aboutsummaryrefslogtreecommitdiffstats
path: root/toolchain
diff options
context:
space:
mode:
authorImre Kaloz <kaloz@openwrt.org>2010-11-04 14:17:06 +0000
committerImre Kaloz <kaloz@openwrt.org>2010-11-04 14:17:06 +0000
commitb6539213ecc9c36eec5d155d456a8121ddb385d1 (patch)
tree9503686e994b2c3ad2016ddd466e8568ef31ed44 /toolchain
parent88b66099074eedbc462d5b5891c8b603f3f4fcd5 (diff)
downloadupstream-b6539213ecc9c36eec5d155d456a8121ddb385d1.tar.gz
upstream-b6539213ecc9c36eec5d155d456a8121ddb385d1.tar.bz2
upstream-b6539213ecc9c36eec5d155d456a8121ddb385d1.zip
[toolchain]: add avr32 support to gcc 4.3.5
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@23865 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'toolchain')
-rw-r--r--toolchain/gcc/patches/4.3.5/930-avr32_support.patch22388
-rw-r--r--toolchain/gcc/patches/4.3.5/939-avr32_fix_linux_build.patch25
-rw-r--r--toolchain/gcc/patches/4.3.5/940-avr32_fix_f32_to_f64.patch10
-rw-r--r--toolchain/gcc/patches/4.3.5/941-avr32_fix_f64_add.patch10
-rw-r--r--toolchain/gcc/patches/4.3.5/942-avr32_fix_32bit_div.patch34
-rw-r--r--toolchain/gcc/patches/4.3.5/943-avr32_fix_f64_cmp.patch66
-rw-r--r--toolchain/gcc/patches/4.3.5/944-avr32_fix_f64_div.patch20
-rw-r--r--toolchain/gcc/patches/4.3.5/945-avr32_fix_f64_to_f32.patch11
-rw-r--r--toolchain/gcc/patches/4.3.5/946-avr32_fix_32bit_div_2.patch27
-rw-r--r--toolchain/gcc/patches/4.3.5/995-short-enums.diff2
-rw-r--r--toolchain/gcc/patches/4.3.5/998-gcc-4.3.0-fix-header.00.patch2
-rw-r--r--toolchain/gcc/patches/4.3.5/999-coldfire.patch2
12 files changed, 22594 insertions, 3 deletions
diff --git a/toolchain/gcc/patches/4.3.5/930-avr32_support.patch b/toolchain/gcc/patches/4.3.5/930-avr32_support.patch
new file mode 100644
index 0000000000..e7b01769e8
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/930-avr32_support.patch
@@ -0,0 +1,22388 @@
+--- a/gcc/builtins.c
++++ b/gcc/builtins.c
+@@ -10779,7 +10779,7 @@
+
+ do
+ {
+- code = va_arg (ap, enum tree_code);
++ code = va_arg (ap, int);
+ switch (code)
+ {
+ case 0:
+--- a/gcc/calls.c
++++ b/gcc/calls.c
+@@ -3496,7 +3496,7 @@
+ for (; count < nargs; count++)
+ {
+ rtx val = va_arg (p, rtx);
+- enum machine_mode mode = va_arg (p, enum machine_mode);
++ enum machine_mode mode = va_arg (p, int);
+
+ /* We cannot convert the arg value to the mode the library wants here;
+ must do it earlier where we know the signedness of the arg. */
+--- a/gcc/config/avr32/avr32.c
++++ b/gcc/config/avr32/avr32.c
+@@ -0,0 +1,7858 @@
++/*
++ Target hooks and helper functions for AVR32.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++ Initial porting by Anders �dland.
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#include "config.h"
++#include "system.h"
++#include "coretypes.h"
++#include "tm.h"
++#include "rtl.h"
++#include "tree.h"
++#include "obstack.h"
++#include "regs.h"
++#include "hard-reg-set.h"
++#include "real.h"
++#include "insn-config.h"
++#include "conditions.h"
++#include "output.h"
++#include "insn-attr.h"
++#include "flags.h"
++#include "reload.h"
++#include "function.h"
++#include "expr.h"
++#include "optabs.h"
++#include "toplev.h"
++#include "recog.h"
++#include "ggc.h"
++#include "except.h"
++#include "c-pragma.h"
++#include "integrate.h"
++#include "tm_p.h"
++#include "langhooks.h"
++#include "hooks.h"
++#include "df.h"
++
++#include "target.h"
++#include "target-def.h"
++
++#include <ctype.h>
++
++/* Forward definitions of types. */
++typedef struct minipool_node Mnode;
++typedef struct minipool_fixup Mfix;
++
++/* Obstack for minipool constant handling. */
++static struct obstack minipool_obstack;
++static char *minipool_startobj;
++static rtx minipool_vector_label;
++
++/* True if we are currently building a constant table. */
++int making_const_table;
++
++/* Some forward function declarations */
++static unsigned long avr32_isr_value (tree);
++static unsigned long avr32_compute_func_type (void);
++static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *);
++static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *);
++static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args,
++ int flags, bool * no_add_attrs);
++static void avr32_reorg (void);
++bool avr32_return_in_msb (tree type);
++bool avr32_vector_mode_supported (enum machine_mode mode);
++static void avr32_init_libfuncs (void);
++
++
++static void
++avr32_add_gc_roots (void)
++{
++ gcc_obstack_init (&minipool_obstack);
++ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
++}
++
++
++/* List of all known AVR32 parts */
++static const struct part_type_s avr32_part_types[] = {
++ /* name, part_type, architecture type, macro */
++ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"},
++ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"},
++ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"},
++ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"},
++ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"},
++ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0128__"},
++ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0256__"},
++ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0512__"},
++ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A0512ES__"},
++ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1128__"},
++ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1256__"},
++ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1512__"},
++ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A1512ES__"},
++ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL, "__AVR32_UC3A3256S__"},
++ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364__"},
++ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364S__"},
++ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128__"},
++ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128S__"},
++ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256__"},
++ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256S__"},
++ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B064__"},
++ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0128__"},
++ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256__"},
++ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256ES__"},
++ {"uc3b0512revc", PART_TYPE_AVR32_UC3B0512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512REVC__"},
++ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B164__"},
++ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1128__"},
++ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256__"},
++ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256ES__"},
++ {"uc3b1512revc", PART_TYPE_AVR32_UC3B1512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512REVC__"},
++ {"uc3c0512c", PART_TYPE_AVR32_UC3C0512C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0512C__"},
++ {"uc3c0256c", PART_TYPE_AVR32_UC3C0256C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0256C__"},
++ {"uc3c0128c", PART_TYPE_AVR32_UC3C0128C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0128C__"},
++ {"uc3c064c", PART_TYPE_AVR32_UC3C064C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C064C__"},
++ {"uc3c1512c", PART_TYPE_AVR32_UC3C1512C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1512C__"},
++ {"uc3c1256c", PART_TYPE_AVR32_UC3C1256C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1256C__"},
++ {"uc3c1128c", PART_TYPE_AVR32_UC3C1128C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1128C__"},
++ {"uc3c164c", PART_TYPE_AVR32_UC3C164C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C164C__"},
++ {"uc3c2512c", PART_TYPE_AVR32_UC3C2512C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2512C__"},
++ {"uc3c2256c", PART_TYPE_AVR32_UC3C2256C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2256C__"},
++ {"uc3c2128c", PART_TYPE_AVR32_UC3C2128C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2128C__"},
++ {"uc3c264c", PART_TYPE_AVR32_UC3C264C, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C264C__"},
++ {"uc3l064", PART_TYPE_AVR32_UC3L064, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064__"},
++ {"uc3l032", PART_TYPE_AVR32_UC3L032, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L032__"},
++ {"uc3l016", PART_TYPE_AVR32_UC3L016, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L016__"},
++ {NULL, 0, 0, NULL}
++};
++
++/* List of all known AVR32 architectures */
++static const struct arch_type_s avr32_arch_types[] = {
++ /* name, architecture type, microarchitecture type, feature flags, macro */
++ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B,
++ (FLAG_AVR32_HAS_DSP
++ | FLAG_AVR32_HAS_SIMD
++ | FLAG_AVR32_HAS_UNALIGNED_WORD
++ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK
++ | FLAG_AVR32_HAS_CACHES),
++ "__AVR32_AP__"},
++ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A,
++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW),
++ "__AVR32_UC__=1"},
++ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A,
++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW
++ | FLAG_AVR32_HAS_V2_INSNS),
++ "__AVR32_UC__=2"},
++ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A,
++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW
++ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS),
++ "__AVR32_UC__=2"},
++ {"ucr3", ARCH_TYPE_AVR32_UCR3, UARCH_TYPE_AVR32A,
++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW
++ | FLAG_AVR32_HAS_V2_INSNS),
++ "__AVR32_UC__=3"},
++ {NULL, 0, 0, 0, NULL}
++};
++
++/* Default arch name */
++const char *avr32_arch_name = "none";
++const char *avr32_part_name = "none";
++
++const struct part_type_s *avr32_part;
++const struct arch_type_s *avr32_arch;
++
++
++/* Set default target_flags. */
++#undef TARGET_DEFAULT_TARGET_FLAGS
++#define TARGET_DEFAULT_TARGET_FLAGS \
++ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD)
++
++void
++avr32_optimization_options (int level,
++ int size){
++ if (AVR32_ALWAYS_PIC)
++ flag_pic = 1;
++
++ /* Enable section anchors if optimization is enabled. */
++ if (level > 0 || size)
++ flag_section_anchors = 1;
++}
++
++/* Override command line options */
++void
++avr32_override_options (void)
++{
++ const struct part_type_s *part;
++ const struct arch_type_s *arch;
++
++ /*Add backward compability*/
++ if (strcmp ("uc", avr32_arch_name)== 0)
++ {
++ fprintf (stderr, "Warning: Deprecated arch `%s' specified. "
++ "Please use '-march=ucr1' instead. "
++ "Converting to arch 'ucr1'\n",
++ avr32_arch_name);
++ avr32_arch_name="ucr1";
++ }
++
++ /* Check if arch type is set. */
++ for (arch = avr32_arch_types; arch->name; arch++)
++ {
++ if (strcmp (arch->name, avr32_arch_name) == 0)
++ break;
++ }
++ avr32_arch = arch;
++
++ if (!arch->name && strcmp("none", avr32_arch_name) != 0)
++ {
++ fprintf (stderr, "Unknown arch `%s' specified\n"
++ "Known arch names:\n"
++ "\tuc (deprecated)\n",
++ avr32_arch_name);
++ for (arch = avr32_arch_types; arch->name; arch++)
++ fprintf (stderr, "\t%s\n", arch->name);
++ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP];
++ }
++
++ /* Check if part type is set. */
++ for (part = avr32_part_types; part->name; part++)
++ if (strcmp (part->name, avr32_part_name) == 0)
++ break;
++
++ avr32_part = part;
++ if (!part->name)
++ {
++ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n",
++ avr32_part_name);
++ for (part = avr32_part_types; part->name; part++)
++ {
++ if (strcmp("none", part->name) != 0)
++ fprintf (stderr, "\t%s\n", part->name);
++ }
++ /* Set default to NONE*/
++ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE];
++ }
++
++ /* NB! option -march= overrides option -mpart
++ * if both are used at the same time */
++ if (!arch->name)
++ avr32_arch = &avr32_arch_types[avr32_part->arch_type];
++
++ /* If optimization level is two or greater, then align start of loops to a
++ word boundary since this will allow folding the first insn of the loop.
++ Do this only for targets supporting branch prediction. */
++ if (optimize >= 2 && TARGET_BRANCH_PRED)
++ align_loops = 2;
++
++
++ /* Enable fast-float library if unsafe math optimizations
++ are used. */
++ if (flag_unsafe_math_optimizations)
++ target_flags |= MASK_FAST_FLOAT;
++
++ /* Check if we should set avr32_imm_in_const_pool
++ based on if caches are present or not. */
++ if ( avr32_imm_in_const_pool == -1 )
++ {
++ if ( TARGET_CACHES )
++ avr32_imm_in_const_pool = 1;
++ else
++ avr32_imm_in_const_pool = 0;
++ }
++
++ if (TARGET_NO_PIC)
++ flag_pic = 0;
++
++ avr32_add_gc_roots ();
++}
++
++
++/*
++If defined, a function that outputs the assembler code for entry to a
++function. The prologue is responsible for setting up the stack frame,
++initializing the frame pointer register, saving registers that must be
++saved, and allocating size additional bytes of storage for the
++local variables. size is an integer. file is a stdio
++stream to which the assembler code should be output.
++
++The label for the beginning of the function need not be output by this
++macro. That has already been done when the macro is run.
++
++To determine which registers to save, the macro can refer to the array
++regs_ever_live: element r is nonzero if hard register
++r is used anywhere within the function. This implies the function
++prologue should save register r, provided it is not one of the
++call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use
++regs_ever_live.)
++
++On machines that have ``register windows'', the function entry code does
++not save on the stack the registers that are in the windows, even if
++they are supposed to be preserved by function calls; instead it takes
++appropriate steps to ``push'' the register stack, if any non-call-used
++registers are used in the function.
++
++On machines where functions may or may not have frame-pointers, the
++function entry code must vary accordingly; it must set up the frame
++pointer if one is wanted, and not otherwise. To determine whether a
++frame pointer is in wanted, the macro can refer to the variable
++frame_pointer_needed. The variable's value will be 1 at run
++time in a function that needs a frame pointer. (see Elimination).
++
++The function entry code is responsible for allocating any stack space
++required for the function. This stack space consists of the regions
++listed below. In most cases, these regions are allocated in the
++order listed, with the last listed region closest to the top of the
++stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and
++the highest address if it is not defined). You can use a different order
++for a machine if doing so is more convenient or required for
++compatibility reasons. Except in cases where required by standard
++or by a debugger, there is no reason why the stack layout used by GCC
++need agree with that used by other compilers for a machine.
++*/
++
++#undef TARGET_ASM_FUNCTION_PROLOGUE
++#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue
++
++
++#undef TARGET_DEFAULT_SHORT_ENUMS
++#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false
++
++#undef TARGET_PROMOTE_FUNCTION_ARGS
++#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
++
++#undef TARGET_PROMOTE_FUNCTION_RETURN
++#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
++
++#undef TARGET_PROMOTE_PROTOTYPES
++#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
++
++#undef TARGET_MUST_PASS_IN_STACK
++#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack
++
++#undef TARGET_PASS_BY_REFERENCE
++#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference
++
++#undef TARGET_STRICT_ARGUMENT_NAMING
++#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming
++
++#undef TARGET_VECTOR_MODE_SUPPORTED_P
++#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported
++
++#undef TARGET_RETURN_IN_MEMORY
++#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory
++
++#undef TARGET_RETURN_IN_MSB
++#define TARGET_RETURN_IN_MSB avr32_return_in_msb
++
++#undef TARGET_ARG_PARTIAL_BYTES
++#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes
++
++#undef TARGET_STRIP_NAME_ENCODING
++#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding
++
++#define streq(string1, string2) (strcmp (string1, string2) == 0)
++
++#undef TARGET_NARROW_VOLATILE_BITFIELD
++#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false
++
++#undef TARGET_ATTRIBUTE_TABLE
++#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table
++
++#undef TARGET_COMP_TYPE_ATTRIBUTES
++#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes
++
++
++#undef TARGET_RTX_COSTS
++#define TARGET_RTX_COSTS avr32_rtx_costs
++
++#undef TARGET_CANNOT_FORCE_CONST_MEM
++#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem
++
++#undef TARGET_ASM_INTEGER
++#define TARGET_ASM_INTEGER avr32_assemble_integer
++
++#undef TARGET_FUNCTION_VALUE
++#define TARGET_FUNCTION_VALUE avr32_function_value
++
++#undef TARGET_MIN_ANCHOR_OFFSET
++#define TARGET_MIN_ANCHOR_OFFSET (0)
++
++#undef TARGET_MAX_ANCHOR_OFFSET
++#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1)
++
++
++/*
++ * Switches to the appropriate section for output of constant pool
++ * entry x in mode. You can assume that x is some kind of constant in
++ * RTL. The argument mode is redundant except in the case of a
++ * const_int rtx. Select the section by calling readonly_data_ section
++ * or one of the alternatives for other sections. align is the
++ * constant alignment in bits.
++ *
++ * The default version of this function takes care of putting symbolic
++ * constants in flag_ pic mode in data_section and everything else in
++ * readonly_data_section.
++ */
++//#undef TARGET_ASM_SELECT_RTX_SECTION
++//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section
++
++
++/*
++ * If non-null, this hook performs a target-specific pass over the
++ * instruction stream. The compiler will run it at all optimization
++ * levels, just before the point at which it normally does
++ * delayed-branch scheduling.
++ *
++ * The exact purpose of the hook varies from target to target. Some
++ * use it to do transformations that are necessary for correctness,
++ * such as laying out in-function constant pools or avoiding hardware
++ * hazards. Others use it as an opportunity to do some
++ * machine-dependent optimizations.
++ *
++ * You need not implement the hook if it has nothing to do. The
++ * default definition is null.
++ */
++#undef TARGET_MACHINE_DEPENDENT_REORG
++#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg
++
++/* Target hook for assembling integer objects.
++ Need to handle integer vectors */
++static bool
++avr32_assemble_integer (rtx x, unsigned int size, int aligned_p)
++{
++ if (avr32_vector_mode_supported (GET_MODE (x)))
++ {
++ int i, units;
++
++ if (GET_CODE (x) != CONST_VECTOR)
++ abort ();
++
++ units = CONST_VECTOR_NUNITS (x);
++
++ switch (GET_MODE (x))
++ {
++ case V2HImode:
++ size = 2;
++ break;
++ case V4QImode:
++ size = 1;
++ break;
++ default:
++ abort ();
++ }
++
++ for (i = 0; i < units; i++)
++ {
++ rtx elt;
++
++ elt = CONST_VECTOR_ELT (x, i);
++ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1);
++ }
++
++ return true;
++ }
++
++ return default_assemble_integer (x, size, aligned_p);
++}
++
++/*
++ * This target hook describes the relative costs of RTL expressions.
++ *
++ * The cost may depend on the precise form of the expression, which is
++ * available for examination in x, and the rtx code of the expression
++ * in which it is contained, found in outer_code. code is the
++ * expression code--redundant, since it can be obtained with GET_CODE
++ * (x).
++ *
++ * In implementing this hook, you can use the construct COSTS_N_INSNS
++ * (n) to specify a cost equal to n fast instructions.
++ *
++ * On entry to the hook, *total contains a default estimate for the
++ * cost of the expression. The hook should modify this value as
++ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5)
++ * for multiplications, COSTS_N_INSNS (7) for division and modulus
++ * operations, and COSTS_N_INSNS (1) for all other operations.
++ *
++ * When optimizing for code size, i.e. when optimize_size is non-zero,
++ * this target hook should be used to estimate the relative size cost
++ * of an expression, again relative to COSTS_N_INSNS.
++ *
++ * The hook returns true when all subexpressions of x have been
++ * processed, and false when rtx_cost should recurse.
++ */
++
++/* Worker routine for avr32_rtx_costs. */
++static inline int
++avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED,
++ enum rtx_code outer ATTRIBUTE_UNUSED)
++{
++ enum machine_mode mode = GET_MODE (x);
++
++ switch (GET_CODE (x))
++ {
++ case MEM:
++ /* Using pre decrement / post increment memory operations on the
++ avr32_uc architecture means that two writebacks must be performed
++ and hence two cycles are needed. */
++ if (!optimize_size
++ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD
++ && TARGET_ARCH_UC
++ && (GET_CODE (XEXP (x, 0)) == PRE_DEC
++ || GET_CODE (XEXP (x, 0)) == POST_INC))
++ return COSTS_N_INSNS (5);
++
++ /* Memory costs quite a lot for the first word, but subsequent words
++ load at the equivalent of a single insn each. */
++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
++ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD));
++
++ return COSTS_N_INSNS (4);
++ case SYMBOL_REF:
++ case CONST:
++ /* These are valid for the pseudo insns: lda.w and call which operates
++ on direct addresses. We assume that the cost of a lda.w is the same
++ as the cost of a ld.w insn. */
++ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1);
++ case DIV:
++ case MOD:
++ case UDIV:
++ case UMOD:
++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
++
++ case ROTATE:
++ case ROTATERT:
++ if (mode == TImode)
++ return COSTS_N_INSNS (100);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (10);
++ return COSTS_N_INSNS (4);
++ case ASHIFT:
++ case LSHIFTRT:
++ case ASHIFTRT:
++ case NOT:
++ if (mode == TImode)
++ return COSTS_N_INSNS (10);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (4);
++ return COSTS_N_INSNS (1);
++ case PLUS:
++ case MINUS:
++ case NEG:
++ case COMPARE:
++ case ABS:
++ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
++ return COSTS_N_INSNS (100);
++
++ if (mode == TImode)
++ return COSTS_N_INSNS (50);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (2);
++ return COSTS_N_INSNS (1);
++
++ case MULT:
++ {
++ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
++ return COSTS_N_INSNS (300);
++
++ if (mode == TImode)
++ return COSTS_N_INSNS (16);
++
++ if (mode == DImode)
++ return COSTS_N_INSNS (4);
++
++ if (mode == HImode)
++ return COSTS_N_INSNS (2);
++
++ return COSTS_N_INSNS (3);
++ }
++ case IF_THEN_ELSE:
++ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
++ return COSTS_N_INSNS (4);
++ return COSTS_N_INSNS (1);
++ case SIGN_EXTEND:
++ case ZERO_EXTEND:
++ /* Sign/Zero extensions of registers cost quite much since these
++ instrcutions only take one register operand which means that gcc
++ often must insert some move instrcutions */
++ if (mode == QImode || mode == HImode)
++ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1));
++ return COSTS_N_INSNS (4);
++ case UNSPEC:
++ /* divmod operations */
++ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL
++ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL)
++ {
++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
++ }
++ /* Fallthrough */
++ default:
++ return COSTS_N_INSNS (1);
++ }
++}
++
++static bool
++avr32_rtx_costs (rtx x, int code, int outer_code, int *total)
++{
++ *total = avr32_rtx_costs_1 (x, code, outer_code);
++ return true;
++}
++
++
++bool
++avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
++{
++ /* Do not want symbols in the constant pool when compiling pic or if using
++ address pseudo instructions. */
++ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
++ && avr32_find_symbol (x) != NULL_RTX);
++}
++
++
++/* Table of machine attributes. */
++const struct attribute_spec avr32_attribute_table[] = {
++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
++ /* Interrupt Service Routines have special prologue and epilogue
++ requirements. */
++ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute},
++ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute},
++ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute},
++ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute},
++ {NULL, 0, 0, false, false, false, NULL}
++};
++
++
++typedef struct
++{
++ const char *const arg;
++ const unsigned long return_value;
++}
++isr_attribute_arg;
++
++static const isr_attribute_arg isr_attribute_args[] = {
++ {"FULL", AVR32_FT_ISR_FULL},
++ {"full", AVR32_FT_ISR_FULL},
++ {"HALF", AVR32_FT_ISR_HALF},
++ {"half", AVR32_FT_ISR_HALF},
++ {"NONE", AVR32_FT_ISR_NONE},
++ {"none", AVR32_FT_ISR_NONE},
++ {"UNDEF", AVR32_FT_ISR_NONE},
++ {"undef", AVR32_FT_ISR_NONE},
++ {"SWI", AVR32_FT_ISR_NONE},
++ {"swi", AVR32_FT_ISR_NONE},
++ {NULL, AVR32_FT_ISR_NONE}
++};
++
++/* Returns the (interrupt) function type of the current
++ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */
++
++static unsigned long
++avr32_isr_value (tree argument)
++{
++ const isr_attribute_arg *ptr;
++ const char *arg;
++
++ /* No argument - default to ISR_NONE. */
++ if (argument == NULL_TREE)
++ return AVR32_FT_ISR_NONE;
++
++ /* Get the value of the argument. */
++ if (TREE_VALUE (argument) == NULL_TREE
++ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
++ return AVR32_FT_UNKNOWN;
++
++ arg = TREE_STRING_POINTER (TREE_VALUE (argument));
++
++ /* Check it against the list of known arguments. */
++ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
++ if (streq (arg, ptr->arg))
++ return ptr->return_value;
++
++ /* An unrecognized interrupt type. */
++ return AVR32_FT_UNKNOWN;
++}
++
++
++
++/*
++These hooks specify assembly directives for creating certain kinds
++of integer object. The TARGET_ASM_BYTE_OP directive creates a
++byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an
++aligned two-byte object, and so on. Any of the hooks may be
++NULL, indicating that no suitable directive is available.
++
++The compiler will print these strings at the start of a new line,
++followed immediately by the object's initial value. In most cases,
++the string should contain a tab, a pseudo-op, and then another tab.
++*/
++#undef TARGET_ASM_BYTE_OP
++#define TARGET_ASM_BYTE_OP "\t.byte\t"
++#undef TARGET_ASM_ALIGNED_HI_OP
++#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t"
++#undef TARGET_ASM_ALIGNED_SI_OP
++#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t"
++#undef TARGET_ASM_ALIGNED_DI_OP
++#define TARGET_ASM_ALIGNED_DI_OP NULL
++#undef TARGET_ASM_ALIGNED_TI_OP
++#define TARGET_ASM_ALIGNED_TI_OP NULL
++#undef TARGET_ASM_UNALIGNED_HI_OP
++#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
++#undef TARGET_ASM_UNALIGNED_SI_OP
++#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t"
++#undef TARGET_ASM_UNALIGNED_DI_OP
++#define TARGET_ASM_UNALIGNED_DI_OP NULL
++#undef TARGET_ASM_UNALIGNED_TI_OP
++#define TARGET_ASM_UNALIGNED_TI_OP NULL
++
++#undef TARGET_ASM_OUTPUT_MI_THUNK
++#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk
++
++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
++
++static void
++avr32_output_mi_thunk (FILE * file,
++ tree thunk ATTRIBUTE_UNUSED,
++ HOST_WIDE_INT delta,
++ HOST_WIDE_INT vcall_offset, tree function)
++ {
++ int mi_delta = delta;
++ int this_regno =
++ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ?
++ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12));
++
++
++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
++ || vcall_offset)
++ {
++ fputs ("\tpushm\tlr\n", file);
++ }
++
++
++ if (mi_delta != 0)
++ {
++ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21"))
++ {
++ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta);
++ }
++ else
++ {
++ /* Immediate is larger than k21 we must make us a temp register by
++ pushing a register to the stack. */
++ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta);
++ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta);
++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
++ }
++ }
++
++
++ if (vcall_offset != 0)
++ {
++ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]);
++ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset);
++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
++ }
++
++
++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
++ || vcall_offset)
++ {
++ fputs ("\tpopm\tlr\n", file);
++ }
++
++ /* Jump to the function. We assume that we can use an rjmp since the
++ function to jump to is local and probably not too far away from
++ the thunk. If this assumption proves to be wrong we could implement
++ this jump by calculating the offset between the jump source and destination
++ and put this in the constant pool and then perform an add to pc.
++ This would also be legitimate PIC code. But for now we hope that an rjmp
++ will be sufficient...
++ */
++ fputs ("\trjmp\t", file);
++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
++ fputc ('\n', file);
++ }
++
++
++/* Implements target hook vector_mode_supported. */
++bool
++avr32_vector_mode_supported (enum machine_mode mode)
++{
++ if ((mode == V2HImode) || (mode == V4QImode))
++ return true;
++
++ return false;
++}
++
++
++#undef TARGET_INIT_LIBFUNCS
++#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs
++
++#undef TARGET_INIT_BUILTINS
++#define TARGET_INIT_BUILTINS avr32_init_builtins
++
++#undef TARGET_EXPAND_BUILTIN
++#define TARGET_EXPAND_BUILTIN avr32_expand_builtin
++
++tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int,
++ void_ftype_ptr_int;
++tree void_ftype_int, void_ftype_void, int_ftype_ptr_int;
++tree short_ftype_short, int_ftype_int_short, int_ftype_short_short,
++ short_ftype_short_short;
++tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short;
++tree void_ftype_int_int_int_int_int, void_ftype_int_int_int;
++tree longlong_ftype_int_int, void_ftype_int_int_longlong;
++tree int_ftype_int_int_int, longlong_ftype_longlong_int_short;
++tree longlong_ftype_longlong_short_short, int_ftype_int_short_short;
++
++#define def_builtin(NAME, TYPE, CODE) \
++ add_builtin_function ((NAME), (TYPE), (CODE), \
++ BUILT_IN_MD, NULL, NULL_TREE)
++
++#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
++ do \
++ { \
++ if ((MASK)) \
++ add_builtin_function ((NAME), (TYPE), (CODE), \
++ BUILT_IN_MD, NULL, NULL_TREE); \
++ } \
++ while (0)
++
++struct builtin_description
++{
++ const unsigned int mask;
++ const enum insn_code icode;
++ const char *const name;
++ const int code;
++ const enum rtx_code comparison;
++ const unsigned int flag;
++ const tree *ftype;
++};
++
++static const struct builtin_description bdesc_2arg[] = {
++#define DSP_BUILTIN(code, builtin, ftype) \
++ { 1, CODE_FOR_##code, "__builtin_" #code , \
++ AVR32_BUILTIN_##builtin, 0, 0, ftype }
++
++ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short),
++ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short),
++ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short),
++ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short),
++ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short),
++ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short),
++ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short),
++ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int),
++ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int),
++ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short),
++ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short)
++};
++
++
++void
++avr32_init_builtins (void)
++{
++ unsigned int i;
++ const struct builtin_description *d;
++ tree endlink = void_list_node;
++ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink);
++ tree longlong_endlink =
++ tree_cons (NULL_TREE, long_long_integer_type_node, endlink);
++ tree short_endlink =
++ tree_cons (NULL_TREE, short_integer_type_node, endlink);
++ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink);
++
++ /* int func (int) */
++ int_ftype_int = build_function_type (integer_type_node, int_endlink);
++
++ /* short func (short) */
++ short_ftype_short
++ = build_function_type (short_integer_type_node, short_endlink);
++
++ /* short func (short, short) */
++ short_ftype_short_short
++ = build_function_type (short_integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* long long func (long long, short, short) */
++ longlong_ftype_longlong_short_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, long_long_integer_type_node,
++ tree_cons (NULL_TREE,
++ short_integer_type_node,
++ short_endlink)));
++
++ /* long long func (short, short) */
++ longlong_ftype_short_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* int func (int, int) */
++ int_ftype_int_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* long long func (int, int) */
++ longlong_ftype_int_int
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* long long int func (long long, int, short) */
++ longlong_ftype_longlong_int_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink)));
++
++ /* long long int func (int, short) */
++ longlong_ftype_int_short
++ = build_function_type (long_long_integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink));
++
++ /* int func (int, short, short) */
++ int_ftype_int_short_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE,
++ short_integer_type_node,
++ short_endlink)));
++
++ /* int func (short, short) */
++ int_ftype_short_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, short_integer_type_node,
++ short_endlink));
++
++ /* int func (int, short) */
++ int_ftype_int_short
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ short_endlink));
++
++ /* void func (int, int) */
++ void_ftype_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink));
++
++ /* void func (int, int, int) */
++ void_ftype_int_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink)));
++
++ /* void func (int, int, long long) */
++ void_ftype_int_int_longlong
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ longlong_endlink)));
++
++ /* void func (int, int, int, int, int) */
++ void_ftype_int_int_int_int_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE,
++ integer_type_node,
++ tree_cons
++ (NULL_TREE,
++ integer_type_node,
++ int_endlink)))));
++
++ /* void func (void *, int) */
++ void_ftype_ptr_int
++ = build_function_type (void_type_node,
++ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
++
++ /* void func (int) */
++ void_ftype_int = build_function_type (void_type_node, int_endlink);
++
++ /* void func (void) */
++ void_ftype_void = build_function_type (void_type_node, void_endlink);
++
++ /* int func (void) */
++ int_ftype_void = build_function_type (integer_type_node, void_endlink);
++
++ /* int func (void *, int) */
++ int_ftype_ptr_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
++
++ /* int func (int, int, int) */
++ int_ftype_int_int_int
++ = build_function_type (integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ tree_cons (NULL_TREE, integer_type_node,
++ int_endlink)));
++
++ /* Initialize avr32 builtins. */
++ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR);
++ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR);
++ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR);
++ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR);
++ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE);
++ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC);
++ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF);
++ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF);
++ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR);
++ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS);
++ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW);
++ def_builtin ("__builtin_breakpoint", void_ftype_void,
++ AVR32_BUILTIN_BREAKPOINT);
++ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG);
++ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI);
++ def_builtin ("__builtin_bswap_16", short_ftype_short,
++ AVR32_BUILTIN_BSWAP16);
++ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32);
++ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int,
++ AVR32_BUILTIN_COP);
++ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W);
++ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int,
++ AVR32_BUILTIN_MVRC_W);
++ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int,
++ AVR32_BUILTIN_MVCR_D);
++ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong,
++ AVR32_BUILTIN_MVRC_D);
++ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS);
++ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU);
++ def_builtin ("__builtin_satrnds", int_ftype_int_int_int,
++ AVR32_BUILTIN_SATRNDS);
++ def_builtin ("__builtin_satrndu", int_ftype_int_int_int,
++ AVR32_BUILTIN_SATRNDU);
++ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR);
++ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR);
++ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short,
++ AVR32_BUILTIN_MACSATHH_W);
++ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short,
++ AVR32_BUILTIN_MACWH_D);
++ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short,
++ AVR32_BUILTIN_MACHH_D);
++
++ /* Add all builtins that are more or less simple operations on two
++ operands. */
++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
++ {
++ /* Use one of the operands; the target can have a different mode for
++ mask-generating compares. */
++
++ if (d->name == 0)
++ continue;
++
++ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code);
++ }
++}
++
++
++/* Subroutine of avr32_expand_builtin to take care of binop insns. */
++
++static rtx
++avr32_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
++{
++ rtx pat;
++ tree arg0 = CALL_EXPR_ARG (exp,0);
++ tree arg1 = CALL_EXPR_ARG (exp,1);
++ rtx op0 = expand_normal (arg0);
++ rtx op1 = expand_normal (arg1);
++ enum machine_mode tmode = insn_data[icode].operand[0].mode;
++ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
++ enum machine_mode mode1 = insn_data[icode].operand[2].mode;
++
++ if (!target
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ /* In case the insn wants input operands in modes different from the
++ result, abort. */
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ /* If op0 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op0))
++ op0 = convert_to_mode (mode0, op0, 1);
++ else
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op1))
++ op1 = convert_to_mode (mode1, op1, 1);
++ else
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++}
++
++/* Expand an expression EXP that calls a built-in function,
++ with result going to TARGET if that's convenient
++ (and in mode MODE if that's convenient).
++ SUBTARGET may be used as the target for computing one of EXP's operands.
++ IGNORE is nonzero if the value is to be ignored. */
++
++rtx
++avr32_expand_builtin (tree exp,
++ rtx target,
++ rtx subtarget ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ int ignore ATTRIBUTE_UNUSED)
++{
++ const struct builtin_description *d;
++ unsigned int i;
++ enum insn_code icode = 0;
++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
++ tree arg0, arg1, arg2;
++ rtx op0, op1, op2, pat;
++ enum machine_mode tmode, mode0, mode1;
++ enum machine_mode arg0_mode;
++ int fcode = DECL_FUNCTION_CODE (fndecl);
++
++ switch (fcode)
++ {
++ default:
++ break;
++
++ case AVR32_BUILTIN_SATS:
++ case AVR32_BUILTIN_SATU:
++ case AVR32_BUILTIN_SATRNDS:
++ case AVR32_BUILTIN_SATRNDU:
++ {
++ const char *fname;
++ switch (fcode)
++ {
++ default:
++ case AVR32_BUILTIN_SATS:
++ icode = CODE_FOR_sats;
++ fname = "sats";
++ break;
++ case AVR32_BUILTIN_SATU:
++ icode = CODE_FOR_satu;
++ fname = "satu";
++ break;
++ case AVR32_BUILTIN_SATRNDS:
++ icode = CODE_FOR_satrnds;
++ fname = "satrnds";
++ break;
++ case AVR32_BUILTIN_SATRNDU:
++ icode = CODE_FOR_satrndu;
++ fname = "satrndu";
++ break;
++ }
++
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ arg2 = CALL_EXPR_ARG (exp,2);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ op2 = expand_normal (arg2);
++
++ tmode = insn_data[icode].operand[0].mode;
++
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0)))
++ {
++ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0);
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error ("Parameter 2 to __builtin_%s should be a constant number.",
++ fname);
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode))
++ {
++ error ("Parameter 3 to __builtin_%s should be a constant number.",
++ fname);
++ return NULL_RTX;
++ }
++
++ emit_move_insn (target, op0);
++ pat = GEN_FCN (icode) (target, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MUSTR:
++ icode = CODE_FOR_mustr;
++ tmode = insn_data[icode].operand[0].mode;
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++
++ case AVR32_BUILTIN_MFSR:
++ icode = CODE_FOR_mfsr;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ op0 = expand_normal (arg0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mfsr must be a constant number");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_MTSR:
++ icode = CODE_FOR_mtsr;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mtsr must be a constant number");
++ return gen_reg_rtx (mode0);
++ }
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ op1 = copy_to_mode_reg (mode1, op1);
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_MFDR:
++ icode = CODE_FOR_mfdr;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ op0 = expand_normal (arg0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mfdr must be a constant number");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_MTDR:
++ icode = CODE_FOR_mtdr;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ error ("Parameter 1 to __builtin_mtdr must be a constant number");
++ return gen_reg_rtx (mode0);
++ }
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ op1 = copy_to_mode_reg (mode1, op1);
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_CACHE:
++ icode = CODE_FOR_cache;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ mode0 = insn_data[icode].operand[0].mode;
++ mode1 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
++ {
++ error ("Parameter 2 to __builtin_cache must be a constant number");
++ return gen_reg_rtx (mode1);
++ }
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ op0 = copy_to_mode_reg (mode0, op0);
++
++ pat = GEN_FCN (icode) (op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_SYNC:
++ case AVR32_BUILTIN_MUSFR:
++ case AVR32_BUILTIN_SSRF:
++ case AVR32_BUILTIN_CSRF:
++ {
++ const char *fname;
++ switch (fcode)
++ {
++ default:
++ case AVR32_BUILTIN_SYNC:
++ icode = CODE_FOR_sync;
++ fname = "sync";
++ break;
++ case AVR32_BUILTIN_MUSFR:
++ icode = CODE_FOR_musfr;
++ fname = "musfr";
++ break;
++ case AVR32_BUILTIN_SSRF:
++ icode = CODE_FOR_ssrf;
++ fname = "ssrf";
++ break;
++ case AVR32_BUILTIN_CSRF:
++ icode = CODE_FOR_csrf;
++ fname = "csrf";
++ break;
++ }
++
++ arg0 = CALL_EXPR_ARG (exp,0);
++ op0 = expand_normal (arg0);
++ mode0 = insn_data[icode].operand[0].mode;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
++ {
++ if (icode == CODE_FOR_musfr)
++ op0 = copy_to_mode_reg (mode0, op0);
++ else
++ {
++ error ("Parameter to __builtin_%s is illegal.", fname);
++ return gen_reg_rtx (mode0);
++ }
++ }
++ pat = GEN_FCN (icode) (op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ }
++ case AVR32_BUILTIN_TLBR:
++ icode = CODE_FOR_tlbr;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_TLBS:
++ icode = CODE_FOR_tlbs;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_TLBW:
++ icode = CODE_FOR_tlbw;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_BREAKPOINT:
++ icode = CODE_FOR_breakpoint;
++ pat = GEN_FCN (icode) (NULL_RTX);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return NULL_RTX;
++ case AVR32_BUILTIN_XCHG:
++ icode = CODE_FOR_sync_lock_test_and_setsi;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++
++ op0 = force_reg (GET_MODE (op0), op0);
++ op0 = gen_rtx_MEM (GET_MODE (op0), op0);
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ error
++ ("Parameter 1 to __builtin_xchg must be a pointer to an integer.");
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_LDXI:
++ icode = CODE_FOR_ldxi;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ arg2 = CALL_EXPR_ARG (exp,2);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ op2 = expand_normal (arg2);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
++ {
++ op1 = copy_to_mode_reg (mode1, op1);
++ }
++
++ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode))
++ {
++ error
++ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)");
++ return gen_reg_rtx (mode0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ pat = GEN_FCN (icode) (target, op0, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ case AVR32_BUILTIN_BSWAP16:
++ {
++ icode = CODE_FOR_bswap_16;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
++ mode0 = insn_data[icode].operand[1].mode;
++ if (arg0_mode != mode0)
++ arg0 = build1 (NOP_EXPR,
++ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0);
++
++ op0 = expand_expr (arg0, NULL_RTX, HImode, 0);
++ tmode = insn_data[icode].operand[0].mode;
++
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ if ( CONST_INT_P (op0) )
++ {
++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) |
++ ((INTVAL (op0)&0xff00) >> 8) );
++ /* Sign extend 16-bit value to host wide int */
++ val <<= (HOST_BITS_PER_WIDE_INT - 16);
++ val >>= (HOST_BITS_PER_WIDE_INT - 16);
++ op0 = GEN_INT(val);
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ emit_move_insn(target, op0);
++ return target;
++ }
++ else
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ {
++ target = gen_reg_rtx (tmode);
++ }
++
++
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_BSWAP32:
++ {
++ icode = CODE_FOR_bswap_32;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ op0 = expand_normal (arg0);
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ {
++ if ( CONST_INT_P (op0) )
++ {
++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) |
++ ((INTVAL (op0)&0x0000ff00) << 8) |
++ ((INTVAL (op0)&0x00ff0000) >> 8) |
++ ((INTVAL (op0)&0xff000000) >> 24) );
++ /* Sign extend 32-bit value to host wide int */
++ val <<= (HOST_BITS_PER_WIDE_INT - 32);
++ val >>= (HOST_BITS_PER_WIDE_INT - 32);
++ op0 = GEN_INT(val);
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++ emit_move_insn(target, op0);
++ return target;
++ }
++ else
++ op0 = copy_to_mode_reg (mode0, op0);
++ }
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MVCR_W:
++ case AVR32_BUILTIN_MVCR_D:
++ {
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++
++ if (fcode == AVR32_BUILTIN_MVCR_W)
++ icode = CODE_FOR_mvcrsi;
++ else
++ icode = CODE_FOR_mvcrdi;
++
++ tmode = insn_data[icode].operand[0].mode;
++
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode))
++ {
++ error
++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode))
++ {
++ error
++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ pat = GEN_FCN (icode) (target, op0, op1);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++ case AVR32_BUILTIN_MACSATHH_W:
++ case AVR32_BUILTIN_MACWH_D:
++ case AVR32_BUILTIN_MACHH_D:
++ {
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ arg2 = CALL_EXPR_ARG (exp,2);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ op2 = expand_normal (arg2);
++
++ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w :
++ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d :
++ CODE_FOR_machh_d);
++
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++ mode1 = insn_data[icode].operand[2].mode;
++
++
++ if (!target
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode))
++ {
++ /* If op0 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op0))
++ op0 = convert_to_mode (tmode, op0, 1);
++ else
++ op0 = copy_to_mode_reg (tmode, op0);
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op1))
++ op1 = convert_to_mode (mode0, op1, 1);
++ else
++ op1 = copy_to_mode_reg (mode0, op1);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1))
++ {
++ /* If op1 is already a reg we must cast it to the correct mode. */
++ if (REG_P (op2))
++ op2 = convert_to_mode (mode1, op2, 1);
++ else
++ op2 = copy_to_mode_reg (mode1, op2);
++ }
++
++ emit_move_insn (target, op0);
++
++ pat = GEN_FCN (icode) (target, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++ return target;
++ }
++ case AVR32_BUILTIN_MVRC_W:
++ case AVR32_BUILTIN_MVRC_D:
++ {
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ arg2 = CALL_EXPR_ARG (exp,2);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ op2 = expand_normal (arg2);
++
++ if (fcode == AVR32_BUILTIN_MVRC_W)
++ icode = CODE_FOR_mvrcsi;
++ else
++ icode = CODE_FOR_mvrcdi;
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
++ {
++ error ("Parameter 1 is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error ("Parameter 2 is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (GET_CODE (op2) == CONST_INT
++ || GET_CODE (op2) == CONST
++ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF)
++ {
++ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2);
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2)))
++ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
++
++
++ pat = GEN_FCN (icode) (op0, op1, op2);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return NULL_RTX;
++ }
++ case AVR32_BUILTIN_COP:
++ {
++ rtx op3, op4;
++ tree arg3, arg4;
++ icode = CODE_FOR_cop;
++ arg0 = CALL_EXPR_ARG (exp,0);
++ arg1 = CALL_EXPR_ARG (exp,1);
++ arg2 = CALL_EXPR_ARG (exp,2);
++ arg3 = CALL_EXPR_ARG (exp,3);
++ arg4 = CALL_EXPR_ARG (exp,4);
++ op0 = expand_normal (arg0);
++ op1 = expand_normal (arg1);
++ op2 = expand_normal (arg2);
++ op3 = expand_normal (arg3);
++ op4 = expand_normal (arg4);
++
++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
++ {
++ error
++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
++ error ("Number should be between 0 and 7.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
++ {
++ error
++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode))
++ {
++ error
++ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode))
++ {
++ error
++ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number.");
++ error ("Number should be between 0 and 15.");
++ return NULL_RTX;
++ }
++
++ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode))
++ {
++ error
++ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation.");
++ error ("Number should be between 0 and 127.");
++ return NULL_RTX;
++ }
++
++ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++ }
++
++ }
++
++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
++ if (d->code == fcode)
++ return avr32_expand_binop_builtin (d->icode, exp, target);
++
++
++ /* @@@ Should really do something sensible here. */
++ return NULL_RTX;
++}
++
++
++/* Handle an "interrupt" or "isr" attribute;
++ arguments as in struct attribute_spec.handler. */
++
++static tree
++avr32_handle_isr_attribute (tree * node, tree name, tree args,
++ int flags, bool * no_add_attrs)
++{
++ if (DECL_P (*node))
++ {
++ if (TREE_CODE (*node) != FUNCTION_DECL)
++ {
++ warning (OPT_Wattributes,"`%s' attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++ /* FIXME: the argument if any is checked for type attributes; should it
++ be checked for decl ones? */
++ }
++ else
++ {
++ if (TREE_CODE (*node) == FUNCTION_TYPE
++ || TREE_CODE (*node) == METHOD_TYPE)
++ {
++ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN)
++ {
++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++ }
++ else if (TREE_CODE (*node) == POINTER_TYPE
++ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
++ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
++ && avr32_isr_value (args) != AVR32_FT_UNKNOWN)
++ {
++ *node = build_variant_type_copy (*node);
++ TREE_TYPE (*node) = build_type_attribute_variant
++ (TREE_TYPE (*node),
++ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
++ *no_add_attrs = true;
++ }
++ else
++ {
++ /* Possibly pass this attribute on from the type to a decl. */
++ if (flags & ((int) ATTR_FLAG_DECL_NEXT
++ | (int) ATTR_FLAG_FUNCTION_NEXT
++ | (int) ATTR_FLAG_ARRAY_NEXT))
++ {
++ *no_add_attrs = true;
++ return tree_cons (name, args, NULL_TREE);
++ }
++ else
++ {
++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name));
++ }
++ }
++ }
++
++ return NULL_TREE;
++}
++
++/* Handle an attribute requiring a FUNCTION_DECL;
++ arguments as in struct attribute_spec.handler. */
++static tree
++avr32_handle_fndecl_attribute (tree * node, tree name,
++ tree args ATTRIBUTE_UNUSED,
++ int flags ATTRIBUTE_UNUSED,
++ bool * no_add_attrs)
++{
++ if (TREE_CODE (*node) != FUNCTION_DECL)
++ {
++ warning (OPT_Wattributes,"%qs attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++
++ return NULL_TREE;
++}
++
++
++/* Handle an acall attribute;
++ arguments as in struct attribute_spec.handler. */
++
++static tree
++avr32_handle_acall_attribute (tree * node, tree name,
++ tree args ATTRIBUTE_UNUSED,
++ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
++{
++ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE)
++ {
++ warning (OPT_Wattributes,"`%s' attribute not yet supported...",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ return NULL_TREE;
++ }
++
++ warning (OPT_Wattributes,"`%s' attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ return NULL_TREE;
++}
++
++
++/* Return 0 if the attributes for two types are incompatible, 1 if they
++ are compatible, and 2 if they are nearly compatible (which causes a
++ warning to be generated). */
++
++static int
++avr32_comp_type_attributes (tree type1, tree type2)
++{
++ int acall1, acall2, isr1, isr2, naked1, naked2;
++
++ /* Check for mismatch of non-default calling convention. */
++ if (TREE_CODE (type1) != FUNCTION_TYPE)
++ return 1;
++
++ /* Check for mismatched call attributes. */
++ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL;
++ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL;
++ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL;
++ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL;
++ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
++ if (!isr1)
++ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
++
++ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
++ if (!isr2)
++ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
++
++ if ((acall1 && isr2)
++ || (acall2 && isr1) || (naked1 && isr2) || (naked2 && isr1))
++ return 0;
++
++ return 1;
++}
++
++
++/* Computes the type of the current function. */
++
++static unsigned long
++avr32_compute_func_type (void)
++{
++ unsigned long type = AVR32_FT_UNKNOWN;
++ tree a;
++ tree attr;
++
++ if (TREE_CODE (current_function_decl) != FUNCTION_DECL)
++ abort ();
++
++ /* Decide if the current function is volatile. Such functions never
++ return, and many memory cycles can be saved by not storing register
++ values that will never be needed again. This optimization was added to
++ speed up context switching in a kernel application. */
++ if (optimize > 0
++ && TREE_NOTHROW (current_function_decl)
++ && TREE_THIS_VOLATILE (current_function_decl))
++ type |= AVR32_FT_VOLATILE;
++
++ if (cfun->static_chain_decl != NULL)
++ type |= AVR32_FT_NESTED;
++
++ attr = DECL_ATTRIBUTES (current_function_decl);
++
++ a = lookup_attribute ("isr", attr);
++ if (a == NULL_TREE)
++ a = lookup_attribute ("interrupt", attr);
++
++ if (a == NULL_TREE)
++ type |= AVR32_FT_NORMAL;
++ else
++ type |= avr32_isr_value (TREE_VALUE (a));
++
++
++ a = lookup_attribute ("acall", attr);
++ if (a != NULL_TREE)
++ type |= AVR32_FT_ACALL;
++
++ a = lookup_attribute ("naked", attr);
++ if (a != NULL_TREE)
++ type |= AVR32_FT_NAKED;
++
++ return type;
++}
++
++/* Returns the type of the current function. */
++
++static unsigned long
++avr32_current_func_type (void)
++{
++ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN)
++ cfun->machine->func_type = avr32_compute_func_type ();
++
++ return cfun->machine->func_type;
++}
++
++/*
++ This target hook should return true if we should not pass type solely
++ in registers. The file expr.h defines a definition that is usually appropriate,
++ refer to expr.h for additional documentation.
++*/
++bool
++avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type)
++{
++ if (type && AGGREGATE_TYPE_P (type)
++ /* If the alignment is less than the size then pass in the struct on
++ the stack. */
++ && ((unsigned int) TYPE_ALIGN_UNIT (type) <
++ (unsigned int) int_size_in_bytes (type))
++ /* If we support unaligned word accesses then structs of size 4 and 8
++ can have any alignment and still be passed in registers. */
++ && !(TARGET_UNALIGNED_WORD
++ && (int_size_in_bytes (type) == 4
++ || int_size_in_bytes (type) == 8))
++ /* Double word structs need only a word alignment. */
++ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4))
++ return true;
++
++ if (type && AGGREGATE_TYPE_P (type)
++ /* Structs of size 3,5,6,7 are always passed in registers. */
++ && (int_size_in_bytes (type) == 3
++ || int_size_in_bytes (type) == 5
++ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7))
++ return true;
++
++
++ return (type && TREE_ADDRESSABLE (type));
++}
++
++
++bool
++avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
++{
++ return true;
++}
++
++/*
++ This target hook should return true if an argument at the position indicated
++ by cum should be passed by reference. This predicate is queried after target
++ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type).
++
++ If the hook returns true, a copy of that argument is made in memory and a
++ pointer to the argument is passed instead of the argument itself. The pointer
++ is passed in whatever way is appropriate for passing a pointer to that type.
++*/
++bool
++avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type, bool named ATTRIBUTE_UNUSED)
++{
++ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST));
++}
++
++static int
++avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type ATTRIBUTE_UNUSED,
++ bool named ATTRIBUTE_UNUSED)
++{
++ return 0;
++}
++
++
++struct gcc_target targetm = TARGET_INITIALIZER;
++
++/*
++ Table used to convert from register number in the assembler instructions and
++ the register numbers used in gcc.
++*/
++const int avr32_function_arg_reglist[] = {
++ INTERNAL_REGNUM (12),
++ INTERNAL_REGNUM (11),
++ INTERNAL_REGNUM (10),
++ INTERNAL_REGNUM (9),
++ INTERNAL_REGNUM (8)
++};
++
++rtx avr32_compare_op0 = NULL_RTX;
++rtx avr32_compare_op1 = NULL_RTX;
++rtx avr32_compare_operator = NULL_RTX;
++rtx avr32_acc_cache = NULL_RTX;
++
++/*
++ Returns nonzero if it is allowed to store a value of mode mode in hard
++ register number regno.
++*/
++int
++avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode)
++{
++ /* We allow only float modes in the fp-registers */
++ if (regnr >= FIRST_FP_REGNUM
++ && regnr <= LAST_FP_REGNUM && GET_MODE_CLASS (mode) != MODE_FLOAT)
++ {
++ return 0;
++ }
++
++ switch (mode)
++ {
++ case DImode: /* long long */
++ case DFmode: /* double */
++ case SCmode: /* __complex__ float */
++ case CSImode: /* __complex__ int */
++ if (regnr < 4)
++ { /* long long int not supported in r12, sp, lr
++ or pc. */
++ return 0;
++ }
++ else
++ {
++ if (regnr % 2) /* long long int has to be refered in even
++ registers. */
++ return 0;
++ else
++ return 1;
++ }
++ case CDImode: /* __complex__ long long */
++ case DCmode: /* __complex__ double */
++ case TImode: /* 16 bytes */
++ if (regnr < 7)
++ return 0;
++ else if (regnr % 2)
++ return 0;
++ else
++ return 1;
++ default:
++ return 1;
++ }
++}
++
++
++int
++avr32_rnd_operands (rtx add, rtx shift)
++{
++ if (GET_CODE (shift) == CONST_INT &&
++ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0)
++ {
++ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add))
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++
++
++int
++avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str)
++{
++ switch (c)
++ {
++ case 'K':
++ case 'I':
++ {
++ HOST_WIDE_INT min_value = 0, max_value = 0;
++ char size_str[3];
++ int const_size;
++
++ size_str[0] = str[2];
++ size_str[1] = str[3];
++ size_str[2] = '\0';
++ const_size = atoi (size_str);
++
++ if (toupper (str[1]) == 'U')
++ {
++ min_value = 0;
++ max_value = (1 << const_size) - 1;
++ }
++ else if (toupper (str[1]) == 'S')
++ {
++ min_value = -(1 << (const_size - 1));
++ max_value = (1 << (const_size - 1)) - 1;
++ }
++
++ if (c == 'I')
++ {
++ value = -value;
++ }
++
++ if (value >= min_value && value <= max_value)
++ {
++ return 1;
++ }
++ break;
++ }
++ case 'M':
++ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode);
++ case 'J':
++ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode);
++ }
++
++ return 0;
++}
++
++
++/*Compute mask of which floating-point registers needs saving upon
++ entry to this function*/
++static unsigned long
++avr32_compute_save_fp_reg_mask (void)
++{
++ unsigned long func_type = avr32_current_func_type ();
++ unsigned int save_reg_mask = 0;
++ unsigned int reg;
++ unsigned int max_reg = 7;
++ int save_all_call_used_regs = FALSE;
++
++ /* This only applies for hardware floating-point implementation. */
++ if (!TARGET_HARD_FLOAT)
++ return 0;
++
++ if (IS_INTERRUPT (func_type))
++ {
++
++ /* Interrupt functions must not corrupt any registers, even call
++ clobbered ones. If this is a leaf function we can just examine the
++ registers used by the RTL, but otherwise we have to assume that
++ whatever function is called might clobber anything, and so we have
++ to save all the call-clobbered registers as well. */
++ max_reg = 13;
++ save_all_call_used_regs = !current_function_is_leaf;
++ }
++
++ /* All used registers used must be saved */
++ for (reg = 0; reg <= max_reg; reg++)
++ if (df_regs_ever_live_p (INTERNAL_FP_REGNUM (reg))
++ || (save_all_call_used_regs
++ && call_used_regs[INTERNAL_FP_REGNUM (reg)]))
++ save_reg_mask |= (1 << reg);
++
++ return save_reg_mask;
++}
++
++/*Compute mask of registers which needs saving upon function entry */
++static unsigned long
++avr32_compute_save_reg_mask (int push)
++{
++ unsigned long func_type;
++ unsigned int save_reg_mask = 0;
++ unsigned int reg;
++
++ func_type = avr32_current_func_type ();
++
++ if (IS_INTERRUPT (func_type))
++ {
++ unsigned int max_reg = 12;
++
++
++ /* Get the banking scheme for the interrupt */
++ switch (func_type)
++ {
++ case AVR32_FT_ISR_FULL:
++ max_reg = 0;
++ break;
++ case AVR32_FT_ISR_HALF:
++ max_reg = 7;
++ break;
++ case AVR32_FT_ISR_NONE:
++ max_reg = 12;
++ break;
++ }
++
++ /* Interrupt functions must not corrupt any registers, even call
++ clobbered ones. If this is a leaf function we can just examine the
++ registers used by the RTL, but otherwise we have to assume that
++ whatever function is called might clobber anything, and so we have
++ to save all the call-clobbered registers as well. */
++
++ /* Need not push the registers r8-r12 for AVR32A architectures, as this
++ is automatially done in hardware. We also do not have any shadow
++ registers. */
++ if (TARGET_UARCH_AVR32A)
++ {
++ max_reg = 7;
++ func_type = AVR32_FT_ISR_NONE;
++ }
++
++ /* All registers which are used and is not shadowed must be saved */
++ for (reg = 0; reg <= max_reg; reg++)
++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg))
++ || (!current_function_is_leaf
++ && call_used_regs[INTERNAL_REGNUM (reg)]))
++ save_reg_mask |= (1 << reg);
++
++ /* Check LR */
++ if ((df_regs_ever_live_p (LR_REGNUM)
++ || !current_function_is_leaf || frame_pointer_needed)
++ /* Only non-shadowed register models */
++ && (func_type == AVR32_FT_ISR_NONE))
++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
++
++ /* Make sure that the GOT register is pushed. */
++ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)
++ && current_function_uses_pic_offset_table)
++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
++
++ }
++ else
++ {
++ int use_pushm = optimize_size;
++
++ /* In the normal case we only need to save those registers which are
++ call saved and which are used by this function. */
++ for (reg = 0; reg <= 7; reg++)
++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg))
++ && !call_used_regs[INTERNAL_REGNUM (reg)])
++ save_reg_mask |= (1 << reg);
++
++ /* Make sure that the GOT register is pushed. */
++ if (current_function_uses_pic_offset_table)
++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
++
++
++ /* If we optimize for size and do not have anonymous arguments: use
++ popm/pushm always */
++ if (use_pushm)
++ {
++ if ((save_reg_mask & (1 << 0))
++ || (save_reg_mask & (1 << 1))
++ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3)))
++ save_reg_mask |= 0xf;
++
++ if ((save_reg_mask & (1 << 4))
++ || (save_reg_mask & (1 << 5))
++ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7)))
++ save_reg_mask |= 0xf0;
++
++ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9)))
++ save_reg_mask |= 0x300;
++ }
++
++
++ /* Check LR */
++ if ((df_regs_ever_live_p (LR_REGNUM)
++ || !current_function_is_leaf
++ || (optimize_size
++ && save_reg_mask
++ && !current_function_calls_eh_return) || frame_pointer_needed))
++ {
++ if (push
++ /* Never pop LR into PC for functions which
++ calls __builtin_eh_return, since we need to
++ fix the SP after the restoring of the registers
++ and before returning. */
++ || current_function_calls_eh_return)
++ {
++ /* Push/Pop LR */
++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
++ }
++ else
++ {
++ /* Pop PC */
++ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM));
++ }
++ }
++ }
++
++
++ /* Save registers so the exception handler can modify them. */
++ if (current_function_calls_eh_return)
++ {
++ unsigned int i;
++
++ for (i = 0;; i++)
++ {
++ reg = EH_RETURN_DATA_REGNO (i);
++ if (reg == INVALID_REGNUM)
++ break;
++ save_reg_mask |= 1 << ASM_REGNUM (reg);
++ }
++ }
++
++ return save_reg_mask;
++}
++
++/*Compute total size in bytes of all saved registers */
++static int
++avr32_get_reg_mask_size (int reg_mask)
++{
++ int reg, size;
++ size = 0;
++
++ for (reg = 0; reg <= 15; reg++)
++ if (reg_mask & (1 << reg))
++ size += 4;
++
++ return size;
++}
++
++/*Get a register from one of the registers which are saved onto the stack
++ upon function entry */
++
++static int
++avr32_get_saved_reg (int save_reg_mask)
++{
++ unsigned int reg;
++
++ /* Find the first register which is saved in the saved_reg_mask */
++ for (reg = 0; reg <= 15; reg++)
++ if (save_reg_mask & (1 << reg))
++ return reg;
++
++ return -1;
++}
++
++/* Return 1 if it is possible to return using a single instruction. */
++int
++avr32_use_return_insn (int iscond)
++{
++ unsigned int func_type = avr32_current_func_type ();
++ unsigned long saved_int_regs;
++ unsigned long saved_fp_regs;
++
++ /* Never use a return instruction before reload has run. */
++ if (!reload_completed)
++ return 0;
++
++ /* Must adjust the stack for vararg functions. */
++ if (current_function_args_info.uses_anonymous_args)
++ return 0;
++
++ /* If there a stack adjstment. */
++ if (get_frame_size ())
++ return 0;
++
++ saved_int_regs = avr32_compute_save_reg_mask (TRUE);
++ saved_fp_regs = avr32_compute_save_fp_reg_mask ();
++
++ /* Functions which have saved fp-regs on the stack can not be performed in
++ one instruction */
++ if (saved_fp_regs)
++ return 0;
++
++ /* Conditional returns can not be performed in one instruction if we need
++ to restore registers from the stack */
++ if (iscond && saved_int_regs)
++ return 0;
++
++ /* Conditional return can not be used for interrupt handlers. */
++ if (iscond && IS_INTERRUPT (func_type))
++ return 0;
++
++ /* For interrupt handlers which needs to pop registers */
++ if (saved_int_regs && IS_INTERRUPT (func_type))
++ return 0;
++
++
++ /* If there are saved registers but the LR isn't saved, then we need two
++ instructions for the return. */
++ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM))))
++ return 0;
++
++
++ return 1;
++}
++
++
++/*Generate some function prologue info in the assembly file*/
++
++void
++avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size)
++{
++ if (IS_NAKED (avr32_current_func_type ()))
++ fprintf (f,
++ "\t# Function is naked: Prologue and epilogue provided by programmer\n");
++
++ if (IS_INTERRUPT (avr32_current_func_type ()))
++ {
++ switch (avr32_current_func_type ())
++ {
++ case AVR32_FT_ISR_FULL:
++ fprintf (f,
++ "\t# Interrupt Function: Fully shadowed register file\n");
++ break;
++ case AVR32_FT_ISR_HALF:
++ fprintf (f,
++ "\t# Interrupt Function: Half shadowed register file\n");
++ break;
++ default:
++ case AVR32_FT_ISR_NONE:
++ fprintf (f, "\t# Interrupt Function: No shadowed register file\n");
++ break;
++ }
++ }
++
++
++ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n",
++ current_function_args_size, frame_size,
++ current_function_pretend_args_size);
++
++ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n",
++ frame_pointer_needed, current_function_is_leaf);
++
++ fprintf (f, "\t# uses_anonymous_args = %i\n",
++ current_function_args_info.uses_anonymous_args);
++ if (current_function_calls_eh_return)
++ fprintf (f, "\t# Calls __builtin_eh_return.\n");
++
++}
++
++
++/* Generate and emit an insn that we will recognize as a pushm or stm.
++ Unfortunately, since this insn does not reflect very well the actual
++ semantics of the operation, we need to annotate the insn for the benefit
++ of DWARF2 frame unwind information. */
++
++int avr32_convert_to_reglist16 (int reglist8_vect);
++
++static rtx
++emit_multi_reg_push (int reglist, int usePUSHM)
++{
++ rtx insn;
++ rtx dwarf;
++ rtx tmp;
++ rtx reg;
++ int i;
++ int nr_regs;
++ int index = 0;
++
++ if (usePUSHM)
++ {
++ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist)));
++ reglist = avr32_convert_to_reglist16 (reglist);
++ }
++ else
++ {
++ insn = emit_insn (gen_stm (stack_pointer_rtx,
++ gen_rtx_CONST_INT (SImode, reglist),
++ gen_rtx_CONST_INT (SImode, 1)));
++ }
++
++ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
++
++ for (i = 15; i >= 0; i--)
++ {
++ if (reglist & (1 << i))
++ {
++ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i));
++ tmp = gen_rtx_SET (VOIDmode,
++ gen_rtx_MEM (SImode,
++ plus_constant (stack_pointer_rtx,
++ 4 * index)), reg);
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 1 + index++) = tmp;
++ }
++ }
++
++ tmp = gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ GEN_INT (-4 * nr_regs)));
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 0) = tmp;
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
++ REG_NOTES (insn));
++ return insn;
++}
++
++
++static rtx
++emit_multi_fp_reg_push (int reglist)
++{
++ rtx insn;
++ rtx dwarf;
++ rtx tmp;
++ rtx reg;
++ int i;
++ int nr_regs;
++ int index = 0;
++
++ insn = emit_insn (gen_stm_fp (stack_pointer_rtx,
++ gen_rtx_CONST_INT (SImode, reglist),
++ gen_rtx_CONST_INT (SImode, 1)));
++
++ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
++
++ for (i = 15; i >= 0; i--)
++ {
++ if (reglist & (1 << i))
++ {
++ reg = gen_rtx_REG (SImode, INTERNAL_FP_REGNUM (i));
++ tmp = gen_rtx_SET (VOIDmode,
++ gen_rtx_MEM (SImode,
++ plus_constant (stack_pointer_rtx,
++ 4 * index)), reg);
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 1 + index++) = tmp;
++ }
++ }
++
++ tmp = gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ GEN_INT (-4 * nr_regs)));
++ RTX_FRAME_RELATED_P (tmp) = 1;
++ XVECEXP (dwarf, 0, 0) = tmp;
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
++ REG_NOTES (insn));
++ return insn;
++}
++
++rtx
++avr32_gen_load_multiple (rtx * regs, int count, rtx from,
++ int write_back, int in_struct_p, int scalar_p)
++{
++
++ rtx result;
++ int i = 0, j;
++
++ result =
++ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0)));
++
++ if (write_back)
++ {
++ XVECEXP (result, 0, 0)
++ = gen_rtx_SET (GET_MODE (from), from,
++ plus_constant (from, count * 4));
++ i = 1;
++ count++;
++ }
++
++
++ for (j = 0; i < count; i++, j++)
++ {
++ rtx unspec;
++ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4));
++ MEM_IN_STRUCT_P (mem) = in_struct_p;
++ MEM_SCALAR_P (mem) = scalar_p;
++ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM);
++ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec);
++ }
++
++ return result;
++}
++
++
++rtx
++avr32_gen_store_multiple (rtx * regs, int count, rtx to,
++ int in_struct_p, int scalar_p)
++{
++ rtx result;
++ int i = 0, j;
++
++ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
++
++ for (j = 0; i < count; i++, j++)
++ {
++ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4));
++ MEM_IN_STRUCT_P (mem) = in_struct_p;
++ MEM_SCALAR_P (mem) = scalar_p;
++ XVECEXP (result, 0, i)
++ = gen_rtx_SET (VOIDmode, mem,
++ gen_rtx_UNSPEC (VOIDmode,
++ gen_rtvec (1, regs[j]),
++ UNSPEC_STORE_MULTIPLE));
++ }
++
++ return result;
++}
++
++
++/* Move a block of memory if it is word aligned or we support unaligned
++ word memory accesses. The size must be maximum 64 bytes. */
++
++int
++avr32_gen_movmemsi (rtx * operands)
++{
++ HOST_WIDE_INT bytes_to_go;
++ rtx src, dst;
++ rtx st_src, st_dst;
++ int src_offset = 0, dst_offset = 0;
++ int block_size;
++ int dst_in_struct_p, src_in_struct_p;
++ int dst_scalar_p, src_scalar_p;
++ int unaligned;
++
++ if (GET_CODE (operands[2]) != CONST_INT
++ || GET_CODE (operands[3]) != CONST_INT
++ || INTVAL (operands[2]) > 64
++ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD))
++ return 0;
++
++ unaligned = (INTVAL (operands[3]) & 3) != 0;
++
++ block_size = 4;
++
++ st_dst = XEXP (operands[0], 0);
++ st_src = XEXP (operands[1], 0);
++
++ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]);
++ dst_scalar_p = MEM_SCALAR_P (operands[0]);
++ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]);
++ src_scalar_p = MEM_SCALAR_P (operands[1]);
++
++ dst = copy_to_mode_reg (SImode, st_dst);
++ src = copy_to_mode_reg (SImode, st_src);
++
++ bytes_to_go = INTVAL (operands[2]);
++
++ while (bytes_to_go)
++ {
++ enum machine_mode move_mode;
++ /* (Seems to be a problem with reloads for the movti pattern so this is
++ disabled until that problem is resolved)
++ UPDATE: Problem seems to be solved now.... */
++ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned
++ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */
++ && !TARGET_ARCH_UC)
++ move_mode = TImode;
++ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned)
++ move_mode = DImode;
++ else if (bytes_to_go >= GET_MODE_SIZE (SImode))
++ move_mode = SImode;
++ else
++ move_mode = QImode;
++
++ {
++ rtx src_mem;
++ rtx dst_mem = gen_rtx_MEM (move_mode,
++ gen_rtx_PLUS (SImode, dst,
++ GEN_INT (dst_offset)));
++ dst_offset += GET_MODE_SIZE (move_mode);
++ if ( 0 /* This causes an error in GCC. Think there is
++ something wrong in the gcse pass which causes REQ_EQUIV notes
++ to be wrong so disabling it for now. */
++ && move_mode == TImode
++ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) )
++ {
++ src_mem = gen_rtx_MEM (move_mode,
++ gen_rtx_POST_INC (SImode, src));
++ }
++ else
++ {
++ src_mem = gen_rtx_MEM (move_mode,
++ gen_rtx_PLUS (SImode, src,
++ GEN_INT (src_offset)));
++ src_offset += GET_MODE_SIZE (move_mode);
++ }
++
++ bytes_to_go -= GET_MODE_SIZE (move_mode);
++
++ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p;
++ MEM_SCALAR_P (dst_mem) = dst_scalar_p;
++
++ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p;
++ MEM_SCALAR_P (src_mem) = src_scalar_p;
++ emit_move_insn (dst_mem, src_mem);
++
++ }
++ }
++
++ return 1;
++}
++
++
++
++/*Expand the prologue instruction*/
++void
++avr32_expand_prologue (void)
++{
++ rtx insn, dwarf;
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ int reglist8 = 0;
++
++ /* Naked functions does not have a prologue */
++ if (IS_NAKED (avr32_current_func_type ()))
++ return;
++
++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
++
++ if (saved_reg_mask)
++ {
++ /* Must push used registers */
++
++ /* Should we use POPM or LDM? */
++ int usePUSHM = TRUE;
++ reglist8 = 0;
++ if (((saved_reg_mask & (1 << 0)) ||
++ (saved_reg_mask & (1 << 1)) ||
++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
++ {
++ /* One of R0-R3 should at least be pushed */
++ if (((saved_reg_mask & (1 << 0)) &&
++ (saved_reg_mask & (1 << 1)) &&
++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
++ {
++ /* All should be pushed */
++ reglist8 |= 0x01;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 4)) ||
++ (saved_reg_mask & (1 << 5)) ||
++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
++ {
++ /* One of R4-R7 should at least be pushed */
++ if (((saved_reg_mask & (1 << 4)) &&
++ (saved_reg_mask & (1 << 5)) &&
++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
++ {
++ if (usePUSHM)
++ /* All should be pushed */
++ reglist8 |= 0x02;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
++ {
++ /* One of R8-R9 should at least be pushed */
++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
++ {
++ if (usePUSHM)
++ /* All should be pushed */
++ reglist8 |= 0x04;
++ }
++ else
++ {
++ usePUSHM = FALSE;
++ }
++ }
++
++ if (saved_reg_mask & (1 << 10))
++ reglist8 |= 0x08;
++
++ if (saved_reg_mask & (1 << 11))
++ reglist8 |= 0x10;
++
++ if (saved_reg_mask & (1 << 12))
++ reglist8 |= 0x20;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
++ {
++ /* Push LR */
++ reglist8 |= 0x40;
++ }
++
++ if (usePUSHM)
++ {
++ insn = emit_multi_reg_push (reglist8, TRUE);
++ }
++ else
++ {
++ insn = emit_multi_reg_push (saved_reg_mask, FALSE);
++ }
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ /* Prevent this instruction from being scheduled after any other
++ instructions. */
++ emit_insn (gen_blockage ());
++ }
++
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++ if (saved_fp_reg_mask)
++ {
++ insn = emit_multi_fp_reg_push (saved_fp_reg_mask);
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ /* Prevent this instruction from being scheduled after any other
++ instructions. */
++ emit_insn (gen_blockage ());
++ }
++
++ /* Set frame pointer */
++ if (frame_pointer_needed)
++ {
++ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
++ RTX_FRAME_RELATED_P (insn) = 1;
++ }
++
++ if (get_frame_size () > 0)
++ {
++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21"))
++ {
++ insn = emit_insn (gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_PLUS (SImode,
++ stack_pointer_rtx,
++ gen_rtx_CONST_INT
++ (SImode,
++ -get_frame_size
++ ()))));
++ RTX_FRAME_RELATED_P (insn) = 1;
++ }
++ else
++ {
++ /* Immediate is larger than k21 We must either check if we can use
++ one of the pushed reegisters as temporary storage or we must
++ make us a temp register by pushing a register to the stack. */
++ rtx temp_reg, const_pool_entry, insn;
++ if (saved_reg_mask)
++ {
++ temp_reg =
++ gen_rtx_REG (SImode,
++ INTERNAL_REGNUM (avr32_get_saved_reg
++ (saved_reg_mask)));
++ }
++ else
++ {
++ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7));
++ emit_move_insn (gen_rtx_MEM
++ (SImode,
++ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)),
++ temp_reg);
++ }
++
++ const_pool_entry =
++ force_const_mem (SImode,
++ gen_rtx_CONST_INT (SImode, get_frame_size ()));
++ emit_move_insn (temp_reg, const_pool_entry);
++
++ insn = emit_insn (gen_rtx_SET (SImode,
++ stack_pointer_rtx,
++ gen_rtx_MINUS (SImode,
++ stack_pointer_rtx,
++ temp_reg)));
++
++ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
++ gen_rtx_PLUS (SImode, stack_pointer_rtx,
++ GEN_INT (-get_frame_size ())));
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
++ dwarf, REG_NOTES (insn));
++ RTX_FRAME_RELATED_P (insn) = 1;
++
++ if (!saved_reg_mask)
++ {
++ insn =
++ emit_move_insn (temp_reg,
++ gen_rtx_MEM (SImode,
++ gen_rtx_POST_INC (SImode,
++ gen_rtx_REG
++ (SImode,
++ 13))));
++ }
++
++ /* Mark the temp register as dead */
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg,
++ REG_NOTES (insn));
++
++
++ }
++
++ /* Prevent the the stack adjustment to be scheduled after any
++ instructions using the frame pointer. */
++ emit_insn (gen_blockage ());
++ }
++
++ /* Load GOT */
++ if (flag_pic)
++ {
++ avr32_load_pic_register ();
++
++ /* gcc does not know that load or call instructions might use the pic
++ register so it might schedule these instructions before the loading
++ of the pic register. To avoid this emit a barrier for now. TODO!
++ Find out a better way to let gcc know which instructions might use
++ the pic register. */
++ emit_insn (gen_blockage ());
++ }
++ return;
++}
++
++void
++avr32_set_return_address (rtx source, rtx scratch)
++{
++ rtx addr;
++ unsigned long saved_regs;
++
++ saved_regs = avr32_compute_save_reg_mask (TRUE);
++
++ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM))))
++ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
++ else
++ {
++ if (frame_pointer_needed)
++ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM);
++ else
++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16"))
++ {
++ addr = plus_constant (stack_pointer_rtx, get_frame_size ());
++ }
++ else
++ {
++ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ())));
++ addr = scratch;
++ }
++ emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
++ }
++}
++
++
++
++/* Return the length of INSN. LENGTH is the initial length computed by
++ attributes in the machine-description file. */
++
++int
++avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED,
++ int length ATTRIBUTE_UNUSED)
++{
++ return length;
++}
++
++void
++avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED,
++ int iscond ATTRIBUTE_UNUSED,
++ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm)
++{
++
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ int insert_ret = TRUE;
++ int reglist8 = 0;
++ int stack_adjustment = get_frame_size ();
++ unsigned int func_type = avr32_current_func_type ();
++ FILE *f = asm_out_file;
++
++ /* Naked functions does not have an epilogue */
++ if (IS_NAKED (func_type))
++ return;
++
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++
++ saved_reg_mask = avr32_compute_save_reg_mask (FALSE);
++
++ /* Reset frame pointer */
++ if (stack_adjustment > 0)
++ {
++ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21"))
++ {
++ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n",
++ -stack_adjustment);
++ }
++ else
++ {
++ /* TODO! Is it safe to use r8 as scratch?? */
++ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n",
++ -stack_adjustment);
++ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n",
++ -stack_adjustment);
++ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n");
++ }
++ }
++
++ if (saved_fp_reg_mask)
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_fp_reglist_w (saved_fp_reg_mask, (char *) reglist);
++ fprintf (f, "\tldcm.w\tcp0, sp++, %s\n", reglist);
++ if (saved_fp_reg_mask & ~0xff)
++ {
++ saved_fp_reg_mask &= ~0xff;
++ avr32_make_fp_reglist_d (saved_fp_reg_mask, (char *) reglist);
++ fprintf (f, "\tldcm.d\tcp0, sp++, %s\n", reglist);
++ }
++ }
++
++ if (saved_reg_mask)
++ {
++ /* Must pop used registers */
++
++ /* Should we use POPM or LDM? */
++ int usePOPM = TRUE;
++ if (((saved_reg_mask & (1 << 0)) ||
++ (saved_reg_mask & (1 << 1)) ||
++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
++ {
++ /* One of R0-R3 should at least be popped */
++ if (((saved_reg_mask & (1 << 0)) &&
++ (saved_reg_mask & (1 << 1)) &&
++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
++ {
++ /* All should be popped */
++ reglist8 |= 0x01;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 4)) ||
++ (saved_reg_mask & (1 << 5)) ||
++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
++ {
++ /* One of R0-R3 should at least be popped */
++ if (((saved_reg_mask & (1 << 4)) &&
++ (saved_reg_mask & (1 << 5)) &&
++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
++ {
++ if (usePOPM)
++ /* All should be popped */
++ reglist8 |= 0x02;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
++ {
++ /* One of R8-R9 should at least be pushed */
++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
++ {
++ if (usePOPM)
++ /* All should be pushed */
++ reglist8 |= 0x04;
++ }
++ else
++ {
++ usePOPM = FALSE;
++ }
++ }
++
++ if (saved_reg_mask & (1 << 10))
++ reglist8 |= 0x08;
++
++ if (saved_reg_mask & (1 << 11))
++ reglist8 |= 0x10;
++
++ if (saved_reg_mask & (1 << 12))
++ reglist8 |= 0x20;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
++ /* Pop LR */
++ reglist8 |= 0x40;
++
++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
++ /* Pop LR into PC. */
++ reglist8 |= 0x80;
++
++ if (usePOPM)
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_reglist8 (reglist8, (char *) reglist);
++
++ if (reglist8 & 0x80)
++ /* This instruction is also a return */
++ insert_ret = FALSE;
++
++ if (r12_imm && !insert_ret)
++ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm));
++ else
++ fprintf (f, "\tpopm\t%s\n", reglist);
++
++ }
++ else
++ {
++ char reglist[64]; /* 64 bytes should be enough... */
++ avr32_make_reglist16 (saved_reg_mask, (char *) reglist);
++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
++ /* This instruction is also a return */
++ insert_ret = FALSE;
++
++ if (r12_imm && !insert_ret)
++ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist,
++ INTVAL (r12_imm));
++ else
++ fprintf (f, "\tldm\tsp++, %s\n", reglist);
++
++ }
++
++ }
++
++ /* Stack adjustment for exception handler. */
++ if (current_function_calls_eh_return)
++ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO));
++
++
++ if (IS_INTERRUPT (func_type))
++ {
++ fprintf (f, "\trete\n");
++ }
++ else if (insert_ret)
++ {
++ if (r12_imm)
++ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm));
++ else
++ fprintf (f, "\tretal\tr12\n");
++ }
++}
++
++/* Function for converting a fp-register mask to a
++ reglistCPD8 register list string. */
++void
++avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string)
++{
++ int i;
++
++ /* Make sure reglist_string is empty */
++ reglist_string[0] = '\0';
++
++ for (i = 0; i < NUM_FP_REGS; i += 2)
++ {
++ if (reglist_mask & (1 << i))
++ {
++ strlen (reglist_string) ?
