aboutsummaryrefslogtreecommitdiffstats
path: root/target
diff options
context:
space:
mode:
authorHauke Mehrtens <hauke@hauke-m.de>2015-06-25 22:00:36 +0000
committerHauke Mehrtens <hauke@hauke-m.de>2015-06-25 22:00:36 +0000
commit52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b (patch)
treeabc1a31174b9b3273bd965ca36d9816f02d02b9c /target
parent164e82099da1c0626514710ad119e401cd369a0d (diff)
downloadupstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.tar.gz
upstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.tar.bz2
upstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.zip
bcm53xx: add upstream nand driver
This adds the upstream Broadcom nand driver and makes use of it. Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> SVN-Revision: 46131
Diffstat (limited to 'target')
-rw-r--r--target/linux/bcm53xx/config-4.12
-rw-r--r--target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch111
-rw-r--r--target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch2765
-rw-r--r--target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch175
-rw-r--r--target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch11
-rw-r--r--target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch2
-rw-r--r--target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch37
-rw-r--r--target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch1608
8 files changed, 3064 insertions, 1647 deletions
diff --git a/target/linux/bcm53xx/config-4.1 b/target/linux/bcm53xx/config-4.1
index 49cdb2173f..234a7b8a0a 100644
--- a/target/linux/bcm53xx/config-4.1
+++ b/target/linux/bcm53xx/config-4.1
@@ -209,7 +209,7 @@ CONFIG_MIGHT_HAVE_PCI=y
CONFIG_MODULES_USE_ELF_REL=y
CONFIG_MTD_BCM47XX_PARTS=y
CONFIG_MTD_NAND=y
-CONFIG_MTD_NAND_BCM=y
+CONFIG_MTD_NAND_BRCMNAND=y
CONFIG_MTD_NAND_ECC=y
# CONFIG_MTD_PHYSMAP_OF is not set
CONFIG_MTD_SPI_BCM53XXSPIFLASH=y
diff --git a/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch b/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch
new file mode 100644
index 0000000000..cb2141a4b9
--- /dev/null
+++ b/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch
@@ -0,0 +1,111 @@
+From 5844feeaa4154d1c46d3462c7a4653d22356d8b4 Mon Sep 17 00:00:00 2001
+From: Brian Norris <computersforpeace@gmail.com>
+Date: Fri, 23 Jan 2015 00:22:27 -0800
+Subject: [PATCH 20/32] mtd: nand: add common DT init code
+
+These are already-documented common bindings for NAND chips. Let's
+handle them in nand_base.
+
+If NAND controller drivers need to act on this data before bringing up
+the NAND chip (e.g., fill out ECC callback functions, change HW modes,
+etc.), then they can do so between calling nand_scan_ident() and
+nand_scan_tail().
+
+Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+---
+ drivers/mtd/nand/nand_base.c | 41 +++++++++++++++++++++++++++++++++++++++++
+ include/linux/mtd/nand.h | 5 +++++
+ 2 files changed, 46 insertions(+)
+
+--- a/drivers/mtd/nand/nand_base.c
++++ b/drivers/mtd/nand/nand_base.c
+@@ -48,6 +48,7 @@
+ #include <linux/leds.h>
+ #include <linux/io.h>
+ #include <linux/mtd/partitions.h>
++#include <linux/of_mtd.h>
+
+ /* Define default oob placement schemes for large and small page devices */
+ static struct nand_ecclayout nand_oob_8 = {
+@@ -3798,6 +3799,39 @@ ident_done:
+ return type;
+ }
+
++static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
++ struct device_node *dn)
++{
++ int ecc_mode, ecc_strength, ecc_step;
++
++ if (of_get_nand_bus_width(dn) == 16)
++ chip->options |= NAND_BUSWIDTH_16;
++
++ if (of_get_nand_on_flash_bbt(dn))
++ chip->bbt_options |= NAND_BBT_USE_FLASH;
++
++ ecc_mode = of_get_nand_ecc_mode(dn);
++ ecc_strength = of_get_nand_ecc_strength(dn);
++ ecc_step = of_get_nand_ecc_step_size(dn);
++
++ if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
++ (!(ecc_step >= 0) && ecc_strength >= 0)) {
++ pr_err("must set both strength and step size in DT\n");
++ return -EINVAL;
++ }
++
++ if (ecc_mode >= 0)
++ chip->ecc.mode = ecc_mode;
++
++ if (ecc_strength >= 0)
++ chip->ecc.strength = ecc_strength;
++
++ if (ecc_step > 0)
++ chip->ecc.size = ecc_step;
++
++ return 0;
++}
++
+ /**
+ * nand_scan_ident - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+@@ -3815,6 +3849,13 @@ int nand_scan_ident(struct mtd_info *mtd
+ int i, nand_maf_id, nand_dev_id;
+ struct nand_chip *chip = mtd->priv;
+ struct nand_flash_dev *type;
++ int ret;
++
++ if (chip->dn) {
++ ret = nand_dt_init(mtd, chip, chip->dn);
++ if (ret)
++ return ret;
++ }
+
+ /* Set the default functions */
+ nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
+--- a/include/linux/mtd/nand.h
++++ b/include/linux/mtd/nand.h
+@@ -26,6 +26,8 @@
+
+ struct mtd_info;
+ struct nand_flash_dev;
++struct device_node;
++
+ /* Scan and identify a NAND device */
+ extern int nand_scan(struct mtd_info *mtd, int max_chips);
+ /*
+@@ -542,6 +544,7 @@ struct nand_buffers {
+ * flash device
+ * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the
+ * flash device.
++ * @dn: [BOARDSPECIFIC] device node describing this instance
+ * @read_byte: [REPLACEABLE] read one byte from the chip
+ * @read_word: [REPLACEABLE] read one word from the chip
+ * @write_byte: [REPLACEABLE] write a single byte to the chip on the
+@@ -644,6 +647,8 @@ struct nand_chip {
+ void __iomem *IO_ADDR_R;
+ void __iomem *IO_ADDR_W;
+
++ struct device_node *dn;
++
+ uint8_t (*read_byte)(struct mtd_info *mtd);
+ u16 (*read_word)(struct mtd_info *mtd);
+ void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
diff --git a/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch b/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch
new file mode 100644
index 0000000000..a6cf2118c5
--- /dev/null
+++ b/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch
@@ -0,0 +1,2765 @@
+This contains the following commits:
+
+commit bcb83a19d3ac95fe3c0e79e942fb628120738853
+Author: Hauke Mehrtens <hauke@hauke-m.de>
+Date: Sun May 17 17:41:01 2015 +0200
+
+ mtd: brcmnand: do not make local variable static
+
+ Remove static in front of ctrl. This variable should not be shared
+ between different instances of brcmnand_probe(), it should be local to
+ this function and stored on the stack.
+
+ Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+
+commit 802041247a0abbeaf1dddb8a8d56f491762ae357
+Author: Hauke Mehrtens <hauke@hauke-m.de>
+Date: Sun May 17 17:41:00 2015 +0200
+
+ mtd: brcmnand: remove double new line from print
+
+ The caller already adds a new line and in the other cases there is no
+ new line added.
+
+ Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+
+commit f628ece6636c2f0354a52566cafdea6d2f963b3d
+Author: Brian Norris <computersforpeace@gmail.com>
+Date: Tue May 12 12:13:14 2015 -0700
+
+ mtd: brcmnand: add BCM63138 support
+
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+ Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
+ Tested-by: Florian Fainelli <f.fainelli@gmail.com>
+
+commit ca22f040dd145fc4d8069ce174f6eb0bc3ebd19f
+Author: Brian Norris <computersforpeace@gmail.com>
+Date: Tue May 12 12:12:02 2015 -0700
+
+ mtd: brcmnand: add support for Broadcom's IPROC family
+
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+
+
+commit c26211d37f11d5913d9803fdede6d053f918ba7b
+Author: Brian Norris <computersforpeace@gmail.com>
+Date: Tue May 12 12:09:28 2015 -0700
+
+ mtd: brcmnand: add extra SoC support to library
+
+ There are a few small hooks required for chips like BCM63138 and the
+ iProc family. Let's introduce those now.
+
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+ Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
+ Tested-by: Florian Fainelli <f.fainelli@gmail.com>
+
+commit 303b4420ff1896b444017b5b0eb8252ce197797d
+Author: Brian Norris <computersforpeace@gmail.com>
+Date: Tue May 12 17:00:57 2015 -0700
+
+ mtd: brcmnand: add support for STB chips
+
+ BCM7xxx chips are supported entirely by the library code, since they use
+ generic irqchip interfaces and don't need any extra SoC-specific
+ configuration.
+
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+
+commit 27c5b17cd1b10564fa36f8f51e4b4b41436ecc32
+Author: Brian Norris <computersforpeace@gmail.com>
+Date: Fri Mar 6 11:38:08 2015 -0800
+
+ mtd: nand: add NAND driver "library" for Broadcom STB NAND controller
+
+ This core originated in Set-Top Box chips (BCM7xxx) but is used in a
+ variety of other Broadcom chips, including some BCM63xxx, BCM33xx, and
+ iProc/Cygnus. It's been used only on ARM and MIPS SoCs, so restrict it
+ to those architectures.
+
+ There are multiple revisions of this core throughout the years, and
+ almost every version broke register compatibility in some small way, but
+ with some effort, this driver is able to support v4.0, v5.0, v6.x, v7.0,
+ and v7.1. It's been tested on v5.0, v6.0, v6.1, v7.0, and v7.1 recently,
+ so there hopefully are no more lurking inconsistencies.
+
+ This patch adds just some library support, on which platform drivers can
+ be built.
+
+ Signed-off-by: Brian Norris <computersforpeace@gmail.com>
+ Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
+ Tested-by: Florian Fainelli <f.fainelli@gmail.com>
+
+--- a/drivers/mtd/nand/Kconfig
++++ b/drivers/mtd/nand/Kconfig
+@@ -394,6 +394,14 @@ config MTD_NAND_GPMI_NAND
+ block, such as SD card. So pay attention to it when you enable
+ the GPMI.
+
++config MTD_NAND_BRCMNAND
++ tristate "Broadcom STB NAND controller"
++ depends on ARM || MIPS
++ help
++ Enables the Broadcom NAND controller driver. The controller was
++ originally designed for Set-Top Box but is used on various BCM7xxx,
++ BCM3xxx, BCM63xxx, iProc/Cygnus and more.
++
+ config MTD_NAND_BCM47XXNFLASH
+ tristate "Support for NAND flash on BCM4706 BCMA bus"
+ depends on BCMA_NFLASH
+--- a/drivers/mtd/nand/Makefile
++++ b/drivers/mtd/nand/Makefile
+@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nan
+ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
+ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
+ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+
+ nand-objs := nand_base.o nand_bbt.o nand_timings.o
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/Makefile
+@@ -0,0 +1,6 @@
++# link order matters; don't link the more generic brcmstb_nand.o before the
++# more specific iproc_nand.o, for instance
++obj-$(CONFIG_MTD_NAND_BRCMNAND) += iproc_nand.o
++obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm63138_nand.o
++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmstb_nand.o
++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand.o
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/bcm63138_nand.c
+@@ -0,0 +1,109 @@
++/*
++ * Copyright © 2015 Broadcom Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#include <linux/device.h>
++#include <linux/io.h>
++#include <linux/ioport.h>
++#include <linux/module.h>
++#include <linux/of.h>
++#include <linux/of_address.h>
++#include <linux/platform_device.h>
++#include <linux/slab.h>
++
++#include "brcmnand.h"
++
++struct bcm63138_nand_soc {
++ struct brcmnand_soc soc;
++ void __iomem *base;
++};
++
++#define BCM63138_NAND_INT_STATUS 0x00
++#define BCM63138_NAND_INT_EN 0x04
++
++enum {
++ BCM63138_CTLRDY = BIT(4),
++};
++
++static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc)
++{
++ struct bcm63138_nand_soc *priv =
++ container_of(soc, struct bcm63138_nand_soc, soc);
++ void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS;
++ u32 val = brcmnand_readl(mmio);
++
++ if (val & BCM63138_CTLRDY) {
++ brcmnand_writel(val & ~BCM63138_CTLRDY, mmio);
++ return true;
++ }
++
++ return false;
++}
++
++static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en)
++{
++ struct bcm63138_nand_soc *priv =
++ container_of(soc, struct bcm63138_nand_soc, soc);
++ void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN;
++ u32 val = brcmnand_readl(mmio);
++
++ if (en)
++ val |= BCM63138_CTLRDY;
++ else
++ val &= ~BCM63138_CTLRDY;
++
++ brcmnand_writel(val, mmio);
++}
++
++static int bcm63138_nand_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct bcm63138_nand_soc *priv;
++ struct brcmnand_soc *soc;
++ struct resource *res;
++
++ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
++ if (!priv)
++ return -ENOMEM;
++ soc = &priv->soc;
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-int-base");
++ priv->base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(priv->base))
++ return PTR_ERR(priv->base);
++
++ soc->ctlrdy_ack = bcm63138_nand_intc_ack;
++ soc->ctlrdy_set_enabled = bcm63138_nand_intc_set;
++
++ return brcmnand_probe(pdev, soc);
++}
++
++static const struct of_device_id bcm63138_nand_of_match[] = {
++ { .compatible = "brcm,nand-bcm63138" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match);
++
++static struct platform_driver bcm63138_nand_driver = {
++ .probe = bcm63138_nand_probe,
++ .remove = brcmnand_remove,
++ .driver = {
++ .name = "bcm63138_nand",
++ .pm = &brcmnand_pm_ops,
++ .of_match_table = bcm63138_nand_of_match,
++ }
++};
++module_platform_driver(bcm63138_nand_driver);
++
++MODULE_LICENSE("GPL v2");
++MODULE_AUTHOR("Brian Norris");
++MODULE_DESCRIPTION("NAND driver for BCM63138");
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/brcmnand.c
+@@ -0,0 +1,2246 @@
++/*
++ * Copyright © 2010-2015 Broadcom Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++#include <linux/err.h>
++#include <linux/completion.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++#include <linux/dma-mapping.h>
++#include <linux/ioport.h>
++#include <linux/bug.h>
++#include <linux/kernel.h>
++#include <linux/bitops.h>
++#include <linux/mm.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/nand.h>
++#include <linux/mtd/partitions.h>
++#include <linux/of.h>
++#include <linux/of_mtd.h>
++#include <linux/of_platform.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/log2.h>
++
++#include "brcmnand.h"
++
++/*
++ * This flag controls if WP stays on between erase/write commands to mitigate
++ * flash corruption due to power glitches. Values:
++ * 0: NAND_WP is not used or not available
++ * 1: NAND_WP is set by default, cleared for erase/write operations
++ * 2: NAND_WP is always cleared
++ */
++static int wp_on = 1;
++module_param(wp_on, int, 0444);
++
++/***********************************************************************
++ * Definitions
++ ***********************************************************************/
++
++#define DRV_NAME "brcmnand"
++
++#define CMD_NULL 0x00
++#define CMD_PAGE_READ 0x01
++#define CMD_SPARE_AREA_READ 0x02
++#define CMD_STATUS_READ 0x03
++#define CMD_PROGRAM_PAGE 0x04
++#define CMD_PROGRAM_SPARE_AREA 0x05
++#define CMD_COPY_BACK 0x06
++#define CMD_DEVICE_ID_READ 0x07
++#define CMD_BLOCK_ERASE 0x08
++#define CMD_FLASH_RESET 0x09
++#define CMD_BLOCKS_LOCK 0x0a
++#define CMD_BLOCKS_LOCK_DOWN 0x0b
++#define CMD_BLOCKS_UNLOCK 0x0c
++#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
++#define CMD_PARAMETER_READ 0x0e
++#define CMD_PARAMETER_CHANGE_COL 0x0f
++#define CMD_LOW_LEVEL_OP 0x10
++
++struct brcm_nand_dma_desc {
++ u32 next_desc;
++ u32 next_desc_ext;
++ u32 cmd_irq;
++ u32 dram_addr;
++ u32 dram_addr_ext;
++ u32 tfr_len;
++ u32 total_len;
++ u32 flash_addr;
++ u32 flash_addr_ext;
++ u32 cs;
++ u32 pad2[5];
++ u32 status_valid;
++} __packed;
++
++/* Bitfields for brcm_nand_dma_desc::status_valid */
++#define FLASH_DMA_ECC_ERROR (1 << 8)
++#define FLASH_DMA_CORR_ERROR (1 << 9)
++
++/* 512B flash cache in the NAND controller HW */
++#define FC_SHIFT 9U
++#define FC_BYTES 512U
++#define FC_WORDS (FC_BYTES >> 2)
++
++#define BRCMNAND_MIN_PAGESIZE 512
++#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
++#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
++
++/* Controller feature flags */
++enum {
++ BRCMNAND_HAS_1K_SECTORS = BIT(0),
++ BRCMNAND_HAS_PREFETCH = BIT(1),
++ BRCMNAND_HAS_CACHE_MODE = BIT(2),
++ BRCMNAND_HAS_WP = BIT(3),
++};
++
++struct brcmnand_controller {
++ struct device *dev;
++ struct nand_hw_control controller;
++ void __iomem *nand_base;
++ void __iomem *nand_fc; /* flash cache */
++ void __iomem *flash_dma_base;
++ unsigned int irq;
++ unsigned int dma_irq;
++ int nand_version;
++
++ /* Some SoCs provide custom interrupt status register(s) */
++ struct brcmnand_soc *soc;
++
++ int cmd_pending;
++ bool dma_pending;
++ struct completion done;
++ struct completion dma_done;
++
++ /* List of NAND hosts (one for each chip-select) */
++ struct list_head host_list;
++
++ struct brcm_nand_dma_desc *dma_desc;
++ dma_addr_t dma_pa;
++
++ /* in-memory cache of the FLASH_CACHE, used only for some commands */
++ u32 flash_cache[FC_WORDS];
++
++ /* Controller revision details */
++ const u16 *reg_offsets;
++ unsigned int reg_spacing; /* between CS1, CS2, ... regs */
++ const u8 *cs_offsets; /* within each chip-select */
++ const u8 *cs0_offsets; /* within CS0, if different */
++ unsigned int max_block_size;
++ const unsigned int *block_sizes;
++ unsigned int max_page_size;
++ const unsigned int *page_sizes;
++ unsigned int max_oob;
++ u32 features;
++
++ /* for low-power standby/resume only */
++ u32 nand_cs_nand_select;
++ u32 nand_cs_nand_xor;
++ u32 corr_stat_threshold;
++ u32 flash_dma_mode;
++};
++
++struct brcmnand_cfg {
