aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch
diff options
context:
space:
mode:
authorFelix Fietkau <nbd@nbd.name>2016-05-12 17:52:20 +0200
committerFelix Fietkau <nbd@nbd.name>2016-05-12 17:52:20 +0200
commitbe83f982a71eb76288d011d6681739059d9a6ead (patch)
tree910ee25687f09cd9abc43202a1aad703f0092645 /target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch
parent930195737a0916d80ad2f7fe8b0f8fe4e4691762 (diff)
downloadupstream-be83f982a71eb76288d011d6681739059d9a6ead.tar.gz
upstream-be83f982a71eb76288d011d6681739059d9a6ead.tar.bz2
upstream-be83f982a71eb76288d011d6681739059d9a6ead.zip
sunxi: delete old kernel versions
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Diffstat (limited to 'target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch')
-rw-r--r--target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch1493
1 files changed, 0 insertions, 1493 deletions
diff --git a/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch b/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch
deleted file mode 100644
index 0788c6f84c..0000000000
--- a/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch
+++ /dev/null
@@ -1,1493 +0,0 @@
---- a/drivers/crypto/Kconfig
-+++ b/drivers/crypto/Kconfig
-@@ -437,4 +437,21 @@ config CRYPTO_DEV_QCE
- hardware. To compile this driver as a module, choose M here. The
- module will be called qcrypto.
-
-+config CRYPTO_DEV_SUNXI_SS
-+ tristate "Support for Allwinner Security System cryptographic accelerator"
-+ depends on ARCH_SUNXI
-+ select CRYPTO_MD5
-+ select CRYPTO_SHA1
-+ select CRYPTO_AES
-+ select CRYPTO_DES
-+ select CRYPTO_BLKCIPHER
-+ help
-+ Some Allwinner SoC have a crypto accelerator named
-+ Security System. Select this if you want to use it.
-+ The Security System handle AES/DES/3DES ciphers in CBC mode
-+ and SHA1 and MD5 hash algorithms.
-+
-+ To compile this driver as a module, choose M here: the module
-+ will be called sunxi-ss.
-+
- endif # CRYPTO_HW
---- a/drivers/crypto/Makefile
-+++ b/drivers/crypto/Makefile
-@@ -25,3 +25,4 @@ obj-$(CONFIG_CRYPTO_DEV_TALITOS) += tali
- obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
- obj-$(CONFIG_CRYPTO_DEV_QAT) += qat/
- obj-$(CONFIG_CRYPTO_DEV_QCE) += qce/
-+obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss/
---- /dev/null
-+++ b/drivers/crypto/sunxi-ss/Makefile
-@@ -0,0 +1,2 @@
-+obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss.o
-+sunxi-ss-y += sunxi-ss-core.o sunxi-ss-hash.o sunxi-ss-cipher.o
---- /dev/null
-+++ b/drivers/crypto/sunxi-ss/sunxi-ss-cipher.c
-@@ -0,0 +1,489 @@
-+/*
-+ * sunxi-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
-+ *
-+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com>
-+ *
-+ * This file add support for AES cipher with 128,192,256 bits
-+ * keysize in CBC mode.
-+ * Add support also for DES and 3DES in CBC mode.
-+ *
-+ * You could find the datasheet in Documentation/arm/sunxi/README
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License as published by
-+ * the Free Software Foundation; either version 2 of the License, or
-+ * (at your option) any later version.
-+ */
-+#include "sunxi-ss.h"
-+
-+extern struct sunxi_ss_ctx *ss;
-+
-+static int sunxi_ss_cipher(struct ablkcipher_request *areq, u32 mode)
-+{
-+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+ const char *cipher_type;
-+
-+ if (areq->nbytes == 0)
-+ return 0;
-+
-+ if (areq->info == NULL) {
-+ dev_err(ss->dev, "ERROR: Empty IV\n");
-+ return -EINVAL;
-+ }
-+
-+ if (areq->src == NULL || areq->dst == NULL) {
-+ dev_err(ss->dev, "ERROR: Some SGs are NULL\n");
-+ return -EINVAL;
-+ }
-+
-+ cipher_type = crypto_tfm_alg_name(crypto_ablkcipher_tfm(tfm));
-+
-+ if (strcmp("cbc(aes)", cipher_type) == 0) {
-+ mode |= SS_OP_AES | SS_CBC | SS_ENABLED | op->keymode;
-+ return sunxi_ss_aes_poll(areq, mode);
-+ }
-+
-+ if (strcmp("cbc(des)", cipher_type) == 0) {
-+ mode |= SS_OP_DES | SS_CBC | SS_ENABLED | op->keymode;
-+ return sunxi_ss_des_poll(areq, mode);
-+ }
-+
-+ if (strcmp("cbc(des3_ede)", cipher_type) == 0) {
-+ mode |= SS_OP_3DES | SS_CBC | SS_ENABLED | op->keymode;
-+ return sunxi_ss_des_poll(areq, mode);
-+ }
-+
-+ dev_err(ss->dev, "ERROR: Cipher %s not handled\n", cipher_type);
-+ return -EINVAL;
-+}
-+
-+int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq)
-+{
-+ return sunxi_ss_cipher(areq, SS_ENCRYPTION);
-+}
-+
-+int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq)
-+{
-+ return sunxi_ss_cipher(areq, SS_DECRYPTION);
-+}
-+
-+int sunxi_ss_cipher_init(struct crypto_tfm *tfm)
-+{
-+ struct sunxi_tfm_ctx *op = crypto_tfm_ctx(tfm);
-+
-+ memset(op, 0, sizeof(struct sunxi_tfm_ctx));
-+ return 0;
-+}
-+
-+/*
-+ * Optimized function for the case where we have only one SG,
-+ * so we can use kmap_atomic
-+ */
-+static int sunxi_ss_aes_poll_atomic(struct ablkcipher_request *areq)
-+{
-+ u32 spaces;
-+ struct scatterlist *in_sg = areq->src;
-+ struct scatterlist *out_sg = areq->dst;
-+ void *src_addr;
-+ void *dst_addr;