++ sprintf (reglist_string, "%s, %s-%s", reglist_string,
++ reg_names[INTERNAL_FP_REGNUM (i)],
++ reg_names[INTERNAL_FP_REGNUM (i + 1)]) :
++ sprintf (reglist_string, "%s-%s",
++ reg_names[INTERNAL_FP_REGNUM (i)],
++ reg_names[INTERNAL_FP_REGNUM (i + 1)]);
++ }
++ }
++}
++
++/* Function for converting a fp-register mask to a
++ reglistCP8 register list string. */
++void
++avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string)
++{
++ int i;
++
++ /* Make sure reglist_string is empty */
++ reglist_string[0] = '\0';
++
++ for (i = 0; i < NUM_FP_REGS; ++i)
++ {
++ if (reglist_mask & (1 << i))
++ {
++ strlen (reglist_string) ?
++ sprintf (reglist_string, "%s, %s", reglist_string,
++ reg_names[INTERNAL_FP_REGNUM (i)]) :
++ sprintf (reglist_string, "%s", reg_names[INTERNAL_FP_REGNUM (i)]);
++ }
++ }
++}
++
++void
++avr32_make_reglist16 (int reglist16_vect, char *reglist16_string)
++{
++ int i;
++
++ /* Make sure reglist16_string is empty */
++ reglist16_string[0] = '\0';
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (reglist16_vect & (1 << i))
++ {
++ strlen (reglist16_string) ?
++ sprintf (reglist16_string, "%s, %s", reglist16_string,
++ reg_names[INTERNAL_REGNUM (i)]) :
++ sprintf (reglist16_string, "%s", reg_names[INTERNAL_REGNUM (i)]);
++ }
++ }
++}
++
++int
++avr32_convert_to_reglist16 (int reglist8_vect)
++{
++ int reglist16_vect = 0;
++ if (reglist8_vect & 0x1)
++ reglist16_vect |= 0xF;
++ if (reglist8_vect & 0x2)
++ reglist16_vect |= 0xF0;
++ if (reglist8_vect & 0x4)
++ reglist16_vect |= 0x300;
++ if (reglist8_vect & 0x8)
++ reglist16_vect |= 0x400;
++ if (reglist8_vect & 0x10)
++ reglist16_vect |= 0x800;
++ if (reglist8_vect & 0x20)
++ reglist16_vect |= 0x1000;
++ if (reglist8_vect & 0x40)
++ reglist16_vect |= 0x4000;
++ if (reglist8_vect & 0x80)
++ reglist16_vect |= 0x8000;
++
++ return reglist16_vect;
++}
++
++void
++avr32_make_reglist8 (int reglist8_vect, char *reglist8_string)
++{
++ /* Make sure reglist8_string is empty */
++ reglist8_string[0] = '\0';
++
++ if (reglist8_vect & 0x1)
++ sprintf (reglist8_string, "r0-r3");
++ if (reglist8_vect & 0x2)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r4-r7",
++ reglist8_string) :
++ sprintf (reglist8_string, "r4-r7");
++ if (reglist8_vect & 0x4)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r8-r9",
++ reglist8_string) :
++ sprintf (reglist8_string, "r8-r9");
++ if (reglist8_vect & 0x8)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r10",
++ reglist8_string) :
++ sprintf (reglist8_string, "r10");
++ if (reglist8_vect & 0x10)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r11",
++ reglist8_string) :
++ sprintf (reglist8_string, "r11");
++ if (reglist8_vect & 0x20)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r12",
++ reglist8_string) :
++ sprintf (reglist8_string, "r12");
++ if (reglist8_vect & 0x40)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, lr",
++ reglist8_string) :
++ sprintf (reglist8_string, "lr");
++ if (reglist8_vect & 0x80)
++ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, pc",
++ reglist8_string) :
++ sprintf (reglist8_string, "pc");
++}
++
++int
++avr32_eh_return_data_regno (int n)
++{
++ if (n >= 0 && n <= 3)
++ return 8 + n;
++ else
++ return INVALID_REGNUM;
++}
++
++/* Compute the distance from register FROM to register TO.
++ These can be the arg pointer, the frame pointer or
++ the stack pointer.
++ Typical stack layout looks like this:
++
++ old stack pointer -> | |
++ ----
++ | | \
++ | | saved arguments for
++ | | vararg functions
++ arg_pointer -> | | /
++ --
++ | | \
++ | | call saved
++ | | registers
++ | | /
++ frame ptr -> --
++ | | \
++ | | local
++ | | variables
++ stack ptr --> | | /
++ --
++ | | \
++ | | outgoing
++ | | arguments
++ | | /
++ --
++
++ For a given funciton some or all of these stack compomnents
++ may not be needed, giving rise to the possibility of
++ eliminating some of the registers.
++
++ The values returned by this function must reflect the behaviour
++ of avr32_expand_prologue() and avr32_compute_save_reg_mask().
++
++ The sign of the number returned reflects the direction of stack
++ growth, so the values are positive for all eliminations except
++ from the soft frame pointer to the hard frame pointer. */
++
++
++int
++avr32_initial_elimination_offset (int from, int to)
++{
++ int i;
++ int call_saved_regs = 0;
++ unsigned long saved_reg_mask, saved_fp_reg_mask;
++ unsigned int local_vars = get_frame_size ();
++
++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
++ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (saved_reg_mask & (1 << i))
++ call_saved_regs += 4;
++ }
++
++ for (i = 0; i < NUM_FP_REGS; ++i)
++ {
++ if (saved_fp_reg_mask & (1 << i))
++ call_saved_regs += 4;
++ }
++
++ switch (from)
++ {
++ case ARG_POINTER_REGNUM:
++ switch (to)
++ {
++ case STACK_POINTER_REGNUM:
++ return call_saved_regs + local_vars;
++ case FRAME_POINTER_REGNUM:
++ return call_saved_regs;
++ default:
++ abort ();
++ }
++ case FRAME_POINTER_REGNUM:
++ switch (to)
++ {
++ case STACK_POINTER_REGNUM:
++ return local_vars;
++ default:
++ abort ();
++ }
++ default:
++ abort ();
++ }
++}
++
++
++/*
++ Returns a rtx used when passing the next argument to a function.
++ avr32_init_cumulative_args() and avr32_function_arg_advance() sets witch
++ register to use.
++*/
++rtx
++avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
++ tree type, int named)
++{
++ int index = -1;
++
++ HOST_WIDE_INT arg_size, arg_rsize;
++ if (type)
++ {
++ arg_size = int_size_in_bytes (type);
++ }
++ else
++ {
++ arg_size = GET_MODE_SIZE (mode);
++ }
++ arg_rsize = PUSH_ROUNDING (arg_size);
++
++ /*
++ The last time this macro is called, it is called with mode == VOIDmode,
++ and its result is passed to the call or call_value pattern as operands 2
++ and 3 respectively. */
++ if (mode == VOIDmode)
++ {
++ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */
++ }
++
++ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named)
++ {
++ return NULL_RTX;
++ }
++
++ if (arg_rsize == 8)
++ {
++ /* use r11:r10 or r9:r8. */
++ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2)))
++ index = 1;
++ else if (!(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4)))
++ index = 3;
++ else
++ index = -1;
++ }
++ else if (arg_rsize == 4)
++ { /* Use first available register */
++ index = 0;
++ while (index <= LAST_CUM_REG_INDEX && GET_USED_INDEX (cum, index))
++ index++;
++ if (index > LAST_CUM_REG_INDEX)
++ index = -1;
++ }
++
++ SET_REG_INDEX (cum, index);
++
++ if (GET_REG_INDEX (cum) >= 0)
++ return gen_rtx_REG (mode,
++ avr32_function_arg_reglist[GET_REG_INDEX (cum)]);
++
++ return NULL_RTX;
++}
++
++/*
++ Set the register used for passing the first argument to a function.
++*/
++void
++avr32_init_cumulative_args (CUMULATIVE_ARGS * cum,
++ tree fntype ATTRIBUTE_UNUSED,
++ rtx libname ATTRIBUTE_UNUSED,
++ tree fndecl ATTRIBUTE_UNUSED)
++ {
++ /* Set all registers as unused. */
++ SET_INDEXES_UNUSED (cum);
++
++ /* Reset uses_anonymous_args */
++ cum->uses_anonymous_args = 0;
++
++ /* Reset size of stack pushed arguments */
++ cum->stack_pushed_args_size = 0;
++ }
++
++/*
++ Set register used for passing the next argument to a function. Only the
++ Scratch Registers are used.
++
++ number name
++ 15 r15 PC
++ 14 r14 LR
++ 13 r13 _SP_________
++ FIRST_CUM_REG 12 r12 _||_
++ 10 r11 ||
++ 11 r10 _||_ Scratch Registers
++ 8 r9 ||
++ LAST_SCRATCH_REG 9 r8 _\/_________
++ 6 r7 /\
++ 7 r6 ||
++ 4 r5 ||
++ 5 r4 ||
++ 2 r3 ||
++ 3 r2 ||
++ 0 r1 ||
++ 1 r0 _||_________
++
++*/
++void
++avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
++ tree type, int named ATTRIBUTE_UNUSED)
++{
++ HOST_WIDE_INT arg_size, arg_rsize;
++
++ if (type)
++ {
++ arg_size = int_size_in_bytes (type);
++ }
++ else
++ {
++ arg_size = GET_MODE_SIZE (mode);
++ }
++ arg_rsize = PUSH_ROUNDING (arg_size);
++
++ /* It the argument had to be passed in stack, no register is used. */
++ if ((*targetm.calls.must_pass_in_stack) (mode, type))
++ {
++ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type));
++ return;
++ }
++
++ /* Mark the used registers as "used". */
++ if (GET_REG_INDEX (cum) >= 0)
++ {
++ SET_USED_INDEX (cum, GET_REG_INDEX (cum));
++ if (arg_rsize == 8)
++ {
++ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1));
++ }
++ }
++ else
++ {
++ /* Had to use stack */
++ cum->stack_pushed_args_size += arg_rsize;
++ }
++}
++
++/*
++ Defines witch direction to go to find the next register to use if the
++ argument is larger then one register or for arguments shorter than an
++ int which is not promoted, such as the last part of structures with
++ size not a multiple of 4. */
++enum direction
++avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED,
++ tree type)
++{
++ /* Pad upward for all aggregates except byte and halfword sized aggregates
++ which can be passed in registers. */
++ if (type
++ && AGGREGATE_TYPE_P (type)
++ && (int_size_in_bytes (type) != 1)
++ && !((int_size_in_bytes (type) == 2)
++ && TYPE_ALIGN_UNIT (type) >= 2)
++ && (int_size_in_bytes (type) & 0x3))
++ {
++ return upward;
++ }
++
++ return downward;
++}
++
++/*
++ Return a rtx used for the return value from a function call.
++*/
++rtx
++avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED)
++{
++ if (avr32_return_in_memory (type, func))
++ return NULL_RTX;
++
++ if (int_size_in_bytes (type) <= 4)
++ {
++ enum machine_mode mode = TYPE_MODE (type);
++ int unsignedp = 0;
++ PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
++ return gen_rtx_REG (mode, RET_REGISTER);
++ }
++ else if (int_size_in_bytes (type) <= 8)
++ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11));
++
++ return NULL_RTX;
++}
++
++/*
++ Return a rtx used for the return value from a library function call.
++*/
++rtx
++avr32_libcall_value (enum machine_mode mode)
++{
++
++ if (GET_MODE_SIZE (mode) <= 4)
++ return gen_rtx_REG (mode, RET_REGISTER);
++ else if (GET_MODE_SIZE (mode) <= 8)
++ return gen_rtx_REG (mode, INTERNAL_REGNUM (11));
++ else
++ return NULL_RTX;
++}
++
++/* Return TRUE if X references a SYMBOL_REF. */
++int
++symbol_mentioned_p (rtx x)
++{
++ const char *fmt;
++ int i;
++
++ if (GET_CODE (x) == SYMBOL_REF)
++ return 1;
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'E')
++ {
++ int j;
++
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ if (symbol_mentioned_p (XVECEXP (x, i, j)))
++ return 1;
++ }
++ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
++ return 1;
++ }
++
++ return 0;
++}
++
++/* Return TRUE if X references a LABEL_REF. */
++int
++label_mentioned_p (rtx x)
++{
++ const char *fmt;
++ int i;
++
++ if (GET_CODE (x) == LABEL_REF)
++ return 1;
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'E')
++ {
++ int j;
++
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ if (label_mentioned_p (XVECEXP (x, i, j)))
++ return 1;
++ }
++ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
++ return 1;
++ }
++
++ return 0;
++}
++
++/* Return TRUE if X contains a MEM expression. */
++int
++mem_mentioned_p (rtx x)
++{
++ const char *fmt;
++ int i;
++
++ if (MEM_P (x))
++ return 1;
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'E')
++ {
++ int j;
++
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ if (mem_mentioned_p (XVECEXP (x, i, j)))
++ return 1;
++ }
++ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i)))
++ return 1;
++ }
++
++ return 0;
++}
++
++int
++avr32_legitimate_pic_operand_p (rtx x)
++{
++
++ /* We can't have const, this must be broken down to a symbol. */
++ if (GET_CODE (x) == CONST)
++ return FALSE;
++
++ /* Can't access symbols or labels via the constant pool either */
++ if ((GET_CODE (x) == SYMBOL_REF
++ && CONSTANT_POOL_ADDRESS_P (x)
++ && (symbol_mentioned_p (get_pool_constant (x))
++ || label_mentioned_p (get_pool_constant (x)))))
++ return FALSE;
++
++ return TRUE;
++}
++
++
++rtx
++legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
++ rtx reg)
++{
++
++ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
++ {
++ int subregs = 0;
++
++ if (reg == 0)
++ {
++ if (!can_create_pseudo_p ())
++ abort ();
++ else
++ reg = gen_reg_rtx (Pmode);
++
++ subregs = 1;
++ }
++
++ emit_move_insn (reg, orig);
++
++ /* Only set current function as using pic offset table if flag_pic is
++ set. This is because this function is also used if
++ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */
++ if (flag_pic)
++ current_function_uses_pic_offset_table = 1;
++
++ /* Put a REG_EQUAL note on this insn, so that it can be optimized by
++ loop. */
++ return reg;
++ }
++ else if (GET_CODE (orig) == CONST)
++ {
++ rtx base, offset;
++
++ if (flag_pic
++ && GET_CODE (XEXP (orig, 0)) == PLUS
++ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
++ return orig;
++
++ if (reg == 0)
++ {
++ if (!can_create_pseudo_p ())
++ abort ();
++ else
++ reg = gen_reg_rtx (Pmode);
++ }
++
++ if (GET_CODE (XEXP (orig, 0)) == PLUS)
++ {
++ base =
++ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
++ offset =
++ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
++ base == reg ? 0 : reg);
++ }
++ else
++ abort ();
++
++ if (GET_CODE (offset) == CONST_INT)
++ {
++ /* The base register doesn't really matter, we only want to test
++ the index for the appropriate mode. */
++ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21"))
++ {
++ if (can_create_pseudo_p ())
++ offset = force_reg (Pmode, offset);
++ else
++ abort ();
++ }
++
++ if (GET_CODE (offset) == CONST_INT)
++ return plus_constant (base, INTVAL (offset));
++ }
++
++ return gen_rtx_PLUS (Pmode, base, offset);
++ }
++
++ return orig;
++}
++
++/* Generate code to load the PIC register. */
++void
++avr32_load_pic_register (void)
++{
++ rtx l1, pic_tmp;
++ rtx global_offset_table;
++
++ if ((current_function_uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT)
++ return;
++
++ if (!flag_pic)
++ abort ();
++
++ l1 = gen_label_rtx ();
++
++ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
++ pic_tmp =
++ gen_rtx_CONST (Pmode,
++ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1),
++ global_offset_table));
++ emit_insn (gen_pic_load_addr
++ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp)));
++ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1));
++
++ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp
++ can cause life info to screw up. */
++ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
++}
++
++
++
++/* This hook should return true if values of type type are returned at the most
++ significant end of a register (in other words, if they are padded at the
++ least significant end). You can assume that type is returned in a register;
++ the caller is required to check this. Note that the register provided by
++ FUNCTION_VALUE must be able to hold the complete return value. For example,
++ if a 1-, 2- or 3-byte structure is returned at the most significant end of a
++ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */
++bool
++avr32_return_in_msb (tree type ATTRIBUTE_UNUSED)
++{
++ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) ||
++ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return
++ false; else return true; */
++
++ return false;
++}
++
++
++/*
++ Returns one if a certain function value is going to be returned in memory
++ and zero if it is going to be returned in a register.
++
++ BLKmode and all other modes that is larger than 64 bits are returned in
++ memory.
++*/
++bool
++avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
++{
++ if (TYPE_MODE (type) == VOIDmode)
++ return false;
++
++ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD)
++ || int_size_in_bytes (type) == -1)
++ {
++ return true;
++ }
++
++ /* If we have an aggregate then use the same mechanism as when checking if
++ it should be passed on the stack. */
++ if (type
++ && AGGREGATE_TYPE_P (type)
++ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type))
++ return true;
++
++ return false;
++}
++
++
++/* Output the constant part of the trampoline.
++ lddpc r0, pc[0x8:e] ; load static chain register
++ lddpc pc, pc[0x8:e] ; jump to subrutine
++ .long 0 ; Address to static chain,
++ ; filled in by avr32_initialize_trampoline()
++ .long 0 ; Address to subrutine,
++ ; filled in by avr32_initialize_trampoline()
++*/
++void
++avr32_trampoline_template (FILE * file)
++{
++ fprintf (file, "\tlddpc r0, pc[8]\n");
++ fprintf (file, "\tlddpc pc, pc[8]\n");
++ /* make room for the address of the static chain. */
++ fprintf (file, "\t.long\t0\n");
++ /* make room for the address to the subrutine. */
++ fprintf (file, "\t.long\t0\n");
++}
++
++
++/*
++ Initialize the variable parts of a trampoline.
++*/
++void
++avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
++{
++ /* Store the address to the static chain. */
++ emit_move_insn (gen_rtx_MEM
++ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)),
++ static_chain);
++
++ /* Store the address to the function. */
++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)),
++ fnaddr);
++
++ emit_insn (gen_cache (gen_rtx_REG (SImode, 13),
++ gen_rtx_CONST_INT (SImode,
++ AVR32_CACHE_INVALIDATE_ICACHE)));
++}
++
++/* Return nonzero if X is valid as an addressing register. */
++int
++avr32_address_register_rtx_p (rtx x, int strict_p)
++{
++ int regno;
++
++ if (!register_operand(x, GET_MODE(x)))
++ return 0;
++
++ /* If strict we require the register to be a hard register. */
++ if (strict_p
++ && !REG_P(x))
++ return 0;
++
++ regno = REGNO (x);
++
++ if (strict_p)
++ return REGNO_OK_FOR_BASE_P (regno);
++
++ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER);
++}
++
++/* Return nonzero if INDEX is valid for an address index operand. */
++int
++avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
++{
++ enum rtx_code code = GET_CODE (index);
++
++ if (GET_MODE_SIZE (mode) > 8)
++ return 0;
++
++ /* Standard coprocessor addressing modes. */
++ if (code == CONST_INT)
++ {
++ if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
++ /* Coprocessor mem insns has a smaller reach than ordinary mem insns */
++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ku14");
++ else
++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16");
++ }
++
++ if (avr32_address_register_rtx_p (index, strict_p))
++ return 1;
++
++ if (code == MULT)
++ {
++ rtx xiop0 = XEXP (index, 0);
++ rtx xiop1 = XEXP (index, 1);
++ return ((avr32_address_register_rtx_p (xiop0, strict_p)
++ && power_of_two_operand (xiop1, SImode)
++ && (INTVAL (xiop1) <= 8))
++ || (avr32_address_register_rtx_p (xiop1, strict_p)
++ && power_of_two_operand (xiop0, SImode)
++ && (INTVAL (xiop0) <= 8)));
++ }
++ else if (code == ASHIFT)
++ {
++ rtx op = XEXP (index, 1);
++
++ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p)
++ && GET_CODE (op) == CONST_INT
++ && INTVAL (op) > 0 && INTVAL (op) <= 3);
++ }
++
++ return 0;
++}
++
++/*
++ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if
++ the RTX x is a legitimate memory address.
++
++ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS
++ if it is.
++*/
++
++/* Forward declaration*/
++int is_minipool_label (rtx label);
++
++int
++avr32_legitimate_address (enum machine_mode mode, rtx x, int strict)
++{
++
++ switch (GET_CODE (x))
++ {
++ case REG:
++ return avr32_address_register_rtx_p (x, strict);
++ case CONST:
++ {
++ rtx label = avr32_find_symbol (x);
++ if (label
++ &&
++ (/*
++ If we enable (const (plus (symbol_ref ...))) type constant
++ pool entries we must add support for it in the predicates and
++ in the minipool generation in avr32_reorg().
++ (CONSTANT_POOL_ADDRESS_P (label)
++ && !(flag_pic
++ && (symbol_mentioned_p (get_pool_constant (label))
++ || label_mentioned_p (get_pool_constant (label)))))
++ ||*/
++ ((GET_CODE (label) == LABEL_REF)
++ && GET_CODE (XEXP (label, 0)) == CODE_LABEL
++ && is_minipool_label (XEXP (label, 0)))))
++ {
++ return TRUE;
++ }
++ }
++ break;
++ case LABEL_REF:
++ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL
++ && is_minipool_label (XEXP (x, 0)))
++ {
++ return TRUE;
++ }
++ break;
++ case SYMBOL_REF:
++ {
++ if (CONSTANT_POOL_ADDRESS_P (x)
++ && !(flag_pic
++ && (symbol_mentioned_p (get_pool_constant (x))
++ || label_mentioned_p (get_pool_constant (x)))))
++ return TRUE;
++ /*
++ A symbol_ref is only legal if it is a function. If all of them are
++ legal, a pseudo reg that is a constant will be replaced by a
++ symbol_ref and make illegale code. SYMBOL_REF_FLAG is set by
++ ENCODE_SECTION_INFO. */
++ else if (SYMBOL_REF_RCALL_FUNCTION_P (x))
++ return TRUE;
++ break;
++ }
++ case PRE_DEC: /* (pre_dec (...)) */
++ case POST_INC: /* (post_inc (...)) */
++ return avr32_address_register_rtx_p (XEXP (x, 0), strict);
++ case PLUS: /* (plus (...) (...)) */
++ {
++ rtx xop0 = XEXP (x, 0);
++ rtx xop1 = XEXP (x, 1);
++
++ return ((avr32_address_register_rtx_p (xop0, strict)
++ && avr32_legitimate_index_p (mode, xop1, strict))
++ || (avr32_address_register_rtx_p (xop1, strict)
++ && avr32_legitimate_index_p (mode, xop0, strict)));
++ }
++ default:
++ break;
++ }
++
++ return FALSE;
++}
++
++
++int
++avr32_const_ok_for_move (HOST_WIDE_INT c)
++{
++ if ( TARGET_V2_INSNS )
++ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21")
++ /* movh instruction */
++ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) );
++ else
++ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21");
++}
++
++int
++avr32_const_double_immediate (rtx value)
++{
++ HOST_WIDE_INT hi, lo;
++
++ if (GET_CODE (value) != CONST_DOUBLE)
++ return FALSE;
++
++ if (SCALAR_FLOAT_MODE_P (GET_MODE (value)))
++ {
++ HOST_WIDE_INT target_float[2];
++ hi = lo = 0;
++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value),
++ GET_MODE (value));
++ lo = target_float[0];
++ hi = target_float[1];
++ }
++ else
++ {
++ hi = CONST_DOUBLE_HIGH (value);
++ lo = CONST_DOUBLE_LOW (value);
++ }
++
++ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21")
++ && (GET_MODE (value) == SFmode
++ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21")))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++
++int
++avr32_legitimate_constant_p (rtx x)
++{
++ switch (GET_CODE (x))
++ {
++ case CONST_INT:
++ /* Check if we should put large immediate into constant pool
++ or load them directly with mov/orh.*/
++ if (!avr32_imm_in_const_pool)
++ return 1;
++
++ return avr32_const_ok_for_move (INTVAL (x));
++ case CONST_DOUBLE:
++ /* Check if we should put large immediate into constant pool
++ or load them directly with mov/orh.*/
++ if (!avr32_imm_in_const_pool)
++ return 1;
++
++ if (GET_MODE (x) == SFmode
++ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode)
++ return avr32_const_double_immediate (x);
++ else
++ return 0;
++ case LABEL_REF:
++ return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
++ case SYMBOL_REF:
++ return flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS;
++ case CONST:
++ case HIGH:
++ case CONST_VECTOR:
++ return 0;
++ default:
++ printf ("%s():\n", __FUNCTION__);
++ debug_rtx (x);
++ return 1;
++ }
++}
++
++
++/* Strip any special encoding from labels */
++const char *
++avr32_strip_name_encoding (const char *name)
++{
++ const char *stripped = name;
++
++ while (1)
++ {
++ switch (stripped[0])
++ {
++ case '#':
++ stripped = strchr (name + 1, '#') + 1;
++ break;
++ case '*':
++ stripped = &stripped[1];
++ break;
++ default:
++ return stripped;
++ }
++ }
++}
++
++
++
++/* Do anything needed before RTL is emitted for each function. */
++static struct machine_function *
++avr32_init_machine_status (void)
++{
++ struct machine_function *machine;
++ machine =
++ (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
++
++#if AVR32_FT_UNKNOWN != 0
++ machine->func_type = AVR32_FT_UNKNOWN;
++#endif
++
++ machine->minipool_label_head = 0;
++ machine->minipool_label_tail = 0;
++ machine->ifcvt_after_reload = 0;
++ return machine;
++}
++
++void
++avr32_init_expanders (void)
++{
++ /* Arrange to initialize and mark the machine per-function status. */
++ init_machine_status = avr32_init_machine_status;
++}
++
++
++/* Return an RTX indicating where the return address to the
++ calling function can be found. */
++
++rtx
++avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
++{
++ if (count != 0)
++ return NULL_RTX;
++
++ return get_hard_reg_initial_val (Pmode, LR_REGNUM);
++}
++
++
++void
++avr32_encode_section_info (tree decl, rtx rtl, int first)
++{
++
++ if (first && DECL_P (decl))
++ {
++ /* Set SYMBOL_REG_FLAG for local functions */
++ if (!TREE_PUBLIC (decl) && TREE_CODE (decl) == FUNCTION_DECL)
++ {
++ if ((*targetm.binds_local_p) (decl))
++ {
++ SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
++ }
++ }
++ }
++}
++
++void
++avr32_asm_output_label (FILE * stream, const char *name)
++{
++ name = avr32_strip_name_encoding (name);
++
++ /* Print the label. */
++ assemble_name (stream, name);
++ fprintf (stream, ":\n");
++}
++
++
++
++void
++avr32_asm_weaken_label (FILE * stream, const char *name)
++{
++ fprintf (stream, "\t.weak ");
++ assemble_name (stream, name);
++ fprintf (stream, "\n");
++}
++
++/*
++ Checks if a labelref is equal to a reserved word in the assembler. If it is,
++ insert a '_' before the label name.
++*/
++void
++avr32_asm_output_labelref (FILE * stream, const char *name)
++{
++ int verbatim = FALSE;
++ const char *stripped = name;
++ int strip_finished = FALSE;
++
++ while (!strip_finished)
++ {
++ switch (stripped[0])
++ {
++ case '#':
++ stripped = strchr (name + 1, '#') + 1;
++ break;
++ case '*':
++ stripped = &stripped[1];
++ verbatim = TRUE;
++ break;
++ default:
++ strip_finished = TRUE;
++ break;
++ }
++ }
++
++ if (verbatim)
++ fputs (stripped, stream);
++ else
++ asm_fprintf (stream, "%U%s", stripped);
++}
++
++
++
++/*
++ Check if the comparison in compare_exp is redundant
++ for the condition given in next_cond given that the
++ needed flags are already set by an earlier instruction.
++ Uses cc_prev_status to check this.
++
++ Returns NULL_RTX if the compare is not redundant
++ or the new condition to use in the conditional
++ instruction if the compare is redundant.
++*/
++static rtx
++is_compare_redundant (rtx compare_exp, rtx next_cond)
++{
++ int z_flag_valid = FALSE;
++ int n_flag_valid = FALSE;
++ rtx new_cond;
++
++ if (GET_CODE (compare_exp) != COMPARE
++ && GET_CODE (compare_exp) != AND)
++ return NULL_RTX;
++
++
++ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp))
++ {
++ /* cc0 already contains the correct comparison -> delete cmp insn */
++ return next_cond;
++ }
++
++ if (GET_MODE (compare_exp) != SImode)
++ return NULL_RTX;
++
++ switch (cc_prev_status.mdep.flags)
++ {
++ case CC_SET_VNCZ:
++ case CC_SET_NCZ:
++ n_flag_valid = TRUE;
++ case CC_SET_CZ:
++ case CC_SET_Z:
++ z_flag_valid = TRUE;
++ }
++
++ if (cc_prev_status.mdep.value
++ && GET_CODE (compare_exp) == COMPARE
++ && REG_P (XEXP (compare_exp, 0))
++ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value)
++ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT
++ && next_cond != NULL_RTX)
++ {
++ if (INTVAL (XEXP (compare_exp, 1)) == 0
++ && z_flag_valid
++ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE))
++ /* We can skip comparison Z flag is already reflecting ops[0] */
++ return next_cond;
++ else if (n_flag_valid
++ && ((INTVAL (XEXP (compare_exp, 1)) == 0
++ && (GET_CODE (next_cond) == GE
++ || GET_CODE (next_cond) == LT))
++ || (INTVAL (XEXP (compare_exp, 1)) == -1
++ && (GET_CODE (next_cond) == GT
++ || GET_CODE (next_cond) == LE))))
++ {
++ /* We can skip comparison N flag is already reflecting ops[0],
++ which means that we can use the mi/pl conditions to check if
++ ops[0] is GE or LT 0. */
++ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT))
++ new_cond =
++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
++ UNSPEC_COND_PL);
++ else
++ new_cond =
++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
++ UNSPEC_COND_MI);
++ return new_cond;
++ }
++ }
++ return NULL_RTX;
++}
++
++/* Updates cc_status. */
++void
++avr32_notice_update_cc (rtx exp, rtx insn)
++{
++ enum attr_cc attr_cc = get_attr_cc (insn);
++
++ if ( attr_cc == CC_SET_Z_IF_NOT_V2 )
++ {
++ if (TARGET_V2_INSNS)
++ attr_cc = CC_NONE;
++ else
++ attr_cc = CC_SET_Z;
++ }
++
++ switch (attr_cc)
++ {
++ case CC_CALL_SET:
++ CC_STATUS_INIT;
++ FPCC_STATUS_INIT;
++ /* Check if the function call returns a value in r12 */
++ if (REG_P (recog_data.operand[0])
++ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM)
++ {
++ cc_status.flags = 0;
++ cc_status.mdep.value =
++ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx);
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++
++ }
++ break;
++ case CC_COMPARE:
++ {
++ /* Check that compare will not be optimized away if so nothing should
++ be done */
++ rtx compare_exp = SET_SRC (exp);
++ /* Check if we have a tst expression. If so convert it to a
++ compare with 0. */
++ if ( REG_P (SET_SRC (exp)) )
++ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)),
++ SET_SRC (exp),
++ const0_rtx);
++
++ if (!next_insn_emits_cmp (insn)
++ && (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) == NULL_RTX))
++ {
++
++ /* Reset the nonstandard flag */
++ CC_STATUS_INIT;
++ cc_status.flags = 0;
++ cc_status.mdep.value = compare_exp;
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ }
++ }
++ break;
++ case CC_CMP_COND_INSN:
++ {
++ /* Conditional insn that emit the compare itself. */
++ rtx cmp;
++ rtx cmp_op0, cmp_op1;
++ rtx cond;
++ rtx dest;
++ rtx next_insn = next_nonnote_insn (insn);
++
++ if ( GET_CODE (exp) == COND_EXEC )
++ {
++ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0);
++ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1);
++ cond = COND_EXEC_TEST (exp);
++ dest = SET_DEST (COND_EXEC_CODE (exp));
++ }
++ else
++ {
++ /* If then else conditional. compare operands are in operands
++ 4 and 5. */
++ cmp_op0 = recog_data.operand[4];
++ cmp_op1 = recog_data.operand[5];
++ cond = recog_data.operand[1];
++ dest = SET_DEST (exp);
++ }
++
++ if ( GET_CODE (cmp_op0) == AND )
++ cmp = cmp_op0;
++ else
++ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0),
++ cmp_op0,
++ cmp_op1);
++
++ /* Check if the conditional insns updates a register present
++ in the comparison, if so then we must reset the cc_status. */
++ if (REG_P (dest)
++ && (reg_mentioned_p (dest, cmp_op0)
++ || reg_mentioned_p (dest, cmp_op1))
++ && GET_CODE (exp) != COND_EXEC )
++ {
++ CC_STATUS_INIT;
++ }
++ else if (is_compare_redundant (cmp, cond) == NULL_RTX)
++ {
++ /* Reset the nonstandard flag */
++ CC_STATUS_INIT;
++ if ( GET_CODE (cmp_op0) == AND )
++ {
++ cc_status.flags = CC_INVERTED;
++ cc_status.mdep.flags = CC_SET_Z;
++ }
++ else
++ {
++ cc_status.flags = 0;
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ }
++ cc_status.mdep.value = cmp;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ }
++
++
++ /* Check if we have a COND_EXEC insn which updates one
++ of the registers in the compare status. */
++ if (REG_P (dest)
++ && (reg_mentioned_p (dest, cmp_op0)
++ || reg_mentioned_p (dest, cmp_op1))
++ && GET_CODE (exp) == COND_EXEC )
++ cc_status.mdep.cond_exec_cmp_clobbered = 1;
++
++ if ( cc_status.mdep.cond_exec_cmp_clobbered
++ && GET_CODE (exp) == COND_EXEC
++ && next_insn != NULL
++ && INSN_P (next_insn)
++ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC
++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0)
++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1)
++ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond)
++ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) )
++ {
++ /* We have a sequence of conditional insns where the compare status has been clobbered
++ since the compare no longer reflects the content of the values to compare. */
++ CC_STATUS_INIT;
++ cc_status.mdep.cond_exec_cmp_clobbered = 1;
++ }
++
++ }
++ break;
++ case CC_FPCOMPARE:
++ /* Check that floating-point compare will not be optimized away if so
++ nothing should be done */
++ if (!rtx_equal_p (cc_prev_status.mdep.fpvalue, SET_SRC (exp)))
++ {
++ /* cc0 already contains the correct comparison -> delete cmp insn */
++ /* Reset the nonstandard flag */
++ cc_status.mdep.fpvalue = SET_SRC (exp);
++ cc_status.mdep.fpflags = CC_SET_CZ;
++ }
++ break;
++ case CC_FROM_FPCC:
++ /* Flags are updated with flags from Floating-point coprocessor, set
++ CC_NOT_SIGNED flag since the flags are set so that unsigned
++ condidion codes can be used directly. */
++ CC_STATUS_INIT;
++ cc_status.flags = CC_NOT_SIGNED;
++ cc_status.mdep.value = cc_status.mdep.fpvalue;
++ cc_status.mdep.flags = cc_status.mdep.fpflags;
++ break;
++ case CC_BLD:
++ /* Bit load is kind of like an inverted testsi, because the Z flag is
++ inverted */
++ CC_STATUS_INIT;
++ cc_status.flags = CC_INVERTED;
++ cc_status.mdep.value = SET_SRC (exp);
++ cc_status.mdep.flags = CC_SET_Z;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ break;
++ case CC_NONE:
++ /* Insn does not affect CC at all. Check if the instruction updates
++ some of the register currently reflected in cc0 */
++
++ if ((GET_CODE (exp) == SET)
++ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value)
++ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1)
++ || reg_mentioned_p (SET_DEST (exp), cc_status.value2)
++ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value)))
++ {
++ CC_STATUS_INIT;
++ }
++
++ /* If this is a parallel we must step through each of the parallel
++ expressions */
++ if (GET_CODE (exp) == PARALLEL)
++ {
++ int i;
++ for (i = 0; i < XVECLEN (exp, 0); ++i)
++ {
++ rtx vec_exp = XVECEXP (exp, 0, i);
++ if ((GET_CODE (vec_exp) == SET)
++ && (cc_status.value1 || cc_status.value2
++ || cc_status.mdep.value)
++ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1)
++ || reg_mentioned_p (SET_DEST (vec_exp),
++ cc_status.value2)
++ || reg_mentioned_p (SET_DEST (vec_exp),
++ cc_status.mdep.value)))
++ {
++ CC_STATUS_INIT;
++ }
++ }
++ }
++
++ /* Check if we have memory opartions with post_inc or pre_dec on the
++ register currently reflected in cc0 */
++ if (GET_CODE (exp) == SET
++ && GET_CODE (SET_SRC (exp)) == MEM
++ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC
++ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC)
++ &&
++ (reg_mentioned_p
++ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1)
++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
++ cc_status.value2)
++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
++ cc_status.mdep.value)))
++ CC_STATUS_INIT;
++
++ if (GET_CODE (exp) == SET
++ && GET_CODE (SET_DEST (exp)) == MEM
++ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC
++ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC)
++ &&
++ (reg_mentioned_p
++ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1)
++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
++ cc_status.value2)
++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
++ cc_status.mdep.value)))
++ CC_STATUS_INIT;
++ break;
++
++ case CC_SET_VNCZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_VNCZ;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ break;
++
++ case CC_SET_NCZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_NCZ;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ break;
++
++ case CC_SET_CZ:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_CZ;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ break;
++
++ case CC_SET_Z:
++ CC_STATUS_INIT;
++ cc_status.mdep.value = recog_data.operand[0];
++ cc_status.mdep.flags = CC_SET_Z;
++ cc_status.mdep.cond_exec_cmp_clobbered = 0;
++ break;
++
++ case CC_CLOBBER:
++ CC_STATUS_INIT;
++ break;
++
++ default:
++ CC_STATUS_INIT;
++ }
++}
++
++
++/*
++ Outputs to stdio stream stream the assembler syntax for an instruction
++ operand x. x is an RTL expression.
++*/
++void
++avr32_print_operand (FILE * stream, rtx x, int code)
++{
++ int error = 0;
++
++ if ( code == '?' )
++ {
++ /* Predicable instruction, print condition code */
++
++ /* If the insn should not be conditional then do nothing. */
++ if ( current_insn_predicate == NULL_RTX )
++ return;
++
++ /* Set x to the predicate to force printing
++ the condition later on. */
++ x = current_insn_predicate;
++
++ /* Reverse condition if useing bld insn. */
++ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND )
++ x = reversed_condition (current_insn_predicate);
++ }
++ else if ( code == '!' )
++ {
++ /* Output compare for conditional insn if needed. */
++ rtx new_cond;
++ gcc_assert ( current_insn_predicate != NULL_RTX );
++ new_cond = avr32_output_cmp(current_insn_predicate,
++ GET_MODE(XEXP(current_insn_predicate,0)),
++ XEXP(current_insn_predicate,0),
++ XEXP(current_insn_predicate,1));
++
++ /* Check if the new condition is a special avr32 condition
++ specified using UNSPECs. If so we must handle it differently. */
++ if ( GET_CODE (new_cond) == UNSPEC )
++ {
++ current_insn_predicate =
++ gen_rtx_UNSPEC (CCmode,
++ gen_rtvec (2,
++ XEXP(current_insn_predicate,0),
++ XEXP(current_insn_predicate,1)),
++ XINT (new_cond, 1));
++ }
++ else
++ {
++ PUT_CODE(current_insn_predicate, GET_CODE(new_cond));
++ }
++ return;
++ }
++
++ switch (GET_CODE (x))
++ {
++ case UNSPEC:
++ switch (XINT (x, 1))
++ {
++ case UNSPEC_COND_PL:
++ if (code == 'i')
++ fputs ("mi", stream);
++ else
++ fputs ("pl", stream);
++ break;
++ case UNSPEC_COND_MI:
++ if (code == 'i')
++ fputs ("pl", stream);
++ else
++ fputs ("mi", stream);
++ break;
++ default:
++ error = 1;
++ }
++ break;
++ case EQ:
++ if (code == 'i')
++ fputs ("ne", stream);
++ else
++ fputs ("eq", stream);
++ break;
++ case NE:
++ if (code == 'i')
++ fputs ("eq", stream);
++ else
++ fputs ("ne", stream);
++ break;
++ case GT:
++ if (code == 'i')
++ fputs ("le", stream);
++ else
++ fputs ("gt", stream);
++ break;
++ case GTU:
++ if (code == 'i')
++ fputs ("ls", stream);
++ else
++ fputs ("hi", stream);
++ break;
++ case LT:
++ if (code == 'i')
++ fputs ("ge", stream);
++ else
++ fputs ("lt", stream);
++ break;
++ case LTU:
++ if (code == 'i')
++ fputs ("hs", stream);
++ else
++ fputs ("lo", stream);
++ break;
++ case GE:
++ if (code == 'i')
++ fputs ("lt", stream);
++ else
++ fputs ("ge", stream);
++ break;
++ case GEU:
++ if (code == 'i')
++ fputs ("lo", stream);
++ else
++ fputs ("hs", stream);
++ break;
++ case LE:
++ if (code == 'i')
++ fputs ("gt", stream);
++ else
++ fputs ("le", stream);
++ break;
++ case LEU:
++ if (code == 'i')
++ fputs ("hi", stream);
++ else
++ fputs ("ls", stream);
++ break;
++ case CONST_INT:
++ {
++ HOST_WIDE_INT value = INTVAL (x);
++
++ switch (code)
++ {
++ case 'm':
++ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD )
++ {
++ /* A const_int can be used to represent DImode constants. */
++ value >>= BITS_PER_WORD;
++ }
++ /* We might get a const_int immediate for setting a DI register,
++ we then must then return the correct sign extended DI. The most
++ significant word is just a sign extension. */
++ else if (value < 0)
++ value = -1;
++ else
++ value = 0;
++ break;
++ case 'i':
++ value++;
++ break;
++ case 'p':
++ {
++ /* Set to bit position of first bit set in immediate */
++ int i, bitpos = 32;
++ for (i = 0; i < 32; i++)
++ if (value & (1 << i))
++ {
++ bitpos = i;
++ break;
++ }
++ value = bitpos;
++ }
++ break;
++ case 'r':
++ {
++ /* Reglist 8 */
++ char op[50];
++ op[0] = '\0';
++
++ if (value & 0x01)
++ sprintf (op, "r0-r3");
++ if (value & 0x02)
++ strlen (op) ? sprintf (op, "%s, r4-r7", op) : sprintf (op,
++ "r4-r7");
++ if (value & 0x04)
++ strlen (op) ? sprintf (op, "%s, r8-r9", op) : sprintf (op,
++ "r8-r9");
++ if (value & 0x08)
++ strlen (op) ? sprintf (op, "%s, r10", op) : sprintf (op,
++ "r10");
++ if (value & 0x10)
++ strlen (op) ? sprintf (op, "%s, r11", op) : sprintf (op,
++ "r11");
++ if (value & 0x20)
++ strlen (op) ? sprintf (op, "%s, r12", op) : sprintf (op,
++ "r12");
++ if (value & 0x40)
++ strlen (op) ? sprintf (op, "%s, lr", op) : sprintf (op, "lr");
++ if (value & 0x80)
++ strlen (op) ? sprintf (op, "%s, pc", op) : sprintf (op, "pc");
++
++ fputs (op, stream);
++ return;
++ }
++ case 's':
++ {
++ /* Reglist 16 */
++ char reglist16_string[100];
++ int i;
++ reglist16_string[0] = '\0';
++
++ for (i = 0; i < 16; ++i)
++ {
++ if (value & (1 << i))
++ {
++ strlen (reglist16_string) ? sprintf (reglist16_string,
++ "%s, %s",
++ reglist16_string,
++ reg_names
++ [INTERNAL_REGNUM
++ (i)]) :
++ sprintf (reglist16_string, "%s",
++ reg_names[INTERNAL_REGNUM (i)]);
++ }
++ }
++ fputs (reglist16_string, stream);
++ return;
++ }
++ case 'C':
++ {
++ /* RegListCP8 */
++ char reglist_string[100];
++ avr32_make_fp_reglist_w (value, (char *) reglist_string);
++ fputs (reglist_string, stream);
++ return;
++ }
++ case 'D':
++ {
++ /* RegListCPD8 */
++ char reglist_string[100];
++ avr32_make_fp_reglist_d (value, (char *) reglist_string);
++ fputs (reglist_string, stream);
++ return;
++ }
++ case 'h':
++ /* Print halfword part of word */
++ fputs (value ? "b" : "t", stream);
++ return;
++ }
++
++ /* Print Value */
++ fprintf (stream, "%d", value);
++ break;
++ }
++ case CONST_DOUBLE:
++ {
++ HOST_WIDE_INT hi, lo;
++ if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
++ {
++ HOST_WIDE_INT target_float[2];
++ hi = lo = 0;
++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x),
++ GET_MODE (x));
++ /* For doubles the most significant part starts at index 0. */
++ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
++ {
++ hi = target_float[0];
++ lo = target_float[1];
++ }
++ else
++ {
++ lo = target_float[0];
++ }
++ }
++ else
++ {
++ hi = CONST_DOUBLE_HIGH (x);
++ lo = CONST_DOUBLE_LOW (x);
++ }
++
++ if (code == 'm')
++ fprintf (stream, "%ld", hi);
++ else
++ fprintf (stream, "%ld", lo);
++
++ break;
++ }
++ case CONST:
++ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
++ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1)));
++ break;
++ case REG:
++ /* Swap register name if the register is DImode or DFmode. */
++ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
++ {
++ /* Double register must have an even numbered address */
++ gcc_assert (!(REGNO (x) % 2));
++ if (code == 'm')
++ fputs (reg_names[true_regnum (x)], stream);
++ else
++ fputs (reg_names[true_regnum (x) + 1], stream);
++ }
++ else if (GET_MODE (x) == TImode)
++ {
++ switch (code)
++ {
++ case 'T':
++ fputs (reg_names[true_regnum (x)], stream);
++ break;
++ case 'U':
++ fputs (reg_names[true_regnum (x) + 1], stream);
++ break;
++ case 'L':
++ fputs (reg_names[true_regnum (x) + 2], stream);
++ break;
++ case 'B':
++ fputs (reg_names[true_regnum (x) + 3], stream);
++ break;
++ default:
++ fprintf (stream, "%s, %s, %s, %s",
++ reg_names[true_regnum (x) + 3],
++ reg_names[true_regnum (x) + 2],
++ reg_names[true_regnum (x) + 1],
++ reg_names[true_regnum (x)]);
++ break;
++ }
++ }
++ else
++ {
++ fputs (reg_names[true_regnum (x)], stream);
++ }
++ break;
++ case CODE_LABEL:
++ case LABEL_REF:
++ case SYMBOL_REF:
++ output_addr_const (stream, x);
++ break;
++ case MEM:
++ switch (GET_CODE (XEXP (x, 0)))
++ {
++ case LABEL_REF:
++ case SYMBOL_REF:
++ output_addr_const (stream, XEXP (x, 0));
++ break;
++ case MEM:
++ switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
++ {
++ case SYMBOL_REF:
++ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
++ break;
++ default:
++ error = 1;
++ break;
++ }
++ break;
++ case REG:
++ avr32_print_operand (stream, XEXP (x, 0), 0);
++ if (code != 'p')
++ fputs ("[0]", stream);
++ break;
++ case PRE_DEC:
++ fputs ("--", stream);
++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
++ break;
++ case POST_INC:
++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
++ fputs ("++", stream);
++ break;
++ case PLUS:
++ {
++ rtx op0 = XEXP (XEXP (x, 0), 0);
++ rtx op1 = XEXP (XEXP (x, 0), 1);
++ rtx base = NULL_RTX, offset = NULL_RTX;
++
++ if (avr32_address_register_rtx_p (op0, 1))
++ {
++ base = op0;
++ offset = op1;
++ }
++ else if (avr32_address_register_rtx_p (op1, 1))
++ {
++ /* Operands are switched. */
++ base = op1;
++ offset = op0;
++ }
++
++ gcc_assert (base && offset
++ && avr32_address_register_rtx_p (base, 1)
++ && avr32_legitimate_index_p (GET_MODE (x), offset,
++ 1));
++
++ avr32_print_operand (stream, base, 0);
++ fputs ("[", stream);
++ avr32_print_operand (stream, offset, 0);
++ fputs ("]", stream);
++ break;
++ }
++ case CONST:
++ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0));
++ fprintf (stream, " + %ld",
++ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)));
++ break;
++ default:
++ error = 1;
++ }
++ break;
++ case MULT:
++ {
++ int value = INTVAL (XEXP (x, 1));
++
++ /* Convert immediate in multiplication into a shift immediate */
++ switch (value)
++ {
++ case 2:
++ value = 1;
++ break;
++ case 4:
++ value = 2;
++ break;
++ case 8:
++ value = 3;
++ break;
++ default:
++ value = 0;
++ }
++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
++ value);
++ break;
++ }
++ case ASHIFT:
++ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
++ (int) INTVAL (XEXP (x, 1)));
++ else if (REG_P (XEXP (x, 1)))
++ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))],
++ reg_names[true_regnum (XEXP (x, 1))]);
++ else
++ {
++ error = 1;
++ }
++ break;
++ case LSHIFTRT:
++ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
++ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))],
++ (int) INTVAL (XEXP (x, 1)));
++ else if (REG_P (XEXP (x, 1)))
++ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))],
++ reg_names[true_regnum (XEXP (x, 1))]);
++ else
++ {
++ error = 1;
++ }
++ fprintf (stream, ">>");
++ break;
++ case PARALLEL:
++ {
++ /* Load store multiple */
++ int i;
++ int count = XVECLEN (x, 0);
++ int reglist16 = 0;
++ char reglist16_string[100];
++
++ for (i = 0; i < count; ++i)
++ {
++ rtx vec_elm = XVECEXP (x, 0, i);
++ if (GET_MODE (vec_elm) != SET)
++ {
++ debug_rtx (vec_elm);
++ internal_error ("Unknown element in parallel expression!");
++ }
++ if (GET_MODE (XEXP (vec_elm, 0)) == REG)
++ {
++ /* Load multiple */
++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0)));
++ }
++ else
++ {
++ /* Store multiple */
++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1)));
++ }
++ }
++
++ avr32_make_reglist16 (reglist16, reglist16_string);
++ fputs (reglist16_string, stream);
++
++ break;
++ }
++
++ case PLUS:
++ {
++ rtx op0 = XEXP (x, 0);
++ rtx op1 = XEXP (x, 1);
++ rtx base = NULL_RTX, offset = NULL_RTX;
++
++ if (avr32_address_register_rtx_p (op0, 1))
++ {
++ base = op0;
++ offset = op1;
++ }
++ else if (avr32_address_register_rtx_p (op1, 1))
++ {
++ /* Operands are switched. */
++ base = op1;
++ offset = op0;
++ }
++
++ gcc_assert (base && offset
++ && avr32_address_register_rtx_p (base, 1)
++ && avr32_legitimate_index_p (GET_MODE (x), offset, 1));
++
++ avr32_print_operand (stream, base, 0);
++ fputs ("[", stream);
++ avr32_print_operand (stream, offset, 0);
++ fputs ("]", stream);
++ break;
++ }
++
++ default:
++ error = 1;
++ }
++
++ if (error)
++ {
++ debug_rtx (x);
++ internal_error ("Illegal expression for avr32_print_operand");
++ }
++}
++
++rtx
++avr32_get_note_reg_equiv (rtx insn)
++{
++ rtx note;
++
++ note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
++
++ if (note != NULL_RTX)
++ return XEXP (note, 0);
++ else
++ return NULL_RTX;
++}
++
++/*
++ Outputs to stdio stream stream the assembler syntax for an instruction
++ operand that is a memory reference whose address is x. x is an RTL
++ expression.
++
++ ToDo: fixme.
++*/
++void
++avr32_print_operand_address (FILE * stream, rtx x)
++{
++ fprintf (stream, "(%d) /* address */", REGNO (x));
++}
++
++/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */
++bool
++avr32_got_mentioned_p (rtx addr)
++{
++ if (GET_CODE (addr) == MEM)
++ addr = XEXP (addr, 0);
++ while (GET_CODE (addr) == CONST)
++ addr = XEXP (addr, 0);
++ if (GET_CODE (addr) == SYMBOL_REF)
++ {
++ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_");
++ }
++ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
++ {
++ bool l1, l2;
++
++ l1 = avr32_got_mentioned_p (XEXP (addr, 0));
++ l2 = avr32_got_mentioned_p (XEXP (addr, 1));
++ return l1 || l2;
++ }
++ return false;
++}
++
++
++/* Find the symbol in an address expression. */
++
++rtx
++avr32_find_symbol (rtx addr)
++{
++ if (GET_CODE (addr) == MEM)
++ addr = XEXP (addr, 0);
++
++ while (GET_CODE (addr) == CONST)
++ addr = XEXP (addr, 0);
++
++ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
++ return addr;
++ if (GET_CODE (addr) == PLUS)
++ {
++ rtx l1, l2;
++
++ l1 = avr32_find_symbol (XEXP (addr, 0));
++ l2 = avr32_find_symbol (XEXP (addr, 1));
++ if (l1 != NULL_RTX && l2 == NULL_RTX)
++ return l1;
++ else if (l1 == NULL_RTX && l2 != NULL_RTX)
++ return l2;
++ }
++
++ return NULL_RTX;
++}
++
++
++/* Routines for manipulation of the constant pool. */
++
++/* AVR32 instructions cannot load a large constant directly into a
++ register; they have to come from a pc relative load. The constant
++ must therefore be placed in the addressable range of the pc
++ relative load. Depending on the precise pc relative load
++ instruction the range is somewhere between 256 bytes and 4k. This
++ means that we often have to dump a constant inside a function, and
++ generate code to branch around it.
++
++ It is important to minimize this, since the branches will slow
++ things down and make the code larger.
++
++ Normally we can hide the table after an existing unconditional
++ branch so that there is no interruption of the flow, but in the
++ worst case the code looks like this:
++
++ lddpc rn, L1
++ ...
++ rjmp L2
++ align
++ L1: .long value
++ L2:
++ ...
++
++ lddpc rn, L3
++ ...
++ rjmp L4
++ align
++ L3: .long value
++ L4:
++ ...
++
++ We fix this by performing a scan after scheduling, which notices
++ which instructions need to have their operands fetched from the
++ constant table and builds the table.
++
++ The algorithm starts by building a table of all the constants that
++ need fixing up and all the natural barriers in the function (places
++ where a constant table can be dropped without breaking the flow).
++ For each fixup we note how far the pc-relative replacement will be
++ able to reach and the offset of the instruction into the function.
++
++ Having built the table we then group the fixes together to form
++ tables that are as large as possible (subject to addressing
++ constraints) and emit each table of constants after the last
++ barrier that is within range of all the instructions in the group.
++ If a group does not contain a barrier, then we forcibly create one
++ by inserting a jump instruction into the flow. Once the table has
++ been inserted, the insns are then modified to reference the
++ relevant entry in the pool.
++
++ Possible enhancements to the algorithm (not implemented) are:
++
++ 1) For some processors and object formats, there may be benefit in
++ aligning the pools to the start of cache lines; this alignment
++ would need to be taken into account when calculating addressability
++ of a pool. */
++
++/* These typedefs are located at the start of this file, so that
++ they can be used in the prototypes there. This comment is to
++ remind readers of that fact so that the following structures
++ can be understood more easily.
++
++ typedef struct minipool_node Mnode;
++ typedef struct minipool_fixup Mfix; */
++
++struct minipool_node
++{
++ /* Doubly linked chain of entries. */
++ Mnode *next;
++ Mnode *prev;
++ /* The maximum offset into the code that this entry can be placed. While
++ pushing fixes for forward references, all entries are sorted in order of
++ increasing max_address. */
++ HOST_WIDE_INT max_address;
++ /* Similarly for an entry inserted for a backwards ref. */
++ HOST_WIDE_INT min_address;
++ /* The number of fixes referencing this entry. This can become zero if we
++ "unpush" an entry. In this case we ignore the entry when we come to
++ emit the code. */
++ int refcount;
++ /* The offset from the start of the minipool. */
++ HOST_WIDE_INT offset;
++ /* The value in table. */
++ rtx value;
++ /* The mode of value. */
++ enum machine_mode mode;
++ /* The size of the value. */
++ int fix_size;
++};
++
++struct minipool_fixup
++{
++ Mfix *next;
++ rtx insn;
++ HOST_WIDE_INT address;
++ rtx *loc;
++ enum machine_mode mode;
++ int fix_size;
++ rtx value;
++ Mnode *minipool;
++ HOST_WIDE_INT forwards;
++ HOST_WIDE_INT backwards;
++};
++
++
++/* Fixes less than a word need padding out to a word boundary. */
++#define MINIPOOL_FIX_SIZE(mode, value) \
++ (IS_FORCE_MINIPOOL(value) ? 0 : \
++ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4))
++
++#define IS_FORCE_MINIPOOL(x) \
++ (GET_CODE(x) == UNSPEC && \
++ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL)
++
++static Mnode *minipool_vector_head;
++static Mnode *minipool_vector_tail;
++
++/* The linked list of all minipool fixes required for this function. */
++Mfix *minipool_fix_head;
++Mfix *minipool_fix_tail;
++/* The fix entry for the current minipool, once it has been placed. */
++Mfix *minipool_barrier;
++
++/* Determines if INSN is the start of a jump table. Returns the end
++ of the TABLE or NULL_RTX. */
++static rtx
++is_jump_table (rtx insn)
++{
++ rtx table;
++
++ if (GET_CODE (insn) == JUMP_INSN
++ && JUMP_LABEL (insn) != NULL
++ && ((table = next_real_insn (JUMP_LABEL (insn)))
++ == next_real_insn (insn))
++ && table != NULL
++ && GET_CODE (table) == JUMP_INSN
++ && (GET_CODE (PATTERN (table)) == ADDR_VEC
++ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
++ return table;
++
++ return NULL_RTX;
++}
++
++static HOST_WIDE_INT
++get_jump_table_size (rtx insn)
++{
++ /* ADDR_VECs only take room if read-only data does into the text section. */
++ if (JUMP_TABLES_IN_TEXT_SECTION
++#if !defined(READONLY_DATA_SECTION_ASM_OP)
++ || 1
++#endif
++ )
++ {
++ rtx body = PATTERN (insn);
++ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
++
++ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
++ }
++
++ return 0;
++}
++
++/* Move a minipool fix MP from its current location to before MAX_MP.
++ If MAX_MP is NULL, then MP doesn't need moving, but the addressing
++ constraints may need updating. */
++static Mnode *
++move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp,
++ HOST_WIDE_INT max_address)
++{
++ /* This should never be true and the code below assumes these are
++ different. */
++ if (mp == max_mp)
++ abort ();
++
++ if (max_mp == NULL)
++ {
++ if (max_address < mp->max_address)
++ mp->max_address = max_address;
++ }
++ else
++ {
++ if (max_address > max_mp->max_address - mp->fix_size)
++ mp->max_address = max_mp->max_address - mp->fix_size;
++ else
++ mp->max_address = max_address;
++
++ /* Unlink MP from its current position. Since max_mp is non-null,
++ mp->prev must be non-null. */
++ mp->prev->next = mp->next;
++ if (mp->next != NULL)
++ mp->next->prev = mp->prev;
++ else
++ minipool_vector_tail = mp->prev;
++
++ /* Re-insert it before MAX_MP. */
++ mp->next = max_mp;
++ mp->prev = max_mp->prev;
++ max_mp->prev = mp;
++
++ if (mp->prev != NULL)
++ mp->prev->next = mp;
++ else
++ minipool_vector_head = mp;
++ }
++
++ /* Save the new entry. */
++ max_mp = mp;
++
++ /* Scan over the preceding entries and adjust their addresses as required.
++ */
++ while (mp->prev != NULL
++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
++ {
++ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
++ mp = mp->prev;
++ }
++
++ return max_mp;
++}
++
++/* Add a constant to the minipool for a forward reference. Returns the
++ node added or NULL if the constant will not fit in this pool. */
++static Mnode *
++add_minipool_forward_ref (Mfix * fix)
++{
++ /* If set, max_mp is the first pool_entry that has a lower constraint than
++ the one we are trying to add. */
++ Mnode *max_mp = NULL;
++ HOST_WIDE_INT max_address = fix->address + fix->forwards;
++ Mnode *mp;
++
++ /* If this fix's address is greater than the address of the first entry,
++ then we can't put the fix in this pool. We subtract the size of the
++ current fix to ensure that if the table is fully packed we still have
++ enough room to insert this value by suffling the other fixes forwards. */
++ if (minipool_vector_head &&
++ fix->address >= minipool_vector_head->max_address - fix->fix_size)
++ return NULL;
++
++ /* Scan the pool to see if a constant with the same value has already been
++ added. While we are doing this, also note the location where we must
++ insert the constant if it doesn't already exist. */
++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
++ {
++ if (GET_CODE (fix->value) == GET_CODE (mp->value)
++ && fix->mode == mp->mode
++ && (GET_CODE (fix->value) != CODE_LABEL
++ || (CODE_LABEL_NUMBER (fix->value)
++ == CODE_LABEL_NUMBER (mp->value)))
++ && rtx_equal_p (fix->value, mp->value))
++ {
++ /* More than one fix references this entry. */
++ mp->refcount++;
++ return move_minipool_fix_forward_ref (mp, max_mp, max_address);
++ }
++
++ /* Note the insertion point if necessary. */
++ if (max_mp == NULL && mp->max_address > max_address)
++ max_mp = mp;
++
++ }
++
++ /* The value is not currently in the minipool, so we need to create a new
++ entry for it. If MAX_MP is NULL, the entry will be put on the end of
++ the list since the placement is less constrained than any existing
++ entry. Otherwise, we insert the new fix before MAX_MP and, if
++ necessary, adjust the constraints on the other entries. */
++ mp = xmalloc (sizeof (*mp));
++ mp->fix_size = fix->fix_size;
++ mp->mode = fix->mode;
++ mp->value = fix->value;
++ mp->refcount = 1;
++ /* Not yet required for a backwards ref. */
++ mp->min_address = -65536;
++
++ if (max_mp == NULL)
++ {
++ mp->max_address = max_address;
++ mp->next = NULL;
++ mp->prev = minipool_vector_tail;
++
++ if (mp->prev == NULL)
++ {
++ minipool_vector_head = mp;
++ minipool_vector_label = gen_label_rtx ();
++ }
++ else
++ mp->prev->next = mp;
++
++ minipool_vector_tail = mp;
++ }
++ else
++ {
++ if (max_address > max_mp->max_address - mp->fix_size)
++ mp->max_address = max_mp->max_address - mp->fix_size;
++ else
++ mp->max_address = max_address;
++
++ mp->next = max_mp;
++ mp->prev = max_mp->prev;
++ max_mp->prev = mp;
++ if (mp->prev != NULL)
++ mp->prev->next = mp;
++ else
++ minipool_vector_head = mp;
++ }
++
++ /* Save the new entry. */
++ max_mp = mp;
++
++ /* Scan over the preceding entries and adjust their addresses as required.
++ */
++ while (mp->prev != NULL
++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
++ {
++ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
++ mp = mp->prev;
++ }
++
++ return max_mp;
++}
++
++static Mnode *
++move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp,
++ HOST_WIDE_INT min_address)
++{
++ HOST_WIDE_INT offset;
++
++ /* This should never be true, and the code below assumes these are
++ different. */
++ if (mp == min_mp)
++ abort ();
++
++ if (min_mp == NULL)
++ {
++ if (min_address > mp->min_address)
++ mp->min_address = min_address;
++ }
++ else
++ {
++ /* We will adjust this below if it is too loose. */
++ mp->min_address = min_address;
++
++ /* Unlink MP from its current position. Since min_mp is non-null,
++ mp->next must be non-null. */
++ mp->next->prev = mp->prev;
++ if (mp->prev != NULL)
++ mp->prev->next = mp->next;
++ else
++ minipool_vector_head = mp->next;
++
++ /* Reinsert it after MIN_MP. */
++ mp->prev = min_mp;
++ mp->next = min_mp->next;
++ min_mp->next = mp;
++ if (mp->next != NULL)
++ mp->next->prev = mp;
++ else
++ minipool_vector_tail = mp;
++ }
++
++ min_mp = mp;
++
++ offset = 0;
++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
++ {
++ mp->offset = offset;
++ if (mp->refcount > 0)
++ offset += mp->fix_size;
++
++ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
++ mp->next->min_address = mp->min_address + mp->fix_size;
++ }
++
++ return min_mp;
++}
++
++/* Add a constant to the minipool for a backward reference. Returns the
++ node added or NULL if the constant will not fit in this pool.
++
++ Note that the code for insertion for a backwards reference can be
++ somewhat confusing because the calculated offsets for each fix do
++ not take into account the size of the pool (which is still under
++ construction. */
++static Mnode *
++add_minipool_backward_ref (Mfix * fix)
++{
++ /* If set, min_mp is the last pool_entry that has a lower constraint than
++ the one we are trying to add. */
++ Mnode *min_mp = NULL;
++ /* This can be negative, since it is only a constraint. */
++ HOST_WIDE_INT min_address = fix->address - fix->backwards;
++ Mnode *mp;
++
++ /* If we can't reach the current pool from this insn, or if we can't insert
++ this entry at the end of the pool without pushing other fixes out of
++ range, then we don't try. This ensures that we can't fail later on. */
++ if (min_address >= minipool_barrier->address
++ || (minipool_vector_tail->min_address + fix->fix_size
++ >= minipool_barrier->address))
++ return NULL;
++
++ /* Scan the pool to see if a constant with the same value has already been
++ added. While we are doing this, also note the location where we must
++ insert the constant if it doesn't already exist. */
++ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
++ {
++ if (GET_CODE (fix->value) == GET_CODE (mp->value)
++ && fix->mode == mp->mode
++ && (GET_CODE (fix->value) != CODE_LABEL
++ || (CODE_LABEL_NUMBER (fix->value)
++ == CODE_LABEL_NUMBER (mp->value)))
++ && rtx_equal_p (fix->value, mp->value)
++ /* Check that there is enough slack to move this entry to the end
++ of the table (this is conservative). */
++ && (mp->max_address
++ > (minipool_barrier->address
++ + minipool_vector_tail->offset
++ + minipool_vector_tail->fix_size)))
++ {
++ mp->refcount++;
++ return move_minipool_fix_backward_ref (mp, min_mp, min_address);
++ }
++
++ if (min_mp != NULL)
++ mp->min_address += fix->fix_size;
++ else
++ {
++ /* Note the insertion point if necessary. */
++ if (mp->min_address < min_address)
++ {
++ min_mp = mp;
++ }
++ else if (mp->max_address
++ < minipool_barrier->address + mp->offset + fix->fix_size)
++ {
++ /* Inserting before this entry would push the fix beyond its
++ maximum address (which can happen if we have re-located a
++ forwards fix); force the new fix to come after it. */
++ min_mp = mp;
++ min_address = mp->min_address + fix->fix_size;
++ }
++ }
++ }
++
++ /* We need to create a new entry. */
++ mp = xmalloc (sizeof (*mp));
++ mp->fix_size = fix->fix_size;
++ mp->mode = fix->mode;
++ mp->value = fix->value;
++ mp->refcount = 1;
++ mp->max_address = minipool_barrier->address + 65536;
++
++ mp->min_address = min_address;
++
++ if (min_mp == NULL)
++ {
++ mp->prev = NULL;
++ mp->next = minipool_vector_head;
++
++ if (mp->next == NULL)
++ {
++ minipool_vector_tail = mp;
++ minipool_vector_label = gen_label_rtx ();
++ }
++ else
++ mp->next->prev = mp;
++
++ minipool_vector_head = mp;
++ }
++ else
++ {
++ mp->next = min_mp->next;
++ mp->prev = min_mp;
++ min_mp->next = mp;
++
++ if (mp->next != NULL)
++ mp->next->prev = mp;
++ else
++ minipool_vector_tail = mp;
++ }
++
++ /* Save the new entry. */
++ min_mp = mp;
++
++ if (mp->prev)
++ mp = mp->prev;
++ else
++ mp->offset = 0;
++
++ /* Scan over the following entries and adjust their offsets. */
++ while (mp->next != NULL)
++ {
++ if (mp->next->min_address < mp->min_address + mp->fix_size)
++ mp->next->min_address = mp->min_address + mp->fix_size;
++
++ if (mp->refcount)
++ mp->next->offset = mp->offset + mp->fix_size;
++ else
++ mp->next->offset = mp->offset;
++
++ mp = mp->next;
++ }
++
++ return min_mp;
++}
++
++static void
++assign_minipool_offsets (Mfix * barrier)
++{
++ HOST_WIDE_INT offset = 0;
++ Mnode *mp;
++
++ minipool_barrier = barrier;
++
++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
++ {
++ mp->offset = offset;
++
++ if (mp->refcount > 0)
++ offset += mp->fix_size;
++ }
++}
++
++/* Print a symbolic form of X to the debug file, F. */
++static void
++avr32_print_value (FILE * f, rtx x)
++{
++ switch (GET_CODE (x))
++ {
++ case CONST_INT:
++ fprintf (f, "0x%x", (int) INTVAL (x));
++ return;
++
++ case CONST_DOUBLE:
++ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3));
++ return;
++
++ case CONST_VECTOR:
++ {
++ int i;
++
++ fprintf (f, "<");
++ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
++ {
++ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i)));
++ if (i < (CONST_VECTOR_NUNITS (x) - 1))
++ fputc (',', f);
++ }
++ fprintf (f, ">");
++ }
++ return;
++
++ case CONST_STRING:
++ fprintf (f, "\"%s\"", XSTR (x, 0));
++ return;
++
++ case SYMBOL_REF:
++ fprintf (f, "`%s'", XSTR (x, 0));
++ return;
++
++ case LABEL_REF:
++ fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
++ return;
++
++ case CONST:
++ avr32_print_value (f, XEXP (x, 0));
++ return;
++
++ case PLUS:
++ avr32_print_value (f, XEXP (x, 0));
++ fprintf (f, "+");
++ avr32_print_value (f, XEXP (x, 1));
++ return;
++
++ case PC:
++ fprintf (f, "pc");
++ return;
++
++ default:
++ fprintf (f, "????");
++ return;
++ }
++}
++
++int
++is_minipool_label (rtx label)
++{
++ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head;
++
++ if (GET_CODE (label) != CODE_LABEL)
++ return FALSE;
++
++ while (cur_mp_label)
++ {
++ if (CODE_LABEL_NUMBER (label)
++ == CODE_LABEL_NUMBER (cur_mp_label->label))
++ return TRUE;
++ cur_mp_label = cur_mp_label->next;
++ }
++ return FALSE;
++}
++
++static void
++new_minipool_label (rtx label)
++{
++ if (!cfun->machine->minipool_label_head)
++ {
++ cfun->machine->minipool_label_head =
++ ggc_alloc (sizeof (minipool_labels));
++ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head;
++ cfun->machine->minipool_label_head->label = label;
++ cfun->machine->minipool_label_head->next = 0;
++ cfun->machine->minipool_label_head->prev = 0;
++ }
++ else
++ {
++ cfun->machine->minipool_label_tail->next =
++ ggc_alloc (sizeof (minipool_labels));
++ cfun->machine->minipool_label_tail->next->label = label;
++ cfun->machine->minipool_label_tail->next->next = 0;
++ cfun->machine->minipool_label_tail->next->prev =
++ cfun->machine->minipool_label_tail;
++ cfun->machine->minipool_label_tail =
++ cfun->machine->minipool_label_tail->next;
++ }
++}
++
++/* Output the literal table */
++static void
++dump_minipool (rtx scan)
++{
++ Mnode *mp;
++ Mnode *nmp;
++
++ if (dump_file)
++ fprintf (dump_file,
++ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
++ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4);
++
++ scan = emit_insn_after (gen_consttable_start (), scan);
++ scan = emit_insn_after (gen_align_4 (), scan);
++ scan = emit_label_after (minipool_vector_label, scan);
++ new_minipool_label (minipool_vector_label);
++
++ for (mp = minipool_vector_head; mp != NULL; mp = nmp)
++ {
++ if (mp->refcount > 0)
++ {
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Offset %u, min %ld, max %ld ",
++ (unsigned) mp->offset, (unsigned long) mp->min_address,
++ (unsigned long) mp->max_address);
++ avr32_print_value (dump_file, mp->value);
++ fputc ('\n', dump_file);
++ }
++
++ switch (mp->fix_size)
++ {
++#ifdef HAVE_consttable_4
++ case 4:
++ scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
++ break;
++
++#endif
++#ifdef HAVE_consttable_8
++ case 8:
++ scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
++ break;
++
++#endif
++#ifdef HAVE_consttable_16
++ case 16:
++ scan = emit_insn_after (gen_consttable_16 (mp->value), scan);
++ break;
++
++#endif
++ case 0:
++ /* This can happen for force-minipool entries which just are
++ there to force the minipool to be generate. */
++ break;
++ default:
++ abort ();
++ break;
++ }
++ }
++
++ nmp = mp->next;
++ free (mp);
++ }
++
++ minipool_vector_head = minipool_vector_tail = NULL;
++ scan = emit_insn_after (gen_consttable_end (), scan);
++ scan = emit_barrier_after (scan);
++}
++
++/* Return the cost of forcibly inserting a barrier after INSN. */
++static int
++avr32_barrier_cost (rtx insn)
++{
++ /* Basing the location of the pool on the loop depth is preferable, but at
++ the moment, the basic block information seems to be corrupt by this
++ stage of the compilation. */
++ int base_cost = 50;
++ rtx next = next_nonnote_insn (insn);
++
++ if (next != NULL && GET_CODE (next) == CODE_LABEL)
++ base_cost -= 20;
++
++ switch (GET_CODE (insn))
++ {
++ case CODE_LABEL:
++ /* It will always be better to place the table before the label, rather
++ than after it. */
++ return 50;
++
++ case INSN:
++ case CALL_INSN:
++ return base_cost;
++
++ case JUMP_INSN:
++ return base_cost - 10;
++
++ default:
++ return base_cost + 10;
++ }
++}
++
++/* Find the best place in the insn stream in the range
++ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
++ Create the barrier by inserting a jump and add a new fix entry for
++ it. */
++static Mfix *
++create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address)
++{
++ HOST_WIDE_INT count = 0;
++ rtx barrier;
++ rtx from = fix->insn;
++ rtx selected = from;
++ int selected_cost;
++ HOST_WIDE_INT selected_address;
++ Mfix *new_fix;
++ HOST_WIDE_INT max_count = max_address - fix->address;
++ rtx label = gen_label_rtx ();
++
++ selected_cost = avr32_barrier_cost (from);
++ selected_address = fix->address;
++
++ while (from && count < max_count)
++ {
++ rtx tmp;
++ int new_cost;
++
++ /* This code shouldn't have been called if there was a natural barrier
++ within range. */
++ if (GET_CODE (from) == BARRIER)
++ abort ();
++
++ /* Count the length of this insn. */
++ count += get_attr_length (from);
++
++ /* If there is a jump table, add its length. */
++ tmp = is_jump_table (from);
++ if (tmp != NULL)
++ {
++ count += get_jump_table_size (tmp);
++
++ /* Jump tables aren't in a basic block, so base the cost on the
++ dispatch insn. If we select this location, we will still put
++ the pool after the table. */
++ new_cost = avr32_barrier_cost (from);
++
++ if (count < max_count && new_cost <= selected_cost)
++ {
++ selected = tmp;
++ selected_cost = new_cost;
++ selected_address = fix->address + count;
++ }
++
++ /* Continue after the dispatch table. */
++ from = NEXT_INSN (tmp);
++ continue;
++ }
++
++ new_cost = avr32_barrier_cost (from);
++
++ if (count < max_count && new_cost <= selected_cost)
++ {
++ selected = from;
++ selected_cost = new_cost;
++ selected_address = fix->address + count;
++ }
++
++ from = NEXT_INSN (from);
++ }
++
++ /* Create a new JUMP_INSN that branches around a barrier. */
++ from = emit_jump_insn_after (gen_jump (label), selected);
++ JUMP_LABEL (from) = label;
++ barrier = emit_barrier_after (from);
++ emit_label_after (label, barrier);
++
++ /* Create a minipool barrier entry for the new barrier. */
++ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix));
++ new_fix->insn = barrier;
++ new_fix->address = selected_address;
++ new_fix->next = fix->next;
++ fix->next = new_fix;
++
++ return new_fix;
++}
++
++/* Record that there is a natural barrier in the insn stream at
++ ADDRESS. */
++static void
++push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
++{
++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
++
++ fix->insn = insn;
++ fix->address = address;
++
++ fix->next = NULL;
++ if (minipool_fix_head != NULL)
++ minipool_fix_tail->next = fix;
++ else
++ minipool_fix_head = fix;
++
++ minipool_fix_tail = fix;
++}
++
++/* Record INSN, which will need fixing up to load a value from the
++ minipool. ADDRESS is the offset of the insn since the start of the
++ function; LOC is a pointer to the part of the insn which requires
++ fixing; VALUE is the constant that must be loaded, which is of type
++ MODE. */
++static void
++push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc,
++ enum machine_mode mode, rtx value)
++{
++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
++ rtx body = PATTERN (insn);
++
++ fix->insn = insn;
++ fix->address = address;
++ fix->loc = loc;
++ fix->mode = mode;
++ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value);
++ fix->value = value;
++
++ if (GET_CODE (body) == PARALLEL)
++ {
++ /* Mcall : Ks16 << 2 */
++ fix->forwards = ((1 << 15) - 1) << 2;
++ fix->backwards = (1 << 15) << 2;
++ }
++ else if (GET_CODE (body) == SET
++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4)
++ {
++ /* Word Load */
++ if (TARGET_HARD_FLOAT
++ && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
++ {
++ /* Ldc0.w : Ku12 << 2 */
++ fix->forwards = ((1 << 12) - 1) << 2;
++ fix->backwards = 0;
++ }
++ else
++ {
++ if (optimize_size)
++ {
++ /* Lddpc : Ku7 << 2 */
++ fix->forwards = ((1 << 7) - 1) << 2;
++ fix->backwards = 0;
++ }
++ else
++ {
++ /* Ld.w : Ks16 */
++ fix->forwards = ((1 << 15) - 4);
++ fix->backwards = (1 << 15);
++ }
++ }
++ }
++ else if (GET_CODE (body) == SET
++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8)
++ {
++ /* Double word load */
++ if (TARGET_HARD_FLOAT
++ && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
++ {
++ /* Ldc0.d : Ku12 << 2 */
++ fix->forwards = ((1 << 12) - 1) << 2;
++ fix->backwards = 0;
++ }
++ else
++ {
++ /* Ld.d : Ks16 */
++ fix->forwards = ((1 << 15) - 4);
++ fix->backwards = (1 << 15);
++ }
++ }
++ else if (GET_CODE (body) == UNSPEC_VOLATILE
++ && XINT (body, 1) == VUNSPEC_MVRC)
++ {
++ /* Coprocessor load */
++ /* Ldc : Ku8 << 2 */
++ fix->forwards = ((1 << 8) - 1) << 2;
++ fix->backwards = 0;
++ }
++ else
++ {
++ /* Assume worst case which is lddpc insn. */
++ fix->forwards = ((1 << 7) - 1) << 2;
++ fix->backwards = 0;
++ }
++
++ fix->minipool = NULL;
++
++ /* If an insn doesn't have a range defined for it, then it isn't expecting
++ to be reworked by this code. Better to abort now than to generate duff
++ assembly code. */
++ if (fix->forwards == 0 && fix->backwards == 0)
++ abort ();
++
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
++ GET_MODE_NAME (mode),
++ INSN_UID (insn), (unsigned long) address,
++ -1 * (long) fix->backwards, (long) fix->forwards);
++ avr32_print_value (dump_file, fix->value);
++ fprintf (dump_file, "\n");
++ }
++
++ /* Add it to the chain of fixes. */
++ fix->next = NULL;
++
++ if (minipool_fix_head != NULL)
++ minipool_fix_tail->next = fix;
++ else
++ minipool_fix_head = fix;
++
++ minipool_fix_tail = fix;
++}
++
++/* Scan INSN and note any of its operands that need fixing.