++ u64 device_size;
++ unsigned int block_size;
++ unsigned int page_size;
++ unsigned int spare_area_size;
++ unsigned int device_width;
++ unsigned int col_adr_bytes;
++ unsigned int blk_adr_bytes;
++ unsigned int ful_adr_bytes;
++ unsigned int sector_size_1k;
++ unsigned int ecc_level;
++ /* use for low-power standby/resume only */
++ u32 acc_control;
++ u32 config;
++ u32 config_ext;
++ u32 timing_1;
++ u32 timing_2;
++};
++
++struct brcmnand_host {
++ struct list_head node;
++ struct device_node *of_node;
++
++ struct nand_chip chip;
++ struct mtd_info mtd;
++ struct platform_device *pdev;
++ int cs;
++
++ unsigned int last_cmd;
++ unsigned int last_byte;
++ u64 last_addr;
++ struct brcmnand_cfg hwcfg;
++ struct brcmnand_controller *ctrl;
++};
++
++enum brcmnand_reg {
++ BRCMNAND_CMD_START = 0,
++ BRCMNAND_CMD_EXT_ADDRESS,
++ BRCMNAND_CMD_ADDRESS,
++ BRCMNAND_INTFC_STATUS,
++ BRCMNAND_CS_SELECT,
++ BRCMNAND_CS_XOR,
++ BRCMNAND_LL_OP,
++ BRCMNAND_CS0_BASE,
++ BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
++ BRCMNAND_CORR_THRESHOLD,
++ BRCMNAND_CORR_THRESHOLD_EXT,
++ BRCMNAND_UNCORR_COUNT,
++ BRCMNAND_CORR_COUNT,
++ BRCMNAND_CORR_EXT_ADDR,
++ BRCMNAND_CORR_ADDR,
++ BRCMNAND_UNCORR_EXT_ADDR,
++ BRCMNAND_UNCORR_ADDR,
++ BRCMNAND_SEMAPHORE,
++ BRCMNAND_ID,
++ BRCMNAND_ID_EXT,
++ BRCMNAND_LL_RDATA,
++ BRCMNAND_OOB_READ_BASE,
++ BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
++ BRCMNAND_OOB_WRITE_BASE,
++ BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
++ BRCMNAND_FC_BASE,
++};
++
++/* BRCMNAND v4.0 */
++static const u16 brcmnand_regs_v40[] = {
++ [BRCMNAND_CMD_START] = 0x04,
++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
++ [BRCMNAND_CMD_ADDRESS] = 0x0c,
++ [BRCMNAND_INTFC_STATUS] = 0x6c,
++ [BRCMNAND_CS_SELECT] = 0x14,
++ [BRCMNAND_CS_XOR] = 0x18,
++ [BRCMNAND_LL_OP] = 0x178,
++ [BRCMNAND_CS0_BASE] = 0x40,
++ [BRCMNAND_CS1_BASE] = 0xd0,
++ [BRCMNAND_CORR_THRESHOLD] = 0x84,
++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
++ [BRCMNAND_UNCORR_COUNT] = 0,
++ [BRCMNAND_CORR_COUNT] = 0,
++ [BRCMNAND_CORR_EXT_ADDR] = 0x70,
++ [BRCMNAND_CORR_ADDR] = 0x74,
++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
++ [BRCMNAND_UNCORR_ADDR] = 0x7c,
++ [BRCMNAND_SEMAPHORE] = 0x58,
++ [BRCMNAND_ID] = 0x60,
++ [BRCMNAND_ID_EXT] = 0x64,
++ [BRCMNAND_LL_RDATA] = 0x17c,
++ [BRCMNAND_OOB_READ_BASE] = 0x20,
++ [BRCMNAND_OOB_READ_10_BASE] = 0x130,
++ [BRCMNAND_OOB_WRITE_BASE] = 0x30,
++ [BRCMNAND_OOB_WRITE_10_BASE] = 0,
++ [BRCMNAND_FC_BASE] = 0x200,
++};
++
++/* BRCMNAND v5.0 */
++static const u16 brcmnand_regs_v50[] = {
++ [BRCMNAND_CMD_START] = 0x04,
++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
++ [BRCMNAND_CMD_ADDRESS] = 0x0c,
++ [BRCMNAND_INTFC_STATUS] = 0x6c,
++ [BRCMNAND_CS_SELECT] = 0x14,
++ [BRCMNAND_CS_XOR] = 0x18,
++ [BRCMNAND_LL_OP] = 0x178,
++ [BRCMNAND_CS0_BASE] = 0x40,
++ [BRCMNAND_CS1_BASE] = 0xd0,
++ [BRCMNAND_CORR_THRESHOLD] = 0x84,
++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
++ [BRCMNAND_UNCORR_COUNT] = 0,
++ [BRCMNAND_CORR_COUNT] = 0,
++ [BRCMNAND_CORR_EXT_ADDR] = 0x70,
++ [BRCMNAND_CORR_ADDR] = 0x74,
++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
++ [BRCMNAND_UNCORR_ADDR] = 0x7c,
++ [BRCMNAND_SEMAPHORE] = 0x58,
++ [BRCMNAND_ID] = 0x60,
++ [BRCMNAND_ID_EXT] = 0x64,
++ [BRCMNAND_LL_RDATA] = 0x17c,
++ [BRCMNAND_OOB_READ_BASE] = 0x20,
++ [BRCMNAND_OOB_READ_10_BASE] = 0x130,
++ [BRCMNAND_OOB_WRITE_BASE] = 0x30,
++ [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
++ [BRCMNAND_FC_BASE] = 0x200,
++};
++
++/* BRCMNAND v6.0 - v7.1 */
++static const u16 brcmnand_regs_v60[] = {
++ [BRCMNAND_CMD_START] = 0x04,
++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
++ [BRCMNAND_CMD_ADDRESS] = 0x0c,
++ [BRCMNAND_INTFC_STATUS] = 0x14,
++ [BRCMNAND_CS_SELECT] = 0x18,
++ [BRCMNAND_CS_XOR] = 0x1c,
++ [BRCMNAND_LL_OP] = 0x20,
++ [BRCMNAND_CS0_BASE] = 0x50,
++ [BRCMNAND_CS1_BASE] = 0,
++ [BRCMNAND_CORR_THRESHOLD] = 0xc0,
++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
++ [BRCMNAND_UNCORR_COUNT] = 0xfc,
++ [BRCMNAND_CORR_COUNT] = 0x100,
++ [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
++ [BRCMNAND_CORR_ADDR] = 0x110,
++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
++ [BRCMNAND_UNCORR_ADDR] = 0x118,
++ [BRCMNAND_SEMAPHORE] = 0x150,
++ [BRCMNAND_ID] = 0x194,
++ [BRCMNAND_ID_EXT] = 0x198,
++ [BRCMNAND_LL_RDATA] = 0x19c,
++ [BRCMNAND_OOB_READ_BASE] = 0x200,
++ [BRCMNAND_OOB_READ_10_BASE] = 0,
++ [BRCMNAND_OOB_WRITE_BASE] = 0x280,
++ [BRCMNAND_OOB_WRITE_10_BASE] = 0,
++ [BRCMNAND_FC_BASE] = 0x400,
++};
++
++enum brcmnand_cs_reg {
++ BRCMNAND_CS_CFG_EXT = 0,
++ BRCMNAND_CS_CFG,
++ BRCMNAND_CS_ACC_CONTROL,
++ BRCMNAND_CS_TIMING1,
++ BRCMNAND_CS_TIMING2,
++};
++
++/* Per chip-select offsets for v7.1 */
++static const u8 brcmnand_cs_offsets_v71[] = {
++ [BRCMNAND_CS_ACC_CONTROL] = 0x00,
++ [BRCMNAND_CS_CFG_EXT] = 0x04,
++ [BRCMNAND_CS_CFG] = 0x08,
++ [BRCMNAND_CS_TIMING1] = 0x0c,
++ [BRCMNAND_CS_TIMING2] = 0x10,
++};
++
++/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
++static const u8 brcmnand_cs_offsets[] = {
++ [BRCMNAND_CS_ACC_CONTROL] = 0x00,
++ [BRCMNAND_CS_CFG_EXT] = 0x04,
++ [BRCMNAND_CS_CFG] = 0x04,
++ [BRCMNAND_CS_TIMING1] = 0x08,
++ [BRCMNAND_CS_TIMING2] = 0x0c,
++};
++
++/* Per chip-select offset for <= v5.0 on CS0 only */
++static const u8 brcmnand_cs_offsets_cs0[] = {
++ [BRCMNAND_CS_ACC_CONTROL] = 0x00,
++ [BRCMNAND_CS_CFG_EXT] = 0x08,
++ [BRCMNAND_CS_CFG] = 0x08,
++ [BRCMNAND_CS_TIMING1] = 0x10,
++ [BRCMNAND_CS_TIMING2] = 0x14,
++};
++
++/* BRCMNAND_INTFC_STATUS */
++enum {
++ INTFC_FLASH_STATUS = GENMASK(7, 0),
++
++ INTFC_ERASED = BIT(27),
++ INTFC_OOB_VALID = BIT(28),
++ INTFC_CACHE_VALID = BIT(29),
++ INTFC_FLASH_READY = BIT(30),
++ INTFC_CTLR_READY = BIT(31),
++};
++
++static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
++{
++ return brcmnand_readl(ctrl->nand_base + offs);
++}
++
++static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
++ u32 val)
++{
++ brcmnand_writel(val, ctrl->nand_base + offs);
++}
++
++static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
++{
++ static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
++ static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
++ static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
++
++ ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
++
++ /* Only support v4.0+? */
++ if (ctrl->nand_version < 0x0400) {
++ dev_err(ctrl->dev, "version %#x not supported\n",
++ ctrl->nand_version);
++ return -ENODEV;
++ }
++
++ /* Register offsets */
++ if (ctrl->nand_version >= 0x0600)
++ ctrl->reg_offsets = brcmnand_regs_v60;
++ else if (ctrl->nand_version >= 0x0500)
++ ctrl->reg_offsets = brcmnand_regs_v50;
++ else if (ctrl->nand_version >= 0x0400)
++ ctrl->reg_offsets = brcmnand_regs_v40;
++
++ /* Chip-select stride */
++ if (ctrl->nand_version >= 0x0701)
++ ctrl->reg_spacing = 0x14;
++ else
++ ctrl->reg_spacing = 0x10;
++
++ /* Per chip-select registers */
++ if (ctrl->nand_version >= 0x0701) {
++ ctrl->cs_offsets = brcmnand_cs_offsets_v71;
++ } else {
++ ctrl->cs_offsets = brcmnand_cs_offsets;
++
++ /* v5.0 and earlier has a different CS0 offset layout */
++ if (ctrl->nand_version <= 0x0500)
++ ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
++ }
++
++ /* Page / block sizes */
++ if (ctrl->nand_version >= 0x0701) {
++ /* >= v7.1 use nice power-of-2 values! */
++ ctrl->max_page_size = 16 * 1024;
++ ctrl->max_block_size = 2 * 1024 * 1024;
++ } else {
++ ctrl->page_sizes = page_sizes;
++ if (ctrl->nand_version >= 0x0600)
++ ctrl->block_sizes = block_sizes_v6;
++ else
++ ctrl->block_sizes = block_sizes_v4;
++
++ if (ctrl->nand_version < 0x0400) {
++ ctrl->max_page_size = 4096;
++ ctrl->max_block_size = 512 * 1024;
++ }
++ }
++
++ /* Maximum spare area sector size (per 512B) */
++ if (ctrl->nand_version >= 0x0600)
++ ctrl->max_oob = 64;
++ else if (ctrl->nand_version >= 0x0500)
++ ctrl->max_oob = 32;
++ else
++ ctrl->max_oob = 16;
++
++ /* v6.0 and newer (except v6.1) have prefetch support */
++ if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
++ ctrl->features |= BRCMNAND_HAS_PREFETCH;
++
++ /*
++ * v6.x has cache mode, but it's implemented differently. Ignore it for
++ * now.
++ */
++ if (ctrl->nand_version >= 0x0700)
++ ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
++
++ if (ctrl->nand_version >= 0x0500)
++ ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
++
++ if (ctrl->nand_version >= 0x0700)
++ ctrl->features |= BRCMNAND_HAS_WP;
++ else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
++ ctrl->features |= BRCMNAND_HAS_WP;
++
++ return 0;
++}
++
++static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
++ enum brcmnand_reg reg)
++{
++ u16 offs = ctrl->reg_offsets[reg];
++
++ if (offs)
++ return nand_readreg(ctrl, offs);
++ else
++ return 0;
++}
++
++static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
++ enum brcmnand_reg reg, u32 val)
++{
++ u16 offs = ctrl->reg_offsets[reg];
++
++ if (offs)
++ nand_writereg(ctrl, offs, val);
++}
++
++static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
++ enum brcmnand_reg reg, u32 mask, unsigned
++ int shift, u32 val)
++{
++ u32 tmp = brcmnand_read_reg(ctrl, reg);
++
++ tmp &= ~mask;
++ tmp |= val << shift;
++ brcmnand_write_reg(ctrl, reg, tmp);
++}
++
++static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
++{
++ return __raw_readl(ctrl->nand_fc + word * 4);
++}
++
++static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
++ int word, u32 val)
++{
++ __raw_writel(val, ctrl->nand_fc + word * 4);
++}
++
++static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
++ enum brcmnand_cs_reg reg)
++{
++ u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
++ u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
++ u8 cs_offs;
++
++ if (cs == 0 && ctrl->cs0_offsets)
++ cs_offs = ctrl->cs0_offsets[reg];
++ else
++ cs_offs = ctrl->cs_offsets[reg];
++
++ if (cs && offs_cs1)
++ return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
++
++ return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
++}
++
++static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
++{
++ if (ctrl->nand_version < 0x0600)
++ return 1;
++ return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
++}
++
++static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ unsigned int shift = 0, bits;
++ enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
++ int cs = host->cs;
++
++ if (ctrl->nand_version >= 0x0600)
++ bits = 6;
++ else if (ctrl->nand_version >= 0x0500)
++ bits = 5;
++ else
++ bits = 4;
++
++ if (ctrl->nand_version >= 0x0600) {
++ if (cs >= 5)
++ reg = BRCMNAND_CORR_THRESHOLD_EXT;
++ shift = (cs % 5) * bits;
++ }
++ brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
++}
++
++static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
++{
++ if (ctrl->nand_version < 0x0700)
++ return 24;
++ return 0;
++}
++
++/***********************************************************************
++ * NAND ACC CONTROL bitfield
++ *
++ * Some bits have remained constant throughout hardware revision, while
++ * others have shifted around.
++ ***********************************************************************/
++
++/* Constant for all versions (where supported) */
++enum {
++ /* See BRCMNAND_HAS_CACHE_MODE */
++ ACC_CONTROL_CACHE_MODE = BIT(22),
++
++ /* See BRCMNAND_HAS_PREFETCH */
++ ACC_CONTROL_PREFETCH = BIT(23),
++
++ ACC_CONTROL_PAGE_HIT = BIT(24),
++ ACC_CONTROL_WR_PREEMPT = BIT(25),
++ ACC_CONTROL_PARTIAL_PAGE = BIT(26),
++ ACC_CONTROL_RD_ERASED = BIT(27),
++ ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
++ ACC_CONTROL_WR_ECC = BIT(30),
++ ACC_CONTROL_RD_ECC = BIT(31),
++};
++
++static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
++{
++ if (ctrl->nand_version >= 0x0600)
++ return GENMASK(6, 0);
++ else
++ return GENMASK(5, 0);
++}
++
++#define NAND_ACC_CONTROL_ECC_SHIFT 16
++
++static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
++{
++ u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
++
++ return mask << NAND_ACC_CONTROL_ECC_SHIFT;
++}
++
++static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
++ u32 acc_control = nand_readreg(ctrl, offs);
++ u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
++
++ if (en) {
++ acc_control |= ecc_flags; /* enable RD/WR ECC */
++ acc_control |= host->hwcfg.ecc_level
++ << NAND_ACC_CONTROL_ECC_SHIFT;
++ } else {
++ acc_control &= ~ecc_flags; /* disable RD/WR ECC */
++ acc_control &= ~brcmnand_ecc_level_mask(ctrl);
++ }
++
++ nand_writereg(ctrl, offs, acc_control);
++}
++
++static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
++{
++ if (ctrl->nand_version >= 0x0600)
++ return 7;
++ else if (ctrl->nand_version >= 0x0500)
++ return 6;
++ else
++ return -1;
++}
++
++static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ int shift = brcmnand_sector_1k_shift(ctrl);
++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_ACC_CONTROL);
++
++ if (shift < 0)
++ return 0;
++
++ return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
++}
++
++static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ int shift = brcmnand_sector_1k_shift(ctrl);
++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_ACC_CONTROL);
++ u32 tmp;
++
++ if (shift < 0)
++ return;
++
++ tmp = nand_readreg(ctrl, acc_control_offs);
++ tmp &= ~(1 << shift);
++ tmp |= (!!val) << shift;
++ nand_writereg(ctrl, acc_control_offs, tmp);
++}
++
++/***********************************************************************
++ * CS_NAND_SELECT
++ ***********************************************************************/
++
++enum {
++ CS_SELECT_NAND_WP = BIT(29),
++ CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
++};
++
++static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
++{
++ u32 val = en ? CS_SELECT_NAND_WP : 0;
++
++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
++}
++
++/***********************************************************************
++ * Flash DMA
++ ***********************************************************************/
++
++enum flash_dma_reg {
++ FLASH_DMA_REVISION = 0x00,
++ FLASH_DMA_FIRST_DESC = 0x04,
++ FLASH_DMA_FIRST_DESC_EXT = 0x08,
++ FLASH_DMA_CTRL = 0x0c,
++ FLASH_DMA_MODE = 0x10,
++ FLASH_DMA_STATUS = 0x14,
++ FLASH_DMA_INTERRUPT_DESC = 0x18,
++ FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
++ FLASH_DMA_ERROR_STATUS = 0x20,
++ FLASH_DMA_CURRENT_DESC = 0x24,
++ FLASH_DMA_CURRENT_DESC_EXT = 0x28,
++};
++
++static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
++{
++ return ctrl->flash_dma_base;
++}
++
++static inline bool flash_dma_buf_ok(const void *buf)
++{
++ return buf && !is_vmalloc_addr(buf) &&
++ likely(IS_ALIGNED((uintptr_t)buf, 4));
++}
++
++static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
++ u32 val)
++{
++ brcmnand_writel(val, ctrl->flash_dma_base + offs);
++}
++
++static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
++{
++ return brcmnand_readl(ctrl->flash_dma_base + offs);
++}
++
++/* Low-level operation types: command, address, write, or read */
++enum brcmnand_llop_type {
++ LL_OP_CMD,
++ LL_OP_ADDR,
++ LL_OP_WR,
++ LL_OP_RD,
++};
++
++/***********************************************************************
++ * Internal support functions
++ ***********************************************************************/
++
++static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
++{
++ return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
++ cfg->ecc_level == 15;
++}
++
++/*
++ * Returns a nand_ecclayout strucutre for the given layout/configuration.
++ * Returns NULL on failure.
++ */
++static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
++ struct brcmnand_host *host)
++{
++ struct brcmnand_cfg *cfg = &host->hwcfg;
++ int i, j;
++ struct nand_ecclayout *layout;
++ int req;
++ int sectors;
++ int sas;
++ int idx1, idx2;
++
++ layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
++ if (!layout)
++ return NULL;
++
++ sectors = cfg->page_size / (512 << cfg->sector_size_1k);
++ sas = cfg->spare_area_size << cfg->sector_size_1k;
++
++ /* Hamming */
++ if (is_hamming_ecc(cfg)) {
++ for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
++ /* First sector of each page may have BBI */
++ if (i == 0) {
++ layout->oobfree[idx2].offset = i * sas + 1;
++ /* Small-page NAND use byte 6 for BBI */
++ if (cfg->page_size == 512)
++ layout->oobfree[idx2].offset--;
++ layout->oobfree[idx2].length = 5;
++ } else {
++ layout->oobfree[idx2].offset = i * sas;
++ layout->oobfree[idx2].length = 6;
++ }
++ idx2++;
++ layout->eccpos[idx1++] = i * sas + 6;
++ layout->eccpos[idx1++] = i * sas + 7;
++ layout->eccpos[idx1++] = i * sas + 8;
++ layout->oobfree[idx2].offset = i * sas + 9;
++ layout->oobfree[idx2].length = 7;
++ idx2++;
++ /* Leave zero-terminated entry for OOBFREE */
++ if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
++ idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
++ break;
++ }
++ goto out;
++ }
++
++ /*
++ * CONTROLLER_VERSION:
++ * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
++ * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
++ * But we will just be conservative.