-+ unsigned int ileft = areq->nbytes;
-+ unsigned int oleft = areq->nbytes;
-+ unsigned int todo;
-+ u32 *src32;
-+ u32 *dst32;
-+ u32 rx_cnt = 32;
-+ u32 tx_cnt = 0;
-+ int i;
-+
-+ src_addr = kmap_atomic(sg_page(in_sg)) + in_sg->offset;
-+ if (src_addr == NULL) {
-+ dev_err(ss->dev, "kmap_atomic error for src SG\n");
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+
-+ dst_addr = kmap_atomic(sg_page(out_sg)) + out_sg->offset;
-+ if (dst_addr == NULL) {
-+ dev_err(ss->dev, "kmap_atomic error for dst SG\n");
-+ writel(0, ss->base + SS_CTL);
-+ kunmap_atomic(src_addr);
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+
-+ src32 = (u32 *)src_addr;
-+ dst32 = (u32 *)dst_addr;
-+ ileft = areq->nbytes / 4;
-+ oleft = areq->nbytes / 4;
-+ i = 0;
-+ do {
-+ if (ileft > 0 && rx_cnt > 0) {
-+ todo = min(rx_cnt, ileft);
-+ ileft -= todo;
-+ do {
-+ writel_relaxed(*src32++,
-+ ss->base +
-+ SS_RXFIFO);
-+ todo--;
-+ } while (todo > 0);
-+ }
-+ if (tx_cnt > 0) {
-+ todo = min(tx_cnt, oleft);
-+ oleft -= todo;
-+ do {
-+ *dst32++ = readl_relaxed(ss->base +
-+ SS_TXFIFO);
-+ todo--;
-+ } while (todo > 0);
-+ }
-+ spaces = readl_relaxed(ss->base + SS_FCSR);
-+ rx_cnt = SS_RXFIFO_SPACES(spaces);
-+ tx_cnt = SS_TXFIFO_SPACES(spaces);
-+ } while (oleft > 0);
-+ writel(0, ss->base + SS_CTL);
-+ kunmap_atomic(src_addr);
-+ kunmap_atomic(dst_addr);
-+ mutex_unlock(&ss->lock);
-+ return 0;
-+}
-+
-+int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode)
-+{
-+ u32 spaces;
-+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
-+ /* when activating SS, the default FIFO space is 32 */
-+ u32 rx_cnt = 32;
-+ u32 tx_cnt = 0;
-+ u32 v;
-+ int i;
-+ struct scatterlist *in_sg = areq->src;
-+ struct scatterlist *out_sg = areq->dst;
-+ void *src_addr;
-+ void *dst_addr;
-+ unsigned int ileft = areq->nbytes;
-+ unsigned int oleft = areq->nbytes;
-+ unsigned int sgileft = areq->src->length;
-+ unsigned int sgoleft = areq->dst->length;
-+ unsigned int todo;
-+ u32 *src32;
-+ u32 *dst32;
-+
-+ mutex_lock(&ss->lock);
-+
-+ for (i = 0; i < op->keylen; i += 4)
-+ writel(*(op->key + i/4), ss->base + SS_KEY0 + i);
-+
-+ if (areq->info != NULL) {
-+ for (i = 0; i < 4 && i < ivsize / 4; i++) {
-+ v = *(u32 *)(areq->info + i * 4);
-+ writel(v, ss->base + SS_IV0 + i * 4);
-+ }
-+ }
-+ writel(mode, ss->base + SS_CTL);
-+
-+ /* If we have only one SG, we can use kmap_atomic */
-+ if (sg_next(in_sg) == NULL && sg_next(out_sg) == NULL)
-+ return sunxi_ss_aes_poll_atomic(areq);
-+
-+ /*
-+ * If we have more than one SG, we cannot use kmap_atomic since
-+ * we hold the mapping too long
-+ */
-+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset;
-+ if (src_addr == NULL) {
-+ dev_err(ss->dev, "KMAP error for src SG\n");
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+ dst_addr = kmap(sg_page(out_sg)) + out_sg->offset;
-+ if (dst_addr == NULL) {
-+ kunmap(sg_page(in_sg));
-+ dev_err(ss->dev, "KMAP error for dst SG\n");
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+ src32 = (u32 *)src_addr;
-+ dst32 = (u32 *)dst_addr;
-+ ileft = areq->nbytes / 4;
-+ oleft = areq->nbytes / 4;
-+ sgileft = in_sg->length / 4;
-+ sgoleft = out_sg->length / 4;
-+ do {
-+ spaces = readl_relaxed(ss->base + SS_FCSR);
-+ rx_cnt = SS_RXFIFO_SPACES(spaces);
-+ tx_cnt = SS_TXFIFO_SPACES(spaces);
-+ todo = min3(rx_cnt, ileft, sgileft);
-+ if (todo > 0) {
-+ ileft -= todo;
-+ sgileft -= todo;
-+ }
-+ while (todo > 0) {
-+ writel_relaxed(*src32++, ss->base + SS_RXFIFO);
-+ todo--;
-+ }
-+ if (in_sg != NULL && sgileft == 0 && ileft > 0) {
-+ kunmap(sg_page(in_sg));
-+ in_sg = sg_next(in_sg);
-+ while (in_sg != NULL && in_sg->length == 0)
-+ in_sg = sg_next(in_sg);
-+ if (in_sg != NULL && ileft > 0) {
-+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset;
-+ if (src_addr == NULL) {
-+ dev_err(ss->dev, "ERROR: KMAP for src SG\n");
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+ src32 = src_addr;
-+ sgileft = in_sg->length / 4;
-+ }
-+ }
-+ /* do not test oleft since when oleft == 0 we have finished */
-+ todo = min3(tx_cnt, oleft, sgoleft);
-+ if (todo > 0) {
-+ oleft -= todo;
-+ sgoleft -= todo;
-+ }
-+ while (todo > 0) {
-+ *dst32++ = readl_relaxed(ss->base + SS_TXFIFO);
-+ todo--;
-+ }
-+ if (out_sg != NULL && sgoleft == 0 && oleft >= 0) {
-+ kunmap(sg_page(out_sg));
-+ out_sg = sg_next(out_sg);
-+ while (out_sg != NULL && out_sg->length == 0)
-+ out_sg = sg_next(out_sg);
-+ if (out_sg != NULL && oleft > 0) {
-+ dst_addr = kmap(sg_page(out_sg)) +
-+ out_sg->offset;
-+ if (dst_addr == NULL) {
-+ dev_err(ss->dev, "KMAP error\n");
-+ mutex_unlock(&ss->lock);
-+ return -EINVAL;
-+ }
-+ dst32 = dst_addr;
-+ sgoleft = out_sg->length / 4;
-+ }
-+ }
-+ } while (oleft > 0);
-+
-+ writel_relaxed(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return 0;
-+}
-+
-+/*
-+ * Pure CPU way of doing DES/3DES with SS
-+ * Since DES and 3DES SGs could be smaller than 4 bytes, I use sg_copy_to_buffer
-+ * for "linearize" them.