++ If DO_PUSHES is false we do not actually push any of the fixups
++ needed. The function returns TRUE is any fixups were needed/pushed.
++ This is used by avr32_memory_load_p() which needs to know about loads
++ of constants that will be converted into minipool loads. */
++static bool
++note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
++{
++ bool result = false;
++ int opno;
++
++ extract_insn (insn);
++
++ if (!constrain_operands (1))
++ fatal_insn_not_found (insn);
++
++ if (recog_data.n_alternatives == 0)
++ return false;
++
++ /* Fill in recog_op_alt with information about the constraints of this
++ insn. */
++ preprocess_constraints ();
++
++ for (opno = 0; opno < recog_data.n_operands; opno++)
++ {
++ rtx op;
++
++ /* Things we need to fix can only occur in inputs. */
++ if (recog_data.operand_type[opno] != OP_IN)
++ continue;
++
++ op = recog_data.operand[opno];
++
++ if (avr32_const_pool_ref_operand (op, GET_MODE (op)))
++ {
++ if (do_pushes)
++ {
++ rtx cop = avoid_constant_pool_reference (op);
++
++ /* Casting the address of something to a mode narrower than a
++ word can cause avoid_constant_pool_reference() to return the
++ pool reference itself. That's no good to us here. Lets
++ just hope that we can use the constant pool value directly.
++ */
++ if (op == cop)
++ cop = get_pool_constant (XEXP (op, 0));
++
++ push_minipool_fix (insn, address,
++ recog_data.operand_loc[opno],
++ recog_data.operand_mode[opno], cop);
++ }
++
++ result = true;
++ }
++ else if (TARGET_HAS_ASM_ADDR_PSEUDOS
++ && avr32_address_operand (op, GET_MODE (op)))
++ {
++ /* Handle pseudo instructions using a direct address. These pseudo
++ instructions might need entries in the constant pool and we must
++ therefor create a constant pool for them, in case the
++ assembler/linker needs to insert entries. */
++ if (do_pushes)
++ {
++ /* Push a dummy constant pool entry so that the .cpool
++ directive should be inserted on the appropriate place in the
++ code even if there are no real constant pool entries. This
++ is used by the assembler and linker to know where to put
++ generated constant pool entries. */
++ push_minipool_fix (insn, address,
++ recog_data.operand_loc[opno],
++ recog_data.operand_mode[opno],
++ gen_rtx_UNSPEC (VOIDmode,
++ gen_rtvec (1, const0_rtx),
++ UNSPEC_FORCE_MINIPOOL));
++ result = true;
++ }
++ }
++ }
++ return result;
++}
++
++
++static int
++avr32_insn_is_cast (rtx insn)
++{
++
++ if (NONJUMP_INSN_P (insn)
++ && GET_CODE (PATTERN (insn)) == SET
++ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND
++ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND)
++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0))
++ && REG_P (SET_DEST (PATTERN (insn))))
++ return true;
++ return false;
++}
++
++/*
++ Replace all occurances of reg FROM with reg TO in X */
++
++rtx
++avr32_replace_reg (rtx x, rtx from, rtx to)
++{
++ int i, j;
++ const char *fmt;
++
++ gcc_assert ( REG_P (from) && REG_P (to) );
++
++ /* Allow this function to make replacements in EXPR_LISTs. */
++ if (x == 0)
++ return 0;
++
++ if (rtx_equal_p (x, from))
++ return to;
++
++ if (GET_CODE (x) == SUBREG)
++ {
++ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to);
++
++ if (GET_CODE (new) == CONST_INT)
++ {
++ x = simplify_subreg (GET_MODE (x), new,
++ GET_MODE (SUBREG_REG (x)),
++ SUBREG_BYTE (x));
++ gcc_assert (x);
++ }
++ else
++ SUBREG_REG (x) = new;
++
++ return x;
++ }
++ else if (GET_CODE (x) == ZERO_EXTEND)
++ {
++ rtx new = avr32_replace_reg (XEXP (x, 0), from, to);
++
++ if (GET_CODE (new) == CONST_INT)
++ {
++ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
++ new, GET_MODE (XEXP (x, 0)));
++ gcc_assert (x);
++ }
++ else
++ XEXP (x, 0) = new;
++
++ return x;
++ }
++
++ fmt = GET_RTX_FORMAT (GET_CODE (x));
++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
++ {
++ if (fmt[i] == 'e')
++ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to);
++ else if (fmt[i] == 'E')
++ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
++ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to);
++ }
++
++ return x;
++}
++
++
++/* FIXME: The level of nesting in this function is way too deep. It needs to be
++ torn apart. */
++static void
++avr32_reorg_optimization (void)
++{
++ rtx first = get_first_nonnote_insn ();
++ rtx insn;
++
++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
++ {
++
++ /* Scan through all insns looking for cast operations. */
++ if (dump_file)
++ {
++ fprintf (dump_file, ";; Deleting redundant cast operations:\n");
++ }
++ for (insn = first; insn; insn = NEXT_INSN (insn))
++ {
++ rtx reg, src_reg, scan;
++ enum machine_mode mode;
++ int unused_cast;
++ rtx label_ref;
++
++ if (avr32_insn_is_cast (insn)
++ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode
++ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode))
++ {
++ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0));
++ reg = SET_DEST (PATTERN (insn));
++ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
++ }
++ else
++ {
++ continue;
++ }
++
++ unused_cast = false;
++ label_ref = NULL_RTX;
++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
++ {
++ /* Check if we have reached the destination of a simple
++ conditional jump which we have already scanned past. If so,
++ we can safely continue scanning. */
++ if (LABEL_P (scan) && label_ref != NULL_RTX)
++ {
++ if (CODE_LABEL_NUMBER (scan) ==
++ CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
++ label_ref = NULL_RTX;
++ else
++ break;
++ }
++
++ if (!INSN_P (scan))
++ continue;
++
++ /* For conditional jumps we can manage to keep on scanning if
++ we meet the destination label later on before any new jump
++ insns occure. */
++ if (GET_CODE (scan) == JUMP_INSN)
++ {
++ if (any_condjump_p (scan) && label_ref == NULL_RTX)
++ label_ref = condjump_label (scan);
++ else
++ break;
++ }
++
++ /* Check if we have a call and the register is used as an argument. */
++ if (CALL_P (scan)
++ && find_reg_fusage (scan, USE, reg) )
++ break;
++
++ if (!reg_mentioned_p (reg, PATTERN (scan)))
++ continue;
++
++ /* Check if casted register is used in this insn */
++ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX)
++ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) ==
++ GET_MODE (reg)))
++ {
++ /* If not used in the source to the set or in a memory
++ expression in the destiantion then the register is used
++ as a destination and is really dead. */
++ if (single_set (scan)
++ && GET_CODE (PATTERN (scan)) == SET
++ && REG_P (SET_DEST (PATTERN (scan)))
++ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan)))
++ && label_ref == NULL_RTX)
++ {
++ unused_cast = true;
++ }
++ break;
++ }
++
++ /* Check if register is dead or set in this insn */
++ if (dead_or_set_p (scan, reg))
++ {
++ unused_cast = true;
++ break;
++ }
++ }
++
++ /* Check if we have unresolved conditional jumps */
++ if (label_ref != NULL_RTX)
++ continue;
++
++ if (unused_cast)
++ {
++ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0)))
++ {
++ /* One operand cast, safe to delete */
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; INSN %i removed, casted register %i value not used.\n",
++ INSN_UID (insn), REGNO (reg));
++ }
++ SET_INSN_DELETED (insn);
++ /* Force the instruction to be recognized again */
++ INSN_CODE (insn) = -1;
++ }
++ else
++ {
++ /* Two operand cast, which really could be substituted with
++ a move, if the source register is dead after the cast
++ insn and then the insn which sets the source register
++ could instead directly set the destination register for
++ the cast. As long as there are no insns in between which
++ uses the register. */
++ rtx link = NULL_RTX;
++ rtx set;
++ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
++ unused_cast = false;
++
++ if (!find_reg_note (insn, REG_DEAD, src_reg))
++ continue;
++
++ /* Search for the insn which sets the source register */
++ for (scan = PREV_INSN (insn);
++ scan && GET_CODE (scan) != CODE_LABEL;
++ scan = PREV_INSN (scan))
++ {
++ if (! INSN_P (scan))
++ continue;
++
++ set = single_set (scan);
++ if (set && rtx_equal_p (src_reg, SET_DEST (set)))
++ {
++ link = scan;
++ break;
++ }
++
++ }
++
++
++ /* Found no link or link is a call insn where we can not
++ change the destination register */
++ if (link == NULL_RTX || CALL_P (link))
++ continue;
++
++ /* Scan through all insn between link and insn */
++ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
++ {
++ /* Don't try to trace forward past a CODE_LABEL if we
++ haven't seen INSN yet. Ordinarily, we will only
++ find the setting insn in LOG_LINKS if it is in the
++ same basic block. However, cross-jumping can insert
++ code labels in between the load and the call, and
++ can result in situations where a single call insn
++ may have two targets depending on where we came
++ from. */
++
++ if (GET_CODE (scan) == CODE_LABEL)
++ break;
++
++ if (!INSN_P (scan))
++ continue;
++
++ /* Don't try to trace forward past a JUMP. To optimize
++ safely, we would have to check that all the
++ instructions at the jump destination did not use REG.
++ */
++
++ if (GET_CODE (scan) == JUMP_INSN)
++ {
++ break;
++ }
++
++ if (!reg_mentioned_p (src_reg, PATTERN (scan)))
++ continue;
++
++ /* We have reached the cast insn */
++ if (scan == insn)
++ {
++ /* We can remove cast and replace the destination
++ register of the link insn with the destination
++ of the cast */
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; INSN %i removed, casted value unused. "
++ "Destination of removed cast operation: register %i, folded into INSN %i.\n",
++ INSN_UID (insn), REGNO (reg),
++ INSN_UID (link));
++ }
++ /* Update link insn */
++ SET_DEST (PATTERN (link)) =
++ gen_rtx_REG (mode, REGNO (reg));
++ /* Force the instruction to be recognized again */
++ INSN_CODE (link) = -1;
++
++ /* Delete insn */
++ SET_INSN_DELETED (insn);
++ /* Force the instruction to be recognized again */
++ INSN_CODE (insn) = -1;
++ break;
++ }
++ }
++ }
++ }
++ }
++ }
++
++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
++ {
++
++ /* Scan through all insns looking for shifted add operations */
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Deleting redundant shifted add operations:\n");
++ }
++ for (insn = first; insn; insn = NEXT_INSN (insn))
++ {
++ rtx reg, mem_expr, scan, op0, op1;
++ int add_only_used_as_pointer;
++
++ if (INSN_P (insn)
++ && GET_CODE (PATTERN (insn)) == SET
++ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
++ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT
++ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT)
++ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) ==
++ CONST_INT && REG_P (SET_DEST (PATTERN (insn)))
++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1))
++ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0)))
++ {
++ reg = SET_DEST (PATTERN (insn));
++ mem_expr = SET_SRC (PATTERN (insn));
++ op0 = XEXP (XEXP (mem_expr, 0), 0);
++ op1 = XEXP (mem_expr, 1);
++ }
++ else
++ {
++ continue;
++ }
++
++ /* Scan forward the check if the result of the shifted add
++ operation is only used as an address in memory operations and
++ that the operands to the shifted add are not clobbered. */
++ add_only_used_as_pointer = false;
++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
++ {
++ if (!INSN_P (scan))
++ continue;
++
++ /* Don't try to trace forward past a JUMP or CALL. To optimize
++ safely, we would have to check that all the instructions at
++ the jump destination did not use REG. */
++
++ if (GET_CODE (scan) == JUMP_INSN)
++ {
++ break;
++ }
++
++ /* If used in a call insn then we cannot optimize it away */
++ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg)))
++ break;
++
++ /* If any of the operands of the shifted add are clobbered we
++ cannot optimize the shifted adda away */
++ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg)))
++ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg))))
++ break;
++
++ if (!reg_mentioned_p (reg, PATTERN (scan)))
++ continue;
++
++ /* If used any other place than as a pointer or as the
++ destination register we failed */
++ if (!(single_set (scan)
++ && GET_CODE (PATTERN (scan)) == SET
++ && ((MEM_P (SET_DEST (PATTERN (scan)))
++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg))
++ || (MEM_P (SET_SRC (PATTERN (scan)))
++ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0))
++ && REGNO (XEXP
++ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg))))
++ && !(GET_CODE (PATTERN (scan)) == SET
++ && REG_P (SET_DEST (PATTERN (scan)))
++ && !regno_use_in (REGNO (reg),
++ SET_SRC (PATTERN (scan)))))
++ break;
++
++ /* We cannot replace the pointer in TImode insns
++ as these has a differene addressing mode than the other
++ memory insns. */
++ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode )
++ break;
++
++ /* Check if register is dead or set in this insn */
++ if (dead_or_set_p (scan, reg))
++ {
++ add_only_used_as_pointer = true;
++ break;
++ }
++ }
++
++ if (add_only_used_as_pointer)
++ {
++ /* Lets delete the add insn and replace all memory references
++ which uses the pointer with the full expression. */
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Deleting INSN %i since address expression can be folded into all "
++ "memory references using this expression\n",
++ INSN_UID (insn));
++ }
++ SET_INSN_DELETED (insn);
++ /* Force the instruction to be recognized again */
++ INSN_CODE (insn) = -1;
++
++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
++ {
++ if (!INSN_P (scan))
++ continue;
++
++ if (!reg_mentioned_p (reg, PATTERN (scan)))
++ continue;
++
++ /* If used any other place than as a pointer or as the
++ destination register we failed */
++ if ((single_set (scan)
++ && GET_CODE (PATTERN (scan)) == SET
++ && ((MEM_P (SET_DEST (PATTERN (scan)))
++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) ==
++ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan)))
++ &&
++ REG_P (XEXP
++ (SET_SRC (PATTERN (scan)),
++ 0))
++ &&
++ REGNO (XEXP
++ (SET_SRC (PATTERN (scan)),
++ 0)) == REGNO (reg)))))
++ {
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Register %i replaced by indexed address in INSN %i\n",
++ REGNO (reg), INSN_UID (scan));
++ }
++ if (MEM_P (SET_DEST (PATTERN (scan))))
++ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr;
++ else
++ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr;
++ }
++
++ /* Check if register is dead or set in this insn */
++ if (dead_or_set_p (scan, reg))
++ {
++ break;
++ }
++
++ }
++ }
++ }
++ }
++
++
++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
++ {
++
++ /* Scan through all insns looking for conditional register to
++ register move operations */
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Folding redundant conditional move operations:\n");
++ }
++ for (insn = first; insn; insn = next_nonnote_insn (insn))
++ {
++ rtx src_reg, dst_reg, scan, test;
++
++ if (INSN_P (insn)
++ && GET_CODE (PATTERN (insn)) == COND_EXEC
++ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET
++ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn))))
++ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn))))
++ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn)))))
++ {
++ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn)));
++ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn)));
++ test = COND_EXEC_TEST (PATTERN (insn));
++ }
++ else
++ {
++ continue;
++ }
++
++ /* Scan backward through the rest of insns in this if-then or if-else
++ block and check if we can fold the move into another of the conditional
++ insns in the same block. */
++ scan = prev_nonnote_insn (insn);
++ while (INSN_P (scan)
++ && GET_CODE (PATTERN (scan)) == COND_EXEC
++ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test))
++ {
++ rtx pattern = COND_EXEC_CODE (PATTERN (scan));
++ if ( GET_CODE (pattern) == PARALLEL )
++ pattern = XVECEXP (pattern, 0, 0);
++
++ if ( reg_set_p (src_reg, pattern) )
++ {
++ /* Fold in the destination register for the cond. move
++ into this insn. */
++ SET_DEST (pattern) = dst_reg;
++ if (dump_file)
++ {
++ fprintf (dump_file,
++ ";; Deleting INSN %i since this operation can be folded into INSN %i\n",
++ INSN_UID (insn), INSN_UID (scan));
++ }
++
++ /* Scan and check if any of the insns in between uses the src_reg. We
++ must then replace it with the dst_reg. */
++ while ( (scan = next_nonnote_insn (scan)) != insn ){
++ avr32_replace_reg (scan, src_reg, dst_reg);
++ }
++ /* Delete the insn. */
++ SET_INSN_DELETED (insn);
++
++ /* Force the instruction to be recognized again */
++ INSN_CODE (insn) = -1;
++ break;
++ }
++
++ /* If the destination register is used but not set in this insn
++ we cannot fold. */
++ if ( reg_mentioned_p (dst_reg, pattern) )
++ break;
++
++ scan = prev_nonnote_insn (scan);
++ }
++ }
++ }
++
++}
++
++/* Exported to toplev.c.
++
++ Do a final pass over the function, just before delayed branch
++ scheduling. */
++
++static void
++avr32_reorg (void)
++{
++ rtx insn;
++ HOST_WIDE_INT address = 0;
++ Mfix *fix;
++
++ minipool_fix_head = minipool_fix_tail = NULL;
++
++ /* The first insn must always be a note, or the code below won't scan it
++ properly. */
++ insn = get_insns ();
++ if (GET_CODE (insn) != NOTE)
++ abort ();
++
++ /* Scan all the insns and record the operands that will need fixing. */
++ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
++ {
++ if (GET_CODE (insn) == BARRIER)
++ push_minipool_barrier (insn, address);
++ else if (INSN_P (insn))
++ {
++ rtx table;
++
++ note_invalid_constants (insn, address, true);
++ address += get_attr_length (insn);
++
++ /* If the insn is a vector jump, add the size of the table and skip
++ the table. */
++ if ((table = is_jump_table (insn)) != NULL)
++ {
++ address += get_jump_table_size (table);
++ insn = table;
++ }
++ }
++ }
++
++ fix = minipool_fix_head;
++
++ /* Now scan the fixups and perform the required changes. */
++ while (fix)
++ {
++ Mfix *ftmp;
++ Mfix *fdel;
++ Mfix *last_added_fix;
++ Mfix *last_barrier = NULL;
++ Mfix *this_fix;
++
++ /* Skip any further barriers before the next fix. */
++ while (fix && GET_CODE (fix->insn) == BARRIER)
++ fix = fix->next;
++
++ /* No more fixes. */
++ if (fix == NULL)
++ break;
++
++ last_added_fix = NULL;
++
++ for (ftmp = fix; ftmp; ftmp = ftmp->next)
++ {
++ if (GET_CODE (ftmp->insn) == BARRIER)
++ {
++ if (ftmp->address >= minipool_vector_head->max_address)
++ break;
++
++ last_barrier = ftmp;
++ }
++ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
++ break;
++
++ last_added_fix = ftmp; /* Keep track of the last fix added.
++ */
++ }
++
++ /* If we found a barrier, drop back to that; any fixes that we could
++ have reached but come after the barrier will now go in the next
++ mini-pool. */
++ if (last_barrier != NULL)
++ {
++ /* Reduce the refcount for those fixes that won't go into this pool
++ after all. */
++ for (fdel = last_barrier->next;
++ fdel && fdel != ftmp; fdel = fdel->next)
++ {
++ fdel->minipool->refcount--;
++ fdel->minipool = NULL;
++ }
++
++ ftmp = last_barrier;
++ }
++ else
++ {
++ /* ftmp is first fix that we can't fit into this pool and there no
++ natural barriers that we could use. Insert a new barrier in the
++ code somewhere between the previous fix and this one, and
++ arrange to jump around it. */
++ HOST_WIDE_INT max_address;
++
++ /* The last item on the list of fixes must be a barrier, so we can
++ never run off the end of the list of fixes without last_barrier
++ being set. */
++ if (ftmp == NULL)
++ abort ();
++
++ max_address = minipool_vector_head->max_address;
++ /* Check that there isn't another fix that is in range that we
++ couldn't fit into this pool because the pool was already too
++ large: we need to put the pool before such an instruction. */
++ if (ftmp->address < max_address)
++ max_address = ftmp->address;
++
++ last_barrier = create_fix_barrier (last_added_fix, max_address);
++ }
++
++ assign_minipool_offsets (last_barrier);
++
++ while (ftmp)
++ {
++ if (GET_CODE (ftmp->insn) != BARRIER
++ && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
++ == NULL))
++ break;
++
++ ftmp = ftmp->next;
++ }
++
++ /* Scan over the fixes we have identified for this pool, fixing them up
++ and adding the constants to the pool itself. */
++ for (this_fix = fix; this_fix && ftmp != this_fix;
++ this_fix = this_fix->next)
++ if (GET_CODE (this_fix->insn) != BARRIER
++ /* Do nothing for entries present just to force the insertion of
++ a minipool. */
++ && !IS_FORCE_MINIPOOL (this_fix->value))
++ {
++ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
++ minipool_vector_label),
++ this_fix->minipool->offset);
++ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
++ }
++
++ dump_minipool (last_barrier->insn);
++ fix = ftmp;
++ }
++
++ /* Free the minipool memory. */
++ obstack_free (&minipool_obstack, minipool_startobj);
++
++ avr32_reorg_optimization ();
++}
++
++
++/*
++ Hook for doing some final scanning of instructions. Does nothing yet...*/
++void
++avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
++ rtx * opvec ATTRIBUTE_UNUSED,
++ int noperands ATTRIBUTE_UNUSED)
++{
++ return;
++}
++
++
++/* Function for changing the condition on the next instruction,
++ should be used when emmiting compare instructions and
++ the condition of the next instruction needs to change.
++*/
++int
++set_next_insn_cond (rtx cur_insn, rtx new_cond)
++{
++ rtx next_insn = next_nonnote_insn (cur_insn);
++ if ((next_insn != NULL_RTX)
++ && (INSN_P (next_insn)))
++ {
++ if ((GET_CODE (PATTERN (next_insn)) == SET)
++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
++ {
++ /* Branch instructions */
++ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond;
++ /* Force the instruction to be recognized again */
++ INSN_CODE (next_insn) = -1;
++ return TRUE;
++ }
++ else if ((GET_CODE (PATTERN (next_insn)) == SET)
++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)),
++ GET_MODE (SET_SRC (PATTERN (next_insn)))))
++ {
++ /* scc with no compare */
++ SET_SRC (PATTERN (next_insn)) = new_cond;
++ /* Force the instruction to be recognized again */
++ INSN_CODE (next_insn) = -1;
++ return TRUE;
++ }
++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC)
++ {
++ if ( GET_CODE (new_cond) == UNSPEC )
++ {
++ COND_EXEC_TEST (PATTERN (next_insn)) =
++ gen_rtx_UNSPEC (CCmode,
++ gen_rtvec (2,
++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0),
++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)),
++ XINT (new_cond, 1));
++ }
++ else
++ {
++ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond));
++ }
++ }
++ }
++
++ return FALSE;
++}
++
++/* Function for obtaining the condition for the next instruction
++ after cur_insn.
++*/
++rtx
++get_next_insn_cond (rtx cur_insn)
++{
++ rtx next_insn = next_nonnote_insn (cur_insn);
++ rtx cond = NULL_RTX;
++ if (next_insn != NULL_RTX
++ && INSN_P (next_insn))
++ {
++ if ((GET_CODE (PATTERN (next_insn)) == SET)
++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
++ {
++ /* Branch and cond if then else instructions */
++ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0);
++ }
++ else if ((GET_CODE (PATTERN (next_insn)) == SET)
++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)),
++ GET_MODE (SET_SRC (PATTERN (next_insn)))))
++ {
++ /* scc with no compare */
++ cond = SET_SRC (PATTERN (next_insn));
++ }
++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC)
++ {
++ cond = COND_EXEC_TEST (PATTERN (next_insn));
++ }
++ }
++ return cond;
++}
++
++
++/* Check if the next insn is a conditional insn that will emit a compare
++ for itself.
++*/
++rtx
++next_insn_emits_cmp (rtx cur_insn)
++{
++ rtx next_insn = next_nonnote_insn (cur_insn);
++ rtx cond = NULL_RTX;
++ if (next_insn != NULL_RTX
++ && INSN_P (next_insn))
++ {
++ if ( ((GET_CODE (PATTERN (next_insn)) == SET)
++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)
++ && (XEXP (XEXP (SET_SRC (PATTERN (next_insn)), 0),0) != cc0_rtx))
++ || GET_CODE (PATTERN (next_insn)) == COND_EXEC )
++ return TRUE;
++ }
++ return FALSE;
++}
++
++
++rtx
++avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1)
++{
++
++ rtx new_cond = NULL_RTX;
++ rtx ops[2];
++ rtx compare_pattern;
++ ops[0] = op0;
++ ops[1] = op1;
++
++ if ( GET_CODE (op0) == AND )
++ compare_pattern = op0;
++ else
++ compare_pattern = gen_rtx_COMPARE (mode, op0, op1);
++
++ new_cond = is_compare_redundant (compare_pattern, cond);
++
++ if (new_cond != NULL_RTX)
++ return new_cond;
++
++ /* Check if we are inserting a bit-load instead of a compare. */
++ if ( GET_CODE (op0) == AND )
++ {
++ ops[0] = XEXP (op0, 0);
++ ops[1] = XEXP (op0, 1);
++ output_asm_insn ("bld\t%0, %p1", ops);
++ return cond;
++ }
++
++ /* Insert compare */
++ switch (mode)
++ {
++ case QImode:
++ output_asm_insn ("cp.b\t%0, %1", ops);
++ break;
++ case HImode:
++ output_asm_insn ("cp.h\t%0, %1", ops);
++ break;
++ case SImode:
++ output_asm_insn ("cp.w\t%0, %1", ops);
++ break;
++ case DImode:
++ if (GET_CODE (op1) != REG)
++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops);
++ else
++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops);
++ break;
++ default:
++ internal_error ("Unknown comparison mode");
++ break;
++ }
++
++ return cond;
++}
++
++int
++avr32_load_multiple_operation (rtx op,
++ enum machine_mode mode ATTRIBUTE_UNUSED)
++{
++ int count = XVECLEN (op, 0);
++ unsigned int dest_regno;
++ rtx src_addr;
++ rtx elt;
++ int i = 1, base = 0;
++
++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
++ return 0;
++
++ /* Check to see if this might be a write-back. */
++ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS)
++ {
++ i++;
++ base = 1;
++
++ /* Now check it more carefully. */
++ if (GET_CODE (SET_DEST (elt)) != REG
++ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG
++ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT
++ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4)
++ return 0;
++ }
++
++ /* Perform a quick check so we don't blow up below. */
++ if (count <= 1
++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG
++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
++ return 0;
++
++ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1)));
++ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0);
++
++ for (; i < count; i++)
++ {
++ elt = XVECEXP (op, 0, i);
++
++ if (GET_CODE (elt) != SET
++ || GET_CODE (SET_DEST (elt)) != REG
++ || GET_MODE (SET_DEST (elt)) != SImode
++ || GET_CODE (SET_SRC (elt)) != UNSPEC)
++ return 0;
++ }
++
++ return 1;
++}
++
++int
++avr32_store_multiple_operation (rtx op,
++ enum machine_mode mode ATTRIBUTE_UNUSED)
++{
++ int count = XVECLEN (op, 0);
++ int src_regno;
++ rtx dest_addr;
++ rtx elt;
++ int i = 1;
++
++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
++ return 0;
++
++ /* Perform a quick check so we don't blow up below. */
++ if (count <= i
++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM
++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
++ return 0;
++
++ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1)));
++ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0);
++
++ for (; i < count; i++)
++ {
++ elt = XVECEXP (op, 0, i);
++
++ if (GET_CODE (elt) != SET
++ || GET_CODE (SET_DEST (elt)) != MEM
++ || GET_MODE (SET_DEST (elt)) != SImode
++ || GET_CODE (SET_SRC (elt)) != UNSPEC)
++ return 0;
++ }
++
++ return 1;
++}
++
++int
++avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in)
++{
++ /* Check if they use the same accumulator */
++ if (rtx_equal_p
++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++int
++avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in)
++{
++ /*
++ Check if the mul instruction produces the accumulator for the mac
++ instruction. */
++ if (rtx_equal_p
++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
++ {
++ return TRUE;
++ }
++ return FALSE;
++}
++
++int
++avr32_store_bypass (rtx insn_out, rtx insn_in)
++{
++ /* Only valid bypass if the output result is used as an src in the store
++ instruction, NOT if used as a pointer or base. */
++ if (rtx_equal_p
++ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in))))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++int
++avr32_mul_waw_bypass (rtx insn_out, rtx insn_in)
++{
++ /* Check if the register holding the result from the mul instruction is
++ used as a result register in the input instruction. */
++ if (rtx_equal_p
++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++int
++avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in)
++{
++ /* Check if the first loaded word in insn_out is used in insn_in. */
++ rtx dst_reg;
++ rtx second_loaded_reg;
++
++ /* If this is a double alu operation then the bypass is not valid */
++ if ((get_attr_type (insn_in) == TYPE_ALU
++ || get_attr_type (insn_in) == TYPE_ALU2)
++ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4))
++ return FALSE;
++
++ /* Get the destination register in the load */
++ if (!REG_P (SET_DEST (PATTERN (insn_out))))
++ return FALSE;
++
++ dst_reg = SET_DEST (PATTERN (insn_out));
++ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1);
++
++ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in)))
++ return TRUE;
++
++ return FALSE;
++}
++
++
++int
++avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in)
++{
++ /*
++ Check if the two first loaded word in insn_out are used in insn_in. */
++ rtx dst_reg;
++ rtx third_loaded_reg, fourth_loaded_reg;
++
++ /* Get the destination register in the load */
++ if (!REG_P (SET_DEST (PATTERN (insn_out))))
++ return FALSE;
++
++ dst_reg = SET_DEST (PATTERN (insn_out));
++ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2);
++ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3);
++
++ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in))
++ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in)))
++ {
++ return TRUE;
++ }
++
++ return FALSE;
++}
++
++
++
++rtx
++avr32_ifcvt_modify_test (ce_if_block_t *ce_info,
++ rtx test ){
++ rtx branch_insn;
++ rtx cmp_test;
++ rtx compare_op0;
++ rtx compare_op1;
++
++
++ if ( !ce_info
++ || test == NULL_RTX
++ || !reg_mentioned_p (cc0_rtx, test))
++ return test;
++
++ branch_insn = BB_END (ce_info->test_bb);
++ cmp_test = PATTERN(prev_nonnote_insn (branch_insn));
++
++ if (GET_CODE(cmp_test) != SET
++ || !CC0_P(XEXP(cmp_test, 0)) )
++ return cmp_test;
++
++ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){
++ compare_op0 = XEXP(SET_SRC(cmp_test), 0);
++ compare_op1 = XEXP(SET_SRC(cmp_test), 1);
++ } else {
++ compare_op0 = SET_SRC(cmp_test);
++ compare_op1 = const0_rtx;
++ }
++
++ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0),
++ compare_op0, compare_op1);
++}
++
++
++
++rtx
++avr32_ifcvt_modify_insn (ce_if_block_t *ce_info,
++ rtx pattern,
++ rtx insn,
++ int *num_true_changes){
++ rtx test = COND_EXEC_TEST(pattern);
++ rtx op = COND_EXEC_CODE(pattern);
++ rtx cmp_insn;
++ rtx cond_exec_insn;
++ int inputs_set_outside_ifblock = 1;
++ basic_block current_bb = BLOCK_FOR_INSN (insn);
++ rtx bb_insn ;
++ enum machine_mode mode = GET_MODE (XEXP (op, 0));
++
++ if (CC0_P(XEXP(test, 0)))
++ test = avr32_ifcvt_modify_test (ce_info,
++ test );
++
++ /* We do not support multiple tests. */
++ if ( ce_info
++ && ce_info->num_multiple_test_blocks > 0 )
++ return NULL_RTX;
++
++ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op);
++
++ if ( !reload_completed )
++ {
++ rtx start;
++ int num_insns;
++ int max_insns = MAX_CONDITIONAL_EXECUTE;
++
++ if ( !ce_info )
++ return op;
++
++ /* Check if the insn is not suitable for conditional
++ execution. */
++ start_sequence ();
++ cond_exec_insn = emit_insn (pattern);
++ if ( recog_memoized (cond_exec_insn) < 0
++ && can_create_pseudo_p () )
++ {
++ /* Insn is not suitable for conditional execution, try
++ to fix it up by using an extra scratch register or
++ by pulling the operation outside the if-then-else
++ and then emiting a conditional move inside the if-then-else. */
++ end_sequence ();
++ if ( GET_CODE (op) != SET
++ || !REG_P (SET_DEST (op))
++ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE
++ || GET_MODE_SIZE (mode) > UNITS_PER_WORD )
++ return NULL_RTX;
++
++ /* Check if any of the input operands to the insn is set inside the
++ current block. */
++ if ( current_bb->index == ce_info->then_bb->index )
++ start = PREV_INSN (BB_HEAD (ce_info->then_bb));
++ else
++ start = PREV_INSN (BB_HEAD (ce_info->else_bb));
++
++
++ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) )
++ {
++ rtx set = single_set (bb_insn);
++
++ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op)))
++ {
++ inputs_set_outside_ifblock = 0;
++ break;
++ }
++ }
++
++ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb));
++
++
++ /* Check if we can insert more insns. */
++ num_insns = ( ce_info->num_then_insns +
++ ce_info->num_else_insns +
++ ce_info->num_cond_clobber_insns +
++ ce_info->num_extra_move_insns );
++
++ if ( ce_info->num_else_insns != 0 )
++ max_insns *=2;
++
++ if ( num_insns >= max_insns )
++ return NULL_RTX;
++
++ /* Check if we have an instruction which might be converted to
++ conditional form if we give it a scratch register to clobber. */
++ {
++ rtx clobber_insn;
++ rtx scratch_reg = gen_reg_rtx (mode);
++ rtx new_pattern = copy_rtx (pattern);
++ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern));
++
++ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg);
++ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber };
++ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec));
++
++ start_sequence ();
++ clobber_insn = emit_insn (new_pattern);
++
++ if ( recog_memoized (clobber_insn) >= 0
++ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2
++ && CONST_INT_P (XEXP (set_src, 1))
++ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") )
++ || !ce_info->else_bb
++ || current_bb->index == ce_info->else_bb->index ))
++ {
++ end_sequence ();
++ /* Force the insn to be recognized again. */
++ INSN_CODE (insn) = -1;
++
++ /* If this is the first change in this IF-block then
++ signal that we have made a change. */
++ if ( ce_info->num_cond_clobber_insns == 0
++ && ce_info->num_extra_move_insns == 0 )
++ *num_true_changes += 1;
++
++ ce_info->num_cond_clobber_insns++;
++
++ if (dump_file)
++ fprintf (dump_file,
++ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n",
++ INSN_UID (insn));
++
++ return COND_EXEC_CODE (new_pattern);
++ }
++ end_sequence ();
++ }
++
++ if ( inputs_set_outside_ifblock )
++ {
++ /* Check if the insn before the cmp is an and which used
++ together with the cmp can be optimized into a bld. If
++ so then we should try to put the insn before the and
++ so that we can catch the bld peephole. */
++ rtx set;
++ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn);
++ if (insn_before_cmp_insn
++ && (set = single_set (insn_before_cmp_insn))
++ && GET_CODE (SET_SRC (set)) == AND
++ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode)
++ /* Also make sure that the insn does not set any
++ of the input operands to the insn we are pulling out. */
++ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) )
++ cmp_insn = prev_nonnote_insn (cmp_insn);
++
++ /* We can try to put the operation outside the if-then-else
++ blocks and insert a move. */
++ if ( !insn_invalid_p (insn)
++ /* Do not allow conditional insns to be moved outside the
++ if-then-else. */
++ && !reg_mentioned_p (cc0_rtx, insn)
++ /* We cannot move memory loads outside of the if-then-else
++ since the memory access should not be perfomed if the
++ condition is not met. */
++ && !mem_mentioned_p (SET_SRC (op)) )
++ {
++ rtx scratch_reg = gen_reg_rtx (mode);
++ rtx op_pattern = copy_rtx (op);
++ rtx new_insn, seq;
++ rtx link, prev_link;
++ op = copy_rtx (op);
++ /* Emit the operation to a temp reg before the compare,
++ and emit a move inside the if-then-else, hoping that the
++ whole if-then-else can be converted to conditional
++ execution. */
++ SET_DEST (op_pattern) = scratch_reg;
++ start_sequence ();
++ new_insn = emit_insn (op_pattern);
++ seq = get_insns();
++ end_sequence ();
++
++ /* Check again that the insn is valid. For some insns the insn might
++ become invalid if the destination register is changed. Ie. for mulacc
++ operations. */
++ if ( insn_invalid_p (new_insn) )
++ return NULL_RTX;
++
++ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn));
++
++ if (dump_file)
++ fprintf (dump_file,
++ "\nMoving INSN %d out of IF-block by adding INSN %d...\n",
++ INSN_UID (insn), INSN_UID (new_insn));
++
++ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn;
++ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn;
++ XEXP (op, 1) = scratch_reg;
++ /* Force the insn to be recognized again. */
++ INSN_CODE (insn) = -1;
++
++ /* Move REG_DEAD notes to the moved insn. */
++ prev_link = NULL_RTX;
++ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
++ {
++ if (REG_NOTE_KIND (link) == REG_DEAD)
++ {
++ /* Add the REG_DEAD note to the new insn. */
++ rtx dead_reg = XEXP (link, 0);
++ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn));
++ /* Remove the REG_DEAD note from the insn we convert to a move. */
++ if ( prev_link )
++ XEXP (prev_link, 1) = XEXP (link, 1);
++ else
++ REG_NOTES (insn) = XEXP (link, 1);
++ }
++ else
++ {
++ prev_link = link;
++ }
++ }
++ /* Add a REG_DEAD note to signal that the scratch register is dead. */
++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn));
++
++ /* If this is the first change in this IF-block then
++ signal that we have made a change. */
++ if ( ce_info->num_cond_clobber_insns == 0
++ && ce_info->num_extra_move_insns == 0 )
++ *num_true_changes += 1;
++
++ ce_info->num_extra_move_insns++;
++ return op;
++ }
++ }
++
++ /* We failed to fixup the insns, so this if-then-else can not be made
++ conditional. Just return NULL_RTX so that the if-then-else conversion
++ for this if-then-else will be cancelled. */
++ return NULL_RTX;
++ }
++ end_sequence ();
++ return op;
++ }
++
++ /* Signal that we have started if conversion after reload, which means
++ that it should be safe to split all the predicable clobber insns which
++ did not become cond_exec back into a simpler form if possible. */
++ cfun->machine->ifcvt_after_reload = 1;
++
++ return pattern;
++}
++
++
++void
++avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info,
++ int *num_true_changes)
++{
++ int n;
++
++ if ( ce_info->num_extra_move_insns > 0
++ && ce_info->num_cond_clobber_insns == 0)
++ /* Signal that we did not do any changes after all. */
++ *num_true_changes -= 1;
++
++ /* Remove any inserted move insns. */
++ for ( n = 0; n < ce_info->num_extra_move_insns; n++ )
++ {
++ rtx link, prev_link;
++
++ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */
++ prev_link = NULL_RTX;
++ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1))
++ {
++ if (REG_NOTE_KIND (link) == REG_DEAD)
++ {
++ if ( prev_link )
++ XEXP (prev_link, 1) = XEXP (link, 1);
++ else
++ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1);
++ }
++ else
++ {
++ prev_link = link;
++ }
++ }
++
++ /* Revert all reg_notes for the moved insn. */
++ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1))
++ {
++ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
++ XEXP (link, 0),
++ REG_NOTES (ce_info->extra_move_insns[n]));
++ }
++
++ /* Remove the moved insn. */
++ remove_insn ( ce_info->moved_insns[n] );
++ }
++}
++
++/* Function returning TRUE if INSN with OPERANDS is a splittable
++ conditional immediate clobber insn. We assume that the insn is
++ already a conditional immediate clobber insns and do not check
++ for that. */
++int
++avr32_cond_imm_clobber_splittable (rtx insn,
++ rtx operands[])
++{
++ if ( REGNO (operands[0]) == REGNO (operands[1]) )
++ {
++ if ( (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS
++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is21"))
++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS
++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21")))
++ return FALSE;
++ }
++ else if ( (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode)
++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS
++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16"))
++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS
++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) )
++ return FALSE;
++
++ return TRUE;
++}
++
++/* Function for getting an integer value from a const_int or const_double
++ expression regardless of the HOST_WIDE_INT size. Each target cpu word
++ will be put into the val array where the LSW will be stored at the lowest
++ address and so forth. Assumes that const_expr is either a const_int or
++ const_double. Only valid for modes which have sizes that are a multiple
++ of the word size.
++*/
++void
++avr32_get_intval (enum machine_mode mode,
++ rtx const_expr,
++ HOST_WIDE_INT *val)
++{
++ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD;
++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
++
++ if ( GET_CODE(const_expr) == CONST_DOUBLE ){
++ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr);
++ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr);
++ /* Evaluate hi and lo values of const_double. */
++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0),
++ GEN_INT (lo),
++ &val[0]);
++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0),
++ GEN_INT (hi),
++ &val[words_in_const_int]);
++ } else if ( GET_CODE(const_expr) == CONST_INT ){
++ HOST_WIDE_INT value = INTVAL(const_expr);
++ int word;
++ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){
++ /* Shift word up to the MSW and shift down again to extract the
++ word and sign-extend. */
++ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD;
++ int rshift = (words_in_const_int-1) * BITS_PER_WORD;
++ val[word] = (value << lshift) >> rshift;
++ }
++
++ for ( ; word < words_in_mode; word++ ){
++ /* Just put the sign bits in the remaining words. */
++ val[word] = value < 0 ? -1 : 0;
++ }
++ }
++}
++
++void
++avr32_split_const_expr (enum machine_mode mode,
++ enum machine_mode new_mode,
++ rtx expr,
++ rtx *split_expr)
++{
++ int i, word;
++ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD;
++ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD;
++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
++ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD);
++
++ avr32_get_intval (mode, expr, val);
++
++ for ( i=0; i < (words_in_intval/words_in_split_values); i++ )
++ {
++ HOST_WIDE_INT value_lo = 0, value_hi = 0;
++ for ( word = 0; word < words_in_split_values; word++ )
++ {
++ if ( word >= words_in_const_int )
++ value_hi |= ((val[i * words_in_split_values + word] &
++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1))
++ << (BITS_PER_WORD * (word - words_in_const_int)));
++ else
++ value_lo |= ((val[i * words_in_split_values + word] &
++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1))
++ << (BITS_PER_WORD * word));
++ }
++ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode);
++ }
++}
++
++
++/* Set up library functions to comply to AVR32 ABI */
++
++static void
++avr32_init_libfuncs (void)
++{
++ /* Convert gcc run-time function names to AVR32 ABI names */
++
++ /* Double-precision floating-point arithmetic. */
++ set_optab_libfunc (neg_optab, DFmode, NULL);
++
++ /* Double-precision comparisons. */
++ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq");
++ set_optab_libfunc (ne_optab, DFmode, NULL);
++ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt");
++ set_optab_libfunc (le_optab, DFmode, NULL);
++ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge");
++ set_optab_libfunc (gt_optab, DFmode, NULL);
++
++ /* Single-precision floating-point arithmetic. */
++ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul");
++ set_optab_libfunc (neg_optab, SFmode, NULL);
++
++ /* Single-precision comparisons. */
++ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq");
++ set_optab_libfunc (ne_optab, SFmode, NULL);
++ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt");
++ set_optab_libfunc (le_optab, SFmode, NULL);
++ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge");
++ set_optab_libfunc (gt_optab, SFmode, NULL);
++
++ /* Floating-point to integer conversions. */
++ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32");
++ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32");
++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64");
++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64");
++ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32");
++ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32");
++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64");
++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64");
++
++ /* Conversions between floating types. */
++ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32");
++ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64");
++
++ /* Integer to floating-point conversions. Table 8. */
++ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64");
++ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64");
++ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32");
++ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32");
++ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64");
++ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32");
++ /* TODO: Add these to gcc library functions */
++ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL);
++ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL);
++
++ /* Long long. Table 9. */
++ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64");
++ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64");
++ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64");
++ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64");
++ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64");
++ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64");
++ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64");
++ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64");
++
++ /* Floating point library functions which have fast versions. */
++ if ( TARGET_FAST_FLOAT )
++ {
++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast");
++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast");
++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast");
++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast");
++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast");
++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast");
++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast");
++ }
++ else
++ {
++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div");
++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul");
++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add");
++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub");
++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add");
++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub");
++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div");
++ }
++}
+--- a/gcc/config/avr32/avr32-elf.h
++++ b/gcc/config/avr32/avr32-elf.h
+@@ -0,0 +1,86 @@
++/*
++ Elf specific definitions.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++
++/*****************************************************************************
++ * Controlling the Compilator Driver, 'gcc'
++ *****************************************************************************/
++
++/* Run-time Target Specification. */
++#undef TARGET_VERSION
++#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr);
++
++/*
++Another C string constant used much like LINK_SPEC. The
++difference between the two is that STARTFILE_SPEC is used at
++the very beginning of the command given to the linker.
++
++If this macro is not defined, a default is provided that loads the
++standard C startup file from the usual place. See gcc.c.
++*/
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s"
++
++#undef LINK_SPEC
++#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}"
++
++
++/*
++Another C string constant used much like LINK_SPEC. The
++difference between the two is that ENDFILE_SPEC is used at
++the very end of the command given to the linker.
++
++Do not define this macro if it does not need to do anything.
++*/
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
++
++
++/* Target CPU builtins. */
++#define TARGET_CPU_CPP_BUILTINS() \
++ do \
++ { \
++ builtin_define ("__avr32__"); \
++ builtin_define ("__AVR32__"); \
++ builtin_define ("__AVR32_ELF__"); \
++ builtin_define (avr32_part->macro); \
++ builtin_define (avr32_arch->macro); \
++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
++ builtin_define ("__AVR32_AVR32A__"); \
++ else \
++ builtin_define ("__AVR32_AVR32B__"); \
++ if (TARGET_UNALIGNED_WORD) \
++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
++ if (TARGET_SIMD) \
++ builtin_define ("__AVR32_HAS_SIMD__"); \
++ if (TARGET_DSP) \
++ builtin_define ("__AVR32_HAS_DSP__"); \
++ if (TARGET_RMW) \
++ builtin_define ("__AVR32_HAS_RMW__"); \
++ if (TARGET_BRANCH_PRED) \
++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
++ if (TARGET_FAST_FLOAT) \
++ builtin_define ("__AVR32_FAST_FLOAT__"); \
++ if (TARGET_NO_MUL_INSNS) \
++ builtin_define ("__AVR32_NO_MUL__"); \
++ } \
++ while (0)
+--- a/gcc/config/avr32/avr32.h
++++ b/gcc/config/avr32/avr32.h
+@@ -0,0 +1,3344 @@
++/*
++ Definitions of target machine for AVR32.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++ Initial porting by Anders �dland.
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#ifndef GCC_AVR32_H
++#define GCC_AVR32_H
++
++
++#ifndef OBJECT_FORMAT_ELF
++#error avr32.h included before elfos.h
++#endif
++
++#ifndef LOCAL_LABEL_PREFIX
++#define LOCAL_LABEL_PREFIX "."
++#endif
++
++#ifndef SUBTARGET_CPP_SPEC
++#define SUBTARGET_CPP_SPEC "-D__ELF__"
++#endif
++
++
++extern struct rtx_def *avr32_compare_op0;
++extern struct rtx_def *avr32_compare_op1;
++
++
++extern struct rtx_def *avr32_acc_cache;
++
++/* cache instruction op5 codes */
++#define AVR32_CACHE_INVALIDATE_ICACHE 1
++
++/* These bits describe the different types of function supported
++ by the AVR32 backend. They are exclusive. ie a function cannot be both a
++ normal function and an interworked function, for example. Knowing the
++ type of a function is important for determining its prologue and
++ epilogue sequences.
++ Note value 7 is currently unassigned. Also note that the interrupt
++ function types all have bit 2 set, so that they can be tested for easily.
++ Note that 0 is deliberately chosen for AVR32_FT_UNKNOWN so that when the
++ machine_function structure is initialized (to zero) func_type will
++ default to unknown. This will force the first use of avr32_current_func_type
++ to call avr32_compute_func_type. */
++#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined.
++ */
++#define AVR32_FT_NORMAL 1 /* Your normal, straightforward
++ function. */
++#define AVR32_FT_ACALL 2 /* An acall function. */
++#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
++#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */
++#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */
++#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */
++
++#define AVR32_FT_TYPE_MASK ((1 << 3) - 1)
++
++/* In addition functions can have several type modifiers,
++ outlined by these bit masks: */
++#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR
++ and above. */
++#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */
++#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */
++#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another
++ func. */
++
++/* Some macros to test these flags. */
++#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK)
++#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT)
++#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE)
++#define IS_NAKED(t) (t & AVR32_FT_NAKED)
++#define IS_NESTED(t) (t & AVR32_FT_NESTED)
++
++
++typedef struct minipool_labels
++GTY ((chain_next ("%h.next"), chain_prev ("%h.prev")))
++{
++ rtx label;
++ struct minipool_labels *prev;
++ struct minipool_labels *next;
++} minipool_labels;
++
++/* A C structure for machine-specific, per-function data.
++ This is added to the cfun structure. */
++
++typedef struct machine_function
++GTY (())
++{
++ /* Records the type of the current function. */
++ unsigned long func_type;
++ /* List of minipool labels, use for checking if code label is valid in a
++ memory expression */
++ minipool_labels *minipool_label_head;
++ minipool_labels *minipool_label_tail;
++ int ifcvt_after_reload;
++} machine_function;
++
++/* Initialize data used by insn expanders. This is called from insn_emit,
++ once for every function before code is generated. */
++#define INIT_EXPANDERS avr32_init_expanders ()
++
++/******************************************************************************
++ * SPECS
++ *****************************************************************************/
++
++#ifndef ASM_SPEC
++#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}"
++#endif
++
++#ifndef MULTILIB_DEFAULTS
++#define MULTILIB_DEFAULTS { "march=ap", "" }
++#endif
++
++/******************************************************************************
++ * Run-time Target Specification
++ *****************************************************************************/
++#ifndef TARGET_VERSION
++#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)");
++#endif
++
++
++/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/
++enum part_type
++{
++ PART_TYPE_AVR32_NONE,
++ PART_TYPE_AVR32_AP7000,
++ PART_TYPE_AVR32_AP7001,
++ PART_TYPE_AVR32_AP7002,
++ PART_TYPE_AVR32_AP7200,
++ PART_TYPE_AVR32_UC3A0128,
++ PART_TYPE_AVR32_UC3A0256,
++ PART_TYPE_AVR32_UC3A0512,
++ PART_TYPE_AVR32_UC3A0512ES,
++ PART_TYPE_AVR32_UC3A1128,
++ PART_TYPE_AVR32_UC3A1256,
++ PART_TYPE_AVR32_UC3A1512,
++ PART_TYPE_AVR32_UC3A1512ES,
++ PART_TYPE_AVR32_UC3A3REVD,
++ PART_TYPE_AVR32_UC3A364,
++ PART_TYPE_AVR32_UC3A364S,
++ PART_TYPE_AVR32_UC3A3128,
++ PART_TYPE_AVR32_UC3A3128S,
++ PART_TYPE_AVR32_UC3A3256,
++ PART_TYPE_AVR32_UC3A3256S,
++ PART_TYPE_AVR32_UC3B064,
++ PART_TYPE_AVR32_UC3B0128,
++ PART_TYPE_AVR32_UC3B0256,
++ PART_TYPE_AVR32_UC3B0256ES,
++ PART_TYPE_AVR32_UC3B0512REVC,
++ PART_TYPE_AVR32_UC3B164,
++ PART_TYPE_AVR32_UC3B1128,
++ PART_TYPE_AVR32_UC3B1256,
++ PART_TYPE_AVR32_UC3B1256ES,
++ PART_TYPE_AVR32_UC3B1512REVC,
++ PART_TYPE_AVR32_UC3C0512C,
++ PART_TYPE_AVR32_UC3C0256C,
++ PART_TYPE_AVR32_UC3C0128C,
++ PART_TYPE_AVR32_UC3C064C,
++ PART_TYPE_AVR32_UC3C1512C,
++ PART_TYPE_AVR32_UC3C1256C,
++ PART_TYPE_AVR32_UC3C1128C,
++ PART_TYPE_AVR32_UC3C164C,
++ PART_TYPE_AVR32_UC3C2512C,
++ PART_TYPE_AVR32_UC3C2256C,
++ PART_TYPE_AVR32_UC3C2128C,
++ PART_TYPE_AVR32_UC3C264C,
++ PART_TYPE_AVR32_UC3L064,
++ PART_TYPE_AVR32_UC3L032,
++ PART_TYPE_AVR32_UC3L016
++};
++
++/* Microarchitectures. */
++enum microarchitecture_type
++{
++ UARCH_TYPE_AVR32A,
++ UARCH_TYPE_AVR32B,
++ UARCH_TYPE_NONE
++};
++
++/* Architectures types which specifies the pipeline.
++ Keep this in sync with avr32_arch_types in avr32.c
++ and the pipeline attribute in avr32.md */
++enum architecture_type
++{
++ ARCH_TYPE_AVR32_AP,
++ ARCH_TYPE_AVR32_UCR1,
++ ARCH_TYPE_AVR32_UCR2,
++ ARCH_TYPE_AVR32_UCR2NOMUL,
++ ARCH_TYPE_AVR32_UCR3,
++ ARCH_TYPE_AVR32_NONE
++};
++
++/* Flag specifying if the cpu has support for DSP instructions.*/
++#define FLAG_AVR32_HAS_DSP (1 << 0)
++/* Flag specifying if the cpu has support for Read-Modify-Write
++ instructions.*/
++#define FLAG_AVR32_HAS_RMW (1 << 1)
++/* Flag specifying if the cpu has support for SIMD instructions. */
++#define FLAG_AVR32_HAS_SIMD (1 << 2)
++/* Flag specifying if the cpu has support for unaligned memory word access. */
++#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3)
++/* Flag specifying if the cpu has support for branch prediction. */
++#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4)
++/* Flag specifying if the cpu has support for a return stack. */
++#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5)
++/* Flag specifying if the cpu has caches. */
++#define FLAG_AVR32_HAS_CACHES (1 << 6)
++/* Flag specifying if the cpu has support for v2 insns. */
++#define FLAG_AVR32_HAS_V2_INSNS (1 << 7)
++/* Flag specifying that the cpu has buggy mul insns. */
++#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8)
++
++/* Structure for holding information about different avr32 CPUs/parts */
++struct part_type_s
++{
++ const char *const name;
++ enum part_type part_type;
++ enum architecture_type arch_type;
++ /* Must lie outside user's namespace. NULL == no macro. */
++ const char *const macro;
++};
++
++/* Structure for holding information about different avr32 pipeline
++ architectures. */
++struct arch_type_s
++{
++ const char *const name;
++ enum architecture_type arch_type;
++ enum microarchitecture_type uarch_type;
++ const unsigned long feature_flags;
++ /* Must lie outside user's namespace. NULL == no macro. */
++ const char *const macro;
++};
++
++extern const struct part_type_s *avr32_part;
++extern const struct arch_type_s *avr32_arch;
++
++#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD)
++#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP)
++#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW)
++#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD)
++#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED)
++#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK)
++#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS)
++#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES)
++#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS)
++#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP)
++#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1)
++#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2)
++#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2)
++#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A)
++#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B)
++
++#define CAN_DEBUG_WITHOUT_FP
++
++
++
++
++/******************************************************************************
++ * Storage Layout
++ *****************************************************************************/
++
++/*
++Define this macro to have the value 1 if the most significant bit in a
++byte has the lowest number; otherwise define it to have the value zero.
++This means that bit-field instructions count from the most significant
++bit. If the machine has no bit-field instructions, then this must still
++be defined, but it doesn't matter which value it is defined to. This
++macro need not be a constant.
++
++This macro does not affect the way structure fields are packed into
++bytes or words; that is controlled by BYTES_BIG_ENDIAN.
++*/
++#define BITS_BIG_ENDIAN 0
++
++/*
++Define this macro to have the value 1 if the most significant byte in a
++word has the lowest number. This macro need not be a constant.
++*/
++/*
++ Data is stored in an big-endian way.
++*/
++#define BYTES_BIG_ENDIAN 1
++
++/*
++Define this macro to have the value 1 if, in a multiword object, the
++most significant word has the lowest number. This applies to both
++memory locations and registers; GCC fundamentally assumes that the
++order of words in memory is the same as the order in registers. This
++macro need not be a constant.
++*/
++/*
++ Data is stored in an bin-endian way.
++*/
++#define WORDS_BIG_ENDIAN 1
++
++/*
++Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
++constant value with the same meaning as WORDS_BIG_ENDIAN, which will be
++used only when compiling libgcc2.c. Typically the value will be set
++based on preprocessor defines.
++*/
++#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
++
++/*
++Define this macro to have the value 1 if DFmode, XFmode or
++TFmode floating point numbers are stored in memory with the word
++containing the sign bit at the lowest address; otherwise define it to
++have the value 0. This macro need not be a constant.
++
++You need not define this macro if the ordering is the same as for
++multi-word integers.
++*/
++/* #define FLOAT_WORDS_BIG_ENDIAN 1 */
++
++/*
++Define this macro to be the number of bits in an addressable storage
++unit (byte); normally 8.
++*/
++#define BITS_PER_UNIT 8
++
++/*
++Number of bits in a word; normally 32.
++*/
++#define BITS_PER_WORD 32
++
++/*
++Maximum number of bits in a word. If this is undefined, the default is
++BITS_PER_WORD. Otherwise, it is the constant value that is the
++largest value that BITS_PER_WORD can have at run-time.
++*/
++/* MAX_BITS_PER_WORD not defined*/
++
++/*
++Number of storage units in a word; normally 4.
++*/
++#define UNITS_PER_WORD 4
++
++/*
++Minimum number of units in a word. If this is undefined, the default is
++UNITS_PER_WORD. Otherwise, it is the constant value that is the
++smallest value that UNITS_PER_WORD can have at run-time.
++*/
++/* MIN_UNITS_PER_WORD not defined */
++
++/*
++Width of a pointer, in bits. You must specify a value no wider than the
++width of Pmode. If it is not equal to the width of Pmode,
++you must define POINTERS_EXTEND_UNSIGNED.
++*/
++#define POINTER_SIZE 32
++
++/*
++A C expression whose value is greater than zero if pointers that need to be
++extended from being POINTER_SIZE bits wide to Pmode are to
++be zero-extended and zero if they are to be sign-extended. If the value
++is less then zero then there must be an "ptr_extend" instruction that
++extends a pointer from POINTER_SIZE to Pmode.
++
++You need not define this macro if the POINTER_SIZE is equal
++to the width of Pmode.
++*/
++/* #define POINTERS_EXTEND_UNSIGNED */
++
++/*
++A Macro to update M and UNSIGNEDP when an object whose type
++is TYPE and which has the specified mode and signedness is to be
++stored in a register. This macro is only called when TYPE is a
++scalar type.
++
++On most RISC machines, which only have operations that operate on a full
++register, define this macro to set M to word_mode if
++M is an integer mode narrower than BITS_PER_WORD. In most
++cases, only integer modes should be widened because wider-precision
++floating-point operations are usually more expensive than their narrower
++counterparts.
++
++For most machines, the macro definition does not change UNSIGNEDP.
++However, some machines, have instructions that preferentially handle
++either signed or unsigned quantities of certain modes. For example, on
++the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
++sign-extend the result to 64 bits. On such machines, set
++UNSIGNEDP according to which kind of extension is more efficient.
++
++Do not define this macro if it would never modify M.
++*/
++#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \
++ { \
++ if (!AGGREGATE_TYPE_P (TYPE) \
++ && GET_MODE_CLASS (mode) == MODE_INT \
++ && GET_MODE_SIZE (mode) < 4) \
++ { \
++ if (M == QImode) \
++ (UNSIGNEDP) = 1; \
++ else if (M == HImode) \
++ (UNSIGNEDP) = 0; \
++ (M) = SImode; \
++ } \
++ }
++
++#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \
++ PROMOTE_MODE(M, UNSIGNEDP, TYPE)
++
++/* Define if operations between registers always perform the operation
++ on the full register even if a narrower mode is specified. */
++#define WORD_REGISTER_OPERATIONS
++
++/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
++ will either zero-extend or sign-extend. The value of this macro should
++ be the code that says which one of the two operations is implicitly
++ done, UNKNOWN if not known. */
++#define LOAD_EXTEND_OP(MODE) \
++ (((MODE) == QImode) ? ZERO_EXTEND \
++ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)
++
++
++/*
++Normal alignment required for function parameters on the stack, in
++bits. All stack parameters receive at least this much alignment
++regardless of data type. On most machines, this is the same as the
++size of an integer.
++*/
++#define PARM_BOUNDARY 32
++
++/*
++Define this macro to the minimum alignment enforced by hardware for the
++stack pointer on this machine. The definition is a C expression for the
++desired alignment (measured in bits). This value is used as a default
++if PREFERRED_STACK_BOUNDARY is not defined. On most machines,
++this should be the same as PARM_BOUNDARY.
++*/
++#define STACK_BOUNDARY 32
++
++/*
++Define this macro if you wish to preserve a certain alignment for the
++stack pointer, greater than what the hardware enforces. The definition
++is a C expression for the desired alignment (measured in bits). This
++macro must evaluate to a value equal to or larger than
++STACK_BOUNDARY.
++*/
++#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
++
++/*
++Alignment required for a function entry point, in bits.
++*/
++#define FUNCTION_BOUNDARY 16
++
++/*
++Biggest alignment that any data type can require on this machine, in bits.
++*/
++#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
++
++/*
++If defined, the smallest alignment, in bits, that can be given to an
++object that can be referenced in one operation, without disturbing any
++nearby object. Normally, this is BITS_PER_UNIT, but may be larger
++on machines that don't have byte or half-word store operations.
++*/
++#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT
++
++
++/*
++An integer expression for the size in bits of the largest integer machine mode that
++should actually be used. All integer machine modes of this size or smaller can be
++used for structures and unions with the appropriate sizes. If this macro is undefined,
++GET_MODE_BITSIZE (DImode) is assumed.*/
++#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
++
++
++/*
++If defined, a C expression to compute the alignment given to a constant
++that is being placed in memory. CONSTANT is the constant and
++BASIC_ALIGN is the alignment that the object would ordinarily
++have. The value of this macro is used instead of that alignment to
++align the object.
++
++If this macro is not defined, then BASIC_ALIGN is used.
++
++The typical use of this macro is to increase alignment for string
++constants to be word aligned so that strcpy calls that copy
++constants can be done inline.
++*/
++#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \
++ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN)
++
++/* Try to align string to a word. */
++#define DATA_ALIGNMENT(TYPE, ALIGN) \
++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \
++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
++
++/* Try to align local store strings to a word. */
++#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \
++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
++
++/*
++Define this macro to be the value 1 if instructions will fail to work
++if given data not on the nominal alignment. If instructions will merely
++go slower in that case, define this macro as 0.
++*/
++#define STRICT_ALIGNMENT 1
++
++/*
++Define this if you wish to imitate the way many other C compilers handle
++alignment of bit-fields and the structures that contain them.
++
++The behavior is that the type written for a bit-field (int,
++short, or other integer type) imposes an alignment for the
++entire structure, as if the structure really did contain an ordinary
++field of that type. In addition, the bit-field is placed within the
++structure so that it would fit within such a field, not crossing a
++boundary for it.
++
++Thus, on most machines, a bit-field whose type is written as int
++would not cross a four-byte boundary, and would force four-byte
++alignment for the whole structure. (The alignment used may not be four
++bytes; it is controlled by the other alignment parameters.)
++
++If the macro is defined, its definition should be a C expression;
++a nonzero value for the expression enables this behavior.
++
++Note that if this macro is not defined, or its value is zero, some
++bit-fields may cross more than one alignment boundary. The compiler can
++support such references if there are insv, extv, and
++extzv insns that can directly reference memory.
++
++The other known way of making bit-fields work is to define
++STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT.
++Then every structure can be accessed with fullwords.
++
++Unless the machine has bit-field instructions or you define
++STRUCTURE_SIZE_BOUNDARY that way, you must define
++PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.
++
++If your aim is to make GCC use the same conventions for laying out
++bit-fields as are used by another compiler, here is how to investigate
++what the other compiler does. Compile and run this program:
++
++struct foo1
++{
++ char x;
++ char :0;
++ char y;
++};
++
++struct foo2
++{
++ char x;
++ int :0;
++ char y;
++};
++
++main ()
++{
++ printf ("Size of foo1 is %d\n",
++ sizeof (struct foo1));
++ printf ("Size of foo2 is %d\n",
++ sizeof (struct foo2));
++ exit (0);
++}
++
++If this prints 2 and 5, then the compiler's behavior is what you would
++get from PCC_BITFIELD_TYPE_MATTERS.
++*/
++#define PCC_BITFIELD_TYPE_MATTERS 1
++
++
++/******************************************************************************
++ * Layout of Source Language Data Types
++ *****************************************************************************/
++
++/*
++A C expression for the size in bits of the type int on the
++target machine. If you don't define this, the default is one word.
++*/
++#define INT_TYPE_SIZE 32
++
++/*
++A C expression for the size in bits of the type short on the
++target machine. If you don't define this, the default is half a word. (If
++this would be less than one storage unit, it is rounded up to one unit.)
++*/
++#define SHORT_TYPE_SIZE 16
++
++/*
++A C expression for the size in bits of the type long on the
++target machine. If you don't define this, the default is one word.
++*/
++#define LONG_TYPE_SIZE 32
++
++
++/*
++A C expression for the size in bits of the type long long on the
++target machine. If you don't define this, the default is two
++words. If you want to support GNU Ada on your machine, the value of this
++macro must be at least 64.
++*/
++#define LONG_LONG_TYPE_SIZE 64
++
++/*
++A C expression for the size in bits of the type char on the
++target machine. If you don't define this, the default is
++BITS_PER_UNIT.
++*/
++#define CHAR_TYPE_SIZE 8
++
++
++/*
++A C expression for the size in bits of the C++ type bool and
++C99 type _Bool on the target machine. If you don't define
++this, and you probably shouldn't, the default is CHAR_TYPE_SIZE.
++*/
++#define BOOL_TYPE_SIZE 8
++
++
++/*
++An expression whose value is 1 or 0, according to whether the type
++char should be signed or unsigned by default. The user can
++always override this default with the options -fsigned-char
++and -funsigned-char.
++*/
++/* We are using unsigned char */
++#define DEFAULT_SIGNED_CHAR 0
++
++
++/*
++A C expression for a string describing the name of the data type to use
++for size values. The typedef name size_t is defined using the
++contents of the string.
++
++The string can contain more than one keyword. If so, separate them with
++spaces, and write first any length keyword, then unsigned if
++appropriate, and finally int. The string must exactly match one
++of the data type names defined in the function
++init_decl_processing in the file c-decl.c. You may not
++omit int or change the order - that would cause the compiler to
++crash on startup.
++
++If you don't define this macro, the default is "long unsigned int".
++*/
++#define SIZE_TYPE "long unsigned int"
++
++/*
++A C expression for a string describing the name of the data type to use
++for the result of subtracting two pointers. The typedef name
++ptrdiff_t is defined using the contents of the string. See
++SIZE_TYPE above for more information.
++
++If you don't define this macro, the default is "long int".
++*/
++#define PTRDIFF_TYPE "long int"
++
++
++/*
++A C expression for the size in bits of the data type for wide
++characters. This is used in cpp, which cannot make use of
++WCHAR_TYPE.
++*/
++#define WCHAR_TYPE_SIZE 32
++
++
++/*
++A C expression for a string describing the name of the data type to
++use for wide characters passed to printf and returned from
++getwc. The typedef name wint_t is defined using the
++contents of the string. See SIZE_TYPE above for more
++information.
++
++If you don't define this macro, the default is "unsigned int".
++*/
++#define WINT_TYPE "unsigned int"
++
++/*
++A C expression for a string describing the name of the data type that
++can represent any value of any standard or extended signed integer type.
++The typedef name intmax_t is defined using the contents of the
++string. See SIZE_TYPE above for more information.
++
++If you don't define this macro, the default is the first of
++"int", "long int", or "long long int" that has as
++much precision as long long int.
++*/
++#define INTMAX_TYPE "long long int"
++
++/*
++A C expression for a string describing the name of the data type that
++can represent any value of any standard or extended unsigned integer
++type. The typedef name uintmax_t is defined using the contents
++of the string. See SIZE_TYPE above for more information.
++
++If you don't define this macro, the default is the first of
++"unsigned int", "long unsigned int", or "long long unsigned int"
++that has as much precision as long long unsigned int.
++*/
++#define UINTMAX_TYPE "long long unsigned int"
++
++
++/******************************************************************************
++ * Register Usage
++ *****************************************************************************/
++
++/* Convert from gcc internal register number to register number
++ used in assembly code */
++#define ASM_REGNUM(reg) (LAST_REGNUM - (reg))
++#define ASM_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
++
++/* Convert between register number used in assembly to gcc
++ internal register number */
++#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg))
++#define INTERNAL_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
++
++/** Basic Characteristics of Registers **/
++
++/*
++Number of hardware registers known to the compiler. They receive
++numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first
++pseudo register's number really is assigned the number
++FIRST_PSEUDO_REGISTER.
++*/
++#define FIRST_PSEUDO_REGISTER (LAST_FP_REGNUM + 1)
++
++#define FIRST_REGNUM 0
++#define LAST_REGNUM 15
++#define NUM_FP_REGS 16
++#define FIRST_FP_REGNUM 16
++#define LAST_FP_REGNUM (16+NUM_FP_REGS-1)
++
++/*
++An initializer that says which registers are used for fixed purposes
++all throughout the compiled code and are therefore not available for
++general allocation. These would include the stack pointer, the frame
++pointer (except on machines where that can be used as a general
++register when no frame pointer is needed), the program counter on
++machines where that is considered one of the addressable registers,
++and any other numbered register with a standard use.
++
++This information is expressed as a sequence of numbers, separated by
++commas and surrounded by braces. The nth number is 1 if
++register n is fixed, 0 otherwise.
++
++The table initialized from this macro, and the table initialized by
++the following one, may be overridden at run time either automatically,
++by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by
++the user with the command options -ffixed-[reg],
++-fcall-used-[reg] and -fcall-saved-[reg].
++*/
++
++/* The internal gcc register numbers are reversed
++ compared to the real register numbers since
++ gcc expects data types stored over multiple
++ registers in the register file to be big endian
++ if the memory layout is big endian. But this
++ is not the case for avr32 so we fake a big
++ endian register file. */
++
++#define FIXED_REGISTERS { \
++ 1, /* Program Counter */ \
++ 0, /* Link Register */ \
++ 1, /* Stack Pointer */ \
++ 0, /* r12 */ \
++ 0, /* r11 */ \
++ 0, /* r10 */ \
++ 0, /* r9 */ \
++ 0, /* r8 */ \
++ 0, /* r7 */ \
++ 0, /* r6 */ \
++ 0, /* r5 */ \
++ 0, /* r4 */ \
++ 0, /* r3 */ \
++ 0, /* r2 */ \
++ 0, /* r1 */ \
++ 0, /* r0 */ \
++ 0, /* f15 */ \
++ 0, /* f14 */ \
++ 0, /* f13 */ \
++ 0, /* f12 */ \
++ 0, /* f11 */ \
++ 0, /* f10 */ \
++ 0, /* f9 */ \
++ 0, /* f8 */ \
++ 0, /* f7 */ \
++ 0, /* f6 */ \
++ 0, /* f5 */ \
++ 0, /* f4 */ \
++ 0, /* f3 */ \
++ 0, /* f2*/ \
++ 0, /* f1 */ \
++ 0 /* f0 */ \
++}
++
++/*
++Like FIXED_REGISTERS but has 1 for each register that is
++clobbered (in general) by function calls as well as for fixed
++registers. This macro therefore identifies the registers that are not
++available for general allocation of values that must live across
++function calls.
++
++If a register has 0 in CALL_USED_REGISTERS, the compiler
++automatically saves it on function entry and restores it on function
++exit, if the register is used within the function.
++*/
++#define CALL_USED_REGISTERS { \
++ 1, /* Program Counter */ \
++ 0, /* Link Register */ \
++ 1, /* Stack Pointer */ \
++ 1, /* r12 */ \
++ 1, /* r11 */ \
++ 1, /* r10 */ \
++ 1, /* r9 */ \
++ 1, /* r8 */ \
++ 0, /* r7 */ \
++ 0, /* r6 */ \
++ 0, /* r5 */ \
++ 0, /* r4 */ \
++ 0, /* r3 */ \
++ 0, /* r2 */ \
++ 0, /* r1 */ \
++ 0, /* r0 */ \
++ 1, /* f15 */ \
++ 1, /* f14 */ \
++ 1, /* f13 */ \
++ 1, /* f12 */ \
++ 1, /* f11 */ \
++ 1, /* f10 */ \
++ 1, /* f9 */ \
++ 1, /* f8 */ \
++ 0, /* f7 */ \
++ 0, /* f6 */ \
++ 0, /* f5 */ \
++ 0, /* f4 */ \
++ 0, /* f3 */ \
++ 0, /* f2*/ \
++ 0, /* f1*/ \
++ 0, /* f0 */ \
++}
++
++/* Interrupt functions can only use registers that have already been
++ saved by the prologue, even if they would normally be
++ call-clobbered. */
++#define HARD_REGNO_RENAME_OK(SRC, DST) \
++ (! IS_INTERRUPT (cfun->machine->func_type) || \
++ df_regs_ever_live_p (DST))
++
++
++/*
++Zero or more C statements that may conditionally modify five variables
++fixed_regs, call_used_regs, global_regs,
++reg_names, and reg_class_contents, to take into account
++any dependence of these register sets on target flags. The first three
++of these are of type char [] (interpreted as Boolean vectors).
++global_regs is a const char *[], and
++reg_class_contents is a HARD_REG_SET. Before the macro is
++called, fixed_regs, call_used_regs,
++reg_class_contents, and reg_names have been initialized
++from FIXED_REGISTERS, CALL_USED_REGISTERS,
++REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively.
++global_regs has been cleared, and any -ffixed-[reg],
++-fcall-used-[reg] and -fcall-saved-[reg]
++command options have been applied.
++
++You need not define this macro if it has no work to do.
++
++If the usage of an entire class of registers depends on the target
++flags, you may indicate this to GCC by using this macro to modify
++fixed_regs and call_used_regs to 1 for each of the
++registers in the classes which should not be used by GCC. Also define
++the macro REG_CLASS_FROM_LETTER to return NO_REGS if it
++is called with a letter for a class that shouldn't be used.
++
++ (However, if this class is not included in GENERAL_REGS and all
++of the insn patterns whose constraints permit this class are
++controlled by target switches, then GCC will automatically avoid using
++these registers when the target switches are opposed to them.)
++*/
++#define CONDITIONAL_REGISTER_USAGE \
++ do \
++ { \
++ int regno; \
++ \
++ if (TARGET_SOFT_FLOAT) \
++ { \
++ for (regno = FIRST_FP_REGNUM; \
++ regno <= LAST_FP_REGNUM; ++regno) \
++ fixed_regs[regno] = call_used_regs[regno] = 1; \
++ } \
++ if (flag_pic) \
++ { \
++ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
++ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
++ } \
++ } \
++ while (0)
++
++
++/*
++If the program counter has a register number, define this as that
++register number. Otherwise, do not define it.
++*/
++
++#define LAST_AVR32_REGNUM 16
++
++
++/** Order of Allocation of Registers **/
++
++/*
++If defined, an initializer for a vector of integers, containing the
++numbers of hard registers in the order in which GCC should prefer
++to use them (from most preferred to least).
++
++If this macro is not defined, registers are used lowest numbered first
++(all else being equal).
++
++One use of this macro is on machines where the highest numbered
++registers must always be saved and the save-multiple-registers
++instruction supports only sequences of consecutive registers. On such
++machines, define REG_ALLOC_ORDER to be an initializer that lists
++the highest numbered allocable register first.
++*/
++#define REG_ALLOC_ORDER \
++{ \
++ INTERNAL_REGNUM(8), \
++ INTERNAL_REGNUM(9), \
++ INTERNAL_REGNUM(10), \
++ INTERNAL_REGNUM(11), \
++ INTERNAL_REGNUM(12), \
++ LR_REGNUM, \
++ INTERNAL_REGNUM(7), \
++ INTERNAL_REGNUM(6), \
++ INTERNAL_REGNUM(5), \
++ INTERNAL_REGNUM(4), \
++ INTERNAL_REGNUM(3), \
++ INTERNAL_REGNUM(2), \
++ INTERNAL_REGNUM(1), \
++ INTERNAL_REGNUM(0), \
++ INTERNAL_FP_REGNUM(15), \
++ INTERNAL_FP_REGNUM(14), \
++ INTERNAL_FP_REGNUM(13), \
++ INTERNAL_FP_REGNUM(12), \
++ INTERNAL_FP_REGNUM(11), \
++ INTERNAL_FP_REGNUM(10), \
++ INTERNAL_FP_REGNUM(9), \
++ INTERNAL_FP_REGNUM(8), \
++ INTERNAL_FP_REGNUM(7), \
++ INTERNAL_FP_REGNUM(6), \
++ INTERNAL_FP_REGNUM(5), \
++ INTERNAL_FP_REGNUM(4), \
++ INTERNAL_FP_REGNUM(3), \
++ INTERNAL_FP_REGNUM(2), \
++ INTERNAL_FP_REGNUM(1), \
++ INTERNAL_FP_REGNUM(0), \
++ SP_REGNUM, \
++ PC_REGNUM \
++}
++
++
++/** How Values Fit in Registers **/
++
++/*
++A C expression for the number of consecutive hard registers, starting
++at register number REGNO, required to hold a value of mode
++MODE.
