diff options
author | John Crispin <john@openwrt.org> | 2013-06-23 15:50:49 +0000 |
---|---|---|
committer | John Crispin <john@openwrt.org> | 2013-06-23 15:50:49 +0000 |
commit | 55fb6f3a05deb4a8b5e600cc10bae9555a9f90be (patch) | |
tree | a2ef24cfc434f5eb47364d944947588c5d51fc69 /target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch | |
parent | 43a3d87b8370872c5720b4bb6616b797486d38d8 (diff) | |
download | upstream-55fb6f3a05deb4a8b5e600cc10bae9555a9f90be.tar.gz upstream-55fb6f3a05deb4a8b5e600cc10bae9555a9f90be.tar.bz2 upstream-55fb6f3a05deb4a8b5e600cc10bae9555a9f90be.zip |
ralink: update patches
Signed-off-by: John Crispin <blogic@openwrt.org>
SVN-Revision: 37016
Diffstat (limited to 'target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch')
-rw-r--r-- | target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch | 3025 |
1 files changed, 3025 insertions, 0 deletions
diff --git a/target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch b/target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch new file mode 100644 index 0000000000..d1110a54cd --- /dev/null +++ b/target/linux/ramips/patches-3.9/0162-USB-MIPS-ralink-add-rt5350-mt7620-UDC.patch @@ -0,0 +1,3025 @@ +From 0e3b1bffd1974e6852912865a7cea481617b1c39 Mon Sep 17 00:00:00 2001 +From: John Crispin <blogic@openwrt.org> +Date: Thu, 30 May 2013 16:06:35 +0200 +Subject: [PATCH 162/164] USB: MIPS: ralink: add rt5350/mt7620 UDC + +Signed-off-by: John Crispin <blogic@openwrt.org> +--- + drivers/usb/gadget/Kconfig | 8 + + drivers/usb/gadget/Makefile | 1 + + drivers/usb/gadget/rt_udc.h | 417 +++++++ + drivers/usb/gadget/rt_udc_pdma.c | 2547 ++++++++++++++++++++++++++++++++++++++ + 4 files changed, 2973 insertions(+) + create mode 100644 drivers/usb/gadget/rt_udc.h + create mode 100644 drivers/usb/gadget/rt_udc_pdma.c + +diff --git a/drivers/usb/gadget/Kconfig b/drivers/usb/gadget/Kconfig +index c7525b1..6f0e293 100644 +--- a/drivers/usb/gadget/Kconfig ++++ b/drivers/usb/gadget/Kconfig +@@ -336,6 +336,14 @@ config USB_MV_U3D + MARVELL PXA2128 Processor series include a super speed USB3.0 device + controller, which support super speed USB peripheral. + ++config USB_RT_UDC ++ boolean "Ralink USB Device Port" ++ depends on SOC_MT7620 ++ help ++ Say "y" to link the driver statically, or "m" to build a ++ dynamically linked module called "rt_udc" and force all ++ gadget drivers to also be dynamically linked. ++ + # + # Controllers available in both integrated and discrete versions + # +diff --git a/drivers/usb/gadget/Makefile b/drivers/usb/gadget/Makefile +index 82fb225..f78a3b2 100644 +--- a/drivers/usb/gadget/Makefile ++++ b/drivers/usb/gadget/Makefile +@@ -34,6 +34,7 @@ obj-$(CONFIG_USB_MV_UDC) += mv_udc.o + mv_udc-y := mv_udc_core.o + obj-$(CONFIG_USB_FUSB300) += fusb300_udc.o + obj-$(CONFIG_USB_MV_U3D) += mv_u3d_core.o ++obj-$(CONFIG_USB_RT_UDC) += rt_udc_pdma.o + + # USB Functions + obj-$(CONFIG_USB_F_ACM) += f_acm.o +diff --git a/drivers/usb/gadget/rt_udc.h b/drivers/usb/gadget/rt_udc.h +new file mode 100644 +index 0000000..088e0d9 +--- /dev/null ++++ b/drivers/usb/gadget/rt_udc.h +@@ -0,0 +1,417 @@ ++/* ++ * Copyright (C) 2009 Y.Y. Huang, Ralink Tech.(yy_huang@ralinktech.com) ++ * ++ * This udc driver is now under testing and code is based on pxa2xx_udc.h ++ * Please use it with your own risk! ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#ifndef __LINUX_USB_GADGET_RT_UDC_H ++#define __LINUX_USB_GADGET_RT_UDC_H ++ ++#define CONFIG_RALINK_MT7620 ++ ++#include <linux/types.h> ++ ++//#include "../host/ralink_usb.h" /* for port sharing setting and power saving purpose */ ++ ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++#define IN_EP_NUM 2 ++#define OUT_EP_NUM 2 ++#elif defined (CONFIG_RALINK_RT5350) ++#define IN_EP_NUM 1 ++#define OUT_EP_NUM 1 ++#else ++#error "Please define a platform." ++#endif ++ ++/* Helper macros */ ++#define EP_IDX(ep) ((ep->bEndpointAddress & ~USB_DIR_IN)+(EP_DIR(ep)? 0:IN_EP_NUM)) /* IN:1, OUT:0 */ ++#define EP_NO(ep) ((ep->bEndpointAddress & ~USB_DIR_IN)) /* IN:1, OUT:0 */ ++#define EP_DIR(ep) ((ep->bEndpointAddress) & USB_DIR_IN ? 1 : 0) ++#define EP_IN 1 ++#define EP_OUT 0 ++#define RT_USB_NB_EP (IN_EP_NUM + OUT_EP_NUM + 1) ++ ++/* Driver structures */ ++struct rt_request { ++ struct usb_request req; ++ struct list_head queue; ++ unsigned int in_use; ++ struct rt_ep_struct *rt_ep; // test for rx tasklet ++ int zlp_dma_done; // used for DMA ZLP packet. ++ int txd_count; ++}; ++ ++enum ep0_state { ++ EP0_IDLE, ++ EP0_IN_DATA_PHASE, ++ EP0_OUT_DATA_PHASE, ++ EP0_NO_DATA_PHASE, ++ EP0_STALL, ++}; ++ ++struct rt_ep_struct { ++ struct usb_ep ep; ++ struct rt_udc_struct *rt_usb; ++ struct list_head queue; ++ unsigned char stopped; ++ unsigned char bEndpointAddress; ++ unsigned char bmAttributes; ++ ++ unsigned char pending; ++ unsigned int rx_done_count; /* used by OUT EP only */ ++ unsigned int tx_done_count; /* used by OUT EP only */ ++}; ++ ++struct rt_udc_struct { ++ struct usb_gadget gadget; ++ struct usb_gadget_driver *driver; ++ struct device *dev; ++ struct rt_ep_struct rt_ep[RT_USB_NB_EP]; ++ /* struct clk *clk; */ ++ struct timer_list timer; ++ enum ep0_state ep0state; ++ struct resource *res; ++ void __iomem *base; ++ unsigned char set_config; ++ int cfg, ++ intf, ++ alt, ++ interrupt; ++}; ++ ++#define USB_BASE (0xB0120000) ++ ++#define OUT0BC (0x000) ++#define IN0BC (0x001) ++#define EP0CS (0x002) ++ ++#define OUT1CON (0x00A) ++#define IN1CON (0x00E) ++#define OUT2CON (0x012) ++#define IN2CON (0x016) ++#define OUT3CON (0x01A) ++#define IN3CON (0x01E) ++#define OUT4CON (0x022) ++#define IN4CON (0x026) ++ ++ ++#define EP0INDAT (0x100) ++#define EP0OUTDAT (0x140) ++#define SETUPDATA (0x180) ++ ++#define IN07IRQ (0x188) ++#define IN815IRQ (0x189) ++#define OUT07IRQ (0x18A) ++#define OUT815IRQ (0x18B) ++#define USBIRQ (0x18C) ++#define OUT07PNGIRQ (0x18E) ++#define OUT815PNGIRQ (0x18F) ++ ++#define IN07IEN (0x194) ++#define OUT07IEN (0x196) ++#define USBIEN (0x198) ++ ++#define OUT07PNGIEN (0x19A) ++#define OUT815PNGIEN (0x19B) ++ ++#define ENDPRST (0x1A2) ++#define ENDPRST_IO (0x1 << 4) ++#define ENDPRST_TOGRST (0x1 << 5) ++#define ENDPRST_FIFORST (0x1 << 6) ++ ++#define FIFOCTRL (0x1A8) ++ ++#define EP_CS_EP0_STALL (0x1 << 0) ++#define EP_CS_EP0_HSNAK (0x1 << 1) ++#define EP_CS_EP0_INBSY (0x1 << 2) ++#define EP_CS_EP0_OUTBSY (0x1 << 3) ++#define EP_CS_AUTO (0x1 << 4) ++#define EP_CS_NPAK1 (0x1 << 3) ++#define EP_CS_NPAK0 (0x1 << 2) ++#define EP_CS_BSY (0x1 << 1) ++#define EP_CS_ERR (0x1 << 0) ++ ++#define EP0_OUT_BSY (0x1 << 3) ++#define EP0_IN_BSY (0x1 << 2) ++ ++#define USB_INTR_HSPEED (0x20) ++#define USB_INTR_RESET (0x10) ++#define USB_INTR_SUSPEND (0x08) ++#define USB_INTR_SETUP_TOKEN (0x04) ++#define USB_INTR_SOF (0x02) ++#define USB_INTR_SETUP_TOKEN_VALID (0x01) ++ ++/* UDMA */ ++#define RTUSB_UDMA_CTRL (USB_BASE + 0x800) ++#define RTUSB_UDMA_WRR (USB_BASE + 0x804) ++ ++/* PDMA */ ++#define RTUSB_TX_BASE_PTR0 (USB_BASE + 0x1000) ++#define RTUSB_TX_MAX_CNT0 (USB_BASE + 0x1004) ++#define RTUSB_TX_CTX_IDX0 (USB_BASE + 0x1008) ++#define RTUSB_TX_DTX_IDX0 (USB_BASE + 0x100C) ++#define RTUSB_TX_BASE_PTR1 (USB_BASE + 0x1010) ++#define RTUSB_TX_MAX_CNT1 (USB_BASE + 0x1014) ++#define RTUSB_TX_CTX_IDX1 (USB_BASE + 0x1018) ++#define RTUSB_TX_DTX_IDX1 (USB_BASE + 0x101C) ++#define RTUSB_RX_BASE_PTR0 (USB_BASE + 0x1100) ++#define RTUSB_RX_MAX_CNT0 (USB_BASE + 0x1104) ++#define RTUSB_RX_CALC_IDX0 (USB_BASE + 0x1108) ++#define RTUSB_RX_DRX_IDX0 (USB_BASE + 0x110C) ++#define RTUSB_PDMA_GLO_CFG (USB_BASE + 0x1204) ++ ++#define RTUSB_TX_WB_DDONE (0x1 << 6) ++#define RTUSB_RX_DMA_BUSY (0x1 << 3) ++#define RTUSB_RX_DMA_EN (0x1 << 2) ++#define RTUSB_TX_DMA_BUSY (0x1 << 1) ++#define RTUSB_TX_DMA_EN (0x1 << 0) ++ ++#define RTUSB_PDMA_RST_IDX (USB_BASE + 0x1208) ++ ++#define RTUSB_RST_DRX_IDX1 (0x1 << 17) ++#define RTUSB_RST_DRX_IDX0 (0x1 << 16) ++#define RTUSB_RST_DTX_IDX3 (0x1 << 3) ++#define RTUSB_RST_DTX_IDX2 (0x1 << 2) ++#define RTUSB_RST_DTX_IDX1 (0x1 << 1) ++#define RTUSB_RST_DTX_IDX0 (0x1 << 0) ++ ++#define RTUSB_DELAY_INT_CFG (USB_BASE + 0x120C) ++#define RTUSB_INT_STATUS (USB_BASE + 0x1220) ++#define RTUSB_RX_DONE_INT1 (0x1 << 17) ++#define RTUSB_RX_DONE_INT0 (0x1 << 16) ++#define RTUSB_TX_DONE_INT3 (0x1 << 3) ++#define RTUSB_TX_DONE_INT2 (0x1 << 2) ++#define RTUSB_TX_DONE_INT1 (0x1 << 1) ++#define RTUSB_TX_DONE_INT0 (0x1 << 0) ++ ++#define RTUSB_INT_MASK (USB_BASE + 0x1228) ++#define RTUSB_RX_DONE_INT_MSK1 (0x1 << 17) ++#define RTUSB_RX_DONE_INT_MSK0 (0x1 << 16) ++#define RTUSB_TX_DONE_INT_MSK3 (0x1 << 3) ++#define RTUSB_TX_DONE_INT_MSK2 (0x1 << 2) ++#define RTUSB_TX_DONE_INT_MSK1 (0x1 << 1) ++#define RTUSB_TX_DONE_INT_MSK0 (0x1 << 0) ++ ++ ++/*========================================= ++ PDMA RX Descriptor Format define ++=========================================*/ ++//------------------------------------------------- ++typedef struct _PDMA_RXD_INFO1_ PDMA_RXD_INFO1_T; ++ ++struct _PDMA_RXD_INFO1_ { ++ unsigned int PDP0; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_RXD_INFO2_ PDMA_RXD_INFO2_T; ++ ++struct _PDMA_RXD_INFO2_ { ++ unsigned int PLEN1 : 14; ++ unsigned int LS1 : 1; ++ unsigned int UN_USED : 1; ++ unsigned int PLEN0 : 14; ++ unsigned int LS0 : 1; ++ unsigned int DDONE_bit : 1; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_RXD_INFO3_ PDMA_RXD_INFO3_T; ++ ++struct _PDMA_RXD_INFO3_ { ++ unsigned int PDP1; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_RXD_INFO4_ PDMA_RXD_INFO4_T; ++ ++struct _PDMA_RXD_INFO4_ { ++ unsigned int Rx_bcnt:16; ++ unsigned int Reserved1:8; ++ unsigned int Out_ep_addr:4; ++ unsigned int Reserved0:4; ++}; ++struct PDMA_rxdesc { ++ PDMA_RXD_INFO1_T rxd_info1; ++ PDMA_RXD_INFO2_T rxd_info2; ++ PDMA_RXD_INFO3_T rxd_info3; ++ PDMA_RXD_INFO4_T rxd_info4; ++}; ++/*========================================= ++ PDMA TX Descriptor Format define ++=========================================*/ ++//------------------------------------------------- ++typedef struct _PDMA_TXD_INFO1_ PDMA_TXD_INFO1_T; ++ ++struct _PDMA_TXD_INFO1_ { ++ unsigned int SDP0; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_TXD_INFO2_ PDMA_TXD_INFO2_T; ++ ++struct _PDMA_TXD_INFO2_ { ++ unsigned int SDL1 : 14; ++ unsigned int LS1_bit : 1; ++ unsigned int BURST_bit : 1; ++ unsigned int SDL0 : 14; ++ unsigned int LS0_bit : 1; ++ unsigned int DDONE_bit : 1; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_TXD_INFO3_ PDMA_TXD_INFO3_T; ++ ++struct _PDMA_TXD_INFO3_ { ++ unsigned int SDP1; ++}; ++//------------------------------------------------- ++typedef struct _PDMA_TXD_INFO4_ PDMA_TXD_INFO4_T; ++struct _PDMA_TXD_INFO4_ { ++ unsigned int reserved2:17; ++ unsigned int zlp_flag:1; ++ unsigned int reserved1:6; ++ unsigned int In_ep_addr:4; ++ unsigned int rsv:4; ++}; ++ ++struct PDMA_txdesc { ++ PDMA_TXD_INFO1_T txd_info1; ++ PDMA_TXD_INFO2_T txd_info2; ++ PDMA_TXD_INFO3_T txd_info3; ++ PDMA_TXD_INFO4_T txd_info4; ++}; ++ ++ ++#ifdef DEBUG ++#define DBG do{ if(debuglevel) printk("%s()\n", __FUNCTION__); }while(0); ++#define DD do{ printk("%s: %s %d\n", driver_name, __FUNCTION__, __LINE__); } while(0); ++#define xprintk(fmt, args...) do{ if(debuglevel) printk(fmt, ## args); } while(0); ++#else ++#define DBG ++#define DD ++#define xprintk(fmt, args...) ++#endif ++ ++#define FATAL_ERROR(fmt, args...) do{ printk(fmt, ## args); printk("\n############### ERROR #####################\n %s %d\n############### ERROR #####################\n", __FUNCTION__, __LINE__); BUG(); } while(0) ++ ++static void inline dump_usbirq(u32 irqreg) ++{ ++ if(irqreg) ++ xprintk("U%s%s%s%s%s%s\n", ++ (irqreg & USB_INTR_SOF) ? "sof" : "", ++ (irqreg & USB_INTR_RESET) ? " rst" : "", ++ (irqreg & USB_INTR_SUSPEND) ? " sus" : "", ++ (irqreg & USB_INTR_SETUP_TOKEN) ? "st" : "", ++ (irqreg & USB_INTR_SETUP_TOKEN_VALID) ? "sv" : "", ++ (irqreg & USB_INTR_HSPEED) ? " HS" : ""); ++ ++// if(irqreg & USB_INTR_SETUP_TOKEN) ++// printk("ST\n"); ++// if(irqreg & USB_INTR_SETUP_TOKEN_VALID) ++// printk("SV\n"); ++ ++} ++ ++static void inline dump_epirq(u32 irqreg, u32 ienreg, int dir) ++{ ++ if(irqreg) ++ xprintk("%s%x\n", dir? "I" : "O", irqreg); ++} ++ ++static __inline__ u32 usb_read(u32 addr) ++{ ++ return ioread32( (void __iomem *)(USB_BASE + (addr << 2)) ); ++} ++ ++static __inline__ void usb_write(u32 addr, u32 value) ++{ ++ iowrite32(value, (void __iomem *)(USB_BASE + (addr << 2)) ); ++} ++ ++static __inline__ void reg_write(u32 addr, u32 value) ++{ ++ iowrite32(value, (void __iomem *)0x0 + addr); ++} ++ ++static __inline__ u32 reg_read(u32 addr) ++{ ++ return ioread32( (void __iomem *)0x0 + addr); ++} ++ ++ ++static void handle_pending_epoutirq(struct rt_udc_struct *rt_usb, struct rt_ep_struct *rt_ep, struct rt_request *req); ++ ++/* Debug macros */ ++#ifdef DEBUG ++#define DEBUG_REQ ++#define DEBUG_TRX ++#define DEBUG_INIT ++#define DEBUG_EP0 ++#define DEBUG_EPX ++#define DEBUG_ERR ++ ++#ifdef DEBUG_REQ ++ #define D_REQ(dev, args...) printk(args) ++#else ++ #define D_REQ(dev, args...) do {} while (0) ++#endif /* DEBUG_REQ */ ++ ++#ifdef DEBUG_TRX ++ #define D_TRX(dev, args...) printk(args) ++#else ++ #define D_TRX(dev, args...) do {} while (0) ++#endif /* DEBUG_TRX */ ++ ++#ifdef DEBUG_INIT ++ #define D_INI(dev, args...) printk(args) ++#else ++ #define D_INI(dev, args...) do {} while (0) ++#endif /* DEBUG_INIT */ ++ ++#ifdef DEBUG_EP0 ++ static const char *state_name[] = { ++ "IDLE", ++ "IN", ++ "OUT", ++ "NODATA", ++ "STALL" ++ }; ++ #define D_EP0(dev, args...) printk(args) ++#else ++ #define D_EP0(dev, args...) do {} while (0) ++#endif /* DEBUG_EP0 */ ++ ++#ifdef DEBUG_EPX ++ #define D_EPX(dev, args...) printk(args) ++#else ++ #define D_EPX(dev, args...) do {} while (0) ++#endif /* DEBUG_EP0 */ ++ ++#ifdef DEBUG_ERR ++ #define D_ERR(dev, args...) printk(args) ++#else ++ #define D_ERR(dev, args...) do {} while (0) ++#endif ++ ++#else ++ #define D_REQ(dev, args...) do {} while (0) ++ #define D_TRX(dev, args...) do {} while (0) ++ #define D_INI(dev, args...) do {} while (0) ++ #define D_EP0(dev, args...) do {} while (0) ++ #define D_EPX(dev, args...) do {} while (0) ++ #define dump_ep_intr(x, y, z, i) do {} while (0) ++ #define dump_intr(x, y, z) do {} while (0) ++ #define dump_ep_stat(x, y) do {} while (0) ++ #define dump_usb_stat(x, y) do {} while (0) ++ #define dump_req(x, y, z) do {} while (0) ++ #define D_ERR(dev, args...) do {} while (0) ++#endif /* DEBUG */ ++ ++#endif /* __LINUX_USB_GADGET_RT_UDC_H */ +diff --git a/drivers/usb/gadget/rt_udc_pdma.c b/drivers/usb/gadget/rt_udc_pdma.c +new file mode 100644 +index 0000000..d5b89a2 +--- /dev/null ++++ b/drivers/usb/gadget/rt_udc_pdma.c +@@ -0,0 +1,2547 @@ ++/* ++ * driver/usb/gadget/rt_udc.c ++ * ++ * Copyright (C) 2009 Ying Yuan Huang, Ralink Tech. <yyhuang@ralink_tech.com> ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++/* ++ * 1) [ USB composite device ]. The USB PDMA architecture is not suitable for USB composite ++ * device support. A passive gadget driver(device) may slow down or block other gadget ++ * (device) because they are in the same ring. ++ */ ++#include <linux/init.h> ++#include <linux/kernel.h> ++#include <linux/platform_device.h> ++#include <linux/module.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/io.h> ++#include <linux/irq.h> ++#include <linux/device.h> ++#include <linux/dma-mapping.h> ++#include <linux/clk.h> ++#include <linux/delay.h> ++#include <linux/timer.h> ++#include <linux/proc_fs.h> ++#include <linux/usb/ch9.h> ++#include <linux/version.h> ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,36) ++#include <linux/usb_gadget.h> ++#else ++#include <linux/usb/gadget.h> ++#endif ++ ++static const char driver_name[] = "rt_udc"; ++static const char ep0name[] = "ep0"; ++static unsigned debuglevel = 0; ++module_param (debuglevel, uint, S_IRUGO); ++ ++#define DEBUG ++#include "rt_udc.h" ++ ++#define PROC_DIR driver_name ++#define DEBUGLEVEL_PROCFILE "debuglevel" ++static struct proc_dir_entry *pProcDir = NULL; ++static struct proc_dir_entry *pProcDebugLevel = NULL; ++ ++/* ++ * USB PDMA related ++ */ ++#define NUM_RX_DESC 256 ++#define NUM_TX_DESC 256 ++#define RX_BUFF_SZ 1600 /* 1536 */ ++#define RING_RESET_TIMEOUT 3000 /* 3 secs */ ++#define RX_RESCHEDULE 64 ++#define TX_RESCHEDULE 4 ++static unsigned dma = 0; ++module_param (dma, uint, S_IRUGO); ++static unsigned sm = 0; ++module_param (sm, uint, S_IRUGO); ++static unsigned int TXMAXCAP = 512; ++module_param (TXMAXCAP, uint, S_IRUGO); ++ ++static struct PDMA_txdesc *tx_ring0_cache = NULL; ++static struct PDMA_rxdesc *rx_ring0_cache = NULL; ++static volatile struct PDMA_rxdesc *rx_ring0_noncache = NULL; ++static volatile struct PDMA_txdesc *tx_ring0_noncache = NULL; ++static dma_addr_t tx_ring_bus_addr; ++static dma_addr_t rx_ring_bus_addr; ++ ++static int rx_dma_owner_idx0; /* Point to the next RXD DMA wants to use in RXD Ring#0. */ ++static int tx_cpu_owner_idx0; ++static int tx_need_free_idx0; ++ ++static volatile unsigned char *USBRxPackets[NUM_RX_DESC]; /* Receive packets */ ++static unsigned char tx_zlp_dummy_buf[8]; ++struct tasklet_struct rx_dma_tasklet; ++struct tasklet_struct tx_dma_tasklet; ++ ++static struct rt_udc_struct controller; ++static struct rt_request *handle_outep(struct rt_ep_struct *rt_ep); ++ ++static int debuglevel_read(char *page, char **start, off_t off,int count, int *eof, void *data) ++{ ++ int len; ++ sprintf(page, "%d\n", debuglevel); ++ len = strlen(page) + 1; ++ *eof = 1; ++ return len; ++} ++ ++static int debuglevel_write(struct file *file, const char *buffer, unsigned long count, void *data) ++{ ++ char tmp[32]; ++ count = (count > 32) ? 