-+ * The problem with that is that I alloc (2 x areq->nbytes) for buf_in/buf_out
-+ * TODO: change this system, I need to support other mode than CBC where len
-+ * is not a multiple of 4 and the hack of linearize use too much memory
-+ * SGsrc -> buf_in -> SS -> buf_out -> SGdst
-+ */
-+int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode)
-+{
-+ u32 value, spaces;
-+ size_t nb_in_sg_tx, nb_in_sg_rx;
-+ size_t ir, it;
-+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
-+ u32 tx_cnt = 0;
-+ u32 rx_cnt = 0;
-+ u32 v;
-+ int i;
-+ int no_chunk = 1;
-+ struct scatterlist *in_sg = areq->src;
-+ struct scatterlist *out_sg = areq->dst;
-+
-+ /*
-+ * if we have only SGs with size multiple of 4,
-+ * we can use the SS AES function
-+ */
-+ while (in_sg != NULL && no_chunk == 1) {
-+ if ((in_sg->length % 4) != 0)
-+ no_chunk = 0;
-+ in_sg = sg_next(in_sg);
-+ }
-+ while (out_sg != NULL && no_chunk == 1) {
-+ if ((out_sg->length % 4) != 0)
-+ no_chunk = 0;
-+ out_sg = sg_next(out_sg);
-+ }
-+
-+ if (no_chunk == 1)
-+ return sunxi_ss_aes_poll(areq, mode);
-+
-+ in_sg = areq->src;
-+ out_sg = areq->dst;
-+
-+ nb_in_sg_rx = sg_nents(in_sg);
-+ nb_in_sg_tx = sg_nents(out_sg);
-+
-+ /*
-+ * buf_in and buf_out are allocated only one time
-+ * then we keep the buffer until driver end
-+ * the allocation can only grow more
-+ * we do not reduce it for simplification
-+ */
-+ mutex_lock(&ss->bufin_lock);
-+ if (ss->buf_in == NULL) {
-+ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL);
-+ ss->buf_in_size = areq->nbytes;
-+ } else {
-+ if (areq->nbytes > ss->buf_in_size) {
-+ kfree(ss->buf_in);
-+ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL);
-+ ss->buf_in_size = areq->nbytes;
-+ }
-+ }
-+ if (ss->buf_in == NULL) {
-+ ss->buf_in_size = 0;
-+ mutex_unlock(&ss->bufin_lock);
-+ dev_err(ss->dev, "Unable to allocate pages.\n");
-+ return -ENOMEM;
-+ }
-+ mutex_lock(&ss->bufout_lock);
-+ if (ss->buf_out == NULL) {
-+ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL);
-+ if (ss->buf_out == NULL) {
-+ ss->buf_out_size = 0;
-+ mutex_unlock(&ss->bufin_lock);
-+ mutex_unlock(&ss->bufout_lock);
-+ dev_err(ss->dev, "Unable to allocate pages.\n");
-+ return -ENOMEM;
-+ }
-+ ss->buf_out_size = areq->nbytes;
-+ } else {
-+ if (areq->nbytes > ss->buf_out_size) {
-+ kfree(ss->buf_out);
-+ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL);
-+ if (ss->buf_out == NULL) {
-+ ss->buf_out_size = 0;
-+ mutex_unlock(&ss->bufin_lock);
-+ mutex_unlock(&ss->bufout_lock);
-+ dev_err(ss->dev, "Unable to allocate pages.\n");
-+ return -ENOMEM;
-+ }
-+ ss->buf_out_size = areq->nbytes;
-+ }
-+ }
-+
-+ sg_copy_to_buffer(areq->src, nb_in_sg_rx, ss->buf_in, areq->nbytes);
-+
-+ ir = 0;
-+ it = 0;
-+ mutex_lock(&ss->lock);
-+
-+ for (i = 0; i < op->keylen; i += 4)
-+ writel(*(op->key + i/4), ss->base + SS_KEY0 + i);
-+ if (areq->info != NULL) {
-+ for (i = 0; i < 4 && i < ivsize / 4; i++) {
-+ v = *(u32 *)(areq->info + i * 4);
-+ writel(v, ss->base + SS_IV0 + i * 4);
-+ }
-+ }
-+ writel(mode, ss->base + SS_CTL);
-+
-+ do {
-+ if (rx_cnt == 0 || tx_cnt == 0) {
-+ spaces = readl(ss->base + SS_FCSR);
-+ rx_cnt = SS_RXFIFO_SPACES(spaces);
-+ tx_cnt = SS_TXFIFO_SPACES(spaces);
-+ }
-+ if (rx_cnt > 0 && ir < areq->nbytes) {
-+ do {
-+ value = *(u32 *)(ss->buf_in + ir);
-+ writel(value, ss->base + SS_RXFIFO);
-+ ir += 4;
-+ rx_cnt--;
-+ } while (rx_cnt > 0 && ir < areq->nbytes);
-+ }
-+ if (tx_cnt > 0 && it < areq->nbytes) {
-+ do {
-+ value = readl(ss->base + SS_TXFIFO);
-+ *(u32 *)(ss->buf_out + it) = value;
-+ it += 4;
-+ tx_cnt--;
-+ } while (tx_cnt > 0 && it < areq->nbytes);
-+ }
-+ if (ir == areq->nbytes) {
-+ mutex_unlock(&ss->bufin_lock);
-+ ir++;
-+ }
-+ } while (it < areq->nbytes);
-+
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+
-+ /*
-+ * a simple optimization, since we dont need the hardware for this copy
-+ * we release the lock and do the copy. With that we gain 5/10% perf
-+ */
-+ sg_copy_from_buffer(areq->dst, nb_in_sg_tx, ss->buf_out, areq->nbytes);
-+
-+ mutex_unlock(&ss->bufout_lock);
-+ return 0;
-+}
-+
-+/* check and set the AES key, prepare the mode to be used */
-+int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen)
-+{
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+
-+ switch (keylen) {
-+ case 128 / 8:
-+ op->keymode = SS_AES_128BITS;
-+ break;
-+ case 192 / 8:
-+ op->keymode = SS_AES_192BITS;
-+ break;
-+ case 256 / 8:
-+ op->keymode = SS_AES_256BITS;
-+ break;
-+ default:
-+ dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
-+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
-+ return -EINVAL;
-+ }
-+ op->keylen = keylen;
-+ memcpy(op->key, key, keylen);
-+ return 0;
-+}
-+
-+/* check and set the DES key, prepare the mode to be used */
-+int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen)
-+{
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+
-+ if (keylen != DES_KEY_SIZE) {
-+ dev_err(ss->dev, "Invalid keylen %u\n", keylen);
-+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
-+ return -EINVAL;
-+ }
-+ op->keylen = keylen;
-+ memcpy(op->key, key, keylen);
-+ return 0;
-+}
-+
-+/* check and set the 3DES key, prepare the mode to be used */
-+int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen)
-+{
-+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
-+
-+ if (keylen != 3 * DES_KEY_SIZE) {
-+ dev_err(ss->dev, "Invalid keylen %u\n", keylen);
-+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
-+ return -EINVAL;
-+ }
-+ op->keylen = keylen;
-+ memcpy(op->key, key, keylen);
-+ return 0;
-+}
---- /dev/null
-+++ b/drivers/crypto/sunxi-ss/sunxi-ss-core.c
-@@ -0,0 +1,318 @@
-+/*
-+ * sunxi-ss-core.c - hardware cryptographic accelerator for Allwinner A20 SoC
-+ *
-+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com>
-+ *
-+ * Core file which registers crypto algorithms supported by the SS.
-+ *
-+ * You could find a link for the datasheet in Documentation/arm/sunxi/README
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License as published by
-+ * the Free Software Foundation; either version 2 of the License, or
-+ * (at your option) any later version.