++
++On a machine where all registers are exactly one word, a suitable
++definition of this macro is
++
++#define HARD_REGNO_NREGS(REGNO, MODE) \
++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
++ / UNITS_PER_WORD)
++*/
++#define HARD_REGNO_NREGS(REGNO, MODE) \
++ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD))
++
++/*
++A C expression that is nonzero if it is permissible to store a value
++of mode MODE in hard register number REGNO (or in several
++registers starting with that one). For a machine where all registers
++are equivalent, a suitable definition is
++
++ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
++
++You need not include code to check for the numbers of fixed registers,
++because the allocation mechanism considers them to be always occupied.
++
++On some machines, double-precision values must be kept in even/odd
++register pairs. You can implement that by defining this macro to reject
++odd register numbers for such modes.
++
++The minimum requirement for a mode to be OK in a register is that the
++mov[mode] instruction pattern support moves between the
++register and other hard register in the same class and that moving a
++value into the register and back out not alter it.
++
++Since the same instruction used to move word_mode will work for
++all narrower integer modes, it is not necessary on any machine for
++HARD_REGNO_MODE_OK to distinguish between these modes, provided
++you define patterns movhi, etc., to take advantage of this. This
++is useful because of the interaction between HARD_REGNO_MODE_OK
++and MODES_TIEABLE_P; it is very desirable for all integer modes
++to be tieable.
++
++Many machines have special registers for floating point arithmetic.
++Often people assume that floating point machine modes are allowed only
++in floating point registers. This is not true. Any registers that
++can hold integers can safely hold a floating point machine
++mode, whether or not floating arithmetic can be done on it in those
++registers. Integer move instructions can be used to move the values.
++
++On some machines, though, the converse is true: fixed-point machine
++modes may not go in floating registers. This is true if the floating
++registers normalize any value stored in them, because storing a
++non-floating value there would garble it. In this case,
++HARD_REGNO_MODE_OK should reject fixed-point machine modes in
++floating registers. But if the floating registers do not automatically
++normalize, if you can store any bit pattern in one and retrieve it
++unchanged without a trap, then any machine mode may go in a floating
++register, so you can define this macro to say so.
++
++The primary significance of special floating registers is rather that
++they are the registers acceptable in floating point arithmetic
++instructions. However, this is of no concern to
++HARD_REGNO_MODE_OK. You handle it by writing the proper
++constraints for those instructions.
++
++On some machines, the floating registers are especially slow to access,
++so that it is better to store a value in a stack frame than in such a
++register if floating point arithmetic is not being done. As long as the
++floating registers are not in class GENERAL_REGS, they will not
++be used unless some pattern's constraint asks for one.
++*/
++#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE)
++
++/*
++A C expression that is nonzero if a value of mode
++MODE1 is accessible in mode MODE2 without copying.
++
++If HARD_REGNO_MODE_OK(R, MODE1) and
++HARD_REGNO_MODE_OK(R, MODE2) are always the same for
++any R, then MODES_TIEABLE_P(MODE1, MODE2)
++should be nonzero. If they differ for any R, you should define
++this macro to return zero unless some other mechanism ensures the
++accessibility of the value in a narrower mode.
++
++You should define this macro to return nonzero in as many cases as
++possible since doing so will allow GCC to perform better register
++allocation.
++*/
++#define MODES_TIEABLE_P(MODE1, MODE2) \
++ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
++
++
++
++/******************************************************************************
++ * Register Classes
++ *****************************************************************************/
++
++/*
++An enumeral type that must be defined with all the register class names
++as enumeral values. NO_REGS must be first. ALL_REGS
++must be the last register class, followed by one more enumeral value,
++LIM_REG_CLASSES, which is not a register class but rather
++tells how many classes there are.
++
++Each register class has a number, which is the value of casting
++the class name to type int. The number serves as an index
++in many of the tables described below.
++*/
++enum reg_class
++{
++ NO_REGS,
++ GENERAL_REGS,
++ FP_REGS,
++ ALL_REGS,
++ LIM_REG_CLASSES
++};
++
++/*
++The number of distinct register classes, defined as follows:
++ #define N_REG_CLASSES (int) LIM_REG_CLASSES
++*/
++#define N_REG_CLASSES (int)LIM_REG_CLASSES
++
++/*
++An initializer containing the names of the register classes as C string
++constants. These names are used in writing some of the debugging dumps.
++*/
++#define REG_CLASS_NAMES \
++{ \
++ "NO_REGS", \
++ "GENERAL_REGS", \
++ "FLOATING_POINT_REGS", \
++ "ALL_REGS" \
++}
++
++/*
++An initializer containing the contents of the register classes, as integers
++which are bit masks. The nth integer specifies the contents of class
++n. The way the integer mask is interpreted is that
++register r is in the class if mask & (1 << r) is 1.
++
++When the machine has more than 32 registers, an integer does not suffice.
++Then the integers are replaced by sub-initializers, braced groupings containing
++several integers. Each sub-initializer must be suitable as an initializer
++for the type HARD_REG_SET which is defined in hard-reg-set.h.
++In this situation, the first integer in each sub-initializer corresponds to
++registers 0 through 31, the second integer to registers 32 through 63, and
++so on.
++*/
++#define REG_CLASS_CONTENTS { \
++ {0x00000000}, /* NO_REGS */ \
++ {0x0000FFFF}, /* GENERAL_REGS */ \
++ {0xFFFF0000}, /* FP_REGS */ \
++ {0x7FFFFFFF}, /* ALL_REGS */ \
++}
++
++
++/*
++A C expression whose value is a register class containing hard register
++REGNO. In general there is more than one such class; choose a class
++which is minimal, meaning that no smaller class also contains the
++register.
++*/
++#define REGNO_REG_CLASS(REGNO) ((REGNO < 16) ? GENERAL_REGS : FP_REGS)
++
++/*
++A macro whose definition is the name of the class to which a valid
++base register must belong. A base register is one used in an address
++which is the register value plus a displacement.
++*/
++#define BASE_REG_CLASS GENERAL_REGS
++
++/*
++This is a variation of the BASE_REG_CLASS macro which allows
++the selection of a base register in a mode depenedent manner. If
++mode is VOIDmode then it should return the same value as
++BASE_REG_CLASS.
++*/
++#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS
++
++/*
++A macro whose definition is the name of the class to which a valid
++index register must belong. An index register is one used in an
++address where its value is either multiplied by a scale factor or
++added to another register (as well as added to a displacement).
++*/
++#define INDEX_REG_CLASS BASE_REG_CLASS
++
++/*
++A C expression which defines the machine-dependent operand constraint
++letters for register classes. If CHAR is such a letter, the
++value should be the register class corresponding to it. Otherwise,
++the value should be NO_REGS. The register letter r,
++corresponding to class GENERAL_REGS, will not be passed
++to this macro; you do not need to handle it.
++*/
++#define REG_CLASS_FROM_LETTER(CHAR) ((CHAR) == 'f' ? FP_REGS : NO_REGS)
++
++
++/* These assume that REGNO is a hard or pseudo reg number.
++ They give nonzero only if REGNO is a hard reg of the suitable class
++ or a pseudo reg currently allocated to a suitable hard reg.
++ Since they use reg_renumber, they are safe only once reg_renumber
++ has been allocated, which happens in local-alloc.c. */
++#define TEST_REGNO(R, TEST, VALUE) \
++ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
++
++/*
++A C expression which is nonzero if register number num is suitable for use as a base
++register in operand addresses. It may be either a suitable hard register or a pseudo
++register that has been allocated such a hard register.
++*/
++#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
++
++/*
++A C expression which is nonzero if register number NUM is
++suitable for use as an index register in operand addresses. It may be
++either a suitable hard register or a pseudo register that has been
++allocated such a hard register.
++
++The difference between an index register and a base register is that
++the index register may be scaled. If an address involves the sum of
++two registers, neither one of them scaled, then either one may be
++labeled the ``base'' and the other the ``index''; but whichever
++labeling is used must fit the machine's constraints of which registers
++may serve in each capacity. The compiler will try both labelings,
++looking for one that is valid, and will reload one or both registers
++only if neither labeling works.
++*/
++#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
++
++/*
++A C expression that places additional restrictions on the register class
++to use when it is necessary to copy value X into a register in class
++CLASS. The value is a register class; perhaps CLASS, or perhaps
++another, smaller class. On many machines, the following definition is
++safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
++
++Sometimes returning a more restrictive class makes better code. For
++example, on the 68000, when X is an integer constant that is in range
++for a 'moveq' instruction, the value of this macro is always
++DATA_REGS as long as CLASS includes the data registers.
++Requiring a data register guarantees that a 'moveq' will be used.
++
++If X is a const_double, by returning NO_REGS
++you can force X into a memory constant. This is useful on
++certain machines where immediate floating values cannot be loaded into
++certain kinds of registers.
++*/
++#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
++
++
++
++/*
++A C expression for the maximum number of consecutive registers
++of class CLASS needed to hold a value of mode MODE.
++
++This is closely related to the macro HARD_REGNO_NREGS. In fact,
++the value of the macro CLASS_MAX_NREGS(CLASS, MODE)
++should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE)
++for all REGNO values in the class CLASS.
++
++This macro helps control the handling of multiple-word values
++in the reload pass.
++*/
++#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \
++ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
++
++
++/*
++ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P
++ in order to support constraints with more than one letter.
++ Only two letters are then used for constant constraints,
++ the letter 'K' and the letter 'I'. The constraint starting with
++ these letters must consist of four characters. The character following
++ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify
++ if the constant is zero or sign extended. The last two characters specify
++ the length in bits of the constant. The base constraint letter 'I' means
++ that this is an negated constant, meaning that actually -VAL should be
++ checked to lie withing the valid range instead of VAL which is used when
++ 'K' is the base constraint letter.
++
++*/
++
++#define CONSTRAINT_LEN(C, STR) \
++ ( ((C) == 'K' || (C) == 'I') ? 4 : \
++ ((C) == 'R') ? 5 : \
++ ((C) == 'N' || (C) == 'O' || \
++ (C) == 'P' || (C) == 'L') ? -1 : \
++ DEFAULT_CONSTRAINT_LEN((C), (STR)) )
++
++#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
++ avr32_const_ok_for_constraint_p(VALUE, C, STR)
++
++/*
++A C expression that defines the machine-dependent operand constraint
++letters that specify particular ranges of const_double values ('G' or 'H').
++
++If C is one of those letters, the expression should check that
++VALUE, an RTX of code const_double, is in the appropriate
++range and return 1 if so, 0 otherwise. If C is not one of those
++letters, the value should be 0 regardless of VALUE.
++
++const_double is used for all floating-point constants and for
++DImode fixed-point constants. A given letter can accept either
++or both kinds of values. It can use GET_MODE to distinguish
++between these kinds.
++*/
++#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
++ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0)
++
++/*
++A C expression that defines the optional machine-dependent constraint
++letters that can be used to segregate specific types of operands, usually
++memory references, for the target machine. Any letter that is not
++elsewhere defined and not matched by REG_CLASS_FROM_LETTER
++may be used. Normally this macro will not be defined.
++
++If it is required for a particular target machine, it should return 1
++if VALUE corresponds to the operand type represented by the
++constraint letter C. If C is not defined as an extra
++constraint, the value returned should be 0 regardless of VALUE.
++
++For example, on the ROMP, load instructions cannot have their output
++in r0 if the memory reference contains a symbolic address. Constraint
++letter 'Q' is defined as representing a memory address that does
++not contain a symbolic address. An alternative is specified with
++a 'Q' constraint on the input and 'r' on the output. The next
++alternative specifies 'm' on the input and a register class that
++does not include r0 on the output.
++*/
++#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
++ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \
++ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \
++ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \
++ && avr32_const_ok_for_constraint_p( \
++ INTVAL(XEXP(XEXP(OP, 0), 1)), \
++ (STR)[1], &(STR)[1]))) : \
++ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \
++ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \
++ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \
++ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \
++ 0)
++
++
++#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \
++ ((C) == 'S') || \
++ ((C) == 'Z') )
++
++
++/* Returns nonzero if op is a function SYMBOL_REF which
++ can be called using an rcall instruction */
++#define SYMBOL_REF_RCALL_FUNCTION_P(op) \
++ ( GET_CODE(op) == SYMBOL_REF \
++ && SYMBOL_REF_FUNCTION_P(op) \
++ && SYMBOL_REF_LOCAL_P(op) \
++ && !SYMBOL_REF_EXTERNAL_P(op) \
++ && !TARGET_HAS_ASM_ADDR_PSEUDOS )
++
++/******************************************************************************
++ * Stack Layout and Calling Conventions
++ *****************************************************************************/
++
++/** Basic Stack Layout **/
++
++/*
++Define this macro if pushing a word onto the stack moves the stack
++pointer to a smaller address.
++
++When we say, ``define this macro if ...,'' it means that the
++compiler checks this macro only with #ifdef so the precise
++definition used does not matter.
++*/
++/* pushm decrece SP: *(--SP) <-- Rx */
++#define STACK_GROWS_DOWNWARD
++
++/*
++This macro defines the operation used when something is pushed
++on the stack. In RTL, a push operation will be
++(set (mem (STACK_PUSH_CODE (reg sp))) ...)
++
++The choices are PRE_DEC, POST_DEC, PRE_INC,
++and POST_INC. Which of these is correct depends on
++the stack direction and on whether the stack pointer points
++to the last item on the stack or whether it points to the
++space for the next item on the stack.
++
++The default is PRE_DEC when STACK_GROWS_DOWNWARD is
++defined, which is almost always right, and PRE_INC otherwise,
++which is often wrong.
++*/
++/* pushm: *(--SP) <-- Rx */
++#define STACK_PUSH_CODE PRE_DEC
++
++/* Define this to nonzero if the nominal address of the stack frame
++ is at the high-address end of the local variables;
++ that is, each additional local variable allocated
++ goes at a more negative offset in the frame. */
++#define FRAME_GROWS_DOWNWARD 1
++
++
++/*
++Offset from the frame pointer to the first local variable slot to be allocated.
++
++If FRAME_GROWS_DOWNWARD, find the next slot's offset by
++subtracting the first slot's length from STARTING_FRAME_OFFSET.
++Otherwise, it is found by adding the length of the first slot to the
++value STARTING_FRAME_OFFSET.
++ (i'm not sure if the above is still correct.. had to change it to get
++ rid of an overfull. --mew 2feb93 )
++*/
++#define STARTING_FRAME_OFFSET 0
++
++/*
++Offset from the stack pointer register to the first location at which
++outgoing arguments are placed. If not specified, the default value of
++zero is used. This is the proper value for most machines.
++
++If ARGS_GROW_DOWNWARD, this is the offset to the location above
++the first location at which outgoing arguments are placed.
++*/
++#define STACK_POINTER_OFFSET 0
++
++/*
++Offset from the argument pointer register to the first argument's
++address. On some machines it may depend on the data type of the
++function.
++
++If ARGS_GROW_DOWNWARD, this is the offset to the location above
++the first argument's address.
++*/
++#define FIRST_PARM_OFFSET(FUNDECL) 0
++
++
++/*
++A C expression whose value is RTL representing the address in a stack
++frame where the pointer to the caller's frame is stored. Assume that
++FRAMEADDR is an RTL expression for the address of the stack frame
++itself.
++
++If you don't define this macro, the default is to return the value
++of FRAMEADDR - that is, the stack frame address is also the
++address of the stack word that points to the previous frame.
++*/
++#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4)
++
++
++/*
++A C expression whose value is RTL representing the value of the return
++address for the frame COUNT steps up from the current frame, after
++the prologue. FRAMEADDR is the frame pointer of the COUNT
++frame, or the frame pointer of the COUNT - 1 frame if
++RETURN_ADDR_IN_PREVIOUS_FRAME is defined.
++
++The value of the expression must always be the correct address when
++COUNT is zero, but may be NULL_RTX if there is not way to
++determine the return address of other frames.
++*/
++#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR)
++
++
++/*
++A C expression whose value is RTL representing the location of the
++incoming return address at the beginning of any function, before the
++prologue. This RTL is either a REG, indicating that the return
++value is saved in 'REG', or a MEM representing a location in
++the stack.
++
++You only need to define this macro if you want to support call frame
++debugging information like that provided by DWARF 2.
++
++If this RTL is a REG, you should also define
++DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO).
++*/
++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
++
++
++
++/*
++A C expression whose value is an integer giving the offset, in bytes,
++from the value of the stack pointer register to the top of the stack
++frame at the beginning of any function, before the prologue. The top of
++the frame is defined to be the value of the stack pointer in the
++previous frame, just before the call instruction.
++
++You only need to define this macro if you want to support call frame
++debugging information like that provided by DWARF 2.
++*/
++#define INCOMING_FRAME_SP_OFFSET 0
++
++
++/** Exception Handling Support **/
++
++/* Use setjump/longjump for exception handling. */
++#define DWARF2_UNWIND_INFO 0
++#define MUST_USE_SJLJ_EXCEPTIONS 1
++
++/*
++A C expression whose value is the Nth register number used for
++data by exception handlers, or INVALID_REGNUM if fewer than
++N registers are usable.
++
++The exception handling library routines communicate with the exception
++handlers via a set of agreed upon registers. Ideally these registers
++should be call-clobbered; it is possible to use call-saved registers,
++but may negatively impact code size. The target must support at least
++2 data registers, but should define 4 if there are enough free registers.
++
++You must define this macro if you want to support call frame exception
++handling like that provided by DWARF 2.
++*/
++/*
++ Use r9-r11
++*/
++#define EH_RETURN_DATA_REGNO(N) \
++ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM)
++
++/*
++A C expression whose value is RTL representing a location in which
++to store a stack adjustment to be applied before function return.
++This is used to unwind the stack to an exception handler's call frame.
++It will be assigned zero on code paths that return normally.
++
++Typically this is a call-clobbered hard register that is otherwise
++untouched by the epilogue, but could also be a stack slot.
++
++You must define this macro if you want to support call frame exception
++handling like that provided by DWARF 2.
++*/
++/*
++ Use r8
++*/
++#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8)
++#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO)
++
++/*
++A C expression whose value is RTL representing a location in which
++to store the address of an exception handler to which we should
++return. It will not be assigned on code paths that return normally.
++
++Typically this is the location in the call frame at which the normal
++return address is stored. For targets that return by popping an
++address off the stack, this might be a memory address just below
++the target call frame rather than inside the current call
++frame. EH_RETURN_STACKADJ_RTX will have already been assigned,
++so it may be used to calculate the location of the target call frame.
++
++Some targets have more complex requirements than storing to an
++address calculable during initial code generation. In that case
++the eh_return instruction pattern should be used instead.
++
++If you want to support call frame exception handling, you must
++define either this macro or the eh_return instruction pattern.
++*/
++/*
++ We define the eh_return instruction pattern, so this isn't needed.
++*/
++/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */
++
++/*
++ This macro chooses the encoding of pointers embedded in the
++ exception handling sections. If at all possible, this should be
++ defined such that the exception handling section will not require
++ dynamic relocations, and so may be read-only.
++
++ code is 0 for data, 1 for code labels, 2 for function
++ pointers. global is true if the symbol may be affected by dynamic
++ relocations. The macro should return a combination of the DW_EH_PE_*
++ defines as found in dwarf2.h.
++
++ If this macro is not defined, pointers will not be encoded but
++ represented directly.
++*/
++#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
++ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
++ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
++ | DW_EH_PE_sdata4)
++
++/* ToDo: The rest of this subsection */
++
++/** Specifying How Stack Checking is Done **/
++/* ToDo: All in this subsection */
++
++/** Registers That Address the Stack Frame **/
++
++/*
++The register number of the stack pointer register, which must also be a
++fixed register according to FIXED_REGISTERS. On most machines,
++the hardware determines which register this is.
++*/
++/* Using r13 as stack pointer. */
++#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13)
++
++/*
++The register number of the frame pointer register, which is used to
++access automatic variables in the stack frame. On some machines, the
++hardware determines which register this is. On other machines, you can
++choose any register you wish for this purpose.
++*/
++/* Use r7 */
++#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7)
++
++
++
++/*
++The register number of the arg pointer register, which is used to access
++the function's argument list. On some machines, this is the same as the
++frame pointer register. On some machines, the hardware determines which
++register this is. On other machines, you can choose any register you
++wish for this purpose. If this is not the same register as the frame
++pointer register, then you must mark it as a fixed register according to
++FIXED_REGISTERS, or arrange to be able to eliminate it (see Section
++10.10.5 [Elimination], page 224).
++*/
++/* Using r5 */
++#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4)
++
++
++/*
++Register numbers used for passing a function's static chain pointer. If
++register windows are used, the register number as seen by the called
++function is STATIC_CHAIN_INCOMING_REGNUM, while the register
++number as seen by the calling function is STATIC_CHAIN_REGNUM. If
++these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need
++not be defined.
++
++The static chain register need not be a fixed register.
++
++If the static chain is passed in memory, these macros should not be
++defined; instead, the next two macros should be defined.
++*/
++/* Using r0 */
++#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0)
++
++
++/** Eliminating Frame Pointer and Arg Pointer **/
++
++/*
++A C expression which is nonzero if a function must have and use a frame
++pointer. This expression is evaluated in the reload pass. If its value is
++nonzero the function will have a frame pointer.
++
++The expression can in principle examine the current function and decide
++according to the facts, but on most machines the constant 0 or the
++constant 1 suffices. Use 0 when the machine allows code to be generated
++with no frame pointer, and doing so saves some time or space. Use 1
++when there is no possible advantage to avoiding a frame pointer.
++
++In certain cases, the compiler does not know how to produce valid code
++without a frame pointer. The compiler recognizes those cases and
++automatically gives the function a frame pointer regardless of what
++FRAME_POINTER_REQUIRED says. You don't need to worry about
++them.
++
++In a function that does not require a frame pointer, the frame pointer
++register can be allocated for ordinary usage, unless you mark it as a
++fixed register. See FIXED_REGISTERS for more information.
++*/
++/* We need the frame pointer when compiling for profiling */
++#define FRAME_POINTER_REQUIRED (current_function_profile)
++
++/*
++A C statement to store in the variable DEPTH_VAR the difference
++between the frame pointer and the stack pointer values immediately after
++the function prologue. The value would be computed from information
++such as the result of get_frame_size () and the tables of
++registers regs_ever_live and call_used_regs.
++
++If ELIMINABLE_REGS is defined, this macro will be not be used and
++need not be defined. Otherwise, it must be defined even if
++FRAME_POINTER_REQUIRED is defined to always be true; in that
++case, you may set DEPTH_VAR to anything.
++*/
++#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size())
++
++/*
++If defined, this macro specifies a table of register pairs used to
++eliminate unneeded registers that point into the stack frame. If it is not
++defined, the only elimination attempted by the compiler is to replace
++references to the frame pointer with references to the stack pointer.
++
++The definition of this macro is a list of structure initializations, each
++of which specifies an original and replacement register.
++
++On some machines, the position of the argument pointer is not known until
++the compilation is completed. In such a case, a separate hard register
++must be used for the argument pointer. This register can be eliminated by
++replacing it with either the frame pointer or the argument pointer,
++depending on whether or not the frame pointer has been eliminated.
++
++In this case, you might specify:
++ #define ELIMINABLE_REGS \
++ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
++
++Note that the elimination of the argument pointer with the stack pointer is
++specified first since that is the preferred elimination.
++*/
++#define ELIMINABLE_REGS \
++{ \
++ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
++ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
++ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \
++}
++
++/*
++A C expression that returns nonzero if the compiler is allowed to try
++to replace register number FROM with register number
++TO. This macro need only be defined if ELIMINABLE_REGS
++is defined, and will usually be the constant 1, since most of the cases
++preventing register elimination are things that the compiler already
++knows about.
++*/
++#define CAN_ELIMINATE(FROM, TO) 1
++
++/*
++This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It
++specifies the initial difference between the specified pair of
++registers. This macro must be defined if ELIMINABLE_REGS is
++defined.
++*/
++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
++ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO))
++
++/** Passing Function Arguments on the Stack **/
++
++
++/*
++A C expression. If nonzero, push insns will be used to pass
++outgoing arguments.
++If the target machine does not have a push instruction, set it to zero.
++That directs GCC to use an alternate strategy: to
++allocate the entire argument block and then store the arguments into
++it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too.
++*/
++#define PUSH_ARGS 1
++
++
++/*
++A C expression that is the number of bytes actually pushed onto the
++stack when an instruction attempts to push NPUSHED bytes.
++
++On some machines, the definition
++
++ #define PUSH_ROUNDING(BYTES) (BYTES)
++
++will suffice. But on other machines, instructions that appear
++to push one byte actually push two bytes in an attempt to maintain
++alignment. Then the definition should be
++
++ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
++*/
++/* Push 4 bytes at the time. */
++#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
++
++/*
++A C expression. If nonzero, the maximum amount of space required for
++outgoing arguments will be computed and placed into the variable
++current_function_outgoing_args_size. No space will be pushed
++onto the stack for each call; instead, the function prologue should
++increase the stack frame size by this amount.
++
++Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.
++*/
++#define ACCUMULATE_OUTGOING_ARGS 0
++
++
++
++
++/*
++A C expression that should indicate the number of bytes of its own
++arguments that a function pops on returning, or 0 if the
++function pops no arguments and the caller must therefore pop them all
++after the function returns.
++
++FUNDECL is a C variable whose value is a tree node that describes
++the function in question. Normally it is a node of type
++FUNCTION_DECL that describes the declaration of the function.
++From this you can obtain the DECL_ATTRIBUTES of the function.
++
++FUNTYPE is a C variable whose value is a tree node that
++describes the function in question. Normally it is a node of type
++FUNCTION_TYPE that describes the data type of the function.
++From this it is possible to obtain the data types of the value and
++arguments (if known).
++
++When a call to a library function is being considered, FUNDECL
++will contain an identifier node for the library function. Thus, if
++you need to distinguish among various library functions, you can do so
++by their names. Note that ``library function'' in this context means
++a function used to perform arithmetic, whose name is known specially
++in the compiler and was not mentioned in the C code being compiled.
++
++STACK_SIZE is the number of bytes of arguments passed on the
++stack. If a variable number of bytes is passed, it is zero, and
++argument popping will always be the responsibility of the calling function.
++
++On the VAX, all functions always pop their arguments, so the definition
++of this macro is STACK_SIZE. On the 68000, using the standard
++calling convention, no functions pop their arguments, so the value of
++the macro is always 0 in this case. But an alternative calling
++convention is available in which functions that take a fixed number of
++arguments pop them but other functions (such as printf) pop
++nothing (the caller pops all). When this convention is in use,
++FUNTYPE is examined to determine whether a function takes a fixed
++number of arguments.
++*/
++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
++
++
++/*Return true if this function can we use a single return instruction*/
++#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND)
++
++/*
++A C expression that should indicate the number of bytes a call sequence
++pops off the stack. It is added to the value of RETURN_POPS_ARGS
++when compiling a function call.
++
++CUM is the variable in which all arguments to the called function
++have been accumulated.
++
++On certain architectures, such as the SH5, a call trampoline is used
++that pops certain registers off the stack, depending on the arguments
++that have been passed to the function. Since this is a property of the
++call site, not of the called function, RETURN_POPS_ARGS is not
++appropriate.
++*/
++#define CALL_POPS_ARGS(CUM) 0
++
++/* Passing Arguments in Registers */
++
++/*
++A C expression that controls whether a function argument is passed
++in a register, and which register.
++
++The arguments are CUM, which summarizes all the previous
++arguments; MODE, the machine mode of the argument; TYPE,
++the data type of the argument as a tree node or 0 if that is not known
++(which happens for C support library functions); and NAMED,
++which is 1 for an ordinary argument and 0 for nameless arguments that
++correspond to '...' in the called function's prototype.
++TYPE can be an incomplete type if a syntax error has previously
++occurred.
++
++The value of the expression is usually either a reg RTX for the
++hard register in which to pass the argument, or zero to pass the
++argument on the stack.
++
++For machines like the VAX and 68000, where normally all arguments are
++pushed, zero suffices as a definition.
++
++The value of the expression can also be a parallel RTX. This is
++used when an argument is passed in multiple locations. The mode of the
++of the parallel should be the mode of the entire argument. The
++parallel holds any number of expr_list pairs; each one
++describes where part of the argument is passed. In each
++expr_list the first operand must be a reg RTX for the hard
++register in which to pass this part of the argument, and the mode of the
++register RTX indicates how large this part of the argument is. The
++second operand of the expr_list is a const_int which gives
++the offset in bytes into the entire argument of where this part starts.
++As a special exception the first expr_list in the parallel
++RTX may have a first operand of zero. This indicates that the entire
++argument is also stored on the stack.
++
++The last time this macro is called, it is called with MODE == VOIDmode,
++and its result is passed to the call or call_value
++pattern as operands 2 and 3 respectively.
++
++The usual way to make the ISO library 'stdarg.h' work on a machine
++where some arguments are usually passed in registers, is to cause
++nameless arguments to be passed on the stack instead. This is done
++by making FUNCTION_ARG return 0 whenever NAMED is 0.
++
++You may use the macro MUST_PASS_IN_STACK (MODE, TYPE)
++in the definition of this macro to determine if this argument is of a
++type that must be passed in the stack. If REG_PARM_STACK_SPACE
++is not defined and FUNCTION_ARG returns nonzero for such an
++argument, the compiler will abort. If REG_PARM_STACK_SPACE is
++defined, the argument will be computed in the stack and then loaded into
++a register. */
++
++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
++ avr32_function_arg(&(CUM), MODE, TYPE, NAMED)
++
++
++
++
++/*
++A C type for declaring a variable that is used as the first argument of
++FUNCTION_ARG and other related values. For some target machines,
++the type int suffices and can hold the number of bytes of
++argument so far.
++
++There is no need to record in CUMULATIVE_ARGS anything about the
++arguments that have been passed on the stack. The compiler has other
++variables to keep track of that. For target machines on which all
++arguments are passed on the stack, there is no need to store anything in
++CUMULATIVE_ARGS; however, the data structure must exist and
++should not be empty, so use int.
++*/
++typedef struct avr32_args
++{
++ /* Index representing the argument register the current function argument
++ will occupy */
++ int index;
++ /* A mask with bits representing the argument registers: if a bit is set
++ then this register is used for an arguemnt */
++ int used_index;
++ /* TRUE if this function has anonymous arguments */
++ int uses_anonymous_args;
++ /* The size in bytes of the named arguments pushed on the stack */
++ int stack_pushed_args_size;
++ /* Set to true if this function needs a Return Value Pointer */
++ int use_rvp;
++
++} CUMULATIVE_ARGS;
++
++
++#define FIRST_CUM_REG_INDEX 0
++#define LAST_CUM_REG_INDEX 4
++#define GET_REG_INDEX(CUM) ((CUM)->index)
++#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX));
++#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX)))
++#define SET_USED_INDEX(CUM, INDEX) \
++ do \
++ { \
++ if (INDEX >= 0) \
++ (CUM)->used_index |= (1 << (INDEX)); \
++ } \
++ while (0)
++#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0)
++
++
++/*
++ A C statement (sans semicolon) for initializing the variable cum for the
++ state at the beginning of the argument list. The variable has type
++ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of
++ the function which will receive the args, or 0 if the args are to a compiler
++ support library function. For direct calls that are not libcalls, FNDECL
++ contain the declaration node of the function. FNDECL is also set when
++ INIT_CUMULATIVE_ARGS is used to find arguments for the function being
++ compiled. N_NAMED_ARGS is set to the number of named arguments, including a
++ structure return address if it is passed as a parameter, when making a call.
++ When processing incoming arguments, N_NAMED_ARGS is set to -1.
++
++ When processing a call to a compiler support library function, LIBNAME
++ identifies which one. It is a symbol_ref rtx which contains the name of the
++ function, as a string. LIBNAME is 0 when an ordinary C function call is
++ being processed. Thus, each time this macro is called, either LIBNAME or
++ FNTYPE is nonzero, but never both of them at once.
++*/
++#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
++ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL)
++
++
++/*
++A C statement (sans semicolon) to update the summarizer variable
++CUM to advance past an argument in the argument list. The
++values MODE, TYPE and NAMED describe that argument.
++Once this is done, the variable CUM is suitable for analyzing
++the following argument with FUNCTION_ARG, etc.
++
++This macro need not do anything if the argument in question was passed
++on the stack. The compiler knows how to track the amount of stack space
++used for arguments without any special help.
++*/
++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
++ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED)
++
++/*
++If defined, a C expression which determines whether, and in which direction,
++to pad out an argument with extra space. The value should be of type
++enum direction: either 'upward' to pad above the argument,
++'downward' to pad below, or 'none' to inhibit padding.
++
++The amount of padding is always just enough to reach the next
++multiple of FUNCTION_ARG_BOUNDARY; this macro does not control
++it.
++
++This macro has a default definition which is right for most systems.
++For little-endian machines, the default is to pad upward. For
++big-endian machines, the default is to pad downward for an argument of
++constant size shorter than an int, and upward otherwise.
++*/
++#define FUNCTION_ARG_PADDING(MODE, TYPE) \
++ avr32_function_arg_padding(MODE, TYPE)
++
++/*
++ Specify padding for the last element of a block move between registers
++ and memory. First is nonzero if this is the only element. Defining
++ this macro allows better control of register function parameters on
++ big-endian machines, without using PARALLEL rtl. In particular,
++ MUST_PASS_IN_STACK need not test padding and mode of types in registers,
++ as there is no longer a "wrong" part of a register; For example, a three
++ byte aggregate may be passed in the high part of a register if so required.
++*/
++#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
++ avr32_function_arg_padding(MODE, TYPE)
++
++/*
++If defined, a C expression which determines whether the default
++implementation of va_arg will attempt to pad down before reading the
++next argument, if that argument is smaller than its aligned space as
++controlled by PARM_BOUNDARY. If this macro is not defined, all such
++arguments are padded down if BYTES_BIG_ENDIAN is true.
++*/
++#define PAD_VARARGS_DOWN \
++ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
++
++
++/*
++A C expression that is nonzero if REGNO is the number of a hard
++register in which function arguments are sometimes passed. This does
++not include implicit arguments such as the static chain and
++the structure-value address. On many machines, no registers can be
++used for this purpose since all function arguments are pushed on the
++stack.
++*/
++/*
++ Use r8 - r12 for function arguments.
++*/
++#define FUNCTION_ARG_REGNO_P(REGNO) \
++ (REGNO >= 3 && REGNO <= 7)
++
++/* Number of registers used for passing function arguments */
++#define NUM_ARG_REGS 5
++
++/*
++If defined, the order in which arguments are loaded into their
++respective argument registers is reversed so that the last
++argument is loaded first. This macro only affects arguments
++passed in registers.
++*/
++/* #define LOAD_ARGS_REVERSED */
++
++/** How Scalar Function Values Are Returned **/
++
++/* AVR32 is using r12 as return register. */
++#define RET_REGISTER (15 - 12)
++
++
++/*
++A C expression to create an RTX representing the place where a library
++function returns a value of mode MODE. If the precise function
++being called is known, FUNC is a tree node
++(FUNCTION_DECL) for it; otherwise, func is a null
++pointer. This makes it possible to use a different value-returning
++convention for specific functions when all their calls are
++known.
++
++Note that "library function" in this context means a compiler
++support routine, used to perform arithmetic, whose name is known
++specially by the compiler and was not mentioned in the C code being
++compiled.
++
++The definition of LIBRARY_VALUE need not be concerned aggregate
++data types, because none of the library functions returns such types.
++*/
++#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE)
++
++/*
++A C expression that is nonzero if REGNO is the number of a hard
++register in which the values of called function may come back.
++
++A register whose use for returning values is limited to serving as the
++second of a pair (for a value of type double, say) need not be
++recognized by this macro. So for most machines, this definition
++suffices:
++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
++
++If the machine has register windows, so that the caller and the called
++function use different registers for the return value, this macro
++should recognize only the caller's register numbers.
++*/
++/*
++ When returning a value of mode DImode, r11:r10 is used, else r12 is used.
++*/
++#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \
++ || (REGNO) == INTERNAL_REGNUM(11))
++
++
++/** How Large Values Are Returned **/
++
++
++/*
++Define this macro to be 1 if all structure and union return values must be
++in memory. Since this results in slower code, this should be defined
++only if needed for compatibility with other compilers or with an ABI.
++If you define this macro to be 0, then the conventions used for structure
++and union return values are decided by the RETURN_IN_MEMORY macro.
++
++If not defined, this defaults to the value 1.
++*/
++#define DEFAULT_PCC_STRUCT_RETURN 0
++
++
++
++
++/** Generating Code for Profiling **/
++
++/*
++A C statement or compound statement to output to FILE some
++assembler code to call the profiling subroutine mcount.
++
++The details of how mcount expects to be called are determined by
++your operating system environment, not by GCC. To figure them out,
++compile a small program for profiling using the system's installed C
++compiler and look at the assembler code that results.
++
++Older implementations of mcount expect the address of a counter
++variable to be loaded into some register. The name of this variable is
++'LP' followed by the number LABELNO, so you would generate
++the name using 'LP%d' in a fprintf.
++*/
++/* ToDo: fixme */
++#ifndef FUNCTION_PROFILER
++#define FUNCTION_PROFILER(FILE, LABELNO) \
++ fprintf((FILE), "/* profiler %d */", (LABELNO))
++#endif
++
++
++/*****************************************************************************
++ * Trampolines for Nested Functions *
++ *****************************************************************************/
++
++/*
++A C statement to output, on the stream FILE, assembler code for a
++block of data that contains the constant parts of a trampoline. This
++code should not include a label - the label is taken care of
++automatically.
++
++If you do not define this macro, it means no template is needed
++for the target. Do not define this macro on systems where the block move
++code to copy the trampoline into place would be larger than the code
++to generate it on the spot.
++*/
++/* ToDo: correct? */
++#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE);
++
++
++/*
++A C expression for the size in bytes of the trampoline, as an integer.
++*/
++/* ToDo: fixme */
++#define TRAMPOLINE_SIZE 0x0C
++
++/*
++Alignment required for trampolines, in bits.
++
++If you don't define this macro, the value of BIGGEST_ALIGNMENT
++is used for aligning trampolines.
++*/
++#define TRAMPOLINE_ALIGNMENT 16
++
++/*
++A C statement to initialize the variable parts of a trampoline.
++ADDR is an RTX for the address of the trampoline; FNADDR is
++an RTX for the address of the nested function; STATIC_CHAIN is an
++RTX for the static chain value that should be passed to the function
++when it is called.
++*/
++#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
++ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN)
++
++
++/******************************************************************************
++ * Implicit Calls to Library Routines
++ *****************************************************************************/
++
++/* Tail calling. */
++
++/* A C expression that evaluates to true if it is ok to perform a sibling
++ call to DECL. */
++#define FUNCTION_OK_FOR_SIBCALL(DECL) 0
++
++#define OVERRIDE_OPTIONS avr32_override_options ()
++
++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE)
++
++/******************************************************************************
++ * Addressing Modes
++ *****************************************************************************/
++
++/*
++A C expression that is nonzero if the machine supports pre-increment,
++pre-decrement, post-increment, or post-decrement addressing respectively.
++*/
++/*
++ AVR32 supports Rp++ and --Rp
++*/
++#define HAVE_PRE_INCREMENT 0
++#define HAVE_PRE_DECREMENT 1
++#define HAVE_POST_INCREMENT 1
++#define HAVE_POST_DECREMENT 0
++
++/*
++A C expression that is nonzero if the machine supports pre- or
++post-address side-effect generation involving constants other than
++the size of the memory operand.
++*/
++#define HAVE_PRE_MODIFY_DISP 0
++#define HAVE_POST_MODIFY_DISP 0
++
++/*
++A C expression that is nonzero if the machine supports pre- or
++post-address side-effect generation involving a register displacement.
++*/
++#define HAVE_PRE_MODIFY_REG 0
++#define HAVE_POST_MODIFY_REG 0
++
++/*
++A C expression that is 1 if the RTX X is a constant which
++is a valid address. On most machines, this can be defined as
++CONSTANT_P (X), but a few machines are more restrictive
++in which constant addresses are supported.
++
++CONSTANT_P accepts integer-values expressions whose values are
++not explicitly known, such as symbol_ref, label_ref, and
++high expressions and const arithmetic expressions, in
++addition to const_int and const_double expressions.
++*/
++#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
++
++/*
++A number, the maximum number of registers that can appear in a valid
++memory address. Note that it is up to you to specify a value equal to
++the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever
++accept.
++*/
++#define MAX_REGS_PER_ADDRESS 2
++
++/*
++A C compound statement with a conditional goto LABEL;
++executed if X (an RTX) is a legitimate memory address on the
++target machine for a memory operand of mode MODE.
++
++It usually pays to define several simpler macros to serve as
++subroutines for this one. Otherwise it may be too complicated to
++understand.
++
++This macro must exist in two variants: a strict variant and a
++non-strict one. The strict variant is used in the reload pass. It
++must be defined so that any pseudo-register that has not been
++allocated a hard register is considered a memory reference. In
++contexts where some kind of register is required, a pseudo-register
++with no hard register must be rejected.
++
++The non-strict variant is used in other passes. It must be defined to
++accept all pseudo-registers in every context where some kind of
++register is required.
++
++Compiler source files that want to use the strict variant of this
++macro define the macro REG_OK_STRICT. You should use an
++#ifdef REG_OK_STRICT conditional to define the strict variant
++in that case and the non-strict variant otherwise.
++
++Subroutines to check for acceptable registers for various purposes (one
++for base registers, one for index registers, and so on) are typically
++among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS.
++Then only these subroutine macros need have two variants; the higher
++levels of macros may be the same whether strict or not.
++
++Normally, constant addresses which are the sum of a symbol_ref
++and an integer are stored inside a const RTX to mark them as
++constant. Therefore, there is no need to recognize such sums
++specifically as legitimate addresses. Normally you would simply
++recognize any const as legitimate.
++
++Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant
++sums that are not marked with const. It assumes that a naked
++plus indicates indexing. If so, then you must reject such
++naked constant sums as illegitimate addresses, so that none of them will
++be given to PRINT_OPERAND_ADDRESS.
++
++On some machines, whether a symbolic address is legitimate depends on
++the section that the address refers to. On these machines, define the
++macro ENCODE_SECTION_INFO to store the information into the
++symbol_ref, and then check for it here. When you see a
++const, you will have to look inside it to find the
++symbol_ref in order to determine the section.
++
++The best way to modify the name string is by adding text to the
++beginning, with suitable punctuation to prevent any ambiguity. Allocate
++the new name in saveable_obstack. You will have to modify
++ASM_OUTPUT_LABELREF to remove and decode the added text and
++output the name accordingly, and define STRIP_NAME_ENCODING to
++access the original name string.
++
++You can check the information stored here into the symbol_ref in
++the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and
++PRINT_OPERAND_ADDRESS.
++*/
++#ifdef REG_OK_STRICT
++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
++ do \
++ { \
++ if (avr32_legitimate_address(MODE, X, 1)) \
++ goto LABEL; \
++ } \
++ while (0)
++#else
++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
++ do \
++ { \
++ if (avr32_legitimate_address(MODE, X, 0)) \
++ goto LABEL; \
++ } \
++ while (0)
++#endif
++
++
++
++/*
++A C compound statement that attempts to replace X with a valid
++memory address for an operand of mode MODE. win will be a
++C statement label elsewhere in the code; the macro definition may use
++
++ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
++
++to avoid further processing if the address has become legitimate.
++
++X will always be the result of a call to break_out_memory_refs,
++and OLDX will be the operand that was given to that function to produce
++X.
++
++The code generated by this macro should not alter the substructure of
++X. If it transforms X into a more legitimate form, it
++should assign X (which will always be a C variable) a new value.
++
++It is not necessary for this macro to come up with a legitimate
++address. The compiler has standard ways of doing so in all cases. In
++fact, it is safe for this macro to do nothing. But often a
++machine-dependent strategy can generate better code.
++*/
++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
++ do \
++ { \
++ if (GET_CODE(X) == PLUS \
++ && GET_CODE(XEXP(X, 0)) == REG \
++ && GET_CODE(XEXP(X, 1)) == CONST_INT \
++ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \
++ 'K', "Ks16")) \
++ { \
++ rtx index = force_reg(SImode, XEXP(X, 1)); \
++ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \
++ } \
++ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \
++ } \
++ while(0)
++
++
++/*
++A C statement or compound statement with a conditional
++goto LABEL; executed if memory address X (an RTX) can have
++different meanings depending on the machine mode of the memory
++reference it is used for or if the address is valid for some modes
++but not others.
++
++Autoincrement and autodecrement addresses typically have mode-dependent
++effects because the amount of the increment or decrement is the size
++of the operand being addressed. Some machines have other mode-dependent
++addresses. Many RISC machines have no mode-dependent addresses.
++
++You may assume that ADDR is a valid address for the machine.
++*/
++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
++ do \
++ { \
++ if (GET_CODE (ADDR) == POST_INC \
++ || GET_CODE (ADDR) == PRE_DEC) \
++ goto LABEL; \
++ } \
++ while (0)
++
++/*
++A C expression that is nonzero if X is a legitimate constant for
++an immediate operand on the target machine. You can assume that
++X satisfies CONSTANT_P, so you need not check this. In fact,
++'1' is a suitable definition for this macro on machines where
++anything CONSTANT_P is valid.
++*/
++#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X)
++
++
++/******************************************************************************
++ * Condition Code Status
++ *****************************************************************************/
++
++/*
++C code for a data type which is used for declaring the mdep
++component of cc_status. It defaults to int.
++
++This macro is not used on machines that do not use cc0.
++*/
++
++typedef struct
++{
++ int flags;
++ rtx value;
++ int fpflags;
++ rtx fpvalue;
++ int cond_exec_cmp_clobbered;
++} avr32_status_reg;
++
++
++#define CC_STATUS_MDEP avr32_status_reg
++
++/*
++A C expression to initialize the mdep field to "empty".
++The default definition does nothing, since most machines don't use
++the field anyway. If you want to use the field, you should probably
++define this macro to initialize it.
++
++This macro is not used on machines that do not use cc0.
++*/
++
++#define CC_STATUS_MDEP_INIT \
++ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0)
++
++#define FPCC_STATUS_INIT \
++ (cc_status.mdep.fpflags = CC_NONE , cc_status.mdep.fpvalue = 0)
++
++/*
++A C compound statement to set the components of cc_status
++appropriately for an insn INSN whose body is EXP. It is
++this macro's responsibility to recognize insns that set the condition
++code as a byproduct of other activity as well as those that explicitly
++set (cc0).
++
++This macro is not used on machines that do not use cc0.
++
++If there are insns that do not set the condition code but do alter
++other machine registers, this macro must check to see whether they
++invalidate the expressions that the condition code is recorded as
++reflecting. For example, on the 68000, insns that store in address
++registers do not set the condition code, which means that usually
++NOTICE_UPDATE_CC can leave cc_status unaltered for such
++insns. But suppose that the previous insn set the condition code
++based on location 'a4@@(102)' and the current insn stores a new
++value in 'a4'. Although the condition code is not changed by
++this, it will no longer be true that it reflects the contents of
++'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter
++cc_status in this case to say that nothing is known about the
++condition code value.
++
++The definition of NOTICE_UPDATE_CC must be prepared to deal
++with the results of peephole optimization: insns whose patterns are
++parallel RTXs containing various reg, mem or
++constants which are just the operands. The RTL structure of these
++insns is not sufficient to indicate what the insns actually do. What
++NOTICE_UPDATE_CC should do when it sees one is just to run
++CC_STATUS_INIT.
++
++A possible definition of NOTICE_UPDATE_CC is to call a function
++that looks at an attribute (see Insn Attributes) named, for example,
++'cc'. This avoids having detailed information about patterns in
++two places, the 'md' file and in NOTICE_UPDATE_CC.
++*/
++
++#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN)
++
++
++
++
++/******************************************************************************
++ * Describing Relative Costs of Operations
++ *****************************************************************************/
++
++
++
++/*
++A C expression for the cost of moving data of mode MODE from a
++register in class FROM to one in class TO. The classes are
++expressed using the enumeration values such as GENERAL_REGS. A
++value of 2 is the default; other values are interpreted relative to
++that.
++
++It is not required that the cost always equal 2 when FROM is the
++same as TO; on some machines it is expensive to move between
++registers if they are not general registers.
++
++If reload sees an insn consisting of a single set between two
++hard registers, and if REGISTER_MOVE_COST applied to their
++classes returns a value of 2, reload does not check to ensure that the
++constraints of the insn are met. Setting a cost of other than 2 will
++allow reload to verify that the constraints are met. You should do this
++if the movm pattern's constraints do not allow such copying.
++*/
++#define REGISTER_MOVE_COST(MODE, FROM, TO) \
++ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \
++ (GET_MODE_SIZE(MODE) <= 8) ? 3: \
++ 4)
++
++/*
++A C expression for the cost of moving data of mode MODE between a
++register of class CLASS and memory; IN is zero if the value
++is to be written to memory, nonzero if it is to be read in. This cost
++is relative to those in REGISTER_MOVE_COST. If moving between
++registers and memory is more expensive than between two registers, you
++should define this macro to express the relative cost.
++
++If you do not define this macro, GCC uses a default cost of 4 plus
++the cost of copying via a secondary reload register, if one is
++needed. If your machine requires a secondary reload register to copy
++between memory and a register of CLASS but the reload mechanism is
++more complex than copying via an intermediate, define this macro to
++reflect the actual cost of the move.
++
++GCC defines the function memory_move_secondary_cost if
++secondary reloads are needed. It computes the costs due to copying via
++a secondary register. If your machine copies from memory using a
++secondary register in the conventional way but the default base value of
++4 is not correct for your machine, define this macro to add some other
++value to the result of that function. The arguments to that function
++are the same as to this macro.
++*/
++/*
++ Memory moves are costly
++*/
++#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
++ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \
++ (GET_MODE_SIZE(MODE) > 8) ? 6 : \
++ 3) \
++ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3)))
++
++/*
++A C expression for the cost of a branch instruction. A value of 1 is
++the default; other values are interpreted relative to that.
++*/
++ /* Try to use conditionals as much as possible */
++#define BRANCH_COST (TARGET_BRANCH_PRED ? 3 : 4)
++
++/*A C expression for the maximum number of instructions to execute via conditional
++ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default
++ if the machine does not use cc0, and 1 if it does use cc0.*/
++#define MAX_CONDITIONAL_EXECUTE 4
++
++/*
++Define this macro as a C expression which is nonzero if accessing less
++than a word of memory (i.e.: a char or a short) is no
++faster than accessing a word of memory, i.e., if such access
++require more than one instruction or if there is no difference in cost
++between byte and (aligned) word loads.
++
++When this macro is not defined, the compiler will access a field by
++finding the smallest containing object; when it is defined, a fullword
++load will be used if alignment permits. Unless bytes accesses are
++faster than word accesses, using word accesses is preferable since it
++may eliminate subsequent memory access if subsequent accesses occur to
++other fields in the same word of the structure, but to different bytes.
++*/
++#define SLOW_BYTE_ACCESS 1
++
++
++/*
++Define this macro if it is as good or better to call a constant
++function address than to call an address kept in a register.
++*/
++#define NO_FUNCTION_CSE
++
++
++/******************************************************************************
++ * Adjusting the Instruction Scheduler
++ *****************************************************************************/
++
++/*****************************************************************************
++ * Dividing the Output into Sections (Texts, Data, ...) *
++ *****************************************************************************/
++
++/*
++A C expression whose value is a string, including spacing, containing the
++assembler operation that should precede instructions and read-only data.
++Normally "\t.text" is right.
++*/
++#define TEXT_SECTION_ASM_OP "\t.text"
++/*
++A C statement that switches to the default section containing instructions.
++Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP
++is enough. The MIPS port uses this to sort all functions after all data
++declarations.
++*/
++/* #define TEXT_SECTION */
++
++/*
++A C expression whose value is a string, including spacing, containing the
++assembler operation to identify the following data as writable initialized
++data. Normally "\t.data" is right.
++*/
++#define DATA_SECTION_ASM_OP "\t.data"
++
++/*
++If defined, a C expression whose value is a string, including spacing,
++containing the assembler operation to identify the following data as
++shared data. If not defined, DATA_SECTION_ASM_OP will be used.
++*/
++
++/*
++A C expression whose value is a string, including spacing, containing
++the assembler operation to identify the following data as read-only
++initialized data.
++*/
++#undef READONLY_DATA_SECTION_ASM_OP
++#define READONLY_DATA_SECTION_ASM_OP \
++ ((TARGET_USE_RODATA_SECTION) ? \
++ "\t.section\t.rodata" : \
++ TEXT_SECTION_ASM_OP )
++
++
++/*
++If defined, a C expression whose value is a string, including spacing,
++containing the assembler operation to identify the following data as
++uninitialized global data. If not defined, and neither
++ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined,
++uninitialized global data will be output in the data section if
++-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be
++used.
++*/
++#define BSS_SECTION_ASM_OP "\t.section\t.bss"
++
++/*
++If defined, a C expression whose value is a string, including spacing,
++containing the assembler operation to identify the following data as
++uninitialized global shared data. If not defined, and
++BSS_SECTION_ASM_OP is, the latter will be used.
++*/
++/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/
++/*
++If defined, a C expression whose value is a string, including spacing,
++containing the assembler operation to identify the following data as
++initialization code. If not defined, GCC will assume such a section does
++not exist.
++*/
++#undef INIT_SECTION_ASM_OP
++#define INIT_SECTION_ASM_OP "\t.section\t.init"
++
++/*
++If defined, a C expression whose value is a string, including spacing,
++containing the assembler operation to identify the following data as
++finalization code. If not defined, GCC will assume such a section does
++not exist.
++*/
++#undef FINI_SECTION_ASM_OP
++#define FINI_SECTION_ASM_OP "\t.section\t.fini"
++
++/*
++If defined, an ASM statement that switches to a different section
++via SECTION_OP, calls FUNCTION, and switches back to
++the text section. This is used in crtstuff.c if
++INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls
++to initialization and finalization functions from the init and fini
++sections. By default, this macro uses a simple function call. Some
++ports need hand-crafted assembly code to avoid dependencies on
++registers initialized in the function prologue or to ensure that
++constant pools don't end up too far way in the text section.
++*/
++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
++ asm ( SECTION_OP "\n" \
++ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \
++ TEXT_SECTION_ASM_OP);
++
++
++/*
++Define this macro to be an expression with a nonzero value if jump
++tables (for tablejump insns) should be output in the text
++section, along with the assembler instructions. Otherwise, the
++readonly data section is used.
++
++This macro is irrelevant if there is no separate readonly data section.
++*/
++/* Put jump tables in text section if we have caches. Otherwise assume that
++ loading data from code memory is slow. */
++#define JUMP_TABLES_IN_TEXT_SECTION \
++ (TARGET_CACHES ? 1 : 0)
++
++
++/******************************************************************************
++ * Position Independent Code (PIC)
++ *****************************************************************************/
++
++#ifndef AVR32_ALWAYS_PIC
++#define AVR32_ALWAYS_PIC 0
++#endif
++
++/* GOT is set to r6 */
++#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6)
++
++/*
++A C expression that is nonzero if X is a legitimate immediate
++operand on the target machine when generating position independent code.
++You can assume that X satisfies CONSTANT_P, so you need not
++check this. You can also assume flag_pic is true, so you need not
++check it either. You need not define this macro if all constants
++(including SYMBOL_REF) can be immediate operands when generating
++position independent code.
++*/
++/* We can't directly access anything that contains a symbol,
++ nor can we indirect via the constant pool. */
++#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X)
++
++
++/* We need to know when we are making a constant pool; this determines
++ whether data needs to be in the GOT or can be referenced via a GOT
++ offset. */
++extern int making_const_table;
++
++/******************************************************************************
++ * Defining the Output Assembler Language
++ *****************************************************************************/
++
++
++/*
++A C string constant describing how to begin a comment in the target
++assembler language. The compiler assumes that the comment will end at
++the end of the line.
++*/
++#define ASM_COMMENT_START "# "
++
++/*
++A C string constant for text to be output before each asm
++statement or group of consecutive ones. Normally this is
++"#APP", which is a comment that has no effect on most
++assemblers but tells the GNU assembler that it must check the lines
++that follow for all valid assembler constructs.
++*/
++#undef ASM_APP_ON
++#define ASM_APP_ON "#APP\n"
++
++/*
++A C string constant for text to be output after each asm
++statement or group of consecutive ones. Normally this is
++"#NO_APP", which tells the GNU assembler to resume making the
++time-saving assumptions that are valid for ordinary compiler output.
++*/
++#undef ASM_APP_OFF
++#define ASM_APP_OFF "#NO_APP\n"
++
++
++
++#define FILE_ASM_OP "\t.file\n"
++#define IDENT_ASM_OP "\t.ident\t"
++#define SET_ASM_OP "\t.set\t"
++
++
++/*
++ * Output assembly directives to switch to section name. The section
++ * should have attributes as specified by flags, which is a bit mask
++ * of the SECTION_* flags defined in 'output.h'. If align is nonzero,
++ * it contains an alignment in bytes to be used for the section,
++ * otherwise some target default should be used. Only targets that
++ * must specify an alignment within the section directive need pay
++ * attention to align -- we will still use ASM_OUTPUT_ALIGN.
++ *
++ * NOTE: This one must not be moved to avr32.c
++ */
++#undef TARGET_ASM_NAMED_SECTION
++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
++
++
++/*
++You may define this macro as a C expression. You should define the
++expression to have a nonzero value if GCC should output the constant
++pool for a function before the code for the function, or a zero value if
++GCC should output the constant pool after the function. If you do
++not define this macro, the usual case, GCC will output the constant
++pool before the function.
++*/
++#define CONSTANT_POOL_BEFORE_FUNCTION 0
++
++
++/*
++Define this macro as a C expression which is nonzero if the constant
++EXP, of type tree, should be output after the code for a
++function. The compiler will normally output all constants before the
++function; you need not define this macro if this is OK.
++*/
++#define CONSTANT_AFTER_FUNCTION_P(EXP) 1
++
++
++/*
++Define this macro as a C expression which is nonzero if C is
++as a logical line separator by the assembler. STR points to the
++position in the string where C was found; this can be used if a
++line separator uses multiple characters.
++
++If you do not define this macro, the default is that only
++the character ';' is treated as a logical line separator.
++*/
++#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) (((C) == '\n') || ((C) == ';'))
++
++
++/** Output of Uninitialized Variables **/
++
++/*
++A C statement (sans semicolon) to output to the stdio stream
++STREAM the assembler definition of a common-label named
++NAME whose size is SIZE bytes. The variable ROUNDED
++is the size rounded up to whatever alignment the caller wants.
++
++Use the expression assemble_name(STREAM, NAME) to
++output the name itself; before and after that, output the additional
++assembler syntax for defining the name, and a newline.
++
++This macro controls how the assembler definitions of uninitialized
++common global variables are output.
++*/
++/*
++#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
++ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED)
++*/
++
++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
++ do \
++ { \
++ fputs ("\t.comm ", (FILE)); \
++ assemble_name ((FILE), (NAME)); \
++ fprintf ((FILE), ",%d\n", (SIZE)); \
++ } \
++ while (0)
++
++/*
++ * Like ASM_OUTPUT_BSS except takes the required alignment as a
++ * separate, explicit argument. If you define this macro, it is used
++ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in
++ * handling the required alignment of the variable. The alignment is
++ * specified as the number of bits.
++ *
++ * Try to use function asm_output_aligned_bss defined in file varasm.c
++ * when defining this macro.
++ */
++#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
++ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT)
++
++/*
++A C statement (sans semicolon) to output to the stdio stream
++STREAM the assembler definition of a local-common-label named
++NAME whose size is SIZE bytes. The variable ROUNDED
++is the size rounded up to whatever alignment the caller wants.
++
++Use the expression assemble_name(STREAM, NAME) to
++output the name itself; before and after that, output the additional
++assembler syntax for defining the name, and a newline.
++
++This macro controls how the assembler definitions of uninitialized
++static variables are output.
++*/
++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
++ do \
++ { \
++ fputs ("\t.lcomm ", (FILE)); \
++ assemble_name ((FILE), (NAME)); \
++ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \
++ } \
++ while (0)
++
++
++/*
++A C statement (sans semicolon) to output to the stdio stream
++STREAM the assembler definition of a label named NAME.
++Use the expression assemble_name(STREAM, NAME) to
++output the name itself; before and after that, output the additional
++assembler syntax for defining the name, and a newline.
++*/
++#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME)
++
++/* A C string containing the appropriate assembler directive to
++ * specify the size of a symbol, without any arguments. On systems
++ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"';
++ * on other systems, the default is not to define this macro.
++ *
++ * Define this macro only if it is correct to use the default
++ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and
++ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own
++ * custom definitions of those macros, or if you do not need explicit
++ * symbol sizes at all, do not define this macro.
++ */
++#define SIZE_ASM_OP "\t.size\t"
++
++
++/*
++A C statement (sans semicolon) to output to the stdio stream
++STREAM some commands that will make the label NAME global;
++that is, available for reference from other files. Use the expression
++assemble_name(STREAM, NAME) to output the name
++itself; before and after that, output the additional assembler syntax
++for making that name global, and a newline.
++*/
++#define GLOBAL_ASM_OP "\t.globl\t"
++
++
++
++/*
++A C expression which evaluates to true if the target supports weak symbols.
++
++If you don't define this macro, defaults.h provides a default
++definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL
++is defined, the default definition is '1'; otherwise, it is
++'0'. Define this macro if you want to control weak symbol support
++with a compiler flag such as -melf.
++*/
++#define SUPPORTS_WEAK 1
++
++/*
++A C statement (sans semicolon) to output to the stdio stream
++STREAM a reference in assembler syntax to a label named
++NAME. This should add '_' to the front of the name, if that
++is customary on your operating system, as it is in most Berkeley Unix
++systems. This macro is used in assemble_name.
++*/
++#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
++ avr32_asm_output_labelref(STREAM, NAME)
++
++
++
++/*
++A C expression to assign to OUTVAR (which is a variable of type
++char *) a newly allocated string made from the string
++NAME and the number NUMBER, with some suitable punctuation
++added. Use alloca to get space for the string.
++
++The string will be used as an argument to ASM_OUTPUT_LABELREF to
++produce an assembler label for an internal static variable whose name is
++NAME. Therefore, the string must be such as to result in valid
++assembler code. The argument NUMBER is different each time this
++macro is executed; it prevents conflicts between similarly-named
++internal static variables in different scopes.
++
++Ideally this string should not be a valid C identifier, to prevent any
++conflict with the user's own symbols. Most assemblers allow periods
++or percent signs in assembler symbols; putting at least one of these
++between the name and the number will suffice.
++*/
++#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
++ do \
++ { \
++ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \
++ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \
++ } \
++ while (0)
++
++
++/** Macros Controlling Initialization Routines **/
++
++
++/*
++If defined, main will not call __main as described above.
++This macro should be defined for systems that control start-up code
++on a symbol-by-symbol basis, such as OSF/1, and should not
++be defined explicitly for systems that support INIT_SECTION_ASM_OP.
++*/
++/*
++ __main is not defined when debugging.
++*/
++#define HAS_INIT_SECTION
++
++
++/** Output of Assembler Instructions **/
++
++/*
++A C initializer containing the assembler's names for the machine
++registers, each one as a C string constant. This is what translates
++register numbers in the compiler into assembler language.
++*/
++
++#define REGISTER_NAMES \
++{ \
++ "pc", "lr", \
++ "sp", "r12", \
++ "r11", "r10", \
++ "r9", "r8", \
++ "r7", "r6", \
++ "r5", "r4", \
++ "r3", "r2", \
++ "r1", "r0", \
++ "f15","f14", \
++ "f13","f12", \
++ "f11","f10", \
++ "f9", "f8", \
++ "f7", "f6", \
++ "f5", "f4", \
++ "f3", "f2", \
++ "f1", "f0" \
++}
++
++/*
++A C compound statement to output to stdio stream STREAM the
++assembler syntax for an instruction operand X. X is an
++RTL expression.
++
++CODE is a value that can be used to specify one of several ways
++of printing the operand. It is used when identical operands must be
++printed differently depending on the context. CODE comes from
++the '%' specification that was used to request printing of the
++operand. If the specification was just '%digit' then
++CODE is 0; if the specification was '%ltr digit'
++then CODE is the ASCII code for ltr.
++
++If X is a register, this macro should print the register's name.
++The names can be found in an array reg_names whose type is
++char *[]. reg_names is initialized from REGISTER_NAMES.
++
++When the machine description has a specification '%punct'
++(a '%' followed by a punctuation character), this macro is called
++with a null pointer for X and the punctuation character for
++CODE.
++*/
++#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE)
++
++/* A C statement to be executed just prior to the output of
++ assembler code for INSN, to modify the extracted operands so
++ they will be output differently.
++
++ Here the argument OPVEC is the vector containing the operands
++ extracted from INSN, and NOPERANDS is the number of elements of
++ the vector which contain meaningful data for this insn.
++ The contents of this vector are what will be used to convert the insn
++ template into assembler code, so you can change the assembler output
++ by changing the contents of the vector. */
++#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
++ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
++
++/*
++A C expression which evaluates to true if CODE is a valid
++punctuation character for use in the PRINT_OPERAND macro. If
++PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no
++punctuation characters (except for the standard one, '%') are used
++in this way.
++*/
++#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
++ (((CODE) == '?') \
++ || ((CODE) == '!'))
++
++/*
++A C compound statement to output to stdio stream STREAM the
++assembler syntax for an instruction operand that is a memory reference
++whose address is X. X is an RTL expression.
++
++On some machines, the syntax for a symbolic address depends on the
++section that the address refers to. On these machines, define the macro
++ENCODE_SECTION_INFO to store the information into the
++symbol_ref, and then check for it here. (see Assembler Format.)
++*/
++#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X)
++
++
++/** Output of Dispatch Tables **/
++
++/*
++ * A C statement to output to the stdio stream stream an assembler
++ * pseudo-instruction to generate a difference between two
++ * labels. value and rel are the numbers of two internal labels. The
++ * definitions of these labels are output using
++ * (*targetm.asm_out.internal_label), and they must be printed in the
++ * same way here. For example,
++ *
++ * fprintf (stream, "\t.word L%d-L%d\n",
++ * value, rel)
++ *
++ * You must provide this macro on machines where the addresses in a
++ * dispatch table are relative to the table's own address. If defined,
++ * GCC will also use this macro on all machines when producing
++ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that
++ * the mode and flags can be read.
++ */
++#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
++ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
++
++/*
++This macro should be provided on machines where the addresses
++in a dispatch table are absolute.
++
++The definition should be a C statement to output to the stdio stream
++STREAM an assembler pseudo-instruction to generate a reference to
++a label. VALUE is the number of an internal label whose
++definition is output using ASM_OUTPUT_INTERNAL_LABEL.
++For example,
++
++fprintf(STREAM, "\t.word L%d\n", VALUE)
++*/
++
++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
++ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
++
++/** Assembler Commands for Exception Regions */
++
++/* ToDo: All of this subsection */
++
++/** Assembler Commands for Alignment */
++
++
++/*
++A C statement to output to the stdio stream STREAM an assembler
++command to advance the location counter to a multiple of 2 to the
++POWER bytes. POWER will be a C expression of type int.
++*/
++#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
++ do \
++ { \
++ if ((POWER) != 0) \
++ fprintf(STREAM, "\t.align\t%d\n", POWER); \
++ } \
++ while (0)
++
++/*
++Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if
++necessary.
++*/
++#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
++ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER))
++
++
++
++/******************************************************************************
++ * Controlling Debugging Information Format
++ *****************************************************************************/
++
++/* How to renumber registers for dbx and gdb. */
++#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO)
++
++/* The DWARF 2 CFA column which tracks the return address. */
++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM)
++
++/*
++Define this macro if GCC should produce dwarf version 2 format
++debugging output in response to the -g option.
++
++To support optional call frame debugging information, you must also
++define INCOMING_RETURN_ADDR_RTX and either set
++RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the
++prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save
++as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't.
++*/
++#define DWARF2_DEBUGGING_INFO 1
++
++
++#define DWARF2_ASM_LINE_DEBUG_INFO 1
++#define DWARF2_FRAME_INFO 1
++
++
++/******************************************************************************
++ * Miscellaneous Parameters
++ *****************************************************************************/
++
++/* ToDo: a lot */
++
++/*
++An alias for a machine mode name. This is the machine mode that
++elements of a jump-table should have.
++*/
++#define CASE_VECTOR_MODE SImode
++
++/*
++Define this macro to be a C expression to indicate when jump-tables
++should contain relative addresses. If jump-tables never contain
++relative addresses, then you need not define this macro.
++*/
++#define CASE_VECTOR_PC_RELATIVE 0
++
++/* Increase the threshold for using table jumps on the UC arch. */
++#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7)
++
++/*
++The maximum number of bytes that a single instruction can move quickly
++between memory and registers or between two memory locations.
++*/
++#define MOVE_MAX (2*UNITS_PER_WORD)
++
++
++/* A C expression that is nonzero if on this machine the number of bits actually used
++ for the count of a shift operation is equal to the number of bits needed to represent
++ the size of the object being shifted. When this macro is nonzero, the compiler will
++ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and'
++ instructions that truncates the count of a shift operation. On machines that have
++ instructions that act on bit-fields at variable positions, which may include 'bit test'
++ 378 GNU Compiler Collection (GCC) Internals
++ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
++ of the values that serve as arguments to bit-field instructions.
++ If both types of instructions truncate the count (for shifts) and position (for bit-field
++ operations), or if no variable-position bit-field instructions exist, you should define
++ this macro.
++ However, on some machines, such as the 80386 and the 680x0, truncation only applies
++ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_
++ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file
++ that include the implied truncation of the shift instructions.
++ You need not de ne this macro if it would always have the value of zero. */
++#define SHIFT_COUNT_TRUNCATED 1
++
++/*
++A C expression which is nonzero if on this machine it is safe to
++convert an integer of INPREC bits to one of OUTPREC
++bits (where OUTPREC is smaller than INPREC) by merely
++operating on it as if it had only OUTPREC bits.
++
++On many machines, this expression can be 1.
++
++When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for
++modes for which MODES_TIEABLE_P is 0, suboptimal code can result.
++If this is the case, making TRULY_NOOP_TRUNCATION return 0 in
++such cases may improve things.
++*/
++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
++
++/*
++An alias for the machine mode for pointers. On most machines, define
++this to be the integer mode corresponding to the width of a hardware
++pointer; SImode on 32-bit machine or DImode on 64-bit machines.
++On some machines you must define this to be one of the partial integer
++modes, such as PSImode.
++
++The width of Pmode must be at least as large as the value of
++POINTER_SIZE. If it is not equal, you must define the macro
++POINTERS_EXTEND_UNSIGNED to specify how pointers are extended
++to Pmode.
++*/
++#define Pmode SImode
++
++/*
++An alias for the machine mode used for memory references to functions
++being called, in call RTL expressions. On most machines this
++should be QImode.
++*/
++#define FUNCTION_MODE SImode
++
++
++#define REG_S_P(x) \
++ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0))))
++
++
++/* If defined, modifies the length assigned to instruction INSN as a
++ function of the context in which it is used. LENGTH is an lvalue
++ that contains the initially computed length of the insn and should
++ be updated with the correct length of the insn. */
++#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
++ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH)))
++
++
++#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \
++ (value = 32, (mode == SImode))
++
++#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \
++ (value = 32, (mode == SImode))
++
++#define UNITS_PER_SIMD_WORD UNITS_PER_WORD
++
++#define STORE_FLAG_VALUE 1
++
++
++/* IF-conversion macros. */
++#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \
++ { \
++ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \
++ }
++
++#define IFCVT_EXTRA_FIELDS \
++ int num_cond_clobber_insns; \
++ int num_extra_move_insns; \
++ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \
++ rtx moved_insns[MAX_CONDITIONAL_EXECUTE];
++
++#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \
++ { \
++ (CE_INFO)->num_cond_clobber_insns = 0; \
++ (CE_INFO)->num_extra_move_insns = 0; \
++ }
++
++
++#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes)
++
++#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1
++#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD)
++
++enum avr32_builtins
++{
++ AVR32_BUILTIN_MTSR,
++ AVR32_BUILTIN_MFSR,
++ AVR32_BUILTIN_MTDR,
++ AVR32_BUILTIN_MFDR,
++ AVR32_BUILTIN_CACHE,
++ AVR32_BUILTIN_SYNC,
++ AVR32_BUILTIN_SSRF,
++ AVR32_BUILTIN_CSRF,
++ AVR32_BUILTIN_TLBR,
++ AVR32_BUILTIN_TLBS,
++ AVR32_BUILTIN_TLBW,
++ AVR32_BUILTIN_BREAKPOINT,
++ AVR32_BUILTIN_XCHG,
++ AVR32_BUILTIN_LDXI,
++ AVR32_BUILTIN_BSWAP16,
++ AVR32_BUILTIN_BSWAP32,
++ AVR32_BUILTIN_COP,
++ AVR32_BUILTIN_MVCR_W,
++ AVR32_BUILTIN_MVRC_W,
++ AVR32_BUILTIN_MVCR_D,
++ AVR32_BUILTIN_MVRC_D,
++ AVR32_BUILTIN_MULSATHH_H,
++ AVR32_BUILTIN_MULSATHH_W,
++ AVR32_BUILTIN_MULSATRNDHH_H,
++ AVR32_BUILTIN_MULSATRNDWH_W,
++ AVR32_BUILTIN_MULSATWH_W,
++ AVR32_BUILTIN_MACSATHH_W,
++ AVR32_BUILTIN_SATADD_H,
++ AVR32_BUILTIN_SATSUB_H,
++ AVR32_BUILTIN_SATADD_W,
++ AVR32_BUILTIN_SATSUB_W,
++ AVR32_BUILTIN_MULWH_D,
++ AVR32_BUILTIN_MULNWH_D,
++ AVR32_BUILTIN_MACWH_D,
++ AVR32_BUILTIN_MACHH_D,
++ AVR32_BUILTIN_MUSFR,
++ AVR32_BUILTIN_MUSTR,
++ AVR32_BUILTIN_SATS,
++ AVR32_BUILTIN_SATU,
++ AVR32_BUILTIN_SATRNDS,
++ AVR32_BUILTIN_SATRNDU
++};
++
++
++#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \
++ ((MODE == SFmode) || (MODE == DFmode))
++
++#define RENAME_LIBRARY_SET ".set"
++
++/* Make ABI_NAME an alias for __GCC_NAME. */
++#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \
++ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \
++ ".set\t__avr32_" #ABI_NAME \
++ ", __" #GCC_NAME "\n");
++
++/* Give libgcc functions avr32 ABI name. */
++#ifdef L_muldi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64)
++#endif
++#ifdef L_divdi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64)
++#endif
++#ifdef L_udivdi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64)
++#endif
++#ifdef L_moddi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64)
++#endif
++#ifdef L_umoddi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64)
++#endif
++#ifdef L_ashldi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64)
++#endif
++#ifdef L_lshrdi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64)
++#endif
++#ifdef L_ashrdi3
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64)
++#endif
++
++#ifdef L_fixsfdi
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64)
++#endif
++#ifdef L_fixunssfdi
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64)
++#endif
++#ifdef L_floatdidf
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64)
++#endif
++#ifdef L_floatdisf
++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32)
++#endif
++
++#endif
+--- a/gcc/config/avr32/avr32.md
++++ b/gcc/config/avr32/avr32.md
+@@ -0,0 +1,4926 @@
++;; AVR32 machine description file.
++;; Copyright 2003-2006 Atmel Corporation.
++;;
++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++;;
++;; This file is part of GCC.
++;;
++;; This program is free software; you can redistribute it and/or modify
++;; it under the terms of the GNU General Public License as published by
++;; the Free Software Foundation; either version 2 of the License, or
++;; (at your option) any later version.
++;;
++;; This program is distributed in the hope that it will be useful,
++;; but WITHOUT ANY WARRANTY; without even the implied warranty of
++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++;; GNU General Public License for more details.
++;;
++;; You should have received a copy of the GNU General Public License
++;; along with this program; if not, write to the Free Software
++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++
++;; -*- Mode: Scheme -*-
++
++(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm"
++ (const_string "alu"))
++
++
++(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc"
++ (const_string "none"))
++
++
++; NB! Keep this in sync with enum architecture_type in avr32.h
++(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul,ucr3"
++ (const (symbol_ref "avr32_arch->arch_type")))
++
++; Insn length in bytes
++(define_attr "length" ""
++ (const_int 4))
++
++; Signal if an insn is predicable and hence can be conditionally executed.