32 : count; ++ memset(tmp, 0, 32); ++ if (copy_from_user(tmp, buffer, count)) ++ return -EFAULT; ++ debuglevel = simple_strtol(tmp, 0, 10); ++ return count; ++} ++ ++static void ep0_chg_stat(const char *label, struct rt_udc_struct *rt_usb, enum ep0_state stat) ++{ ++ xprintk("<0st>%s->%s\n", state_name[rt_usb->ep0state], state_name[stat]); ++ ++ if (rt_usb->ep0state == stat) ++ return; ++ rt_usb->ep0state = stat; ++} ++ ++static u8 read_epcs(struct rt_ep_struct *rt_ep) ++{ ++ int idx = EP_NO(rt_ep); ++ int dir = EP_DIR(rt_ep); ++ ++ if(idx == 0) ++ return usb_read(EP0CS); ++ ++ return (dir == EP_IN ? usb_read(0x7 + idx*8) : usb_read(0x3 + idx*8) ); ++} ++ ++static void write_epcs(struct rt_ep_struct *rt_ep, u8 val) ++{ ++ int idx = EP_NO(rt_ep); ++ int dir = EP_DIR(rt_ep); ++ ++ if(idx == 0) ++ usb_write(EP0CS, val); ++ else ++ (dir == EP_IN ? /*IN */ usb_write(0x7 + idx*8, val) : usb_write(0x3 + idx*8, val) ); ++} ++ ++static u16 read_inbc(int epnum) ++{ ++ u16 low, high = 0; ++ if(epnum == 0){ /* EP0 */ ++ low = usb_read(IN0BC); ++ }else{ ++ low = usb_read(epnum * 8 + 4); ++ high = usb_read((epnum * 8 + 4)+1); ++ } ++ return (low | (high << 8)); ++} ++ ++static u16 read_outbc(int epnum) ++{ ++ u16 low, high = 0; ++ if(epnum == 0){ /* EP0 */ ++ low = usb_read(OUT0BC); ++ }else{ ++ low = usb_read(epnum * 8); ++ high = usb_read((epnum * 8)+1); ++ } ++ return (low | (high << 8)); ++} ++ ++ ++static void rt_all_eps_reset(void) ++{ ++ // reset(toggle & fifo) all 16 IN & 16 OUT endpoints ++ usb_write(ENDPRST, 0x10); ++ usb_write(ENDPRST, 0x70); ++ usb_write(ENDPRST, 0x00); ++ usb_write(ENDPRST, 0x60); ++} ++ ++static void rt_ep_rst(struct rt_ep_struct *rt_ep) ++{ ++ u8 reg = 0; ++ u8 idx = EP_NO(rt_ep); ++ u8 dir = EP_DIR(rt_ep); ++ if(dir == EP_IN ) ++ reg |= ENDPRST_IO | idx; ++ usb_write(ENDPRST, reg); ++ ++ reg |= ENDPRST_TOGRST | ENDPRST_FIFORST; ++ usb_write(ENDPRST, reg); ++} ++ ++static void rt_ep_irq_enable(struct rt_ep_struct *rt_ep) ++{ ++ u8 reg; ++ u8 idx = EP_NO(rt_ep); ++ u8 dir = EP_DIR(rt_ep); ++ ++ if(idx == 0 /* ep0 */){ ++ usb_write(IN07IEN, (usb_read(IN07IEN) | 0x1) ); ++ usb_write(OUT07IEN, (usb_read(OUT07IEN) | 0x1) ); ++ }else{ /* epX */ ++ reg = usb_read(dir ? IN07IEN : OUT07IEN); ++ reg = reg | (0x1 << idx); ++ usb_write(dir == EP_IN ? IN07IEN : OUT07IEN, reg); ++ reg = usb_read(dir ? IN07IEN : OUT07IEN); ++ } ++} ++ ++static void rt_udc_init_ep(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ if(dma){ ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++ usb_write(IN1CON, 0x8D); // InEP1 : Int, 2 subfifos ++ usb_write(IN2CON, 0x89); // InEP2 : Bulk, 2 subfifos ++ usb_write(OUT1CON, 0x8D); // OutEP1 : Int, 2 subfifos ++ usb_write(OUT2CON, 0x89); // OutEP2 : Bulk, 2 subfifos ++ //usb_write(OUT3CON, 0x89); // OutEP3 : Bulk, 2 subfifos ++ //usb_write(OUT4CON, 0x89); // OutEP4 : Bulk, 2 subfifos ++#elif defined (CONFIG_RALINK_RT5350) ++ usb_write(IN1CON, 