-+ */
-+#include <linux/clk.h>
-+#include <linux/crypto.h>
-+#include <linux/io.h>
-+#include <linux/module.h>
-+#include <linux/of.h>
-+#include <linux/platform_device.h>
-+#include <crypto/scatterwalk.h>
-+#include <linux/scatterlist.h>
-+#include <linux/interrupt.h>
-+#include <linux/delay.h>
-+
-+#include "sunxi-ss.h"
-+
-+struct sunxi_ss_ctx *ss;
-+
-+/*
-+ * General notes for whole driver:
-+ *
-+ * After each request the device must be disabled with a write of 0 in SS_CTL
-+ *
-+ * For performance reason, we use writel_relaxed/read_relaxed for all
-+ * operations on RX and TX FIFO and also SS_FCSR.
-+ * Excepts for the last write on TX FIFO.
-+ * For all other registers, we use writel/readl.
-+ * See http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117644
-+ * and http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117640
-+ */
-+
-+static struct ahash_alg sunxi_md5_alg = {
-+ .init = sunxi_hash_init,
-+ .update = sunxi_hash_update,
-+ .final = sunxi_hash_final,
-+ .finup = sunxi_hash_finup,
-+ .digest = sunxi_hash_digest,
-+ .halg = {
-+ .digestsize = MD5_DIGEST_SIZE,
-+ .base = {
-+ .cra_name = "md5",
-+ .cra_driver_name = "md5-sunxi-ss",
-+ .cra_priority = 300,
-+ .cra_alignmask = 3,
-+ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
-+ .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
-+ .cra_ctxsize = sizeof(struct sunxi_req_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_type = &crypto_ahash_type,
-+ .cra_init = sunxi_hash_crainit
-+ }
-+ }
-+};
-+
-+static struct ahash_alg sunxi_sha1_alg = {
-+ .init = sunxi_hash_init,
-+ .update = sunxi_hash_update,
-+ .final = sunxi_hash_final,
-+ .finup = sunxi_hash_finup,
-+ .digest = sunxi_hash_digest,
-+ .halg = {
-+ .digestsize = SHA1_DIGEST_SIZE,
-+ .base = {
-+ .cra_name = "sha1",
-+ .cra_driver_name = "sha1-sunxi-ss",
-+ .cra_priority = 300,
-+ .cra_alignmask = 3,
-+ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
-+ .cra_blocksize = SHA1_BLOCK_SIZE,
-+ .cra_ctxsize = sizeof(struct sunxi_req_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_type = &crypto_ahash_type,
-+ .cra_init = sunxi_hash_crainit
-+ }
-+ }
-+};
-+
-+static struct crypto_alg sunxi_cipher_algs[] = {
-+{
-+ .cra_name = "cbc(aes)",
-+ .cra_driver_name = "cbc-aes-sunxi-ss",
-+ .cra_priority = 300,
-+ .cra_blocksize = AES_BLOCK_SIZE,
-+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
-+ .cra_ctxsize = sizeof(struct sunxi_tfm_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_alignmask = 3,
-+ .cra_type = &crypto_ablkcipher_type,
-+ .cra_init = sunxi_ss_cipher_init,
-+ .cra_u = {
-+ .ablkcipher = {
-+ .min_keysize = AES_MIN_KEY_SIZE,
-+ .max_keysize = AES_MAX_KEY_SIZE,
-+ .ivsize = AES_BLOCK_SIZE,
-+ .setkey = sunxi_ss_aes_setkey,
-+ .encrypt = sunxi_ss_cipher_encrypt,
-+ .decrypt = sunxi_ss_cipher_decrypt,
-+ }
-+ }
-+}, {
-+ .cra_name = "cbc(des)",
-+ .cra_driver_name = "cbc-des-sunxi-ss",
-+ .cra_priority = 300,
-+ .cra_blocksize = DES_BLOCK_SIZE,
-+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
-+ .cra_ctxsize = sizeof(struct sunxi_req_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_alignmask = 3,
-+ .cra_type = &crypto_ablkcipher_type,
-+ .cra_init = sunxi_ss_cipher_init,
-+ .cra_u.ablkcipher = {
-+ .min_keysize = DES_KEY_SIZE,
-+ .max_keysize = DES_KEY_SIZE,
-+ .ivsize = DES_BLOCK_SIZE,
-+ .setkey = sunxi_ss_des_setkey,
-+ .encrypt = sunxi_ss_cipher_encrypt,
-+ .decrypt = sunxi_ss_cipher_decrypt,
-+ }
-+}, {
-+ .cra_name = "cbc(des3_ede)",
-+ .cra_driver_name = "cbc-des3-sunxi-ss",
-+ .cra_priority = 300,
-+ .cra_blocksize = DES3_EDE_BLOCK_SIZE,
-+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
-+ .cra_ctxsize = sizeof(struct sunxi_req_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_alignmask = 3,
-+ .cra_type = &crypto_ablkcipher_type,
-+ .cra_init = sunxi_ss_cipher_init,
-+ .cra_u.ablkcipher = {
-+ .min_keysize = DES3_EDE_KEY_SIZE,
-+ .max_keysize = DES3_EDE_KEY_SIZE,
-+ .ivsize = DES3_EDE_BLOCK_SIZE,
-+ .setkey = sunxi_ss_des3_setkey,
-+ .encrypt = sunxi_ss_cipher_encrypt,
-+ .decrypt = sunxi_ss_cipher_decrypt,
-+ }
-+}
-+};
-+
-+static int sunxi_ss_probe(struct platform_device *pdev)
-+{
-+ struct resource *res;
-+ u32 v;
-+ int err;
-+ unsigned long cr;
-+ const unsigned long cr_ahb = 24 * 1000 * 1000;
-+ const unsigned long cr_mod = 150 * 1000 * 1000;
-+
-+ if (!pdev->dev.of_node)
-+ return -ENODEV;
-+
-+ ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL);
-+ if (ss == NULL)
-+ return -ENOMEM;
-+
-+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-+ ss->base = devm_ioremap_resource(&pdev->dev, res);
-+ if (IS_ERR(ss->base)) {
-+ dev_err(&pdev->dev, "Cannot request MMIO\n");
-+ return PTR_ERR(ss->base);
-+ }
-+
-+ ss->ssclk = devm_clk_get(&pdev->dev, "mod");
-+ if (IS_ERR(ss->ssclk)) {
-+ err = PTR_ERR(ss->ssclk);
-+ dev_err(&pdev->dev, "Cannot get SS clock err=%d\n", err);
-+ return err;
-+ }
-+ dev_dbg(&pdev->dev, "clock ss acquired\n");
-+
-+ ss->busclk = devm_clk_get(&pdev->dev, "ahb");
-+ if (IS_ERR(ss->busclk)) {
-+ err = PTR_ERR(ss->busclk);
-+ dev_err(&pdev->dev, "Cannot get AHB SS clock err=%d\n", err);
-+ return err;
-+ }
-+ dev_dbg(&pdev->dev, "clock ahb_ss acquired\n");
-+
-+ /* Enable both clocks */
-+ err = clk_prepare_enable(ss->busclk);
-+ if (err != 0) {
-+ dev_err(&pdev->dev, "Cannot prepare_enable busclk\n");
-+ return err;
-+ }
-+ err = clk_prepare_enable(ss->ssclk);
-+ if (err != 0) {
-+ dev_err(&pdev->dev, "Cannot prepare_enable ssclk\n");
-+ clk_disable_unprepare(ss->busclk);
-+ return err;
-+ }
-+
-+ /*
-+ * Check that clock have the correct rates gived in the datasheet
-+ * Try to set the clock to the maximum allowed
-+ */
-+ err = clk_set_rate(ss->ssclk, cr_mod);
-+ if (err != 0) {
-+ dev_err(&pdev->dev, "Cannot set clock rate to ssclk\n");
-+ clk_disable_unprepare(ss->ssclk);
-+ clk_disable_unprepare(ss->busclk);
-+ return err;
-+ }
-+
-+ cr = clk_get_rate(ss->busclk);
-+ if (cr >= cr_ahb)
-+ dev_dbg(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n",
-+ cr, cr / 1000000, cr_ahb);
-+ else
-+ dev_warn(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n",
-+ cr, cr / 1000000, cr_ahb);
-+
-+ cr = clk_get_rate(ss->ssclk);
-+ if (cr <= cr_mod)
-+ if (cr < cr_mod)
-+ dev_info(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n",
-+ cr, cr / 1000000, cr_mod);
-+ else
-+ dev_dbg(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n",
-+ cr, cr / 1000000, cr_mod);
-+ else
-+ dev_warn(&pdev->dev, "Clock ss is at %lu (%lu MHz) (must be <= %lu)\n",
-+ cr, cr / 1000000, cr_mod);
-+
-+ /*
-+ * Datasheet named it "Die Bonding ID"
-+ * I expect to be a sort of Security System Revision number.