++(define_attr "predicable" "no,yes" (const_string "no"))
++
++;; Uses of UNSPEC in this file:
++(define_constants
++ [(UNSPEC_PUSHM 0)
++ (UNSPEC_POPM 1)
++ (UNSPEC_UDIVMODSI4_INTERNAL 2)
++ (UNSPEC_DIVMODSI4_INTERNAL 3)
++ (UNSPEC_STM 4)
++ (UNSPEC_LDM 5)
++ (UNSPEC_MOVSICC 6)
++ (UNSPEC_ADDSICC 7)
++ (UNSPEC_COND_MI 8)
++ (UNSPEC_COND_PL 9)
++ (UNSPEC_PIC_SYM 10)
++ (UNSPEC_PIC_BASE 11)
++ (UNSPEC_STORE_MULTIPLE 12)
++ (UNSPEC_STMFP 13)
++ (UNSPEC_FPCC_TO_REG 14)
++ (UNSPEC_REG_TO_CC 15)
++ (UNSPEC_FORCE_MINIPOOL 16)
++ (UNSPEC_SATS 17)
++ (UNSPEC_SATU 18)
++ (UNSPEC_SATRNDS 19)
++ (UNSPEC_SATRNDU 20)
++ ])
++
++(define_constants
++ [(VUNSPEC_EPILOGUE 0)
++ (VUNSPEC_CACHE 1)
++ (VUNSPEC_MTSR 2)
++ (VUNSPEC_MFSR 3)
++ (VUNSPEC_BLOCKAGE 4)
++ (VUNSPEC_SYNC 5)
++ (VUNSPEC_TLBR 6)
++ (VUNSPEC_TLBW 7)
++ (VUNSPEC_TLBS 8)
++ (VUNSPEC_BREAKPOINT 9)
++ (VUNSPEC_MTDR 10)
++ (VUNSPEC_MFDR 11)
++ (VUNSPEC_MVCR 12)
++ (VUNSPEC_MVRC 13)
++ (VUNSPEC_COP 14)
++ (VUNSPEC_ALIGN 15)
++ (VUNSPEC_POOL_START 16)
++ (VUNSPEC_POOL_END 17)
++ (VUNSPEC_POOL_4 18)
++ (VUNSPEC_POOL_8 19)
++ (VUNSPEC_POOL_16 20)
++ (VUNSPEC_MUSFR 21)
++ (VUNSPEC_MUSTR 22)
++ (VUNSPEC_SYNC_CMPXCHG 23)
++ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24)
++ (VUNSPEC_SYNC_STORE_IF_LOCK 25)
++ (VUNSPEC_EH_RETURN 26)
++ (VUNSPEC_FRS 27)
++ (VUNSPEC_CSRF 28)
++ (VUNSPEC_SSRF 29)
++ ])
++
++(define_constants
++ [
++ ;; R7 = 15-7 = 8
++ (FP_REGNUM 8)
++ ;; Return Register = R12 = 15 - 12 = 3
++ (RETVAL_REGNUM 3)
++ ;; SP = R13 = 15 - 13 = 2
++ (SP_REGNUM 2)
++ ;; LR = R14 = 15 - 14 = 1
++ (LR_REGNUM 1)
++ ;; PC = R15 = 15 - 15 = 0
++ (PC_REGNUM 0)
++ ;; FPSR = GENERAL_REGS + 1 = 17
++ (FPCC_REGNUM 17)
++ ])
++
++
++
++
++;;******************************************************************************
++;; Macros
++;;******************************************************************************
++
++;; Integer Modes for basic alu insns
++(define_mode_iterator INTM [SI HI QI])
++(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")])
++
++;; Move word modes
++(define_mode_iterator MOVM [SI V2HI V4QI])
++
++;; For mov/addcc insns
++(define_mode_iterator ADDCC [SI HI QI])
++(define_mode_iterator MOVCC [SF SI HI QI])
++(define_mode_iterator CMP [DI SI HI QI])
++(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")])
++(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")])
++(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")])
++(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")])
++(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")])
++(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")])
++(define_mode_attr cmp_predicate [(DI "register_immediate_operand")
++ (SI "register_const_int_operand")
++ (HI "register_operand")
++ (QI "register_operand")])
++(define_mode_attr cmp_length [(DI "6")
++ (SI "4")
++ (HI "4")
++ (QI "4")])
++
++;; For all conditional insns
++(define_code_iterator any_cond [eq ne gt ge lt le gtu geu ltu leu])
++(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le")
++ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")])
++(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt")
++ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")])
++
++;; For logical operations
++(define_code_iterator logical [and ior xor])
++(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")])
++
++;; Predicable operations with three register operands
++(define_code_iterator predicable_op3 [and ior xor plus minus])
++(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")])
++(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")])
++
++;; Load the predicates
++(include "predicates.md")
++
++
++;;******************************************************************************
++;; Automaton pipeline description for avr32
++;;******************************************************************************
++
++(define_automaton "avr32_ap")
++
++
++(define_cpu_unit "is" "avr32_ap")
++(define_cpu_unit "a1,m1,da" "avr32_ap")
++(define_cpu_unit "a2,m2,d" "avr32_ap")
++
++;;Alu instructions
++(define_insn_reservation "alu_op" 1
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "alu"))
++ "is,a1,a2")
++
++(define_insn_reservation "alu2_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "alu2"))
++ "is,is+a1,a1+a2,a2")
++
++(define_insn_reservation "alu_sat_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "alu_sat"))
++ "is,a1,a2")
++
++
++;;Mul instructions
++(define_insn_reservation "mulhh_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "mulhh,mulwh"))
++ "is,m1,m2")
++
++(define_insn_reservation "mulww_w_op" 3
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "mulww_w"))
++ "is,m1,m1+m2,m2")
++
++(define_insn_reservation "mulww_d_op" 5
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "mulww_d"))
++ "is,m1,m1+m2,m1+m2,m2,m2")
++
++(define_insn_reservation "div_op" 33
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "div"))
++ "is,m1,m1*31 + m2*31,m2")
++
++(define_insn_reservation "machh_w_op" 3
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "machh_w"))
++ "is*2,m1,m2")
++
++
++(define_insn_reservation "macww_w_op" 4
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "macww_w"))
++ "is*2,m1,m1,m2")
++
++
++(define_insn_reservation "macww_d_op" 6
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "macww_d"))
++ "is*2,m1,m1+m2,m1+m2,m2")
++
++;;Bypasses for Mac instructions, because of accumulator cache.
++;;Set latency as low as possible in order to let the compiler let
++;;mul -> mac and mac -> mac combinations which use the same
++;;accumulator cache be placed close together to avoid any
++;;instructions which can ruin the accumulator cache come inbetween.
++(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++
++(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
++
++
++;;Bypasses for all mul/mac instructions followed by an instruction
++;;which reads the output AND writes the result to the same register.
++;;This will generate an Write After Write hazard which gives an
++;;extra cycle before the result is ready.
++(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass")
++(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass")
++(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass")
++
++(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass")
++(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass")
++(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass")
++
++;;Branch and call instructions
++;;We assume that all branches and rcalls are predicted correctly :-)
++;;while calls use a lot of cycles.
++(define_insn_reservation "branch_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "branch"))
++ "nothing")
++
++(define_insn_reservation "call_op" 10
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "call"))
++ "nothing")
++
++
++;;Load store instructions
++(define_insn_reservation "load_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "load"))
++ "is,da,d")
++
++(define_insn_reservation "load_rm_op" 3
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "load_rm"))
++ "is,da,d")
++
++
++(define_insn_reservation "store_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "store"))
++ "is,da,d")
++
++
++(define_insn_reservation "load_double_op" 3
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "load2"))
++ "is,da,da+d,d")
++
++(define_insn_reservation "load_quad_op" 4
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "load4"))
++ "is,da,da+d,da+d,d")
++
++(define_insn_reservation "store_double_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "store2"))
++ "is,da,da+d,d")
++
++
++(define_insn_reservation "store_quad_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "store4"))
++ "is,da,da+d,da+d,d")
++
++;;For store the operand to write to memory is read in d and
++;;the real latency between any instruction and a store is therefore
++;;one less than for the instructions which reads the operands in the first
++;;excecution stage
++(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass")
++(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass")
++(define_bypass 1 "load_op" "store_op" "avr32_store_bypass")
++(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass")
++(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass")
++(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass")
++(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass")
++(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass")
++(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" )
++(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass")
++(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass")
++(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass")
++
++
++; Bypass for load double operation. If only the first loaded word is needed
++; then the latency is 2
++(define_bypass 2 "load_double_op"
++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
++ "avr32_valid_load_double_bypass")
++
++; Bypass for load quad operation. If only the first or second loaded word is needed
++; we set the latency to 2
++(define_bypass 2 "load_quad_op"
++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
++ "avr32_valid_load_quad_bypass")
++
++
++;;******************************************************************************
++;; End of Automaton pipeline description for avr32
++;;******************************************************************************
++
++(define_cond_exec
++ [(match_operator 0 "avr32_comparison_operator"
++ [(match_operand:CMP 1 "register_operand" "r")
++ (match_operand:CMP 2 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])]
++ "TARGET_V2_INSNS"
++ "%!"
++)
++
++(define_cond_exec
++ [(match_operator 0 "avr32_comparison_operator"
++ [(and:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "one_bit_set_operand" "i"))
++ (const_int 0)])]
++ "TARGET_V2_INSNS"
++ "%!"
++ )
++
++;;=============================================================================
++;; move
++;;-----------------------------------------------------------------------------
++
++
++;;== char - 8 bits ============================================================
++(define_expand "movqi"
++ [(set (match_operand:QI 0 "nonimmediate_operand" "")
++ (match_operand:QI 1 "general_operand" ""))]
++ ""
++ {
++ if ( can_create_pseudo_p () ){
++ if (GET_CODE (operands[1]) == MEM && optimize){
++ rtx reg = gen_reg_rtx (SImode);
++
++ emit_insn (gen_zero_extendqisi2 (reg, operands[1]));
++ operands[1] = gen_lowpart (QImode, reg);
++ }
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) == MEM)
++ operands[1] = force_reg (QImode, operands[1]);
++ }
++
++ })
++
++(define_insn "*movqi_internal"
++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r")
++ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))]
++ "register_operand (operands[0], QImode)
++ || register_operand (operands[1], QImode)"
++ "@
++ mov\t%0, %1
++ ld.ub\t%0, %1
++ st.b\t%0, %1
++ mov\t%0, %1"
++ [(set_attr "length" "2,4,4,4")
++ (set_attr "type" "alu,load_rm,store,alu")])
++
++
++
++;;== short - 16 bits ==========================================================
++(define_expand "movhi"
++ [(set (match_operand:HI 0 "nonimmediate_operand" "")
++ (match_operand:HI 1 "general_operand" ""))]
++ ""
++ {
++ if ( can_create_pseudo_p () ){
++ if (GET_CODE (operands[1]) == MEM && optimize){
++ rtx reg = gen_reg_rtx (SImode);
++
++ emit_insn (gen_extendhisi2 (reg, operands[1]));
++ operands[1] = gen_lowpart (HImode, reg);
++ }
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) == MEM)
++ operands[1] = force_reg (HImode, operands[1]);
++ }
++
++ })
++
++
++(define_insn "*movhi_internal"
++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r")
++ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))]
++ "register_operand (operands[0], HImode)
++ || register_operand (operands[1], HImode)"
++ "@
++ mov\t%0, %1
++ ld.sh\t%0, %1
++ st.h\t%0, %1
++ mov\t%0, %1"
++ [(set_attr "length" "2,4,4,4")
++ (set_attr "type" "alu,load_rm,store,alu")])
++
++
++;;== int - 32 bits ============================================================
++
++(define_expand "movmisalignsi"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))]
++ "TARGET_UNALIGNED_WORD"
++ {
++ }
++)
++
++
++(define_expand "mov<mode>"
++ [(set (match_operand:MOVM 0 "register_operand" "")
++ (match_operand:MOVM 1 "general_operand" ""))]
++ ""
++ {
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) == MEM)
++ operands[1] = force_reg (<MODE>mode, operands[1]);
++
++
++ /* Check for out of range immediate constants as these may
++ occur during reloading, since it seems like reload does
++ not check if the immediate is legitimate. Don't know if
++ this is a bug? */
++ if ( reload_in_progress
++ && avr32_imm_in_const_pool
++ && GET_CODE(operands[1]) == CONST_INT
++ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){
++ operands[1] = force_const_mem(SImode, operands[1]);
++ }
++
++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
++ && !avr32_legitimate_pic_operand_p(operands[1]) )
++ operands[1] = legitimize_pic_address (operands[1], <MODE>mode,
++ (can_create_pseudo_p () ? 0: operands[0]));
++ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) )
++ /* If we have an address operand then this function uses the pic register. */
++ current_function_uses_pic_offset_table = 1;
++ })
++
++
++
++(define_insn "mov<mode>_internal"
++ [(set (match_operand:MOVM 0 "nonimmediate_operand" "=r, r, r,r,r,m,r")
++ (match_operand:MOVM 1 "general_operand" "rKs08,Ks21,J,n,m,r,W"))]
++ "register_operand (operands[0], <MODE>mode)
++ || register_operand (operands[1], <MODE>mode)"
++ {
++ switch (which_alternative) {
++ case 0:
++ case 1: return "mov\t%0, %1";
++ case 2:
++ if ( TARGET_V2_INSNS )
++ return "movh\t%0, hi(%1)";
++ /* Fallthrough */
++ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)";
++ case 4:
++ if ( (REG_P(XEXP(operands[1], 0))
++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS
++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
++ return "lddsp\t%0, %1";
++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
++ return "lddpc\t%0, %1";
++ else
++ return "ld.w\t%0, %1";
++ case 5:
++ if ( (REG_P(XEXP(operands[0], 0))
++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS
++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
++ return "stdsp\t%0, %1";
++ else
++ return "st.w\t%0, %1";
++ case 6:
++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
++ return "lda.w\t%0, %1";
++ else
++ return "ld.w\t%0, r6[%1@got]";
++ default:
++ abort();
++ }
++ }
++
++ [(set_attr "length" "2,4,4,8,4,4,8")
++ (set_attr "type" "alu,alu,alu,alu2,load,store,load")
++ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")])
++
++
++
++
++;; These instructions are for loading constants which cannot be loaded
++;; directly from the constant pool because the offset is too large
++;; high and lo_sum are used even tough for our case it should be
++;; low and high sum :-)
++(define_insn "mov_symbol_lo"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))]
++ ""
++ "mov\t%0, lo(%1)"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")]
++)
++
++(define_insn "add_symbol_hi"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (lo_sum:SI (match_dup 0)
++ (match_operand:SI 1 "immediate_operand" "i" )))]
++ ""
++ "orh\t%0, hi(%1)"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")]
++)
++
++
++
++;; When generating pic, we need to load the symbol offset into a register.
++;; So that the optimizer does not confuse this with a normal symbol load
++;; we use an unspec. The offset will be loaded from a constant pool entry,
++;; since that is the only type of relocation we can use.
++(define_insn "pic_load_addr"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))]
++ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))"
++ "lddpc\t%0, %1"
++ [(set_attr "type" "load")
++ (set_attr "length" "4")]
++)
++
++(define_insn "pic_compute_got_from_pc"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (unspec:SI [(minus:SI (pc)
++ (match_dup 0))] UNSPEC_PIC_BASE))
++ (use (label_ref (match_operand 1 "" "")))]
++ "flag_pic"
++ {
++ (*targetm.asm_out.internal_label) (asm_out_file, "L",
++ CODE_LABEL_NUMBER (operands[1]));
++ return \"rsub\t%0, pc\";
++ }
++ [(set_attr "cc" "clobber")
++ (set_attr "length" "2")]
++)
++
++;;== long long int - 64 bits ==================================================
++
++(define_expand "movdi"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "")
++ (match_operand:DI 1 "general_operand" ""))]
++ ""
++ {
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) != REG)
++ operands[1] = force_reg (DImode, operands[1]);
++
++ })
++
++
++(define_insn_and_split "*movdi_internal"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m")
++ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))]
++ "register_operand (operands[0], DImode)
++ || register_operand (operands[1], DImode)"
++ {
++ switch (which_alternative ){
++ case 0:
++ case 1:
++ case 2:
++ case 3:
++ case 4:
++ return "#";
++ case 5:
++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
++ return "ld.d\t%0, pc[%1 - .]";
++ else
++ return "ld.d\t%0, %1";
++ case 6:
++ return "st.d\t%0, %1";
++ default:
++ abort();
++ }
++ }
++;; Lets split all reg->reg or imm->reg transfers into two SImode transfers
++ "reload_completed &&
++ (REG_P (operands[0]) &&
++ (REG_P (operands[1])
++ || GET_CODE (operands[1]) == CONST_INT
++ || GET_CODE (operands[1]) == CONST_DOUBLE))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 2) (match_dup 3))]
++ {
++ operands[2] = gen_highpart (SImode, operands[0]);
++ operands[0] = gen_lowpart (SImode, operands[0]);
++ if ( REG_P(operands[1]) ){
++ operands[3] = gen_highpart(SImode, operands[1]);
++ operands[1] = gen_lowpart(SImode, operands[1]);
++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE
++ || GET_CODE(operands[1]) == CONST_INT ){
++ rtx split_const[2];
++ avr32_split_const_expr (DImode, SImode, operands[1], split_const);
++ operands[3] = split_const[1];
++ operands[1] = split_const[0];
++ } else {
++ internal_error("Illegal operand[1] for movdi split!");
++ }
++ }
++
++ [(set_attr "length" "*,*,*,*,*,4,4")
++ (set_attr "type" "*,*,*,*,*,load2,store2")
++ (set_attr "cc" "*,*,*,*,*,none,none")])
++
++
++;;== 128 bits ==================================================
++(define_expand "movti"
++ [(set (match_operand:TI 0 "nonimmediate_operand" "")
++ (match_operand:TI 1 "nonimmediate_operand" ""))]
++ "TARGET_ARCH_AP"
++ {
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) != REG)
++ operands[1] = force_reg (TImode, operands[1]);
++
++ /* We must fix any pre_dec for loads and post_inc stores */
++ if ( GET_CODE (operands[0]) == MEM
++ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){
++ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]);
++ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode))));
++ DONE;
++ }
++
++ if ( GET_CODE (operands[1]) == MEM
++ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){
++ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode))));
++ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0)));
++ DONE;
++ }
++ })
++
++
++(define_insn_and_split "*movti_internal"
++ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, <RKu00,r,r")
++ (match_operand:TI 1 "avr32_movti_src_operand" " r,RKu00>,RKu00,r, n,T"))]
++ "(register_operand (operands[0], TImode)
++ || register_operand (operands[1], TImode))"
++ {
++ switch (which_alternative ){
++ case 0:
++ case 2:
++ case 4:
++ return "#";
++ case 1:
++ return "ldm\t%p1, %0";
++ case 3:
++ return "stm\t%p0, %1";
++ case 5:
++ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]";
++ }
++ }
++
++ "reload_completed &&
++ (REG_P (operands[0]) &&
++ (REG_P (operands[1])
++ /* If this is a load from the constant pool we split it into
++ two double loads. */
++ || (GET_CODE (operands[1]) == MEM
++ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
++ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0)))
++ /* If this is a load where the pointer register is a part
++ of the register list, we must split it into two double
++ loads in order for it to be exception safe. */
++ || (GET_CODE (operands[1]) == MEM
++ && register_operand (XEXP (operands[1], 0), SImode)
++ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0)))
++ || GET_CODE (operands[1]) == CONST_INT
++ || GET_CODE (operands[1]) == CONST_DOUBLE))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 2) (match_dup 3))]
++ {
++ operands[2] = simplify_gen_subreg ( DImode, operands[0],
++ TImode, 0 );
++ operands[0] = simplify_gen_subreg ( DImode, operands[0],
++ TImode, 8 );
++ if ( REG_P(operands[1]) ){
++ operands[3] = simplify_gen_subreg ( DImode, operands[1],
++ TImode, 0 );
++ operands[1] = simplify_gen_subreg ( DImode, operands[1],
++ TImode, 8 );
++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE
++ || GET_CODE(operands[1]) == CONST_INT ){
++ rtx split_const[2];
++ avr32_split_const_expr (TImode, DImode, operands[1], split_const);
++ operands[3] = split_const[1];
++ operands[1] = split_const[0];
++ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){
++ rtx split_const[2];
++ rtx cop = avoid_constant_pool_reference (operands[1]);
++ if (operands[1] == cop)
++ cop = get_pool_constant (XEXP (operands[1], 0));
++ avr32_split_const_expr (TImode, DImode, cop, split_const);
++ operands[3] = force_const_mem (DImode, split_const[1]);
++ operands[1] = force_const_mem (DImode, split_const[0]);
++ } else {
++ rtx ptr_reg = XEXP (operands[1], 0);
++ operands[1] = gen_rtx_MEM (DImode,
++ gen_rtx_PLUS ( SImode,
++ ptr_reg,
++ GEN_INT (8) ));
++ operands[3] = gen_rtx_MEM (DImode,
++ ptr_reg);
++
++ /* Check if the first load will clobber the pointer.
++ If so, we must switch the order of the operations. */
++ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) )
++ {
++ /* We need to switch the order of the operations
++ so that the pointer register does not get clobbered
++ after the first double word load. */
++ rtx tmp;
++ tmp = operands[0];
++ operands[0] = operands[2];
++ operands[2] = tmp;
++ tmp = operands[1];
++ operands[1] = operands[3];
++ operands[3] = tmp;
++ }
++
++
++ }
++ }
++ [(set_attr "length" "*,*,4,4,*,8")
++ (set_attr "type" "*,*,load4,store4,*,load4")])
++
++
++;;== float - 32 bits ==========================================================
++(define_expand "movsf"
++ [(set (match_operand:SF 0 "nonimmediate_operand" "")
++ (match_operand:SF 1 "general_operand" ""))]
++ ""
++ {
++
++
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) != REG)
++ operands[1] = force_reg (SFmode, operands[1]);
++
++ })
++
++(define_insn "*movsf_internal"
++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m")
++ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))]
++ "(register_operand (operands[0], SFmode)
++ || register_operand (operands[1], SFmode))"
++ {
++ switch (which_alternative) {
++ case 0:
++ case 1: return "mov\t%0, %1";
++ case 2:
++ {
++ HOST_WIDE_INT target_float[2];
++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode);
++ if ( TARGET_V2_INSNS
++ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) )
++ return "movh\t%0, hi(%1)";
++ else
++ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)";
++ }
++ case 3:
++ if ( (REG_P(XEXP(operands[1], 0))
++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS
++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
++ return "lddsp\t%0, %1";
++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
++ return "lddpc\t%0, %1";
++ else
++ return "ld.w\t%0, %1";
++ case 4:
++ if ( (REG_P(XEXP(operands[0], 0))
++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS
++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
++ return "stdsp\t%0, %1";
++ else
++ return "st.w\t%0, %1";
++ default:
++ abort();
++ }
++ }
++
++ [(set_attr "length" "2,4,8,4,4")
++ (set_attr "type" "alu,alu,alu2,load,store")
++ (set_attr "cc" "none,none,clobber,none,none")])
++
++
++
++;;== double - 64 bits =========================================================
++(define_expand "movdf"
++ [(set (match_operand:DF 0 "nonimmediate_operand" "")
++ (match_operand:DF 1 "general_operand" ""))]
++ ""
++ {
++ /* One of the ops has to be in a register. */
++ if (GET_CODE (operands[0]) != REG){
++ operands[1] = force_reg (DFmode, operands[1]);
++ }
++ })
++
++
++(define_insn_and_split "*movdf_internal"
++ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m")
++ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))]
++ "TARGET_SOFT_FLOAT
++ && (register_operand (operands[0], DFmode)
++ || register_operand (operands[1], DFmode))"
++ {
++ switch (which_alternative ){
++ case 0:
++ case 1:
++ case 2:
++ return "#";
++ case 3:
++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
++ return "ld.d\t%0, pc[%1 - .]";
++ else
++ return "ld.d\t%0, %1";
++ case 4:
++ return "st.d\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ "TARGET_SOFT_FLOAT
++ && reload_completed
++ && (REG_P (operands[0])
++ && (REG_P (operands[1])
++ || GET_CODE (operands[1]) == CONST_DOUBLE))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 2) (match_dup 3))]
++ "
++ {
++ operands[2] = gen_highpart (SImode, operands[0]);
++ operands[0] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart(SImode, operands[1]);
++ operands[1] = gen_lowpart(SImode, operands[1]);
++ }
++ "
++
++ [(set_attr "length" "*,*,*,4,4")
++ (set_attr "type" "*,*,*,load2,store2")
++ (set_attr "cc" "*,*,*,none,none")])
++
++
++;;=============================================================================
++;; Conditional Moves
++;;=============================================================================
++(define_insn "ld<mode>_predicable"
++ [(set (match_operand:MOVCC 0 "register_operand" "=r")
++ (match_operand:MOVCC 1 "memory_operand" "<MOVCC:pred_mem_constraint>"))]
++ "TARGET_V2_INSNS"
++ "ld<MOVCC:load_postfix>%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "load")
++ (set_attr "predicable" "yes")]
++)
++
++
++(define_insn "st<mode>_predicable"
++ [(set (match_operand:MOVCC 0 "memory_operand" "=<MOVCC:pred_mem_constraint>")
++ (match_operand:MOVCC 1 "register_operand" "r"))]
++ "TARGET_V2_INSNS"
++ "st<MOVCC:store_postfix>%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "store")
++ (set_attr "predicable" "yes")]
++)
++
++(define_insn "mov<mode>_predicable"
++ [(set (match_operand:MOVCC 0 "register_operand" "=r")
++ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))]
++ ""
++ "mov%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "alu")
++ (set_attr "predicable" "yes")]
++)
++
++
++;;=============================================================================
++;; Move chunks of memory
++;;=============================================================================
++
++(define_expand "movmemsi"
++ [(match_operand:BLK 0 "general_operand" "")
++ (match_operand:BLK 1 "general_operand" "")
++ (match_operand:SI 2 "const_int_operand" "")
++ (match_operand:SI 3 "const_int_operand" "")]
++ ""
++ "
++ if (avr32_gen_movmemsi (operands))
++ DONE;
++ FAIL;
++ "
++ )
++
++
++
++
++;;=============================================================================
++;; Bit field instructions
++;;-----------------------------------------------------------------------------
++;; Instructions to insert or extract bit-fields
++;;=============================================================================
++
++(define_insn "insv"
++ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
++ (match_operand:SI 1 "immediate_operand" "Ku05")
++ (match_operand:SI 2 "immediate_operand" "Ku05"))
++ (match_operand 3 "register_operand" "r"))]
++ ""
++ "bfins\t%0, %3, %2, %1"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "set_ncz")])
++
++
++
++(define_expand "extv"
++ [ (set (match_operand:SI 0 "register_operand" "")
++ (sign_extract:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")
++ (match_operand:SI 3 "immediate_operand" "")))]
++ ""
++ {
++ if ( INTVAL(operands[2]) >= 32 )
++ FAIL;
++ }
++)
++
++(define_expand "extzv"
++ [ (set (match_operand:SI 0 "register_operand" "")
++ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")
++ (match_operand:SI 3 "immediate_operand" "")))]
++ ""
++ {
++ if ( INTVAL(operands[2]) >= 32 )
++ FAIL;
++ }
++)
++
++(define_insn "extv_internal"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (sign_extract:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku05")
++ (match_operand:SI 3 "immediate_operand" "Ku05")))]
++ "INTVAL(operands[2]) < 32"
++ "bfexts\t%0, %1, %3, %2"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "set_ncz")])
++
++
++(define_insn "extzv_internal"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku05")
++ (match_operand:SI 3 "immediate_operand" "Ku05")))]
++ "INTVAL(operands[2]) < 32"
++ "bfextu\t%0, %1, %3, %2"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "set_ncz")])
++
++
++
++;;=============================================================================
++;; Some peepholes for avoiding unnecessary cast instructions
++;; followed by bfins.
++;;-----------------------------------------------------------------------------
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
++ (set (zero_extract:SI (match_operand 2 "register_operand" "")
++ (match_operand:SI 3 "immediate_operand" "")
++ (match_operand:SI 4 "immediate_operand" ""))
++ (match_dup 0))]
++ "((peep2_reg_dead_p(2, operands[0]) &&
++ (INTVAL(operands[3]) <= 8)))"
++ [(set (zero_extract:SI (match_dup 2)
++ (match_dup 3)
++ (match_dup 4))
++ (match_dup 1))]
++ )
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (zero_extend:SI (match_operand:HI 1 "register_operand" "")))
++ (set (zero_extract:SI (match_operand 2 "register_operand" "")
++ (match_operand:SI 3 "immediate_operand" "")
++ (match_operand:SI 4 "immediate_operand" ""))
++ (match_dup 0))]
++ "((peep2_reg_dead_p(2, operands[0]) &&
++ (INTVAL(operands[3]) <= 16)))"
++ [(set (zero_extract:SI (match_dup 2)
++ (match_dup 3)
++ (match_dup 4))
++ (match_dup 1))]
++ )
++
++;;=============================================================================
++;; push bytes
++;;-----------------------------------------------------------------------------
++;; Implements the push instruction
++;;=============================================================================
++(define_insn "pushm"
++ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM)))
++ (unspec:BLK [(match_operand 0 "const_int_operand" "")]
++ UNSPEC_PUSHM))]
++ ""
++ {
++ if (INTVAL(operands[0])) {
++ return "pushm\t%r0";
++ } else {
++ return "";
++ }
++ }
++ [(set_attr "type" "store")
++ (set_attr "length" "2")
++ (set_attr "cc" "none")])
++
++(define_insn "stm"
++ [(unspec [(match_operand 0 "register_operand" "r")
++ (match_operand 1 "const_int_operand" "")
++ (match_operand 2 "const_int_operand" "")]
++ UNSPEC_STM)]
++ ""
++ {
++ if (INTVAL(operands[1])) {
++ if (INTVAL(operands[2]) != 0)
++ return "stm\t--%0, %s1";
++ else
++ return "stm\t%0, %s1";
++ } else {
++ return "";
++ }
++ }
++ [(set_attr "type" "store")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++
++
++(define_insn "popm"
++ [(unspec [(match_operand 0 "const_int_operand" "")]
++ UNSPEC_POPM)]
++ ""
++ {
++ if (INTVAL(operands[0])) {
++ return "popm %r0";
++ } else {
++ return "";
++ }
++ }
++ [(set_attr "type" "load")
++ (set_attr "length" "2")])
++
++
++
++;;=============================================================================
++;; add
++;;-----------------------------------------------------------------------------
++;; Adds reg1 with reg2 and puts the result in reg0.
++;;=============================================================================
++(define_insn "add<mode>3"
++ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r")
++ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0")
++ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))]
++ ""
++ "@
++ add %0, %2
++ add %0, %1, %2
++ sub %0, %n2
++ sub %0, %1, %n2
++ sub %0, %n2"
++
++ [(set_attr "length" "2,4,2,4,4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++(define_insn "add<mode>3_lsl"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r")
++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))
++ (match_operand:INTM 2 "register_operand" "r")))]
++ ""
++ "add %0, %2, %1 << %3"
++ [(set_attr "length" "4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++(define_insn "add<mode>3_lsl2"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (plus:INTM (match_operand:INTM 1 "register_operand" "r")
++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r")
++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))]
++ ""
++ "add %0, %1, %2 << %3"
++ [(set_attr "length" "4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++
++(define_insn "add<mode>3_mul"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r")
++ (match_operand:INTM 3 "immediate_operand" "Ku04" ))
++ (match_operand:INTM 2 "register_operand" "r")))]
++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
++ "add %0, %2, %1 << %p3"
++ [(set_attr "length" "4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++(define_insn "add<mode>3_mul2"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (plus:INTM (match_operand:INTM 1 "register_operand" "r")
++ (mult:INTM (match_operand:INTM 2 "register_operand" "r")
++ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))]
++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
++ "add %0, %1, %2 << %p3"
++ [(set_attr "length" "4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (ashift:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (plus:SI (match_dup 0)
++ (match_operand:SI 4 "register_operand" "")))]
++ "(peep2_reg_dead_p(2, operands[0]) &&
++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
++ [(set (match_dup 3)
++ (plus:SI (ashift:SI (match_dup 1)
++ (match_dup 2))
++ (match_dup 4)))]
++ )
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (ashift:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (plus:SI (match_operand:SI 4 "register_operand" "")
++ (match_dup 0)))]
++ "(peep2_reg_dead_p(2, operands[0]) &&
++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
++ [(set (match_dup 3)
++ (plus:SI (ashift:SI (match_dup 1)
++ (match_dup 2))
++ (match_dup 4)))]
++ )
++
++(define_insn "adddi3"
++ [(set (match_operand:DI 0 "register_operand" "=r,r")
++ (plus:DI (match_operand:DI 1 "register_operand" "%r,0")
++ (match_operand:DI 2 "register_operand" "r,r")))]
++ ""
++ "@
++ add %0, %1, %2\;adc %m0, %m1, %m2
++ add %0, %2\;adc %m0, %m0, %m2"
++ [(set_attr "length" "8,6")
++ (set_attr "type" "alu2")
++ (set_attr "cc" "set_vncz")])
++
++
++(define_insn "add<mode>_imm_predicable"
++ [(set (match_operand:INTM 0 "register_operand" "+r")
++ (plus:INTM (match_dup 0)
++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))]
++ ""
++ "sub%?\t%0, -%1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++)
++
++;;=============================================================================
++;; subtract
++;;-----------------------------------------------------------------------------
++;; Subtract reg2 or immediate value from reg0 and puts the result in reg0.
++;;=============================================================================
++
++(define_insn "sub<mode>3"
++ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r")
++ (minus:INTM (match_operand:INTM 1 "register_const_int_operand" "0,r,0,r,0,r,Ks08")
++ (match_operand:INTM 2 "register_const_int_operand" "r,r,Ks08,Ks16,Ks21,0,r")))]
++ ""
++ "@
++ sub %0, %2
++ sub %0, %1, %2
++ sub %0, %2
++ sub %0, %1, %2
++ sub %0, %2
++ rsub %0, %1
++ rsub %0, %2, %1"
++ [(set_attr "length" "2,4,2,4,4,2,4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++(define_insn "*sub<mode>3_mul"
++ [(set (match_operand:INTM 0 "register_operand" "=r,r,r")
++ (minus:INTM (match_operand:INTM 1 "register_operand" "r,0,r")
++ (mult:INTM (match_operand:INTM 2 "register_operand" "r,r,0")
++ (match_operand:SI 3 "immediate_operand" "Ku04,Ku04,Ku04" ))))]
++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
++ "@
++ sub %0, %1, %2 << %p3
++ sub %0, %0, %2 << %p3
++ sub %0, %1, %0 << %p3"
++ [(set_attr "length" "4,4,4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++(define_insn "*sub<mode>3_lsl"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (minus:INTM (match_operand:INTM 1 "register_operand" "r")
++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r")
++ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))]
++ ""
++ "sub %0, %1, %2 << %3"
++ [(set_attr "length" "4")
++ (set_attr "cc" "<INTM:alu_cc_attr>")])
++
++
++(define_insn "subdi3"
++ [(set (match_operand:DI 0 "register_operand" "=r,r")
++ (minus:DI (match_operand:DI 1 "register_operand" "%r,0")
++ (match_operand:DI 2 "register_operand" "r,r")))]
++ ""
++ "@
++ sub %0, %1, %2\;sbc %m0, %m1, %m2
++ sub %0, %2\;sbc %m0, %m0, %m2"
++ [(set_attr "length" "8,6")
++ (set_attr "type" "alu2")
++ (set_attr "cc" "set_vncz")])
++
++
++(define_insn "sub<mode>_imm_predicable"
++ [(set (match_operand:INTM 0 "register_operand" "+r")
++ (minus:INTM (match_dup 0)
++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))]
++ ""
++ "sub%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")])
++
++(define_insn "rsub<mode>_imm_predicable"
++ [(set (match_operand:INTM 0 "register_operand" "+r")
++ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")
++ (match_dup 0)))]
++ ""
++ "rsub%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")])
++
++;;=============================================================================
++;; multiply
++;;-----------------------------------------------------------------------------
++;; Multiply op1 and op2 and put the value in op0.
++;;=============================================================================
++
++
++(define_insn "mulqi3"
++ [(set (match_operand:QI 0 "register_operand" "=r,r,r")
++ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r")
++ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))]
++ "!TARGET_NO_MUL_INSNS"
++ {
++ switch (which_alternative){
++ case 0:
++ return "mul %0, %2";
++ case 1:
++ return "mul %0, %1, %2";
++ case 2:
++ return "mul %0, %1, %2";
++ default:
++ gcc_unreachable();
++ }
++ }
++ [(set_attr "type" "mulww_w,mulww_w,mulwh")
++ (set_attr "length" "2,4,4")
++ (set_attr "cc" "none")])
++
++(define_insn "mulsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r")
++ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))]
++ "!TARGET_NO_MUL_INSNS"
++ {
++ switch (which_alternative){
++ case 0:
++ return "mul %0, %2";
++ case 1:
++ return "mul %0, %1, %2";
++ case 2:
++ return "mul %0, %1, %2";
++ default:
++ gcc_unreachable();
++ }
++ }
++ [(set_attr "type" "mulww_w,mulww_w,mulwh")
++ (set_attr "length" "2,4,4")
++ (set_attr "cc" "none")])
++
++
++(define_insn "mulhisi3"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (mult:SI
++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulhh.w %0, %1:b, %2:b"
++ [(set_attr "type" "mulhh")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_peephole2
++ [(match_scratch:DI 6 "r")
++ (set (match_operand:SI 0 "register_operand" "")
++ (mult:SI
++ (sign_extend:SI (match_operand:HI 1 "register_operand" ""))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" ""))))
++ (set (match_operand:SI 3 "register_operand" "")
++ (ashiftrt:SI (match_dup 0)
++ (const_int 16)))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP
++ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))"
++ [(set (match_dup 4) (sign_extend:SI (match_dup 1)))
++ (set (match_dup 6)
++ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4))
++ (sign_extend:DI (match_dup 2)))
++ (const_int 16)))
++ (set (match_dup 3) (match_dup 5))]
++
++ "{
++ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1]));
++ operands[5] = gen_highpart (SImode, operands[4]);
++ }"
++ )
++
++(define_insn "mulnhisi3"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (mult:SI
++ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r")))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulnhh.w %0, %1:b, %2:b"
++ [(set_attr "type" "mulhh")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_insn "machisi3"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (plus:SI (mult:SI
++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
++ (match_dup 0)))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "machh.w %0, %1:b, %2:b"
++ [(set_attr "type" "machh_w")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++
++
++(define_insn "mulsidi3"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (mult:DI
++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
++ "!TARGET_NO_MUL_INSNS"
++ "muls.d %0, %1, %2"
++ [(set_attr "type" "mulww_d")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_insn "umulsidi3"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (mult:DI
++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
++ "!TARGET_NO_MUL_INSNS"
++ "mulu.d %0, %1, %2"
++ [(set_attr "type" "mulww_d")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_insn "*mulaccsi3"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r")
++ (match_operand:SI 2 "register_operand" "r"))
++ (match_dup 0)))]
++ "!TARGET_NO_MUL_INSNS"
++ "mac %0, %1, %2"
++ [(set_attr "type" "macww_w")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_insn "mulaccsidi3"
++ [(set (match_operand:DI 0 "register_operand" "+r")
++ (plus:DI (mult:DI
++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r")))
++ (match_dup 0)))]
++ "!TARGET_NO_MUL_INSNS"
++ "macs.d %0, %1, %2"
++ [(set_attr "type" "macww_d")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++(define_insn "umulaccsidi3"
++ [(set (match_operand:DI 0 "register_operand" "+r")
++ (plus:DI (mult:DI
++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))
++ (match_dup 0)))]
++ "!TARGET_NO_MUL_INSNS"
++ "macu.d %0, %1, %2"
++ [(set_attr "type" "macww_d")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++
++
++;; Try to avoid Write-After-Write hazards for mul operations
++;; if it can be done
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mult:SI
++ (sign_extend:SI (match_operand 1 "general_operand" ""))
++ (sign_extend:SI (match_operand 2 "general_operand" ""))))
++ (set (match_dup 0)
++ (match_operator:SI 3 "alu_operator" [(match_dup 0)
++ (match_operand 4 "general_operand" "")]))]
++ "peep2_reg_dead_p(1, operands[2])"
++ [(set (match_dup 5)
++ (mult:SI
++ (sign_extend:SI (match_dup 1))
++ (sign_extend:SI (match_dup 2))))
++ (set (match_dup 0)
++ (match_op_dup 3 [(match_dup 5)
++ (match_dup 4)]))]
++ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}"
++ )
++
++
++
++;;=============================================================================
++;; DSP instructions
++;;=============================================================================
++(define_insn "mulsathh_h"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 15))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulsathh.h\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulhh")])
++
++(define_insn "mulsatrndhh_h"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (ss_truncate:HI (ashiftrt:SI
++ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 1073741824))
++ (const_int 15))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulsatrndhh.h\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulhh")])
++
++(define_insn "mulsathh_w"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 1))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulsathh.w\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulhh")])
++
++(define_insn "mulsatwh_w"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 15))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulsatwh.w\t%0, %1, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++(define_insn "mulsatrndwh_w"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 1073741824))
++ (const_int 15))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulsatrndwh.w\t%0, %1, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++(define_insn "macsathh_w"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (plus:SI (match_dup 0)
++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 1)))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "macsathh.w\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulhh")])
++
++
++(define_insn "mulwh_d"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 16)))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulwh.d\t%0, %1, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++
++(define_insn "mulnwh_d"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 16)))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "mulnwh.d\t%0, %1, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++(define_insn "macwh_d"
++ [(set (match_operand:DI 0 "register_operand" "+r")
++ (plus:DI (match_dup 0)
++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
++ (const_int 16))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "macwh.d\t%0, %1, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++(define_insn "machh_d"
++ [(set (match_operand:DI 0 "register_operand" "+r")
++ (plus:DI (match_dup 0)
++ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))]
++ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
++ "machh.d\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "mulwh")])
++
++(define_insn "satadd_w"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (ss_plus:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))]
++ "TARGET_DSP"
++ "satadd.w\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "alu_sat")])
++
++(define_insn "satsub_w"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (ss_minus:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))]
++ "TARGET_DSP"
++ "satsub.w\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "alu_sat")])
++
++(define_insn "satadd_h"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (ss_plus:HI (match_operand:HI 1 "register_operand" "r")
++ (match_operand:HI 2 "register_operand" "r")))]
++ "TARGET_DSP"
++ "satadd.h\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "alu_sat")])
++
++(define_insn "satsub_h"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (ss_minus:HI (match_operand:HI 1 "register_operand" "r")
++ (match_operand:HI 2 "register_operand" "r")))]
++ "TARGET_DSP"
++ "satsub.h\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")
++ (set_attr "type" "alu_sat")])
++
++
++;;=============================================================================
++;; smin
++;;-----------------------------------------------------------------------------
++;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed
++;; values in the registers.
++;;=============================================================================
++(define_insn "sminsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (smin:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))]
++ ""
++ "min %0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++;;=============================================================================
++;; smax
++;;-----------------------------------------------------------------------------
++;; Set reg0 to the largest value of reg1 and reg2. It is used for signed
++;; values in the registers.
++;;=============================================================================
++(define_insn "smaxsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (smax:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))]
++ ""
++ "max %0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++
++
++;;=============================================================================
++;; Logical operations
++;;-----------------------------------------------------------------------------
++
++
++;; Split up simple DImode logical operations. Simply perform the logical
++;; operation on the upper and lower halves of the registers.
++(define_split
++ [(set (match_operand:DI 0 "register_operand" "")
++ (match_operator:DI 6 "logical_binary_operator"
++ [(match_operand:DI 1 "register_operand" "")
++ (match_operand:DI 2 "register_operand" "")]))]
++ "reload_completed"
++ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)]))
++ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))]
++ "
++ {
++ operands[3] = gen_highpart (SImode, operands[0]);
++ operands[0] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_highpart (SImode, operands[1]);
++ operands[1] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_highpart (SImode, operands[2]);
++ operands[2] = gen_lowpart (SImode, operands[2]);
++ }"
++)
++
++;;=============================================================================
++;; Logical operations with shifted operand
++;;=============================================================================
++(define_insn "<code>si_lshift"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (logical:SI (match_operator:SI 4 "logical_shift_operator"
++ [(match_operand:SI 2 "register_operand" "r")
++ (match_operand:SI 3 "immediate_operand" "Ku05")])
++ (match_operand:SI 1 "register_operand" "r")))]
++ ""
++ {
++ if ( GET_CODE(operands[4]) == ASHIFT )
++ return "<logical_insn>\t%0, %1, %2 << %3";
++ else
++ return "<logical_insn>\t%0, %1, %2 >> %3";
++ }
++
++ [(set_attr "cc" "set_z")]
++)
++
++
++;;************************************************
++;; Peepholes for detecting logical operantions
++;; with shifted operands
++;;************************************************
++
++(define_peephole
++ [(set (match_operand:SI 3 "register_operand" "")
++ (match_operator:SI 5 "logical_shift_operator"
++ [(match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")]))
++ (set (match_operand:SI 0 "register_operand" "")
++ (logical:SI (match_operand:SI 4 "register_operand" "")
++ (match_dup 3)))]
++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
++ {
++ if ( GET_CODE(operands[5]) == ASHIFT )
++ return "<logical_insn>\t%0, %4, %1 << %2";
++ else
++ return "<logical_insn>\t%0, %4, %1 >> %2";
++ }
++ [(set_attr "cc" "set_z")]
++ )
++
++(define_peephole
++ [(set (match_operand:SI 3 "register_operand" "")
++ (match_operator:SI 5 "logical_shift_operator"
++ [(match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")]))
++ (set (match_operand:SI 0 "register_operand" "")
++ (logical:SI (match_dup 3)
++ (match_operand:SI 4 "register_operand" "")))]
++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
++ {
++ if ( GET_CODE(operands[5]) == ASHIFT )
++ return "<logical_insn>\t%0, %4, %1 << %2";
++ else
++ return "<logical_insn>\t%0, %4, %1 >> %2";
++ }
++ [(set_attr "cc" "set_z")]
++ )
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operator:SI 5 "logical_shift_operator"
++ [(match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")]))
++ (set (match_operand:SI 3 "register_operand" "")
++ (logical:SI (match_operand:SI 4 "register_operand" "")
++ (match_dup 0)))]
++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
++
++ [(set (match_dup 3)
++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
++ (match_dup 4)))]
++
++ ""
++)
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operator:SI 5 "logical_shift_operator"
++ [(match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")]))
++ (set (match_operand:SI 3 "register_operand" "")
++ (logical:SI (match_dup 0)
++ (match_operand:SI 4 "register_operand" "")))]
++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
++
++ [(set (match_dup 3)
++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
++ (match_dup 4)))]
++
++ ""
++)
++
++
++;;=============================================================================
++;; and
++;;-----------------------------------------------------------------------------
++;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0.
++;;=============================================================================
++
++(define_insn "andnsi"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (and:SI (match_dup 0)
++ (not:SI (match_operand:SI 1 "register_operand" "r"))))]
++ ""
++ "andn %0, %1"
++ [(set_attr "cc" "set_z")
++ (set_attr "length" "2")]
++)
++
++
++(define_insn "andsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r, r, r, r")
++ (and:SI (match_operand:SI 1 "register_operand" "%0, r, 0, r")
++ (match_operand:SI 2 "nonmemory_operand" "r, M, i, r")))]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "and\t%0, %2";
++ case 1:
++ {
++ int i, first_set = -1;
++ /* Search for first bit set in mask */
++ for ( i = 31; i >= 0; --i )
++ if ( INTVAL(operands[2]) & (1 << i) ){
++ first_set = i;
++ break;
++ }
++ operands[2] = gen_rtx_CONST_INT(SImode, first_set + 1);
++ return "bfextu\t%0, %1, 0, %2";
++ }
++ case 2:
++ if ( one_bit_cleared_operand(operands[2], VOIDmode) ){
++ int bitpos;
++ for ( bitpos = 0; bitpos < 32; bitpos++ )
++ if ( !(INTVAL(operands[2]) & (1 << bitpos)) )
++ break;
++ operands[2] = gen_rtx_CONST_INT(SImode, bitpos);
++ return "cbr\t%0, %2";
++ } else if ( (INTVAL(operands[2]) >= 0) &&
++ (INTVAL(operands[2]) <= 65535) )
++ return "andl\t%0, %2, COH";
++ else if ( (INTVAL(operands[2]) < 0) &&
++ (INTVAL(operands[2]) >= -65536 ) )
++ return "andl\t%0, lo(%2)";
++ else if ( ((INTVAL(operands[2]) & 0xffff) == 0xffff) )
++ return "andh\t%0, hi(%2)";
++ else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
++ return "andh\t%0, hi(%2), COH";
++ else
++ return "andh\t%0, hi(%2)\;andl\t%0, lo(%2)";
++ case 3:
++ return "and\t%0, %1, %2";
++ default:
++ abort();
++ }
++ }
++
++ [(set_attr "length" "2,4,8,4")
++ (set_attr "cc" "set_z")])
++
++
++
++
++(define_insn "anddi3"
++ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
++ (and:DI (match_operand:DI 1 "register_operand" "%0,r")
++ (match_operand:DI 2 "register_operand" "r,r")))]
++ ""
++ "#"
++ [(set_attr "length" "8")
++ (set_attr "cc" "clobber")]
++)
++
++;;=============================================================================
++;; or
++;;-----------------------------------------------------------------------------
++;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0.
++;;=============================================================================
++
++(define_insn "iorsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (ior:SI (match_operand:SI 1 "register_operand" "%0,0,r" )
++ (match_operand:SI 2 "nonmemory_operand" "r ,i,r")))]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "or\t%0, %2";
++ case 1:
++ if ( one_bit_set_operand(operands[2], VOIDmode) ){
++ int bitpos;
++ for (bitpos = 0; bitpos < 32; bitpos++)
++ if (INTVAL(operands[2]) & (1 << bitpos))
++ break;
++ operands[2] = gen_rtx_CONST_INT( SImode, bitpos);
++ return "sbr\t%0, %2";
++ } else if ( (INTVAL(operands[2]) >= 0) &&
++ (INTVAL(operands[2]) <= 65535) )
++ return "orl\t%0, %2";
++ else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
++ return "orh\t%0, hi(%2)";
++ else
++ return "orh\t%0, hi(%2)\;orl\t%0, lo(%2)";
++ case 2:
++ return "or\t%0, %1, %2";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,8,4")
++ (set_attr "cc" "set_z")])
++
++
++(define_insn "iordi3"
++ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
++ (ior:DI (match_operand:DI 1 "register_operand" "%0,r")
++ (match_operand:DI 2 "register_operand" "r,r")))]
++ ""
++ "#"
++ [(set_attr "length" "8")
++ (set_attr "cc" "clobber")]
++)
++
++;;=============================================================================
++;; xor bytes
++;;-----------------------------------------------------------------------------
++;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0.
++;;=============================================================================
++
++(define_insn "xorsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (xor:SI (match_operand:SI 1 "register_operand" "0,0,r")
++ (match_operand:SI 2 "nonmemory_operand" "r,i,r")))]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "eor %0, %2";
++ case 1:
++ if ( (INTVAL(operands[2]) >= 0) &&
++ (INTVAL(operands[2]) <= 65535) )
++ return "eorl %0, %2";
++ else if ( ((INTVAL(operands[2]) & 0xffff) == 0x0) )
++ return "eorh %0, hi(%2)";
++ else
++ return "eorh %0, hi(%2)\;eorl %0, lo(%2)";
++ case 2:
++ return "eor %0, %1, %2";
++ default:
++ abort();
++ }
++ }
++
++ [(set_attr "length" "2,8,4")
++ (set_attr "cc" "set_z")])
++
++
++(define_insn "xordi3"
++ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
++ (xor:DI (match_operand:DI 1 "register_operand" "%0,r")
++ (match_operand:DI 2 "register_operand" "r,r")))]
++ ""
++ "#"
++ [(set_attr "length" "8")
++ (set_attr "cc" "clobber")]
++)
++
++;;=============================================================================
++;; Three operand predicable insns
++;;=============================================================================
++
++(define_insn "<predicable_insn3><mode>_predicable"
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r")
++ (match_operand:INTM 2 "register_operand" "r")))]
++ "TARGET_V2_INSNS"
++ "<predicable_insn3>%?\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++)
++
++(define_insn_and_split "<predicable_insn3><mode>_imm_clobber_predicable"
++ [(parallel
++ [(set (match_operand:INTM 0 "register_operand" "=r")
++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r")
++ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21")))
++ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])]
++ "TARGET_V2_INSNS"
++ {
++ if ( current_insn_predicate != NULL_RTX )
++ {
++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") )
++ return "%! mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") )
++ return "%! mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
++ else
++ return "%! movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3";
++ }
++ else
++ {
++ if ( !avr32_cond_imm_clobber_splittable (insn, operands) )
++ {
++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") )
++ return "mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") )
++ return "mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
++ else
++ return "movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3";
++ }
++ return "#";
++ }
++
++ }
++ ;; If we find out that we could not actually do if-conversion on the block
++ ;; containing this insn we convert it back to normal immediate format
++ ;; to avoid outputing a redundant move insn
++ ;; Do not split until after we have checked if we can make the insn
++ ;; conditional.
++ "(GET_CODE (PATTERN (insn)) != COND_EXEC
++ && cfun->machine->ifcvt_after_reload
++ && avr32_cond_imm_clobber_splittable (insn, operands))"
++ [(set (match_dup 0)
++ (predicable_op3:INTM (match_dup 1)
++ (match_dup 2)))]
++ ""
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++ )
++
++
++;;=============================================================================
++;; Zero extend predicable insns
++;;=============================================================================
++(define_insn_and_split "zero_extendhisi_clobber_predicable"
++ [(parallel
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI (match_operand:HI 1 "register_operand" "r")))
++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
++ "TARGET_V2_INSNS"
++ {
++ if ( current_insn_predicate != NULL_RTX )
++ {
++ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2";
++ }
++ else
++ {
++ return "#";
++ }
++
++ }
++ ;; If we find out that we could not actually do if-conversion on the block
++ ;; containing this insn we convert it back to normal immediate format
++ ;; to avoid outputing a redundant move insn
++ ;; Do not split until after we have checked if we can make the insn
++ ;; conditional.
++ "(GET_CODE (PATTERN (insn)) != COND_EXEC
++ && cfun->machine->ifcvt_after_reload)"
++ [(set (match_dup 0)
++ (zero_extend:SI (match_dup 1)))]
++ ""
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++ )
++
++(define_insn_and_split "zero_extendqisi_clobber_predicable"
++ [(parallel
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI (match_operand:QI 1 "register_operand" "r")))
++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
++ "TARGET_V2_INSNS"
++ {
++ if ( current_insn_predicate != NULL_RTX )
++ {
++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2";
++ }
++ else
++ {
++ return "#";
++ }
++
++ }
++ ;; If we find out that we could not actually do if-conversion on the block
++ ;; containing this insn we convert it back to normal immediate format
++ ;; to avoid outputing a redundant move insn
++ ;; Do not split until after we have checked if we can make the insn
++ ;; conditional.
++ "(GET_CODE (PATTERN (insn)) != COND_EXEC
++ && cfun->machine->ifcvt_after_reload)"
++ [(set (match_dup 0)
++ (zero_extend:SI (match_dup 1)))]
++ ""
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++ )
++
++(define_insn_and_split "zero_extendqihi_clobber_predicable"
++ [(parallel
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (zero_extend:HI (match_operand:QI 1 "register_operand" "r")))
++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
++ "TARGET_V2_INSNS"
++ {
++ if ( current_insn_predicate != NULL_RTX )
++ {
++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2";
++ }
++ else
++ {
++ return "#";
++ }
++
++ }
++ ;; If we find out that we could not actually do if-conversion on the block
++ ;; containing this insn we convert it back to normal immediate format
++ ;; to avoid outputing a redundant move insn
++ ;; Do not split until after we have checked if we can make the insn
++ ;; conditional.
++ "(GET_CODE (PATTERN (insn)) != COND_EXEC
++ && cfun->machine->ifcvt_after_reload)"
++ [(set (match_dup 0)
++ (zero_extend:HI (match_dup 1)))]
++ ""
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")]
++ )
++;;=============================================================================
++;; divmod
++;;-----------------------------------------------------------------------------
++;; Signed division that produces both a quotient and a remainder.
++;;=============================================================================
++(define_expand "divmodsi4"
++ [(parallel [
++ (parallel [
++ (set (match_operand:SI 0 "register_operand" "=r")
++ (div:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))
++ (set (match_operand:SI 3 "register_operand" "=r")
++ (mod:SI (match_dup 1)
++ (match_dup 2)))])
++ (use (match_dup 4))])]
++ ""
++ {
++ if (can_create_pseudo_p ()) {
++ operands[4] = gen_reg_rtx (DImode);
++
++ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2]));
++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
++
++ DONE;
++ } else {
++ FAIL;
++ }
++
++ })
++
++
++(define_insn "divmodsi4_internal"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (unspec:DI [(match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")]
++ UNSPEC_DIVMODSI4_INTERNAL))]
++ ""
++ "divs %0, %1, %2"
++ [(set_attr "type" "div")
++ (set_attr "cc" "none")])
++
++
++;;=============================================================================
++;; udivmod
++;;-----------------------------------------------------------------------------
++;; Unsigned division that produces both a quotient and a remainder.
++;;=============================================================================
++(define_expand "udivmodsi4"
++ [(parallel [
++ (parallel [
++ (set (match_operand:SI 0 "register_operand" "=r")
++ (udiv:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")))
++ (set (match_operand:SI 3 "register_operand" "=r")
++ (umod:SI (match_dup 1)
++ (match_dup 2)))])
++ (use (match_dup 4))])]
++ ""
++ {
++ if (can_create_pseudo_p ()) {
++ operands[4] = gen_reg_rtx (DImode);
++
++ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2]));
++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
++
++ DONE;
++ } else {
++ FAIL;
++ }
++ })
++
++(define_insn "udivmodsi4_internal"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (unspec:DI [(match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "register_operand" "r")]
++ UNSPEC_UDIVMODSI4_INTERNAL))]
++ ""
++ "divu %0, %1, %2"
++ [(set_attr "type" "div")
++ (set_attr "cc" "none")])
++
++
++;;=============================================================================
++;; Arithmetic-shift left
++;;-----------------------------------------------------------------------------
++;; Arithmetic-shift reg0 left by reg2 or immediate value.
++;;=============================================================================
++
++(define_insn "ashlsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r")
++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))]
++ ""
++ "@
++ lsl %0, %1, %2
++ lsl %0, %2
++ lsl %0, %1, %2"
++ [(set_attr "length" "4,2,4")
++ (set_attr "cc" "set_ncz")])
++
++;;=============================================================================
++;; Arithmetic-shift right
++;;-----------------------------------------------------------------------------
++;; Arithmetic-shift reg0 right by an immediate value.
++;;=============================================================================
++
++(define_insn "ashrsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))]
++ ""
++ "@
++ asr %0, %1, %2
++ asr %0, %2
++ asr %0, %1, %2"
++ [(set_attr "length" "4,2,4")
++ (set_attr "cc" "set_ncz")])
++
++;;=============================================================================
++;; Logical shift right
++;;-----------------------------------------------------------------------------
++;; Logical shift reg0 right by an immediate value.
++;;=============================================================================
++
++(define_insn "lshrsi3"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))]
++ ""
++ "@
++ lsr %0, %1, %2
++ lsr %0, %2
++ lsr %0, %1, %2"
++ [(set_attr "length" "4,2,4")
++ (set_attr "cc" "set_ncz")])
++
++
++;;=============================================================================
++;; neg
++;;-----------------------------------------------------------------------------
++;; Negate operand 1 and store the result in operand 0.
++;;=============================================================================
++(define_insn "negsi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r")
++ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))]
++ ""
++ "@
++ neg\t%0
++ rsub\t%0, %1, 0"
++ [(set_attr "length" "2,4")
++ (set_attr "cc" "set_vncz")])
++
++(define_insn "negsi2_predicable"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (neg:SI (match_dup 0)))]
++ "TARGET_V2_INSNS"
++ "rsub%?\t%0, 0"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")])
++
++;;=============================================================================
++;; abs
++;;-----------------------------------------------------------------------------
++;; Store the absolute value of operand 1 into operand 0.
++;;=============================================================================
++(define_insn "abssi2"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (abs:SI (match_operand:SI 1 "register_operand" "0")))]
++ ""
++ "abs\t%0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "set_z")])
++
++
++;;=============================================================================
++;; one_cmpl
++;;-----------------------------------------------------------------------------
++;; Store the bitwise-complement of operand 1 into operand 0.
++;;=============================================================================
++
++(define_insn "one_cmplsi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r")
++ (not:SI (match_operand:SI 1 "register_operand" "r,0")))]
++ ""
++ "@
++ rsub\t%0, %1, -1
++ com\t%0"
++ [(set_attr "length" "4,2")
++ (set_attr "cc" "set_z")])
++
++
++(define_insn "one_cmplsi2_predicable"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (not:SI (match_dup 0)))]
++ "TARGET_V2_INSNS"
++ "rsub%?\t%0, -1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "predicable" "yes")])
++
++
++;;=============================================================================
++;; Bit load
++;;-----------------------------------------------------------------------------
++;; Load a bit into Z and C flags
++;;=============================================================================
++(define_insn "bldsi"
++ [(set (cc0)
++ (and:SI (match_operand:SI 0 "register_operand" "r")
++ (match_operand:SI 1 "one_bit_set_operand" "i")))]
++ ""
++ "bld\t%0, %p1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "bld")]
++ )
++
++
++;;=============================================================================
++;; Compare
++;;-----------------------------------------------------------------------------
++;; Compare reg0 with reg1 or an immediate value.
++;;=============================================================================
++
++(define_expand "cmp<mode>"
++ [(set (cc0)
++ (compare:CMP
++ (match_operand:CMP 0 "register_operand" "")
++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "")))]
++ ""
++ "{
++ avr32_compare_op0 = operands[0];
++ avr32_compare_op1 = operands[1];
++ }"
++)
++
++(define_insn "cmp<mode>_internal"
++ [(set (cc0)
++ (compare:CMP
++ (match_operand:CMP 0 "register_operand" "r")
++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")))]
++ ""
++ {
++ /* Check if the next insn already will output a compare. */
++ if (!next_insn_emits_cmp (insn))
++ set_next_insn_cond(insn,
++ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1]));
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "cc" "compare")])
++
++
++;;;=============================================================================
++;; Test if zero
++;;-----------------------------------------------------------------------------
++;; Compare reg against zero and set the condition codes.
++;;=============================================================================
++
++
++(define_expand "tstsi"
++ [(set (cc0)
++ (match_operand:SI 0 "register_operand" ""))]
++ ""
++ {
++ avr32_compare_op0 = operands[0];
++ avr32_compare_op1 = const0_rtx;
++ }
++)
++
++(define_insn "tstsi_internal"
++ [(set (cc0)
++ (match_operand:SI 0 "register_operand" "r"))]
++ ""
++ {
++ /* Check if the next insn already will output a compare. */
++ if (!next_insn_emits_cmp (insn))
++ set_next_insn_cond(insn,
++ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx));
++
++ return "";
++ }
++ [(set_attr "length" "2")
++ (set_attr "cc" "compare")])
++
++
++(define_expand "tstdi"
++ [(set (cc0)
++ (match_operand:DI 0 "register_operand" ""))]
++ ""
++ {
++ avr32_compare_op0 = operands[0];
++ avr32_compare_op1 = const0_rtx;
++ }
++)
++
++(define_insn "tstdi_internal"
++ [(set (cc0)
++ (match_operand:DI 0 "register_operand" "r"))]
++ ""
++ {
++ /* Check if the next insn already will output a compare. */
++ if (!next_insn_emits_cmp (insn))
++ set_next_insn_cond(insn,
++ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx));
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "type" "alu2")
++ (set_attr "cc" "compare")])
++
++
++
++;;=============================================================================
++;; Convert operands
++;;-----------------------------------------------------------------------------
++;;
++;;=============================================================================
++(define_insn "truncdisi2"
++ [(set (match_operand:SI 0 "general_operand" "")
++ (truncate:SI (match_operand:DI 1 "general_operand" "")))]
++ ""
++ "truncdisi2")
++
++;;=============================================================================
++;; Extend
++;;-----------------------------------------------------------------------------
++;;
++;;=============================================================================
++
++
++(define_insn "extendhisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "casts.h\t%0";
++ case 1:
++ return "bfexts\t%0, %1, 0, 16";
++ case 2:
++ case 3:
++ return "ld.sh\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz,set_ncz,none,none")
++ (set_attr "type" "alu,alu,load_rm,load_rm")])
++
++(define_insn "extendqisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
++ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "casts.b\t%0";
++ case 1:
++ return "bfexts\t%0, %1, 0, 8";
++ case 2:
++ case 3:
++ return "ld.sb\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz,set_ncz,none,none")
++ (set_attr "type" "alu,alu,load_rm,load_rm")])
++
++(define_insn "extendqihi2"
++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
++ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "casts.b\t%0";
++ case 1:
++ return "bfexts\t%0, %1, 0, 8";
++ case 2:
++ case 3:
++ return "ld.sb\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz,set_ncz,none,none")
++ (set_attr "type" "alu,alu,load_rm,load_rm")])
++
++
++;;=============================================================================
++;; Zero-extend
++;;-----------------------------------------------------------------------------
++;;
++;;=============================================================================
++
++(define_insn "zero_extendhisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "castu.h\t%0";
++ case 1:
++ return "bfextu\t%0, %1, 0, 16";
++ case 2:
++ case 3:
++ return "ld.uh\t%0, %1";
++ default:
++ abort();
++ }
++ }
++
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz,set_ncz,none,none")
++ (set_attr "type" "alu,alu,load_rm,load_rm")])
++
++(define_insn "zero_extendqisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "castu.b\t%0";
++ case 1:
++ return "bfextu\t%0, %1, 0, 8";
++ case 2:
++ case 3:
++ return "ld.ub\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz, set_ncz, none, none")
++ (set_attr "type" "alu, alu, load_rm, load_rm")])
++
++(define_insn "zero_extendqihi2"
++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ return "castu.b\t%0";
++ case 1:
++ return "bfextu\t%0, %1, 0, 8";
++ case 2:
++ case 3:
++ return "ld.ub\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,2,4")
++ (set_attr "cc" "set_ncz, set_ncz, none, none")
++ (set_attr "type" "alu, alu, load_rm, load_rm")])
++
++
++;;=============================================================================
++;; Conditional load and extend insns
++;;=============================================================================
++(define_insn "ldsi<mode>_predicable_se"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (sign_extend:SI
++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))]
++ "TARGET_V2_INSNS"
++ "ld<INTM:load_postfix_s>%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "load")
++ (set_attr "predicable" "yes")]
++)
++
++(define_insn "ldsi<mode>_predicable_ze"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI
++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))]
++ "TARGET_V2_INSNS"
++ "ld<INTM:load_postfix_u>%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "load")
++ (set_attr "predicable" "yes")]
++)
++
++(define_insn "ldhi_predicable_ze"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (zero_extend:HI
++ (match_operand:QI 1 "memory_operand" "RKs10")))]
++ "TARGET_V2_INSNS"
++ "ld.ub%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "load")
++ (set_attr "predicable" "yes")]
++)
++
++(define_insn "ldhi_predicable_se"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (sign_extend:HI
++ (match_operand:QI 1 "memory_operand" "RKs10")))]
++ "TARGET_V2_INSNS"
++ "ld.sb%?\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "cmp_cond_insn")
++ (set_attr "type" "load")
++ (set_attr "predicable" "yes")]
++)
++
++;;=============================================================================
++;; Conditional set register
++;; sr{cond4} rd
++;;-----------------------------------------------------------------------------
++
++;;Because of the same issue as with conditional moves and adds we must
++;;not separate the compare instrcution from the scc instruction as
++;;they might be sheduled "badly".
++
++(define_insn "s<code>"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (any_cond:SI (cc0)
++ (const_int 0)))]
++ ""
++ "sr<cond>\t%0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "none")])
++
++(define_insn "smi"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (unspec:SI [(cc0)
++ (const_int 0)] UNSPEC_COND_MI))]
++ ""
++ "srmi\t%0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "none")])
++
++(define_insn "spl"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (unspec:SI [(cc0)
++ (const_int 0)] UNSPEC_COND_PL))]
++ ""
++ "srpl\t%0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "none")])
++
++
++;;=============================================================================
++;; Conditional branch
++;;-----------------------------------------------------------------------------
++;; Branch to label if the specified condition codes are set.
++;;=============================================================================
++; branch if negative
++(define_insn "bmi"
++ [(set (pc)
++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "brmi %0"
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++(define_insn "*bmi-reverse"
++ [(set (pc)
++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
++ (pc)
++ (label_ref (match_operand 0 "" ""))))]
++ ""
++ "brpl %0"
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++; branch if positive
++(define_insn "bpl"
++ [(set (pc)
++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "brpl %0"
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++(define_insn "*bpl-reverse"
++ [(set (pc)
++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
++ (pc)
++ (label_ref (match_operand 0 "" ""))))]
++ ""
++ "brmi %0"
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++; branch if equal
++(define_insn "b<code>"
++ [(set (pc)
++ (if_then_else (any_cond:CC (cc0)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "br<cond> %0 "
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++
++(define_insn "*b<code>-reverse"
++ [(set (pc)
++ (if_then_else (any_cond:CC (cc0)
++ (const_int 0))
++ (pc)
++ (label_ref (match_operand 0 "" ""))))]
++ ""
++ "br<invcond> %0 "
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
++ (le (minus (pc) (match_dup 0)) (const_int 256)))
++ (const_int 2)] ; use compact branch
++ (const_int 4))) ; use extended branch
++ (set_attr "cc" "none")])
++
++
++
++;=============================================================================
++; Conditional Add/Subtract
++;-----------------------------------------------------------------------------
++; sub{cond4} Rd, imm
++;=============================================================================
++
++
++(define_expand "add<mode>cc"
++ [(set (match_operand:ADDCC 0 "register_operand" "")
++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
++ [(match_dup 4)
++ (match_dup 5)])
++ (match_operand:ADDCC 2 "register_operand" "")
++ (plus:ADDCC
++ (match_dup 2)
++ (match_operand:ADDCC 3 "" ""))))]
++ ""
++ {
++ if ( !(GET_CODE (operands[3]) == CONST_INT
++ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){
++ FAIL;
++ }
++
++ /* Delete compare instruction as it is merged into this instruction */
++ remove_insn (get_last_insn_anywhere ());
++
++ operands[4] = avr32_compare_op0;
++ operands[5] = avr32_compare_op1;
++
++ if ( TARGET_V2_INSNS
++ && REG_P(operands[3])
++ && REGNO(operands[0]) != REGNO(operands[2]) ){
++ emit_move_insn (operands[0], operands[2]);
++ operands[2] = operands[0];
++ }
++ }
++ )
++
++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>_reg"
++ [(set (match_operand:ADDCC 0 "register_operand" "=r")
++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
++ [(match_operand:CMP 4 "register_operand" "r")
++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])
++ (match_dup 0)
++ (plus:ADDCC
++ (match_operand:ADDCC 2 "register_operand" "r")
++ (match_operand:ADDCC 3 "register_operand" "r"))))]
++ "TARGET_V2_INSNS"
++ {
++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
++ return "add%i1\t%0, %2, %3";
++ }
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")])
++
++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>"
++ [(set (match_operand:ADDCC 0 "register_operand" "=r")
++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
++ [(match_operand:CMP 4 "register_operand" "r")
++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])
++ (match_operand:ADDCC 2 "register_operand" "0")
++ (plus:ADDCC
++ (match_dup 2)
++ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))]
++ ""
++ {
++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
++ return "sub%i1\t%0, -%3";
++ }
++ [(set_attr "length" "8")
++ (set_attr "cc" "cmp_cond_insn")])
++
++;=============================================================================
++; Conditional Move
++;-----------------------------------------------------------------------------
++; mov{cond4} Rd, (Rs/imm)
++;=============================================================================
++(define_expand "mov<mode>cc"
++ [(set (match_operand:MOVCC 0 "register_operand" "")
++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator"
++ [(match_dup 4)
++ (match_dup 5)])
++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "")
++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))]
++ ""
++ {
++ /* Delete compare instruction as it is merged into this instruction */
++ remove_insn (get_last_insn_anywhere ());
++
++ operands[4] = avr32_compare_op0;
++ operands[5] = avr32_compare_op1;
++ }
++ )
++
++
++(define_insn "mov<MOVCC:mode>cc_cmp<CMP:mode>"
++ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r")
++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator"
++ [(match_operand:CMP 4 "register_operand" "r,r,r")
++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>,<CMP:cmp_constraint>,<CMP:cmp_constraint>")])
++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08")
++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))]
++ ""
++ {
++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
++
++ switch( which_alternative ){
++ case 0:
++ return "mov%i1 %0, %3";
++ case 1:
++ return "mov%1 %0, %2";
++ case 2:
++ return "mov%1 %0, %2\;mov%i1 %0, %3";
++ default:
++ abort();
++ }
++
++ }
++ [(set_attr "length" "8,8,12")
++ (set_attr "cc" "cmp_cond_insn")])
++
++
++
++
++;;=============================================================================
++;; jump
++;;-----------------------------------------------------------------------------
++;; Jump inside a function; an unconditional branch to a label.
++;;=============================================================================
++(define_insn "jump"
++ [(set (pc)
++ (label_ref (match_operand 0 "" "")))]
++ ""
++ {
++ if (get_attr_length(insn) > 4)
++ return "Can't jump this far";
++ return (get_attr_length(insn) == 2 ?
++ "rjmp %0" : "bral %0");
++ }
++ [(set_attr "type" "branch")
++ (set (attr "length")
++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022))
++ (le (minus (pc) (match_dup 0)) (const_int 1024)))
++ (const_int 2) ; use rjmp
++ (le (match_dup 0) (const_int 1048575))
++ (const_int 4)] ; use bral
++ (const_int 8))) ; do something else
++ (set_attr "cc" "none")])
++
++;;=============================================================================
++;; call
++;;-----------------------------------------------------------------------------
++;; Subroutine call instruction returning no value.
++;;=============================================================================
++(define_insn "call_internal"
++ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W"))
++ (match_operand 1 "" ""))
++ (clobber (reg:SI LR_REGNUM))])]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "icall\t%0";
++ case 1:
++ return "rcall\t%0";
++ case 2:
++ return "mcall\t%0";
++ case 3:
++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
++ return "call\t%0";
++ else
++ return "mcall\tr6[%0@got]";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "type" "call")
++ (set_attr "length" "2,4,4,10")
++ (set_attr "cc" "clobber")])
++
++
++(define_expand "call"
++ [(parallel [(call (match_operand:SI 0 "" "")
++ (match_operand 1 "" ""))
++ (clobber (reg:SI LR_REGNUM))])]
++ ""
++ {
++ rtx call_address;
++ if ( GET_CODE(operands[0]) != MEM )
++ FAIL;
++
++ call_address = XEXP(operands[0], 0);
++
++ /* If assembler supports call pseudo insn and the call
++ address is a symbol then nothing special needs to be done. */
++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS
++ && (GET_CODE(call_address) == SYMBOL_REF) ){
++ /* We must however mark the function as using the GOT if
++ flag_pic is set, since the call insn might turn into
++ a mcall using the GOT ptr register. */
++ if ( flag_pic ){
++ current_function_uses_pic_offset_table = 1;
++ emit_call_insn(gen_call_internal(call_address, operands[1]));
++ DONE;
++ }
++ } else {
++ if ( flag_pic &&
++ GET_CODE(call_address) == SYMBOL_REF ){
++ current_function_uses_pic_offset_table = 1;
++ emit_call_insn(gen_call_internal(call_address, operands[1]));
++ DONE;
++ }
++
++ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ){
++ if ( optimize_size &&
++ GET_CODE(call_address) == SYMBOL_REF ){
++ call_address = force_const_mem(SImode, call_address);
++ } else {
++ call_address = force_reg(SImode, call_address);
++ }
++ }
++ }
++ emit_call_insn(gen_call_internal(call_address, operands[1]));
++ DONE;
++ }
++)
++
++;;=============================================================================
++;; call_value
++;;-----------------------------------------------------------------------------
++;; Subrutine call instruction returning a value.
++;;=============================================================================
++(define_expand "call_value"
++ [(parallel [(set (match_operand:SI 0 "" "")
++ (call (match_operand:SI 1 "" "")
++ (match_operand 2 "" "")))
++ (clobber (reg:SI LR_REGNUM))])]
++ ""
++ {
++ rtx call_address;
++ if ( GET_CODE(operands[1]) != MEM )
++ FAIL;
++
++ call_address = XEXP(operands[1], 0);
++
++ /* If assembler supports call pseudo insn and the call
++ address is a symbol then nothing special needs to be done. */
++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS
++ && (GET_CODE(call_address) == SYMBOL_REF) ){
++ /* We must however mark the function as using the GOT if
++ flag_pic is set, since the call insn might turn into
++ a mcall using the GOT ptr register. */
++ if ( flag_pic ) {
++ current_function_uses_pic_offset_table = 1;
++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
++ DONE;
++ }
++ } else {
++ if ( flag_pic &&
++ GET_CODE(call_address) == SYMBOL_REF ){
++ current_function_uses_pic_offset_table = 1;
++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
++ DONE;
++ }
++
++ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){
++ if ( optimize_size &&
++ GET_CODE(call_address) == SYMBOL_REF){
++ call_address = force_const_mem(SImode, call_address);
++ } else {
++ call_address = force_reg(SImode, call_address);
++ }
++ }
++ }
++ emit_call_insn(gen_call_value_internal(operands[0], call_address,
++ operands[2]));
++ DONE;
++
++ })
++
++(define_insn "call_value_internal"
++ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r")
++ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W"))
++ (match_operand 2 "" "")))
++ (clobber (reg:SI LR_REGNUM))])]
++ ;; Operand 2 not used on the AVR32.
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "icall\t%1";
++ case 1:
++ return "rcall\t%1";
++ case 2:
++ return "mcall\t%1";
++ case 3:
++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
++ return "call\t%1";
++ else
++ return "mcall\tr6[%1@got]";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "type" "call")
++ (set_attr "length" "2,4,4,10")
++ (set_attr "cc" "call_set")])
++
++
++;;=============================================================================
++;; untyped_call
++;;-----------------------------------------------------------------------------
++;; Subrutine call instruction returning a value of any type.
++;; The code is copied from m68k.md (except gen_blockage is removed)
++;; Fixme!
++;;=============================================================================
++(define_expand "untyped_call"
++ [(parallel [(call (match_operand 0 "avr32_call_operand" "")
++ (const_int 0))
++ (match_operand 1 "" "")
++ (match_operand 2 "" "")])]
++ ""
++ {
++ int i;
++
++ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
++
++ for (i = 0; i < XVECLEN (operands[2], 0); i++) {
++ rtx set = XVECEXP (operands[2], 0, i);
++ emit_move_insn (SET_DEST (set), SET_SRC (set));
++ }
++
++ /* The optimizer does not know that the call sets the function value
++ registers we stored in the result block. We avoid problems by
++ claiming that all hard registers are used and clobbered at this
++ point. */
++ emit_insn (gen_blockage ());
++
++ DONE;
++ })
++
++
++;;=============================================================================
++;; return
++;;=============================================================================
++
++(define_insn "return"
++ [(return)]
++ "USE_RETURN_INSN (FALSE)"
++ {
++ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL);
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "type" "call")]
++ )
++
++
++(define_insn "return_cond"
++ [(set (pc)
++ (if_then_else (match_operand 0 "avr32_comparison_operand" "")
++ (return)
++ (pc)))]
++ "USE_RETURN_INSN (TRUE)"
++ "ret%0\tr12";
++ [(set_attr "type" "call")])
++
++(define_insn "return_cond_predicable"
++ [(return)]
++ "USE_RETURN_INSN (TRUE)"
++ "ret%?\tr12";
++ [(set_attr "type" "call")
++ (set_attr "predicable" "yes")])
++
++
++(define_insn "return_imm"
++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
++ (use (reg RETVAL_REGNUM))
++ (return)])]
++ "USE_RETURN_INSN (FALSE) &&
++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
++ {
++ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]);
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "type" "call")]
++ )
++
++(define_insn "return_imm_cond"
++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
++ (use (reg RETVAL_REGNUM))
++ (set (pc)
++ (if_then_else (match_operand 1 "avr32_comparison_operand" "")
++ (return)
++ (pc)))])]
++ "USE_RETURN_INSN (TRUE) &&
++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
++ "ret%1\t%0";
++ [(set_attr "type" "call")]
++ )
++
++(define_insn "return_imm_predicable"
++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
++ (use (reg RETVAL_REGNUM))
++ (return)])]
++ "USE_RETURN_INSN (TRUE) &&
++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
++ "ret%?\t%0";
++ [(set_attr "type" "call")
++ (set_attr "predicable" "yes")])
++
++(define_insn "return_<mode>reg"
++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r"))
++ (use (reg RETVAL_REGNUM))
++ (return)]
++ "USE_RETURN_INSN (TRUE)"
++ "ret%?\t%0";
++ [(set_attr "type" "call")
++ (set_attr "predicable" "yes")])
++
++(define_insn "return_<mode>reg_cond"
++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r"))
++ (use (reg RETVAL_REGNUM))
++ (set (pc)
++ (if_then_else (match_operator 1 "avr32_comparison_operator"
++ [(cc0) (const_int 0)])
++ (return)
++ (pc)))]
++ "USE_RETURN_INSN (TRUE)"
++ "ret%1\t%0";
++ [(set_attr "type" "call")])
++
++;;=============================================================================
++;; nop
++;;-----------------------------------------------------------------------------
++;; No-op instruction.