++ */
++ req = DIV_ROUND_UP(ecc_level * 14, 8);
++ if (req >= sas) {
++ dev_err(&host->pdev->dev,
++ "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
++ req, sas);
++ return NULL;
++ }
++
++ layout->eccbytes = req * sectors;
++ for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
++ for (j = sas - req; j < sas && idx1 <
++ MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
++ layout->eccpos[idx1] = i * sas + j;
++
++ /* First sector of each page may have BBI */
++ if (i == 0) {
++ if (cfg->page_size == 512 && (sas - req >= 6)) {
++ /* Small-page NAND use byte 6 for BBI */
++ layout->oobfree[idx2].offset = 0;
++ layout->oobfree[idx2].length = 5;
++ idx2++;
++ if (sas - req > 6) {
++ layout->oobfree[idx2].offset = 6;
++ layout->oobfree[idx2].length =
++ sas - req - 6;
++ idx2++;
++ }
++ } else if (sas > req + 1) {
++ layout->oobfree[idx2].offset = i * sas + 1;
++ layout->oobfree[idx2].length = sas - req - 1;
++ idx2++;
++ }
++ } else if (sas > req) {
++ layout->oobfree[idx2].offset = i * sas;
++ layout->oobfree[idx2].length = sas - req;
++ idx2++;
++ }
++ /* Leave zero-terminated entry for OOBFREE */
++ if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
++ idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
++ break;
++ }
++out:
++ /* Sum available OOB */
++ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE; i++)
++ layout->oobavail += layout->oobfree[i].length;
++ return layout;
++}
++
++static struct nand_ecclayout *brcmstb_choose_ecc_layout(
++ struct brcmnand_host *host)
++{
++ struct nand_ecclayout *layout;
++ struct brcmnand_cfg *p = &host->hwcfg;
++ unsigned int ecc_level = p->ecc_level;
++
++ if (p->sector_size_1k)
++ ecc_level <<= 1;
++
++ layout = brcmnand_create_layout(ecc_level, host);
++ if (!layout) {
++ dev_err(&host->pdev->dev,
++ "no proper ecc_layout for this NAND cfg\n");
++ return NULL;
++ }
++
++ return layout;
++}
++
++static void brcmnand_wp(struct mtd_info *mtd, int wp)
++{
++ struct nand_chip *chip = mtd->priv;
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++
++ if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
++ static int old_wp = -1;
++
++ if (old_wp != wp) {
++ dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
++ old_wp = wp;
++ }
++ brcmnand_set_wp(ctrl, wp);
++ }
++}
++
++/* Helper functions for reading and writing OOB registers */
++static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
++{
++ u16 offset0, offset10, reg_offs;
++
++ offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
++ offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
++
++ if (offs >= ctrl->max_oob)
++ return 0x77;
++
++ if (offs >= 16 && offset10)
++ reg_offs = offset10 + ((offs - 0x10) & ~0x03);
++ else
++ reg_offs = offset0 + (offs & ~0x03);
++
++ return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
++}
++
++static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
++ u32 data)
++{
++ u16 offset0, offset10, reg_offs;
++
++ offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
++ offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
++
++ if (offs >= ctrl->max_oob)
++ return;
++
++ if (offs >= 16 && offset10)
++ reg_offs = offset10 + ((offs - 0x10) & ~0x03);
++ else
++ reg_offs = offset0 + (offs & ~0x03);
++
++ nand_writereg(ctrl, reg_offs, data);
++}
++
++/*
++ * read_oob_from_regs - read data from OOB registers
++ * @ctrl: NAND controller
++ * @i: sub-page sector index
++ * @oob: buffer to read to
++ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
++ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
++ */
++static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
++ int sas, int sector_1k)
++{
++ int tbytes = sas << sector_1k;
++ int j;
++
++ /* Adjust OOB values for 1K sector size */
++ if (sector_1k && (i & 0x01))
++ tbytes = max(0, tbytes - (int)ctrl->max_oob);
++ tbytes = min_t(int, tbytes, ctrl->max_oob);
++
++ for (j = 0; j < tbytes; j++)
++ oob[j] = oob_reg_read(ctrl, j);
++ return tbytes;
++}
++
++/*
++ * write_oob_to_regs - write data to OOB registers
++ * @i: sub-page sector index
++ * @oob: buffer to write from
++ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
++ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
++ */
++static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
++ const u8 *oob, int sas, int sector_1k)
++{
++ int tbytes = sas << sector_1k;
++ int j;
++
++ /* Adjust OOB values for 1K sector size */
++ if (sector_1k && (i & 0x01))
++ tbytes = max(0, tbytes - (int)ctrl->max_oob);
++ tbytes = min_t(int, tbytes, ctrl->max_oob);
++
++ for (j = 0; j < tbytes; j += 4)
++ oob_reg_write(ctrl, j,
++ (oob[j + 0] << 24) |
++ (oob[j + 1] << 16) |
++ (oob[j + 2] << 8) |
++ (oob[j + 3] << 0));
++ return tbytes;
++}
++
++static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
++{
++ struct brcmnand_controller *ctrl = data;
++
++ /* Discard all NAND_CTLRDY interrupts during DMA */
++ if (ctrl->dma_pending)
++ return IRQ_HANDLED;
++
++ complete(&ctrl->done);
++ return IRQ_HANDLED;
++}
++
++/* Handle SoC-specific interrupt hardware */
++static irqreturn_t brcmnand_irq(int irq, void *data)
++{
++ struct brcmnand_controller *ctrl = data;
++
++ if (ctrl->soc->ctlrdy_ack(ctrl->soc))
++ return brcmnand_ctlrdy_irq(irq, data);
++
++ return IRQ_NONE;
++}
++
++static irqreturn_t brcmnand_dma_irq(int irq, void *data)
++{
++ struct brcmnand_controller *ctrl = data;
++
++ complete(&ctrl->dma_done);
++
++ return IRQ_HANDLED;
++}
++
++static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u32 intfc;
++
++ dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
++ brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
++ BUG_ON(ctrl->cmd_pending != 0);
++ ctrl->cmd_pending = cmd;
++
++ intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
++ BUG_ON(!(intfc & INTFC_CTLR_READY));
++
++ mb(); /* flush previous writes */
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
++ cmd << brcmnand_cmd_shift(ctrl));
++}
++
++/***********************************************************************
++ * NAND MTD API: read/program/erase
++ ***********************************************************************/
++
++static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
++ unsigned int ctrl)
++{
++ /* intentionally left blank */
++}
++
++static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
++{
++ struct nand_chip *chip = mtd->priv;
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ unsigned long timeo = msecs_to_jiffies(100);
++
++ dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
++ if (ctrl->cmd_pending &&
++ wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
++ u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
++ >> brcmnand_cmd_shift(ctrl);
++
++ dev_err_ratelimited(ctrl->dev,
++ "timeout waiting for command %#02x\n", cmd);
++ dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
++ brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
++ }
++ ctrl->cmd_pending = 0;
++ return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
++ INTFC_FLASH_STATUS;
++}
++
++enum {
++ LLOP_RE = BIT(16),
++ LLOP_WE = BIT(17),
++ LLOP_ALE = BIT(18),
++ LLOP_CLE = BIT(19),
++ LLOP_RETURN_IDLE = BIT(31),
++
++ LLOP_DATA_MASK = GENMASK(15, 0),
++};
++
++static int brcmnand_low_level_op(struct brcmnand_host *host,
++ enum brcmnand_llop_type type, u32 data,
++ bool last_op)
++{
++ struct mtd_info *mtd = &host->mtd;
++ struct nand_chip *chip = &host->chip;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u32 tmp;
++
++ tmp = data & LLOP_DATA_MASK;
++ switch (type) {
++ case LL_OP_CMD:
++ tmp |= LLOP_WE | LLOP_CLE;
++ break;
++ case LL_OP_ADDR:
++ /* WE | ALE */
++ tmp |= LLOP_WE | LLOP_ALE;
++ break;
++ case LL_OP_WR:
++ /* WE */
++ tmp |= LLOP_WE;
++ break;
++ case LL_OP_RD:
++ /* RE */
++ tmp |= LLOP_RE;
++ break;
++ }
++ if (last_op)
++ /* RETURN_IDLE */
++ tmp |= LLOP_RETURN_IDLE;
++
++ dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
++
++ brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
++
++ brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
++ return brcmnand_waitfunc(mtd, chip);
++}
++
++static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
++ int column, int page_addr)
++{
++ struct nand_chip *chip = mtd->priv;
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u64 addr = (u64)page_addr << chip->page_shift;
++ int native_cmd = 0;
++
++ if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
++ command == NAND_CMD_RNDOUT)
++ addr = (u64)column;
++ /* Avoid propagating a negative, don't-care address */
++ else if (page_addr < 0)
++ addr = 0;
++
++ dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
++ (unsigned long long)addr);
++
++ host->last_cmd = command;
++ host->last_byte = 0;
++ host->last_addr = addr;
++
++ switch (command) {
++ case NAND_CMD_RESET:
++ native_cmd = CMD_FLASH_RESET;
++ break;
++ case NAND_CMD_STATUS:
++ native_cmd = CMD_STATUS_READ;
++ break;
++ case NAND_CMD_READID:
++ native_cmd = CMD_DEVICE_ID_READ;
++ break;
++ case NAND_CMD_READOOB:
++ native_cmd = CMD_SPARE_AREA_READ;
++ break;
++ case NAND_CMD_ERASE1:
++ native_cmd = CMD_BLOCK_ERASE;
++ brcmnand_wp(mtd, 0);
++ break;
++ case NAND_CMD_PARAM:
++ native_cmd = CMD_PARAMETER_READ;
++ break;
++ case NAND_CMD_SET_FEATURES:
++ case NAND_CMD_GET_FEATURES:
++ brcmnand_low_level_op(host, LL_OP_CMD, command, false);
++ brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
++ break;
++ case NAND_CMD_RNDOUT:
++ native_cmd = CMD_PARAMETER_CHANGE_COL;
++ addr &= ~((u64)(FC_BYTES - 1));
++ /*
++ * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
++ * NB: hwcfg.sector_size_1k may not be initialized yet
++ */
++ if (brcmnand_get_sector_size_1k(host)) {
++ host->hwcfg.sector_size_1k =
++ brcmnand_get_sector_size_1k(host);
++ brcmnand_set_sector_size_1k(host, 0);
++ }
++ break;
++ }
++
++ if (!native_cmd)
++ return;
++
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
++ (host->cs << 16) | ((addr >> 32) & 0xffff));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
++
++ brcmnand_send_cmd(host, native_cmd);
++ brcmnand_waitfunc(mtd, chip);
++
++ if (native_cmd == CMD_PARAMETER_READ ||
++ native_cmd == CMD_PARAMETER_CHANGE_COL) {
++ int i;
++
++ brcmnand_soc_data_bus_prepare(ctrl->soc);
++
++ /*
++ * Must cache the FLASH_CACHE now, since changes in
++ * SECTOR_SIZE_1K may invalidate it
++ */
++ for (i = 0; i < FC_WORDS; i++)
++ ctrl->flash_cache[i] = brcmnand_read_fc(ctrl, i);
++
++ brcmnand_soc_data_bus_unprepare(ctrl->soc);
++
++ /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
++ if (host->hwcfg.sector_size_1k)
++ brcmnand_set_sector_size_1k(host,
++ host->hwcfg.sector_size_1k);
++ }
++
++ /* Re-enable protection is necessary only after erase */
++ if (command == NAND_CMD_ERASE1)
++ brcmnand_wp(mtd, 1);
++}
++
++static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
++{
++ struct nand_chip *chip = mtd->priv;
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ uint8_t ret = 0;
++ int addr, offs;
++
++ switch (host->last_cmd) {
++ case NAND_CMD_READID:
++ if (host->last_byte < 4)
++ ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
++ (24 - (host->last_byte << 3));
++ else if (host->last_byte < 8)
++ ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
++ (56 - (host->last_byte << 3));
++ break;
++
++ case NAND_CMD_READOOB:
++ ret = oob_reg_read(ctrl, host->last_byte);
++ break;
++
++ case NAND_CMD_STATUS:
++ ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
++ INTFC_FLASH_STATUS;
++ if (wp_on) /* hide WP status */
++ ret |= NAND_STATUS_WP;
++ break;
++
++ case NAND_CMD_PARAM:
++ case NAND_CMD_RNDOUT:
++ addr = host->last_addr + host->last_byte;
++ offs = addr & (FC_BYTES - 1);
++
++ /* At FC_BYTES boundary, switch to next column */
++ if (host->last_byte > 0 && offs == 0)
++ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);
++
++ ret = ctrl->flash_cache[offs >> 2] >>
++ (24 - ((offs & 0x03) << 3));
++ break;
++ case NAND_CMD_GET_FEATURES:
++ if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
++ ret = 0;
++ } else {
++ bool last = host->last_byte ==
++ ONFI_SUBFEATURE_PARAM_LEN - 1;
++ brcmnand_low_level_op(host, LL_OP_RD, 0, last);
++ ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
++ }
++ }
++
++ dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
++ host->last_byte++;
++
++ return ret;
++}
++
++static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
++{
++ int i;
++
++ for (i = 0; i < len; i++, buf++)
++ *buf = brcmnand_read_byte(mtd);
++}
++
++static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
++ int len)
++{
++ int i;
++ struct nand_chip *chip = mtd->priv;
++ struct brcmnand_host *host = chip->priv;
++
++ switch (host->last_cmd) {
++ case NAND_CMD_SET_FEATURES:
++ for (i = 0; i < len; i++)
++ brcmnand_low_level_op(host, LL_OP_WR, buf[i],
++ (i + 1) == len);
++ break;
++ default:
++ BUG();
++ break;
++ }
++}
++
++/**
++ * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
++ * following ahead of time:
++ * - Is this descriptor the beginning or end of a linked list?
++ * - What is the (DMA) address of the next descriptor in the linked list?
++ */
++static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
++ struct brcm_nand_dma_desc *desc, u64 addr,
++ dma_addr_t buf, u32 len, u8 dma_cmd,
++ bool begin, bool end,
++ dma_addr_t next_desc)
++{
++ memset(desc, 0, sizeof(*desc));
++ /* Descriptors are written in native byte order (wordwise) */
++ desc->next_desc = lower_32_bits(next_desc);
++ desc->next_desc_ext = upper_32_bits(next_desc);
++ desc->cmd_irq = (dma_cmd << 24) |
++ (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
++ (!!begin) | ((!!end) << 1); /* head, tail */
++#ifdef CONFIG_CPU_BIG_ENDIAN
++ desc->cmd_irq |= 0x01 << 12;
++#endif
++ desc->dram_addr = lower_32_bits(buf);
++ desc->dram_addr_ext = upper_32_bits(buf);
++ desc->tfr_len = len;
++ desc->total_len = len;
++ desc->flash_addr = lower_32_bits(addr);
++ desc->flash_addr_ext = upper_32_bits(addr);
++ desc->cs = host->cs;
++ desc->status_valid = 0x01;
++ return 0;
++}
++
++/**
++ * Kick the FLASH_DMA engine, with a given DMA descriptor
++ */
++static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ unsigned long timeo = msecs_to_jiffies(100);
++
++ flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
++ (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
++ flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
++ (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
++
++ /* Start FLASH_DMA engine */
++ ctrl->dma_pending = true;
++ mb(); /* flush previous writes */
++ flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
++
++ if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
++ dev_err(ctrl->dev,
++ "timeout waiting for DMA; status %#x, error status %#x\n",
++ flash_dma_readl(ctrl, FLASH_DMA_STATUS),
++ flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
++ }
++ ctrl->dma_pending = false;
++ flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
++}
++
++static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
++ u32 len, u8 dma_cmd)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ dma_addr_t buf_pa;
++ int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
++
++ buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
++ if (dma_mapping_error(ctrl->dev, buf_pa)) {
++ dev_err(ctrl->dev, "unable to map buffer for DMA\n");
++ return -ENOMEM;
++ }
++
++ brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
++ dma_cmd, true, true, 0);
++
++ brcmnand_dma_run(host, ctrl->dma_pa);
++
++ dma_unmap_single(ctrl->dev, buf_pa, len, dir);
++
++ if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
++ return -EBADMSG;
++ else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
++ return -EUCLEAN;
++
++ return 0;
++}
++
++/*
++ * Assumes proper CS is already set
++ */
++static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
++ u64 addr, unsigned int trans, u32 *buf,
++ u8 *oob, u64 *err_addr)
++{
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ int i, j, ret = 0;
++
++ /* Clear error addresses */
++ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
++ brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
++
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
++ (host->cs << 16) | ((addr >> 32) & 0xffff));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
++
++ for (i = 0; i < trans; i++, addr += FC_BYTES) {
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
++ lower_32_bits(addr));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
++ /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
++ brcmnand_send_cmd(host, CMD_PAGE_READ);
++ brcmnand_waitfunc(mtd, chip);
++
++ if (likely(buf)) {
++ brcmnand_soc_data_bus_prepare(ctrl->soc);
++
++ for (j = 0; j < FC_WORDS; j++, buf++)
++ *buf = brcmnand_read_fc(ctrl, j);
++
++ brcmnand_soc_data_bus_unprepare(ctrl->soc);
++ }
++
++ if (oob)
++ oob += read_oob_from_regs(ctrl, i, oob,
++ mtd->oobsize / trans,
++ host->hwcfg.sector_size_1k);
++
++ if (!ret) {
++ *err_addr = brcmnand_read_reg(ctrl,
++ BRCMNAND_UNCORR_ADDR) |
++ ((u64)(brcmnand_read_reg(ctrl,
++ BRCMNAND_UNCORR_EXT_ADDR)
++ & 0xffff) << 32);
++ if (*err_addr)
++ ret = -EBADMSG;
++ }
++
++ if (!ret) {
++ *err_addr = brcmnand_read_reg(ctrl,
++ BRCMNAND_CORR_ADDR) |
++ ((u64)(brcmnand_read_reg(ctrl,
++ BRCMNAND_CORR_EXT_ADDR)
++ & 0xffff) << 32);
++ if (*err_addr)
++ ret = -EUCLEAN;
++ }
++ }
++
++ return ret;
++}
++
++static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
++ u64 addr, unsigned int trans, u32 *buf, u8 *oob)
++{
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u64 err_addr = 0;
++ int err;
++
++ dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
++
++ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
++
++ if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
++ err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
++ CMD_PAGE_READ);
++ if (err) {
++ if (mtd_is_bitflip_or_eccerr(err))
++ err_addr = addr;
++ else
++ return -EIO;
++ }
++ } else {
++ if (oob)
++ memset(oob, 0x99, mtd->oobsize);
++
++ err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
++ oob, &err_addr);
++ }
++
++ if (mtd_is_eccerr(err)) {
++ dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
++ (unsigned long long)err_addr);
++ mtd->ecc_stats.failed++;
++ /* NAND layer expects zero on ECC errors */
++ return 0;
++ }
++
++ if (mtd_is_bitflip(err)) {
++ unsigned int corrected = brcmnand_count_corrected(ctrl);
++
++ dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
++ (unsigned long long)err_addr);
++ mtd->ecc_stats.corrected += corrected;
++ /* Always exceed the software-imposed threshold */
++ return max(mtd->bitflip_threshold, corrected);
++ }
++
++ return 0;
++}
++
++static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_required, int page)
++{
++ struct brcmnand_host *host = chip->priv;
++ u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
++
++ return brcmnand_read(mtd, chip, host->last_addr,
++ mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
++}
++
++static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_required, int page)
++{
++ struct brcmnand_host *host = chip->priv;
++ u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
++ int ret;
++
++ brcmnand_set_ecc_enabled(host, 0);
++ ret = brcmnand_read(mtd, chip, host->last_addr,
++ mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
++ brcmnand_set_ecc_enabled(host, 1);
++ return ret;
++}
++
++static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
++ mtd->writesize >> FC_SHIFT,
++ NULL, (u8 *)chip->oob_poi);
++}
++
++static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ struct brcmnand_host *host = chip->priv;
++
++ brcmnand_set_ecc_enabled(host, 0);
++ brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
++ mtd->writesize >> FC_SHIFT,
++ NULL, (u8 *)chip->oob_poi);
++ brcmnand_set_ecc_enabled(host, 1);
++ return 0;
++}
++
++static int brcmnand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
++ uint32_t data_offs, uint32_t readlen,
++ uint8_t *bufpoi, int page)
++{
++ struct brcmnand_host *host = chip->priv;
++
++ return brcmnand_read(mtd, chip, host->last_addr + data_offs,
++ readlen >> FC_SHIFT, (u32 *)bufpoi, NULL);
++}
++
++static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
++ u64 addr, const u32 *buf, u8 *oob)
++{
++ struct brcmnand_host *host = chip->priv;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
++ int status, ret = 0;
++
++ dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
++
++ if (unlikely((u32)buf & 0x03)) {
++ dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
++ buf = (u32 *)((u32)buf & ~0x03);
++ }
++
++ brcmnand_wp(mtd, 0);
++
++ for (i = 0; i < ctrl->max_oob; i += 4)
++ oob_reg_write(ctrl, i, 0xffffffff);
++
++ if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
++ if (brcmnand_dma_trans(host, addr, (u32 *)buf,
++ mtd->writesize, CMD_PROGRAM_PAGE))
++ ret = -EIO;
++ goto out;
++ }
++
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
++ (host->cs << 16) | ((addr >> 32) & 0xffff));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
++
++ for (i = 0; i < trans; i++, addr += FC_BYTES) {
++ /* full address MUST be set before populating FC */
++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
++ lower_32_bits(addr));
++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
++
++ if (buf) {
++ brcmnand_soc_data_bus_prepare(ctrl->soc);
++
++ for (j = 0; j < FC_WORDS; j++, buf++)
++ brcmnand_write_fc(ctrl, j, *buf);
++
++ brcmnand_soc_data_bus_unprepare(ctrl->soc);
++ } else if (oob) {
++ for (j = 0; j < FC_WORDS; j++)
++ brcmnand_write_fc(ctrl, j, 0xffffffff);
++ }
++
++ if (oob) {
++ oob += write_oob_to_regs(ctrl, i, oob,
++ mtd->oobsize / trans,
++ host->hwcfg.sector_size_1k);
++ }
++
++ /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
++ brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
++ status = brcmnand_waitfunc(mtd, chip);
++
++ if (status & NAND_STATUS_FAIL) {
++ dev_info(ctrl->dev, "program failed at %llx\n",
++ (unsigned long long)addr);
++ ret = -EIO;
++ goto out;
++ }
++ }
++out:
++ brcmnand_wp(mtd, 1);
++ return ret;
++}
++
++static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
++ const uint8_t *buf, int oob_required)
++{
++ struct brcmnand_host *host = chip->priv;
++ void *oob = oob_required ? chip->oob_poi : NULL;
++
++ brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
++ return 0;
++}
++
++static int brcmnand_write_page_raw(struct mtd_info *mtd,
++ struct nand_chip *chip, const uint8_t *buf,
++ int oob_required)
++{
++ struct brcmnand_host *host = chip->priv;
++ void *oob = oob_required ? chip->oob_poi : NULL;
++
++ brcmnand_set_ecc_enabled(host, 0);
++ brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
++ brcmnand_set_ecc_enabled(host, 1);
++ return 0;
++}
++
++static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
++ NULL, chip->oob_poi);
++}
++
++static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ struct brcmnand_host *host = chip->priv;
++ int ret;
++
++ brcmnand_set_ecc_enabled(host, 0);
++ ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
++ (u8 *)chip->oob_poi);
++ brcmnand_set_ecc_enabled(host, 1);
++
++ return ret;
++}
++
++/***********************************************************************
++ * Per-CS setup (1 NAND device)
++ ***********************************************************************/
++
++static int brcmnand_set_cfg(struct brcmnand_host *host,
++ struct brcmnand_cfg *cfg)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ struct nand_chip *chip = &host->chip;
++ u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
++ u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_CFG_EXT);
++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_ACC_CONTROL);
++ u8 block_size = 0, page_size = 0, device_size = 0;
++ u32 tmp;
++
++ if (ctrl->block_sizes) {
++ int i, found;
++
++ for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
++ if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
++ block_size = i;
++ found = 1;
++ }
++ if (!found) {
++ dev_warn(ctrl->dev, "invalid block size %u\n",
++ cfg->block_size);
++ return -EINVAL;
++ }
++ } else {
++ block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
++ }
++
++ if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
++ cfg->block_size > ctrl->max_block_size)) {
++ dev_warn(ctrl->dev, "invalid block size %u\n",
++ cfg->block_size);
++ block_size = 0;
++ }
++
++ if (ctrl->page_sizes) {
++ int i, found;
++
++ for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
++ if (ctrl->page_sizes[i] == cfg->page_size) {
++ page_size = i;
++ found = 1;
++ }
++ if (!found) {
++ dev_warn(ctrl->dev, "invalid page size %u\n",
++ cfg->page_size);
++ return -EINVAL;
++ }
++ } else {
++ page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
++ }
++
++ if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
++ cfg->page_size > ctrl->max_page_size)) {
++ dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
++ return -EINVAL;
++ }
++
++ if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
++ dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
++ (unsigned long long)cfg->device_size);
++ return -EINVAL;
++ }
++ device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
++
++ tmp = (cfg->blk_adr_bytes << 8) |
++ (cfg->col_adr_bytes << 12) |
++ (cfg->ful_adr_bytes << 16) |
++ (!!(cfg->device_width == 16) << 23) |
++ (device_size << 24);
++ if (cfg_offs == cfg_ext_offs) {
++ tmp |= (page_size << 20) | (block_size << 28);
++ nand_writereg(ctrl, cfg_offs, tmp);
++ } else {
++ nand_writereg(ctrl, cfg_offs, tmp);
++ tmp = page_size | (block_size << 4);
++ nand_writereg(ctrl, cfg_ext_offs, tmp);
++ }
++
++ tmp = nand_readreg(ctrl, acc_control_offs);
++ tmp &= ~brcmnand_ecc_level_mask(ctrl);
++ tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
++ tmp &= ~brcmnand_spare_area_mask(ctrl);
++ tmp |= cfg->spare_area_size;
++ nand_writereg(ctrl, acc_control_offs, tmp);
++
++ brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
++
++ /* threshold = ceil(BCH-level * 0.75) */
++ brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
++
++ return 0;
++}
++
++static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
++{
++ buf += sprintf(buf,
++ "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
++ (unsigned long long)cfg->device_size >> 20,
++ cfg->block_size >> 10,
++ cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
++ cfg->page_size >= 1024 ? "KiB" : "B",
++ cfg->spare_area_size, cfg->device_width);
++
++ /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
++ if (is_hamming_ecc(cfg))
++ sprintf(buf, ", Hamming ECC");
++ else if (cfg->sector_size_1k)
++ sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
++ else
++ sprintf(buf, ", BCH-%u", cfg->ecc_level);
++}
++
++/*
++ * Minimum number of bytes to address a page. Calculated as:
++ * roundup(log2(size / page-size) / 8)
++ *
++ * NB: the following does not "round up" for non-power-of-2 'size'; but this is
++ * OK because many other things will break if 'size' is irregular...