-+ * Since the A80 seems to have an other version of SS
-+ * this info could be useful
-+ */
-+ writel(SS_ENABLED, ss->base + SS_CTL);
-+ v = readl(ss->base + SS_CTL);
-+ v >>= 16;
-+ v &= 0x07;
-+ dev_info(&pdev->dev, "Die ID %d\n", v);
-+ writel(0, ss->base + SS_CTL);
-+
-+ ss->dev = &pdev->dev;
-+
-+ mutex_init(&ss->lock);
-+ mutex_init(&ss->bufin_lock);
-+ mutex_init(&ss->bufout_lock);
-+
-+ err = crypto_register_ahash(&sunxi_md5_alg);
-+ if (err)
-+ goto error_md5;
-+ err = crypto_register_ahash(&sunxi_sha1_alg);
-+ if (err)
-+ goto error_sha1;
-+ err = crypto_register_algs(sunxi_cipher_algs,
-+ ARRAY_SIZE(sunxi_cipher_algs));
-+ if (err)
-+ goto error_ciphers;
-+
-+ return 0;
-+error_ciphers:
-+ crypto_unregister_ahash(&sunxi_sha1_alg);
-+error_sha1:
-+ crypto_unregister_ahash(&sunxi_md5_alg);
-+error_md5:
-+ clk_disable_unprepare(ss->ssclk);
-+ clk_disable_unprepare(ss->busclk);
-+ return err;
-+}
-+
-+static int __exit sunxi_ss_remove(struct platform_device *pdev)
-+{
-+ if (!pdev->dev.of_node)
-+ return 0;
-+
-+ crypto_unregister_ahash(&sunxi_md5_alg);
-+ crypto_unregister_ahash(&sunxi_sha1_alg);
-+ crypto_unregister_algs(sunxi_cipher_algs,
-+ ARRAY_SIZE(sunxi_cipher_algs));
-+
-+ if (ss->buf_in != NULL)
-+ kfree(ss->buf_in);
-+ if (ss->buf_out != NULL)
-+ kfree(ss->buf_out);
-+
-+ writel(0, ss->base + SS_CTL);
-+ clk_disable_unprepare(ss->busclk);
-+ clk_disable_unprepare(ss->ssclk);
-+ return 0;
-+}
-+
-+static const struct of_device_id a20ss_crypto_of_match_table[] = {
-+ { .compatible = "allwinner,sun7i-a20-crypto" },
-+ {}
-+};
-+MODULE_DEVICE_TABLE(of, a20ss_crypto_of_match_table);
-+
-+static struct platform_driver sunxi_ss_driver = {
-+ .probe = sunxi_ss_probe,
-+ .remove = __exit_p(sunxi_ss_remove),
-+ .driver = {
-+ .owner = THIS_MODULE,
-+ .name = "sunxi-ss",
-+ .of_match_table = a20ss_crypto_of_match_table,
-+ },
-+};
-+
-+module_platform_driver(sunxi_ss_driver);
-+
-+MODULE_DESCRIPTION("Allwinner Security System cryptographic accelerator");
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Corentin LABBE <clabbe.montjoie@gmail.com>");
---- /dev/null
-+++ b/drivers/crypto/sunxi-ss/sunxi-ss-hash.c
-@@ -0,0 +1,445 @@
-+/*
-+ * sunxi-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
-+ *
-+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com>
-+ *
-+ * This file add support for MD5 and SHA1.
-+ *
-+ * You could find the datasheet in Documentation/arm/sunxi/README
-+ *
-+ * This program is free software; you can redistribute it and/or modify
-+ * it under the terms of the GNU General Public License as published by
-+ * the Free Software Foundation; either version 2 of the License, or
-+ * (at your option) any later version.
-+ */
-+#include "sunxi-ss.h"
-+
-+/* This is a totaly arbitrary value */
-+#define SS_TIMEOUT 100
-+
-+extern struct sunxi_ss_ctx *ss;
-+
-+int sunxi_hash_crainit(struct crypto_tfm *tfm)
-+{
-+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
-+ sizeof(struct sunxi_req_ctx));
-+ return 0;
-+}
-+
-+/* sunxi_hash_init: initialize request context */
-+int sunxi_hash_init(struct ahash_request *areq)
-+{
-+ const char *hash_type;
-+ struct sunxi_req_ctx *op = ahash_request_ctx(areq);
-+
-+ memset(op, 0, sizeof(struct sunxi_req_ctx));
-+
-+ hash_type = crypto_tfm_alg_name(areq->base.tfm);
-+
-+ if (strcmp(hash_type, "sha1") == 0)
-+ op->mode = SS_OP_SHA1;
-+ if (strcmp(hash_type, "md5") == 0)
-+ op->mode = SS_OP_MD5;
-+ if (op->mode == 0)
-+ return -EINVAL;
-+
-+ return 0;
-+}
-+
-+static u32 rx_cnt;
-+
-+inline void ss_writer(const u32 v)
-+{
-+ u32 spaces;
-+
-+ writel(v, ss->base + SS_RXFIFO);
-+ rx_cnt--;
-+ while (rx_cnt == 0) {
-+ spaces = readl_relaxed(ss->base + SS_FCSR);
-+ rx_cnt = SS_RXFIFO_SPACES(spaces);
-+ }
-+}
-+
-+inline void ss_writer_relaxed(const u32 v)
-+{
-+ u32 spaces;
-+
-+ writel_relaxed(v, ss->base + SS_RXFIFO);
-+ rx_cnt--;
-+ while (rx_cnt == 0) {
-+ spaces = readl_relaxed(ss->base + SS_FCSR);
-+ rx_cnt = SS_RXFIFO_SPACES(spaces);
-+ }
-+}
-+
-+/*
-+ * sunxi_hash_update: update hash engine
-+ *
-+ * Could be used for both SHA1 and MD5
-+ * Write data by step of 32bits and put then in the SS.