++;;=============================================================================
++(define_insn "nop"
++ [(const_int 0)]
++ ""
++ "nop"
++ [(set_attr "length" "2")
++ (set_attr "type" "alu")
++ (set_attr "cc" "none")])
++
++;;=============================================================================
++;; nonlocal_goto_receiver
++;;-----------------------------------------------------------------------------
++;; For targets with a return stack we must make sure to flush the return stack
++;; since it will be corrupt after a nonlocal goto.
++;;=============================================================================
++(define_expand "nonlocal_goto_receiver"
++ [(const_int 0)]
++ "TARGET_RETURN_STACK"
++ "
++ {
++ emit_insn ( gen_frs() );
++ DONE;
++ }
++ "
++ )
++
++
++;;=============================================================================
++;; builtin_setjmp_receiver
++;;-----------------------------------------------------------------------------
++;; For pic code we need to reload the pic register.
++;; For targets with a return stack we must make sure to flush the return stack
++;; since it will probably be corrupted.
++;;=============================================================================
++(define_expand "builtin_setjmp_receiver"
++ [(label_ref (match_operand 0 "" ""))]
++ "flag_pic"
++ "
++ {
++ if ( TARGET_RETURN_STACK )
++ emit_insn ( gen_frs() );
++
++ avr32_load_pic_register ();
++ DONE;
++ }
++ "
++)
++
++
++;;=============================================================================
++;; indirect_jump
++;;-----------------------------------------------------------------------------
++;; Jump to an address in reg or memory.
++;;=============================================================================
++(define_expand "indirect_jump"
++ [(set (pc)
++ (match_operand:SI 0 "general_operand" ""))]
++ ""
++ {
++ /* One of the ops has to be in a register. */
++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS )
++ && !avr32_legitimate_pic_operand_p(operands[0]) )
++ operands[0] = legitimize_pic_address (operands[0], SImode, 0);
++ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) )
++ /* If we have an address operand then this function uses the pic register. */
++ current_function_uses_pic_offset_table = 1;
++ })
++
++
++(define_insn "indirect_jump_internal"
++ [(set (pc)
++ (match_operand:SI 0 "general_operand" "r,m,W"))]
++ ""
++ {
++ switch( which_alternative ){
++ case 0:
++ return "mov\tpc, %0";
++ case 1:
++ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) )
++ return "lddpc\tpc, %0";
++ else
++ return "ld.w\tpc, %0";
++ case 2:
++ if ( flag_pic )
++ return "ld.w\tpc, r6[%0@got]";
++ else
++ return "lda.w\tpc, %0";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "2,4,8")
++ (set_attr "type" "call,call,call")
++ (set_attr "cc" "none,none,clobber")])
++
++
++
++;;=============================================================================
++;; casesi and tablejump
++;;=============================================================================
++(define_insn "tablejump_add"
++ [(set (pc)
++ (plus:SI (match_operand:SI 0 "register_operand" "r")
++ (mult:SI (match_operand:SI 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku04" ))))
++ (use (label_ref (match_operand 3 "" "")))]
++ "flag_pic &&
++ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) ||
++ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))"
++ "add\tpc, %0, %1 << %p2"
++ [(set_attr "length" "4")
++ (set_attr "cc" "clobber")])
++
++(define_insn "tablejump_insn"
++ [(set (pc) (match_operand:SI 0 "memory_operand" "m"))
++ (use (label_ref (match_operand 1 "" "")))]
++ "!flag_pic"
++ "ld.w\tpc, %0"
++ [(set_attr "length" "4")
++ (set_attr "type" "call")
++ (set_attr "cc" "none")])
++
++(define_expand "casesi"
++ [(match_operand:SI 0 "register_operand" "") ; index to jump on
++ (match_operand:SI 1 "const_int_operand" "") ; lower bound
++ (match_operand:SI 2 "const_int_operand" "") ; total range
++ (match_operand:SI 3 "" "") ; table label
++ (match_operand:SI 4 "" "")] ; Out of range label
++ ""
++ "
++ {
++ rtx reg;
++ rtx index = operands[0];
++ rtx low_bound = operands[1];
++ rtx range = operands[2];
++ rtx table_label = operands[3];
++ rtx oor_label = operands[4];
++
++ index = force_reg ( SImode, index );
++ if (low_bound != const0_rtx)
++ {
++ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){
++ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound)));
++ emit_insn (gen_subsi3 (reg, index,
++ reg));
++ } else {
++ reg = gen_reg_rtx (SImode);
++ emit_insn (gen_addsi3 (reg, index,
++ GEN_INT (-INTVAL (low_bound))));
++ }
++ index = reg;
++ }
++
++ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\"))
++ range = force_reg (SImode, range);
++
++ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label );
++ reg = gen_reg_rtx (SImode);
++ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label));
++
++ if ( flag_pic )
++ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label));
++ else
++ emit_jump_insn (
++ gen_tablejump_insn ( gen_rtx_MEM ( SImode,
++ gen_rtx_PLUS ( SImode,
++ reg,
++ gen_rtx_MULT ( SImode,
++ index,
++ GEN_INT(4)))),
++ table_label));
++ DONE;
++ }"
++)
++
++
++
++(define_insn "prefetch"
++ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p")
++ (match_operand 1 "const_int_operand" "")
++ (match_operand 2 "const_int_operand" ""))]
++ ""
++ {
++ return "pref\t%0";
++ }
++
++ [(set_attr "length" "4")
++ (set_attr "type" "load")
++ (set_attr "cc" "none")])
++
++
++
++;;=============================================================================
++;; prologue
++;;-----------------------------------------------------------------------------
++;; This pattern, if defined, emits RTL for entry to a function. The function
++;; entry i responsible for setting up the stack frame, initializing the frame
++;; pointer register, saving callee saved registers, etc.
++;;=============================================================================
++(define_expand "prologue"
++ [(clobber (const_int 0))]
++ ""
++ "
++ avr32_expand_prologue();
++ DONE;
++ "
++ )
++
++;;=============================================================================
++;; eh_return
++;;-----------------------------------------------------------------------------
++;; This pattern, if defined, affects the way __builtin_eh_return, and
++;; thence the call frame exception handling library routines, are
++;; built. It is intended to handle non-trivial actions needed along
++;; the abnormal return path.
++;;
++;; The address of the exception handler to which the function should
++;; return is passed as operand to this pattern. It will normally need
++;; to copied by the pattern to some special register or memory
++;; location. If the pattern needs to determine the location of the
++;; target call frame in order to do so, it may use
++;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been
++;; assigned.
++;;
++;; If this pattern is not defined, the default action will be to
++;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either
++;; that macro or this pattern needs to be defined if call frame
++;; exception handling is to be used.
++
++;; We can't expand this before we know where the link register is stored.
++(define_insn_and_split "eh_return"
++ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")]
++ VUNSPEC_EH_RETURN)
++ (clobber (match_scratch:SI 1 "=&r"))]
++ ""
++ "#"
++ "reload_completed"
++ [(const_int 0)]
++ "
++ {
++ avr32_set_return_address (operands[0], operands[1]);
++ DONE;
++ }"
++ )
++
++
++;;=============================================================================
++;; ffssi2
++;;-----------------------------------------------------------------------------
++(define_insn "ffssi2"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ]
++ ""
++ "mov %0, %1
++ brev %0
++ clz %0, %0
++ sub %0, -1
++ cp %0, 33
++ moveq %0, 0"
++ [(set_attr "length" "18")
++ (set_attr "cc" "clobber")]
++ )
++
++
++
++;;=============================================================================
++;; swap_h
++;;-----------------------------------------------------------------------------
++(define_insn "*swap_h"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (ior:SI (ashift:SI (match_dup 0) (const_int 16))
++ (lshiftrt:SI (match_dup 0) (const_int 16))))]
++ ""
++ "swap.h %0"
++ [(set_attr "length" "2")]
++ )
++
++(define_insn_and_split "bswap_16"
++ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r")
++ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13")
++ (const_int 8))
++ (const_int 255))
++ (ashift:HI (and:HI (match_dup 1)
++ (const_int 255))
++ (const_int 8))))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ if ( REGNO(operands[0]) == REGNO(operands[1]))
++ return "swap.bh\t%0";
++ else
++ return "mov\t%0, %1\;swap.bh\t%0";
++ case 1:
++ return "stswp.h\t%0, %1";
++ case 2:
++ return "ldswp.sh\t%0, %1";
++ default:
++ abort();
++ }
++ }
++
++ "(reload_completed &&
++ REG_P(operands[0]) && REG_P(operands[1])
++ && (REGNO(operands[0]) != REGNO(operands[1])))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 0)
++ (ior:HI (and:HI (lshiftrt:HI (match_dup 0)
++ (const_int 8))
++ (const_int 255))
++ (ashift:HI (and:HI (match_dup 0)
++ (const_int 255))
++ (const_int 8))))]
++ ""
++
++ [(set_attr "length" "4,4,4")
++ (set_attr "type" "alu,store,load_rm")]
++ )
++
++(define_insn_and_split "bswap_32"
++ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r")
++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14")
++ (const_int -16777216))
++ (const_int 24))
++ (lshiftrt:SI (and:SI (match_dup 1)
++ (const_int 16711680))
++ (const_int 8)))
++ (ior:SI (ashift:SI (and:SI (match_dup 1)
++ (const_int 65280))
++ (const_int 8))
++ (ashift:SI (and:SI (match_dup 1)
++ (const_int 255))
++ (const_int 24)))))]
++ ""
++ {
++ switch ( which_alternative ){
++ case 0:
++ if ( REGNO(operands[0]) == REGNO(operands[1]))
++ return "swap.b\t%0";
++ else
++ return "#";
++ case 1:
++ return "stswp.w\t%0, %1";
++ case 2:
++ return "ldswp.w\t%0, %1";
++ default:
++ abort();
++ }
++ }
++ "(reload_completed &&
++ REG_P(operands[0]) && REG_P(operands[1])
++ && (REGNO(operands[0]) != REGNO(operands[1])))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 0)
++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0)
++ (const_int -16777216))
++ (const_int 24))
++ (lshiftrt:SI (and:SI (match_dup 0)
++ (const_int 16711680))
++ (const_int 8)))
++ (ior:SI (ashift:SI (and:SI (match_dup 0)
++ (const_int 65280))
++ (const_int 8))
++ (ashift:SI (and:SI (match_dup 0)
++ (const_int 255))
++ (const_int 24)))))]
++ ""
++
++ [(set_attr "length" "4,4,4")
++ (set_attr "type" "alu,store,load_rm")]
++ )
++
++
++;;=============================================================================
++;; blockage
++;;-----------------------------------------------------------------------------
++;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
++;; all of memory. This blocks insns from being moved across this point.
++
++(define_insn "blockage"
++ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)]
++ ""
++ ""
++ [(set_attr "length" "0")]
++)
++
++;;=============================================================================
++;; clzsi2
++;;-----------------------------------------------------------------------------
++(define_insn "clzsi2"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ]
++ ""
++ "clz %0, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "set_z")]
++ )
++
++;;=============================================================================
++;; ctzsi2
++;;-----------------------------------------------------------------------------
++(define_insn "ctzsi2"
++ [ (set (match_operand:SI 0 "register_operand" "=r,r")
++ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ]
++ ""
++ "@
++ brev\t%0\;clz\t%0, %0
++ mov\t%0, %1\;brev\t%0\;clz\t%0, %0"
++ [(set_attr "length" "8")
++ (set_attr "cc" "set_z")]
++ )
++
++;;=============================================================================
++;; cache instructions
++;;-----------------------------------------------------------------------------
++(define_insn "cache"
++ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p")
++ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)]
++ ""
++ "cache %0, %1"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "sync"
++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)]
++ ""
++ "sync %0"
++ [(set_attr "length" "4")]
++ )
++
++;;=============================================================================
++;; TLB instructions
++;;-----------------------------------------------------------------------------
++(define_insn "tlbr"
++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)]
++ ""
++ "tlbr"
++ [(set_attr "length" "2")]
++ )
++
++(define_insn "tlbw"
++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)]
++ ""
++ "tlbw"
++ [(set_attr "length" "2")]
++ )
++
++(define_insn "tlbs"
++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)]
++ ""
++ "tlbs"
++ [(set_attr "length" "2")]
++ )
++
++;;=============================================================================
++;; Breakpoint instruction
++;;-----------------------------------------------------------------------------
++(define_insn "breakpoint"
++ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)]
++ ""
++ "breakpoint"
++ [(set_attr "length" "2")]
++ )
++
++
++;;=============================================================================
++;; mtsr/mfsr instruction
++;;-----------------------------------------------------------------------------
++(define_insn "mtsr"
++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)]
++ ""
++ "mtsr\t%0, %1"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mfsr"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ]
++ ""
++ "mfsr\t%0, %1"
++ [(set_attr "length" "4")]
++ )
++
++;;=============================================================================
++;; mtdr/mfdr instruction
++;;-----------------------------------------------------------------------------
++(define_insn "mtdr"
++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)]
++ ""
++ "mtdr\t%0, %1"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mfdr"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ]
++ ""
++ "mfdr\t%0, %1"
++ [(set_attr "length" "4")]
++ )
++
++;;=============================================================================
++;; musfr
++;;-----------------------------------------------------------------------------
++(define_insn "musfr"
++ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)]
++ ""
++ "musfr\t%0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "clobber")]
++ )
++
++(define_insn "mustr"
++ [ (set (match_operand:SI 0 "register_operand" "=r")
++ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ]
++ ""
++ "mustr\t%0"
++ [(set_attr "length" "2")]
++ )
++
++(define_insn "ssrf"
++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)]
++ ""
++ "ssrf %0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "clobber")]
++ )
++
++(define_insn "csrf"
++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)]
++ ""
++ "csrf %0"
++ [(set_attr "length" "2")
++ (set_attr "cc" "clobber")]
++ )
++
++;;=============================================================================
++;; Flush Return Stack instruction
++;;-----------------------------------------------------------------------------
++(define_insn "frs"
++ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)]
++ ""
++ "frs"
++ [(set_attr "length" "2")
++ (set_attr "cc" "none")]
++ )
++
++
++;;=============================================================================
++;; Saturation Round Scale instruction
++;;-----------------------------------------------------------------------------
++(define_insn "sats"
++ [ (set (match_operand:SI 0 "register_operand" "+r")
++ (unspec:SI [(match_dup 0)
++ (match_operand 1 "immediate_operand" "Ku05")
++ (match_operand 2 "immediate_operand" "Ku05")]
++ UNSPEC_SATS)) ]
++ "TARGET_DSP"
++ "sats\t%0 >> %1, %2"
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")]
++ )
++
++(define_insn "satu"
++ [ (set (match_operand:SI 0 "register_operand" "+r")
++ (unspec:SI [(match_dup 0)
++ (match_operand 1 "immediate_operand" "Ku05")
++ (match_operand 2 "immediate_operand" "Ku05")]
++ UNSPEC_SATU)) ]
++ "TARGET_DSP"
++ "satu\t%0 >> %1, %2"
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")]
++ )
++
++(define_insn "satrnds"
++ [ (set (match_operand:SI 0 "register_operand" "+r")
++ (unspec:SI [(match_dup 0)
++ (match_operand 1 "immediate_operand" "Ku05")
++ (match_operand 2 "immediate_operand" "Ku05")]
++ UNSPEC_SATRNDS)) ]
++ "TARGET_DSP"
++ "satrnds\t%0 >> %1, %2"
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")]
++ )
++
++(define_insn "satrndu"
++ [ (set (match_operand:SI 0 "register_operand" "+r")
++ (unspec:SI [(match_dup 0)
++ (match_operand 1 "immediate_operand" "Ku05")
++ (match_operand 2 "immediate_operand" "Ku05")]
++ UNSPEC_SATRNDU)) ]
++ "TARGET_DSP"
++ "sats\t%0 >> %1, %2"
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")]
++ )
++
++;; Special patterns for dealing with the constant pool
++
++(define_insn "align_4"
++ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)]
++ ""
++ {
++ assemble_align (32);
++ return "";
++ }
++ [(set_attr "length" "2")]
++)
++
++(define_insn "consttable_start"
++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)]
++ ""
++ {
++ return ".cpool";
++ }
++ [(set_attr "length" "0")]
++ )
++
++(define_insn "consttable_end"
++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)]
++ ""
++ {
++ making_const_table = FALSE;
++ return "";
++ }
++ [(set_attr "length" "0")]
++)
++
++
++(define_insn "consttable_4"
++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)]
++ ""
++ {
++ making_const_table = TRUE;
++ switch (GET_MODE_CLASS (GET_MODE (operands[0])))
++ {
++ case MODE_FLOAT:
++ {
++ REAL_VALUE_TYPE r;
++ char real_string[1024];
++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
++ real_to_decimal(real_string, &r, 1024, 0, 1);
++ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string);
++ break;
++ }
++ default:
++ assemble_integer (operands[0], 4, 0, 1);
++ break;
++ }
++ return "";
++ }
++ [(set_attr "length" "4")]
++)
++
++(define_insn "consttable_8"
++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)]
++ ""
++ {
++ making_const_table = TRUE;
++ switch (GET_MODE_CLASS (GET_MODE (operands[0])))
++ {
++ case MODE_FLOAT:
++ {
++ REAL_VALUE_TYPE r;
++ char real_string[1024];
++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
++ real_to_decimal(real_string, &r, 1024, 0, 1);
++ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string);
++ break;
++ }
++ default:
++ assemble_integer(operands[0], 8, 0, 1);
++ break;
++ }
++ return "";
++ }
++ [(set_attr "length" "8")]
++)
++
++(define_insn "consttable_16"
++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)]
++ ""
++ {
++ making_const_table = TRUE;
++ assemble_integer(operands[0], 16, 0, 1);
++ return "";
++ }
++ [(set_attr "length" "16")]
++)
++
++;;=============================================================================
++;; coprocessor instructions
++;;-----------------------------------------------------------------------------
++(define_insn "cop"
++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03")
++ (match_operand 1 "immediate_operand" "Ku04")
++ (match_operand 2 "immediate_operand" "Ku04")
++ (match_operand 3 "immediate_operand" "Ku04")
++ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)]
++ ""
++ "cop\tcp%0, cr%1, cr%2, cr%3, %4"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mvcrsi"
++ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z")
++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
++ VUNSPEC_MVCR)) ]
++ ""
++ "@
++ mvcr.w\tcp%1, %0, cr%2
++ stcm.w\tcp%1, %0, cr%2
++ stc.w\tcp%1, %0, cr%2"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mvcrdi"
++ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z")
++ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
++ VUNSPEC_MVCR)) ]
++ ""
++ "@
++ mvcr.d\tcp%1, %0, cr%2
++ stcm.d\tcp%1, %0, cr%2-cr%i2
++ stc.d\tcp%1, %0, cr%2"
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mvrcsi"
++ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
++ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")]
++ VUNSPEC_MVRC)]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "mvrc.w\tcp%0, cr%1, %2";
++ case 1:
++ return "ldcm.w\tcp%0, %2, cr%1";
++ case 2:
++ return "ldc.w\tcp%0, cr%1, %2";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "4")]
++ )
++
++(define_insn "mvrcdi"
++ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
++ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")]
++ VUNSPEC_MVRC)]
++ ""
++ {
++ switch (which_alternative){
++ case 0:
++ return "mvrc.d\tcp%0, cr%1, %2";
++ case 1:
++ return "ldcm.d\tcp%0, %2, cr%1-cr%i1";
++ case 2:
++ return "ldc.d\tcp%0, cr%1, %2";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "length" "4")]
++ )
++
++;;=============================================================================
++;; epilogue
++;;-----------------------------------------------------------------------------
++;; This pattern emits RTL for exit from a function. The function exit is
++;; responsible for deallocating the stack frame, restoring callee saved
++;; registers and emitting the return instruction.
++;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead.
++;;=============================================================================
++(define_expand "epilogue"
++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
++ ""
++ "
++ if (USE_RETURN_INSN (FALSE)){
++ emit_jump_insn (gen_return ());
++ DONE;
++ }
++ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode,
++ gen_rtvec (1,
++ gen_rtx_RETURN (VOIDmode)),
++ VUNSPEC_EPILOGUE));
++ DONE;
++ "
++ )
++
++(define_insn "*epilogue_insns"
++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
++ ""
++ {
++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
++ return "";
++ }
++ ; Length is absolute worst case
++ [(set_attr "type" "branch")
++ (set_attr "length" "12")]
++ )
++
++(define_insn "*epilogue_insns_ret_imm"
++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
++ (use (reg RETVAL_REGNUM))
++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])]
++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
++ {
++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
++ return "";
++ }
++ ; Length is absolute worst case
++ [(set_attr "type" "branch")
++ (set_attr "length" "12")]
++ )
++
++(define_insn "sibcall_epilogue"
++ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)]
++ ""
++ {
++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
++ return "";
++ }
++;; Length is absolute worst case
++ [(set_attr "type" "branch")
++ (set_attr "length" "12")]
++ )
++
++(define_insn "*sibcall_epilogue_insns_ret_imm"
++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
++ (use (reg RETVAL_REGNUM))
++ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])]
++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
++ {
++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
++ return "";
++ }
++ ; Length is absolute worst case
++ [(set_attr "type" "branch")
++ (set_attr "length" "12")]
++ )
++
++(define_insn "ldxi"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (mem:SI (plus:SI
++ (match_operand:SI 1 "register_operand" "r")
++ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r")
++ (const_int 8)
++ (match_operand:SI 3 "immediate_operand" "Ku05"))
++ (const_int 4)))))]
++ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8
++ || INTVAL(operands[3]) == 0)"
++ {
++ switch ( INTVAL(operands[3]) ){
++ case 0:
++ return "ld.w %0, %1[%2:b << 2]";
++ case 8:
++ return "ld.w %0, %1[%2:l << 2]";
++ case 16:
++ return "ld.w %0, %1[%2:u << 2]";
++ case 24:
++ return "ld.w %0, %1[%2:t << 2]";
++ default:
++ internal_error("illegal operand for ldxi");
++ }
++ }
++ [(set_attr "type" "load")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
++
++
++
++
++
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; sub r8, r7, 8
++;; st.w r8[0x0], r12
++;; to
++;; sub r8, r7, 8
++;; st.w r7[-0x8], r12
++;;=============================================================================
++; (set (reg:SI 9 r8)
++; (plus:SI (reg/f:SI 6 r7)
++; (const_int ...)))
++; (set (mem:SI (reg:SI 9 r8))
++; (reg:SI 12 r12))
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (plus:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")))
++ (set (mem:SI (match_dup 0))
++ (match_operand:SI 3 "register_operand" ""))]
++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
++ [(set (match_dup 0)
++ (plus:SI (match_dup 1)
++ (match_dup 2)))
++ (set (mem:SI (plus:SI (match_dup 1)
++ (match_dup 2)))
++ (match_dup 3))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; sub r6, r7, 4
++;; ld.w r6, r6[0x0]
++;; to
++;; sub r6, r7, 4
++;; ld.w r6, r7[-0x4]
++;;=============================================================================
++; (set (reg:SI 7 r6)
++; (plus:SI (reg/f:SI 6 r7)
++; (const_int -4 [0xfffffffc])))
++; (set (reg:SI 7 r6)
++; (mem:SI (reg:SI 7 r6)))
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (plus:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "immediate_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (mem:SI (match_dup 0)))]
++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
++ [(set (match_dup 0)
++ (plus:SI (match_dup 1)
++ (match_dup 2)))
++ (set (match_dup 3)
++ (mem:SI (plus:SI (match_dup 1)
++ (match_dup 2))))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; ld.sb r0, r7[-0x6]
++;; cashs.b r0
++;; to
++;; ld.sb r0, r7[-0x6]
++;;=============================================================================
++(define_peephole2
++ [(set (match_operand:QI 0 "register_operand" "")
++ (match_operand:QI 1 "load_sb_memory_operand" ""))
++ (set (match_operand:SI 2 "register_operand" "")
++ (sign_extend:SI (match_dup 0)))]
++ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))"
++ [(set (match_dup 2)
++ (sign_extend:SI (match_dup 1)))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; ld.ub r0, r7[-0x6]
++;; cashu.b r0
++;; to
++;; ld.ub r0, r7[-0x6]
++;;=============================================================================
++(define_peephole2
++ [(set (match_operand:QI 0 "register_operand" "")
++ (match_operand:QI 1 "memory_operand" ""))
++ (set (match_operand:SI 2 "register_operand" "")
++ (zero_extend:SI (match_dup 0)))]
++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 2)
++ (zero_extend:SI (match_dup 1)))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; ld.sh r0, r7[-0x6]
++;; casts.h r0
++;; to
++;; ld.sh r0, r7[-0x6]
++;;=============================================================================
++(define_peephole2
++ [(set (match_operand:HI 0 "register_operand" "")
++ (match_operand:HI 1 "memory_operand" ""))
++ (set (match_operand:SI 2 "register_operand" "")
++ (sign_extend:SI (match_dup 0)))]
++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 2)
++ (sign_extend:SI (match_dup 1)))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; ld.uh r0, r7[-0x6]
++;; castu.h r0
++;; to
++;; ld.uh r0, r7[-0x6]
++;;=============================================================================
++(define_peephole2
++ [(set (match_operand:HI 0 "register_operand" "")
++ (match_operand:HI 1 "memory_operand" ""))
++ (set (match_operand:SI 2 "register_operand" "")
++ (zero_extend:SI (match_dup 0)))]
++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 2)
++ (zero_extend:SI (match_dup 1)))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; mul rd, rx, ry
++;; add rd2, rd
++;; or
++;; add rd2, rd, rd2
++;; to
++;; mac rd2, rx, ry
++;;=============================================================================
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mult:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "register_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (plus:SI (match_dup 3)
++ (match_dup 0)))]
++ "peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (plus:SI (mult:SI (match_dup 1)
++ (match_dup 2))
++ (match_dup 3)))]
++ "")
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mult:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "register_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (plus:SI (match_dup 0)
++ (match_dup 3)))]
++ "peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (plus:SI (mult:SI (match_dup 1)
++ (match_dup 2))
++ (match_dup 3)))]
++ "")
++
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Changing
++;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask
++;; to
++;; bld rs, k5
++;;
++;; If rd is dead after the operation.
++;;=============================================================================
++(define_peephole2
++ [ (set (match_operand:SI 0 "register_operand" "")
++ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
++ (const_int 1)
++ (match_operand:SI 2 "immediate_operand" "")))
++ (set (cc0)
++ (match_dup 0))]
++ "peep2_reg_dead_p(2, operands[0])"
++ [(set (cc0)
++ (and:SI (match_dup 1)
++ (match_dup 2)))]
++ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));")
++
++(define_peephole2
++ [ (set (match_operand:SI 0 "register_operand" "")
++ (and:SI (match_operand:SI 1 "register_operand" "")
++ (match_operand:SI 2 "one_bit_set_operand" "")))
++ (set (cc0)
++ (match_dup 0))]
++ "peep2_reg_dead_p(2, operands[0])"
++ [(set (cc0)
++ (and:SI (match_dup 1)
++ (match_dup 2)))]
++ "")
++
++;;=============================================================================
++;; Peephole optimizing
++;;-----------------------------------------------------------------------------
++;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2]
++;;
++;;=============================================================================
++
++
++(define_peephole
++ [(set (match_operand:SI 0 "register_operand" "")
++ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
++ (const_int 8)
++ (match_operand:SI 2 "avr32_extract_shift_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 4 "register_operand" ""))))]
++
++ "(dead_or_set_p(insn, operands[0]))"
++ {
++ switch ( INTVAL(operands[2]) ){
++ case 0:
++ return "ld.w %3, %4[%1:b << 2]";
++ case 8:
++ return "ld.w %3, %4[%1:l << 2]";
++ case 16:
++ return "ld.w %3, %4[%1:u << 2]";
++ case 24:
++ return "ld.w %3, %4[%1:t << 2]";
++ default:
++ internal_error("illegal operand for ldxi");
++ }
++ }
++ [(set_attr "type" "load")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")]
++ )
++
++
++
++(define_peephole
++ [(set (match_operand:SI 0 "register_operand" "")
++ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255)))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 3 "register_operand" ""))))]
++
++ "(dead_or_set_p(insn, operands[0]))"
++
++ "ld.w %2, %3[%1:b << 2]"
++ [(set_attr "type" "load")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")]
++ )
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
++ (const_int 8)
++ (match_operand:SI 2 "avr32_extract_shift_operand" "")))
++ (set (match_operand:SI 3 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 4 "register_operand" ""))))]
++
++ "(peep2_reg_dead_p(2, operands[0]))
++ || (REGNO(operands[0]) == REGNO(operands[3]))"
++ [(set (match_dup 3)
++ (mem:SI (plus:SI
++ (match_dup 4)
++ (mult:SI (zero_extract:SI (match_dup 1)
++ (const_int 8)
++ (match_dup 2))
++ (const_int 4)))))]
++ )
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 3 "register_operand" ""))))]
++
++ "(peep2_reg_dead_p(2, operands[0]))
++ || (REGNO(operands[0]) == REGNO(operands[2]))"
++ [(set (match_dup 2)
++ (mem:SI (plus:SI
++ (match_dup 3)
++ (mult:SI (zero_extract:SI (match_dup 1)
++ (const_int 8)
++ (const_int 0))
++ (const_int 4)))))]
++ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));"
++ )
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (and:SI (match_operand:SI 1 "register_operand" "")
++ (const_int 255)))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 3 "register_operand" ""))))]
++
++ "(peep2_reg_dead_p(2, operands[0]))
++ || (REGNO(operands[0]) == REGNO(operands[2]))"
++ [(set (match_dup 2)
++ (mem:SI (plus:SI
++ (match_dup 3)
++ (mult:SI (zero_extract:SI (match_dup 1)
++ (const_int 8)
++ (const_int 0))
++ (const_int 4)))))]
++ ""
++ )
++
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "")
++ (const_int 24)))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
++ (match_operand:SI 3 "register_operand" ""))))]
++
++ "(peep2_reg_dead_p(2, operands[0]))
++ || (REGNO(operands[0]) == REGNO(operands[2]))"
++ [(set (match_dup 2)
++ (mem:SI (plus:SI
++ (match_dup 3)
++ (mult:SI (zero_extract:SI (match_dup 1)
++ (const_int 8)
++ (const_int 24))
++ (const_int 4)))))]
++ ""
++ )
++
++
++;;************************************************
++;; ANDN
++;;
++;;************************************************
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (not:SI (match_operand:SI 1 "register_operand" "")))
++ (set (match_operand:SI 2 "register_operand" "")
++ (and:SI (match_dup 2)
++ (match_dup 0)))]
++ "peep2_reg_dead_p(2, operands[0])"
++
++ [(set (match_dup 2)
++ (and:SI (match_dup 2)
++ (not:SI (match_dup 1))
++ ))]
++ ""
++)
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (not:SI (match_operand:SI 1 "register_operand" "")))
++ (set (match_operand:SI 2 "register_operand" "")
++ (and:SI (match_dup 0)
++ (match_dup 2)
++ ))]
++ "peep2_reg_dead_p(2, operands[0])"
++
++ [(set (match_dup 2)
++ (and:SI (match_dup 2)
++ (not:SI (match_dup 1))
++ ))]
++
++ ""
++)
++
++
++;;=================================================================
++;; Addabs peephole
++;;=================================================================
++
++(define_peephole
++ [(set (match_operand:SI 2 "register_operand" "=r")
++ (abs:SI (match_operand:SI 1 "register_operand" "r")))
++ (set (match_operand:SI 0 "register_operand" "=r")
++ (plus:SI (match_operand:SI 3 "register_operand" "r")
++ (match_dup 2)))]
++ "dead_or_set_p(insn, operands[2])"
++ "addabs %0, %3, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "set_z")])
++
++(define_peephole
++ [(set (match_operand:SI 2 "register_operand" "=r")
++ (abs:SI (match_operand:SI 1 "register_operand" "r")))
++ (set (match_operand:SI 0 "register_operand" "=r")
++ (plus:SI (match_dup 2)
++ (match_operand:SI 3 "register_operand" "r")))]
++ "dead_or_set_p(insn, operands[2])"
++ "addabs %0, %3, %1"
++ [(set_attr "length" "4")
++ (set_attr "cc" "set_z")])
++
++
++;;=================================================================
++;; Detect roundings
++;;=================================================================
++
++(define_insn "*round"
++ [(set (match_operand:SI 0 "register_operand" "+r")
++ (ashiftrt:SI (plus:SI (match_dup 0)
++ (match_operand:SI 1 "immediate_operand" "i"))
++ (match_operand:SI 2 "immediate_operand" "i")))]
++ "avr32_rnd_operands(operands[1], operands[2])"
++
++ "satrnds %0 >> %2, 31"
++
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")]
++
++ )
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (plus:SI (match_dup 0)
++ (match_operand:SI 1 "immediate_operand" "")))
++ (set (match_dup 0)
++ (ashiftrt:SI (match_dup 0)
++ (match_operand:SI 2 "immediate_operand" "")))]
++ "avr32_rnd_operands(operands[1], operands[2])"
++
++ [(set (match_dup 0)
++ (ashiftrt:SI (plus:SI (match_dup 0)
++ (match_dup 1))
++ (match_dup 2)))]
++ )
++
++(define_peephole
++ [(set (match_operand:SI 0 "register_operand" "r")
++ (plus:SI (match_dup 0)
++ (match_operand:SI 1 "immediate_operand" "i")))
++ (set (match_dup 0)
++ (ashiftrt:SI (match_dup 0)
++ (match_operand:SI 2 "immediate_operand" "i")))]
++ "avr32_rnd_operands(operands[1], operands[2])"
++
++ "satrnds %0 >> %2, 31"
++
++ [(set_attr "type" "alu_sat")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")]
++
++ )
++
++
++;;=================================================================
++;; mcall
++;;=================================================================
++(define_peephole
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand 1 "avr32_const_pool_ref_operand" ""))
++ (parallel [(call (mem:SI (match_dup 0))
++ (match_operand 2 "" ""))
++ (clobber (reg:SI LR_REGNUM))])]
++ "dead_or_set_p(insn, operands[0])"
++ "mcall %1"
++ [(set_attr "type" "call")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")]
++)
++
++(define_peephole
++ [(set (match_operand:SI 2 "register_operand" "")
++ (match_operand 1 "avr32_const_pool_ref_operand" ""))
++ (parallel [(set (match_operand 0 "register_operand" "")
++ (call (mem:SI (match_dup 2))
++ (match_operand 3 "" "")))
++ (clobber (reg:SI LR_REGNUM))])]
++ "dead_or_set_p(insn, operands[2])"
++ "mcall %1"
++ [(set_attr "type" "call")
++ (set_attr "length" "4")
++ (set_attr "cc" "call_set")]
++)
++
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand 1 "avr32_const_pool_ref_operand" ""))
++ (parallel [(call (mem:SI (match_dup 0))
++ (match_operand 2 "" ""))
++ (clobber (reg:SI LR_REGNUM))])]
++ "peep2_reg_dead_p(2, operands[0])"
++ [(parallel [(call (mem:SI (match_dup 1))
++ (match_dup 2))
++ (clobber (reg:SI LR_REGNUM))])]
++ ""
++)
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand 1 "avr32_const_pool_ref_operand" ""))
++ (parallel [(set (match_operand 2 "register_operand" "")
++ (call (mem:SI (match_dup 0))
++ (match_operand 3 "" "")))
++ (clobber (reg:SI LR_REGNUM))])]
++ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))"
++ [(parallel [(set (match_dup 2)
++ (call (mem:SI (match_dup 1))
++ (match_dup 3)))
++ (clobber (reg:SI LR_REGNUM))])]
++ ""
++)
++
++;;=================================================================
++;; Returning a value
++;;=================================================================
++
++
++(define_peephole
++ [(set (match_operand 0 "register_operand" "")
++ (match_operand 1 "register_operand" ""))
++ (return)]
++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)
++ && (REGNO(operands[1]) != LR_REGNUM)
++ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)"
++ "retal %1"
++ [(set_attr "type" "call")
++ (set_attr "length" "2")]
++ )
++
++
++(define_peephole
++ [(set (match_operand 0 "register_operand" "r")
++ (match_operand 1 "immediate_operand" "i"))
++ (return)]
++ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) &&
++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))"
++ {
++ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]);
++ return "";
++ }
++ [(set_attr "type" "call")
++ (set_attr "length" "4")]
++ )
++
++(define_peephole
++ [(set (match_operand 0 "register_operand" "r")
++ (match_operand 1 "immediate_operand" "i"))
++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
++ "(REGNO(operands[0]) == RETVAL_REGNUM) &&
++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))"
++ {
++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]);
++ return "";
++ }
++ ; Length is absolute worst case
++ [(set_attr "type" "branch")
++ (set_attr "length" "12")]
++ )
++
++(define_peephole
++ [(set (match_operand 0 "register_operand" "=r")
++ (if_then_else (match_operator 1 "avr32_comparison_operator"
++ [(match_operand 4 "register_operand" "r")
++ (match_operand 5 "register_immediate_operand" "rKs21")])
++ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08")
++ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08")))
++ (return)]
++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)"
++ {
++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
++
++ if ( GET_CODE(operands[2]) == REG
++ && GET_CODE(operands[3]) == REG
++ && REGNO(operands[2]) != LR_REGNUM
++ && REGNO(operands[3]) != LR_REGNUM ){
++ return "ret%1 %2\;ret%i1 %3";
++ } else if ( GET_CODE(operands[2]) == REG
++ && GET_CODE(operands[3]) == CONST_INT ){
++ if ( INTVAL(operands[3]) == -1
++ || INTVAL(operands[3]) == 0
++ || INTVAL(operands[3]) == 1 ){
++ return "ret%1 %2\;ret%i1 %d3";
++ } else {
++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
++ }
++ } else if ( GET_CODE(operands[2]) == CONST_INT
++ && GET_CODE(operands[3]) == REG ){
++ if ( INTVAL(operands[2]) == -1
++ || INTVAL(operands[2]) == 0
++ || INTVAL(operands[2]) == 1 ){
++ return "ret%1 %d2\;ret%i1 %3";
++ } else {
++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
++ }
++ } else {
++ if ( (INTVAL(operands[2]) == -1
++ || INTVAL(operands[2]) == 0
++ || INTVAL(operands[2]) == 1 )
++ && (INTVAL(operands[3]) == -1
++ || INTVAL(operands[3]) == 0
++ || INTVAL(operands[3]) == 1 )){
++ return "ret%1 %d2\;ret%i1 %d3";
++ } else {
++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
++ }
++ }
++ }
++
++ [(set_attr "length" "10")
++ (set_attr "cc" "none")
++ (set_attr "type" "call")])
++
++
++
++;;=================================================================
++;; mulnhh.w
++;;=================================================================
++
++(define_peephole2
++ [(set (match_operand:HI 0 "register_operand" "")
++ (neg:HI (match_operand:HI 1 "register_operand" "")))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mult:SI
++ (sign_extend:SI (match_dup 0))
++ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))]
++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
++ [ (set (match_dup 2)
++ (mult:SI
++ (sign_extend:SI (neg:HI (match_dup 1)))
++ (sign_extend:SI (match_dup 3))))]
++ ""
++ )
++
++(define_peephole2
++ [(set (match_operand:HI 0 "register_operand" "")
++ (neg:HI (match_operand:HI 1 "register_operand" "")))
++ (set (match_operand:SI 2 "register_operand" "")
++ (mult:SI
++ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))
++ (sign_extend:SI (match_dup 0))))]
++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
++ [ (set (match_dup 2)
++ (mult:SI
++ (sign_extend:SI (neg:HI (match_dup 1)))
++ (sign_extend:SI (match_dup 3))))]
++ ""
++ )
++
++
++
++;;=================================================================
++;; Vector set and extract operations
++;;=================================================================
++(define_insn "vec_setv2hi_hi"
++ [(set (match_operand:V2HI 0 "register_operand" "=r")
++ (vec_merge:V2HI
++ (match_dup 0)
++ (vec_duplicate:V2HI
++ (match_operand:HI 1 "register_operand" "r"))
++ (const_int 1)))]
++ ""
++ "bfins\t%0, %1, 16, 16"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")])
++
++(define_insn "vec_setv2hi_lo"
++ [(set (match_operand:V2HI 0 "register_operand" "+r")
++ (vec_merge:V2HI
++ (match_dup 0)
++ (vec_duplicate:V2HI
++ (match_operand:HI 1 "register_operand" "r"))
++ (const_int 2)))]
++ ""
++ "bfins\t%0, %1, 0, 16"
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")])
++
++(define_expand "vec_setv2hi"
++ [(set (match_operand:V2HI 0 "register_operand" "")
++ (vec_merge:V2HI
++ (match_dup 0)
++ (vec_duplicate:V2HI
++ (match_operand:HI 1 "register_operand" ""))
++ (match_operand 2 "immediate_operand" "")))]
++ ""
++ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); }
++ )
++
++(define_insn "vec_extractv2hi"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (vec_select:HI
++ (match_operand:V2HI 1 "register_operand" "r")
++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
++ ""
++ {
++ if ( INTVAL(operands[2]) == 0 )
++ return "bfextu\t%0, %1, 16, 16";
++ else
++ return "bfextu\t%0, %1, 0, 16";
++ }
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")])
++
++(define_insn "vec_extractv4qi"
++ [(set (match_operand:QI 0 "register_operand" "=r")
++ (vec_select:QI
++ (match_operand:V4QI 1 "register_operand" "r")
++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
++ ""
++ {
++ switch ( INTVAL(operands[2]) ){
++ case 0:
++ return "bfextu\t%0, %1, 24, 8";
++ case 1:
++ return "bfextu\t%0, %1, 16, 8";
++ case 2:
++ return "bfextu\t%0, %1, 8, 8";
++ case 3:
++ return "bfextu\t%0, %1, 0, 8";
++ default:
++ abort();
++ }
++ }
++ [(set_attr "type" "alu")
++ (set_attr "length" "4")
++ (set_attr "cc" "clobber")])
++
++
++(define_insn "concatv2hi"
++ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r")
++ (vec_concat:V2HI
++ (match_operand:HI 1 "register_operand" "r, r, 0")
++ (match_operand:HI 2 "register_operand" "r, 0, r")))]
++ ""
++ "@
++ mov\t%0, %1\;bfins\t%0, %2, 0, 16
++ bfins\t%0, %2, 0, 16
++ bfins\t%0, %1, 16, 16"
++ [(set_attr "length" "6, 4, 4")
++ (set_attr "type" "alu")])
++
++
++;; Load the atomic operation description
++(include "sync.md")
++
++;; Load the SIMD description
++(include "simd.md")
++
++;; Load the FP coprAocessor patterns
++(include "fpcp.md")
+--- a/gcc/config/avr32/avr32-modes.def
++++ b/gcc/config/avr32/avr32-modes.def
+@@ -0,0 +1 @@
++VECTOR_MODES (INT, 4); /* V4QI V2HI */
+--- a/gcc/config/avr32/avr32.opt
++++ b/gcc/config/avr32/avr32.opt
+@@ -0,0 +1,81 @@
++; Options for the ATMEL AVR32 port of the compiler.
++
++; Copyright 2007 Atmel Corporation.
++;
++; This file is part of GCC.
++;
++; GCC is free software; you can redistribute it and/or modify it under
++; the terms of the GNU General Public License as published by the Free
++; Software Foundation; either version 2, or (at your option) any later
++; version.
++;
++; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
++; WARRANTY; without even the implied warranty of MERCHANTABILITY or
++; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++; for more details.
++;
++; You should have received a copy of the GNU General Public License
++; along with GCC; see the file COPYING. If not, write to the Free
++; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
++; 02110-1301, USA.
++
++muse-rodata-section
++Target Report Mask(USE_RODATA_SECTION)
++Use section .rodata for read-only data instead of .text.
++
++mhard-float
++Target Report Undocumented Mask(HARD_FLOAT)
++Use floating point coprocessor instructions.
++
++msoft-float
++Target Report Undocumented InverseMask(HARD_FLOAT, SOFT_FLOAT)
++Use software floating-point library for floating-point operations.
++
++mforce-double-align
++Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN)
++Force double-word alignment for double-word memory accesses.
++
++mno-init-got
++Target Report RejectNegative Mask(NO_INIT_GOT)
++Do not initialize GOT register before using it when compiling PIC code.
++
++mrelax
++Target Report Mask(RELAX)
++Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1).
++
++mmd-reorg-opt
++Target Report Undocumented Mask(MD_REORG_OPTIMIZATION)
++Perform machine dependent optimizations in reorg stage.
++
++masm-addr-pseudos
++Target Report Mask(HAS_ASM_ADDR_PSEUDOS)
++Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default)
++
++mpart=
++Target Report RejectNegative Joined Var(avr32_part_name)
++Specify the AVR32 part name
++
++mcpu=
++Target Report RejectNegative Joined Undocumented Var(avr32_part_name)
++Specify the AVR32 part name (deprecated)
++
++march=
++Target Report RejectNegative Joined Var(avr32_arch_name)
++Specify the AVR32 architecture name
++
++mfast-float
++Target Report Mask(FAST_FLOAT)
++Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified.
++
++mimm-in-const-pool
++Target Report Var(avr32_imm_in_const_pool) Init(-1)
++Put large immediates in constant pool. This is enabled by default for archs with insn-cache.
++
++mno-pic
++Target Report RejectNegative Mask(NO_PIC)
++Do not generate position-independent code. (deprecated, use -fno-pic instead)
++
++mcond-exec-before-reload
++Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD)
++Enable experimental conditional execution preparation before the reload stage.
++
+--- a/gcc/config/avr32/avr32-protos.h
++++ b/gcc/config/avr32/avr32-protos.h
+@@ -0,0 +1,197 @@
++/*
++ Prototypes for exported functions defined in avr32.c
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++ Initial porting by Anders �dland.
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++
++#ifndef AVR32_PROTOS_H
++#define AVR32_PROTOS_H
++
++extern const int swap_reg[];
++
++extern int avr32_valid_macmac_bypass (rtx, rtx);
++extern int avr32_valid_mulmac_bypass (rtx, rtx);
++
++extern int avr32_decode_lcomm_symbol_offset (rtx, int *);
++extern void avr32_encode_lcomm_symbol_offset (tree, char *, int);
++
++extern const char *avr32_strip_name_encoding (const char *);
++
++extern rtx avr32_get_note_reg_equiv (rtx insn);
++
++extern int avr32_use_return_insn (int iscond);
++
++extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string);
++
++extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string);
++extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string);
++extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string);
++
++extern void avr32_output_return_instruction (int single_ret_inst,
++ int iscond, rtx cond,
++ rtx r12_imm);
++extern void avr32_expand_prologue (void);
++extern void avr32_set_return_address (rtx source, rtx scratch);
++
++extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode);
++extern int avr32_extra_constraint_s (rtx value, const int strict);
++extern int avr32_eh_return_data_regno (const int n);
++extern int avr32_initial_elimination_offset (const int from, const int to);
++extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
++ tree type, int named);
++extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
++ rtx libname, tree fndecl);
++extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum,
++ enum machine_mode mode,
++ tree type, int named);
++#ifdef ARGS_SIZE_RTX
++/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */
++extern enum direction avr32_function_arg_padding (enum machine_mode mode,
++ tree type);
++#endif /* ARGS_SIZE_RTX */
++extern rtx avr32_function_value (tree valtype, tree func, bool outgoing);
++extern rtx avr32_libcall_value (enum machine_mode mode);
++extern int avr32_sched_use_dfa_pipeline_interface (void);
++extern bool avr32_return_in_memory (tree type, tree fntype);
++extern void avr32_regs_to_save (char *operand);
++extern void avr32_target_asm_function_prologue (FILE * file,
++ HOST_WIDE_INT size);
++extern void avr32_target_asm_function_epilogue (FILE * file,
++ HOST_WIDE_INT size);
++extern void avr32_trampoline_template (FILE * file);
++extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr,
++ rtx static_chain);
++extern int avr32_legitimate_address (enum machine_mode mode, rtx x,
++ int strict);
++extern int avr32_legitimate_constant_p (rtx x);
++
++extern int avr32_legitimate_pic_operand_p (rtx x);
++
++extern rtx avr32_find_symbol (rtx x);
++extern void avr32_select_section (rtx exp, int reloc, int align);
++extern void avr32_encode_section_info (tree decl, rtx rtl, int first);
++extern void avr32_asm_file_end (FILE * stream);
++extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len);
++extern void avr32_asm_output_common (FILE * stream, const char *name,
++ int size, int rounded);
++extern void avr32_asm_output_label (FILE * stream, const char *name);
++extern void avr32_asm_declare_object_name (FILE * stream, char *name,
++ tree decl);
++extern void avr32_asm_globalize_label (FILE * stream, const char *name);
++extern void avr32_asm_weaken_label (FILE * stream, const char *name);
++extern void avr32_asm_output_external (FILE * stream, tree decl,
++ const char *name);
++extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref);
++extern void avr32_asm_output_labelref (FILE * stream, const char *name);
++extern void avr32_notice_update_cc (rtx exp, rtx insn);
++extern void avr32_print_operand (FILE * stream, rtx x, int code);
++extern void avr32_print_operand_address (FILE * stream, rtx x);
++
++extern int avr32_symbol (rtx x);
++
++extern void avr32_select_rtx_section (enum machine_mode mode, rtx x,
++ unsigned HOST_WIDE_INT align);
++
++extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode);
++extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode);
++
++extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c,
++ const char *str);
++
++extern bool avr32_cannot_force_const_mem (rtx x);
++
++extern void avr32_init_builtins (void);
++
++extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget,
++ enum machine_mode mode, int ignore);
++
++extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type);
++
++extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca);
++
++extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum,
++ enum machine_mode mode,
++ tree type, bool named);
++
++extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from,
++ int write_back, int in_struct_p,
++ int scalar_p);
++extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to,
++ int in_struct_p, int scalar_p);
++extern int avr32_gen_movmemsi (rtx * operands);
++
++extern int avr32_rnd_operands (rtx add, rtx shift);
++extern int avr32_adjust_insn_length (rtx insn, int length);
++
++extern int symbol_mentioned_p (rtx x);
++extern int label_mentioned_p (rtx x);
++extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg);
++extern int avr32_address_register_rtx_p (rtx x, int strict_p);
++extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index,
++ int strict_p);
++
++extern int avr32_const_double_immediate (rtx value);
++extern void avr32_init_expanders (void);
++extern rtx avr32_return_addr (int count, rtx frame);
++extern bool avr32_got_mentioned_p (rtx addr);
++
++extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands);
++
++extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]);
++extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]);
++#ifdef RTX_CODE
++extern int avr32_expand_scc (RTX_CODE cond, rtx * operands);
++#endif
++
++extern int avr32_store_bypass (rtx insn_out, rtx insn_in);
++extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in);
++extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in);
++extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in);
++extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode,
++ rtx op0, rtx op1);
++
++rtx get_next_insn_cond (rtx cur_insn);
++int set_next_insn_cond (rtx cur_insn, rtx cond);
++rtx next_insn_emits_cmp (rtx cur_insn);
++void avr32_override_options (void);
++void avr32_load_pic_register (void);
++#ifdef GCC_BASIC_BLOCK_H
++rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn,
++ int *num_true_changes);
++rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test );
++void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes);
++#endif
++void avr32_optimization_options (int level, int size);
++int avr32_const_ok_for_move (HOST_WIDE_INT c);
++
++void avr32_split_const_expr (enum machine_mode mode,
++ enum machine_mode new_mode,
++ rtx expr,
++ rtx *split_expr);
++void avr32_get_intval (enum machine_mode mode,
++ rtx const_expr,
++ HOST_WIDE_INT *val);
++
++int avr32_cond_imm_clobber_splittable (rtx insn,
++ rtx operands[]);
++
++
++#endif /* AVR32_PROTOS_H */
+--- a/gcc/config/avr32/crti.asm
++++ b/gcc/config/avr32/crti.asm
+@@ -0,0 +1,64 @@
++/*
++ Init/fini stuff for AVR32.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++
++/* The code in sections .init and .fini is supposed to be a single
++ regular function. The function in .init is called directly from
++ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm
++ too.
++
++ crti.asm contributes the prologue of a function to these sections,
++ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list
++ crti.o before any other object files that might add code to .init
++ or .fini sections, and ENDFILE_SPEC should list crtn.o after any
++ such object files. */
++
++ .file "crti.asm"
++
++ .section ".init"
++/* Just load the GOT */
++ .align 2
++ .global _init
++_init:
++ stm --sp, r6, lr
++ lddpc r6, 1f
++0:
++ rsub r6, pc
++ rjmp 2f
++ .align 2
++1: .long 0b - _GLOBAL_OFFSET_TABLE_
++2:
++
++ .section ".fini"
++/* Just load the GOT */
++ .align 2
++ .global _fini
++_fini:
++ stm --sp, r6, lr
++ lddpc r6, 1f
++0:
++ rsub r6, pc
++ rjmp 2f
++ .align 2
++1: .long 0b - _GLOBAL_OFFSET_TABLE_
++2:
++
+--- a/gcc/config/avr32/crtn.asm
++++ b/gcc/config/avr32/crtn.asm
+@@ -0,0 +1,44 @@
++/* Copyright (C) 2001 Free Software Foundation, Inc.
++ Written By Nick Clifton
++
++ This file is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published by the
++ Free Software Foundation; either version 2, or (at your option) any
++ later version.
++
++ In addition to the permissions in the GNU General Public License, the
++ Free Software Foundation gives you unlimited permission to link the
++ compiled version of this file with other programs, and to distribute
++ those programs without any restriction coming from the use of this
++ file. (The General Public License restrictions do apply in other
++ respects; for example, they cover modification of the file, and
++ distribution when not linked into another program.)
++
++ This file is distributed in the hope that it will be useful, but
++ WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
++ General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; see the file COPYING. If not, write to
++ the Free Software Foundation, 59 Temple Place - Suite 330,
++ Boston, MA 02111-1307, USA.
++
++ As a special exception, if you link this library with files
++ compiled with GCC to produce an executable, this does not cause
++ the resulting executable to be covered by the GNU General Public License.
++ This exception does not however invalidate any other reasons why
++ the executable file might be covered by the GNU General Public License.
++*/
++
++
++
++
++ .file "crtn.asm"
++
++ .section ".init"
++ ldm sp++, r6, pc
++
++ .section ".fini"
++ ldm sp++, r6, pc
++
+--- a/gcc/config/avr32/fpcp.md
++++ b/gcc/config/avr32/fpcp.md
+@@ -0,0 +1,551 @@
++;; AVR32 machine description file for Floating-Point instructions.
++;; Copyright 2003-2006 Atmel Corporation.
++;;
++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++;;
++;; This file is part of GCC.
++;;
++;; This program is free software; you can redistribute it and/or modify
++;; it under the terms of the GNU General Public License as published by
++;; the Free Software Foundation; either version 2 of the License, or
++;; (at your option) any later version.
++;;
++;; This program is distributed in the hope that it will be useful,
++;; but WITHOUT ANY WARRANTY; without even the implied warranty of
++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++;; GNU General Public License for more details.
++;;
++;; You should have received a copy of the GNU General Public License
++;; along with this program; if not, write to the Free Software
++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++
++;; -*- Mode: Scheme -*-
++
++;;******************************************************************************
++;; Automaton pipeline description for floating-point coprocessor insns
++;;******************************************************************************
++(define_cpu_unit "fid,fm1,fm2,fm3,fm4,fwb,fcmp,fcast" "avr32_ap")
++
++(define_insn_reservation "fmv_op" 1
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fmv"))
++ "is,da,d,fid,fwb")
++
++(define_insn_reservation "fmul_op" 5
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fmul"))
++ "is,da,d,fid,fm1,fm2,fm3,fm4,fwb")
++
++(define_insn_reservation "fcmps_op" 1
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fcmps"))
++ "is,da,d,fid,fcmp")
++
++(define_insn_reservation "fcmpd_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fcmpd"))
++ "is,da,d,fid*2,fcmp")
++
++(define_insn_reservation "fcast_op" 3
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fcast"))
++ "is,da,d,fid,fcmp,fcast,fwb")
++
++(define_insn_reservation "fmvcpu_op" 2
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fmvcpu"))
++ "is,da,d")
++
++(define_insn_reservation "fldd_op" 1
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fldd"))
++ "is,da,d,fwb")
++
++(define_insn_reservation "flds_op" 1
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "flds"))
++ "is,da,d,fwb")
++
++(define_insn_reservation "fsts_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fsts"))
++ "is,da*2,d")
++
++(define_insn_reservation "fstd_op" 0
++ (and (eq_attr "pipeline" "ap")
++ (eq_attr "type" "fstd"))
++ "is,da*2,d")
++
++
++(define_insn "*movsf_fpcp"
++ [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,r,m")
++ (match_operand:SF 1 "general_operand" " f,r,f,m,f,r,G,m,r"))]
++ "TARGET_HARD_FLOAT"
++ "@
++ fmov.s\t%0, %1
++ fmov.s\t%0, %1
++ fmov.s\t%0, %1
++ fld.s\t%0, %1
++ fst.s\t%0, %1
++ mov\t%0, %1
++ mov\t%0, %1
++ ld.w\t%0, %1
++ st.w\t%0, %1"
++ [(set_attr "length" "4,4,4,4,4,2,4,4,4")
++ (set_attr "type" "fmv,flds,fmvcpu,flds,fsts,alu,alu,load,store")])
++
++(define_insn_and_split "*movdf_fpcp"
++ [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,m")
++ (match_operand:DF 1 "general_operand" " f,r,f,m,f,r,m,r"))]
++ "TARGET_HARD_FLOAT"
++ "@
++ fmov.d\t%0, %1
++ fmov.d\t%0, %1
++ fmov.d\t%0, %1
++ fld.d\t%0, %1
++ fst.d\t%0, %1
++ mov\t%0, %1\;mov\t%m0, %m1
++ ld.d\t%0, %1
++ st.d\t%0, %1"
++
++ "TARGET_HARD_FLOAT
++ && reload_completed
++ && (REG_P(operands[0]) && (REGNO_REG_CLASS(REGNO(operands[0])) == GENERAL_REGS))
++ && (REG_P(operands[1]) && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS))"
++ [(set (match_dup 0) (match_dup 1))
++ (set (match_dup 2) (match_dup 3))]
++ "
++ {
++ operands[2] = gen_highpart (SImode, operands[0]);
++ operands[0] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart(SImode, operands[1]);
++ operands[1] = gen_lowpart(SImode, operands[1]);
++ }
++ "
++
++ [(set_attr "length" "4,4,4,4,4,4,4,4")
++ (set_attr "type" "fmv,fldd,fmvcpu,fldd,fstd,alu2,load2,store2")])
++
++
++(define_insn "mulsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fmul.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "nmulsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f"))))]
++ "TARGET_HARD_FLOAT"
++ "fnmul.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
++ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
++ (match_operand:SF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
++ (neg:SF (match_dup 0)))]
++ "TARGET_HARD_FLOAT &&
++ (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
++ [(set (match_dup 3)
++ (neg:SF (mult:SF (match_dup 1)
++ (match_dup 2))))]
++)
++
++
++(define_insn "macsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (plus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f"))
++ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fmac.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "nmacsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (plus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f")))
++ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fnmac.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
++ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
++ (match_operand:SF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
++ (minus:SF
++ (match_dup 3)
++ (match_dup 0)))]
++ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (plus:SF (neg:SF (mult:SF (match_dup 1)
++ (match_dup 2)))
++ (match_dup 3)))]
++)
++
++
++(define_insn "msubacsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (minus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f"))
++ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fmsc.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
++ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
++ (match_operand:SF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
++ (minus:SF
++ (match_dup 0)
++ (match_dup 3)))]
++ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (minus:SF (mult:SF (match_dup 1)
++ (match_dup 2))
++ (match_dup 3)))]
++)
++
++(define_insn "nmsubacsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f")))
++ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fnmsc.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++
++
++(define_insn "addsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (plus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fadd.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "subsf3"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (minus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
++ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fsub.s\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++
++(define_insn "negsf2"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (neg:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fneg.s\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmv")])
++
++(define_insn "abssf2"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (abs:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fabs.s\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmv")])
++
++(define_insn "truncdfsf2"
++ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
++ (float_truncate:SF
++ (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fcastd.s\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fcast")])
++
++(define_insn "extendsfdf2"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (float_extend:DF
++ (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fcasts.d\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fcast")])
++
++(define_insn "muldf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fmul.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "nmuldf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f"))))]
++ "TARGET_HARD_FLOAT"
++ "fnmul.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
++ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
++ (match_operand:DF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
++ (neg:DF (match_dup 0)))]
++ "TARGET_HARD_FLOAT &&
++ (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
++ [(set (match_dup 3)
++ (neg:DF (mult:DF (match_dup 1)
++ (match_dup 2))))]
++)
++
++(define_insn "macdf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (plus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f"))
++ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fmac.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "msubacdf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (minus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f"))
++ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fmsc.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
++ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
++ (match_operand:DF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
++ (minus:DF
++ (match_dup 0)
++ (match_dup 3)))]
++ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (minus:DF (mult:DF (match_dup 1)
++ (match_dup 2))
++ (match_dup 3)))]
++ )
++
++(define_insn "nmsubacdf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (minus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f")))
++ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fnmsc.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "nmacdf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (plus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f")))
++ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
++ "TARGET_HARD_FLOAT"
++ "fnmac.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_peephole2
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
++ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
++ (match_operand:DF 2 "avr32_fp_register_operand" "")))
++ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
++ (minus:DF
++ (match_dup 3)
++ (match_dup 0)))]
++ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
++ [(set (match_dup 3)
++ (plus:DF (neg:DF (mult:DF (match_dup 1)
++ (match_dup 2)))
++ (match_dup 3)))]
++)
++
++(define_insn "adddf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (plus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fadd.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "subdf3"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (minus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
++ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fsub.d\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmul")])
++
++(define_insn "negdf2"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (neg:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fneg.d\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmv")])
++
++(define_insn "absdf2"
++ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
++ (abs:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ "fabs.d\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmv")])
++
++
++(define_expand "cmpdf"
++ [(set (cc0)
++ (compare:DF
++ (match_operand:DF 0 "general_operand" "")
++ (match_operand:DF 1 "general_operand" "")))]
++ "TARGET_HARD_FLOAT"
++ "{
++ rtx tmpreg;
++ if ( !REG_P(operands[0]) )
++ operands[0] = force_reg(DFmode, operands[0]);
++
++ if ( !REG_P(operands[1]) )
++ operands[1] = force_reg(DFmode, operands[1]);
++
++ avr32_compare_op0 = operands[0];
++ avr32_compare_op1 = operands[1];
++
++ emit_insn(gen_cmpdf_internal(operands[0], operands[1]));
++
++ tmpreg = gen_reg_rtx(SImode);
++ emit_insn(gen_fpcc_to_reg(tmpreg));
++ emit_insn(gen_reg_to_cc(tmpreg));
++
++ DONE;
++ }"
++)
++
++(define_insn "cmpdf_internal"
++ [(set (reg:CC FPCC_REGNUM)
++ (compare:CC
++ (match_operand:DF 0 "avr32_fp_register_operand" "f")
++ (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ {
++ if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
++ return "fcmp.d\t%0, %1";
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "type" "fcmpd")
++ (set_attr "cc" "fpcompare")])
++
++(define_expand "cmpsf"
++ [(set (cc0)
++ (compare:SF
++ (match_operand:SF 0 "general_operand" "")
++ (match_operand:SF 1 "general_operand" "")))]
++ "TARGET_HARD_FLOAT"
++ "{
++ rtx tmpreg;
++ if ( !REG_P(operands[0]) )
++ operands[0] = force_reg(SFmode, operands[0]);
++
++ if ( !REG_P(operands[1]) )
++ operands[1] = force_reg(SFmode, operands[1]);
++
++ avr32_compare_op0 = operands[0];
++ avr32_compare_op1 = operands[1];
++
++ emit_insn(gen_cmpsf_internal(operands[0], operands[1]));
++
++ tmpreg = gen_reg_rtx(SImode);
++ emit_insn(gen_fpcc_to_reg(tmpreg));
++ emit_insn(gen_reg_to_cc(tmpreg));
++
++ DONE;
++ }"
++)
++
++(define_insn "cmpsf_internal"
++ [(set (reg:CC FPCC_REGNUM)
++ (compare:CC
++ (match_operand:SF 0 "avr32_fp_register_operand" "f")
++ (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
++ "TARGET_HARD_FLOAT"
++ {
++ if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
++ return "fcmp.s\t%0, %1";
++ return "";
++ }
++ [(set_attr "length" "4")
++ (set_attr "type" "fcmps")
++ (set_attr "cc" "fpcompare")])
++
++(define_insn "fpcc_to_reg"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (unspec:SI [(reg:CC FPCC_REGNUM)]
++ UNSPEC_FPCC_TO_REG))]
++ "TARGET_HARD_FLOAT"
++ "fmov.s\t%0, fsr"
++ [(set_attr "length" "4")
++ (set_attr "type" "fmvcpu")])
++
++(define_insn "reg_to_cc"
++ [(set (cc0)
++ (unspec:SI [(match_operand:SI 0 "register_operand" "r")]
++ UNSPEC_REG_TO_CC))]
++ "TARGET_HARD_FLOAT"
++ "musfr\t%0"
++ [(set_attr "length" "2")
++ (set_attr "type" "alu")
++ (set_attr "cc" "from_fpcc")])
++
++(define_insn "stm_fp"
++ [(unspec [(match_operand 0 "register_operand" "r")
++ (match_operand 1 "const_int_operand" "")
++ (match_operand 2 "const_int_operand" "")]
++ UNSPEC_STMFP)]
++ "TARGET_HARD_FLOAT"
++ {
++ int cop_reglist = INTVAL(operands[1]);
++
++ if (INTVAL(operands[2]) != 0)
++ return "stcm.w\tcp0, --%0, %C1";
++ else
++ return "stcm.w\tcp0, %0, %C1";
++
++ if ( cop_reglist & ~0xff ){
++ operands[1] = GEN_INT(cop_reglist & ~0xff);
++ if (INTVAL(operands[2]) != 0)
++ return "stcm.d\tcp0, --%0, %D1";
++ else
++ return "stcm.d\tcp0, %0, %D1";
++ }
++ }
++ [(set_attr "type" "fstm")
++ (set_attr "length" "4")
++ (set_attr "cc" "none")])
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -0,0 +1,2874 @@
++/* Macro for moving immediate value to register. */
++.macro mov_imm reg, imm
++.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm))
++ mov \reg, \imm
++#if __AVR32_UC__ >= 2
++.elseif ((\imm & 0xffff) == 0)
++ movh \reg, hi(\imm)
++
++#endif
++.else
++ mov \reg, lo(\imm)
++ orh \reg, hi(\imm)
++.endif
++.endm
++
++
++
++/* Adjust the unpacked double number if it is a subnormal number.
++ The exponent and mantissa pair are stored
++ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in
++ the MSB is passed in [sign]. Needs two scratch
++ registers [scratch1] and [scratch2]. An adjusted and packed double float
++ is present in [mant_hi,mant_lo] after macro has executed */
++.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2
++ /* We have an exponent which is <=0 indicating a subnormal number
++ As it should be stored as if the exponent was 1 (although the
++ exponent field is all zeros to indicate a subnormal number)
++ we have to shift down the mantissa to its correct position. */
++ neg \exp
++ sub \exp,-1 /* amount to shift down */
++ cp.w \exp,54
++ brlo 50f /* if more than 53 shift steps, the
++ entire mantissa will disappear
++ without any rounding to occur */
++ mov \mant_hi, 0
++ mov \mant_lo, 0
++ rjmp 52f
++50:
++ sub \exp,-10 /* do the shift to position the
++ mantissa at the same time
++ note! this does not include the
++ final 1 step shift to add the sign */
++
++ /* when shifting, save all shifted out bits in [scratch2]. we may need to
++ look at them to make correct rounding. */
++
++ rsub \scratch1,\exp,32 /* get inverted shift count */
++ cp.w \exp,32 /* handle shifts >= 32 separately */
++ brhs 51f
++
++ /* small (<32) shift amount, both words are part of the shift */
++ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/
++ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/
++ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */
++ lsr \mant_hi,\mant_hi,\exp /* shift down msw */
++ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */
++ rjmp 50f
++
++ /* large (>=32) shift amount, only lsw will have bits left after shift.
++ note that shift operations will use ((shift count) mod 32) so
++ we do not need to subtract 32 from shift count. */
++51:
++ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */
++ or \scratch2,\mant_lo /* also save all bits from lsw */
++ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */
++ mov \mant_hi,0 /* clear msw */
++ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */
++
++50:
++ /* result is almost ready to return, except that least significant bit
++ and the part we already shifted out may cause the result to be
++ rounded */
++ bld \mant_lo,0 /* get bit to be shifted out */
++ brcc 51f /* if bit was 0, no rounding */
++
++ /* msb of part to remove is 1, so rounding depends on rest of bits */
++ tst \scratch2,\scratch2 /* get shifted out tail */
++ brne 50f /* if rest > 0, do round */
++ bld \mant_lo,1 /* we have to look at lsb in result */
++ brcc 51f /* if lsb is 0, don't round */
++
++50:
++ /* subnormal result requires rounding
++ rounding may cause subnormal to become smallest normal number
++ luckily, smallest normal number has exactly the representation
++ we got by rippling a one bit up from mantissa into exponent field. */
++ sub \mant_lo,-1
++ subcc \mant_hi,-1
++
++51:
++ /* shift and return packed double with correct sign */
++ rol \sign
++ ror \mant_hi
++ ror \mant_lo
++52:
++.endm
++
++
++/* Adjust subnormal single float number with exponent [exp]
++ and mantissa [mant] and round. */
++.macro adjust_subnormal_sf sf, exp, mant, sign, scratch
++ /* subnormal number */
++ rsub \exp,\exp, 1 /* shift amount */
++ cp.w \exp, 25
++ movhs \mant, 0
++ brhs 90f /* Return zero */
++ rsub \scratch, \exp, 32
++ lsl \scratch, \mant,\scratch/* Check if there are any bits set
++ in the bits discarded in the mantissa */
++ srne \scratch /* If so set the lsb of the shifted mantissa */
++ lsr \mant,\mant,\exp /* Shift the mantissa */
++ or \mant, \scratch /* Round lsb if any bits were shifted out */
++ /* Rounding : For explaination, see round_sf. */
++ mov \scratch, 0x7f /* Set rounding constant */
++ bld \mant, 8
++ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */
++ add \mant, \scratch /* Add rounding constant to mantissa */
++ /* We can't overflow because mantissa is at least shifted one position
++ to the right so the implicit bit is zero. We can however get the implicit
++ bit set after rounding which means that we have the lowest normal number
++ but this is ok since this bit has the same position as the LSB of the
++ exponent */
++ lsr \sf, \mant, 7
++ /* Rotate in sign */
++ lsl \sign, 1
++ ror \sf
++90:
++.endm
++
++
++/* Round the unpacked df number with exponent [exp] and
++ mantissa [mant_hi, mant_lo]. Uses scratch register
++ [scratch] */
++.macro round_df exp, mant_lo, mant_hi, scratch
++ mov \scratch, 0x3ff /* Rounding constant */
++ bld \mant_lo,11 /* Check if lsb in the final result is
++ set */
++ subeq \scratch, -1 /* Adjust rounding constant to 0x400
++ if rounding 0.5 upwards */
++ add \mant_lo, \scratch /* Round */
++ acr \mant_hi /* If overflowing we know that
++ we have all zeros in the bits not
++ scaled out so we can leave them
++ but we must increase the exponent with
++ two since we had an implicit bit
++ which is lost + the extra overflow bit */
++ subcs \exp, -2 /* Update exponent */
++.endm
++
++/* Round single float number stored in [mant] and [exp] */
++.macro round_sf exp, mant, scratch
++ /* Round:
++ For 0.5 we round to nearest even integer
++ for all other cases we round to nearest integer.
++ This means that if the digit left of the "point" (.)
++ is 1 we can add 0x80 to the mantissa since the
++ corner case 0x180 will round up to 0x200. If the
++ digit left of the "point" is 0 we will have to
++ add 0x7f since this will give 0xff and hence a
++ truncation/rounding downwards for the corner
++ case when the 9 lowest bits are 0x080 */
++ mov \scratch, 0x7f /* Set rounding constant */
++ /* Check if the mantissa is even or odd */
++ bld \mant, 8
++ subeq \scratch, -1 /* Rounding constant should be 0x80 */
++ add \mant, \scratch
++ subcs \exp, -2 /* Adjust exponent if we overflowed */
++.endm
++
++
++
++/* Pack a single float number stored in [mant] and [exp]
++ into a single float number in [sf] */
++.macro pack_sf sf, exp, mant
++ bld \mant,31 /* implicit bit to z */
++ subne \exp,1 /* if subnormal (implicit bit 0)
++ adjust exponent to storage format */
++
++ lsr \sf, \mant, 7
++ bfins \sf, \exp, 24, 8
++.endm
++
++/* Pack exponent [exp] and mantissa [mant_hi, mant_lo]
++ into [df_hi, df_lo]. [df_hi] is shifted
++ one bit up so the sign bit can be shifted into it */
++
++.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi
++ bld \mant_hi,31 /* implicit bit to z */
++ subne \exp,1 /* if subnormal (implicit bit 0)
++ adjust exponent to storage format */
++
++ lsr \mant_lo,11 /* shift back lsw */
++ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */
++ lsl \mant_hi,1 /* get rid of implicit bit */
++ lsr \mant_hi,11 /* shift back msw except for one step*/
++ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */
++.endm
++
++/* Normalize single float number stored in [mant] and [exp]
++ using scratch register [scratch] */
++.macro normalize_sf exp, mant, scratch
++ /* Adjust exponent and mantissa */
++ clz \scratch, \mant
++ sub \exp, \scratch
++ lsl \mant, \mant, \scratch
++.endm
++
++/* Normalize the exponent and mantissa pair stored
++ in [mant_hi,mant_lo] and [exp]. Needs two scratch
++ registers [scratch1] and [scratch2]. */
++.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2
++ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */
++ breq 80f /* No need for scaling if no zeros in high bits */
++ brcs 81f /* Check for all zeros */
++
++ /* shift amount is smaller than 32, and involves both msw and lsw*/
++ rsub \scratch2,\scratch1,32 /* shift mantissa */
++ lsl \mant_hi,\mant_hi,\scratch1
++ lsr \scratch2,\mant_lo,\scratch2
++ or \mant_hi,\scratch2
++ lsl \mant_lo,\mant_lo,\scratch1
++ sub \exp,\scratch1 /* adjust exponent */
++ rjmp 80f /* Finished */
++81:
++ /* shift amount is greater than 32 */
++ clz \scratch1,\mant_lo /* shift mantissa */
++ movcs \scratch1, 0
++ subcc \scratch1,-32
++ lsl \mant_hi,\mant_lo,\scratch1
++ mov \mant_lo,0
++ sub \exp,\scratch1 /* adjust exponent */
++80:
++.endm
++
++
++/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result.
++ The multiplication of [al]x[bl] is discarded.
++ Operands in [ah], [al], [bh], [bl].
++ Scratch registers in [sh], [sl].
++ Returns results in registers [rh], [rl].*/
++.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl
++ mulu.d \sl, \ah, \bl
++ macu.d \sl, \al, \bh
++ mulu.d \rl, \ah, \bh
++ add \rl, \sh
++ acr \rh
++.endm
++
++
++
++#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast)
++ .align 2
++#if defined(L_avr32_f64_mul)
++ .global __avr32_f64_mul
++ .type __avr32_f64_mul,@function
++__avr32_f64_mul:
++#else
++ .global __avr32_f64_mul_fast
++ .type __avr32_f64_mul_fast,@function
++__avr32_f64_mul_fast:
++#endif
++ or r12, r10, r11 << 1
++ breq __avr32_f64_mul_op1_zero
++
++#if defined(L_avr32_f64_mul)
++ pushm r4-r7, lr
++#else
++ stm --sp, r5,r6,r7,lr
++#endif
++
++#define AVR32_F64_MUL_OP1_INT_BITS 1
++#define AVR32_F64_MUL_OP2_INT_BITS 10
++#define AVR32_F64_MUL_RES_INT_BITS 11
++
++ /* op1 in {r11,r10}*/
++ /* op2 in {r9,r8}*/
++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */
++
++ /* Unpack op1 to 1.63 format*/
++ /* exp: r7 */
++ /* sf: r11, r10 */
++ bfextu r7, r11, 20, 11 /* Extract exponent */
++
++ mov r5, 1
++
++ /* Check if normalization is needed */
++ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */
++
++ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */
++ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1))
++ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1)
++ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */
++
++
++22:
++ /* Unpack op2 to 10.54 format */
++ /* exp: r6 */
++ /* sf: r9, r8 */
++ bfextu r6, r9, 20, 11 /* Extract exponent */
++
++ /* Check if normalization is needed */
++ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */
++
++ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */
++ rol r9
++ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */
++
++23:
++
++ /* Check if any operands are NaN or INF */
++ cp r7, 0x7ff
++ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */
++ cp r6, 0x7ff
++ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */
++
++
++ /* Calculate new exponent in r12*/
++ add r12, r7, r6
++ sub r12, (1023-1)
++
++#if defined(L_avr32_f64_mul)
++ /* Do the multiplication.
++ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */
++ mulu.d r4, r11, r8
++ macu.d r4, r10, r9
++ mulu.d r6, r10, r8
++ mulu.d r10, r11, r9
++ add r7, r4
++ adc r10, r10, r5
++ acr r11
++#else
++ /* Do the multiplication using approximate calculation. discard the al x bl
++ calculation.
++ Place result in [r11, r10, r7]. The result is in 11.85 format. */
++
++ /* Do the multiplication using approximate calculation.
++ Place result in r11, r10. Use r7, r6 as scratch registers */
++ mulu.d r6, r11, r8
++ macu.d r6, r10, r9
++ mulu.d r10, r11, r9
++ add r10, r7
++ acr r11
++#endif
++ /* Adjust exponent and mantissa */
++ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */
++ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */
++ /* In the first case, shift one pos to left.*/
++ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1
++ breq 0f
++ lsl r7, 1
++ rol r10
++ rol r11
++ sub r12, 1
++0:
++ cp r12, 0
++ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/
++
++ /* Check for Inf. */
++ cp.w r12, 0x7ff
++ brge __avr32_f64_mul_res_inf
++
++ /* Insert exponent. */
++ bfins r11, r12, 20, 11
++
++ /* Result was not subnormal. Perform rounding. */
++ /* For the fast version we discard the sticky bits and always round
++ the halfwaycase up. */
++24:
++#if defined(L_avr32_f64_mul)
++ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */
++ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb
++ of r7 represent the halfway bit. */
++ eorh r7, 0x8000 /* Toggle halfway bit. */
++ /* We should now round up by adding one for the following cases:
++
++ halfway sticky|parity round-up
++ 0 x no
++ 1 0 no
++ 1 1 yes
++
++ Since we have inverted the halfway bit we can use the satu instruction
++ by saturating to 1 bit to implement this.