++ */
++static inline int get_blk_adr_bytes(u64 size, u32 writesize)
++{
++ return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
++}
++
++static int brcmnand_setup_dev(struct brcmnand_host *host)
++{
++ struct mtd_info *mtd = &host->mtd;
++ struct nand_chip *chip = &host->chip;
++ struct brcmnand_controller *ctrl = host->ctrl;
++ struct brcmnand_cfg *cfg = &host->hwcfg;
++ char msg[128];
++ u32 offs, tmp, oob_sector;
++ int ret;
++
++ memset(cfg, 0, sizeof(*cfg));
++
++ ret = of_property_read_u32(chip->dn, "brcm,nand-oob-sector-size",
++ &oob_sector);
++ if (ret) {
++ /* Use detected size */
++ cfg->spare_area_size = mtd->oobsize /
++ (mtd->writesize >> FC_SHIFT);
++ } else {
++ cfg->spare_area_size = oob_sector;
++ }
++ if (cfg->spare_area_size > ctrl->max_oob)
++ cfg->spare_area_size = ctrl->max_oob;
++ /*
++ * Set oobsize to be consistent with controller's spare_area_size, as
++ * the rest is inaccessible.
++ */
++ mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
++
++ cfg->device_size = mtd->size;
++ cfg->block_size = mtd->erasesize;
++ cfg->page_size = mtd->writesize;
++ cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
++ cfg->col_adr_bytes = 2;
++ cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
++
++ switch (chip->ecc.size) {
++ case 512:
++ if (chip->ecc.strength == 1) /* Hamming */
++ cfg->ecc_level = 15;
++ else
++ cfg->ecc_level = chip->ecc.strength;
++ cfg->sector_size_1k = 0;
++ break;
++ case 1024:
++ if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
++ dev_err(ctrl->dev, "1KB sectors not supported\n");
++ return -EINVAL;
++ }
++ if (chip->ecc.strength & 0x1) {
++ dev_err(ctrl->dev,
++ "odd ECC not supported with 1KB sectors\n");
++ return -EINVAL;
++ }
++
++ cfg->ecc_level = chip->ecc.strength >> 1;
++ cfg->sector_size_1k = 1;
++ break;
++ default:
++ dev_err(ctrl->dev, "unsupported ECC size: %d\n",
++ chip->ecc.size);
++ return -EINVAL;
++ }
++
++ cfg->ful_adr_bytes = cfg->blk_adr_bytes;
++ if (mtd->writesize > 512)
++ cfg->ful_adr_bytes += cfg->col_adr_bytes;
++ else
++ cfg->ful_adr_bytes += 1;
++
++ ret = brcmnand_set_cfg(host, cfg);
++ if (ret)
++ return ret;
++
++ brcmnand_set_ecc_enabled(host, 1);
++
++ brcmnand_print_cfg(msg, cfg);
++ dev_info(ctrl->dev, "detected %s\n", msg);
++
++ /* Configure ACC_CONTROL */
++ offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
++ tmp = nand_readreg(ctrl, offs);
++ tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
++ tmp &= ~ACC_CONTROL_RD_ERASED;
++ tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
++ if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
++ /*
++ * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
++ * errors
++ */
++ if (has_flash_dma(ctrl))
++ tmp &= ~ACC_CONTROL_PREFETCH;
++ else
++ tmp |= ACC_CONTROL_PREFETCH;
++ }
++ nand_writereg(ctrl, offs, tmp);
++
++ return 0;
++}
++
++static int brcmnand_init_cs(struct brcmnand_host *host)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ struct device_node *dn = host->of_node;
++ struct platform_device *pdev = host->pdev;
++ struct mtd_info *mtd;
++ struct nand_chip *chip;
++ int ret = 0;
++ struct mtd_part_parser_data ppdata = { .of_node = dn };
++
++ ret = of_property_read_u32(dn, "reg", &host->cs);
++ if (ret) {
++ dev_err(&pdev->dev, "can't get chip-select\n");
++ return -ENXIO;
++ }
++
++ mtd = &host->mtd;
++ chip = &host->chip;
++
++ chip->dn = dn;
++ chip->priv = host;
++ mtd->priv = chip;
++ mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
++ host->cs);
++ mtd->owner = THIS_MODULE;
++ mtd->dev.parent = &pdev->dev;
++
++ chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
++ chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
++
++ chip->cmd_ctrl = brcmnand_cmd_ctrl;
++ chip->cmdfunc = brcmnand_cmdfunc;
++ chip->waitfunc = brcmnand_waitfunc;
++ chip->read_byte = brcmnand_read_byte;
++ chip->read_buf = brcmnand_read_buf;
++ chip->write_buf = brcmnand_write_buf;
++
++ chip->ecc.mode = NAND_ECC_HW;
++ chip->ecc.read_page = brcmnand_read_page;
++ chip->ecc.read_subpage = brcmnand_read_subpage;
++ chip->ecc.write_page = brcmnand_write_page;
++ chip->ecc.read_page_raw = brcmnand_read_page_raw;
++ chip->ecc.write_page_raw = brcmnand_write_page_raw;
++ chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
++ chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
++ chip->ecc.read_oob = brcmnand_read_oob;
++ chip->ecc.write_oob = brcmnand_write_oob;
++
++ chip->controller = &ctrl->controller;
++
++ if (nand_scan_ident(mtd, 1, NULL))
++ return -ENXIO;
++
++ chip->options |= NAND_NO_SUBPAGE_WRITE;
++ /*
++ * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
++ * to/from, and have nand_base pass us a bounce buffer instead, as
++ * needed.
++ */
++ chip->options |= NAND_USE_BOUNCE_BUFFER;
++
++ if (of_get_nand_on_flash_bbt(dn))
++ chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
++
++ if (brcmnand_setup_dev(host))
++ return -ENXIO;
++
++ chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
++ /* only use our internal HW threshold */
++ mtd->bitflip_threshold = 1;
++
++ chip->ecc.layout = brcmstb_choose_ecc_layout(host);
++ if (!chip->ecc.layout)
++ return -ENXIO;
++
++ if (nand_scan_tail(mtd))
++ return -ENXIO;
++
++ return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
++}
++
++static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
++ int restore)
++{
++ struct brcmnand_controller *ctrl = host->ctrl;
++ u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
++ u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_CFG_EXT);
++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
++ BRCMNAND_CS_ACC_CONTROL);
++ u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
++ u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
++
++ if (restore) {
++ nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
++ if (cfg_offs != cfg_ext_offs)
++ nand_writereg(ctrl, cfg_ext_offs,
++ host->hwcfg.config_ext);
++ nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
++ nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
++ nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
++ } else {
++ host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
++ if (cfg_offs != cfg_ext_offs)
++ host->hwcfg.config_ext =
++ nand_readreg(ctrl, cfg_ext_offs);
++ host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
++ host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
++ host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
++ }
++}
++
++static int brcmnand_suspend(struct device *dev)
++{
++ struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
++ struct brcmnand_host *host;
++
++ list_for_each_entry(host, &ctrl->host_list, node)
++ brcmnand_save_restore_cs_config(host, 0);
++
++ ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
++ ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
++ ctrl->corr_stat_threshold =
++ brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
++
++ if (has_flash_dma(ctrl))
++ ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
++
++ return 0;
++}
++
++static int brcmnand_resume(struct device *dev)
++{
++ struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
++ struct brcmnand_host *host;
++
++ if (has_flash_dma(ctrl)) {
++ flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
++ flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
++ }
++
++ brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
++ brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
++ brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
++ ctrl->corr_stat_threshold);
++ if (ctrl->soc) {
++ /* Clear/re-enable interrupt */
++ ctrl->soc->ctlrdy_ack(ctrl->soc);
++ ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
++ }
++
++ list_for_each_entry(host, &ctrl->host_list, node) {
++ struct mtd_info *mtd = &host->mtd;
++ struct nand_chip *chip = mtd->priv;
++
++ brcmnand_save_restore_cs_config(host, 1);
++
++ /* Reset the chip, required by some chips after power-up */
++ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
++ }
++
++ return 0;
++}
++
++const struct dev_pm_ops brcmnand_pm_ops = {
++ .suspend = brcmnand_suspend,
++ .resume = brcmnand_resume,
++};
++EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
++
++static const struct of_device_id brcmnand_of_match[] = {
++ { .compatible = "brcm,brcmnand-v4.0" },
++ { .compatible = "brcm,brcmnand-v5.0" },
++ { .compatible = "brcm,brcmnand-v6.0" },
++ { .compatible = "brcm,brcmnand-v6.1" },
++ { .compatible = "brcm,brcmnand-v7.0" },
++ { .compatible = "brcm,brcmnand-v7.1" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, brcmnand_of_match);
++
++/***********************************************************************
++ * Platform driver setup (per controller)
++ ***********************************************************************/
++
++int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
++{
++ struct device *dev = &pdev->dev;
++ struct device_node *dn = dev->of_node, *child;
++ struct brcmnand_controller *ctrl;
++ struct resource *res;
++ int ret;
++
++ /* We only support device-tree instantiation */
++ if (!dn)
++ return -ENODEV;
++
++ if (!of_match_node(brcmnand_of_match, dn))
++ return -ENODEV;
++
++ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
++ if (!ctrl)
++ return -ENOMEM;
++
++ dev_set_drvdata(dev, ctrl);
++ ctrl->dev = dev;
++
++ init_completion(&ctrl->done);
++ init_completion(&ctrl->dma_done);
++ spin_lock_init(&ctrl->controller.lock);
++ init_waitqueue_head(&ctrl->controller.wq);
++ INIT_LIST_HEAD(&ctrl->host_list);
++
++ /* NAND register range */
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ ctrl->nand_base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(ctrl->nand_base))
++ return PTR_ERR(ctrl->nand_base);
++
++ /* Initialize NAND revision */
++ ret = brcmnand_revision_init(ctrl);
++ if (ret)
++ return ret;
++
++ /*
++ * Most chips have this cache at a fixed offset within 'nand' block.
++ * Some must specify this region separately.
++ */
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
++ if (res) {
++ ctrl->nand_fc = devm_ioremap_resource(dev, res);
++ if (IS_ERR(ctrl->nand_fc))
++ return PTR_ERR(ctrl->nand_fc);
++ } else {
++ ctrl->nand_fc = ctrl->nand_base +
++ ctrl->reg_offsets[BRCMNAND_FC_BASE];
++ }
++
++ /* FLASH_DMA */
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
++ if (res) {
++ ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(ctrl->flash_dma_base))
++ return PTR_ERR(ctrl->flash_dma_base);
++
++ flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
++ flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
++
++ /* Allocate descriptor(s) */
++ ctrl->dma_desc = dmam_alloc_coherent(dev,
++ sizeof(*ctrl->dma_desc),
++ &ctrl->dma_pa, GFP_KERNEL);
++ if (!ctrl->dma_desc)
++ return -ENOMEM;
++
++ ctrl->dma_irq = platform_get_irq(pdev, 1);
++ if ((int)ctrl->dma_irq < 0) {
++ dev_err(dev, "missing FLASH_DMA IRQ\n");
++ return -ENODEV;
++ }
++
++ ret = devm_request_irq(dev, ctrl->dma_irq,
++ brcmnand_dma_irq, 0, DRV_NAME,
++ ctrl);
++ if (ret < 0) {
++ dev_err(dev, "can't allocate IRQ %d: error %d\n",
++ ctrl->dma_irq, ret);
++ return ret;
++ }
++
++ dev_info(dev, "enabling FLASH_DMA\n");
++ }
++
++ /* Disable automatic device ID config, direct addressing */
++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
++ CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
++ /* Disable XOR addressing */
++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
++
++ if (ctrl->features & BRCMNAND_HAS_WP) {
++ /* Permanently disable write protection */
++ if (wp_on == 2)
++ brcmnand_set_wp(ctrl, false);
++ } else {
++ wp_on = 0;
++ }
++
++ /* IRQ */
++ ctrl->irq = platform_get_irq(pdev, 0);
++ if ((int)ctrl->irq < 0) {
++ dev_err(dev, "no IRQ defined\n");
++ return -ENODEV;
++ }
++
++ /*
++ * Some SoCs integrate this controller (e.g., its interrupt bits) in
++ * interesting ways
++ */
++ if (soc) {
++ ctrl->soc = soc;
++
++ ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
++ DRV_NAME, ctrl);
++
++ /* Enable interrupt */
++ ctrl->soc->ctlrdy_ack(ctrl->soc);
++ ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
++ } else {
++ /* Use standard interrupt infrastructure */
++ ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
++ DRV_NAME, ctrl);
++ }
++ if (ret < 0) {
++ dev_err(dev, "can't allocate IRQ %d: error %d\n",
++ ctrl->irq, ret);
++ return ret;
++ }
++
++ for_each_available_child_of_node(dn, child) {
++ if (of_device_is_compatible(child, "brcm,nandcs")) {
++ struct brcmnand_host *host;
++
++ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
++ if (!host)
++ return -ENOMEM;
++ host->pdev = pdev;
++ host->ctrl = ctrl;
++ host->of_node = child;
++
++ ret = brcmnand_init_cs(host);
++ if (ret)
++ continue; /* Try all chip-selects */
++
++ list_add_tail(&host->node, &ctrl->host_list);
++ }
++ }
++
++ /* No chip-selects could initialize properly */
++ if (list_empty(&ctrl->host_list))
++ return -ENODEV;
++
++ return 0;
++}
++EXPORT_SYMBOL_GPL(brcmnand_probe);
++
++int brcmnand_remove(struct platform_device *pdev)
++{
++ struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
++ struct brcmnand_host *host;
++
++ list_for_each_entry(host, &ctrl->host_list, node)
++ nand_release(&host->mtd);
++
++ dev_set_drvdata(&pdev->dev, NULL);
++
++ return 0;
++}
++EXPORT_SYMBOL_GPL(brcmnand_remove);
++
++MODULE_LICENSE("GPL v2");
++MODULE_AUTHOR("Kevin Cernekee");
++MODULE_AUTHOR("Brian Norris");
++MODULE_DESCRIPTION("NAND driver for Broadcom chips");
++MODULE_ALIAS("platform:brcmnand");
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/brcmnand.h
+@@ -0,0 +1,71 @@
++/*
++ * Copyright © 2015 Broadcom Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#ifndef __BRCMNAND_H__
++#define __BRCMNAND_H__
++
++#include <linux/types.h>
++#include <linux/io.h>
++
++struct platform_device;
++struct dev_pm_ops;
++
++struct brcmnand_soc {
++ bool (*ctlrdy_ack)(struct brcmnand_soc *soc);
++ void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en);
++ void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare);
++};
++
++static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc)
++{
++ if (soc && soc->prepare_data_bus)
++ soc->prepare_data_bus(soc, true);
++}
++
++static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc)
++{
++ if (soc && soc->prepare_data_bus)
++ soc->prepare_data_bus(soc, false);
++}
++
++static inline u32 brcmnand_readl(void __iomem *addr)
++{
++ /*
++ * MIPS endianness is configured by boot strap, which also reverses all
++ * bus endianness (i.e., big-endian CPU + big endian bus ==> native
++ * endian I/O).