-+ *
-+ * Since we cannot leave partial data and hash state in the engine,
-+ * we need to get the hash state at the end of this function.
-+ * After some work, I have found that we can get the hash state every 64o
-+ *
-+ * So the first work is to get the number of bytes to write to SS modulo 64
-+ * The extra bytes will go to two different destination:
-+ * op->wait for full 32bits word
-+ * op->wb (waiting bytes) for partial 32 bits word
-+ * So we can have up to (64/4)-1 op->wait words and 0/1/2/3 bytes in wb
-+ *
-+ * So at the begin of update()
-+ * if op->nwait * 4 + areq->nbytes < 64
-+ * => all data writed to wait buffers and end=0
-+ * if not write all nwait to the device and position end to complete to 64o
-+ *
-+ * example 1:
-+ * update1 60o => nwait=15
-+ * update2 60o => need one more word to have 64o
-+ * end=4
-+ * so write all data in op->wait and one word of SGs
-+ * write remaining data in op->wait
-+ * final state op->nwait=14
-+ */
-+int sunxi_hash_update(struct ahash_request *areq)
-+{
-+ u32 v, ivmode = 0;
-+ unsigned int i = 0;
-+ /*
-+ * i is the total bytes read from SGs, to be compared to areq->nbytes
-+ * i is important because we cannot rely on SG length since the sum of
-+ * SG->length could be greater than areq->nbytes
-+ */
-+
-+ struct sunxi_req_ctx *op = ahash_request_ctx(areq);
-+ struct scatterlist *in_sg;
-+ unsigned int in_i = 0; /* advancement in the current SG */
-+ u64 end;
-+ /*
-+ * end is the position when we need to stop writing to the device,
-+ * to be compared to i
-+ */
-+ int in_r;
-+ void *src_addr;
-+
-+ dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x bw=%u ww=%u",
-+ __func__, crypto_tfm_alg_name(areq->base.tfm),
-+ op->byte_count, areq->nbytes, op->mode,
-+ op->nbw, op->nwait);
-+
-+ if (areq->nbytes == 0)
-+ return 0;
-+
-+ end = ((areq->nbytes + op->nwait * 4 + op->nbw) / 64) * 64
-+ - op->nbw - op->nwait * 4;
-+
-+ if (end > areq->nbytes || areq->nbytes - end > 63) {
-+ dev_err(ss->dev, "ERROR: Bound error %llu %u\n",
-+ end, areq->nbytes);
-+ return -EINVAL;
-+ }
-+
-+ if (op->nwait > 0 && end > 0) {
-+ /* a precedent update was done */
-+ for (i = 0; i < op->nwait; i++) {
-+ ss_writer(op->wait[i]);
-+ op->byte_count += 4;
-+ }
-+ op->nwait = 0;
-+ }
-+
-+ mutex_lock(&ss->lock);
-+ /*
-+ * if some data have been processed before,
-+ * we need to restore the partial hash state
-+ */
-+ if (op->byte_count > 0) {
-+ ivmode = SS_IV_ARBITRARY;
-+ for (i = 0; i < 5; i++)
-+ writel(op->hash[i], ss->base + SS_IV0 + i * 4);
-+ }
-+ /* Enable the device */
-+ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
-+
-+ rx_cnt = 0;
-+ i = 0;
-+
-+ in_sg = areq->src;
-+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset;
-+ if (src_addr == NULL) {
-+ mutex_unlock(&ss->lock);
-+ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n");
-+ return -EFAULT;
-+ }
-+ do {
-+ /*
-+ * step 1, if some bytes remains from last SG,
-+ * try to complete them to 4 and send that word
-+ */
-+ if (op->nbw > 0) {
-+ while (op->nbw < 4 && i < areq->nbytes &&
-+ in_i < in_sg->length) {
-+ op->wb |= (*(u8 *)(src_addr + in_i))
-+ << (8 * op->nbw);
-+ dev_dbg(ss->dev, "%s Complete w=%d wb=%x\n",
-+ __func__, op->nbw, op->wb);
-+ i++;
-+ in_i++;
-+ op->nbw++;
-+ }
-+ if (op->nbw == 4) {
-+ if (i <= end) {
-+ ss_writer(op->wb);
-+ op->byte_count += 4;
-+ } else {
-+ op->wait[op->nwait] = op->wb;
-+ op->nwait++;
-+ dev_dbg(ss->dev, "%s Keep %u bytes after %llu\n",
-+ __func__, op->nwait, end);
-+ }
-+ op->nbw = 0;
-+ op->wb = 0;
-+ }
-+ }
-+ /* step 2, main loop, read data 4bytes at a time */
-+ while (i < areq->nbytes && in_i < in_sg->length) {
-+ /* how many bytes we can read, (we need 4) */
-+ in_r = min(in_sg->length - in_i, areq->nbytes - i);
-+ if (in_r < 4) {
-+ /* Not enough data to write to the device */
-+ op->wb = 0;
-+ while (in_r > 0) {
-+ op->wb |= (*(u8 *)(src_addr + in_i))
-+ << (8 * op->nbw);
-+ dev_dbg(ss->dev, "%s ending bw=%d wb=%x\n",
-+ __func__, op->nbw, op->wb);
-+ in_r--;
-+ i++;
-+ in_i++;
-+ op->nbw++;
-+ }
-+ goto nextsg;
-+ }
-+ v = *(u32 *)(src_addr + in_i);
-+ if (i < end) {
-+ /* last write must be done without relaxed */
-+ if (i + 4 >= end)
-+ ss_writer(v);
-+ else
-+ ss_writer_relaxed(v);
-+ i += 4;
-+ op->byte_count += 4;
-+ in_i += 4;
-+ } else {
-+ op->wait[op->nwait] = v;
-+ i += 4;
-+ in_i += 4;
-+ op->nwait++;
-+ dev_dbg(ss->dev, "%s Keep word ww=%u after %llu\n",
-+ __func__, op->nwait, end);
-+ if (op->nwait > 15) {
-+ dev_err(ss->dev, "FATAL: Cannot enqueue more, bug?\n");
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return -EIO;
-+ }
-+ }
-+ }
-+nextsg:
-+ /* Nothing more to read in this SG */
-+ if (in_i == in_sg->length) {
-+ kunmap(sg_page(in_sg));
-+ do {
-+ in_sg = sg_next(in_sg);
-+ } while (in_sg != NULL && in_sg->length == 0);
-+ in_i = 0;
-+ if (in_sg != NULL) {
-+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset;
-+ if (src_addr == NULL) {
-+ mutex_unlock(&ss->lock);
-+ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n");
-+ return -EFAULT;
-+ }
-+ }
-+ }
-+ } while (in_sg != NULL && i < areq->nbytes);
-+
-+ /* ask the device to finish the hashing */
-+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
-+ i = 0;
-+ do {
-+ v = readl(ss->base + SS_CTL);
-+ i++;
-+ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
-+ if (i >= SS_TIMEOUT) {
-+ dev_err(ss->dev, "ERROR: %s hash end timeout after %d loop, CTL=%x\n",
-+ __func__, i, v);
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return -EIO;
-+ }
-+
-+ /* get the partial hash */
-+ if (op->mode == SS_OP_SHA1) {
-+ for (i = 0; i < 5; i++)
-+ op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
-+ } else {
-+ for (i = 0; i < 4; i++)
-+ op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
-+ }
-+
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return 0;
-+}
-+
-+/*
-+ * sunxi_hash_final: finalize hashing operation
-+ *
-+ * If we have some remaining bytes, we write them.