++ */
++ satu r7 >> 0, 1
++#else
++ lsr r7, 31
++#endif
++ add r10, r7
++ acr r11
++
++ /* Insert sign bit*/
++ bld lr, 31
++ bst r11, 31
++
++ /* Return result in [r11,r10] */
++#if defined(L_avr32_f64_mul)
++ popm r4-r7, pc
++#else
++ ldm sp++, r5, r6, r7,pc
++#endif
++
++
++__avr32_f64_mul_op1_subnormal:
++ andh r11, 0x000f /* Remove sign bit and exponent */
++ clz r12, r10 /* Count leading zeros in lsw */
++ clz r6, r11 /* Count leading zeros in msw */
++ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS
++ movcs r6, r12
++ subcc r6, AVR32_F64_MUL_OP1_INT_BITS
++ cp.w r6, 32
++ brge 0f
++
++ /* shifting involves both msw and lsw*/
++ rsub r12, r6, 32 /* shift mantissa */
++ lsl r11, r11, r6
++ lsr r12, r10, r12
++ or r11, r12
++ lsl r10, r10, r6
++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS
++ sub r7, r6 /* adjust exponent */
++ rjmp 22b /* Finished */
++0:
++ /* msw is zero so only need to consider lsw */
++ lsl r11, r10, r6
++ breq __avr32_f64_mul_res_zero
++ mov r10, 0
++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS
++ sub r7, r6 /* adjust exponent */
++ rjmp 22b
++
++
++__avr32_f64_mul_op2_subnormal:
++ andh r9, 0x000f /* Remove sign bit and exponent */
++ clz r12, r8 /* Count leading zeros in lsw */
++ clz r5, r9 /* Count leading zeros in msw */
++ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS
++ movcs r5, r12
++ subcc r5, AVR32_F64_MUL_OP2_INT_BITS
++ cp.w r5, 32
++ brge 0f
++
++ /* shifting involves both msw and lsw*/
++ rsub r12, r5, 32 /* shift mantissa */
++ lsl r9, r9, r5
++ lsr r12, r8, r12
++ or r9, r12
++ lsl r8, r8, r5
++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS
++ sub r6, r5 /* adjust exponent */
++ rjmp 23b /* Finished */
++0:
++ /* msw is zero so only need to consider lsw */
++ lsl r9, r8, r5
++ breq __avr32_f64_mul_res_zero
++ mov r8, 0
++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS
++ sub r6, r5 /* adjust exponent */
++ rjmp 23b
++
++
++__avr32_f64_mul_op_nan_or_inf:
++ /* Same code for OP1 and OP2*/
++ /* Since we are here, at least one of the OPs were NaN or INF*/
++ andh r9, 0x000f /* Remove sign bit and exponent */
++ andh r11, 0x000f /* Remove sign bit and exponent */
++ /* Merge the regs in each operand to check for zero*/
++ or r11, r10 /* op1 */
++ or r9, r8 /* op2 */
++ /* Check if op1 is NaN or INF */
++ cp r7, 0x7ff
++ brne __avr32_f64_mul_op1_not_naninf
++ /* op1 was NaN or INF.*/
++ cp r11, 0
++ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/
++ /*op1 was INF. check if op2 is NaN or INF*/
++ cp r6, 0x7ff
++ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/
++ /* op1 is INF, op2 is either NaN or INF*/
++ cp r9, 0
++ breq __avr32_f64_mul_res_inf /*op2 was also INF*/
++ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/
++
++__avr32_f64_mul_op1_not_naninf:
++ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/
++ cp r9, 0
++ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/
++ rjmp __avr32_f64_mul_res_nan /*else return NaN*/
++
++__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */
++#if defined(L_avr32_f64_mul)
++ /* Check how much we must scale down the mantissa. */
++ neg r12
++ sub r12, -1 /* We do no longer have an implicit bit. */
++ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */
++ cp.w r12, 32
++ brge 0f
++ /* Shift amount <32 */
++ rsub r8, r12, 32
++ or r6, r7
++ lsr r7, r7, r12
++ lsl r9, r10, r8
++ or r7, r9
++ lsr r10, r10, r12
++ lsl r9, r11, r8
++ or r10, r9
++ lsr r11, r11, r12
++ rjmp 24b
++0:
++ /* Shift amount >=32 */
++ rsub r8, r12, 32
++ moveq r9, 0
++ breq 0f
++ lsl r9, r11, r8
++0:
++ or r6, r7
++ or r6, r6, r10 << 1
++ lsr r10, r10, r12
++ or r7, r9, r10
++ lsr r10, r11, r12
++ mov r11, 0
++ rjmp 24b
++#else
++ /* Flush to zero for the fast version. */
++ mov r11, lr /*Get correct sign*/
++ andh r11, 0x8000, COH
++ mov r10, 0
++ ldm sp++, r5, r6, r7,pc
++#endif
++
++__avr32_f64_mul_res_zero:/* Multiply result is zero. */
++ mov r11, lr /*Get correct sign*/
++ andh r11, 0x8000, COH
++ mov r10, 0
++#if defined(L_avr32_f64_mul)
++ popm r4-r7, pc
++#else
++ ldm sp++, r5, r6, r7,pc
++#endif
++
++__avr32_f64_mul_res_nan: /* Return NaN. */
++ mov r11, -1
++ mov r10, -1
++#if defined(L_avr32_f64_mul)
++ popm r4-r7, pc
++#else
++ ldm sp++, r5, r6, r7,pc
++#endif
++
++__avr32_f64_mul_res_inf: /* Return INF. */
++ mov r11, 0xfff00000
++ bld lr, 31
++ bst r11, 31
++ mov r10, 0
++#if defined(L_avr32_f64_mul)
++ popm r4-r7, pc
++#else
++ ldm sp++, r5, r6, r7,pc
++#endif
++
++__avr32_f64_mul_op1_zero:
++ /* Get sign */
++ eor r11, r11, r9
++ andh r11, 0x8000, COH
++ /* Check if op2 is Inf or NaN. */
++ bfextu r12, r9, 20, 11
++ cp.w r12, 0x7ff
++ retne r12 /* Return 0.0 */
++ /* Return NaN */
++ mov r10, -1
++ mov r11, -1
++ ret r12
++
++
++
++#endif
++
++
++#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast)
++ .align 2
++
++__avr32_f64_sub_from_add:
++ /* Switch sign on op2 */
++ eorh r9, 0x8000
++
++#if defined(L_avr32_f64_addsub_fast)
++ .global __avr32_f64_sub_fast
++ .type __avr32_f64_sub_fast,@function
++__avr32_f64_sub_fast:
++#else
++ .global __avr32_f64_sub
++ .type __avr32_f64_sub,@function
++__avr32_f64_sub:
++#endif
++
++ /* op1 in {r11,r10}*/
++ /* op2 in {r9,r8}*/
++
++#if defined(L_avr32_f64_addsub_fast)
++ /* If op2 is zero just return op1 */
++ or r12, r8, r9 << 1
++ reteq r12
++#endif
++
++ /* Check signs */
++ eor r12, r11, r9
++ /* Different signs, use addition. */
++ brmi __avr32_f64_add_from_sub
++
++ stm --sp, r5, r6, r7, lr
++
++ /* Get sign of op1 into r12 */
++ mov r12, r11
++ andh r12, 0x8000, COH
++
++ /* Remove sign from operands */
++ cbr r11, 31
++ cbr r9, 31
++
++ /* Put the largest number in [r11, r10]
++ and the smallest number in [r9, r8] */
++ cp r10, r8
++ cpc r11, r9
++ brhs 1f /* Skip swap if operands already correctly ordered*/
++ /* Operands were not correctly ordered, swap them*/
++ mov r7, r11
++ mov r11, r9
++ mov r9, r7
++ mov r7, r10
++ mov r10, r8
++ mov r8, r7
++ eorh r12, 0x8000 /* Invert sign in r12*/
++1:
++ /* Unpack largest operand - opH */
++ /* exp: r7 */
++ /* sf: r11, r10 */
++ lsr r7, r11, 20 /* Extract exponent */
++ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */
++ or r11, r11, r10>>21
++ lsl r10, 11
++ sbr r11, 31 /* Insert implicit bit */
++
++
++ /* Unpack smallest operand - opL */
++ /* exp: r6 */
++ /* sf: r9, r8 */
++ lsr r6, r9, 20 /* Extract exponent */
++ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */
++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */
++ or r9, r9, r8>>21
++ lsl r8, 11
++ sbr r9, 31 /* Insert implicit bit */
++
++
++__avr32_f64_sub_opL_subnormal_done:
++ /* opH is NaN or Inf. */
++ cp.w r7, 0x7ff
++ breq __avr32_f64_sub_opH_nan_or_inf
++
++ /* Get shift amount to scale mantissa of op2. */
++ rsub r6, r7
++ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/
++
++ /* Scale mantissa [r9, r8] with amount [r6].
++ Uses scratch registers [r5] and [lr].
++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */
++
++ rsub r5,r6,32 /* get (32 - shift count)
++ (if shift count > 32 we get a
++ negative value, but that will
++ work as well in the code below.) */
++
++ cp.w r6,32 /* handle shifts >= 32 separately */
++ brhs __avr32_f64_sub_longshift
++
++ /* small (<32) shift amount, both words are part of the shift
++ first remember whether part that is lost contains any 1 bits ... */
++ lsl lr,r8,r5 /* shift away bits that are part of
++ final mantissa. only part that goes
++ to lr are bits that will be lost */
++
++ /* ... and now to the actual shift */
++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/
++ lsr r8,r8,r6 /* shift down lsw of mantissa */
++ lsr r9,r9,r6 /* shift down msw of mantissa */
++ or r8,r5 /* combine these bits with prepared lsw*/
++#if defined(L_avr32_f64_addsub)
++ cp.w lr,0 /* if any '1' bit in part we lost ...*/
++ srne lr
++ or r8, lr /* ... we need to set sticky bit*/
++#endif
++
++__avr32_f64_sub_shift_done:
++ /* Now subtract the mantissas. */
++ sub r10, r8
++ sbc r11, r11, r9
++
++ /* Normalize the exponent and mantissa pair stored in
++ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */
++ clz r6,r11 /* Check if we have zeros in high bits */
++ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */
++ brcs __avr32_f64_sub_longnormalize
++
++
++ /* shift amount is smaller than 32, and involves both msw and lsw*/
++ rsub lr,r6,32 /* shift mantissa */
++ lsl r11,r11,r6
++ lsr lr,r10,lr
++ or r11,lr
++ lsl r10,r10,r6
++
++ sub r7,r6 /* adjust exponent */
++ brle __avr32_f64_sub_subnormal_result
++__avr32_f64_sub_longnormalize_done:
++
++#if defined(L_avr32_f64_addsub)
++ /* Insert the bits we will remove from the mantissa r9[31:21] */
++ lsl r9, r10, (32 - 11)
++#else
++ /* Keep the last bit shifted out. */
++ bfextu r9, r10, 10, 1
++#endif
++
++ /* Pack final result*/
++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */
++ /* Result in [r11,r10] */
++ /* Insert mantissa */
++ lsr r10, 11
++ or r10, r10, r11<<21
++ lsr r11, 11
++ /* Insert exponent and sign bit*/
++ bfins r11, r7, 20, 11
++ or r11, r12
++
++ /* Round */
++__avr32_f64_sub_round:
++#if defined(L_avr32_f64_addsub)
++ mov_imm r7, 0x80000000
++ bld r10, 0
++ subne r7, -1
++
++ cp.w r9, r7
++ srhs r9
++#endif
++ add r10, r9
++ acr r11
++
++ /* Return result in [r11,r10] */
++ ldm sp++, r5, r6, r7,pc
++
++
++
++__avr32_f64_sub_opL_subnormal:
++ /* Extract the of mantissa */
++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */
++ or r9, r9, r8>>21
++ lsl r8, 11
++
++ /* Set exponent to 1 if we do not have a zero. */
++ or lr, r9, r8
++ movne r6,1
++
++ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/
++ rsub lr, r7, 0
++ moveq r7,1
++ bst r11, 31
++
++ /* Check if op1 is zero, if so set exponent to 0. */
++ or lr, r11, r10
++ moveq r7,0
++
++ rjmp __avr32_f64_sub_opL_subnormal_done
++
++__avr32_f64_sub_opH_nan_or_inf:
++ /* Check if opH is NaN, if so return NaN */
++ cbr r11, 31
++ or lr, r11, r10
++ brne __avr32_f64_sub_return_nan
++
++ /* opH is Inf. */
++ /* Check if opL is Inf. or NaN */
++ cp.w r6, 0x7ff
++ breq __avr32_f64_sub_return_nan
++ /* Return infinity with correct sign. */
++ or r11, r12, r7 << 20
++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */
++__avr32_f64_sub_return_nan:
++ mov r10, -1 /* Generate NaN in r11, r10 */
++ mov r11, -1
++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */
++
++
++__avr32_f64_sub_subnormal_result:
++#if defined(L_avr32_f64_addsub)
++ /* Check how much we must scale down the mantissa. */
++ neg r7
++ sub r7, -1 /* We do no longer have an implicit bit. */
++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */
++ cp.w r7, 32
++ brge 0f
++ /* Shift amount <32 */
++ rsub r8, r7, 32
++ lsl r9, r10, r8
++ srne r6
++ lsr r10, r10, r7
++ or r10, r6 /* Sticky bit from the
++ part that was shifted out. */
++ lsl r9, r11, r8
++ or r10, r10, r9
++ lsr r11, r10, r7
++ /* Set exponent */
++ mov r7, 0
++ rjmp __avr32_f64_sub_longnormalize_done
++0:
++ /* Shift amount >=32 */
++ rsub r8, r7, 64
++ lsl r9, r11, r8
++ or r9, r10
++ srne r6
++ lsr r10, r11, r7
++ or r10, r6 /* Sticky bit from the
++ part that was shifted out. */
++ mov r11, 0
++ /* Set exponent */
++ mov r7, 0
++ rjmp __avr32_f64_sub_longnormalize_done
++#else
++ /* Just flush subnormals to zero. */
++ mov r10, 0
++ mov r11, 0
++#endif
++ ldm sp++, r5, r6, r7, pc
++
++__avr32_f64_sub_longshift:
++ /* large (>=32) shift amount, only lsw will have bits left after shift.
++ note that shift operations will use ((shift count=r6) mod 32) so
++ we do not need to subtract 32 from shift count. */
++ /* Saturate the shift amount to 63. If the amount
++ is any larger op2 is insignificant. */
++ satu r6 >> 0, 6
++
++#if defined(L_avr32_f64_addsub)
++ /* first remember whether part that is lost contains any 1 bits ... */
++ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */
++ breq 0f
++ lsl lr,r9,r5 /* save all lost bits from msw */
++ or lr,r8 /* also save lost bits (all) from lsw
++ now lr != 0 if we lose any bits */
++#endif
++0:
++ /* ... and now to the actual shift */
++ lsr r8,r9,r6 /* Move msw to lsw and shift. */
++ mov r9,0 /* clear msw */
++#if defined(L_avr32_f64_addsub)
++ cp.w lr,0 /* if any '1' bit in part we lost ...*/
++ srne lr
++ or r8, lr /* ... we need to set sticky bit*/
++#endif
++ rjmp __avr32_f64_sub_shift_done
++
++__avr32_f64_sub_longnormalize:
++ /* shift amount is greater than 32 */
++ clz r6,r10 /* shift mantissa */
++ /* If the resulting mantissa is zero the result is
++ zero so force exponent to zero. */
++ movcs r7, 0
++ movcs r6, 0
++ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction
++ always is +0.0 */
++ subcc r6,-32
++ lsl r11,r10,r6
++ mov r10,0
++ sub r7,r6 /* adjust exponent */
++ brle __avr32_f64_sub_subnormal_result
++ rjmp __avr32_f64_sub_longnormalize_done
++
++
++
++ .align 2
++__avr32_f64_add_from_sub:
++ /* Switch sign on op2 */
++ eorh r9, 0x8000
++
++#if defined(L_avr32_f64_addsub_fast)
++ .global __avr32_f64_add_fast
++ .type __avr32_f64_add_fast,@function
++__avr32_f64_add_fast:
++#else
++ .global __avr32_f64_add
++ .type __avr32_f64_add,@function
++__avr32_f64_add:
++#endif
++
++ /* op1 in {r11,r10}*/
++ /* op2 in {r9,r8}*/
++
++#if defined(L_avr32_f64_addsub_fast)
++ /* If op2 is zero just return op1 */
++ or r12, r8, r9 << 1
++ reteq r12
++#endif
++
++ /* Check signs */
++ eor r12, r11, r9
++ /* Different signs, use subtraction. */
++ brmi __avr32_f64_sub_from_add
++
++ stm --sp, r5, r6, r7, lr
++
++ /* Get sign of op1 into r12 */
++ mov r12, r11
++ andh r12, 0x8000, COH
++
++ /* Remove sign from operands */
++ cbr r11, 31
++ cbr r9, 31
++
++ /* Put the number with the largest exponent in [r11, r10]
++ and the number with the smallest exponent in [r9, r8] */
++ cp r11, r9
++ brhs 1f /* Skip swap if operands already correctly ordered */
++ /* Operands were not correctly ordered, swap them */
++ mov r7, r11
++ mov r11, r9
++ mov r9, r7
++ mov r7, r10
++ mov r10, r8
++ mov r8, r7
++1:
++ mov lr, 0 /* Set sticky bits to zero */
++ /* Unpack largest operand - opH */
++ /* exp: r7 */
++ /* sf: r11, r10 */
++ bfextu R7, R11, 20, 11 /* Extract exponent */
++ bfextu r11, r11, 0, 20 /* Extract mantissa */
++ sbr r11, 20 /* Insert implicit bit */
++
++ /* Unpack smallest operand - opL */
++ /* exp: r6 */
++ /* sf: r9, r8 */
++ bfextu R6, R9, 20, 11 /* Extract exponent */
++ breq __avr32_f64_add_op2_subnormal
++ bfextu r9, r9, 0, 20 /* Extract mantissa */
++ sbr r9, 20 /* Insert implicit bit */
++
++2:
++ /* opH is NaN or Inf. */
++ cp.w r7, 0x7ff
++ breq __avr32_f64_add_opH_nan_or_inf
++
++ /* Get shift amount to scale mantissa of op2. */
++ rsub r6, r7
++ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/
++
++ /* Scale mantissa [r9, r8] with amount [r6].
++ Uses scratch registers [r5] and [lr].
++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */
++ rsub r5,r6,32 /* get (32 - shift count)
++ (if shift count > 32 we get a
++ negative value, but that will
++ work as well in the code below.) */
++
++ cp.w r6,32 /* handle shifts >= 32 separately */
++ brhs __avr32_f64_add_longshift
++
++ /* small (<32) shift amount, both words are part of the shift
++ first remember whether part that is lost contains any 1 bits ... */
++ lsl lr,r8,r5 /* shift away bits that are part of
++ final mantissa. only part that goes
++ to lr are bits that will be lost */
++
++ /* ... and now to the actual shift */
++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/
++ lsr r8,r8,r6 /* shift down lsw of mantissa */
++ lsr r9,r9,r6 /* shift down msw of mantissa */
++ or r8,r5 /* combine these bits with prepared lsw*/
++
++__avr32_f64_add_shift_done:
++ /* Now add the mantissas. */
++ add r10, r8
++ adc r11, r11, r9
++
++ /* Check if we overflowed. */
++ bld r11, 21
++ breq __avr32_f64_add_res_of:
++
++__avr32_f64_add_res_of_done:
++
++ /* Pack final result*/
++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */
++ /* Result in [r11,r10] */
++ /* Insert exponent and sign bit*/
++ bfins r11, r7, 20, 11
++ or r11, r12
++
++ /* Round */
++__avr32_f64_add_round:
++#if defined(L_avr32_f64_addsub)
++ bfextu r12, r10, 0, 1 /* Extract parity bit.*/
++ or lr, r12 /* or it together with the sticky bits. */
++ eorh lr, 0x8000 /* Toggle round bit. */
++ /* We should now round up by adding one for the following cases:
++
++ halfway sticky|parity round-up
++ 0 x no
++ 1 0 no
++ 1 1 yes
++
++ Since we have inverted the halfway bit we can use the satu instruction
++ by saturating to 1 bit to implement this.
++ */
++ satu lr >> 0, 1
++#else
++ lsr lr, 31
++#endif
++ add r10, lr
++ acr r11
++
++ /* Return result in [r11,r10] */
++ ldm sp++, r5, r6, r7,pc
++
++
++__avr32_f64_add_opH_nan_or_inf:
++ /* Check if opH is NaN, if so return NaN */
++ cbr r11, 20
++ or lr, r11, r10
++ brne __avr32_f64_add_return_nan
++
++ /* opH is Inf. */
++ /* Check if opL is Inf. or NaN */
++ cp.w r6, 0x7ff
++ breq __avr32_f64_add_opL_nan_or_inf
++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */
++__avr32_f64_add_opL_nan_or_inf:
++ cbr r9, 20
++ or lr, r9, r8
++ brne __avr32_f64_add_return_nan
++ mov r10, 0 /* Generate Inf in r11, r10 */
++ mov_imm r11, 0x7ff00000
++ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */
++__avr32_f64_add_return_nan:
++ mov r10, -1 /* Generate NaN in r11, r10 */
++ mov r11, -1
++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */
++
++
++__avr32_f64_add_longshift:
++ /* large (>=32) shift amount, only lsw will have bits left after shift.
++ note that shift operations will use ((shift count=r6) mod 32) so
++ we do not need to subtract 32 from shift count. */
++ /* Saturate the shift amount to 63. If the amount
++ is any larger op2 is insignificant. */
++ satu r6 >> 0, 6
++ /* If shift amount is 32 there are no bits from the msw that are lost. */
++ moveq lr, r8
++ breq 0f
++ /* first remember whether part that is lost contains any 1 bits ... */
++ lsl lr,r9,r5 /* save all lost bits from msw */
++#if defined(L_avr32_f64_addsub)
++ cp.w r8, 0
++ srne r8
++ or lr,r8 /* also save lost bits (all) from lsw
++ now lr != 0 if we lose any bits */
++#endif
++0:
++ /* ... and now to the actual shift */
++ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/
++ mov r9,0 /* clear msw */
++ rjmp __avr32_f64_add_shift_done
++
++__avr32_f64_add_res_of:
++ /* We overflowed. Scale down mantissa by shifting right one position. */
++ or lr, lr, lr << 1 /* Remember stickybits*/
++ lsr r11, 1
++ ror r10
++ ror lr
++ sub r7, -1 /* Increment exponent */
++
++ /* Clear mantissa to set result to Inf if the exponent is 255. */
++ cp.w r7, 0x7ff
++ moveq r10, 0
++ moveq r11, 0
++ moveq lr, 0
++ rjmp __avr32_f64_add_res_of_done
++
++__avr32_f64_add_op2_subnormal:
++ /* Set epxponent to 1 */
++ mov r6, 1
++
++ /* Check if op2 is also subnormal. */
++ cp.w r7, 0
++ brne 2b
++
++ cbr r11, 20
++ /* Both operands are subnormal. Just addd the mantissas
++ and the exponent will automatically be set to 1 if
++ we overflow into a normal number. */
++ add r10, r8
++ adc r11, r11, r9
++
++ /* Add sign bit */
++ or r11, r12
++
++ /* Return result in [r11,r10] */
++ ldm sp++, r5, r6, r7,pc
++
++
++
++#endif
++
++#ifdef L_avr32_f64_to_u32
++ /* This goes into L_fixdfsi */
++#endif
++
++
++#ifdef L_avr32_f64_to_s32
++ .global __avr32_f64_to_u32
++ .type __avr32_f64_to_u32,@function
++__avr32_f64_to_u32:
++ cp.w r11, 0
++ retmi 0 /* Negative returns 0 */
++
++ /* Fallthrough to df to signed si conversion */
++ .global __avr32_f64_to_s32
++ .type __avr32_f64_to_s32,@function
++__avr32_f64_to_s32:
++ lsl r12,r11,1
++ lsr r12,21 /* extract exponent*/
++ sub r12,1023 /* convert to unbiased exponent.*/
++ retlo 0 /* too small exponent implies zero. */
++
++1:
++ rsub r12,r12,31 /* shift count = 31 - exponent */
++ mov r9,r11 /* save sign for later...*/
++ lsl r11,11 /* remove exponent and sign*/
++ sbr r11,31 /* add implicit bit*/
++ or r11,r11,r10>>21 /* get rest of bits from lsw of double */
++ lsr r11,r11,r12 /* shift down mantissa to final place */
++ lsl r9,1 /* sign -> carry */
++ retcc r11 /* if positive, we are done */
++ neg r11 /* if negative float, negate result */
++ ret r11
++
++#endif /* L_fixdfsi*/
++
++#ifdef L_avr32_f64_to_u64
++ /* Actual function is in L_fixdfdi */
++#endif
++
++#ifdef L_avr32_f64_to_s64
++ .global __avr32_f64_to_u64
++ .type __avr32_f64_to_u64,@function
++__avr32_f64_to_u64:
++ cp.w r11,0
++ /* Negative numbers return zero */
++ movmi r10, 0
++ movmi r11, 0
++ retmi r11
++
++
++
++ /* Fallthrough */
++ .global __avr32_f64_to_s64
++ .type __avr32_f64_to_s64,@function
++__avr32_f64_to_s64:
++ lsl r9,r11,1
++ lsr r9,21 /* get exponent*/
++ sub r9,1023 /* convert to correct range*/
++ /* Return zero if exponent to small */
++ movlo r10, 0
++ movlo r11, 0
++ retlo r11
++
++ mov r8,r11 /* save sign for later...*/
++1:
++ lsl r11,11 /* remove exponent */
++ sbr r11,31 /* add implicit bit*/
++ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/
++ lsl r10,11 /* align lsw correctly as well */
++ rsub r9,r9,63 /* shift count = 63 - exponent */
++ breq 1f
++
++ cp.w r9,32 /* is shift count more than one reg? */
++ brhs 0f
++
++ mov r12,r11 /* save msw */
++ lsr r10,r10,r9 /* small shift count, shift down lsw */
++ lsr r11,r11,r9 /* small shift count, shift down msw */
++ rsub r9,r9,32 /* get 32-size of shifted out tail */
++ lsl r12,r12,r9 /* align part to move from msw to lsw */
++ or r10,r12 /* combine to get new lsw */
++ rjmp 1f
++
++0:
++ lsr r10,r11,r9 /* large shift count,only lsw get bits
++ note that shift count is modulo 32*/
++ mov r11,0 /* msw will be 0 */
++
++1:
++ lsl r8,1 /* sign -> carry */
++ retcc r11 /* if positive, we are done */
++
++ neg r11 /* if negative float, negate result */
++ neg r10
++ scr r11
++ ret r11
++
++#endif
++
++#ifdef L_avr32_u32_to_f64
++ /* Code located in L_floatsidf */
++#endif
++
++#ifdef L_avr32_s32_to_f64
++ .global __avr32_u32_to_f64
++ .type __avr32_u32_to_f64,@function
++__avr32_u32_to_f64:
++ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */
++ mov r12, 0 /* always positive */
++ rjmp 0f /* Jump to common code for floatsidf */
++
++ .global __avr32_s32_to_f64
++ .type __avr32_s32_to_f64,@function
++__avr32_s32_to_f64:
++ mov r11, r12 /* Keep original value in r12 for sign */
++ abs r11 /* Absolute value if r12 */
++0:
++ mov r10,0 /* let remaining bits be zero */
++ reteq r11 /* zero long will return zero float */
++
++ pushm lr
++ mov r9,31+1023 /* set exponent */
++
++ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */
++
++ /* Check if a subnormal result was created */
++ cp.w r9, 0
++ brgt 0f
++
++ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */
++ popm pc
++0:
++
++ /* Round result */
++ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/
++ cp.w r9,0x7ff
++ brlt 0f
++ /*Return infinity */
++ mov r10, 0
++ mov_imm r11, 0xffe00000
++ rjmp __floatsidf_return_op1
++
++0:
++
++ /* Pack */
++ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
++__floatsidf_return_op1:
++ lsl r12,1 /* shift in sign bit */
++ ror r11
++
++ popm pc
++#endif
++
++
++#ifdef L_avr32_f32_cmp_eq
++ .global __avr32_f32_cmp_eq
++ .type __avr32_f32_cmp_eq,@function
++__avr32_f32_cmp_eq:
++ cp.w r12, r11
++ breq 0f
++ /* If not equal check for +/-0 */
++ /* Or together the two values and shift out the sign bit.
++ If the result is zero, then the two values are both zero. */
++ or r12, r11
++ lsl r12, 1
++ reteq 1
++ ret 0
++0:
++ /* Numbers were equal. Check for NaN or Inf */
++ mov_imm r11, 0xff000000
++ lsl r12, 1
++ cp.w r12, r11
++ retls 1 /* 0 if NaN, 1 otherwise */
++ ret 0
++#endif
++
++#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt)
++#ifdef L_avr32_f32_cmp_ge
++ .global __avr32_f32_cmp_ge
++ .type __avr32_f32_cmp_ge,@function
++__avr32_f32_cmp_ge:
++#endif
++#ifdef L_avr32_f32_cmp_lt
++ .global __avr32_f32_cmp_lt
++ .type __avr32_f32_cmp_lt,@function
++__avr32_f32_cmp_lt:
++#endif
++ lsl r10, r12, 1 /* Remove sign bits */
++ lsl r9, r11, 1
++ subfeq r10, 0
++#ifdef L_avr32_f32_cmp_ge
++ reteq 1 /* Both number are zero. Return true. */
++#endif
++#ifdef L_avr32_f32_cmp_lt
++ reteq 0 /* Both number are zero. Return false. */
++#endif
++ mov_imm r8, 0xff000000
++ cp.w r10, r8
++ rethi 0 /* Op0 is NaN */
++ cp.w r9, r8
++ rethi 0 /* Op1 is Nan */
++
++ eor r8, r11, r12
++ bld r12, 31
++#ifdef L_avr32_f32_cmp_ge
++ srcc r8 /* Set result to true if op0 is positive*/
++#endif
++#ifdef L_avr32_f32_cmp_lt
++ srcs r8 /* Set result to true if op0 is negative*/
++#endif
++ retmi r8 /* Return if signs are different */
++ brcs 0f /* Both signs negative? */
++
++ /* Both signs positive */
++ cp.w r12, r11
++#ifdef L_avr32_f32_cmp_ge
++ reths 1
++ retlo 0
++#endif
++#ifdef L_avr32_f32_cmp_lt
++ reths 0
++ retlo 1
++#endif
++0:
++ /* Both signs negative */
++ cp.w r11, r12
++#ifdef L_avr32_f32_cmp_ge
++ reths 1
++ retlo 0
++#endif
++#ifdef L_avr32_f32_cmp_lt
++ reths 0
++ retlo 1
++#endif
++#endif
++
++
++#ifdef L_avr32_f64_cmp_eq
++ .global __avr32_f64_cmp_eq
++ .type __avr32_f64_cmp_eq,@function
++__avr32_f64_cmp_eq:
++ cp.w r10,r8
++ cpc r11,r9
++ breq 0f
++
++ /* Args were not equal*/
++ /* Both args could be zero with different sign bits */
++ lsl r11,1 /* get rid of sign bits */
++ lsl r9,1
++ or r11,r10 /* Check if all bits are zero */
++ or r11,r9
++ or r11,r8
++ reteq 1 /* If all zeros the arguments are equal
++ so return 1 else return 0 */
++ ret 0
++0:
++ /* check for NaN */
++ lsl r11,1
++ mov_imm r12, 0xffe00000
++ cp.w r10,0
++ cpc r11,r12 /* check if nan or inf */
++ retls 1 /* If Arg is NaN return 0 else 1*/
++ ret 0 /* Return */
++
++#endif
++
++
++#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt)
++
++#ifdef L_avr32_f64_cmp_ge
++ .global __avr32_f64_cmp_ge
++ .type __avr32_f64_cmp_ge,@function
++__avr32_f64_cmp_ge:
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ .global __avr32_f64_cmp_lt
++ .type __avr32_f64_cmp_lt,@function
++__avr32_f64_cmp_lt:
++#endif
++
++ /* compare magnitude of op1 and op2 */
++ lsl r11,1 /* Remove sign bit of op1 */
++ srcs r12 /* Sign op1 to lsb of r12*/
++ subfeq r10, 0
++ breq 3f /* op1 zero */
++ lsl r9,1 /* Remove sign bit of op2 */
++ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/
++
++
++ /* Check for Nan */
++ pushm lr
++ mov_imm lr, 0xffe00000
++ cp.w r10,0
++ cpc r11,lr
++ brhi 0f /* We have NaN */
++ cp.w r8,0
++ cpc r9,lr
++ brhi 0f /* We have NaN */
++ popm lr
++
++ cp.w r12,3 /* both operands negative ?*/
++ breq 1f
++
++ cp.w r12,1 /* both operands positive? */
++ brlo 2f
++
++ /* Different signs. If sign of op1 is negative the difference
++ between op1 and op2 will always be negative, and if op1 is
++ positive the difference will always be positive */
++#ifdef L_avr32_f64_cmp_ge
++ reteq 1
++ retne 0
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ reteq 0
++ retne 1
++#endif
++
++2:
++ /* Both operands positive. Just compute the difference */
++ cp.w r10,r8
++ cpc r11,r9
++#ifdef L_avr32_f64_cmp_ge
++ reths 1
++ retlo 0
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ reths 0
++ retlo 1
++#endif
++
++1:
++ /* Both operands negative. Compute the difference with operands switched */
++ cp r8,r10
++ cpc r9,r11
++#ifdef L_avr32_f64_cmp_ge
++ reths 1
++ retlo 0
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ reths 0
++ retlo 1
++#endif
++
++0:
++ popm pc, r12=0
++#endif
++
++3:
++ lsl r9,1 /* Remove sign bit of op1 */
++#ifdef L_avr32_f64_cmp_ge
++ srcs r12 /* If op2 is negative then op1 >= op2. */
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ srcc r12 /* If op2 is positve then op1 <= op2. */
++#endif
++ subfeq r8, 0
++#ifdef L_avr32_f64_cmp_ge
++ reteq 1 /* Both operands are zero. Return true. */
++#endif
++#ifdef L_avr32_f64_cmp_lt
++ reteq 0 /* Both operands are zero. Return false. */
++#endif
++ ret r12
++
++
++#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast)
++ .align 2
++
++#if defined(L_avr32_f64_div_fast)
++ .global __avr32_f64_div_fast
++ .type __avr32_f64_div_fast,@function
++__avr32_f64_div_fast:
++#else
++ .global __avr32_f64_div
++ .type __avr32_f64_div,@function
++__avr32_f64_div:
++#endif
++ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr
++ /* op1 in {r11,r10}*/
++ /* op2 in {r9,r8}*/
++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */
++
++
++ /* Unpack op1 to 2.62 format*/
++ /* exp: r7 */
++ /* sf: r11, r10 */
++ lsr r7, r11, 20 /* Extract exponent */
++
++ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */
++ or r11, r11, r10>>23
++ lsl r10, 9
++ sbr r11, 29 /* Insert implicit bit */
++ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/
++
++ cbr r7, 11 /* Clear sign bit */
++ /* Check if normalization is needed */
++ breq 11f /*If number is subnormal, normalize it */
++22:
++ cp r7, 0x7ff
++ brge 2f /* Check op1 for NaN or Inf */
++
++ /* Unpack op2 to 2.62 format*/
++ /* exp: r6 */
++ /* sf: r9, r8 */
++ lsr r6, r9, 20 /* Extract exponent */
++
++ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */
++ or r9, r9, r8>>23
++ lsl r8, 9
++ sbr r9, 29 /* Insert implicit bit */
++ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/
++
++ cbr r6, 11 /* Clear sign bit */
++ /* Check if normalization is needed */
++ breq 13f /*If number is subnormal, normalize it */
++23:
++ cp r6, 0x7ff
++ brge 3f /* Check op2 for NaN or Inf */
++
++ /* Calculate new exponent */
++ sub r7, r6
++ sub r7,-1023
++
++ /* Divide */
++ /* Approximating 1/d with the following recurrence: */
++ /* R[j+1] = R[j]*(2-R[j]*d) */
++ /* Using 2.62 format */
++ /* TWO: r12 */
++ /* d = op2 = divisor (2.62 format): r9,r8 */
++ /* Multiply result : r5, r4 */
++ /* Initial guess : r3, r2 */
++ /* New approximations : r3, r2 */
++ /* op1 = Dividend (2.62 format) : r11, r10 */
++
++ mov_imm r12, 0x80000000
++
++ /* Load initial guess, using look-up table */
++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */
++ /* Let d be of following format: 00.1xy....., then XY=~xy */
++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */
++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */
++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */
++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */
++ /* r2 is also part of the reg pair forming initial guess, but it*/
++ /* is kept uninitialized to save one cycle since it has so low significance*/
++
++ lsr r3, r12, 1
++ bfextu r4, r9, 27, 2
++ com r4
++ bfins r3, r4, 28, 2
++
++ /* First approximation */
++ /* Approximating to 32 bits */
++ /* r5 = R[j]*d */
++ mulu.d r4, r3, r9
++ /* r5 = 2-R[j]*d */
++ sub r5, r12, r5<<2
++ /* r3 = R[j]*(2-R[j]*d) */
++ mulu.d r4, r3, r5
++ lsl r3, r5, 2
++
++ /* Second approximation */
++ /* Approximating to 32 bits */
++ /* r5 = R[j]*d */
++ mulu.d r4, r3, r9
++ /* r5 = 2-R[j]*d */
++ sub r5, r12, r5<<2
++ /* r3 = R[j]*(2-R[j]*d) */
++ mulu.d r4, r3, r5
++ lsl r3, r5, 2
++
++ /* Third approximation */
++ /* Approximating to 32 bits */
++ /* r5 = R[j]*d */
++ mulu.d r4, r3, r9
++ /* r5 = 2-R[j]*d */
++ sub r5, r12, r5<<2
++ /* r3 = R[j]*(2-R[j]*d) */
++ mulu.d r4, r3, r5
++ lsl r3, r5, 2
++
++ /* Fourth approximation */
++ /* Approximating to 64 bits */
++ /* r5,r4 = R[j]*d */
++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
++ lsl r5, 2
++ or r5, r5, r4>>30
++ lsl r4, 2
++ /* r5,r4 = 2-R[j]*d */
++ neg r4
++ sbc r5, r12, r5
++ /* r3,r2 = R[j]*(2-R[j]*d) */
++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
++ lsl r3, r5, 2
++ or r3, r3, r4>>30
++ lsl r2, r4, 2
++
++
++ /* Fifth approximation */
++ /* Approximating to 64 bits */
++ /* r5,r4 = R[j]*d */
++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
++ lsl r5, 2
++ or r5, r5, r4>>30
++ lsl r4, 2
++ /* r5,r4 = 2-R[j]*d */
++ neg r4
++ sbc r5, r12, r5
++ /* r3,r2 = R[j]*(2-R[j]*d) */
++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
++ lsl r3, r5, 2
++ or r3, r3, r4>>30
++ lsl r2, r4, 2
++
++
++ /* Multiply with dividend to get quotient */
++ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/
++
++
++ /* To increase speed, this result is not corrected before final rounding.*/
++ /* This may give a difference to IEEE compliant code of 1 ULP.*/
++
++
++ /* Adjust exponent and mantissa */
++ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/
++ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */
++ /* In the first case, shift one pos to left.*/
++ bld r3, 31-3
++ breq 0f
++ lsl r2, 1
++ rol r3
++ sub r7, 1
++#if defined(L_avr32_f64_div)
++ /* We must scale down the dividend to 5.59 format. */
++ lsr r10, 3
++ or r10, r10, r11 << 29
++ lsr r11, 3
++ rjmp 1f
++#endif
++0:
++#if defined(L_avr32_f64_div)
++ /* We must scale down the dividend to 6.58 format. */
++ lsr r10, 4
++ or r10, r10, r11 << 28
++ lsr r11, 4
++1:
++#endif
++ cp r7, 0
++ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */
++
++
++#if defined(L_avr32_f64_div)
++ /* In order to round correctly we calculate the remainder:
++ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2]
++ for the case when the quotient is halfway between the round-up
++ value and the round down value. If the remainder then is negative
++ it means that the quotient was to big and that it should not be
++ rounded up, if the remainder is positive the quotient was to small
++ and we need to round up. If the remainder is zero it means that the
++ quotient is exact but since we need to remove the guard bit we should
++ round to even. */
++
++ /* Truncate and add guard bit. */
++ andl r2, 0xff00
++ orl r2, 0x0080
++
++
++ /* Now do the multiplication. The quotient has the format 4.60
++ while the divisor has the format 2.62 which gives a result
++ of 6.58 */
++ mulu.d r0, r3, r8
++ macu.d r0, r2, r9
++ mulu.d r4, r2, r8
++ mulu.d r8, r3, r9
++ add r5, r0
++ adc r8, r8, r1
++ acr r9
++
++
++ /* Check if remainder is positive, negative or equal. */
++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */
++ cp r4, 0
++ cpc r5
++__avr32_f64_div_round_subnormal:
++ cpc r8, r10
++ cpc r9, r11
++ srlo r6 /* Remainder positive: we need to round up.*/
++ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */
++#else
++ bfextu r6, r2, 7, 1 /* Get guard bit */
++#endif
++ /* Final packing, scale down mantissa. */
++ lsr r10, r2, 8
++ or r10, r10, r3<<24
++ lsr r11, r3, 8
++ /* Insert exponent and sign bit*/
++ bfins r11, r7, 20, 11
++ bld lr, 31
++ bst r11, 31
++
++ /* Final rounding */
++ add r10, r6
++ acr r11
++
++ /* Return result in [r11,r10] */
++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
++
++
++2:
++ /* Op1 is NaN or inf */
++ andh r11, 0x000f /* Extract mantissa */
++ or r11, r10
++ brne 16f /* Return NaN if op1 is NaN */
++ /* Op1 is inf check op2 */
++ lsr r6, r9, 20 /* Extract exponent */
++ cbr r6, 8 /* Clear sign bit */
++ cp r6, 0x7ff
++ brne 17f /* Inf/number gives inf, return inf */
++ rjmp 16f /* The rest gives NaN*/
++
++3:
++ /* Op1 is a valid number. Op 2 is NaN or inf */
++ andh r9, 0x000f /* Extract mantissa */
++ or r9, r8
++ brne 16f /* Return NaN if op2 is NaN */
++ rjmp 15f /* Op2 was inf, return zero*/
++
++11: /* Op1 was denormal. Fix it. */
++ lsl r11, 3
++ or r11, r11, r10 >> 29
++ lsl r10, 3
++ /* Check if op1 is zero. */
++ or r4, r10, r11
++ breq __avr32_f64_div_op1_zero
++ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/
++ lsr r10, 2
++ or r10, r10, r11 << 30
++ lsr r11, 2
++ rjmp 22b
++
++
++13: /* Op2 was denormal. Fix it */
++ lsl r9, 3
++ or r9, r9, r8 >> 29
++ lsl r8, 3
++ /* Check if op2 is zero. */
++ or r4, r9, r8
++ breq 17f /* Divisor is zero -> return Inf */
++ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/
++ lsr r8, 2
++ or r8, r8, r9 << 30
++ lsr r9, 2
++ rjmp 23b
++
++
++__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */
++#if defined(L_avr32_f64_div)
++ /* Check how much we must scale down the mantissa. */
++ neg r7
++ sub r7, -1 /* We do no longer have an implicit bit. */
++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */
++ cp.w r7, 32
++ brge 0f
++ /* Shift amount <32 */
++ /* Scale down quotient */
++ rsub r6, r7, 32
++ lsr r2, r2, r7
++ lsl r12, r3, r6
++ or r2, r12
++ lsr r3, r3, r7
++ /* Scale down the dividend to match the scaling of the quotient. */
++ lsl r1, r10, r6
++ lsr r10, r10, r7
++ lsl r12, r11, r6
++ or r10, r12
++ lsr r11, r11, r7
++ mov r0, 0
++ rjmp 1f
++0:
++ /* Shift amount >=32 */
++ rsub r6, r7, 32
++ moveq r0, 0
++ moveq r12, 0
++ breq 0f
++ lsl r0, r10, r6
++ lsl r12, r11, r6
++0:
++ lsr r2, r3, r7
++ mov r3, 0
++ /* Scale down the dividend to match the scaling of the quotient. */
++ lsr r1, r10, r7
++ or r1, r12
++ lsr r10, r11, r7
++ mov r11, 0
++1:
++ /* Start performing the same rounding as done for normal numbers
++ but this time we have scaled the quotient and dividend and hence
++ need a little different comparison. */
++ /* Truncate and add guard bit. */
++ andl r2, 0xff00
++ orl r2, 0x0080
++
++ /* Now do the multiplication. */
++ mulu.d r6, r3, r8
++ macu.d r6, r2, r9
++ mulu.d r4, r2, r8
++ mulu.d r8, r3, r9
++ add r5, r6
++ adc r8, r8, r7
++ acr r9
++
++ /* Set exponent to 0 */
++ mov r7, 0
++
++ /* Check if remainder is positive, negative or equal. */
++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */
++ cp r4, r0
++ cpc r5, r1
++ /* Now the rest of the rounding is the same as for normals. */
++ rjmp __avr32_f64_div_round_subnormal
++
++#endif
++15:
++ /* Flush to zero for the fast version. */
++ mov r11, lr /*Get correct sign*/
++ andh r11, 0x8000, COH
++ mov r10, 0
++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
++
++16: /* Return NaN. */
++ mov r11, -1
++ mov r10, -1
++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
++
++17: /* Return INF. */
++ mov r11, lr /*Get correct sign*/
++ andh r11, 0x8000, COH
++ orh r11, 0x7ff0
++ mov r10, 0
++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
++
++__avr32_f64_div_op1_zero:
++ or r5, r8, r9 << 1
++ breq 16b /* 0.0/0.0 -> NaN */
++ bfextu r4, r9, 20, 11
++ cp r4, 0x7ff
++ brne 15b /* Return zero */
++ /* Check if divisor is Inf or NaN */
++ or r5, r8, r9 << 12
++ breq 15b /* Divisor is inf -> return zero */
++ rjmp 16b /* Return NaN */
++
++
++
++
++#endif
++
++#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast)
++
++ .align 2
++__avr32_f32_sub_from_add:
++ /* Switch sign on op2 */
++ eorh r11, 0x8000
++
++#if defined(L_avr32_f32_addsub_fast)
++ .global __avr32_f32_sub_fast
++ .type __avr32_f32_sub_fast,@function
++__avr32_f32_sub_fast:
++#else
++ .global __avr32_f32_sub
++ .type __avr32_f32_sub,@function
++__avr32_f32_sub:
++#endif
++
++ /* Check signs */
++ eor r8, r11, r12
++ /* Different signs, use subtraction. */
++ brmi __avr32_f32_add_from_sub
++
++ /* Get sign of op1 */
++ mov r8, r12
++ andh r12, 0x8000, COH
++
++ /* Remove sign from operands */
++ cbr r11, 31
++#if defined(L_avr32_f32_addsub_fast)
++ reteq r8 /* If op2 is zero return op1 */
++#endif
++ cbr r8, 31
++
++ /* Put the number with the largest exponent in r10
++ and the number with the smallest exponent in r9 */
++ max r10, r8, r11
++ min r9, r8, r11
++ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/
++ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/
++ andh r12, 0x8000, COH /*Mask all but MSB*/
++
++ /* Unpack exponent and mantissa of op1 */
++ lsl r8, r10, 8
++ sbr r8, 31 /* Set implicit bit. */
++ lsr r10, 23
++
++ /* op1 is NaN or Inf. */
++ cp.w r10, 0xff
++ breq __avr32_f32_sub_op1_nan_or_inf
++
++ /* Unpack exponent and mantissa of op2 */
++ lsl r11, r9, 8
++ sbr r11, 31 /* Set implicit bit. */
++ lsr r9, 23
++
++#if defined(L_avr32_f32_addsub)
++ /* Keep sticky bit for correct IEEE rounding */
++ st.w --sp, r12
++
++ /* op2 is either zero or subnormal. */
++ breq __avr32_f32_sub_op2_subnormal
++0:
++ /* Get shift amount to scale mantissa of op2. */
++ sub r12, r10, r9
++
++ breq __avr32_f32_sub_shift_done
++
++ /* Saturate the shift amount to 31. If the amount
++ is any larger op2 is insignificant. */
++ satu r12 >> 0, 5
++
++ /* Put the remaining bits into r9.*/
++ rsub r9, r12, 32
++ lsl r9, r11, r9
++
++ /* If the remaining bits are non-zero then we must subtract one
++ more from opL. */
++ subne r8, 1
++ srne r9 /* LSB of r9 represents sticky bits. */
++
++ /* Shift mantissa of op2 to same decimal point as the mantissa
++ of op1. */
++ lsr r11, r11, r12
++
++
++__avr32_f32_sub_shift_done:
++ /* Now subtract the mantissas. */
++ sub r8, r11
++
++ ld.w r12, sp++
++
++ /* Normalize resulting mantissa. */
++ clz r11, r8
++
++ retcs 0
++ lsl r8, r8, r11
++ sub r10, r11
++ brle __avr32_f32_sub_subnormal_result
++
++ /* Insert the bits we will remove from the mantissa into r9[31:24] */
++ or r9, r9, r8 << 24
++#else
++ /* Ignore sticky bit to simplify and speed up rounding */
++ /* op2 is either zero or subnormal. */
++ breq __avr32_f32_sub_op2_subnormal
++0:
++ /* Get shift amount to scale mantissa of op2. */
++ rsub r9, r10
++
++ /* Saturate the shift amount to 31. If the amount
++ is any larger op2 is insignificant. */
++ satu r9 >> 0, 5
++
++ /* Shift mantissa of op2 to same decimal point as the mantissa
++ of op1. */
++ lsr r11, r11, r9
++
++ /* Now subtract the mantissas. */
++ sub r8, r11
++
++ /* Normalize resulting mantissa. */
++ clz r9, r8
++ retcs 0
++ lsl r8, r8, r9
++ sub r10, r9
++ brle __avr32_f32_sub_subnormal_result
++#endif
++
++ /* Pack result. */
++ or r12, r12, r8 >> 8
++ bfins r12, r10, 23, 8
++
++ /* Round */
++__avr32_f32_sub_round:
++#if defined(L_avr32_f32_addsub)
++ mov_imm r10, 0x80000000
++ bld r12, 0
++ subne r10, -1
++ cp.w r9, r10
++ subhs r12, -1
++#else
++ bld r8, 7
++ acr r12
++#endif
++
++ ret r12
++
++
++__avr32_f32_sub_op2_subnormal:
++ /* Fix implicit bit and adjust exponent of subnormals. */
++ cbr r11, 31
++ /* Set exponent to 1 if we do not have a zero. */
++ movne r9,1
++
++ /* Check if op1 is also subnormal. */
++ cp.w r10, 0
++ brne 0b
++
++ cbr r8, 31
++ /* If op1 is not zero set exponent to 1. */
++ movne r10,1
++
++ rjmp 0b
++
++__avr32_f32_sub_op1_nan_or_inf:
++ /* Check if op1 is NaN, if so return NaN */
++ lsl r11, r8, 1
++ retne -1
++
++ /* op1 is Inf. */
++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
++
++ /* Check if op2 is Inf. or NaN */
++ lsr r11, r9, 23
++ cp.w r11, 0xff
++ retne r12 /* op2 not Inf or NaN, return op1 */
++
++ ret -1 /* op2 Inf or NaN, return NaN */
++
++__avr32_f32_sub_subnormal_result:
++ /* Check if the number is so small that
++ it will be represented with zero. */
++ rsub r10, r10, 9
++ rsub r11, r10, 32
++ retcs 0
++
++ /* Shift the mantissa into the correct position.*/
++ lsr r10, r8, r10
++ /* Add sign bit. */
++ or r12, r10
++
++ /* Put the shifted out bits in the most significant part
++ of r8. */
++ lsl r8, r8, r11
++
++#if defined(L_avr32_f32_addsub)
++ /* Add all the remainder bits used for rounding into r9 */
++ or r9, r8
++#else
++ lsr r8, 24
++#endif
++ rjmp __avr32_f32_sub_round
++
++
++ .align 2
++
++__avr32_f32_add_from_sub:
++ /* Switch sign on op2 */
++ eorh r11, 0x8000
++
++#if defined(L_avr32_f32_addsub_fast)
++ .global __avr32_f32_add_fast
++ .type __avr32_f32_add_fast,@function
++__avr32_f32_add_fast:
++#else
++ .global __avr32_f32_add
++ .type __avr32_f32_add,@function
++__avr32_f32_add:
++#endif
++
++ /* Check signs */
++ eor r8, r11, r12
++ /* Different signs, use subtraction. */
++ brmi __avr32_f32_sub_from_add
++
++ /* Get sign of op1 */
++ mov r8, r12
++ andh r12, 0x8000, COH
++
++ /* Remove sign from operands */
++ cbr r11, 31
++#if defined(L_avr32_f32_addsub_fast)
++ reteq r8 /* If op2 is zero return op1 */
++#endif
++ cbr r8, 31
++
++ /* Put the number with the largest exponent in r10
++ and the number with the smallest exponent in r9 */
++ max r10, r8, r11
++ min r9, r8, r11
++
++ /* Unpack exponent and mantissa of op1 */
++ lsl r8, r10, 8
++ sbr r8, 31 /* Set implicit bit. */
++ lsr r10, 23
++
++ /* op1 is NaN or Inf. */
++ cp.w r10, 0xff
++ breq __avr32_f32_add_op1_nan_or_inf
++
++ /* Unpack exponent and mantissa of op2 */
++ lsl r11, r9, 8
++ sbr r11, 31 /* Set implicit bit. */
++ lsr r9, 23
++
++#if defined(L_avr32_f32_addsub)
++ /* op2 is either zero or subnormal. */
++ breq __avr32_f32_add_op2_subnormal
++0:
++ /* Keep sticky bit for correct IEEE rounding */
++ st.w --sp, r12
++
++ /* Get shift amount to scale mantissa of op2. */
++ rsub r9, r10
++
++ /* Saturate the shift amount to 31. If the amount
++ is any larger op2 is insignificant. */
++ satu r9 >> 0, 5
++
++ /* Shift mantissa of op2 to same decimal point as the mantissa
++ of op1. */
++ lsr r12, r11, r9
++
++ /* Put the remainding bits into r11[23:..].*/
++ rsub r9, r9, (32-8)
++ lsl r11, r11, r9
++ /* Insert the bits we will remove from the mantissa into r11[31:24] */
++ bfins r11, r12, 24, 8
++
++ /* Now add the mantissas. */
++ add r8, r12
++
++ ld.w r12, sp++
++#else
++ /* Ignore sticky bit to simplify and speed up rounding */
++ /* op2 is either zero or subnormal. */
++ breq __avr32_f32_add_op2_subnormal
++0:
++ /* Get shift amount to scale mantissa of op2. */
++ rsub r9, r10
++
++ /* Saturate the shift amount to 31. If the amount
++ is any larger op2 is insignificant. */
++ satu r9 >> 0, 5
++
++ /* Shift mantissa of op2 to same decimal point as the mantissa
++ of op1. */
++ lsr r11, r11, r9
++
++ /* Now add the mantissas. */
++ add r8, r11
++
++#endif
++ /* Check if we overflowed. */
++ brcs __avr32_f32_add_res_of
++1:
++ /* Pack result. */
++ or r12, r12, r8 >> 8
++ bfins r12, r10, 23, 8
++
++ /* Round */
++#if defined(L_avr32_f32_addsub)
++ mov_imm r10, 0x80000000
++ bld r12, 0
++ subne r10, -1
++ cp.w r11, r10
++ subhs r12, -1
++#else
++ bld r8, 7
++ acr r12
++#endif
++
++ ret r12
++
++__avr32_f32_add_op2_subnormal:
++ /* Fix implicit bit and adjust exponent of subnormals. */
++ cbr r11, 31
++ /* Set exponent to 1 if we do not have a zero. */
++ movne r9,1
++
++ /* Check if op1 is also subnormal. */
++ cp.w r10, 0
++ brne 0b
++ /* Both operands subnormal, just add the mantissas and
++ pack. If the addition of the subnormal numbers results
++ in a normal number then the exponent will automatically
++ be set to 1 by the addition. */
++ cbr r8, 31
++ add r11, r8
++ or r12, r12, r11 >> 8
++ ret r12
++
++__avr32_f32_add_op1_nan_or_inf:
++ /* Check if op1 is NaN, if so return NaN */
++ lsl r11, r8, 1
++ retne -1
++
++ /* op1 is Inf. */
++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
++
++ /* Check if op2 is Inf. or NaN */
++ lsr r11, r9, 23
++ cp.w r11, 0xff
++ retne r12 /* op2 not Inf or NaN, return op1 */
++
++ lsl r9, 9
++ reteq r12 /* op2 Inf return op1 */
++ ret -1 /* op2 is NaN, return NaN */
++
++__avr32_f32_add_res_of:
++ /* We overflowed. Increase exponent and shift mantissa.*/
++ lsr r8, 1
++ sub r10, -1
++
++ /* Clear mantissa to set result to Inf if the exponent is 255. */
++ cp.w r10, 255
++ moveq r8, 0
++ moveq r11, 0
++ rjmp 1b
++
++
++#endif
++
++
++#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast)
++ .align 2
++
++#if defined(L_avr32_f32_div_fast)
++ .global __avr32_f32_div_fast
++ .type __avr32_f32_div_fast,@function
++__avr32_f32_div_fast:
++#else
++ .global __avr32_f32_div
++ .type __avr32_f32_div,@function
++__avr32_f32_div:
++#endif
++
++ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
++
++ /* Unpack */
++ lsl r12,1
++ reteq 0 /* Return zero if op1 is zero */
++ lsl r11,1
++ breq 4f /* Check op2 for zero */
++
++ /* Unpack op1*/
++ /* exp: r9 */
++ /* sf: r12 */
++ lsr r9, r12, 24
++ breq 11f /*If number is subnormal*/
++ cp r9, 0xff
++ brhs 2f /* Check op1 for NaN or Inf */
++ lsl r12, 7
++ sbr r12, 31 /*Implicit bit*/
++12:
++
++ /* Unpack op2*/
++ /* exp: r10 */
++ /* sf: r11 */
++ lsr r10, r11, 24
++ breq 13f /*If number is subnormal*/
++ cp r10, 0xff
++ brhs 3f /* Check op2 for NaN or Inf */
++
++ lsl r11,7
++ sbr r11, 31 /*Implicit bit*/
++14:
++
++ /* For UC3, store with predecrement is faster than stm */
++ st.w --sp, r5
++ st.d --sp, r6
++
++ /* Calculate new exponent */
++ sub r9, r10
++ sub r9,-127
++
++ /* Divide */
++ /* Approximating 1/d with the following recurrence: */
++ /* R[j+1] = R[j]*(2-R[j]*d) */
++ /* Using 2.30 format */
++ /* TWO: r10 */
++ /* d: r5 */
++ /* Multiply result : r6, r7 */
++ /* Initial guess : r11 */
++ /* New approximations : r11 */
++ /* Dividend : r12 */
++
++ /* Load TWO */
++ mov_imm r10, 0x80000000
++
++ lsr r12, 2 /* Get significand of Op1 in 2.30 format */
++ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */
++
++ /* Load initial guess, using look-up table */
++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */
++ /* Let d be of following format: 00.1xy....., then XY=~xy */
++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */
++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */
++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */
++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */
++
++ lsr r11, r10, 1
++ bfextu r6, r5, 27, 2
++ com r6
++ bfins r11, r6, 28, 2
++
++ /* First approximation */
++ /* r7 = R[j]*d */
++ mulu.d r6, r11, r5
++ /* r7 = 2-R[j]*d */
++ sub r7, r10, r7<<2
++ /* r11 = R[j]*(2-R[j]*d) */
++ mulu.d r6, r11, r7
++ lsl r11, r7, 2
++
++ /* Second approximation */
++ /* r7 = R[j]*d */
++ mulu.d r6, r11, r5
++ /* r7 = 2-R[j]*d */
++ sub r7, r10, r7<<2
++ /* r11 = R[j]*(2-R[j]*d) */
++ mulu.d r6, r11, r7
++ lsl r11, r7, 2
++
++ /* Third approximation */
++ /* r7 = R[j]*d */
++ mulu.d r6, r11, r5
++ /* r7 = 2-R[j]*d */
++ sub r7, r10, r7<<2
++ /* r11 = R[j]*(2-R[j]*d) */
++ mulu.d r6, r11, r7
++ lsl r11, r7, 2
++
++ /* Fourth approximation */
++ /* r7 = R[j]*d */
++ mulu.d r6, r11, r5
++ /* r7 = 2-R[j]*d */
++ sub r7, r10, r7<<2
++ /* r11 = R[j]*(2-R[j]*d) */
++ mulu.d r6, r11, r7
++ lsl r11, r7, 2
++
++
++ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */
++ mulu.d r6, r11, r12
++
++ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */
++ /* Note that 1.31 format is already used by the exponent in r9, since */
++ /* a bias of 127 was added to the result exponent, even though the implicit */
++ /* bit was inserted. This gives the exponent an additional bias of 1, which */
++ /* supports 1.31 format. */
++ //lsl r10, r7, 3
++
++ /* Adjust exponent and mantissa in case the result is of format
++ 0000.1xxx to 0001.xxx*/
++#if defined(L_avr32_f32_div)
++ lsr r12, 4 /* Scale dividend to 6.26 format to match the
++ result of the multiplication of the divisor and
++ quotient to get the remainder. */
++#endif
++ bld r7, 31-3
++ breq 0f
++ lsl r7, 1
++ sub r9, 1
++#if defined(L_avr32_f32_div)
++ lsl r12, 1 /* Scale dividend to 5.27 format to match the
++ result of the multiplication of the divisor and
++ quotient to get the remainder. */
++#endif
++0:
++ cp r9, 0
++ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */
++
++
++#if defined(L_avr32_f32_div)
++ /* In order to round correctly we calculate the remainder:
++ Remainder = dividend[r12] - divisor[r5]*quotient[r7]
++ for the case when the quotient is halfway between the round-up
++ value and the round down value. If the remainder then is negative
++ it means that the quotient was to big and that it should not be
++ rounded up, if the remainder is positive the quotient was to small
++ and we need to round up. If the remainder is zero it means that the
++ quotient is exact but since we need to remove the guard bit we should
++ round to even. */
++ andl r7, 0xffe0
++ orl r7, 0x0010
++
++ /* Now do the multiplication. The quotient has the format 4.28
++ while the divisor has the format 2.30 which gives a result
++ of 6.26 */
++ mulu.d r10, r5, r7
++
++ /* Check if remainder is positive, negative or equal. */
++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */
++ cp r10, 0
++__avr32_f32_div_round_subnormal:
++ cpc r11, r12
++ srlo r11 /* Remainder positive: we need to round up.*/
++ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */
++#else
++ bfextu r11, r7, 4, 1 /* Get guard bit */
++#endif
++
++ /* Pack final result*/
++ lsr r12, r7, 5
++ bfins r12, r9, 23, 8
++ /* For UC3, load with postincrement is faster than ldm */
++ ld.d r6, sp++
++ ld.w r5, sp++
++ bld r8, 31
++ bst r12, 31
++ /* Rounding add. */
++ add r12, r11
++ ret r12
++
++__divsf_return_op1:
++ lsl r8, 1
++ ror r12
++ ret r12
++
++
++2:
++ /* Op1 is NaN or inf */
++ retne -1 /* Return NaN if op1 is NaN */
++ /* Op1 is inf check op2 */
++ mov_imm r9, 0xff000000
++ cp r11, r9
++ brlo __divsf_return_op1 /* inf/number gives inf */
++ ret -1 /* The rest gives NaN*/
++3:
++ /* Op2 is NaN or inf */
++ reteq 0 /* Return zero if number/inf*/
++ ret -1 /* Return NaN*/
++4:
++ /* Op2 is zero ? */
++ tst r12,r12
++ reteq -1 /* 0.0/0.0 is NaN */
++ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/
++ mov_imm r12, 0xff000000
++ rjmp __divsf_return_op1
++
++11: /* Op1 was denormal. Fix it. */
++ lsl r12,7
++ clz r9,r12
++ lsl r12,r12,r9
++ rsub r9,r9,1
++ rjmp 12b
++
++13: /* Op2 was denormal. Fix it. */
++ lsl r11,7
++ clz r10,r11
++ lsl r11,r11,r10
++ rsub r10,r10,1
++ rjmp 14b
++
++
++__avr32_f32_div_res_subnormal: /* Divide result was subnormal */
++#if defined(L_avr32_f32_div)
++ /* Check how much we must scale down the mantissa. */
++ neg r9
++ sub r9, -1 /* We do no longer have an implicit bit. */
++ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */
++ /* Scale down quotient */
++ rsub r10, r9, 32
++ lsr r7, r7, r9
++ /* Scale down the dividend to match the scaling of the quotient. */
++ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */
++ lsr r12, r12, r9
++
++ /* Start performing the same rounding as done for normal numbers
++ but this time we have scaled the quotient and dividend and hence
++ need a little different comparison. */
++ andl r7, 0xffe0
++ orl r7, 0x0010
++
++ /* Now do the multiplication. The quotient has the format 4.28
++ while the divisor has the format 2.30 which gives a result
++ of 6.26 */
++ mulu.d r10, r5, r7
++
++ /* Set exponent to 0 */
++ mov r9, 0
++
++ /* Check if remainder is positive, negative or equal. */
++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */
++ cp r10, r6
++ rjmp __avr32_f32_div_round_subnormal
++
++#else
++ ld.d r6, sp++
++ ld.w r5, sp++
++ /*Flush to zero*/
++ ret 0
++#endif
++#endif
++
++#ifdef L_avr32_f32_mul
++ .global __avr32_f32_mul
++ .type __avr32_f32_mul,@function
++
++
++__avr32_f32_mul:
++ mov r8, r12
++ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
++ andh r12, 0x8000, COH
++
++ /* arrange operands so that that op1 >= op2 */
++ cbr r8, 31
++ breq __avr32_f32_mul_op1_zero
++ cbr r11, 31
++
++ /* Put the number with the largest exponent in r10
++ and the number with the smallest exponent in r9 */
++ max r10, r8, r11
++ min r9, r8, r11
++
++ /* Unpack exponent and mantissa of op1 */
++ lsl r8, r10, 8
++ sbr r8, 31 /* Set implicit bit. */
++ lsr r10, 23
++
++ /* op1 is NaN or Inf. */
++ cp.w r10, 0xff
++ breq __avr32_f32_mul_op1_nan_or_inf
++
++ /* Unpack exponent and mantissa of op2 */
++ lsl r11, r9, 8
++ sbr r11, 31 /* Set implicit bit. */
++ lsr r9, 23
++
++ /* op2 is either zero or subnormal. */
++ breq __avr32_f32_mul_op2_subnormal
++0:
++ /* Calculate new exponent */
++ add r9,r10
++
++ /* Do the multiplication */
++ mulu.d r10,r8,r11
++
++ /* We might need to scale up by two if the MSB of the result is
++ zero. */
++ lsl r8, r11, 1
++ movcc r11, r8
++ subcc r9, 1
++
++ /* Put the shifted out bits of the mantissa into r10 */
++ lsr r10, 8
++ bfins r10, r11, 24, 8
++
++ sub r9,(127-1) /* remove extra exponent bias */
++ brle __avr32_f32_mul_res_subnormal
++
++ /* Check for Inf. */
++ cp.w r9, 0xff
++ brge 1f
++
++ /* Pack result. */
++ or r12, r12, r11 >> 8
++ bfins r12, r9, 23, 8
++
++ /* Round */
++__avr32_f32_mul_round:
++ mov_imm r8, 0x80000000
++ bld r12, 0
++ subne r8, -1
++
++ cp.w r10, r8
++ subhs r12, -1
++
++ ret r12
++
++1:
++ /* Return Inf */
++ orh r12, 0x7f80
++ ret r12
++
++__avr32_f32_mul_op2_subnormal:
++ cbr r11, 31
++ clz r9, r11
++ retcs 0 /* op2 is zero. Return 0 */
++ lsl r11, r11, r9
++ rsub r9, r9, 1
++
++ /* Check if op2 is subnormal. */
++ tst r10, r10
++ brne 0b
++
++ /* op2 is subnormal */
++ cbr r8, 31
++ clz r10, r11
++ retcs 0 /* op1 is zero. Return 0 */
++ lsl r8, r8, r10
++ rsub r10, r10, 1
++
++ rjmp 0b
++
++
++__avr32_f32_mul_op1_nan_or_inf:
++ /* Check if op1 is NaN, if so return NaN */
++ lsl r11, r8, 1
++ retne -1
++
++ /* op1 is Inf. */
++ tst r9, r9
++ reteq -1 /* Inf * 0 -> NaN */
++
++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
++
++ /* Check if op2 is Inf. or NaN */
++ lsr r11, r9, 23
++ cp.w r11, 0xff
++ retne r12 /* op2 not Inf or NaN, return Info */
++
++ lsl r9, 9
++ reteq r12 /* op2 Inf return Inf */
++ ret -1 /* op2 is NaN, return NaN */
++
++__avr32_f32_mul_res_subnormal:
++ /* Check if the number is so small that
++ it will be represented with zero. */
++ rsub r9, r9, 9
++ rsub r8, r9, 32
++ retcs 0
++
++ /* Shift the mantissa into the correct position.*/
++ lsr r9, r11, r9
++ /* Add sign bit. */
++ or r12, r9
++ /* Put the shifted out bits in the most significant part
++ of r8. */
++ lsl r11, r11, r8
++
++ /* Add all the remainder bits used for rounding into r11 */
++ andh r10, 0x00FF
++ or r10, r11
++ rjmp __avr32_f32_mul_round
++
++__avr32_f32_mul_op1_zero:
++ bfextu r10, r11, 23, 8
++ cp.w r10, 0xff
++ retne r12
++ reteq -1
++
++#endif
++
++
++#ifdef L_avr32_s32_to_f32
++ .global __avr32_s32_to_f32
++ .type __avr32_s32_to_f32,@function
++__avr32_s32_to_f32:
++ cp r12, 0
++ reteq r12 /* If zero then return zero float */
++ mov r11, r12 /* Keep the sign */
++ abs r12 /* Compute the absolute value */
++ mov r10, 31 + 127 /* Set the correct exponent */
++
++ /* Normalize */
++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
++
++ /* Check for subnormal result */
++ cp.w r10, 0
++ brle __avr32_s32_to_f32_subnormal
++
++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
++ lsl r11, 1
++ ror r12
++ ret r12
++
++__avr32_s32_to_f32_subnormal:
++ /* Adjust a subnormal result */
++ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/
++ ret r12
++
++#endif
++
++#ifdef L_avr32_u32_to_f32
++ .global __avr32_u32_to_f32
++ .type __avr32_u32_to_f32,@function
++__avr32_u32_to_f32:
++ cp r12, 0
++ reteq r12 /* If zero then return zero float */
++ mov r10, 31 + 127 /* Set the correct exponent */
++
++ /* Normalize */
++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
++
++ /* Check for subnormal result */
++ cp.w r10, 0
++ brle __avr32_u32_to_f32_subnormal
++
++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
++ lsr r12,1 /* Sign bit is 0 for unsigned int */
++ ret r12
++
++__avr32_u32_to_f32_subnormal:
++ /* Adjust a subnormal result */
++ mov r8, 0
++ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/
++ ret r12
++
++
++#endif
++
++
++#ifdef L_avr32_f32_to_s32
++ .global __avr32_f32_to_s32
++ .type __avr32_f32_to_s32,@function
++__avr32_f32_to_s32:
++ bfextu r11, r12, 23, 8
++ sub r11,127 /* Fix bias */
++ retlo 0 /* Negative exponent yields zero integer */
++
++ /* Shift mantissa into correct position */
++ rsub r11,r11,31 /* Shift amount */
++ lsl r10,r12,8 /* Get mantissa */
++ sbr r10,31 /* Add implicit bit */
++ lsr r10,r10,r11 /* Perform shift */
++ lsl r12,1 /* Check sign */
++ retcc r10 /* if positive, we are done */
++ neg r10 /* if negative float, negate result */
++ ret r10
++
++#endif
++
++#ifdef L_avr32_f32_to_u32
++ .global __avr32_f32_to_u32
++ .type __avr32_f32_to_u32,@function
++__avr32_f32_to_u32:
++ cp r12,0
++ retmi 0 /* Negative numbers gives 0 */
++ bfextu r11, r12, 23, 8 /* Extract exponent */
++ sub r11,127 /* Fix bias */
++ retlo 0 /* Negative exponent yields zero integer */
++
++ /* Shift mantissa into correct position */
++ rsub r11,r11,31 /* Shift amount */
++ lsl r12,8 /* Get mantissa */
++ sbr r12,31 /* Add implicit bit */
++ lsr r12,r12,r11 /* Perform shift */
++ ret r12
++
++#endif
++
++#ifdef L_avr32_f32_to_f64
++ .global __avr32_f32_to_f64
++ .type __avr32_f32_to_f64,@function
++
++__avr32_f32_to_f64:
++ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/
++ moveq r10, 0
++ reteq r11 /* Return zero if input is zero */
++
++ bfextu r9,r11,24,8 /* Get exponent */
++ cp.w r9,0xff /* check for NaN or inf */
++ breq 0f
++
++ lsl r11,7 /* Convert sf mantissa to df format */
++ mov r10,0
++
++ /* Check if implicit bit should be set */
++ cp.w r9, 0
++ subeq r9,-1 /* Adjust exponent if it was 0 */
++ srne r8
++ or r11, r11, r8 << 31 /* Set implicit bit if needed */
++ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */
++
++ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/
++ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/
++ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/
++ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/
++
++__extendsfdf_return_op1:
++ /* Rotate in sign bit */
++ lsl r12, 1
++ ror r11
++ ret r11
++
++0:
++ /* Inf or NaN*/
++ mov_imm r10, 0xffe00000
++ lsl r11,8 /* check mantissa */
++ movne r11, -1 /* Return NaN */
++ moveq r11, r10 /* Return inf */
++ rjmp __extendsfdf_return_op1
++#endif
++
++
++#ifdef L_avr32_f64_to_f32
++ .global __avr32_f64_to_f32
++ .type __avr32_f64_to_f32,@function
++
++__avr32_f64_to_f32:
++ /* Unpack */
++ lsl r9,r11,1 /* Unpack exponent */
++ lsr r9,21
++
++ reteq 0 /* If exponent is 0 the number is so small
++ that the conversion to single float gives
++ zero */
++
++ lsl r8,r11,10 /* Adjust mantissa */
++ or r12,r8,r10>>22
++
++ lsl r10,10 /* Check if there are any remaining bits
++ in the low part of the mantissa.*/
++ neg r10
++ rol r12 /* If there were remaining bits then set lsb
++ of mantissa to 1 */
++
++ cp r9,0x7ff
++ breq 2f /* Check for NaN or inf */
++
++ sub r9,(0x3ff-127) /* Adjust bias of exponent */
++ sbr r12,31 /* set the implicit bit.*/
++
++ cp.w r9, 0 /* Check for subnormal number */
++ brle 3f
++
++ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/
++ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/
++__truncdfsf_return_op1:
++ /* Rotate in sign bit */
++ lsl r11, 1
++ ror r12
++ ret r12
++
++2:
++ /* NaN or inf */
++ cbr r12,31 /* clear implicit bit */
++ retne -1 /* Return NaN if mantissa not zero */
++ mov_imm r12, 0xff000000
++ ret r12 /* Return inf */
++
++3: /* Result is subnormal. Adjust it.*/
++ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/
++ ret r12
++
++
++#endif
++
++#if defined(L_mulsi3) && defined(__AVR32_NO_MUL__)
++ .global __mulsi3
++ .type __mulsi3,@function
++
++__mulsi3:
++ mov r9, 0
++0:
++ lsr r11, 1
++ addcs r9, r9, r12
++ breq 1f
++ lsl r12, 1
++ rjmp 0b
++1:
++ ret r9
++#endif
+--- a/gcc/config/avr32/lib2funcs.S
++++ b/gcc/config/avr32/lib2funcs.S
+@@ -0,0 +1,21 @@
++ .align 4
++ .global __nonlocal_goto
++ .type __nonlocal_goto,@function
++
++/* __nonlocal_goto: This function handles nonlocal_goto's in gcc.
++
++ parameter 0 (r12) = New Frame Pointer
++ parameter 1 (r11) = Address to goto
++ parameter 2 (r10) = New Stack Pointer
++
++ This function invalidates the return stack, since it returns from a
++ function without using a return instruction.
++*/
++__nonlocal_goto:
++ mov r7, r12
++ mov sp, r10
++ frs # Flush return stack
++ mov pc, r11
++
++
++
+--- a/gcc/config/avr32/linux-elf.h
++++ b/gcc/config/avr32/linux-elf.h
+@@ -0,0 +1,151 @@
++/*
++ Linux/Elf specific definitions.
++ Copyright 2003-2006 Atmel Corporation.
++
++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++ and H�vard Skinnemoen, Atmel Norway, <hskinnemoen@atmel.com>
++
++ This file is part of GCC.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++
++
++/* elfos.h should have already been included. Now just override
++ any conflicting definitions and add any extras. */
++
++/* Run-time Target Specification. */
++#undef TARGET_VERSION
++#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr);
++
++/* Do not assume anything about header files. */
++#define NO_IMPLICIT_EXTERN_C
++
++/* The GNU C++ standard library requires that these macros be defined. */
++#undef CPLUSPLUS_CPP_SPEC
++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
++
++/* Now we define the strings used to build the spec file. */
++#undef LIB_SPEC
++#define LIB_SPEC \
++ "%{pthread:-lpthread} \
++ %{shared:-lc} \
++ %{!shared:%{profile:-lc_p}%{!profile:-lc}}"
++
++/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add
++ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which
++ provides part of the support for getting C++ file-scope static
++ object constructed before entering `main'. */
++
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC \
++ "%{!shared: \
++ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \
++ %{!p:%{profile:gcrt1.o%s} \
++ %{!profile:crt1.o%s}}}} \
++ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}"
++
++/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on
++ the GNU/Linux magical crtend.o file (see crtstuff.c) which
++ provides part of the support for getting C++ file-scope static
++ object constructed before entering `main', followed by a normal
++ GNU/Linux "finalizer" file, `crtn.o'. */
++
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC \
++ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s"
++
++#undef ASM_SPEC
++#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}"
++
++#undef LINK_SPEC
++#define LINK_SPEC "%{version:-v} \
++ %{static:-Bstatic} \
++ %{shared:-shared} \
++ %{symbolic:-Bsymbolic} \
++ %{rdynamic:-export-dynamic} \
++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \
++ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}"
++
++#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS()
++
++/* This is how we tell the assembler that two symbols have the same value. */
++#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \
++ do \
++ { \
++ assemble_name (FILE, NAME1); \
++ fputs (" = ", FILE); \
++ assemble_name (FILE, NAME2); \
++ fputc ('\n', FILE); \
++ } \
++ while (0)
++
++
++
++#undef CC1_SPEC
++#define CC1_SPEC "%{profile:-p}"
++
++/* Target CPU builtins. */
++#define TARGET_CPU_CPP_BUILTINS() \
++ do \
++ { \
++ builtin_define ("__avr32__"); \
++ builtin_define ("__AVR32__"); \
++ builtin_define ("__AVR32_LINUX__"); \
++ builtin_define (avr32_part->macro); \
++ builtin_define (avr32_arch->macro); \
++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
++ builtin_define ("__AVR32_AVR32A__"); \
++ else \
++ builtin_define ("__AVR32_AVR32B__"); \
++ if (TARGET_UNALIGNED_WORD) \
++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
++ if (TARGET_SIMD) \
++ builtin_define ("__AVR32_HAS_SIMD__"); \
++ if (TARGET_DSP) \
++ builtin_define ("__AVR32_HAS_DSP__"); \
++ if (TARGET_RMW) \
++ builtin_define ("__AVR32_HAS_RMW__"); \
++ if (TARGET_BRANCH_PRED) \
++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
++ if (TARGET_FAST_FLOAT) \
++ builtin_define ("__AVR32_FAST_FLOAT__"); \
++ } \
++ while (0)
++
++
++
++/* Call the function profiler with a given profile label. */
++#undef FUNCTION_PROFILER
++#define FUNCTION_PROFILER(STREAM, LABELNO) \
++ do \
++ { \
++ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \
++ fprintf (STREAM, "\ticall lr\n"); \
++ } \
++ while (0)
++
++#define NO_PROFILE_COUNTERS 1
++
++/* For dynamic libraries to work */
++/* #define PLT_REG_CALL_CLOBBERED 1 */
++#define AVR32_ALWAYS_PIC 1
++
++/* uclibc does not implement sinf, cosf etc. */
++#undef TARGET_C99_FUNCTIONS
++#define TARGET_C99_FUNCTIONS 0
++
++#define LINK_GCC_C_SEQUENCE_SPEC \
++ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}"
+--- a/gcc/config/avr32/predicates.md
++++ b/gcc/config/avr32/predicates.md
+@@ -0,0 +1,386 @@
++;; AVR32 predicates file.