++ *
++ * Other architectures (e.g., ARM) either do not support big endian, or
++ * else leave I/O in little endian mode.
++ */
++ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(__BIG_ENDIAN))
++ return __raw_readl(addr);
++ else
++ return readl_relaxed(addr);
++}
++
++static inline void brcmnand_writel(u32 val, void __iomem *addr)
++{
++ /* See brcmnand_readl() comments */
++ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(__BIG_ENDIAN))
++ __raw_writel(val, addr);
++ else
++ writel_relaxed(val, addr);
++}
++
++int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc);
++int brcmnand_remove(struct platform_device *pdev);
++
++extern const struct dev_pm_ops brcmnand_pm_ops;
++
++#endif /* __BRCMNAND_H__ */
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/brcmstb_nand.c
+@@ -0,0 +1,44 @@
++/*
++ * Copyright © 2015 Broadcom Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#include <linux/device.h>
++#include <linux/module.h>
++#include <linux/platform_device.h>
++
++#include "brcmnand.h"
++
++static const struct of_device_id brcmstb_nand_of_match[] = {
++ { .compatible = "brcm,brcmnand" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match);
++
++static int brcmstb_nand_probe(struct platform_device *pdev)
++{
++ return brcmnand_probe(pdev, NULL);
++}
++
++static struct platform_driver brcmstb_nand_driver = {
++ .probe = brcmstb_nand_probe,
++ .remove = brcmnand_remove,
++ .driver = {
++ .name = "brcmstb_nand",
++ .pm = &brcmnand_pm_ops,
++ .of_match_table = brcmstb_nand_of_match,
++ }
++};
++module_platform_driver(brcmstb_nand_driver);
++
++MODULE_LICENSE("GPL v2");
++MODULE_AUTHOR("Brian Norris");
++MODULE_DESCRIPTION("NAND driver for Broadcom STB chips");
+--- /dev/null
++++ b/drivers/mtd/nand/brcmnand/iproc_nand.c
+@@ -0,0 +1,150 @@
++/*
++ * Copyright © 2015 Broadcom Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#include <linux/device.h>
++#include <linux/io.h>
++#include <linux/ioport.h>
++#include <linux/module.h>
++#include <linux/of.h>
++#include <linux/of_address.h>
++#include <linux/platform_device.h>
++#include <linux/slab.h>
++
++#include "brcmnand.h"
++
++struct iproc_nand_soc {
++ struct brcmnand_soc soc;
++
++ void __iomem *idm_base;
++ void __iomem *ext_base;
++ spinlock_t idm_lock;
++};
++
++#define IPROC_NAND_CTLR_READY_OFFSET 0x10
++#define IPROC_NAND_CTLR_READY BIT(0)
++
++#define IPROC_NAND_IO_CTRL_OFFSET 0x00
++#define IPROC_NAND_APB_LE_MODE BIT(24)
++#define IPROC_NAND_INT_CTRL_READ_ENABLE BIT(6)
++
++static bool iproc_nand_intc_ack(struct brcmnand_soc *soc)
++{
++ struct iproc_nand_soc *priv =
++ container_of(soc, struct iproc_nand_soc, soc);
++ void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET;
++ u32 val = brcmnand_readl(mmio);
++
++ if (val & IPROC_NAND_CTLR_READY) {
++ brcmnand_writel(IPROC_NAND_CTLR_READY, mmio);
++ return true;
++ }
++
++ return false;
++}
++
++static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en)
++{
++ struct iproc_nand_soc *priv =
++ container_of(soc, struct iproc_nand_soc, soc);
++ void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET;
++ u32 val;
++ unsigned long flags;
++
++ spin_lock_irqsave(&priv->idm_lock, flags);
++
++ val = brcmnand_readl(mmio);
++
++ if (en)
++ val |= IPROC_NAND_INT_CTRL_READ_ENABLE;
++ else
++ val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE;
++
++ brcmnand_writel(val, mmio);
++
++ spin_unlock_irqrestore(&priv->idm_lock, flags);
++}
++
++static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare)
++{
++ struct iproc_nand_soc *priv =
++ container_of(soc, struct iproc_nand_soc, soc);
++ void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET;
++ u32 val;
++ unsigned long flags;
++
++ spin_lock_irqsave(&priv->idm_lock, flags);
++
++ val = brcmnand_readl(mmio);
++
++ if (prepare)
++ val |= IPROC_NAND_APB_LE_MODE;
++ else
++ val &= ~IPROC_NAND_APB_LE_MODE;
++
++ brcmnand_writel(val, mmio);
++
++ spin_unlock_irqrestore(&priv->idm_lock, flags);
++}
++
++static int iproc_nand_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct iproc_nand_soc *priv;
++ struct brcmnand_soc *soc;
++ struct resource *res;
++
++ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
++ if (!priv)
++ return -ENOMEM;
++ soc = &priv->soc;
++
++ spin_lock_init(&priv->idm_lock);
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-idm");
++ priv->idm_base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(priv->idm_base))
++ return PTR_ERR(priv->idm_base);
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-ext");
++ priv->ext_base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(priv->ext_base))
++ return PTR_ERR(priv->ext_base);
++
++ soc->ctlrdy_ack = iproc_nand_intc_ack;
++ soc->ctlrdy_set_enabled = iproc_nand_intc_set;
++ soc->prepare_data_bus = iproc_nand_apb_access;
++
++ return brcmnand_probe(pdev, soc);
++}
++
++static const struct of_device_id iproc_nand_of_match[] = {
++ { .compatible = "brcm,nand-iproc" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, iproc_nand_of_match);
++
++static struct platform_driver iproc_nand_driver = {
++ .probe = iproc_nand_probe,
++ .remove = brcmnand_remove,
++ .driver = {
++ .name = "iproc_nand",
++ .pm = &brcmnand_pm_ops,
++ .of_match_table = iproc_nand_of_match,
++ }
++};
++module_platform_driver(iproc_nand_driver);
++
++MODULE_LICENSE("GPL v2");
++MODULE_AUTHOR("Brian Norris");
++MODULE_AUTHOR("Ray Jui");
++MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs");
diff --git a/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch b/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch
new file mode 100644
index 0000000000..686696e61e
--- /dev/null
+++ b/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch
@@ -0,0 +1,175 @@
+From 173b0add0cff6558f950c0cb1eacfb729d482711 Mon Sep 17 00:00:00 2001
+From: Hauke Mehrtens <hauke@hauke-m.de>
+Date: Sun, 17 May 2015 18:48:38 +0200
+Subject: [PATCH 4/8] mtd: part: add generic parsing of linux,part-probe
+
+This moves the linux,part-probe device tree parsing code from
+physmap_of.c to mtdpart.c. Now all drivers can use this feature by just
+providing a reference to their device tree node in struct
+mtd_part_parser_data.
+
+Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
+---
+ Documentation/devicetree/bindings/mtd/nand.txt | 16 ++++++++++
+ drivers/mtd/maps/physmap_of.c | 40 +-----------------------
+ drivers/mtd/mtdpart.c | 43 ++++++++++++++++++++++++++
+ 3 files changed, 60 insertions(+), 39 deletions(-)
+
+--- a/Documentation/devicetree/bindings/mtd/nand.txt
++++ b/Documentation/devicetree/bindings/mtd/nand.txt
+@@ -12,6 +12,22 @@
+ - nand-ecc-step-size: integer representing the number of data bytes
+ that are covered by a single ECC step.
+
++- linux,part-probe: list of name as strings of the partition parser
++ which should be used to parse the partition table.
++ They will be tried in the specified ordering and
++ the next one will be used if the previous one
++ failed.
++
++ Example: linux,part-probe = "cmdlinepart", "ofpart";
++
++ This is also the default value, which will be used
++ if this attribute is not specified. It could be
++ that the flash driver in use overwrote the default
++ value and uses some other default.
++
++ Possible values are: bcm47xxpart, afs, ar7part,
++ ofoldpart, ofpart, bcm63xxpart, RedBoot, cmdlinepart
++
+ The ECC strength and ECC step size properties define the correction capability
+ of a controller. Together, they say a controller can correct "{strength} bit
+ errors per {size} bytes".
+--- a/drivers/mtd/maps/physmap_of.c
++++ b/drivers/mtd/maps/physmap_of.c
+@@ -112,45 +112,9 @@ static struct mtd_info *obsolete_probe(s
+ static const char * const part_probe_types_def[] = {
+ "cmdlinepart", "RedBoot", "ofpart", "ofoldpart", NULL };
+
+-static const char * const *of_get_probes(struct device_node *dp)
+-{
+- const char *cp;
+- int cplen;
+- unsigned int l;
+- unsigned int count;
+- const char **res;
+-
+- cp = of_get_property(dp, "linux,part-probe", &cplen);
+- if (cp == NULL)
+- return part_probe_types_def;
+-
+- count = 0;
+- for (l = 0; l != cplen; l++)
+- if (cp[l] == 0)
+- count++;
+-
+- res = kzalloc((count + 1)*sizeof(*res), GFP_KERNEL);
+- count = 0;
+- while (cplen > 0) {
+- res[count] = cp;
+- l = strlen(cp) + 1;
+- cp += l;
+- cplen -= l;
+- count++;
+- }
+- return res;
+-}
+-
+-static void of_free_probes(const char * const *probes)
+-{
+- if (probes != part_probe_types_def)
+- kfree(probes);
+-}
+-
+ static struct of_device_id of_flash_match[];
+ static int of_flash_probe(struct platform_device *dev)
+ {
+- const char * const *part_probe_types;
+ const struct of_device_id *match;
+ struct device_node *dp = dev->dev.of_node;
+ struct resource res;
+@@ -310,10 +274,8 @@ static int of_flash_probe(struct platfor
+ goto err_out;
+
+ ppdata.of_node = dp;
+- part_probe_types = of_get_probes(dp);
+- mtd_device_parse_register(info->cmtd, part_probe_types, &ppdata,
++ mtd_device_parse_register(info->cmtd, part_probe_types_def, &ppdata,
+ NULL, 0);
+- of_free_probes(part_probe_types);
+
+ kfree(mtd_list);
+
+--- a/drivers/mtd/mtdpart.c
++++ b/drivers/mtd/mtdpart.c
+@@ -29,6 +29,7 @@
+ #include <linux/kmod.h>
+ #include <linux/mtd/mtd.h>
+ #include <linux/mtd/partitions.h>
++#include <linux/of.h>
+ #include <linux/magic.h>
+ #include <linux/err.h>
+ #include <linux/kconfig.h>
+@@ -992,6 +993,40 @@ void deregister_mtd_parser(struct mtd_pa
+ EXPORT_SYMBOL_GPL(deregister_mtd_parser);
+
+ /*
++ * Parses the linux,part-probe device tree property.
++ * When a non null value is returned it has to be freed with kfree() by
++ * the caller.
++ */
++static const char * const *of_get_probes(struct device_node *dp)
++{
++ const char *cp;
++ int cplen;
++ unsigned int l;
++ unsigned int count;
++ const char **res;
++
++ cp = of_get_property(dp, "linux,part-probe", &cplen);
++ if (cp == NULL)
++ return NULL;
++
++ count = 0;
++ for (l = 0; l != cplen; l++)
++ if (cp[l] == 0)
++ count++;
++
++ res = kzalloc((count + 1) * sizeof(*res), GFP_KERNEL);
++ count = 0;
++ while (cplen > 0) {
++ res[count] = cp;
++ l = strlen(cp) + 1;
++ cp += l;
++ cplen -= l;
++ count++;
++ }
++ return res;
++}
++
++/*
+ * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
+ * are changing this array!
+ */
+@@ -1027,6 +1062,13 @@ int parse_mtd_partitions(struct mtd_info
+ {
+ struct mtd_part_parser *parser;
+ int ret = 0;
++ const char *const *types_of = NULL;
++
++ if (data && data->of_node) {
++ types_of = of_get_probes(data->of_node);
++ if (types_of != NULL)
++ types = types_of;
++ }
+
+ if (!types)
+ types = default_mtd_part_types;
+@@ -1045,6 +1087,7 @@ int parse_mtd_partitions(struct mtd_info
+ break;
+ }
+ }
++ kfree(types_of);
+ return ret;
+ }
+
diff --git a/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch b/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch
new file mode 100644
index 0000000000..8d48673c6d
--- /dev/null
+++ b/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch
@@ -0,0 +1,11 @@
+--- a/arch/arm/boot/dts/bcm5301x-nand-cs0-bch8.dtsi
++++ b/arch/arm/boot/dts/bcm5301x-nand-cs0-bch8.dtsi
+@@ -19,6 +19,8 @@
+
+ nand-ecc-strength = <8>;
+ nand-ecc-step-size = <512>;
++
++ linux,part-probe = "ofpart", "bcm47xxpart";
+ };
+ };
+ };
diff --git a/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch b/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch
index ca6462e3c7..c8171fffc4 100644
--- a/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch
+++ b/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch
@@ -13,7 +13,7 @@ Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
--- a/arch/arm/boot/dts/bcm5301x.dtsi
+++ b/arch/arm/boot/dts/bcm5301x.dtsi
-@@ -95,6 +95,10 @@
+@@ -98,6 +98,10 @@
};
};
diff --git a/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch b/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch
deleted file mode 100644
index df65e0d03d..0000000000
--- a/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch
+++ /dev/null
@@ -1,37 +0,0 @@
-From b97e582cd05f6ba80bdb63d9f677a3395edc7ff1 Mon Sep 17 00:00:00 2001
-From: =?UTF-8?q?Rafa=C5=82=20Mi=C5=82ecki?= <zajec5@gmail.com>
-Date: Sun, 7 Jun 2015 15:37:43 +0200
-Subject: [PATCH] ARM: BCM5301X: Add back Luxul XWC-1000 NAND flash layout
-MIME-Version: 1.0
-Content-Type: text/plain; charset=UTF-8
-Content-Transfer-Encoding: 8bit
-
-In OpenWrt we still use old NAND driver instead of "brcm,nandcs", so
-we need to add this DT entry back.
-
-Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
----
- arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts | 12 ++++++++++++
- 1 file changed, 12 insertions(+)
-
---- a/arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts
-+++ b/arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts
-@@ -34,6 +34,18 @@
- };
- };
-
-+ axi@18000000 {
-+ nand@28000 {
-+ reg = <0x00028000 0x1000>;
-+ #address-cells = <1>;
-+ #size-cells = <1>;
-+ partition@0 {
-+ label = "ubi";
-+ reg = <0x00000000 0x08000000>;
-+ };
-+ };
-+ };
-+
- nand: nand@18028000 {
- nandcs@0 {
- partition@0 {
diff --git a/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch b/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch
deleted file mode 100644
index 07cde2114a..0000000000
--- a/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch
+++ /dev/null
@@ -1,1608 +0,0 @@
---- a/drivers/mtd/nand/Kconfig
-+++ b/drivers/mtd/nand/Kconfig
-@@ -530,4 +530,10 @@ config MTD_NAND_HISI504
- help
- Enables support for NAND controller on Hisilicon SoC Hip04.
-
-+config MTD_NAND_BCM
-+ tristate "Support for NAND on some Broadcom SoC"
-+ help
-+ This driver is currently used for the NAND flash controller on the
-+ Broadcom BCM5301X (NorthStar) SoCs.
-+
- endif # MTD_NAND
---- a/drivers/mtd/nand/Makefile
-+++ b/drivers/mtd/nand/Makefile
-@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nan
- obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
- obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
- obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
-+obj-$(CONFIG_MTD_NAND_BCM) += bcm_nand.o
-
- nand-objs := nand_base.o nand_bbt.o nand_timings.o
---- /dev/null
-+++ b/drivers/mtd/nand/bcm_nand.c
-@@ -0,0 +1,1583 @@
-+/*
-+ * Nortstar NAND controller driver
-+ *
-+ * (c) Broadcom, Inc. 2012 All Rights Reserved.
-+ * Copyright 2014 Hauke Mehrtens <hauke@hauke-m.de>
-+ *
-+ * Licensed under the GNU/GPL. See COPYING for details.
-+ *
-+ * This module interfaces the NAND controller and hardware ECC capabilities
-+ * tp the generic NAND chip support in the NAND library.
-+ *
-+ * Notes:
-+ * This driver depends on generic NAND driver, but works at the
-+ * page level for operations.
-+ *
-+ * When a page is written, the ECC calculated also protects the OOB
-+ * bytes not taken by ECC, and so the OOB must be combined with any
-+ * OOB data that preceded the page-write operation in order for the
-+ * ECC to be calculated correctly.
-+ * Also, when the page is erased, but OOB data is not, HW ECC will
-+ * indicate an error, because it checks OOB too, which calls for some
-+ * help from the software in this driver.
-+ *
-+ * TBD:
-+ * Block locking/unlocking support, OTP support
-+ */
-+
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/io.h>
-+#include <linux/ioport.h>
-+#include <linux/interrupt.h>
-+#include <linux/delay.h>
-+#include <linux/err.h>
-+#include <linux/slab.h>
-+#include <linux/bcma/bcma.h>
-+#include <linux/of_irq.h>
-+
-+#include <linux/mtd/mtd.h>
-+#include <linux/mtd/nand.h>
-+#include <linux/mtd/partitions.h>
-+
-+#define NANDC_MAX_CHIPS 2 /* Only 2 CSn supported in NorthStar */
-+
-+/*
-+ * Driver private control structure
-+ */
-+struct bcmnand_ctrl {
-+ struct mtd_info mtd;
-+ struct nand_chip nand;
-+ struct bcma_device *core;
-+
-+ struct completion op_completion;
-+
-+ struct nand_ecclayout ecclayout;
-+ int cmd_ret; /* saved error code */
-+ unsigned char oob_index;
-+ unsigned char id_byte_index;
-+ unsigned char chip_num;
-+ unsigned char last_cmd;
-+ unsigned char ecc_level;
-+ unsigned char sector_size_shift;
-+ unsigned char sec_per_page_shift;
-+};
-+
-+
-+/*
-+ * IRQ numbers - offset from first irq in nandc_irq resource
-+ */
-+#define NANDC_IRQ_RD_MISS 0
-+#define NANDC_IRQ_ERASE_COMPLETE 1
-+#define NANDC_IRQ_COPYBACK_COMPLETE 2
-+#define NANDC_IRQ_PROGRAM_COMPLETE 3
-+#define NANDC_IRQ_CONTROLLER_RDY 4
-+#define NANDC_IRQ_RDBSY_RDY 5
-+#define NANDC_IRQ_ECC_UNCORRECTABLE 6
-+#define NANDC_IRQ_ECC_CORRECTABLE 7
-+#define NANDC_IRQ_NUM 8
-+
-+struct bcmnand_reg_field {
-+ unsigned int reg;
-+ unsigned int pos;
-+ unsigned int width;
-+};
-+
-+/*
-+ * REGISTERS
-+ *
-+ * Individual bit-fields aof registers are specificed here
-+ * for clarity, and the rest of the code will access each field
-+ * as if it was its own register.
