recog_data.operand_type[i] = OP_INOUT; + } + ++ ++ /* Added for targets (AVR32) which supports test operands to be modified ++ in cond_exec instruction. For these targets we cannot make a change to ++ the test operands if one of the test operands is an output operand This beacuse ++ changing the test operands might cause the need for inserting a new test ++ insns in the middle of a sequence of cond_exec insns and if the test operands ++ are modified these tests will fail. ++ */ ++ if ( IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ && predicated ) ++ { ++ int insn_skipped = 0; ++ rtx test = COND_EXEC_TEST (PATTERN (insn)); ++ ++ /* Check if the previous insn was a skipped predicated insn with the same ++ test as this predicated insns. If so we cannot do any modification to ++ this insn either since we cannot emit the test insn because the operands ++ are clobbered. */ ++ if ( prev_pred_insn_skipped ++ && (rtx_equal_p (test, prev_pred_test) ++ || rtx_equal_p (test, reversed_condition (prev_pred_test))) ) ++ { ++ insn_skipped = 1; ++ } ++ else ++ { ++ /* Check if the output operand is used in the test expression. */ ++ for (i = 0; i < n_ops; ++i) ++ if ( recog_data.operand_type[i] == OP_INOUT ++ && reg_mentioned_p (recog_data.operand[i], test) ) ++ { ++ insn_skipped = 1; ++ break; ++ } ++ ++ } ++ ++ prev_pred_test = test; ++ prev_pred_insn_skipped = insn_skipped; ++ if ( insn_skipped ) ++ { ++ if (insn == BB_END (bb)) ++ break; ++ else ++ continue; ++ } ++ } ++ else ++ { ++ prev_pred_insn_skipped = 0; ++ } ++ + /* For each earlyclobber operand, zap the value data. */ + for (i = 0; i < n_ops; i++) + if (recog_op_alt[i][alt].earlyclobber) +--- a/gcc/sched-deps.c ++++ b/gcc/sched-deps.c +@@ -1473,7 +1473,14 @@ fixup_sched_groups (rtx insn) + + prev_nonnote = prev_nonnote_insn (insn); + if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote) +- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote)) ++ /* Modification for AVR32 by RP: Why is this here, this will ++ cause instruction to be without any dependencies which might ++ cause it to be moved anywhere. For the AVR32 we try to keep ++ a group of conditionals together even if they are mutual exclusive. ++ */ ++ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote) ++ || GET_CODE (PATTERN (insn)) == COND_EXEC ) ++ ) + add_dependence (insn, prev_nonnote, REG_DEP_ANTI); + } + +@@ -2230,8 +2237,29 @@ sched_analyze_insn (struct deps *deps, r + + if (code == COND_EXEC) + { ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN) ++ { ++ /* Check if we have a group og conditional instructions with the same test. ++ If so we must make sure that they are not scheduled apart in order to ++ avoid unnecesarry tests and if one of the registers in the test is modified ++ in the instruction this is needed to ensure correct code. */ ++ if ( prev_nonnote_insn (insn) ++ && INSN_P (prev_nonnote_insn (insn)) ++ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0)) ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1)) ++ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x)) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn))) ++ { ++ SCHED_GROUP_P (insn) = 1; ++ //CANT_MOVE (prev_nonnote_insn (insn)) = 1; ++ } ++ } ++#endif + sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); + ++ + /* ??? Should be recording conditions so we reduce the number of + false dependencies. */ + x = COND_EXEC_CODE (x); +--- a/gcc/testsuite/gcc.dg/sibcall-3.c ++++ b/gcc/testsuite/gcc.dg/sibcall-3.c +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson <hp@bitrange.com> */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +--- a/gcc/testsuite/gcc.dg/sibcall-4.c ++++ b/gcc/testsuite/gcc.dg/sibcall-4.c +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson <hp@bitrange.com> */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +--- a/gcc/testsuite/gcc.dg/trampoline-1.c ++++ b/gcc/testsuite/gcc.dg/trampoline-1.c +@@ -47,6 +47,8 @@ void foo (void) + + int main (void) + { ++#ifndef NO_TRAMPOLINES + foo (); ++#endif + return 0; + } +--- a/libgcc/config.host ++++ b/libgcc/config.host +@@ -218,6 +218,13 @@ arm*-wince-pe*) + ;; + arm-*-pe*) + ;; ++avr32-*-linux*) ++ # No need to build crtbeginT.o on uClibc systems. Should probably be ++ # moved to the OS specific section above. ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ ;; ++avr32-*-*) ++ ;; + avr-*-rtems*) + ;; + avr-*-*) +--- a/libstdc++-v3/config/os/gnu-linux/ctype_base.h ++++ b/libstdc++-v3/config/os/gnu-linux/ctype_base.h +@@ -26,6 +26,8 @@ + // + // ISO C++ 14882: 22.1 Locales + // ++#include <features.h> ++#include <ctype.h> + + /** @file ctype_base.h + * This is an internal header file, included by other library headers. +@@ -40,7 +42,11 @@ _GLIBCXX_BEGIN_NAMESPACE(std) + struct ctype_base + { + // Non-standard typedefs. ++#ifdef __UCLIBC__ ++ typedef const __ctype_touplow_t* __to_type; ++#else + typedef const int* __to_type; ++#endif + + // NB: Offsets into ctype<char>::_M_table force a particular size + // on the mask type. Because of this, we don't use an enum. +--- a/libstdc++-v3/include/Makefile.in ++++ b/libstdc++-v3/include/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = include +--- a/libstdc++-v3/libsupc++/Makefile.in ++++ b/libstdc++-v3/libsupc++/Makefile.in +@@ -38,6 +38,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \ + $(srcdir)/Makefile.in $(top_srcdir)/fragment.am + subdir = libsupc++ +--- a/libstdc++-v3/Makefile.in ++++ b/libstdc++-v3/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/../config.guess \ + $(srcdir)/../config.sub README ChangeLog $(srcdir)/Makefile.in \ + $(srcdir)/Makefile.am $(top_srcdir)/configure \ +--- a/libstdc++-v3/po/Makefile.in ++++ b/libstdc++-v3/po/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = po +--- a/libstdc++-v3/src/Makefile.in ++++ b/libstdc++-v3/src/Makefile.in +@@ -37,6 +37,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = src diff --git a/toolchain/gcc/patches/4.4.5/931-avr32_disable_shifted_data_opt.patch b/toolchain/gcc/patches/4.4.5/931-avr32_disable_shifted_data_opt.patch new file mode 100644 index 0000000000..2003e97ae0 --- /dev/null +++ b/toolchain/gcc/patches/4.4.5/931-avr32_disable_shifted_data_opt.patch @@ -0,0 +1,32 @@ +--- a/gcc/config/avr32/avr32.c ++++ b/gcc/config/avr32/avr32.c +@@ -6726,7 +6726,28 @@ avr32_reorg_optimization (void) + } + } + +- if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ /* Disabled this optimization since it has a bug */ ++ /* In the case where the data instruction the shifted insn gets folded ++ * into is a branch destination, this breaks, i.e. ++ * ++ * add r8, r10, r8 << 2 ++ * 1: ++ * ld.w r11, r8[0] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * gets folded to: ++ * ++ * 1: ++ * ld.w r11, r10[r8 << 2] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * which is clearly wrong.. ++ */ ++ if (0 && TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) + { + + /* Scan through all insns looking for shifted add operations */ diff --git a/toolchain/gcc/patches/4.4.5/933-avr32_bug_7435.patch b/toolchain/gcc/patches/4.4.5/933-avr32_bug_7435.patch new file mode 100644 index 0000000000..021c62ecf0 --- /dev/null +++ b/toolchain/gcc/patches/4.4.5/933-avr32_bug_7435.patch @@ -0,0 +1,32 @@ +--- a/gcc/config/avr32/avr32.c ++++ b/gcc/config/avr32/avr32.c +@@ -222,14 +222,14 @@ void + avr32_override_options (void) + { + const struct part_type_s *part; +- const struct arch_type_s *arch; ++ const struct arch_type_s *arch, *part_arch; + + /*Add backward compability*/ + if (strcmp ("uc", avr32_arch_name)== 0) + { + fprintf (stderr, "Warning: Deprecated arch `%s' specified. " + "Please use '-march=ucr1' instead. " +- "Converting to arch 'ucr1'\n", ++ "Using arch 'ucr1'\n", + avr32_arch_name); + avr32_arch_name="ucr1"; + } +@@ -277,6 +277,12 @@ avr32_override_options (void) + if (!arch->name) + avr32_arch = &avr32_arch_types[avr32_part->arch_type]; + ++ /* When architecture implied by -mpart and one passed in -march are ++ * conflicting, issue an error message */ ++ part_arch = &avr32_arch_types[avr32_part->arch_type]; ++ if (strcmp("none",avr32_part_name) && strcmp("none", avr32_arch_name) && strcmp(avr32_arch_name,part_arch->name)) ++ error ("Conflicting architectures implied by -mpart and -march\n"); ++ + /* If optimization level is two or greater, then align start of loops to a + word boundary since this will allow folding the first insn of the loop. + Do this only for targets supporting branch prediction. */ diff --git a/toolchain/gcc/patches/4.4.5/934-avr32_bug_9675.patch b/toolchain/gcc/patches/4.4.5/934-avr32_bug_9675.patch new file mode 100644 index 0000000000..3690e2d04c --- /dev/null +++ b/toolchain/gcc/patches/4.4.5/934-avr32_bug_9675.patch @@ -0,0 +1,21 @@ +--- a/gcc/config/avr32/lib1funcs.S ++++ b/gcc/config/avr32/lib1funcs.S +@@ -1460,7 +1460,6 @@ __avr32_f64_cmp_lt: + 0: + ld.w r7, sp++ + popm pc, r12=0 +-#endif + + 3: + cp.w r7, 1 /* Check sign bit from r9 */ +@@ -1481,8 +1480,8 @@ __avr32_f64_cmp_lt: + reteq 0 /* Both operands are zero. Return false. */ + #endif + ret r12 +- +- ++#endif ++ + #if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) + .align 2 + diff --git a/toolchain/gcc/patches/4.4.5/999-coldfire.patch b/toolchain/gcc/patches/4.4.5/999-coldfire.patch index 2548fc7d2d..f7c6029b87 100644 --- a/toolchain/gcc/patches/4.4.5/999-coldfire.patch +++ b/toolchain/gcc/patches/4.4.5/999-coldfire.patch @@ -1,6 +1,6 @@ --- a/gcc/config.gcc +++ b/gcc/config.gcc -@@ -1506,6 +1506,7 @@ m68k-*-linux*) # Motorola m68k's runnin +@@ -1536,6 +1536,7 @@ m68k-*-linux*) # Motorola m68k's runnin if test x$sjlj != x1; then tmake_file="$tmake_file m68k/t-slibgcc-elf-ver" fi |