++;; Copyright 2003-2006 Atmel Corporation.
++;;
++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++;;
++;; This file is part of GCC.
++;;
++;; This program is free software; you can redistribute it and/or modify
++;; it under the terms of the GNU General Public License as published by
++;; the Free Software Foundation; either version 2 of the License, or
++;; (at your option) any later version.
++;;
++;; This program is distributed in the hope that it will be useful,
++;; but WITHOUT ANY WARRANTY; without even the implied warranty of
++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++;; GNU General Public License for more details.
++;;
++;; You should have received a copy of the GNU General Public License
++;; along with this program; if not, write to the Free Software
++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++
++
++;; True if the operand is a memory reference which contains an
++;; Address consisting of a single pointer register
++(define_predicate "avr32_indirect_register_operand"
++ (and (match_code "mem")
++ (match_test "register_operand(XEXP(op, 0), SImode)")))
++
++
++
++;; Address expression with a base pointer offset with
++;; a register displacement
++(define_predicate "avr32_indexed_memory_operand"
++ (and (match_code "mem")
++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS"))
++ {
++
++ rtx op0 = XEXP(XEXP(op, 0), 0);
++ rtx op1 = XEXP(XEXP(op, 0), 1);
++
++ return ((avr32_address_register_rtx_p (op0, 0)
++ && avr32_legitimate_index_p (GET_MODE(op), op1, 0))
++ || (avr32_address_register_rtx_p (op1, 0)
++ && avr32_legitimate_index_p (GET_MODE(op), op0, 0)));
++
++ })
++
++;; Operand suitable for the ld.sb instruction
++(define_predicate "load_sb_memory_operand"
++ (ior (match_operand 0 "avr32_indirect_register_operand")
++ (match_operand 0 "avr32_indexed_memory_operand")))
++
++
++;; Operand suitable as operand to insns sign extending QI values
++(define_predicate "extendqi_operand"
++ (ior (match_operand 0 "load_sb_memory_operand")
++ (match_operand 0 "register_operand")))
++
++(define_predicate "post_inc_memory_operand"
++ (and (match_code "mem")
++ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC)
++ && REG_P(XEXP(XEXP(op, 0), 0))")))
++
++(define_predicate "pre_dec_memory_operand"
++ (and (match_code "mem")
++ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC)
++ && REG_P(XEXP(XEXP(op, 0), 0))")))
++
++;; Operand suitable for add instructions
++(define_predicate "avr32_add_operand"
++ (ior (match_operand 0 "register_operand")
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")"))))
++
++;; Operand is a power of two immediate
++(define_predicate "power_of_two_operand"
++ (match_code "const_int")
++{
++ HOST_WIDE_INT value = INTVAL (op);
++
++ return value != 0 && (value & (value - 1)) == 0;
++})
++
++;; Operand is a multiple of 8 immediate
++(define_predicate "multiple_of_8_operand"
++ (match_code "const_int")
++{
++ HOST_WIDE_INT value = INTVAL (op);
++
++ return (value & 0x7) == 0 ;
++})
++
++;; Operand is a multiple of 16 immediate
++(define_predicate "multiple_of_16_operand"
++ (match_code "const_int")
++{
++ HOST_WIDE_INT value = INTVAL (op);
++
++ return (value & 0xf) == 0 ;
++})
++
++;; Operand is a mask used for masking away upper bits of a reg
++(define_predicate "avr32_mask_upper_bits_operand"
++ (match_code "const_int")
++{
++ HOST_WIDE_INT value = INTVAL (op) + 1;
++
++ return value != 1 && value != 0 && (value & (value - 1)) == 0;
++})
++
++
++;; Operand suitable for mul instructions
++(define_predicate "avr32_mul_operand"
++ (ior (match_operand 0 "register_operand")
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))))
++
++;; True for logical binary operators.
++(define_predicate "logical_binary_operator"
++ (match_code "ior,xor,and"))
++
++;; True for logical shift operators
++(define_predicate "logical_shift_operator"
++ (match_code "ashift,lshiftrt"))
++
++;; True for shift operand for logical and, or and eor insns
++(define_predicate "avr32_logical_shift_operand"
++ (and (match_code "ashift,lshiftrt")
++ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT")
++ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))
++ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT")
++ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))"))))
++ )
++
++
++;; Predicate for second operand to and, ior and xor insn patterns
++(define_predicate "avr32_logical_insn_operand"
++ (ior (match_operand 0 "register_operand")
++ (match_operand 0 "avr32_logical_shift_operand"))
++)
++
++
++;; True for avr32 comparison operators
++(define_predicate "avr32_comparison_operator"
++ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu")
++ (and (match_code "unspec")
++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
++ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
++
++(define_predicate "avr32_cond3_comparison_operator"
++ (ior (match_code "eq, ne, ge, lt, geu, ltu")
++ (and (match_code "unspec")
++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
++ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
++
++;; True for avr32 comparison operand
++(define_predicate "avr32_comparison_operand"
++ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu")
++ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))"))
++ (and (match_code "unspec")
++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
++ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
++
++;; True if this is a const_int with one bit set
++(define_predicate "one_bit_set_operand"
++ (match_code "const_int")
++ {
++ int i;
++ int value;
++ int ones = 0;
++
++ value = INTVAL(op);
++ for ( i = 0 ; i < 32; i++ ){
++ if ( value & ( 1 << i ) ){
++ ones++;
++ }
++ }
++
++ return ( ones == 1 );
++ })
++
++
++;; True if this is a const_int with one bit cleared
++(define_predicate "one_bit_cleared_operand"
++ (match_code "const_int")
++ {
++ int i;
++ int value;
++ int zeroes = 0;
++
++ value = INTVAL(op);
++ for ( i = 0 ; i < 32; i++ ){
++ if ( !(value & ( 1 << i )) ){
++ zeroes++;
++ }
++ }
++
++ return ( zeroes == 1 );
++ })
++
++
++;; Immediate all the low 16-bits cleared
++(define_predicate "avr32_hi16_immediate_operand"
++ (match_code "const_int")
++ {
++ /* If the low 16-bits are zero then this
++ is a hi16 immediate. */
++ return ((INTVAL(op) & 0xffff) == 0);
++ }
++)
++
++;; True if this is a register or immediate operand
++(define_predicate "register_immediate_operand"
++ (ior (match_operand 0 "register_operand")
++ (match_operand 0 "immediate_operand")))
++
++;; True if this is a register or const_int operand
++(define_predicate "register_const_int_operand"
++ (ior (match_operand 0 "register_operand")
++ (and (match_operand 0 "const_int_operand")
++ (match_operand 0 "immediate_operand"))))
++
++;; True if this is a register or const_double operand
++(define_predicate "register_const_double_operand"
++ (ior (match_operand 0 "register_operand")
++ (match_operand 0 "const_double_operand")))
++
++;; True is this is an operand containing a label_ref
++(define_predicate "avr32_label_ref_operand"
++ (and (match_code "mem")
++ (match_test "avr32_find_symbol(op)
++ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)")))
++
++;; True is this is a valid symbol pointing to the constant pool
++(define_predicate "avr32_const_pool_operand"
++ (and (match_code "symbol_ref")
++ (match_test "CONSTANT_POOL_ADDRESS_P(op)"))
++ {
++ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op))
++ || label_mentioned_p (get_pool_constant (op)))
++ || avr32_got_mentioned_p(get_pool_constant (op)))
++ : true);
++ }
++)
++
++;; True is this is a memory reference to the constant or mini pool
++(define_predicate "avr32_const_pool_ref_operand"
++ (ior (match_operand 0 "avr32_label_ref_operand")
++ (and (match_code "mem")
++ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))"))))
++
++
++;; Legal source operand for movti insns
++(define_predicate "avr32_movti_src_operand"
++ (ior (match_operand 0 "avr32_const_pool_ref_operand")
++ (ior (ior (match_operand 0 "register_immediate_operand")
++ (match_operand 0 "avr32_indirect_register_operand"))
++ (match_operand 0 "post_inc_memory_operand"))))
++
++;; Legal destination operand for movti insns
++(define_predicate "avr32_movti_dst_operand"
++ (ior (ior (match_operand 0 "register_operand")
++ (match_operand 0 "avr32_indirect_register_operand"))
++ (match_operand 0 "pre_dec_memory_operand")))
++
++
++;; True is this is a k12 offseted memory operand
++(define_predicate "avr32_k12_memory_operand"
++ (and (match_code "mem")
++ (ior (match_test "REG_P(XEXP(op, 0))")
++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS
++ && REG_P(XEXP(XEXP(op, 0), 0))
++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
++ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)),
++ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))"))))
++
++;; True is this is a memory operand with an immediate displacement
++(define_predicate "avr32_imm_disp_memory_operand"
++ (and (match_code "mem")
++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS
++ && REG_P(XEXP(XEXP(op, 0), 0))
++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)")))
++
++;; True is this is a bswap operand
++(define_predicate "avr32_bswap_operand"
++ (ior (match_operand 0 "avr32_k12_memory_operand")
++ (match_operand 0 "register_operand")))
++
++;; True is this is a valid coprocessor insn memory operand
++(define_predicate "avr32_cop_memory_operand"
++ (and (match_operand 0 "memory_operand")
++ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS
++ && REG_P(XEXP(XEXP(op, 0), 0))
++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
++ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))"))))
++
++;; True is this is a valid source/destination operand
++;; for moving values to/from a coprocessor
++(define_predicate "avr32_cop_move_operand"
++ (ior (match_operand 0 "register_operand")
++ (match_operand 0 "avr32_cop_memory_operand")))
++
++
++;; True is this is a valid extract byte offset for use in
++;; load extracted index insns
++(define_predicate "avr32_extract_shift_operand"
++ (and (match_operand 0 "const_int_operand")
++ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8)
++ || (INTVAL(op) == 16) || (INTVAL(op) == 24)")))
++
++;; True is this is a floating-point register
++(define_predicate "avr32_fp_register_operand"
++ (and (match_operand 0 "register_operand")
++ (match_test "REGNO_REG_CLASS(REGNO(op)) == FP_REGS")))
++
++;; True is this is valid avr32 symbol operand
++(define_predicate "avr32_symbol_operand"
++ (ior (match_code "label_ref, symbol_ref")
++ (and (match_code "const")
++ (match_test "avr32_find_symbol(op)"))))
++
++;; True is this is valid operand for the lda.w and call pseudo insns
++(define_predicate "avr32_address_operand"
++ (and (match_code "label_ref, symbol_ref")
++ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS")
++ (match_test "flag_pic")) ))
++
++;; An immediate k16 address operand
++(define_predicate "avr32_ks16_address_operand"
++ (and (match_operand 0 "address_operand")
++ (ior (match_test "REG_P(op)")
++ (match_test "GET_CODE(op) == PLUS
++ && ((GET_CODE(XEXP(op,0)) == CONST_INT)
++ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) ))
++
++;; An offset k16 memory operand
++(define_predicate "avr32_ks16_memory_operand"
++ (and (match_code "mem")
++ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))")))
++
++;; An immediate k11 address operand
++(define_predicate "avr32_ks11_address_operand"
++ (and (match_operand 0 "address_operand")
++ (ior (match_test "REG_P(op)")
++ (match_test "GET_CODE(op) == PLUS
++ && (((GET_CODE(XEXP(op,0)) == CONST_INT)
++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\"))
++ || ((GET_CODE(XEXP(op,1)) == CONST_INT)
++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) ))
++
++;; True if this is a avr32 call operand
++(define_predicate "avr32_call_operand"
++ (ior (ior (match_operand 0 "register_operand")
++ (ior (match_operand 0 "avr32_const_pool_ref_operand")
++ (match_operand 0 "avr32_address_operand")))
++ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)")))
++
++;; Return true for operators performing ALU operations
++
++(define_predicate "alu_operator"
++ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt"))
++
++(define_predicate "avr32_add_shift_immediate_operand"
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")")))
++
++(define_predicate "avr32_cond_register_immediate_operand"
++ (ior (match_operand 0 "register_operand")
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))))
++
++(define_predicate "avr32_cond_immediate_operand"
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")")))
++
++
++(define_predicate "avr32_cond_move_operand"
++ (ior (ior (match_operand 0 "register_operand")
++ (and (match_operand 0 "immediate_operand")
++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))
++ (and (match_test "TARGET_V2_INSNS")
++ (match_operand 0 "memory_operand"))))
++
++(define_predicate "avr32_mov_immediate_operand"
++ (and (match_operand 0 "immediate_operand")
++ (match_test "avr32_const_ok_for_move(INTVAL(op))")))
+--- a/gcc/config/avr32/simd.md
++++ b/gcc/config/avr32/simd.md
+@@ -0,0 +1,145 @@
++;; AVR32 machine description file for SIMD instructions.
++;; Copyright 2003-2006 Atmel Corporation.
++;;
++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
++;;
++;; This file is part of GCC.
++;;
++;; This program is free software; you can redistribute it and/or modify
++;; it under the terms of the GNU General Public License as published by
++;; the Free Software Foundation; either version 2 of the License, or
++;; (at your option) any later version.
++;;
++;; This program is distributed in the hope that it will be useful,
++;; but WITHOUT ANY WARRANTY; without even the implied warranty of
++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++;; GNU General Public License for more details.
++;;
++;; You should have received a copy of the GNU General Public License
++;; along with this program; if not, write to the Free Software
++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++
++;; -*- Mode: Scheme -*-
++
++
++;; Vector modes
++(define_mode_iterator VECM [V2HI V4QI])
++(define_mode_attr size [(V2HI "h") (V4QI "b")])
++
++(define_insn "add<mode>3"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (plus:VECM (match_operand:VECM 1 "register_operand" "r")
++ (match_operand:VECM 2 "register_operand" "r")))]
++ "TARGET_SIMD"
++ "padd.<size>\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++
++(define_insn "sub<mode>3"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (minus:VECM (match_operand:VECM 1 "register_operand" "r")
++ (match_operand:VECM 2 "register_operand" "r")))]
++ "TARGET_SIMD"
++ "psub.<size>\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++
++(define_insn "abs<mode>2"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))]
++ "TARGET_SIMD"
++ "pabs.s<size>\t%0, %1"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "ashl<mode>3"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (ashift:VECM (match_operand:VECM 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku04")))]
++ "TARGET_SIMD"
++ "plsl.<size>\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "ashr<mode>3"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku04")))]
++ "TARGET_SIMD"
++ "pasr.<size>\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "lshr<mode>3"
++ [(set (match_operand:VECM 0 "register_operand" "=r")
++ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
++ (match_operand:SI 2 "immediate_operand" "Ku04")))]
++ "TARGET_SIMD"
++ "plsr.<size>\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "smaxv2hi3"
++ [(set (match_operand:V2HI 0 "register_operand" "=r")
++ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r")
++ (match_operand:V2HI 2 "register_operand" "r")))]
++
++ "TARGET_SIMD"
++ "pmax.sh\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "sminv2hi3"
++ [(set (match_operand:V2HI 0 "register_operand" "=r")
++ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r")
++ (match_operand:V2HI 2 "register_operand" "r")))]
++
++ "TARGET_SIMD"
++ "pmin.sh\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "umaxv4qi3"
++ [(set (match_operand:V4QI 0 "register_operand" "=r")
++ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r")
++ (match_operand:V4QI 2 "register_operand" "r")))]
++
++ "TARGET_SIMD"
++ "pmax.ub\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "uminv4qi3"
++ [(set (match_operand:V4QI 0 "register_operand" "=r")
++ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r")
++ (match_operand:V4QI 2 "register_operand" "r")))]
++
++ "TARGET_SIMD"
++ "pmin.ub\t%0, %1, %2"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++
++(define_insn "addsubv2hi"
++ [(set (match_operand:V2HI 0 "register_operand" "=r")
++ (vec_concat:V2HI
++ (plus:HI (match_operand:HI 1 "register_operand" "r")
++ (match_operand:HI 2 "register_operand" "r"))
++ (minus:HI (match_dup 1) (match_dup 2))))]
++ "TARGET_SIMD"
++ "paddsub.h\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
++
++(define_insn "subaddv2hi"
++ [(set (match_operand:V2HI 0 "register_operand" "=r")
++ (vec_concat:V2HI
++ (minus:HI (match_operand:HI 1 "register_operand" "r")
++ (match_operand:HI 2 "register_operand" "r"))
++ (plus:HI (match_dup 1) (match_dup 2))))]
++ "TARGET_SIMD"
++ "psubadd.h\t%0, %1:b, %2:b"
++ [(set_attr "length" "4")
++ (set_attr "type" "alu")])
+--- a/gcc/config/avr32/sync.md
++++ b/gcc/config/avr32/sync.md
+@@ -0,0 +1,244 @@
++;;=================================================================
++;; Atomic operations
++;;=================================================================
++
++
++(define_insn "sync_compare_and_swapsi"
++ [(set (match_operand:SI 0 "register_operand" "=&r,&r")
++ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16"))
++ (set (match_dup 1)
++ (unspec_volatile:SI
++ [(match_dup 1)
++ (match_operand:SI 2 "register_immediate_operand" "r,Ks21")
++ (match_operand:SI 3 "register_operand" "r,r")]
++ VUNSPEC_SYNC_CMPXCHG)) ]
++ ""
++ "0:
++ ssrf\t5
++ ld.w\t%0,%1
++ cp.w\t%0,%2
++ brne\t0f
++ stcond\t%1, %3
++ brne\t0b
++ 0:
++ "
++ [(set_attr "length" "16,18")
++ (set_attr "cc" "clobber")]
++ )
++
++
++(define_code_iterator atomic_op [plus minus and ior xor])
++(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")])
++(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")])
++
++(define_insn "sync_loadsi"
++ ; NB! Put an early clobber on the destination operand to
++ ; avoid gcc using the same register in the source and
++ ; destination. This is done in order to avoid gcc to
++ ; clobber the source operand since these instructions
++ ; are actually inside a "loop".
++ [(set (match_operand:SI 0 "register_operand" "=&r")
++ (unspec_volatile:SI
++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16")
++ (label_ref (match_operand 2 "" ""))]
++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )]
++ ""
++ "%2:
++ ssrf\t5
++ ld.w\t%0,%1"
++ [(set_attr "length" "6")
++ (set_attr "cc" "clobber")]
++ )
++
++(define_insn "sync_store_if_lock"
++ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16")
++ (unspec_volatile:SI
++ [(match_operand:SI 1 "register_operand" "r")
++ (label_ref (match_operand 2 "" ""))]
++ VUNSPEC_SYNC_STORE_IF_LOCK) )]
++ ""
++ "stcond\t%0, %1
++ brne\t%2"
++ [(set_attr "length" "6")
++ (set_attr "cc" "clobber")]
++ )
++
++
++(define_expand "sync_<atomic_insn>si"
++ [(set (match_dup 2)
++ (unspec_volatile:SI
++ [(match_operand:SI 0 "avr32_ks16_memory_operand" "")
++ (match_dup 3)]
++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
++ (set (match_dup 2)
++ (atomic_op:SI (match_dup 2)
++ (match_operand:SI 1 "register_immediate_operand" "")))
++ (set (match_dup 0)
++ (unspec_volatile:SI
++ [(match_dup 2)
++ (match_dup 3)]
++ VUNSPEC_SYNC_STORE_IF_LOCK) )
++ (use (match_dup 1))
++ (use (match_dup 4))]
++ ""
++ {
++ rtx *mem_expr = &operands[0];
++ rtx ptr_reg;
++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
++ {
++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
++ XEXP (*mem_expr, 0) = ptr_reg;
++ }
++ else
++ {
++ rtx address = XEXP (*mem_expr, 0);
++ if ( REG_P (address) )
++ ptr_reg = address;
++ else if ( REG_P (XEXP (address, 0)) )
++ ptr_reg = XEXP (address, 0);
++ else
++ ptr_reg = XEXP (address, 1);
++ }
++
++ operands[2] = gen_reg_rtx (SImode);
++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
++ operands[4] = ptr_reg;
++
++ }
++ )
++
++
++
++(define_expand "sync_old_<atomic_insn>si"
++ [(set (match_operand:SI 0 "register_operand" "")
++ (unspec_volatile:SI
++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "")
++ (match_dup 4)]
++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
++ (set (match_dup 3)
++ (atomic_op:SI (match_dup 0)
++ (match_operand:SI 2 "register_immediate_operand" "")))
++ (set (match_dup 1)
++ (unspec_volatile:SI
++ [(match_dup 3)
++ (match_dup 4)]
++ VUNSPEC_SYNC_STORE_IF_LOCK) )
++ (use (match_dup 2))
++ (use (match_dup 5))]
++ ""
++ {
++ rtx *mem_expr = &operands[1];
++ rtx ptr_reg;
++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
++ {
++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
++ XEXP (*mem_expr, 0) = ptr_reg;
++ }
++ else
++ {
++ rtx address = XEXP (*mem_expr, 0);
++ if ( REG_P (address) )
++ ptr_reg = address;
++ else if ( REG_P (XEXP (address, 0)) )
++ ptr_reg = XEXP (address, 0);
++ else
++ ptr_reg = XEXP (address, 1);
++ }
++
++ operands[3] = gen_reg_rtx (SImode);
++ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
++ operands[5] = ptr_reg;
++ }
++ )
++
++(define_expand "sync_new_<atomic_insn>si"
++ [(set (match_operand:SI 0 "register_operand" "")
++ (unspec_volatile:SI
++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "")
++ (match_dup 3)]
++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
++ (set (match_dup 0)
++ (atomic_op:SI (match_dup 0)
++ (match_operand:SI 2 "register_immediate_operand" "")))
++ (set (match_dup 1)
++ (unspec_volatile:SI
++ [(match_dup 0)
++ (match_dup 3)]
++ VUNSPEC_SYNC_STORE_IF_LOCK) )
++ (use (match_dup 2))
++ (use (match_dup 4))]
++ ""
++ {
++ rtx *mem_expr = &operands[1];
++ rtx ptr_reg;
++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
++ {
++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
++ XEXP (*mem_expr, 0) = ptr_reg;
++ }
++ else
++ {
++ rtx address = XEXP (*mem_expr, 0);
++ if ( REG_P (address) )
++ ptr_reg = address;
++ else if ( REG_P (XEXP (address, 0)) )
++ ptr_reg = XEXP (address, 0);
++ else
++ ptr_reg = XEXP (address, 1);
++ }
++
++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
++ operands[4] = ptr_reg;
++ }
++ )
++
++
++;(define_insn "sync_<atomic_insn>si"
++; [(set (match_operand:SI 0 "memory_operand" "+RKs16")
++; (unspec_volatile:SI
++; [(atomic_op:SI (match_dup 0)
++; (match_operand:SI 1 "register_operand" "r"))]
++; VUNSPEC_SYNC_CMPXCHG))
++; (clobber (match_scratch:SI 2 "=&r"))]
++; ""
++; "0:
++; ssrf\t5
++; ld.w\t%2,%0
++; <atomic_asm_insn>\t%2,%1
++; stcond\t%0, %2
++; brne\t0b
++; "
++; [(set_attr "length" "14")
++; (set_attr "cc" "clobber")]
++; )
++;
++;(define_insn "sync_new_<atomic_insn>si"
++; [(set (match_operand:SI 1 "memory_operand" "+RKs16")
++; (unspec_volatile:SI
++; [(atomic_op:SI (match_dup 1)
++; (match_operand:SI 2 "register_operand" "r"))]
++; VUNSPEC_SYNC_CMPXCHG))
++; (set (match_operand:SI 0 "register_operand" "=&r")
++; (atomic_op:SI (match_dup 1)
++; (match_dup 2)))]
++; ""
++; "0:
++; ssrf\t5
++; ld.w\t%0,%1
++; <atomic_asm_insn>\t%0,%2
++; stcond\t%1, %0
++; brne\t0b
++; "
++; [(set_attr "length" "14")
++; (set_attr "cc" "clobber")]
++; )
++
++(define_insn "sync_lock_test_and_setsi"
++ [ (set (match_operand:SI 0 "register_operand" "=&r")
++ (match_operand:SI 1 "memory_operand" "+RKu00"))
++ (set (match_dup 1)
++ (match_operand:SI 2 "register_operand" "r")) ]
++ ""
++ "xchg\t%0, %p1, %2"
++ [(set_attr "length" "4")]
++ )
+--- a/gcc/config/avr32/t-avr32
++++ b/gcc/config/avr32/t-avr32
+@@ -0,0 +1,94 @@
++
++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \
++ $(srcdir)/config/avr32/sync.md \
++ $(srcdir)/config/avr32/fpcp.md \
++ $(srcdir)/config/avr32/simd.md \
++ $(srcdir)/config/avr32/predicates.md
++
++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \
++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES)
++
++# We want fine grained libraries, so use the new code
++# to build the floating point emulation libraries.
++FPBIT = fp-bit.c
++DPBIT = dp-bit.c
++
++LIB1ASMSRC = avr32/lib1funcs.S
++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \
++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \
++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \
++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \
++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \
++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \
++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3
++
++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S
++
++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3
++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3
++MULTILIB_EXCEPTIONS =
++MULTILIB_MATCHES += march?ap=mpart?ap7000
++MULTILIB_MATCHES += march?ap=mpart?ap7001
++MULTILIB_MATCHES += march?ap=mpart?ap7002
++MULTILIB_MATCHES += march?ap=mpart?ap7200
++MULTILIB_MATCHES += march?ucr1=march?uc
++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256
++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512
++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c064c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c164c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c264c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016
++
++
++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
++
++CRTSTUFF_T_CFLAGS = -mrelax
++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC
++TARGET_LIBGCC2_CFLAGS += -mrelax
++
++LIBGCC = stmp-multilib
++INSTALL_LIBGCC = install-multilib
++
++fp-bit.c: $(srcdir)/config/fp-bit.c
++ echo '#define FLOAT' > fp-bit.c
++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
++
++dp-bit.c: $(srcdir)/config/fp-bit.c
++ cat $(srcdir)/config/fp-bit.c > dp-bit.c
++
++
++
+--- a/gcc/config/avr32/t-avr32-linux
++++ b/gcc/config/avr32/t-avr32-linux
+@@ -0,0 +1,94 @@
++
++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \
++ $(srcdir)/config/avr32/sync.md \
++ $(srcdir)/config/avr32/fpcp.md \
++ $(srcdir)/config/avr32/simd.md \
++ $(srcdir)/config/avr32/predicates.md
++
++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \
++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES)
++
++# We want fine grained libraries, so use the new code
++# to build the floating point emulation libraries.
++FPBIT = fp-bit.c
++DPBIT = dp-bit.c
++
++LIB1ASMSRC = avr32/lib1funcs.S
++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \
++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \
++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \
++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \
++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \
++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \
++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3
++
++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S
++
++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3
++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3
++MULTILIB_EXCEPTIONS =
++MULTILIB_MATCHES += march?ap=mpart?ap7000
++MULTILIB_MATCHES += march?ap=mpart?ap7001
++MULTILIB_MATCHES += march?ap=mpart?ap7002
++MULTILIB_MATCHES += march?ap=mpart?ap7200
++MULTILIB_MATCHES += march?ucr1=march?uc
++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256
++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512
++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es
++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256
++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c064c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c164c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2256c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2128c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3c264c
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032
++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016
++
++
++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o
++
++CRTSTUFF_T_CFLAGS = -mrelax
++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC
++TARGET_LIBGCC2_CFLAGS += -mrelax
++
++LIBGCC = stmp-multilib
++INSTALL_LIBGCC = install-multilib
++
++fp-bit.c: $(srcdir)/config/fp-bit.c
++ echo '#define FLOAT' > fp-bit.c
++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
++
++dp-bit.c: $(srcdir)/config/fp-bit.c
++ cat $(srcdir)/config/fp-bit.c > dp-bit.c
++
++
++
+--- a/gcc/config/avr32/t-elf
++++ b/gcc/config/avr32/t-elf
+@@ -0,0 +1,16 @@
++
++# Assemble startup files.
++$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES)
++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm
++
++$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES)
++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm
++
++
++# Build the libraries for both hard and soft floating point
++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
++
++LIBGCC = stmp-multilib
++INSTALL_LIBGCC = install-multilib
+--- a/gcc/config/avr32/uclinux-elf.h
++++ b/gcc/config/avr32/uclinux-elf.h
+@@ -0,0 +1,20 @@
++
++/* Run-time Target Specification. */
++#undef TARGET_VERSION
++#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr)
++
++/* We don't want a .jcr section on uClinux. As if this makes a difference... */
++#define TARGET_USE_JCR_SECTION 0
++
++/* Here we go. Drop the crtbegin/crtend stuff completely. */
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC \
++ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \
++ " %{!p:%{profile:gcrt1.o%s}" \
++ " %{!profile:crt1.o%s}}}} crti.o%s"
++
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC "crtn.o%s"
++
++#undef TARGET_DEFAULT
++#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT)
+--- a/gcc/config/host-linux.c
++++ b/gcc/config/host-linux.c
+@@ -25,6 +25,9 @@
+ #include "hosthooks.h"
+ #include "hosthooks-def.h"
+
++#ifndef SSIZE_MAX
++#define SSIZE_MAX LONG_MAX
++#endif
+
+ /* Linux has a feature called exec-shield-randomize that perturbs the
+ address of non-fixed mapped segments by a (relatively) small amount.
+--- a/gcc/config.gcc
++++ b/gcc/config.gcc
+@@ -834,6 +834,24 @@
+ tm_file="avr/avr.h dbxelf.h"
+ use_fixproto=yes
+ ;;
++avr32*-*-linux*)
++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h "
++ tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
++ extra_modes=avr32/avr32-modes.def
++ gnu_ld=yes
++ ;;
++avr32*-*-uclinux*)
++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h"
++ tmake_file="t-linux avr32/t-avr32-linux"
++ extra_modes=avr32/avr32-modes.def
++ gnu_ld=yes
++ ;;
++avr32-*-*)
++ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h"
++ tmake_file="avr32/t-avr32 avr32/t-elf"
++ extra_modes=avr32/avr32-modes.def
++ ;;
+ bfin*-elf*)
+ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h"
+ tmake_file=bfin/t-bfin-elf
+@@ -2950,6 +2968,32 @@
+ fi
+ ;;
+
++ avr32*-*-*)
++ supported_defaults="part arch"
++
++ case "$with_part" in
++ "" \
++ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" )
++ # OK
++ ;;
++ *)
++ echo "Unknown part used in --with-part=$with_part" 1>&2
++ exit 1
++ ;;
++ esac
++
++ case "$with_arch" in
++ "" \
++ | "ap" | "uc")
++ # OK
++ ;;
++ *)
++ echo "Unknown arch used in --with-arch=$with_arch" 1>&2
++ exit 1
++ ;;
++ esac
++ ;;
++
+ fr*-*-*linux*)
+ supported_defaults=cpu
+ case "$with_cpu" in
+--- a/gcc/configure.ac
++++ b/gcc/configure.ac
+@@ -2174,10 +2174,9 @@
+ as_ver=`$gcc_cv_as --version 2>/dev/null | sed 1q`
+ if echo "$as_ver" | grep GNU > /dev/null; then
+ changequote(,)dnl
+- as_vers=`echo $as_ver | sed -n \
+- -e 's,^.*[ ]\([0-9][0-9]*\.[0-9][0-9]*.*\)$,\1,p'`
+- as_major=`expr "$as_vers" : '\([0-9]*\)'`
+- as_minor=`expr "$as_vers" : '[0-9]*\.\([0-9]*\)'`
++ as_ver=`echo $as_ver | sed -e 's/GNU assembler\( (GNU Binutils)\)\? \([0-9.][0-9.]*\).*/\2/'`
++ as_major=`echo $as_ver | sed 's/\..*//'`
++ as_minor=`echo $as_ver | sed 's/[^.]*\.\([0-9]*\).*/\1/'`
+ changequote([,])dnl
+ if test $as_major -eq 2 && test $as_minor -lt 11
+ then :
+@@ -3077,7 +3076,7 @@
+ case "$target" in
+ i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \
+ | x86_64*-*-* | hppa*-*-* | arm*-*-* | strongarm*-*-* | xscale*-*-* \
+- | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-* | spu-*-*)
++ | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-* | spu-*-* | avr32-*-*)
+ insn="nop"
+ ;;
+ ia64*-*-* | s390*-*-*)
+--- a/gcc/doc/extend.texi
++++ b/gcc/doc/extend.texi
+@@ -2336,7 +2336,7 @@
+
+ @item interrupt
+ @cindex interrupt handler functions
+-Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MS1,
++Use this attribute on the ARM, AVR, AVR32, CRX, M32C, M32R/D, m68k, MS1,
+ and Xstormy16 ports to indicate that the specified function is an
+ interrupt handler. The compiler will generate function entry and exit
+ sequences suitable for use in an interrupt handler when this attribute
+@@ -2356,6 +2356,15 @@
+
+ Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
+
++Note, for the AVR32, you can specify which banking scheme is used for
++the interrupt mode this interrupt handler is used in like this:
++
++@smallexample
++void f () __attribute__ ((interrupt ("FULL")));
++@end smallexample
++
++Permissible values for this parameter are: FULL, HALF, NONE and UNDEF.
++
+ On ARMv7-M the interrupt type is ignored, and the attribute means the function
+ may be called with a word aligned stack pointer.
+
+@@ -3925,6 +3934,23 @@
+
+ @end table
+
++@subsection AVR32 Variable Attributes
++
++One attribute is currently defined for AVR32 configurations:
++@code{rmw_addressable}
++
++@table @code
++@item rmw_addressable
++@cindex @code{rmw_addressable} attribute
++
++This attribute can be used to signal that a variable can be accessed
++with the addressing mode of the AVR32 Atomic Read-Modify-Write memory
++instructions and hence make it possible for gcc to generate these
++instructions without using built-in functions or inline assembly statements.
++Variables used within the AVR32 Atomic Read-Modify-Write built-in
++functions will automatically get the @code{rmw_addressable} attribute.
++@end table
++
+ @subsection AVR Variable Attributes
+
+ @table @code
+@@ -6708,6 +6734,7 @@
+ * Alpha Built-in Functions::
+ * ARM iWMMXt Built-in Functions::
+ * ARM NEON Intrinsics::
++* AVR32 Built-in Functions::
+ * Blackfin Built-in Functions::
+ * FR-V Built-in Functions::
+ * X86 Built-in Functions::
+@@ -6955,6 +6982,74 @@
+
+ @include arm-neon-intrinsics.texi
+
++@node AVR32 Built-in Functions
++@subsection AVR32 Built-in Functions
++
++Built-in functions for atomic memory (RMW) instructions. Note that these
++built-ins will fail for targets where the RMW instructions are not
++implemented. Also note that these instructions only that a Ks15 << 2
++memory address and will therefor not work with any runtime computed
++memory addresses. The user is responsible for making sure that any
++pointers used within these functions points to a valid memory address.
++
++@smallexample
++void __builtin_mems(int */*ptr*/, int /*bit*/)
++void __builtin_memc(int */*ptr*/, int /*bit*/)
++void __builtin_memt(int */*ptr*/, int /*bit*/)
++@end smallexample
++
++Built-in functions for DSP instructions. Note that these built-ins will
++fail for targets where the DSP instructions are not implemented.
++
++@smallexample
++int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/)
++int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/)
++int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/)
++int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/)
++short __builtin_mulsathh_h (short, short)
++int __builtin_mulsathh_w (short, short)
++short __builtin_mulsatrndhh_h (short, short)
++int __builtin_mulsatrndwh_w (int, short)
++int __builtin_mulsatwh_w (int, short)
++int __builtin_macsathh_w (int, short, short)
++short __builtin_satadd_h (short, short)
++short __builtin_satsub_h (short, short)
++int __builtin_satadd_w (int, int)
++int __builtin_satsub_w (int, int)
++long long __builtin_mulwh_d(int, short)
++long long __builtin_mulnwh_d(int, short)
++long long __builtin_macwh_d(long long, int, short)
++long long __builtin_machh_d(long long, short, short)
++@end smallexample
++
++Other built-in functions for instructions that cannot easily be
++generated by the compiler.
++
++@smallexample
++void __builtin_ssrf(int);
++void __builtin_csrf(int);
++void __builtin_musfr(int);
++int __builtin_mustr(void);
++int __builtin_mfsr(int /*Status Register Address*/)
++void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/)
++int __builtin_mfdr(int /*Debug Register Address*/)
++void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/)
++void __builtin_cache(void * /*Address*/, int /*Cache Operation*/)
++void __builtin_sync(int /*Sync Operation*/)
++void __builtin_tlbr(void)
++void __builtin_tlbs(void)
++void __builtin_tlbw(void)
++void __builtin_breakpoint(void)
++int __builtin_xchg(void * /*Address*/, int /*Value*/ )
++short __builtin_bswap_16(short)
++int __builtin_bswap_32(int)
++void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/)
++int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/)
++void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/)
++long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/)
++void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/)
++@end smallexample
++
+ @node Blackfin Built-in Functions
+ @subsection Blackfin Built-in Functions
+
+--- a/gcc/doc/invoke.texi
++++ b/gcc/doc/invoke.texi
+@@ -195,7 +195,7 @@
+ -fvisibility-ms-compat @gol
+ -Wabi -Wctor-dtor-privacy @gol
+ -Wnon-virtual-dtor -Wreorder @gol
+--Weffc++ -Wno-deprecated -Wstrict-null-sentinel @gol
++-Weffc++ -Wno-deprecated @gol
+ -Wno-non-template-friend -Wold-style-cast @gol
+ -Woverloaded-virtual -Wno-pmf-conversions @gol
+ -Wsign-promo}
+@@ -609,6 +609,12 @@
+ -mauto-incdec -minmax -mlong-calls -mshort @gol
+ -msoft-reg-count=@var{count}}
+
++@emph{AVR32 Options}
++@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol
++-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol
++-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol
++-mfast-float -mimm-in-const-pool}
++
+ @emph{MCore Options}
+ @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
+ -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
+@@ -3163,13 +3169,11 @@
+ If you want to warn about code which uses the uninitialized value of the
+ variable in its own initializer, use the @option{-Winit-self} option.
+
+-These warnings occur for individual uninitialized or clobbered
+-elements of structure, union or array variables as well as for
+-variables which are uninitialized or clobbered as a whole. They do
+-not occur for variables or elements declared @code{volatile}. Because
+-these warnings depend on optimization, the exact variables or elements
+-for which there are warnings will depend on the precise optimization
+-options and version of GCC used.
++These warnings occur only for variables that are candidates for
++register allocation. Therefore, they do not occur for a variable that
++is declared @code{volatile}, or whose address is taken, or whose size
++is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
++structures, unions or arrays, even when they are in registers.
+
+ Note that there may be no warning about a variable that is used only
+ to compute a value that itself is never used, because such
+@@ -7034,10 +7038,6 @@
+ we always try to remove unnecessary ivs from the set during its
+ optimization when a new iv is added to the set.
+
+-@item scev-max-expr-size
+-Bound on size of expressions used in the scalar evolutions analyzer.
+-Large expressions slow the analyzer.
+-
+ @item omega-max-vars
+ The maximum number of variables in an Omega constraint system.
+ The default value is 128.
+@@ -8363,6 +8363,7 @@
+ * ARC Options::
+ * ARM Options::
+ * AVR Options::
++* AVR32 Options::
+ * Blackfin Options::
+ * CRIS Options::
+ * CRX Options::
+@@ -8834,6 +8835,120 @@
+ size.
+ @end table
+
++@node AVR32 Options
++@subsection AVR32 Options
++@cindex AVR32 Options
++
++These options are defined for AVR32 implementations:
++
++@table @gcctabopt
++@item -muse-rodata-section
++@opindex muse-rodata-section
++Use section @samp{.rodata} for read-only data instead of @samp{.text}.
++
++@item -mhard-float
++@opindex mhard-float
++Use floating point coprocessor instructions.
++
++@item -msoft-float
++@opindex msoft-float
++Use software floating-point library for floating-point operations.
++
++@item -mforce-double-align
++@opindex mforce-double-align
++Force double-word alignment for double-word memory accesses.
++
++@item -masm-addr-pseudos
++@opindex masm-addr-pseudos
++Use assembler pseudo-instructions lda.w and call for handling direct
++addresses. (Enabled by default)
++
++@item -mno-init-got
++@opindex mno-init-got
++Do not initialize the GOT register before using it when compiling PIC
++code.
++
++@item -mrelax
++@opindex mrelax
++Let invoked assembler and linker do relaxing
++(Enabled by default when optimization level is >1).
++This means that when the address of symbols are known at link time,
++the linker can optimize @samp{icall} and @samp{mcall}
++instructions into a @samp{rcall} instruction if possible.
++Loading the address of a symbol can also be optimized.
++
++@item -mmd-reorg-opt
++@opindex mmd-reorg-opt
++Perform machine dependent optimizations in reorg stage.
++
++@item -mpart=@var{part}
++@opindex mpart
++Generate code for the specified part. Permissible parts are:
++@samp{ap7000},
++@samp{ap7001},
++@samp{ap7002},
++@samp{ap7200},
++@samp{uc3a0128},
++@samp{uc3a0256},
++@samp{uc3a0512},
++@samp{uc3a0512es},
++@samp{uc3a1128},
++@samp{uc3a1256},
++@samp{uc3a1512},
++@samp{uc3a1512es},
++@samp{uc3a3revd},
++@samp{uc3a364},
++@samp{uc3a364s},
++@samp{uc3a3128},
++@samp{uc3a3128s},
++@samp{uc3a3256},
++@samp{uc3a3256s},
++@samp{uc3b064},
++@samp{uc3b0128},
++@samp{uc3b0256},
++@samp{uc3b0256es},
++@samp{uc3b0512revc},
++@samp{uc3b164},
++@samp{uc3b1128},
++@samp{uc3b1256},
++@samp{uc3b1256es},
++@samp{uc3b1512revc}
++@samp{uc3c0512c},
++@samp{uc3c0256c},
++@samp{uc3c0128c},
++@samp{uc3c064c},
++@samp{uc3c1512c},
++@samp{uc3c1256c},
++@samp{uc3c1128c},
++@samp{uc3c164c},
++@samp{uc3c2512c},
++@samp{uc3c2256c},
++@samp{uc3c2128c},
++@samp{uc3c264c},
++@samp{uc3l064},
++@samp{uc3l032},
++@samp{uc3l016}.
++
++@item -mcpu=@var{cpu-type}
++@opindex mcpu
++Same as -mpart. Obsolete.
++
++@item -march=@var{arch}
++@opindex march
++Generate code for the specified architecture. Permissible architectures are:
++@samp{ap}, @samp{uc} and @samp{ucr2}.
++
++@item -mfast-float
++@opindex mfast-float
++Enable fast floating-point library that does not conform to IEEE-754 but is still good enough
++for most applications. The fast floating-point library does not round to the nearest even
++but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified.
++
++@item -mimm-in-const-pool
++@opindex mimm-in-const-pool
++Put large immediates in constant pool. This is enabled by default for archs with insn-cache.
++@end table
++
+ @node Blackfin Options
+ @subsection Blackfin Options
+ @cindex Blackfin Options
+@@ -8889,29 +9004,12 @@
+ contain speculative loads after jump instructions. If this option is used,
+ @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
+
+-@item -mno-specld-anomaly
+-@opindex mno-specld-anomaly
+-Don't generate extra code to prevent speculative loads from occurring.
+-
+ @item -mcsync-anomaly
+ @opindex mcsync-anomaly
+ When enabled, the compiler will ensure that the generated code does not
+ contain CSYNC or SSYNC instructions too soon after conditional branches.
+ If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
+
+-@item -mno-csync-anomaly
+-@opindex mno-csync-anomaly
+-Don't generate extra code to prevent CSYNC or SSYNC instructions from
+-occurring too soon after a conditional branch.
+-
+-@item -mlow-64k
+-@opindex mlow-64k
+-When enabled, the compiler is free to take advantage of the knowledge that
+-the entire program fits into the low 64k of memory.
+-
+-@item -mno-low-64k
+-@opindex mno-low-64k
+-Assume that the program is arbitrarily large. This is the default.
+
+ @item -mstack-check-l1
+ @opindex mstack-check-l1
+@@ -8925,11 +9023,6 @@
+ without virtual memory management. This option implies @option{-fPIC}.
+ With a @samp{bfin-elf} target, this option implies @option{-msim}.
+
+-@item -mno-id-shared-library
+-@opindex mno-id-shared-library
+-Generate code that doesn't assume ID based shared libraries are being used.
+-This is the default.
+-
+ @item -mleaf-id-shared-library
+ @opindex mleaf-id-shared-library
+ Generate code that supports shared libraries via the library ID method,
+@@ -8971,11 +9064,6 @@
+ will lie outside of the 24 bit addressing range of the offset based
+ version of subroutine call instruction.
+
+-This feature is not enabled by default. Specifying
+-@option{-mno-long-calls} will restore the default behavior. Note these
+-switches have no effect on how the compiler generates code to handle
+-function calls via function pointers.
+-
+ @item -mfast-fp
+ @opindex mfast-fp
+ Link with the fast floating-point library. This library relaxes some of
+--- a/gcc/doc/md.texi
++++ b/gcc/doc/md.texi
+@@ -1681,6 +1681,58 @@
+ A memory reference suitable for the ARMv4 ldrsb instruction.
+ @end table
+
++@item AVR32 family---@file{avr32.h}
++@table @code
++@item f
++Floating-point registers (f0 to f15)
++
++@item Ku@var{bits}
++Unsigned constant representable with @var{bits} number of bits (Must be
++two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08}
++
++@item Ks@var{bits}
++Signed constant representable with @var{bits} number of bits (Must be
++two digits). I.e: A signed 12-bit constant is written as @samp{Ks12}
++
++@item Is@var{bits}
++The negated range of a signed constant representable with @var{bits}
++number of bits. The same as @samp{Ks@var{bits}} with a negated range.
++This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}}
++
++@item G
++A single/double precision floating-point immediate or 64-bit integer
++immediate where the least and most significant words both can be
++loaded with a move instruction. That is the the integer form of the
++values in the least and most significant words both are in the range
++@math{-2^{20}} to @math{2^{20}-1}.
++
++@item RKs@var{bits}
++A memory reference where the address consists of a base register
++plus a signed immediate displacement with range given by @samp{Ks@var{bits}}
++which has the same format as for the signed immediate integer constraint
++given above.
++
++@item RKu@var{bits}
++A memory reference where the address consists of a base register
++plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}}
++which has the same format as for the unsigned immediate integer constraint
++given above.
++
++@item S
++A memory reference with an immediate or register offset
++
++@item T
++A memory reference to a constant pool entry
++
++@item W
++A valid operand for use in the @samp{lda.w} instruction macro when
++relaxing is enabled
++
++@item Z
++A memory reference valid for coprocessor memory instructions
++
++@end table
++
+ @item AVR family---@file{config/avr/constraints.md}
+ @table @code
+ @item l
+--- a/gcc/expmed.c
++++ b/gcc/expmed.c
+@@ -463,9 +463,9 @@
+ ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
+ || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
+ && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
+- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
++ : ( (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
+ || (offset * BITS_PER_UNIT % bitsize == 0
+- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
++ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))))
+ {
+ if (MEM_P (op0))
+ op0 = adjust_address (op0, fieldmode, offset);
+--- a/gcc/expr.c
++++ b/gcc/expr.c
+@@ -52,6 +52,7 @@
+ #include "tree-flow.h"
+ #include "target.h"
+ #include "timevar.h"
++#include "c-common.h"
+ #include "df.h"
+ #include "diagnostic.h"
+
+@@ -3620,16 +3621,17 @@
+ }
+ else
+ {
++ emit_move_insn (stack_pointer_rtx,
++ expand_binop (Pmode,
+ #ifdef STACK_GROWS_DOWNWARD
+- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
+- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+- GEN_INT (-(HOST_WIDE_INT) rounded_size));
++ sub_optab,
+ #else
+- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
+- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+- GEN_INT (rounded_size));
++ add_optab,
+ #endif
+- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
++ stack_pointer_rtx,
++ GEN_INT (rounded_size),
++ NULL_RTX, 0, OPTAB_LIB_WIDEN));
++ dest_addr = stack_pointer_rtx;
+ }
+
+ dest = gen_rtx_MEM (mode, dest_addr);
+@@ -5739,7 +5741,8 @@
+ is a bit field, we cannot use addressing to access it.
+ Use bit-field techniques or SUBREG to store in it. */
+
+- if (mode == VOIDmode
++ if (
++ mode == VOIDmode
+ || (mode != BLKmode && ! direct_store[(int) mode]
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+@@ -5896,7 +5899,19 @@
+ {
+ tree field = TREE_OPERAND (exp, 1);
+ size_tree = DECL_SIZE (field);
+- if (!DECL_BIT_FIELD (field))
++ if (!DECL_BIT_FIELD (field)
++ /* Added for AVR32:
++ Bitfields with a size equal to a target storage
++ type might not cause DECL_BIT_FIELD to return
++ true since it can be optimized into a normal array
++ access operation. But for volatile bitfields we do
++ not allow this when targetm.narrow_volatile_bitfield ()
++ is false. We can use DECL_C_BIT_FIELD to check if this
++ really is a c-bitfield. */
++ && !(TREE_THIS_VOLATILE (exp)
++ && !targetm.narrow_volatile_bitfield ()
++ && DECL_C_BIT_FIELD (field)) )
++
+ mode = DECL_MODE (field);
+ else if (DECL_MODE (field) == BLKmode)
+ blkmode_bitfield = true;
+@@ -7889,7 +7904,8 @@
+ by doing the extract into an object as wide as the field
+ (which we know to be the width of a basic mode), then
+ storing into memory, and changing the mode to BLKmode. */
+- if (mode1 == VOIDmode
++ if (
++ mode1 == VOIDmode
+ || REG_P (op0) || GET_CODE (op0) == SUBREG
+ || (mode1 != BLKmode && ! direct_load[(int) mode1]
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+--- a/gcc/function.c
++++ b/gcc/function.c
+@@ -2715,7 +2715,11 @@
+ SET_DECL_RTL (parm, parmreg);
+
+ /* Copy the value into the register. */
+- if (data->nominal_mode != data->passed_mode
++ if ( (data->nominal_mode != data->passed_mode
++ /* Added for AVR32: If passed_mode is equal
++ to promoted nominal mode why should be convert?
++ The conversion should make no difference. */
++ && data->passed_mode != promoted_nominal_mode)
+ || promoted_nominal_mode != data->promoted_mode)
+ {
+ int save_tree_used;
+--- a/gcc/genemit.c
++++ b/gcc/genemit.c
+@@ -121,6 +121,24 @@
+ }
+
+ static void
++gen_vararg_prologue(int operands)
++{
++ int i;
++
++ if (operands > 1)
++ {
++ for (i = 1; i < operands; i++)
++ printf(" rtx operand%d ATTRIBUTE_UNUSED;\n", i);
++
++ printf(" va_list args;\n\n");
++ printf(" va_start(args, operand0);\n");
++ for (i = 1; i < operands; i++)
++ printf(" operand%d = va_arg(args, rtx);\n", i);
++ printf(" va_end(args);\n\n");
++ }
++}
++
++static void
+ print_code (RTX_CODE code)
+ {
+ const char *p1;
+@@ -406,18 +424,16 @@
+ fatal ("match_dup operand number has no match_operand");
+
+ /* Output the function name and argument declarations. */
+- printf ("rtx\ngen_%s (", XSTR (insn, 0));
++ printf ("rtx\ngen_%s ", XSTR (insn, 0));
++
+ if (operands)
+- for (i = 0; i < operands; i++)
+- if (i)
+- printf (",\n\trtx operand%d ATTRIBUTE_UNUSED", i);
++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n");
+ else
+- printf ("rtx operand%d ATTRIBUTE_UNUSED", i);
+- else
+- printf ("void");
+- printf (")\n");
++ printf("(void)\n");
+ printf ("{\n");
+
++ gen_vararg_prologue(operands);
++
+ /* Output code to construct and return the rtl for the instruction body. */
+
+ if (XVECLEN (insn, 1) == 1)
+@@ -461,16 +477,12 @@
+ operands = max_operand_vec (expand, 1);
+
+ /* Output the function name and argument declarations. */
+- printf ("rtx\ngen_%s (", XSTR (expand, 0));
++ printf ("rtx\ngen_%s ", XSTR (expand, 0));
+ if (operands)
+- for (i = 0; i < operands; i++)
+- if (i)
+- printf (",\n\trtx operand%d", i);
+- else
+- printf ("rtx operand%d", i);
++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n");
+ else
+- printf ("void");
+- printf (")\n");
++ printf("(void)\n");
++
+ printf ("{\n");
+
+ /* If we don't have any C code to write, only one insn is being written,
+@@ -480,6 +492,8 @@
+ && operands > max_dup_opno
+ && XVECLEN (expand, 1) == 1)
+ {
++ gen_vararg_prologue(operands);
++
+ printf (" return ");
+ gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL);
+ printf (";\n}\n\n");
+@@ -493,6 +507,7 @@
+ for (; i <= max_scratch_opno; i++)
+ printf (" rtx operand%d ATTRIBUTE_UNUSED;\n", i);
+ printf (" rtx _val = 0;\n");
++ gen_vararg_prologue(operands);
+ printf (" start_sequence ();\n");
+
+ /* The fourth operand of DEFINE_EXPAND is some code to be executed
+--- a/gcc/genflags.c
++++ b/gcc/genflags.c
+@@ -127,7 +127,6 @@
+ gen_proto (rtx insn)
+ {
+ int num = num_operands (insn);
+- int i;
+ const char *name = XSTR (insn, 0);
+ int truth = maybe_eval_c_test (XSTR (insn, 2));
+
+@@ -158,12 +157,7 @@
+ if (num == 0)
+ fputs ("void", stdout);
+ else
+- {
+- for (i = 1; i < num; i++)
+- fputs ("rtx, ", stdout);
+-
+- fputs ("rtx", stdout);
+- }
++ fputs("rtx, ...", stdout);
+
+ puts (");");
+
+@@ -173,12 +167,7 @@
+ {
+ printf ("static inline rtx\ngen_%s", name);
+ if (num > 0)
+- {
+- putchar ('(');
+- for (i = 0; i < num-1; i++)
+- printf ("rtx ARG_UNUSED (%c), ", 'a' + i);
+- printf ("rtx ARG_UNUSED (%c))\n", 'a' + i);
+- }
++ puts("(rtx ARG_UNUSED(a), ...)");
+ else
+ puts ("(void)");
+ puts ("{\n return 0;\n}");
+--- a/gcc/genoutput.c
++++ b/gcc/genoutput.c
+@@ -386,7 +386,7 @@
+ }
+
+ if (d->name && d->name[0] != '*')
+- printf (" (insn_gen_fn) gen_%s,\n", d->name);
++ printf (" gen_%s,\n", d->name);
+ else
+ printf (" 0,\n");
+
+--- a/gcc/ifcvt.c
++++ b/gcc/ifcvt.c
+@@ -81,7 +81,7 @@
+ static int num_updated_if_blocks;
+
+ /* # of changes made. */
+-static int num_true_changes;
++int num_true_changes;
+
+ /* Whether conditional execution changes were made. */
+ static int cond_exec_changed_p;
+@@ -286,6 +286,9 @@
+ if (must_be_last)
+ return FALSE;
+
++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN
++ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN )
++#endif
+ if (modified_in_p (test, insn))
+ {
+ if (!mod_ok)
+@@ -566,15 +569,18 @@
+ IFCVT_MODIFY_FINAL (ce_info);
+ #endif
+
++ /* Merge the blocks! */
++ if ( reload_completed ){
+ /* Conversion succeeded. */
+ if (dump_file)
+ fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
+ n_insns, (n_insns == 1) ? " was" : "s were");
+
+- /* Merge the blocks! */
+ merge_if_block (ce_info);
+ cond_exec_changed_p = TRUE;
+ return TRUE;
++ }
++ return FALSE;
+
+ fail:
+ #ifdef IFCVT_MODIFY_CANCEL
+@@ -1080,7 +1086,11 @@
+ != UNKNOWN))
+ {
+ rtx cond = if_info->cond;
+- enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
++ /* This generates wrong code for AVR32. The cond code need not be reversed
++ since the addmodecc patterns add if the condition is NOT met. */
++ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/
++ enum rtx_code code = GET_CODE(cond);
++
+
+ /* First try to use addcc pattern. */
+ if (general_operand (XEXP (cond, 0), VOIDmode)
+@@ -3017,7 +3027,12 @@
+ && noce_find_if_block (test_bb, then_edge, else_edge, pass))
+ goto success;
+
+- if (HAVE_conditional_execution && reload_completed
++ if (HAVE_conditional_execution &&
++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD
++ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD)
++#else
++ reload_completed
++#endif
+ && cond_exec_find_if_block (&ce_info))
+ goto success;
+
+@@ -3132,7 +3147,11 @@
+
+ /* We only ever should get here after reload,
+ and only if we have conditional execution. */
++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD
++ gcc_assert (HAVE_conditional_execution && (reload_completed||IFCVT_COND_EXEC_BEFORE_RELOAD));
++#else
+ gcc_assert (HAVE_conditional_execution && reload_completed);
++#endif
+
+ /* Discover if any fall through predecessors of the current test basic block
+ were && tests (which jump to the else block) or || tests (which jump to
+@@ -4226,6 +4245,14 @@
+ static unsigned int
+ rest_of_handle_if_after_reload (void)
+ {
++ /* Hack for the AVR32 experimental ifcvt processing before reload.
++ The AVR32 specific ifcvt code needs to know when ifcvt after reload
++ has begun. */
++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD
++ if ( IFCVT_COND_EXEC_BEFORE_RELOAD )
++ cfun->machine->ifcvt_after_reload = 1;
++#endif
++
+ if_convert ();
+ return 0;
+ }
+--- a/gcc/longlong.h
++++ b/gcc/longlong.h
+@@ -239,6 +239,41 @@
+ #define UDIV_TIME 100
+ #endif /* __arm__ */
+
++#if defined (__avr32__) && W_TYPE_SIZE == 32
++#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
++ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \
++ : "=r" ((USItype) (sh)), \
++ "=&r" ((USItype) (sl)) \
++ : "r" ((USItype) (ah)), \
++ "r" ((USItype) (bh)), \
++ "r" ((USItype) (al)), \
++ "r" ((USItype) (bl)) __CLOBBER_CC)
++#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
++ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
++ : "=r" ((USItype) (sh)), \
++ "=&r" ((USItype) (sl)) \
++ : "r" ((USItype) (ah)), \
++ "r" ((USItype) (bh)), \
++ "r" ((USItype) (al)), \
++ "r" ((USItype) (bl)) __CLOBBER_CC)
++
++#if !defined (__AVR32_NO_MUL__)
++#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b))
++
++#define umul_ppmm(w1, w0, u, v) \
++{ \
++ DWunion __w; \
++ __w.ll = __umulsidi3 (u, v); \
++ w1 = __w.s.high; \
++ w0 = __w.s.low; \
++}
++#endif
++
++#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X))
++#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X))
++#define COUNT_LEADING_ZEROS_0 32
++#endif
++
+ #if defined (__CRIS__) && __CRIS_arch_version >= 3
+ #define count_leading_zeros(COUNT, X) ((COUNT) = __builtin_clz (X))
+ #if __CRIS_arch_version >= 8
+--- a/gcc/optabs.h
++++ b/gcc/optabs.h
+@@ -586,7 +586,7 @@
+ extern optab code_to_optab[NUM_RTX_CODE + 1];
+
+
+-typedef rtx (*rtxfun) (rtx);
++typedef rtx (*rtxfun) (rtx, ...);
+
+ /* Indexed by the rtx-code for a conditional (e.g. EQ, LT,...)
+ gives the gen_function to make a branch to test that condition. */
+--- a/gcc/sched-deps.c
++++ b/gcc/sched-deps.c
+@@ -1406,7 +1406,14 @@
+
+ prev_nonnote = prev_nonnote_insn (insn);
+ if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
+- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
++ /* Modification for AVR32 by RP: Why is this here, this will
++ cause instruction to be without any dependencies which might
++ cause it to be moved anywhere. For the AVR32 we try to keep
++ a group of conditionals together even if they are mutual exclusive.
++ */
++ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote)
++ || GET_CODE (PATTERN (insn)) == COND_EXEC )
++ )
+ add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
+ }
+
+@@ -1905,8 +1912,29 @@
+
+ if (code == COND_EXEC)
+ {
++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN
++ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN)
++ {
++ /* Check if we have a group og conditional instructions with the same test.
++ If so we must make sure that they are not scheduled apart in order to
++ avoid unnecesarry tests and if one of the registers in the test is modified
++ in the instruction this is needed to ensure correct code. */
++ if ( prev_nonnote_insn (insn)
++ && INSN_P (prev_nonnote_insn (insn))
++ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC
++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0))
++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1))
++ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x))
++ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn)))
++ {
++ SCHED_GROUP_P (insn) = 1;
++ //CANT_MOVE (prev_nonnote_insn (insn)) = 1;
++ }
++ }
++#endif
+ sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
+
++
+ /* ??? Should be recording conditions so we reduce the number of
+ false dependencies. */
+ x = COND_EXEC_CODE (x);
+--- a/gcc/testsuite/gcc.dg/sibcall-3.c
++++ b/gcc/testsuite/gcc.dg/sibcall-3.c
+@@ -5,7 +5,7 @@
+ Copyright (C) 2002 Free Software Foundation Inc.
+ Contributed by Hans-Peter Nilsson <hp@bitrange.com> */
+
+-/* { dg-do run { xfail arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
++/* { dg-do run { xfail arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
+ /* -mlongcall disables sibcall patterns. */
+ /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */
+ /* { dg-options "-O2 -foptimize-sibling-calls" } */
+--- a/gcc/testsuite/gcc.dg/sibcall-4.c
++++ b/gcc/testsuite/gcc.dg/sibcall-4.c
+@@ -5,7 +5,7 @@
+ Copyright (C) 2002 Free Software Foundation Inc.
+ Contributed by Hans-Peter Nilsson <hp@bitrange.com> */
+
+-/* { dg-do run { xfail arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
++/* { dg-do run { xfail arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
+ /* -mlongcall disables sibcall patterns. */
+ /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */
+ /* { dg-options "-O2 -foptimize-sibling-calls" } */
+--- a/gcc/testsuite/gcc.dg/trampoline-1.c
++++ b/gcc/testsuite/gcc.dg/trampoline-1.c
+@@ -46,6 +46,8 @@
+
+ int main (void)
+ {
++#ifndef NO_TRAMPOLINES
+ foo ();
++#endif
+ return 0;
+ }
+--- a/gcc/testsuite/g++.old-deja/g++.pt/static11.C
++++ b/gcc/testsuite/g++.old-deja/g++.pt/static11.C
+@@ -2,7 +2,7 @@
+ // in their dejagnu baseboard description) require that the status is
+ // final when exit is entered (or main returns), and not "overruled" by a
+ // destructor calling _exit. It's not really worth it to handle that.
+-// { dg-do run { xfail mmix-knuth-mmixware arm*-*-elf arm*-*-eabi m68k-*-elf } }
++// { dg-do run { xfail mmix-knuth-mmixware avr32-*-elf arm*-*-elf arm*-*-eabi m68k-*-elf } }
+
+ // Bug: g++ was failing to destroy C<int>::a because it was using two
+ // different sentry variables for construction and destruction.
+--- a/libgcc/config.host
++++ b/libgcc/config.host
+@@ -240,6 +240,8 @@
+ ;;
+ arm*-*-kaos*)
+ ;;
++avr32-*-*)
++ ;;
+ avr-*-rtems*)
+ ;;
+ avr-*-*)
+--- a/libstdc++-v3/config/os/gnu-linux/ctype_base.h
++++ b/libstdc++-v3/config/os/gnu-linux/ctype_base.h
+@@ -31,6 +31,8 @@
+ //
+ // ISO C++ 14882: 22.1 Locales
+ //
++#include <features.h>
++#include <ctype.h>
+
+ /** @file ctype_base.h
+ * This is an internal header file, included by other library headers.
+@@ -45,7 +47,11 @@
+ struct ctype_base
+ {
+ // Non-standard typedefs.
++#ifdef __UCLIBC__
++ typedef const __ctype_touplow_t* __to_type;
++#else
+ typedef const int* __to_type;
++#endif
+
+ // NB: Offsets into ctype<char>::_M_table force a particular size
+ // on the mask type. Because of this, we don't use an enum.
+--- a/libstdc++-v3/include/Makefile.in
++++ b/libstdc++-v3/include/Makefile.in
+@@ -36,6 +36,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/Makefile.in \
+ $(srcdir)/Makefile.am
+ subdir = include
+--- a/libstdc++-v3/libmath/Makefile.in
++++ b/libstdc++-v3/libmath/Makefile.in
+@@ -37,6 +37,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ subdir = libmath
+ DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am
+ ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
+--- a/libstdc++-v3/libsupc++/Makefile.in
++++ b/libstdc++-v3/libsupc++/Makefile.in
+@@ -38,6 +38,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/Makefile.in \
+ $(srcdir)/Makefile.am $(glibcxxinstall_HEADERS)
+ subdir = libsupc++
+--- a/libstdc++-v3/Makefile.in
++++ b/libstdc++-v3/Makefile.in
+@@ -36,6 +36,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/../config.guess \
+ $(srcdir)/../config.sub README ChangeLog $(srcdir)/Makefile.in \
+ $(srcdir)/Makefile.am $(top_srcdir)/configure \
+--- a/libstdc++-v3/po/Makefile.in
++++ b/libstdc++-v3/po/Makefile.in
+@@ -36,6 +36,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/Makefile.in \
+ $(srcdir)/Makefile.am
+ subdir = po
+--- a/libstdc++-v3/src/Makefile.in
++++ b/libstdc++-v3/src/Makefile.in
+@@ -37,6 +37,7 @@
+ build_triplet = @build@
+ host_triplet = @host@
+ target_triplet = @target@
++LIBOBJDIR =
+ DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/Makefile.in \
+ $(srcdir)/Makefile.am
+ subdir = src
diff --git a/toolchain/gcc/patches/4.3.5/939-avr32_fix_linux_build.patch b/toolchain/gcc/patches/4.3.5/939-avr32_fix_linux_build.patch
new file mode 100644
index 0000000000..1569592360
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/939-avr32_fix_linux_build.patch
@@ -0,0 +1,25 @@
+--- a/gcc/config.gcc
++++ b/gcc/config.gcc
+@@ -836,7 +836,7 @@ avr-*-*)
+ ;;
+ avr32*-*-linux*)
+ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h "
+- tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
++ tmake_file="t-linux avr32/t-avr32-linux"
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+ extra_modes=avr32/avr32-modes.def
+ gnu_ld=yes
+--- a/libgcc/config.host
++++ b/libgcc/config.host
+@@ -240,6 +240,11 @@ arm-*-pe*)
+ ;;
+ arm*-*-kaos*)
+ ;;
++avr32-*-linux*)
++ # No need to build crtbeginT.o on uClibc systems. Should probably be
++ # moved to the OS specific section above.
++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
++ ;;
+ avr32-*-*)
+ ;;
+ avr-*-rtems*)
diff --git a/toolchain/gcc/patches/4.3.5/940-avr32_fix_f32_to_f64.patch b/toolchain/gcc/patches/4.3.5/940-avr32_fix_f32_to_f64.patch
new file mode 100644
index 0000000000..6476aaa2a1
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/940-avr32_fix_f32_to_f64.patch
@@ -0,0 +1,10 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -2800,6 +2800,7 @@ __extendsfdf_return_op1:
+ lsl r11,8 /* check mantissa */
+ movne r11, -1 /* Return NaN */
+ moveq r11, r10 /* Return inf */
++ mov r10, 0
+ rjmp __extendsfdf_return_op1
+ #endif
+
diff --git a/toolchain/gcc/patches/4.3.5/941-avr32_fix_f64_add.patch b/toolchain/gcc/patches/4.3.5/941-avr32_fix_f64_add.patch
new file mode 100644
index 0000000000..b3322cb946
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/941-avr32_fix_f64_add.patch
@@ -0,0 +1,10 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -1036,6 +1036,7 @@ __avr32_f64_add_opL_nan_or_inf:
+ brne __avr32_f64_add_return_nan
+ mov r10, 0 /* Generate Inf in r11, r10 */
+ mov_imm r11, 0x7ff00000
++ or r11, r12 /* Put sign bit back */
+ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */
+ __avr32_f64_add_return_nan:
+ mov r10, -1 /* Generate NaN in r11, r10 */
diff --git a/toolchain/gcc/patches/4.3.5/942-avr32_fix_32bit_div.patch b/toolchain/gcc/patches/4.3.5/942-avr32_fix_32bit_div.patch
new file mode 100644
index 0000000000..af66a6d500
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/942-avr32_fix_32bit_div.patch
@@ -0,0 +1,34 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -2257,10 +2257,13 @@ __avr32_f32_div:
+
+ /* Unpack */
+ lsl r12,1
+- reteq 0 /* Return zero if op1 is zero */
+ lsl r11,1
+ breq 4f /* Check op2 for zero */
+-
++
++ tst r12, r12
++ moveq r9, 0
++ breq 12
++
+ /* Unpack op1*/
+ /* exp: r9 */
+ /* sf: r12 */
+@@ -2279,9 +2282,14 @@ __avr32_f32_div:
+ breq 13f /*If number is subnormal*/
+ cp r10, 0xff
+ brhs 3f /* Check op2 for NaN or Inf */
+-
+ lsl r11,7
+ sbr r11, 31 /*Implicit bit*/
++
++ cp.w r9, 0
++ subfeq r12, 0
++ reteq 0 /* op1 is zero and op2 is not zero */
++ /* or NaN so return zero */
++
+ 14:
+
+ /* For UC3, store with predecrement is faster than stm */
diff --git a/toolchain/gcc/patches/4.3.5/943-avr32_fix_f64_cmp.patch b/toolchain/gcc/patches/4.3.5/943-avr32_fix_f64_cmp.patch
new file mode 100644
index 0000000000..b5d526c2a6
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/943-avr32_fix_f64_cmp.patch
@@ -0,0 +1,66 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -1389,25 +1389,30 @@ __avr32_f64_cmp_lt:
+ #endif
+
+ /* compare magnitude of op1 and op2 */
++ st.w --sp, lr
++ st.w --sp, r7
+ lsl r11,1 /* Remove sign bit of op1 */
+ srcs r12 /* Sign op1 to lsb of r12*/
+- subfeq r10, 0
+- breq 3f /* op1 zero */
+ lsl r9,1 /* Remove sign bit of op2 */
++ srcs r7
+ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/
+
+
+ /* Check for Nan */
+- pushm lr
+- mov_imm lr, 0xffe00000
++ mov_imm lr, 0xffe00000
+ cp.w r10,0
+ cpc r11,lr
+ brhi 0f /* We have NaN */
+ cp.w r8,0
+ cpc r9,lr
+ brhi 0f /* We have NaN */
+- popm lr
+-
++
++ cp.w r11, 0
++ subfeq r10, 0
++ breq 3f /* op1 zero */
++ ld.w r7, sp++
++ ld.w lr, sp++
++
+ cp.w r12,3 /* both operands negative ?*/
+ breq 1f
+
+@@ -1453,18 +1458,22 @@ __avr32_f64_cmp_lt:
+ #endif
+
+ 0:
++ ld.w r7, sp++
+ popm pc, r12=0
+ #endif
+
+ 3:
+- lsl r9,1 /* Remove sign bit of op1 */
++ cp.w r7, 1 /* Check sign bit from r9 */
+ #ifdef L_avr32_f64_cmp_ge
+- srcs r12 /* If op2 is negative then op1 >= op2. */
++ sreq r12 /* If op2 is negative then op1 >= op2. */
+ #endif
+ #ifdef L_avr32_f64_cmp_lt
+- srcc r12 /* If op2 is positve then op1 <= op2. */
++ srne r12 /* If op2 is positve then op1 <= op2. */
+ #endif
+- subfeq r8, 0
++ cp.w r9, 0
++ subfeq r8, 0
++ ld.w r7, sp++
++ ld.w lr, sp++
+ #ifdef L_avr32_f64_cmp_ge
+ reteq 1 /* Both operands are zero. Return true. */
+ #endif
diff --git a/toolchain/gcc/patches/4.3.5/944-avr32_fix_f64_div.patch b/toolchain/gcc/patches/4.3.5/944-avr32_fix_f64_div.patch
new file mode 100644
index 0000000000..fda520b47d
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/944-avr32_fix_f64_div.patch
@@ -0,0 +1,20 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -1733,7 +1733,7 @@ __avr32_f64_div_round_subnormal:
+ brne 16f /* Return NaN if op1 is NaN */
+ /* Op1 is inf check op2 */
+ lsr r6, r9, 20 /* Extract exponent */
+- cbr r6, 8 /* Clear sign bit */
++ cbr r6, 11 /* Clear sign bit */
+ cp r6, 0x7ff
+ brne 17f /* Inf/number gives inf, return inf */
+ rjmp 16f /* The rest gives NaN*/
+@@ -1849,7 +1849,7 @@ __avr32_f64_div_res_subnormal:/* Divide
+
+ 16: /* Return NaN. */
+ mov r11, -1
+- mov r10, -1
++ mov r10, 0
+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
+
+ 17: /* Return INF. */
diff --git a/toolchain/gcc/patches/4.3.5/945-avr32_fix_f64_to_f32.patch b/toolchain/gcc/patches/4.3.5/945-avr32_fix_f64_to_f32.patch
new file mode 100644
index 0000000000..55d50a7b6a
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/945-avr32_fix_f64_to_f32.patch
@@ -0,0 +1,11 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -2866,7 +2866,7 @@ __truncdfsf_return_op1:
+ /* NaN or inf */
+ cbr r12,31 /* clear implicit bit */
+ retne -1 /* Return NaN if mantissa not zero */
+- mov_imm r12, 0xff000000
++ mov_imm r12, 0x7f800000
+ ret r12 /* Return inf */
+
+ 3: /* Result is subnormal. Adjust it.*/
diff --git a/toolchain/gcc/patches/4.3.5/946-avr32_fix_32bit_div_2.patch b/toolchain/gcc/patches/4.3.5/946-avr32_fix_32bit_div_2.patch
new file mode 100644
index 0000000000..4170219a6a
--- /dev/null
+++ b/toolchain/gcc/patches/4.3.5/946-avr32_fix_32bit_div_2.patch
@@ -0,0 +1,27 @@
+--- a/gcc/config/avr32/lib1funcs.S
++++ b/gcc/config/avr32/lib1funcs.S
+@@ -2271,7 +2271,7 @@ __avr32_f32_div:
+
+ tst r12, r12
+ moveq r9, 0
+- breq 12
++ breq 12f
+
+ /* Unpack op1*/
+ /* exp: r9 */
+@@ -2467,9 +2467,14 @@ __divsf_return_op1:
+ reteq 0 /* Return zero if number/inf*/
+ ret -1 /* Return NaN*/
+ 4:
+- /* Op2 is zero ? */
++ /* Op1 is zero ? */
+ tst r12,r12
+ reteq -1 /* 0.0/0.0 is NaN */
++ /* Op1 is Nan? */
++ lsr r9, r12, 24
++ breq 11f /*If number is subnormal*/
++ cp r9, 0xff
++ brhs 2b /* Check op1 for NaN or Inf */
+ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/
+ mov_imm r12, 0xff000000
+ rjmp __divsf_return_op1
diff --git a/toolchain/gcc/patches/4.3.5/995-short-enums.diff b/toolchain/gcc/patches/4.3.5/995-short-enums.diff
index 03c470c9e4..bd72f1a4cc 100644
--- a/toolchain/gcc/patches/4.3.5/995-short-enums.diff
+++ b/toolchain/gcc/patches/4.3.5/995-short-enums.diff
@@ -3,7 +3,7 @@ Index: gcc-4.3.0/gcc/tree.h
===================================================================
--- gcc-4.3.0/gcc/tree.h (revision 130511)
+++ gcc-4.3.0/gcc/tree.h (working copy)
-@@ -38,6 +38,7 @@
+@@ -39,6 +39,7 @@
LAST_AND_UNUSED_TREE_CODE /* A convenient way to get a value for
NUM_TREE_CODES. */
diff --git a/toolchain/gcc/patches/4.3.5/998-gcc-4.3.0-fix-header.00.patch b/toolchain/gcc/patches/4.3.5/998-gcc-4.3.0-fix-header.00.patch
index 38401601de..3f889321f0 100644
--- a/toolchain/gcc/patches/4.3.5/998-gcc-4.3.0-fix-header.00.patch
+++ b/toolchain/gcc/patches/4.3.5/998-gcc-4.3.0-fix-header.00.patch
@@ -2,7 +2,7 @@
\\ gcc PR33200
--- a/gcc/config.gcc
+++ b/gcc/config.gcc
-@@ -2314,7 +2314,7 @@ sh-*-symbianelf* | sh[12346l]*-*-symbian
+@@ -2332,7 +2332,7 @@ sh-*-symbianelf* | sh[12346l]*-*-symbian
if test x${enable_incomplete_targets} = xyes ; then
tm_defines="$tm_defines SUPPORT_SH1=1 SUPPORT_SH2E=1 SUPPORT_SH4=1 SUPPORT_SH4_SINGLE=1 SUPPORT_SH2A=1 SUPPORT_SH2A_SINGLE=1 SUPPORT_SH5_32MEDIA=1 SUPPORT_SH5_32MEDIA_NOFPU=1 SUPPORT_SH5_64MEDIA=1 SUPPORT_SH5_64MEDIA_NOFPU=1"
fi
diff --git a/toolchain/gcc/patches/4.3.5/999-coldfire.patch b/toolchain/gcc/patches/4.3.5/999-coldfire.patch
index b00096202b..c8b883b899 100644
--- a/toolchain/gcc/patches/4.3.5/999-coldfire.patch
+++ b/toolchain/gcc/patches/4.3.5/999-coldfire.patch
@@ -1,6 +1,6 @@
--- a/gcc/config.gcc
+++ b/gcc/config.gcc
-@@ -1627,6 +1627,7 @@ m68k-*-linux*) # Motorola m68k's runnin
+@@ -1645,6 +1645,7 @@ m68k-*-linux*) # Motorola m68k's runnin
if test x$sjlj != x1; then
tmake_file="$tmake_file m68k/t-slibgcc-elf-ver"
fi