-+ *
-+ * Following registers are off <reg_base>:
-+ */
-+#define REG_BIT_FIELD(r, p, w) ((struct bcmnand_reg_field){(r), (p), (w)})
-+
-+#define NANDC_8KB_PAGE_SUPPORT REG_BIT_FIELD(0x0, 31, 1)
-+#define NANDC_REV_MAJOR REG_BIT_FIELD(0x0, 8, 8)
-+#define NANDC_REV_MINOR REG_BIT_FIELD(0x0, 0, 8)
-+
-+#define NANDC_CMD_START_OPCODE REG_BIT_FIELD(0x4, 24, 5)
-+
-+#define NANDC_CMD_CS_SEL REG_BIT_FIELD(0x8, 16, 3)
-+#define NANDC_CMD_EXT_ADDR REG_BIT_FIELD(0x8, 0, 16)
-+
-+#define NANDC_CMD_ADDRESS REG_BIT_FIELD(0xc, 0, 32)
-+#define NANDC_CMD_END_ADDRESS REG_BIT_FIELD(0x10, 0, 32)
-+
-+#define NANDC_INT_STATUS REG_BIT_FIELD(0x14, 0, 32)
-+#define NANDC_INT_STAT_CTLR_RDY REG_BIT_FIELD(0x14, 31, 1)
-+#define NANDC_INT_STAT_FLASH_RDY REG_BIT_FIELD(0x14, 30, 1)
-+#define NANDC_INT_STAT_CACHE_VALID REG_BIT_FIELD(0x14, 29, 1)
-+#define NANDC_INT_STAT_SPARE_VALID REG_BIT_FIELD(0x14, 28, 1)
-+#define NANDC_INT_STAT_ERASED REG_BIT_FIELD(0x14, 27, 1)
-+#define NANDC_INT_STAT_PLANE_RDY REG_BIT_FIELD(0x14, 26, 1)
-+#define NANDC_INT_STAT_FLASH_STATUS REG_BIT_FIELD(0x14, 0, 8)
-+
-+#define NANDC_CS_LOCK REG_BIT_FIELD(0x18, 31, 1)
-+#define NANDC_CS_AUTO_CONFIG REG_BIT_FIELD(0x18, 30, 1)
-+#define NANDC_CS_NAND_WP REG_BIT_FIELD(0x18, 29, 1)
-+#define NANDC_CS_BLK0_WP REG_BIT_FIELD(0x18, 28, 1)
-+#define NANDC_CS_SW_USING_CS(n) REG_BIT_FIELD(0x18, 8+(n), 1)
-+#define NANDC_CS_MAP_SEL_CS(n) REG_BIT_FIELD(0x18, 0+(n), 1)
-+
-+#define NANDC_XOR_ADDR_BLK0_ONLY REG_BIT_FIELD(0x1c, 31, 1)
-+#define NANDC_XOR_ADDR_CS(n) REG_BIT_FIELD(0x1c, 0+(n), 1)
-+
-+#define NANDC_LL_OP_RET_IDLE REG_BIT_FIELD(0x20, 31, 1)
-+#define NANDC_LL_OP_CLE REG_BIT_FIELD(0x20, 19, 1)
-+#define NANDC_LL_OP_ALE REG_BIT_FIELD(0x20, 18, 1)
-+#define NANDC_LL_OP_WE REG_BIT_FIELD(0x20, 17, 1)
-+#define NANDC_LL_OP_RE REG_BIT_FIELD(0x20, 16, 1)
-+#define NANDC_LL_OP_DATA REG_BIT_FIELD(0x20, 0, 16)
-+
-+#define NANDC_MPLANE_ADDR_EXT REG_BIT_FIELD(0x24, 0, 16)
-+#define NANDC_MPLANE_ADDR REG_BIT_FIELD(0x28, 0, 32)
-+
-+#define NANDC_ACC_CTRL_CS(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 32)
-+#define NANDC_ACC_CTRL_RD_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 31, 1)
-+#define NANDC_ACC_CTRL_WR_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 30, 1)
-+#define NANDC_ACC_CTRL_CE_CARE(n) REG_BIT_FIELD(0x50+((n)<<4), 29, 1)
-+#define NANDC_ACC_CTRL_PGM_RDIN(n) REG_BIT_FIELD(0x50+((n)<<4), 28, 1)
-+#define NANDC_ACC_CTRL_ERA_ECC_ERR(n) REG_BIT_FIELD(0x50+((n)<<4), 27, 1)
-+#define NANDC_ACC_CTRL_PGM_PARTIAL(n) REG_BIT_FIELD(0x50+((n)<<4), 26, 1)
-+#define NANDC_ACC_CTRL_WR_PREEMPT(n) REG_BIT_FIELD(0x50+((n)<<4), 25, 1)
-+#define NANDC_ACC_CTRL_PG_HIT(n) REG_BIT_FIELD(0x50+((n)<<4), 24, 1)
-+#define NANDC_ACC_CTRL_PREFETCH(n) REG_BIT_FIELD(0x50+((n)<<4), 23, 1)
-+#define NANDC_ACC_CTRL_CACHE_MODE(n) REG_BIT_FIELD(0x50+((n)<<4), 22, 1)
-+#define NANDC_ACC_CTRL_CACHE_LASTPG(n) REG_BIT_FIELD(0x50+((n)<<4), 21, 1)
-+#define NANDC_ACC_CTRL_ECC_LEVEL(n) REG_BIT_FIELD(0x50+((n)<<4), 16, 5)
-+#define NANDC_ACC_CTRL_SECTOR_1K(n) REG_BIT_FIELD(0x50+((n)<<4), 7, 1)
-+#define NANDC_ACC_CTRL_SPARE_SIZE(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 7)
-+
-+#define NANDC_CONFIG_CS(n) REG_BIT_FIELD(0x54+((n)<<4), 0, 32)
-+#define NANDC_CONFIG_LOCK(n) REG_BIT_FIELD(0x54+((n)<<4), 31, 1)
-+#define NANDC_CONFIG_BLK_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 28, 3)
-+#define NANDC_CONFIG_CHIP_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 24, 4)
-+#define NANDC_CONFIG_CHIP_WIDTH(n) REG_BIT_FIELD(0x54+((n)<<4), 23, 1)
-+#define NANDC_CONFIG_PAGE_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 20, 2)
-+#define NANDC_CONFIG_FUL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 16, 3)
-+#define NANDC_CONFIG_COL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 12, 3)
-+#define NANDC_CONFIG_BLK_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 8, 3)
-+
-+#define NANDC_TIMING_1_CS(n) REG_BIT_FIELD(0x58+((n)<<4), 0, 32)
-+#define NANDC_TIMING_2_CS(n) REG_BIT_FIELD(0x5c+((n)<<4), 0, 32)
-+ /* Individual bits for Timing registers - TBD */
-+
-+#define NANDC_CORR_STAT_THRESH_CS(n) REG_BIT_FIELD(0xc0, 6*(n), 6)
-+
-+#define NANDC_BLK_WP_END_ADDR REG_BIT_FIELD(0xc8, 0, 32)
-+
-+#define NANDC_MPLANE_ERASE_CYC2_OPCODE REG_BIT_FIELD(0xcc, 24, 8)
-+#define NANDC_MPLANE_READ_STAT_OPCODE REG_BIT_FIELD(0xcc, 16, 8)
-+#define NANDC_MPLANE_PROG_ODD_OPCODE REG_BIT_FIELD(0xcc, 8, 8)
-+#define NANDC_MPLANE_PROG_TRL_OPCODE REG_BIT_FIELD(0xcc, 0, 8)
-+
-+#define NANDC_MPLANE_PGCACHE_TRL_OPCODE REG_BIT_FIELD(0xd0, 24, 8)
-+#define NANDC_MPLANE_READ_STAT2_OPCODE REG_BIT_FIELD(0xd0, 16, 8)
-+#define NANDC_MPLANE_READ_EVEN_OPCODE REG_BIT_FIELD(0xd0, 8, 8)
-+#define NANDC_MPLANE_READ_ODD__OPCODE REG_BIT_FIELD(0xd0, 0, 8)
-+
-+#define NANDC_MPLANE_CTRL_ERASE_CYC2_EN REG_BIT_FIELD(0xd4, 31, 1)
-+#define NANDC_MPLANE_CTRL_RD_ADDR_SIZE REG_BIT_FIELD(0xd4, 30, 1)
-+#define NANDC_MPLANE_CTRL_RD_CYC_ADDR REG_BIT_FIELD(0xd4, 29, 1)
-+#define NANDC_MPLANE_CTRL_RD_COL_ADDR REG_BIT_FIELD(0xd4, 28, 1)
-+
-+#define NANDC_UNCORR_ERR_COUNT REG_BIT_FIELD(0xfc, 0, 32)
-+
-+#define NANDC_CORR_ERR_COUNT REG_BIT_FIELD(0x100, 0, 32)
-+
-+#define NANDC_READ_CORR_BIT_COUNT REG_BIT_FIELD(0x104, 0, 32)
-+
-+#define NANDC_BLOCK_LOCK_STATUS REG_BIT_FIELD(0x108, 0, 8)
-+
-+#define NANDC_ECC_CORR_ADDR_CS REG_BIT_FIELD(0x10c, 16, 3)
-+#define NANDC_ECC_CORR_ADDR_EXT REG_BIT_FIELD(0x10c, 0, 16)
-+
-+#define NANDC_ECC_CORR_ADDR REG_BIT_FIELD(0x110, 0, 32)
-+
-+#define NANDC_ECC_UNC_ADDR_CS REG_BIT_FIELD(0x114, 16, 3)
-+#define NANDC_ECC_UNC_ADDR_EXT REG_BIT_FIELD(0x114, 0, 16)
-+
-+#define NANDC_ECC_UNC_ADDR REG_BIT_FIELD(0x118, 0, 32)
-+
-+#define NANDC_READ_ADDR_CS REG_BIT_FIELD(0x11c, 16, 3)
-+#define NANDC_READ_ADDR_EXT REG_BIT_FIELD(0x11c, 0, 16)
-+#define NANDC_READ_ADDR REG_BIT_FIELD(0x120, 0, 32)
-+
-+#define NANDC_PROG_ADDR_CS REG_BIT_FIELD(0x124, 16, 3)
-+#define NANDC_PROG_ADDR_EXT REG_BIT_FIELD(0x124, 0, 16)
-+#define NANDC_PROG_ADDR REG_BIT_FIELD(0x128, 0, 32)
-+
-+#define NANDC_CPYBK_ADDR_CS REG_BIT_FIELD(0x12c, 16, 3)
-+#define NANDC_CPYBK_ADDR_EXT REG_BIT_FIELD(0x12c, 0, 16)
-+#define NANDC_CPYBK_ADDR REG_BIT_FIELD(0x130, 0, 32)
-+
-+#define NANDC_ERASE_ADDR_CS REG_BIT_FIELD(0x134, 16, 3)
-+#define NANDC_ERASE_ADDR_EXT REG_BIT_FIELD(0x134, 0, 16)
-+#define NANDC_ERASE_ADDR REG_BIT_FIELD(0x138, 0, 32)
-+
-+#define NANDC_INV_READ_ADDR_CS REG_BIT_FIELD(0x13c, 16, 3)
-+#define NANDC_INV_READ_ADDR_EXT REG_BIT_FIELD(0x13c, 0, 16)
-+#define NANDC_INV_READ_ADDR REG_BIT_FIELD(0x140, 0, 32)
-+
-+#define NANDC_INIT_STAT REG_BIT_FIELD(0x144, 0, 32)
-+#define NANDC_INIT_ONFI_DONE REG_BIT_FIELD(0x144, 31, 1)
-+#define NANDC_INIT_DEVID_DONE REG_BIT_FIELD(0x144, 30, 1)
-+#define NANDC_INIT_SUCCESS REG_BIT_FIELD(0x144, 29, 1)
-+#define NANDC_INIT_FAIL REG_BIT_FIELD(0x144, 28, 1)
-+#define NANDC_INIT_BLANK REG_BIT_FIELD(0x144, 27, 1)
-+#define NANDC_INIT_TIMEOUT REG_BIT_FIELD(0x144, 26, 1)
-+#define NANDC_INIT_UNC_ERROR REG_BIT_FIELD(0x144, 25, 1)
-+#define NANDC_INIT_CORR_ERROR REG_BIT_FIELD(0x144, 24, 1)
-+#define NANDC_INIT_PARAM_RDY REG_BIT_FIELD(0x144, 23, 1)
-+#define NANDC_INIT_AUTH_FAIL REG_BIT_FIELD(0x144, 22, 1)
-+
-+#define NANDC_ONFI_STAT REG_BIT_FIELD(0x148, 0, 32)
-+#define NANDC_ONFI_DEBUG REG_BIT_FIELD(0x148, 28, 4)
-+#define NANDC_ONFI_PRESENT REG_BIT_FIELD(0x148, 27, 1)
-+#define NANDC_ONFI_BADID_PG2 REG_BIT_FIELD(0x148, 5, 1)
-+#define NANDC_ONFI_BADID_PG1 REG_BIT_FIELD(0x148, 4, 1)
-+#define NANDC_ONFI_BADID_PG0 REG_BIT_FIELD(0x148, 3, 1)
-+#define NANDC_ONFI_BADCRC_PG2 REG_BIT_FIELD(0x148, 2, 1)
-+#define NANDC_ONFI_BADCRC_PG1 REG_BIT_FIELD(0x148, 1, 1)
-+#define NANDC_ONFI_BADCRC_PG0 REG_BIT_FIELD(0x148, 0, 1)
-+
-+#define NANDC_ONFI_DEBUG_DATA REG_BIT_FIELD(0x14c, 0, 32)
-+
-+#define NANDC_SEMAPHORE REG_BIT_FIELD(0x150, 0, 8)
-+
-+#define NANDC_DEVID_BYTE(b) REG_BIT_FIELD(0x194+((b)&0x4), \
-+ 24-(((b)&3)<<3), 8)
-+
-+#define NANDC_LL_RDDATA REG_BIT_FIELD(0x19c, 0, 16)
-+
-+#define NANDC_INT_N_REG(n) REG_BIT_FIELD(0xf00|((n)<<2), 0, 1)
-+#define NANDC_INT_DIREC_READ_MISS REG_BIT_FIELD(0xf00, 0, 1)
-+#define NANDC_INT_ERASE_DONE REG_BIT_FIELD(0xf04, 0, 1)
-+#define NANDC_INT_CPYBK_DONE REG_BIT_FIELD(0xf08, 0, 1)
-+#define NANDC_INT_PROGRAM_DONE REG_BIT_FIELD(0xf0c, 0, 1)
-+#define NANDC_INT_CONTROLLER_RDY REG_BIT_FIELD(0xf10, 0, 1)
-+#define NANDC_INT_RDBSY_RDY REG_BIT_FIELD(0xf14, 0, 1)
-+#define NANDC_INT_ECC_UNCORRECTABLE REG_BIT_FIELD(0xf18, 0, 1)
-+#define NANDC_INT_ECC_CORRECTABLE REG_BIT_FIELD(0xf1c, 0, 1)
-+
-+/*
-+ * Following registers are treated as contigous IO memory, offset is from
-+ * <reg_base>, and the data is in big-endian byte order
-+ */
-+#define NANDC_SPARE_AREA_READ_OFF 0x200
-+#define NANDC_SPARE_AREA_WRITE_OFF 0x280
-+#define NANDC_CACHE_OFF 0x400
-+#define NANDC_CACHE_SIZE (128*4)
-+
-+struct bcmnand_areg_field {
-+ unsigned int reg;
-+ unsigned int pos;
-+ unsigned int width;
-+};
-+
-+/*
-+ * Following are IDM (a.k.a. Slave Wrapper) registers are off <idm_base>:
-+ */
-+#define IDMREG_BIT_FIELD(r, p, w) ((struct bcmnand_areg_field){(r), (p), (w)})
-+
-+#define NANDC_IDM_AXI_BIG_ENDIAN IDMREG_BIT_FIELD(0x408, 28, 1)
-+#define NANDC_IDM_APB_LITTLE_ENDIAN IDMREG_BIT_FIELD(0x408, 24, 1)
-+#define NANDC_IDM_TM IDMREG_BIT_FIELD(0x408, 16, 5)
-+#define NANDC_IDM_IRQ_CORRECABLE_EN IDMREG_BIT_FIELD(0x408, 9, 1)
-+#define NANDC_IDM_IRQ_UNCORRECABLE_EN IDMREG_BIT_FIELD(0x408, 8, 1)
-+#define NANDC_IDM_IRQ_RDYBSY_RDY_EN IDMREG_BIT_FIELD(0x408, 7, 1)
-+#define NANDC_IDM_IRQ_CONTROLLER_RDY_EN IDMREG_BIT_FIELD(0x408, 6, 1)
-+#define NANDC_IDM_IRQ_PRPOGRAM_COMP_EN IDMREG_BIT_FIELD(0x408, 5, 1)
-+#define NANDC_IDM_IRQ_COPYBK_COMP_EN IDMREG_BIT_FIELD(0x408, 4, 1)
-+#define NANDC_IDM_IRQ_ERASE_COMP_EN IDMREG_BIT_FIELD(0x408, 3, 1)
-+#define NANDC_IDM_IRQ_READ_MISS_EN IDMREG_BIT_FIELD(0x408, 2, 1)
-+#define NANDC_IDM_IRQ_N_EN(n) IDMREG_BIT_FIELD(0x408, 2+(n), 1)
-+
-+#define NANDC_IDM_CLOCK_EN IDMREG_BIT_FIELD(0x408, 0, 1)
-+
-+#define NANDC_IDM_IO_ECC_CORR IDMREG_BIT_FIELD(0x500, 3, 1)
-+#define NANDC_IDM_IO_ECC_UNCORR IDMREG_BIT_FIELD(0x500, 2, 1)
-+#define NANDC_IDM_IO_RDYBSY IDMREG_BIT_FIELD(0x500, 1, 1)
-+#define NANDC_IDM_IO_CTRL_RDY IDMREG_BIT_FIELD(0x500, 0, 1)
-+
-+#define NANDC_IDM_RESET IDMREG_BIT_FIELD(0x800, 0, 1)
-+ /* Remaining IDM registers do not seem to be useful, skipped */
-+
-+/*
-+ * NAND Controller has its own command opcodes
-+ * different from opcodes sent to the actual flash chip
-+ */
-+#define NANDC_CMD_OPCODE_NULL 0
-+#define NANDC_CMD_OPCODE_PAGE_READ 1
-+#define NANDC_CMD_OPCODE_SPARE_READ 2
-+#define NANDC_CMD_OPCODE_STATUS_READ 3
-+#define NANDC_CMD_OPCODE_PAGE_PROG 4
-+#define NANDC_CMD_OPCODE_SPARE_PROG 5
-+#define NANDC_CMD_OPCODE_DEVID_READ 7
-+#define NANDC_CMD_OPCODE_BLOCK_ERASE 8
-+#define NANDC_CMD_OPCODE_FLASH_RESET 9
-+
-+/*
-+ * NAND Controller hardware ECC data size
-+ *
-+ * The following table contains the number of bytes needed for
-+ * each of the ECC levels, per "sector", which is either 512 or 1024 bytes.
-+ * The actual layout is as follows:
-+ * The entire spare area is equally divided into as many sections as there
-+ * are sectors per page, and the ECC data is located at the end of each
-+ * of these sections.
-+ * For example, given a 2K per page and 64 bytes spare device, configured for
-+ * sector size 1k and ECC level of 4, the spare area will be divided into 2
-+ * sections 32 bytes each, and the last 14 bytes of 32 in each section will
-+ * be filled with ECC data.
-+ * Note: the name of the algorythm and the number of error bits it can correct
-+ * is of no consequence to this driver, therefore omitted.
-+ */
-+struct bcmnand_ecc_size_s {
-+ unsigned char sector_size_shift;
-+ unsigned char ecc_level;
-+ unsigned char ecc_bytes_per_sec;
-+ unsigned char reserved;
-+};
-+
-+static const struct bcmnand_ecc_size_s bcmnand_ecc_sizes[] = {
-+ { 9, 0, 0 },
-+ { 10, 0, 0 },
-+ { 9, 1, 2 },
-+ { 10, 1, 4 },
-+ { 9, 2, 4 },
-+ { 10, 2, 7 },
-+ { 9, 3, 6 },
-+ { 10, 3, 11 },
-+ { 9, 4, 7 },
-+ { 10, 4, 14 },
-+ { 9, 5, 9 },
-+ { 10, 5, 18 },
-+ { 9, 6, 11 },
-+ { 10, 6, 21 },
-+ { 9, 7, 13 },
-+ { 10, 7, 25 },
-+ { 9, 8, 14 },
-+ { 10, 8, 28 },
-+
-+ { 9, 9, 16 },
-+ { 9, 10, 18 },
-+ { 9, 11, 20 },
-+ { 9, 12, 21 },
-+
-+ { 10, 9, 32 },
-+ { 10, 10, 35 },
-+ { 10, 11, 39 },
-+ { 10, 12, 42 },
-+};
-+
-+/*
-+ * Populate the various fields that depend on how
-+ * the hardware ECC data is located in the spare area
-+ *
-+ * For this controiller, it is easier to fill-in these
-+ * structures at run time.