0x89); // InEP1 : BULK, 2 subfifos ++ usb_write(OUT1CON, 0x89); // OutEP1 : BULK, 2 subfifos ++#else ++#error "define a platform" ++#endif ++ }else{ ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++ usb_write(IN1CON, 0x8C); // InEP1 : Int , 1 subfifos ++ usb_write(IN2CON, 0x88); // InEP2 : Bulk, 1 subfifo ++ usb_write(OUT1CON, 0x8C); // OutEP1 : Int, 1 subfifos ++ usb_write(OUT2CON, 0x88); // OutEP2 : Bulk, 1 subfifos ++ //usb_write(OUT3CON, 0x88); // OutEP3 : Bulk, 1 subfifo ++ //usb_write(OUT4CON, 0x88); // OutEP4 : Bulk. 1 subfifo ++ ++#elif defined (CONFIG_RALINK_RT5350) ++ usb_write(IN1CON, 0x88); // InEP1 : BULK , 1 subfifos ++ usb_write(OUT1CON, 0x88); // OutEP1 : BULK, 1 subfifos ++#else ++#error "define a platform" ++#endif ++ } ++ // clear all pending HW interrupts ++ usb_write(IN07IRQ, 0xFF); ++ usb_write(OUT07IRQ, 0xFF); ++ rt_all_eps_reset(); ++ rt_ep_irq_enable(&rt_usb->rt_ep[0]); ++} ++ ++static void rt_udc_init_fifo(struct rt_udc_struct *rt_usb) ++{ ++ // fifo control ++ if(dma){ ++ usb_write(FIFOCTRL, 0x31); // INEP1, Autoin = 1 ++ usb_write(FIFOCTRL, 0x32); // INEP2, Autoin = 1 ++ usb_write(FIFOCTRL, 0x21); // OUTEP1, Autoin = 1 ++ usb_write(FIFOCTRL, 0x22); // OUTEP2, Autoin = 1 ++ //usb_write(FIFOCTRL, 0x23);// OUTEP3, Autoin = 1 ++ //usb_write(FIFOCTRL, 0x24);// OUTEP4, Autoin = 1 ++ ++ usb_write(FIFOCTRL, 0x00); // Access by DMA ++ }else{ ++ usb_write(FIFOCTRL, 0x11); // INEP1, Autoin = 0 ++ usb_write(FIFOCTRL, 0x12); // INEP2, Autoin = 0 ++ usb_write(FIFOCTRL, 0x01); // OUTEP1, Autoin = 0 ++ usb_write(FIFOCTRL, 0x02); // OUTEP2, Autoin = 0 ++ //usb_write(FIFOCTRL, 0x03);// OUTEP3, Autoin = 0 ++ //usb_write(FIFOCTRL, 0x04);// OUTEP4, Autoin = 0 ++ ++ usb_write(FIFOCTRL, 0x80); // Access by CPU ++ } ++} ++ ++static void rt_udc_init(struct rt_udc_struct *rt_usb) ++{ ++ /* Setup & Init endpoints */ ++ rt_udc_init_ep(rt_usb); ++ ++ // Enable HS, reset, suspend, SETUP valid data interrupt ++ usb_write(USBIRQ, 0xff); // clear first ++ usb_write(USBIEN, 0x21); ++ ++ /* Setup ep fifos */ ++ rt_udc_init_fifo(rt_usb); ++} ++ ++static void rt_ep_irq_disable(struct rt_ep_struct *rt_ep) ++{ ++ u8 reg; ++ u8 idx = EP_NO(rt_ep); ++ u8 dir = EP_DIR(rt_ep); ++ ++ if(idx == 0 /* ep0 */){ ++ usb_write(IN07IEN, (usb_read(IN07IEN) & ~(0x1)) ); ++ usb_write(OUT07IEN, (usb_read(OUT07IEN) & ~(0x1)) ); ++ }else{ ++ reg = usb_read(dir ? IN07IEN : OUT07IEN); ++ reg = reg & ~(0x1 << idx); ++ usb_write(dir == EP_IN ? IN07IEN : OUT07IEN, reg); ++ reg = usb_read(dir ? IN07IEN : OUT07IEN); ++ } ++} ++ ++static u32 rt_fifo_bcount(struct rt_ep_struct *rt_ep) ++{ ++ u8 low, high; ++ u32 rc; ++ ++ int idx = EP_NO(rt_ep); ++ int dir = EP_DIR(rt_ep); ++ ++ if(idx == 0) ++ return 0; ++ ++ if(dir /* IN */){ ++ low = usb_read(0x004 + idx*8); ++ high = usb_read( (0x004 + idx*8)+1 ); ++ }else{ /* OUT */ ++ low = usb_read(0x000 + idx*8); ++ high = usb_read( (0x000 + idx*8)+1 ); ++ } ++ rc = high | low; ++ return rc; ++} ++ ++void rt_flush(struct rt_ep_struct *rt_ep) ++{ ++ rt_ep_rst(rt_ep); ++} ++ ++void rt_ep_stall(struct rt_ep_struct *rt_ep, int value) ++{ ++ u8 tmp; ++ u32 addr; ++ int idx = EP_NO(rt_ep); ++ int dir = EP_DIR(rt_ep); ++ ++ if(idx == 0){ ++ tmp = usb_read(EP0CS); ++ if(value) ++ tmp |= 0x1; ++ else ++ tmp &= ~(0x1); ++ usb_write(EP0CS, tmp); ++ }else{ ++ addr = (dir == EP_IN ? 