-+ * Then ask the SS for finalizing the hashing operation
-+ */
-+int sunxi_hash_final(struct ahash_request *areq)
-+{
-+ u32 v, ivmode = 0;
-+ unsigned int i;
-+ int zeros;
-+ unsigned int index, padlen;
-+ __be64 bits;
-+ struct sunxi_req_ctx *op = ahash_request_ctx(areq);
-+
-+ dev_dbg(ss->dev, "%s byte=%llu len=%u mode=%x bw=%u %x h=%x ww=%u",
-+ __func__, op->byte_count, areq->nbytes, op->mode,
-+ op->nbw, op->wb, op->hash[0], op->nwait);
-+
-+ mutex_lock(&ss->lock);
-+ rx_cnt = 0;
-+
-+ /*
-+ * if we have already writed something,
-+ * restore the partial hash state
-+ */
-+ if (op->byte_count > 0) {
-+ ivmode = SS_IV_ARBITRARY;
-+ for (i = 0; i < 5; i++)
-+ writel(op->hash[i], ss->base + SS_IV0 + i * 4);
-+ }
-+ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
-+
-+ /* write the remaining words of the wait buffer */
-+ if (op->nwait > 0) {
-+ for (i = 0; i < op->nwait; i++) {
-+ v = op->wait[i];
-+ ss_writer(v);
-+ op->byte_count += 4;
-+ dev_dbg(ss->dev, "%s write %llu i=%u %x\n",
-+ __func__, op->byte_count, i, v);
-+ }
-+ op->nwait = 0;
-+ }
-+
-+ /* write the remaining bytes of the nbw buffer */
-+ if (op->nbw > 0) {
-+ op->wb |= ((1 << 7) << (op->nbw * 8));
-+ ss_writer(op->wb);
-+ } else {
-+ ss_writer((1 << 7));
-+ }
-+
-+ /*
-+ * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
-+ * I take the operations from other md5/sha1 implementations
-+ */
-+
-+ /* we have already send 4 more byte of which nbw data */
-+ if (op->mode == SS_OP_MD5) {
-+ index = (op->byte_count + 4) & 0x3f;
-+ op->byte_count += op->nbw;
-+ if (index > 56)
-+ zeros = (120 - index) / 4;
-+ else
-+ zeros = (56 - index) / 4;
-+ } else {
-+ op->byte_count += op->nbw;
-+ index = op->byte_count & 0x3f;
-+ padlen = (index < 56) ? (56 - index) : ((64+56) - index);
-+ zeros = (padlen - 1) / 4;
-+ }
-+ for (i = 0; i < zeros; i++)
-+ ss_writer(0);
-+
-+ /* write the length of data */
-+ if (op->mode == SS_OP_SHA1) {
-+ bits = cpu_to_be64(op->byte_count << 3);
-+ ss_writer(bits & 0xffffffff);
-+ ss_writer((bits >> 32) & 0xffffffff);
-+ } else {
-+ ss_writer((op->byte_count << 3) & 0xffffffff);
-+ ss_writer((op->byte_count >> 29) & 0xffffffff);
-+ }
-+
-+ /* Tell the SS to stop the hashing */
-+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
-+
-+ /*
-+ * Wait for SS to finish the hash.
-+ * The timeout could happend only in case of bad overcloking
-+ * or driver bug.
-+ */
-+ i = 0;
-+ do {
-+ v = readl(ss->base + SS_CTL);
-+ i++;
-+ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
-+ if (i >= SS_TIMEOUT) {
-+ dev_err(ss->dev, "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
-+ i, SS_TIMEOUT, v, areq->nbytes);
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return -EIO;
-+ }
-+
-+ /* Get the hash from the device */
-+ if (op->mode == SS_OP_SHA1) {
-+ for (i = 0; i < 5; i++) {
-+ v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
-+ memcpy(areq->result + i * 4, &v, 4);
-+ }
-+ } else {
-+ for (i = 0; i < 4; i++) {
-+ v = readl(ss->base + SS_MD0 + i * 4);
-+ memcpy(areq->result + i * 4, &v, 4);
-+ }
-+ }
-+ writel(0, ss->base + SS_CTL);
-+ mutex_unlock(&ss->lock);
-+ return 0;
-+}
-+
-+/* sunxi_hash_finup: finalize hashing operation after an update */
-+int sunxi_hash_finup(struct ahash_request *areq)
-+{
-+ int err;
-+
-+ err = sunxi_hash_update(areq);
-+ if (err != 0)
-+ return err;
-+
-+ return sunxi_hash_final(areq);
-+}
-+
-+/* combo of init/update/final functions */
-+int sunxi_hash_digest(struct ahash_request *areq)
-+{
-+ int err;
-+
-+ err = sunxi_hash_init(areq);
-+ if (err != 0)
-+ return err;
-+
-+ err = sunxi_hash_update(areq);
-+ if (err != 0)
-+ return err;
-+
-+ return sunxi_hash_final(areq);
-+}
---- /dev/null
-+++ b/drivers/crypto/sunxi-ss/sunxi-ss.h
-@@ -0,0 +1,193 @@
-+/*
-+ * sunxi-ss.c - hardware cryptographic accelerator for Allwinner A20 SoC
-+ *
-+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com>
-+ *
-+ * Support AES cipher with 128,192,256 bits keysize.
-+ * Support MD5 and SHA1 hash algorithms.
-+ * Support DES and 3DES
-+ *
-+ * You could find the datasheet in Documentation/arm/sunxi/README
-+ *
-+ * Licensed under the GPL-2.