-+ *
-+ * The bad-block marker is assumed to occupy one byte
-+ * at chip->badblockpos, which must be in the first
-+ * sector of the spare area, namely it is either
-+ * at offset 0 or 5.
-+ * Some chips use both for manufacturer's bad block
-+ * markers, but we ingore that issue here, and assume only
-+ * one byte is used as bad-block marker always.
-+ */
-+static int bcmnand_hw_ecc_layout(struct bcmnand_ctrl *ctrl)
-+{
-+ struct nand_ecclayout *layout;
-+ struct device *dev = &ctrl->core->dev;
-+ unsigned int i, j, k;
-+ unsigned int ecc_per_sec, oob_per_sec;
-+ unsigned int bbm_pos = ctrl->nand.badblockpos;
-+
-+ /* Caclculate spare area per sector size */
-+ oob_per_sec = ctrl->mtd.oobsize >> ctrl->sec_per_page_shift;
-+
-+ /* Try to calculate the amount of ECC bytes per sector with a formula */
-+ if (ctrl->sector_size_shift == 9)
-+ ecc_per_sec = ((ctrl->ecc_level * 14) + 7) >> 3;
-+ else if (ctrl->sector_size_shift == 10)
-+ ecc_per_sec = ((ctrl->ecc_level * 14) + 3) >> 2;
-+ else
-+ ecc_per_sec = oob_per_sec + 1; /* cause an error if not in table */
-+
-+ /* Now find out the answer according to the table */
-+ for (i = 0; i < ARRAY_SIZE(bcmnand_ecc_sizes); i++) {
-+ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
-+ bcmnand_ecc_sizes[i].sector_size_shift ==
-+ ctrl->sector_size_shift) {
-+ break;
-+ }
-+ }
-+
-+ /* Table match overrides formula */
-+ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
-+ bcmnand_ecc_sizes[i].sector_size_shift == ctrl->sector_size_shift)
-+ ecc_per_sec = bcmnand_ecc_sizes[i].ecc_bytes_per_sec;
-+
-+ /* Return an error if calculated ECC leaves no room for OOB */
-+ if ((ctrl->sec_per_page_shift != 0 && ecc_per_sec >= oob_per_sec) ||
-+ (ctrl->sec_per_page_shift == 0 && ecc_per_sec >= (oob_per_sec - 1))) {
-+ dev_err(dev, "ECC level %d too high, leaves no room for OOB data\n",
-+ ctrl->ecc_level);
-+ return -EINVAL;
-+ }
-+
-+ /* Fill in the needed fields */
-+ ctrl->nand.ecc.size = ctrl->mtd.writesize >> ctrl->sec_per_page_shift;
-+ ctrl->nand.ecc.bytes = ecc_per_sec;
-+ ctrl->nand.ecc.steps = 1 << ctrl->sec_per_page_shift;
-+ ctrl->nand.ecc.total = ecc_per_sec << ctrl->sec_per_page_shift;
-+ ctrl->nand.ecc.strength = ctrl->ecc_level;
-+
-+ /* Build an ecc layout data structure */
-+ layout = &ctrl->ecclayout;
-+ memset(layout, 0, sizeof(*layout));
-+
-+ /* Total number of bytes used by HW ECC */
-+ layout->eccbytes = ecc_per_sec << ctrl->sec_per_page_shift;
-+
-+ /* Location for each of the HW ECC bytes */
-+ for (i = j = 0, k = 1;
-+ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes;
-+ i++, j++) {
-+ /* switch sector # */
-+ if (j == ecc_per_sec) {
-+ j = 0;
-+ k++;
-+ }
-+ /* save position of each HW-generated ECC byte */
-+ layout->eccpos[i] = (oob_per_sec * k) - ecc_per_sec + j;
-+
-+ /* Check that HW ECC does not overlap bad-block marker */
-+ if (bbm_pos == layout->eccpos[i]) {
-+ dev_err(dev, "ECC level %d too high, HW ECC collides with bad-block marker position\n",
-+ ctrl->ecc_level);
-+ return -EINVAL;
-+ }
-+ }
-+
-+ /* Location of all user-available OOB byte-ranges */
-+ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++) {
-+ struct nand_oobfree *oobfree = &layout->oobfree[i];
-+
-+ if (i >= (1 << ctrl->sec_per_page_shift))
-+ break;
-+ oobfree->offset = oob_per_sec * i;
-+ oobfree->length = oob_per_sec - ecc_per_sec;
-+
-+ /* Bad-block marker must be in the first sector spare area */
-+ if (WARN_ON(bbm_pos >= (oobfree->offset + oobfree->length)))
-+ return -EINVAL;
-+
-+ if (i != 0)
-+ continue;
-+
-+ /* Remove bad-block marker from available byte range */
-+ if (bbm_pos == oobfree->offset) {
-+ oobfree->offset += 1;
-+ oobfree->length -= 1;
-+ } else if (bbm_pos == (oobfree->offset + oobfree->length - 1)) {
-+ oobfree->length -= 1;
-+ } else {
-+ layout->oobfree[i + 1].offset = bbm_pos + 1;
-+ layout->oobfree[i + 1].length =
-+ oobfree->length - bbm_pos - 1;
-+ oobfree->length = bbm_pos;
-+ i++;
-+ }
-+ }
-+
-+ layout->oobavail = ((oob_per_sec - ecc_per_sec)
-+ << ctrl->sec_per_page_shift) - 1;
-+
-+ ctrl->mtd.oobavail = layout->oobavail;
-+ ctrl->nand.ecc.layout = layout;
-+
-+ /* Output layout for debugging */
-+ dev_dbg(dev, "Spare area=%d eccbytes %d, ecc bytes located at:\n",
-+ ctrl->mtd.oobsize, layout->eccbytes);
-+ for (i = j = 0;
-+ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes; i++)
-+ pr_debug(" %d", layout->eccpos[i]);
-+ pr_debug("\n");
-+
-+ dev_dbg(dev, "Available %d bytes at (off,len):\n", layout->oobavail);
-+ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++)
-+ pr_debug("(%d,%d) ", layout->oobfree[i].offset,
-+ layout->oobfree[i].length);
-+ pr_debug("\n");
-+
-+ return 0;
-+}
-+
-+/*
-+ * Register bit-field manipulation routines
-+ */
-+
-+static inline unsigned int bcmnand_reg_read(struct bcmnand_ctrl *ctrl,
-+ struct bcmnand_reg_field rbf)
-+{
-+ u32 val;
-+
-+ val = bcma_read32(ctrl->core, rbf.reg);
-+ val >>= rbf.pos;
-+ val &= (1 << rbf.width) - 1;
-+
-+ return val;
-+}
-+
-+static inline void bcmnand_reg_write(struct bcmnand_ctrl *ctrl,
-+ struct bcmnand_reg_field rbf,
-+ unsigned newval)
-+{
-+ u32 val, msk;
-+
-+ msk = (1 << rbf.width) - 1;
-+ msk <<= rbf.pos;
-+ newval <<= rbf.pos;
-+ newval &= msk;
-+
-+ val = bcma_read32(ctrl->core, rbf.reg);
-+ val &= ~msk;
-+ val |= newval;
-+ bcma_write32(ctrl->core, rbf.reg, val);
-+}
-+
-+static inline unsigned int bcmnand_reg_aread(struct bcmnand_ctrl *ctrl,
-+ struct bcmnand_areg_field rbf)
-+{
-+ u32 val;
-+
-+ val = bcma_aread32(ctrl->core, rbf.reg);
-+ val >>= rbf.pos;
-+ val &= (1 << rbf.width) - 1;
-+
-+ return val;
-+}
-+
-+static inline void bcmnand_reg_awrite(struct bcmnand_ctrl *ctrl,
-+ struct bcmnand_areg_field rbf,
-+ unsigned int newval)
-+{
-+ u32 val, msk;
-+
-+ msk = (1 << rbf.width) - 1;
-+ msk <<= rbf.pos;
-+ newval <<= rbf.pos;
-+ newval &= msk;
-+
-+ val = bcma_aread32(ctrl->core, rbf.reg);
-+ val &= ~msk;
-+ val |= newval;
-+ bcma_awrite32(ctrl->core, rbf.reg, val);
-+}
-+
-+/*
-+ * NAND Interface - dev_ready
-+ *
-+ * Return 1 iff device is ready, 0 otherwise
-+ */
-+static int bcmnand_dev_ready(struct mtd_info *mtd)
-+{
-+ struct nand_chip *chip = mtd->priv;
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+
-+ return bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY);
-+}
-+
-+/*
-+ * Interrupt service routines
-+ */
-+static irqreturn_t bcmnand_isr(int irq, void *dev_id)
-+{
-+ struct bcmnand_ctrl *ctrl = dev_id;
-+ int irq_off;
-+
-+ irq_off = irq - ctrl->core->irq;
-+ WARN_ON(irq_off < 0 || irq_off >= NANDC_IRQ_NUM);
-+
-+ if (!bcmnand_reg_read(ctrl, NANDC_INT_N_REG(irq_off)))
-+ return IRQ_NONE;
-+
-+ /* Acknowledge interrupt */
-+ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
-+
-+ /* Wake up task */
-+ complete(&ctrl->op_completion);
-+
-+ return IRQ_HANDLED;
-+}
-+
-+static int bcmnand_wait_interrupt(struct bcmnand_ctrl *ctrl,
-+ unsigned int irq_off,
-+ unsigned int timeout_usec)
-+{
-+ long timeout_jiffies;
-+ int ret = 0;
-+
-+ reinit_completion(&ctrl->op_completion);
-+
-+ /* Acknowledge interrupt */
-+ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
-+
-+ /* Enable IRQ to wait on */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 1);
-+
-+ timeout_jiffies = 1 + usecs_to_jiffies(timeout_usec);
-+
-+ if (irq_off != NANDC_IRQ_CONTROLLER_RDY ||
-+ 0 == bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)) {
-+
-+ timeout_jiffies = wait_for_completion_timeout(
-+ &ctrl->op_completion, timeout_jiffies);
-+
-+ if (timeout_jiffies < 0)
-+ ret = timeout_jiffies;
-+ if (timeout_jiffies == 0)
-+ ret = -ETIME;
-+ }
-+
-+ /* Disable IRQ, we're done waiting */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
-+
-+ if (bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY))
-+ ret = 0;
-+
-+ return ret;
-+}
-+
-+/*
-+ * wait for command completion
-+ */
-+static int bcmnand_wait_cmd(struct bcmnand_ctrl *ctrl, unsigned int timeout_usec)
-+{
-+ unsigned int retries;
-+
-+ if (bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY))
-+ return 0;
-+
-+ /* If the timeout is long, wait for interrupt */
-+ if (timeout_usec >= jiffies_to_usecs(1) >> 4)
-+ return bcmnand_wait_interrupt(
-+ ctrl, NANDC_IRQ_CONTROLLER_RDY, timeout_usec);
-+
-+ /* Wait for completion of the prior command */
-+ retries = (timeout_usec >> 3) + 1;
-+
-+ while (retries-- &&
-+ 0 == bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY)) {
-+ cpu_relax();
-+ udelay(6);
-+ }
-+
-+ if (retries == 0)
-+ return -ETIME;
-+
-+ return 0;
-+}
-+
-+
-+/*
-+ * NAND Interface - waitfunc
-+ */
-+static int bcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
-+{
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+ unsigned int to;
-+ int ret;
-+
-+ /* figure out timeout based on what command is on */
-+ switch (ctrl->last_cmd) {
-+ default:
-+ case NAND_CMD_ERASE1:
-+ case NAND_CMD_ERASE2:
-+ to = 1 << 16;
-+ break;
-+ case NAND_CMD_STATUS:
-+ case NAND_CMD_RESET:
-+ to = 256;
-+ break;
-+ case NAND_CMD_READID:
-+ to = 1024;
-+ break;
-+ case NAND_CMD_READ1:
-+ case NAND_CMD_READ0:
-+ to = 2048;
-+ break;
-+ case NAND_CMD_PAGEPROG:
-+ to = 4096;
-+ break;
-+ case NAND_CMD_READOOB:
-+ to = 512;
-+ break;
-+ }
-+
-+ /* deliver deferred error code if any */
-+ ret = ctrl->cmd_ret;
-+ if (ret < 0)
-+ ctrl->cmd_ret = 0;
-+ else
-+ ret = bcmnand_wait_cmd(ctrl, to);
-+
-+ /* Timeout */
-+ if (ret < 0)
-+ return NAND_STATUS_FAIL;
-+
-+ ret = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
-+
-+ return ret;
-+}
-+
-+/*
-+ * NAND Interface - read_oob
-+ */
-+static int bcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-+ int page)
-+{
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+ unsigned int n = ctrl->chip_num;
-+ void __iomem *ctrl_spare;
-+ unsigned int spare_per_sec, sector;
-+ u64 nand_addr;
-+
-+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
-+
-+ /* Set the page address for the following commands */
-+ nand_addr = ((u64)page << chip->page_shift);
-+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
-+
-+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
-+
-+ /* Disable ECC validation for spare area reads */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), 0);
-+
-+ /* Loop all sectors in page */
-+ for (sector = 0; sector < (1<<ctrl->sec_per_page_shift); sector++) {
-+ unsigned int col;
-+
-+ col = (sector << ctrl->sector_size_shift);
-+
-+ /* Issue command to read partial page */
-+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
-+
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_SPARE_READ);
-+
-+ /* Wait for the command to complete */
-+ if (bcmnand_wait_cmd(ctrl, (sector == 0) ? 10000 : 100))
-+ return -EIO;
-+
-+ if (!bcmnand_reg_read(ctrl, NANDC_INT_STAT_SPARE_VALID))
-+ return -EIO;
-+
-+ /* Set controller to Little Endian mode for copying */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
-+
-+ memcpy(chip->oob_poi + sector * spare_per_sec,
-+ ctrl_spare, spare_per_sec);
-+
-+ /* Return to Big Endian mode for commands etc */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
-+ }
-+
-+ return 0;
-+}
-+
-+/*
-+ * NAND Interface - write_oob
-+ */
-+static int bcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-+ int page)
-+{
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+ unsigned int n = ctrl->chip_num;
-+ void __iomem *ctrl_spare;
-+ unsigned int spare_per_sec, sector, num_sec;
-+ u64 nand_addr;
-+ int to, status = 0;
-+
-+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
-+
-+ /* Disable ECC generation for spare area writes */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), 0);
-+
-+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
-+
-+ /* Set the page address for the following commands */
-+ nand_addr = ((u64)page << chip->page_shift);
-+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
-+
-+ /* Must allow partial programming to change spare area only */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 1);
-+
-+ num_sec = 1 << ctrl->sec_per_page_shift;
-+ /* Loop all sectors in page */
-+ for (sector = 0; sector < num_sec; sector++) {
-+ unsigned int col;
-+
-+ /* Spare area accessed by the data sector offset */
-+ col = (sector << ctrl->sector_size_shift);
-+
-+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
-+
-+ /* Set controller to Little Endian mode for copying */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
-+
-+ memcpy(ctrl_spare, chip->oob_poi + sector * spare_per_sec,
-+ spare_per_sec);
-+
-+ /* Return to Big Endian mode for commands etc */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
-+
-+ /* Push spare bytes into internal buffer, last goes to flash */
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_SPARE_PROG);
-+
-+ if (sector == (num_sec - 1))
-+ to = 1 << 16;
-+ else
-+ to = 1 << 10;
-+
-+ if (bcmnand_wait_cmd(ctrl, to))
-+ return -EIO;
-+ }
-+
-+ /* Restore partial programming inhibition */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 0);
-+
-+ status = bcmnand_waitfunc(mtd, chip);
-+ return status & NAND_STATUS_FAIL ? -EIO : 0;
-+}
-+
-+/*
-+ * verify that a buffer is all erased
-+ */
-+static bool bcmnand_buf_erased(const void *buf, unsigned int len)
-+{
-+ unsigned int i;
-+ const u32 *p = buf;
-+
-+ for (i = 0; i < (len >> 2); i++) {
-+ if (p[i] != 0xffffffff)
-+ return false;
-+ }
-+ return true;
-+}
-+
-+/*
-+ * read a page, with or without ECC checking
-+ */
-+static int bcmnand_read_page_do(struct mtd_info *mtd, struct nand_chip *chip,
-+ uint8_t *buf, int page, bool ecc)
-+{
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+ unsigned int n = ctrl->chip_num;
-+ void __iomem *ctrl_cache;
-+ void __iomem *ctrl_spare;
-+ unsigned int data_bytes;
-+ unsigned int spare_per_sec;
-+ unsigned int sector, to = 1 << 16;
-+ u32 err_soft_reg, err_hard_reg;
-+ unsigned int hard_err_count = 0;
-+ int ret;
-+ u64 nand_addr;
-+
-+ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
-+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
-+
-+ /* Reset ECC error stats */
-+ err_hard_reg = bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT);
-+ err_soft_reg = bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
-+
-+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
-+
-+ /* Set the page address for the following commands */
-+ nand_addr = ((u64)page << chip->page_shift);
-+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
-+
-+ /* Enable ECC validation for ecc page reads */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), ecc);
-+
-+ /* Loop all sectors in page */
-+ for (sector = 0; sector < (1 << ctrl->sec_per_page_shift); sector++) {
-+ data_bytes = 0;
-+
-+ /* Copy partial sectors sized by cache reg */
-+ while (data_bytes < (1<<ctrl->sector_size_shift)) {
-+ unsigned int col;
-+
-+ col = data_bytes + (sector << ctrl->sector_size_shift);
-+
-+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
-+ nand_addr + col);
-+
-+ /* Issue command to read partial page */
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_PAGE_READ);
-+
-+ /* Wait for the command to complete */
-+ ret = bcmnand_wait_cmd(ctrl, to);
-+ if (ret < 0)
-+ return ret;
-+
-+ /* Set controller to Little Endian mode for copying */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
-+
-+ if (data_bytes == 0) {
-+ memcpy(chip->oob_poi + sector * spare_per_sec,
-+ ctrl_spare, spare_per_sec);
-+ }
-+
-+ memcpy(buf + col, ctrl_cache, NANDC_CACHE_SIZE);
-+ data_bytes += NANDC_CACHE_SIZE;
-+
-+ /* Return to Big Endian mode for commands etc */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
-+
-+ /* Next iterations should go fast */
-+ to = 1 << 10;
-+
-+ /* capture hard errors for each partial */
-+ if (err_hard_reg != bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT)) {
-+ int era = bcmnand_reg_read(ctrl, NANDC_INT_STAT_ERASED);
-+
-+ if (!era &&
-+ !bcmnand_buf_erased(buf + col, NANDC_CACHE_SIZE))
-+ hard_err_count++;
-+
-+ err_hard_reg = bcmnand_reg_read(ctrl,
-+ NANDC_UNCORR_ERR_COUNT);
-+ }
-+ }
-+ }
-+
-+ if (!ecc)
-+ return 0;
-+
-+ /* Report hard ECC errors */
-+ if (hard_err_count)
-+ mtd->ecc_stats.failed++;
-+
-+ /* Get ECC soft error stats */
-+ mtd->ecc_stats.corrected += err_soft_reg -
-+ bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
-+
-+ return 0;
-+}
-+
-+/*
-+ * NAND Interface - read_page_ecc
-+ */
-+static int bcmnand_read_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
-+ uint8_t *buf, int oob_required, int page)
-+{
-+ return bcmnand_read_page_do(mtd, chip, buf, page, true);
-+}
-+
-+/*
-+ * NAND Interface - read_page_raw
-+ */
-+static int bcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-+ uint8_t *buf, int oob_required, int page)
-+{
-+ return bcmnand_read_page_do(mtd, chip, buf, page, true);
-+}
-+
-+/*
-+ * do page write, with or without ECC generation enabled
-+ */
-+static int bcmnand_write_page_do(struct mtd_info *mtd, struct nand_chip *chip,
-+ const uint8_t *buf, bool ecc)
-+{
-+ struct bcmnand_ctrl *ctrl = chip->priv;
-+ unsigned int n = ctrl->chip_num;
-+ void __iomem *ctrl_cache;
-+ void __iomem *ctrl_spare;
-+ unsigned int spare_per_sec, sector, num_sec;
-+ unsigned int data_bytes, spare_bytes;
-+ int i, to;
-+ uint8_t *tmp_poi;
-+ u32 nand_addr;
-+
-+ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
-+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
-+
-+ /* Get start-of-page address */
-+ nand_addr = bcmnand_reg_read(ctrl, NANDC_CMD_ADDRESS);
-+
-+ tmp_poi = kmalloc(mtd->oobsize, GFP_KERNEL);
-+ if (!tmp_poi)
-+ return -ENOMEM;
-+
-+ /* Retreive pre-existing OOB values */
-+ memcpy(tmp_poi, chip->oob_poi, mtd->oobsize);
-+ ctrl->cmd_ret = bcmnand_read_oob(mtd, chip,
-+ nand_addr >> chip->page_shift);
-+ if (ctrl->cmd_ret < 0) {
-+ kfree(tmp_poi);
-+ return ctrl->cmd_ret;
-+ }
-+
-+ /* Apply new OOB data bytes just like they would end up on the chip */
-+ for (i = 0; i < mtd->oobsize; i++)
-+ chip->oob_poi[i] &= tmp_poi[i];
-+ kfree(tmp_poi);
-+
-+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
-+
-+ /* Enable ECC generation for ecc page write, if requested */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), ecc);
-+
-+ spare_bytes = 0;
-+ num_sec = 1 << ctrl->sec_per_page_shift;
-+
-+ /* Loop all sectors in page */
-+ for (sector = 0; sector < num_sec; sector++) {
-+ data_bytes = 0;
-+
-+ /* Copy partial sectors sized by cache reg */
-+ while (data_bytes < (1<<ctrl->sector_size_shift)) {
-+ unsigned int col;
-+
-+ col = data_bytes +
-+ (sector << ctrl->sector_size_shift);
-+
-+ /* Set address of 512-byte sub-page */
-+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
-+ nand_addr + col);
-+
-+ /* Set controller to Little Endian mode for copying */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN,
-+ 1);
-+
-+ /* Set spare area is written at each sector start */
-+ if (data_bytes == 0) {
-+ memcpy(ctrl_spare,
-+ chip->oob_poi + spare_bytes,
-+ spare_per_sec);
-+ spare_bytes += spare_per_sec;
-+ }
-+
-+ /* Copy sub-page data */
-+ memcpy(ctrl_cache, buf + col, NANDC_CACHE_SIZE);
-+ data_bytes += NANDC_CACHE_SIZE;
-+
-+ /* Return to Big Endian mode for commands etc */
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
-+
-+ /* Push data into internal cache */
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_PAGE_PROG);
-+
-+ /* Wait for the command to complete */
-+ if (sector == (num_sec - 1))
-+ to = 1 << 16;
-+ else
-+ to = 1 << 10;
-+ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
-+ if (ctrl->cmd_ret < 0)
-+ return ctrl->cmd_ret;
-+ }
-+ }
-+ return 0;
-+}
-+
-+/*
-+ * NAND Interface = write_page_ecc
-+ */
-+static int bcmnand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
-+ const uint8_t *buf, int oob_required)
-+{
-+ return bcmnand_write_page_do(mtd, chip, buf, true);
-+}
-+
-+/*
-+ * NAND Interface = write_page_raw
-+ */
-+static int bcmnand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-+ const uint8_t *buf, int oob_required)
-+{
-+ return bcmnand_write_page_do(mtd, chip, buf, false);
-+}
-+
-+/*
-+ * MTD Interface - read_byte
-+ *
-+ * This function emulates simple controllers behavior
-+ * for just a few relevant commands
-+ */
-+static uint8_t bcmnand_read_byte(struct mtd_info *mtd)
-+{
-+ struct nand_chip *nand = mtd->priv;
-+ struct bcmnand_ctrl *ctrl = nand->priv;
-+ struct device *dev = &ctrl->core->dev;
-+ uint8_t b = ~0;
-+
-+ switch (ctrl->last_cmd) {
-+ case NAND_CMD_READID:
-+ if (ctrl->id_byte_index < 8) {
-+ b = bcmnand_reg_read(ctrl, NANDC_DEVID_BYTE(
-+ ctrl->id_byte_index));
-+ ctrl->id_byte_index++;
-+ }
-+ break;
-+ case NAND_CMD_READOOB:
-+ if (ctrl->oob_index < mtd->oobsize)
-+ b = nand->oob_poi[ctrl->oob_index++];
-+ break;
-+ case NAND_CMD_STATUS:
-+ b = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
-+ break;
-+ default:
-+ dev_err(dev, "got unkown command: 0x%x in read_byte\n",
-+ ctrl->last_cmd);
-+ }
-+ return b;
-+}
-+
-+/*
-+ * MTD Interface - read_word
-+ *
-+ * Can not be tested without x16 chip, but the SoC does not support x16 i/f.
-+ */
-+static u16 bcmnand_read_word(struct mtd_info *mtd)
-+{
-+ u16 w = ~0;
-+
-+ w = bcmnand_read_byte(mtd);
-+ barrier();
-+ w |= bcmnand_read_byte(mtd) << 8;
-+
-+ return w;
-+}
-+
-+/*
-+ * MTD Interface - select a chip from an array
-+ */
-+static void bcmnand_select_chip(struct mtd_info *mtd, int chip)
-+{
-+ struct nand_chip *nand = mtd->priv;
-+ struct bcmnand_ctrl *ctrl = nand->priv;
-+
-+ ctrl->chip_num = chip;
-+ bcmnand_reg_write(ctrl, NANDC_CMD_CS_SEL, chip);
-+}
-+
-+/*
-+ * NAND Interface - emulate low-level NAND commands
-+ *
-+ * Only a few low-level commands are really needed by generic NAND,
-+ * and they do not call for CMD_LL operations the controller can support.
-+ */
-+static void bcmnand_cmdfunc(struct mtd_info *mtd, unsigned int command,
-+ int column, int page_addr)
-+{
-+ struct nand_chip *nand = mtd->priv;
-+ struct bcmnand_ctrl *ctrl = nand->priv;
-+ struct device *dev = &ctrl->core->dev;
-+ u64 nand_addr;
-+ unsigned int to = 1;
-+
-+ ctrl->last_cmd = command;
-+
-+ /* Set address for some commands */
-+ switch (command) {
-+ case NAND_CMD_ERASE1:
-+ column = 0;
-+ /*FALLTHROUGH*/
-+ case NAND_CMD_SEQIN:
-+ case NAND_CMD_READ0:
-+ case NAND_CMD_READ1:
-+ WARN_ON(column >= mtd->writesize);
-+ nand_addr = (u64) column |
-+ ((u64)page_addr << nand->page_shift);
-+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
-+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr);
-+ break;
-+ case NAND_CMD_ERASE2:
-+ case NAND_CMD_RESET:
-+ case NAND_CMD_READID:
-+ case NAND_CMD_READOOB:
-+ case NAND_CMD_PAGEPROG:
-+ default:
-+ /* Do nothing, address not used */
-+ break;
-+ }
-+
-+ /* Issue appropriate command to controller */
-+ switch (command) {
-+ case NAND_CMD_SEQIN:
-+ /* Only need to load command address, done */
-+ return;
-+
-+ case NAND_CMD_RESET:
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_FLASH_RESET);
-+ to = 1 << 8;
-+ break;
-+
-+ case NAND_CMD_READID:
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_DEVID_READ);
-+ ctrl->id_byte_index = 0;
-+ to = 1 << 8;
-+ break;
-+
-+ case NAND_CMD_READ0:
-+ case NAND_CMD_READ1:
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_PAGE_READ);
-+ to = 1 << 15;
-+ break;
-+ case NAND_CMD_STATUS:
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_STATUS_READ);
-+ to = 1 << 8;
-+ break;
-+ case NAND_CMD_ERASE1:
-+ return;
-+
-+ case NAND_CMD_ERASE2:
-+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
-+ NANDC_CMD_OPCODE_BLOCK_ERASE);
-+ to = 1 << 18;
-+ break;
-+
-+ case NAND_CMD_PAGEPROG:
-+ /* Cmd already set from write_page */
-+ return;
-+
-+ case NAND_CMD_READOOB:
-+ /* Emulate simple interface */
-+ bcmnand_read_oob(mtd, nand, page_addr);
-+ ctrl->oob_index = 0;
-+ return;
-+
-+ default:
-+ dev_err(dev, "got unkown command: 0x%x in cmdfunc\n",
-+ ctrl->last_cmd);
-+ }
-+
-+ /* Wait for command to complete */
-+ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
-+
-+}
-+
-+static int bcmnand_scan(struct mtd_info *mtd)
-+{
-+ struct nand_chip *nand = mtd->priv;
-+ struct bcmnand_ctrl *ctrl = nand->priv;
-+ struct device *dev = &ctrl->core->dev;
-+ bool sector_1k = false;
-+ unsigned int chip_num = 0;
-+ int ecc_level = 0;
-+ int ret;
-+
-+ ret = nand_scan_ident(mtd, NANDC_MAX_CHIPS, NULL);
-+ if (ret)
-+ return ret;
-+
-+ /* Get configuration from first chip */
-+ sector_1k = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_SECTOR_1K(0));
-+ ecc_level = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(0));
-+ mtd->writesize_shift = nand->page_shift;
-+
-+ ctrl->ecc_level = ecc_level;
-+ ctrl->sector_size_shift = sector_1k ? 10 : 9;
-+
-+ /* Configure spare area, tweak as needed */
-+ do {
-+ ctrl->sec_per_page_shift =
-+ mtd->writesize_shift - ctrl->sector_size_shift;
-+
-+ /* will return -EINVAL if OOB space exhausted */
-+ ret = bcmnand_hw_ecc_layout(ctrl);
-+
-+ /* First try to bump sector size to 1k, then decrease level */
-+ if (ret && nand->page_shift > 9 && ctrl->sector_size_shift < 10)
-+ ctrl->sector_size_shift = 10;
-+ else if (ret)
-+ ctrl->ecc_level--;
-+
-+ } while (ret && ctrl->ecc_level > 0);
-+
-+ if (WARN_ON(ctrl->ecc_level == 0))
-+ return -ENOENT;
-+
-+ if ((ctrl->sector_size_shift > 9) != (sector_1k == 1)) {
-+ dev_info(dev, "sector size adjusted to 1k\n");
-+ sector_1k = 1;
-+ }
-+
-+ if (ecc_level != ctrl->ecc_level) {
-+ dev_info(dev, "ECC level adjusted from %u to %u\n",
-+ ecc_level, ctrl->ecc_level);
-+ ecc_level = ctrl->ecc_level;
-+ }
-+
-+ /* handle the hardware chip config registers */
-+ for (chip_num = 0; chip_num < nand->numchips; chip_num++) {
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_SECTOR_1K(chip_num),
-+ sector_1k);
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip_num),
-+ ecc_level);
-+
-+ /* Large pages: no partial page programming */
-+ if (mtd->writesize > 512) {
-+ bcmnand_reg_write(ctrl,
-+ NANDC_ACC_CTRL_PGM_RDIN(chip_num), 0);
-+ bcmnand_reg_write(ctrl,
-+ NANDC_ACC_CTRL_PGM_PARTIAL(chip_num), 0);
-+ }
-+
-+ /* Do not raise ECC error when reading erased pages */
-+ /* This bit has only partial effect, driver needs to help */
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ERA_ECC_ERR(chip_num),
-+ 0);
-+
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PG_HIT(chip_num), 0);
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PREFETCH(chip_num), 0);
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_MODE(chip_num), 0);
-+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_LASTPG(chip_num),
-+ 0);
-+
-+ /* TBD: consolidate or at least verify the s/w and h/w geometries agree */
-+ }
-+
-+ /* Allow writing on device */
-+ if (!(nand->options & NAND_ROM))
-+ bcmnand_reg_write(ctrl, NANDC_CS_NAND_WP, 0);
-+
-+ dev_dbg(dev, "layout.oobavail=%d\n", nand->ecc.layout->oobavail);
-+
-+ ret = nand_scan_tail(mtd);
-+
-+ if (nand->badblockbits == 0)
-+ nand->badblockbits = 8;
-+ if (WARN_ON((1 << nand->page_shift) != mtd->writesize))
-+ return -EIO;
-+
-+ /* Spit out some key chip parameters as detected by nand_base */
-+ dev_dbg(dev, "erasesize=%d writesize=%d oobsize=%d page_shift=%d badblockpos=%d badblockbits=%d\n",
-+ mtd->erasesize, mtd->writesize, mtd->oobsize,
-+ nand->page_shift, nand->badblockpos, nand->badblockbits);
-+
-+ return ret;
-+}
-+
-+/*
-+ * main intiailization function
-+ */
-+static int bcmnand_ctrl_init(struct bcmnand_ctrl *ctrl)
-+{
-+ unsigned int chip;
-+ struct nand_chip *nand;
-+ struct mtd_info *mtd;
-+ struct device *dev = &ctrl->core->dev;
-+ int ret;
-+
-+ /* Software variables init */
-+ nand = &ctrl->nand;
-+ mtd = &ctrl->mtd;
-+
-+ init_completion(&ctrl->op_completion);
-+
-+ mtd->priv = nand;
-+ mtd->owner = THIS_MODULE;
-+ mtd->name = KBUILD_MODNAME;
-+
-+ nand->priv = ctrl;
-+
-+ nand->chip_delay = 5; /* not used */
-+ nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)~0L;
-+
-+ if (bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_WIDTH(0)))
-+ nand->options |= NAND_BUSWIDTH_16;
-+ nand->options |= NAND_SKIP_BBTSCAN; /* Dont need BBTs */
-+
-+ nand->options |= NAND_NO_SUBPAGE_WRITE; /* Subpages unsupported */
-+
-+ nand->dev_ready = bcmnand_dev_ready;
-+ nand->read_byte = bcmnand_read_byte;
-+ nand->read_word = bcmnand_read_word;
-+ nand->select_chip = bcmnand_select_chip;
-+ nand->cmdfunc = bcmnand_cmdfunc;
-+ nand->waitfunc = bcmnand_waitfunc;
-+
-+ nand->ecc.mode = NAND_ECC_HW;
-+ nand->ecc.read_page_raw = bcmnand_read_page_raw;
-+ nand->ecc.write_page_raw = bcmnand_write_page_raw;
-+ nand->ecc.read_page = bcmnand_read_page_ecc;
-+ nand->ecc.write_page = bcmnand_write_page_ecc;
-+ nand->ecc.read_oob = bcmnand_read_oob;
-+ nand->ecc.write_oob = bcmnand_write_oob;
-+
-+ /* Set AUTO_CNFIG bit - try to auto-detect chips */
-+ bcmnand_reg_write(ctrl, NANDC_CS_AUTO_CONFIG, 1);
-+
-+ usleep_range(1000, 1500);
-+
-+ /* Print out current chip config */
-+ for (chip = 0; chip < NANDC_MAX_CHIPS; chip++) {
-+ dev_dbg(dev, "chip[%d]: size=%#x block=%#x page=%#x ecc_level=%#x\n",
-+ chip,
-+ bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_SIZE(chip)),
-+ bcmnand_reg_read(ctrl, NANDC_CONFIG_BLK_SIZE(chip)),
-+ bcmnand_reg_read(ctrl, NANDC_CONFIG_PAGE_SIZE(chip)),
-+ bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip)));
-+ }
-+
-+ dev_dbg(dev, "Nand controller is reads=%d\n",
-+ bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY));
-+
-+ ret = bcmnand_scan(mtd);
-+ if (ret) {
-+ dev_err(dev, "scanning the nand flash chip failed with %i\n",
-+ ret);
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static int bcmnand_idm_init(struct bcmnand_ctrl *ctrl)
-+{
-+ int irq_off;
-+ unsigned int retries = 0x1000;
-+ struct device *dev = &ctrl->core->dev;
-+
-+ if (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET))
-+ dev_info(dev, "stuck in reset\n");
-+
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 1);
-+ if (!bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
-+ dev_err(dev, "reset of failed\n");
-+ return -EIO;
-+ }
-+
-+ while (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 0);
-+ cpu_relax();
-+ usleep_range(100, 150);
-+ if (!(retries--)) {
-+ dev_err(dev, "did not came back from reset\n");
-+ return -ETIMEDOUT;
-+ }
-+ }
-+
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_CLOCK_EN, 1);
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
-+ udelay(10);
-+
-+ dev_info(dev, "NAND Controller rev %d.%02d\n",
-+ bcmnand_reg_read(ctrl, NANDC_REV_MAJOR),
-+ bcmnand_reg_read(ctrl, NANDC_REV_MINOR));
-+
-+ usleep_range(250, 350);
-+
-+ /* Disable all IRQs */
-+ for (irq_off = 0; irq_off < NANDC_IRQ_NUM; irq_off++)
-+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
-+
-+ return 0;
-+}
-+
-+static const char * const part_probes[] = { "ofpart", "bcm47xxpart", NULL };
-+
-+/*
-+ * Top-level init function
-+ */
-+static int bcmnand_probe(struct bcma_device *core)
-+{
-+ struct mtd_part_parser_data parser_data;
-+ struct device *dev = &core->dev;
-+ struct bcmnand_ctrl *ctrl;
-+ int res, i, irq;
-+
-+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
-+ if (!ctrl)
-+ return -ENOMEM;
-+
-+ bcma_set_drvdata(core, ctrl);
-+
-+ ctrl->mtd.dev.parent = &core->dev;
-+ ctrl->core = core;
-+
-+ /* Acquire all interrupt lines */
-+ for (i = 0; i < NANDC_IRQ_NUM; i++) {
-+ irq = bcma_core_irq(core, i);
-+ if (!irq) {
-+ dev_err(dev, "IRQ idx %i not available\n", i);
-+ return -ENOENT;
-+ }
-+ res = devm_request_irq(dev, irq, bcmnand_isr, 0,
-+ KBUILD_MODNAME, ctrl);
-+ if (res < 0) {
-+ dev_err(dev, "problem requesting irq: %i (idx: %i)\n",
-+ irq, i);
-+ return res;
-+ }
-+ }
-+
-+ res = bcmnand_idm_init(ctrl);
-+ if (res)
-+ return res;
-+
-+ res = bcmnand_ctrl_init(ctrl);
-+ if (res)
-+ return res;
-+
-+ parser_data.of_node = dev->of_node;
-+ res = mtd_device_parse_register(&ctrl->mtd, part_probes, &parser_data, NULL, 0);
-+ if (res) {
-+ dev_err(dev, "Failed to register MTD device: %d\n", res);
-+ return res;
-+ }
-+ return 0;
-+}
-+
-+static void bcmnand_remove(struct bcma_device *core)
-+{
-+ struct bcmnand_ctrl *ctrl = bcma_get_drvdata(core);
-+
-+ mtd_device_unregister(&ctrl->mtd);
-+}
-+
-+static const struct bcma_device_id bcmnand_bcma_tbl[] = {
-+ BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_NAND, BCMA_ANY_REV, BCMA_ANY_CLASS),
-+ {},
-+};
-+MODULE_DEVICE_TABLE(bcma, bgmac_bcma_tbl);
-+
-+static struct bcma_driver bcmnand_bcma_driver = {
-+ .name = KBUILD_MODNAME,
-+ .id_table = bcmnand_bcma_tbl,
-+ .probe = bcmnand_probe,
-+ .remove = bcmnand_remove,
-+};
-+
-+static int __init bcmnand_init(void)
-+{
-+ return bcma_driver_register(&bcmnand_bcma_driver);
-+}
-+
-+static void __exit bcmnand_exit(void)
-+{
-+ bcma_driver_unregister(&bcmnand_bcma_driver);
-+}
-+
-+module_init(bcmnand_init)
-+module_exit(bcmnand_exit)
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Hauke Mehrtens");
-+MODULE_DESCRIPTION("Northstar on-chip NAND Flash Controller driver");