-+ */
-+
-+#include <linux/clk.h>
-+#include <linux/crypto.h>
-+#include <linux/io.h>
-+#include <linux/module.h>
-+#include <linux/of.h>
-+#include <linux/platform_device.h>
-+#include <crypto/scatterwalk.h>
-+#include <linux/scatterlist.h>
-+#include <linux/interrupt.h>
-+#include <linux/delay.h>
-+#include <crypto/md5.h>
-+#include <crypto/sha.h>
-+#include <crypto/hash.h>
-+#include <crypto/internal/hash.h>
-+#include <crypto/aes.h>
-+#include <crypto/des.h>
-+#include <crypto/internal/rng.h>
-+
-+#define SS_CTL 0x00
-+#define SS_KEY0 0x04
-+#define SS_KEY1 0x08
-+#define SS_KEY2 0x0C
-+#define SS_KEY3 0x10
-+#define SS_KEY4 0x14
-+#define SS_KEY5 0x18
-+#define SS_KEY6 0x1C
-+#define SS_KEY7 0x20
-+
-+#define SS_IV0 0x24
-+#define SS_IV1 0x28
-+#define SS_IV2 0x2C
-+#define SS_IV3 0x30
-+
-+#define SS_CNT0 0x34
-+#define SS_CNT1 0x38
-+#define SS_CNT2 0x3C
-+#define SS_CNT3 0x40
-+
-+#define SS_FCSR 0x44
-+#define SS_ICSR 0x48
-+
-+#define SS_MD0 0x4C
-+#define SS_MD1 0x50
-+#define SS_MD2 0x54
-+#define SS_MD3 0x58
-+#define SS_MD4 0x5C
-+
-+#define SS_RXFIFO 0x200
-+#define SS_TXFIFO 0x204
-+
-+/* SS_CTL configuration values */
-+
-+/* PRNG generator mode - bit 15 */
-+#define SS_PRNG_ONESHOT (0 << 15)
-+#define SS_PRNG_CONTINUE (1 << 15)
-+
-+/* IV mode for hash */
-+#define SS_IV_ARBITRARY (1 << 14)
-+
-+/* SS operation mode - bits 12-13 */
-+#define SS_ECB (0 << 12)
-+#define SS_CBC (1 << 12)
-+#define SS_CNT (2 << 12)
-+
-+/* Counter width for CNT mode - bits 10-11 */
-+#define SS_CNT_16BITS (0 << 10)
-+#define SS_CNT_32BITS (1 << 10)
-+#define SS_CNT_64BITS (2 << 10)
-+
-+/* Key size for AES - bits 8-9 */
-+#define SS_AES_128BITS (0 << 8)
-+#define SS_AES_192BITS (1 << 8)
-+#define SS_AES_256BITS (2 << 8)
-+
-+/* Operation direction - bit 7 */
-+#define SS_ENCRYPTION (0 << 7)
-+#define SS_DECRYPTION (1 << 7)
-+
-+/* SS Method - bits 4-6 */
-+#define SS_OP_AES (0 << 4)
-+#define SS_OP_DES (1 << 4)
-+#define SS_OP_3DES (2 << 4)
-+#define SS_OP_SHA1 (3 << 4)
-+#define SS_OP_MD5 (4 << 4)
-+#define SS_OP_PRNG (5 << 4)
-+
-+/* Data end bit - bit 2 */
-+#define SS_DATA_END (1 << 2)
-+
-+/* PRNG start bit - bit 1 */
-+#define SS_PRNG_START (1 << 1)
-+
-+/* SS Enable bit - bit 0 */
-+#define SS_DISABLED (0 << 0)
-+#define SS_ENABLED (1 << 0)
-+
-+/* SS_FCSR configuration values */
-+/* RX FIFO status - bit 30 */
-+#define SS_RXFIFO_FREE (1 << 30)
-+
-+/* RX FIFO empty spaces - bits 24-29 */
-+#define SS_RXFIFO_SPACES(val) (((val) >> 24) & 0x3f)
-+
-+/* TX FIFO status - bit 22 */
-+#define SS_TXFIFO_AVAILABLE (1 << 22)
-+
-+/* TX FIFO available spaces - bits 16-21 */
-+#define SS_TXFIFO_SPACES(val) (((val) >> 16) & 0x3f)
-+
-+#define SS_RXFIFO_EMP_INT_PENDING (1 << 10)
-+#define SS_TXFIFO_AVA_INT_PENDING (1 << 8)
-+#define SS_RXFIFO_EMP_INT_ENABLE (1 << 2)
-+#define SS_TXFIFO_AVA_INT_ENABLE (1 << 0)
-+
-+/* SS_ICSR configuration values */
-+#define SS_ICS_DRQ_ENABLE (1 << 4)
-+
-+struct sunxi_ss_ctx {
-+ void __iomem *base;
-+ int irq;
-+ struct clk *busclk;
-+ struct clk *ssclk;
-+ struct device *dev;
-+ struct resource *res;
-+ void *buf_in; /* pointer to data to be uploaded to the device */
-+ size_t buf_in_size; /* size of buf_in */
-+ void *buf_out;
-+ size_t buf_out_size;
-+ struct mutex lock; /* control the use of the device */
-+ struct mutex bufout_lock; /* control the use of buf_out*/
-+ struct mutex bufin_lock; /* control the sue of buf_in*/
-+};
-+
-+struct sunxi_tfm_ctx {
-+ u32 key[AES_MAX_KEY_SIZE / 4];/* divided by sizeof(u32) */
-+ u32 keylen;
-+ u32 keymode;
-+};
-+
-+struct sunxi_req_ctx {
-+ u32 mode;
-+ u64 byte_count; /* number of bytes "uploaded" to the device */
-+ u32 wb; /* a partial word waiting to be completed and
-+ uploaded to the device */
-+ /* number of bytes to be uploaded in the wb word */
-+ unsigned int nbw;
-+ u32 hash[5];
-+ u32 wait[64];
-+ unsigned int nwait;
-+};
-+
-+#define SS_SEED_LEN (192/8)
-+#define SS_DATA_LEN (160/8)
-+
-+struct prng_context {
-+ u32 seed[SS_SEED_LEN/4];
-+ unsigned int slen;
-+};
-+
-+int sunxi_hash_crainit(struct crypto_tfm *tfm);
-+int sunxi_hash_init(struct ahash_request *areq);
-+int sunxi_hash_update(struct ahash_request *areq);
-+int sunxi_hash_final(struct ahash_request *areq);
-+int sunxi_hash_finup(struct ahash_request *areq);
-+int sunxi_hash_digest(struct ahash_request *areq);
-+int sunxi_hash_export(struct ahash_request *areq, void *out);
-+int sunxi_hash_import(struct ahash_request *areq, const void *in);
-+
-+int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode);
-+int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode);
-+int sunxi_ss_cipher_init(struct crypto_tfm *tfm);
-+int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq);
-+int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq);
-+int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen);
-+int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen);
-+int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
-+ unsigned int keylen);