0x006 : 0x002) + idx * 8; ++ tmp = usb_read(addr); ++ if(value) ++ tmp |= 0x40; ++ else ++ tmp &= ~(0x40); ++ usb_write(addr, tmp); ++ } ++ ++ return; ++} ++ ++static int rt_udc_get_frame(struct usb_gadget *_gadget) ++{ ++ return 0; ++} ++ ++static int rt_udc_wakeup(struct usb_gadget *_gadget) ++{ ++ DBG; ++ return 0; ++} ++ ++ ++/******************************************************************************* ++ * USB request control functions ++ ******************************************************************************* ++ */ ++static inline void ep_add_request(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ if (unlikely(!req)) ++ return; ++ req->in_use = 1; ++ req->zlp_dma_done = 0; ++ req->rt_ep = rt_ep; ++ list_add_tail(&req->queue, &rt_ep->queue); ++} ++ ++static inline void ep_del_request(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ if (unlikely(!req)) ++ return; ++ list_del_init(&req->queue); ++ req->zlp_dma_done = 0; ++ req->in_use = 0; ++} ++ ++static void done(struct rt_ep_struct *rt_ep, struct rt_request *req, int status) ++{ ++ ep_del_request(rt_ep, req); ++ ++ if (likely(req->req.status == -EINPROGRESS)) ++ req->req.status = status; ++ else ++ status = req->req.status; ++ ++ if (status && status != -ESHUTDOWN) ++ D_ERR(rt_ep->rt_usb->dev, "<%s> complete %s req %p stat %d len %u/%u\n", __func__, rt_ep->ep.name, &req->req, status,req->req.actual, req->req.length); ++ ++ req->req.complete(&rt_ep->ep, &req->req); ++} ++ ++#if 0 ++/* for reference */ ++struct tasklet_struct rx_tasklet_tmp; ++static void rx_done_do_tasklet(unsigned long arg) ++{ ++ struct rt_ep_struct *rt_ep; ++ struct rt_request *rt_req; ++ struct usb_request *usb_req; ++ struct usb_ep *ep; ++ int i, rx_count, status = 0; ++ struct rt_udc_struct *rt_usb = &controller; ++ ++ for (i = (IN_EP_NUM+1); i < RT_USB_NB_EP; i++) { ++ rt_ep = &rt_usb->rt_ep[i]; ++ ep = &rt_ep->ep; ++ ++ // shared by irq handler, protect it ++ spin_lock_irqsave(&rx_done_lock, rx_done_lock_flags); ++ rx_count = rt_ep->rx_done_count; ++ ++ //spin_unlock_irqrestore(&rx_done_lock, rx_done_lock_flags); ++ ++ for (;rx_count > 0; rx_count--) { ++ if(unlikely(list_empty(&rt_ep->queue))) ++ FATAL_ERROR("empty queue"); ++ ++ rt_req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ usb_req = &rt_req->req; ++ ++ ep_del_request(rt_ep, rt_req); ++ rt_ep->rx_done_count--; ++ ++ spin_unlock_irqrestore(&rx_done_lock, rx_done_lock_flags); ++ ++ if (unlikely(rt_req->req.status == -EINPROGRESS)) ++ rt_req->req.status = status; ++ else ++ status = rt_req->req.status; ++ ++ if (unlikely(status && status != -ESHUTDOWN)) ++ D_ERR(rt_ep->rt_usb->dev, "<%s> complete %s req %p stat %d len %u/%u\n", __func__, rt_ep->ep.name, &rt_req->req, status,rt_req->req.actual, rt_req->req.length); ++ ++ // indicate gadget driver. ++ usb_req->complete(ep, usb_req); ++ ++ spin_lock_irqsave(&rx_done_lock, rx_done_lock_flags); ++ } ++ spin_unlock_irqrestore(&rx_done_lock, rx_done_lock_flags); ++ } ++} ++#endif ++ ++struct tasklet_struct tx_tasklet; ++static void tx_do_tasklet(unsigned long arg) ++{ ++ return; ++} ++ ++struct tasklet_struct rx_tasklet; ++static void rx_do_tasklet(unsigned long arg) ++{ ++ struct rt_ep_struct *rt_ep; ++ struct rt_request *req; ++ struct usb_ep *ep; ++ int i; ++ struct rt_udc_struct *rt_usb = &controller; ++ ++ for (i = (IN_EP_NUM+1/* EP0 */); i < RT_USB_NB_EP; i++){ ++ u8 epcs; ++ rt_ep = &rt_usb->rt_ep[i]; ++ ep = &rt_ep->ep; ++ ++ epcs = read_epcs(rt_ep); ++ while(!(epcs & EP_CS_BSY)){ ++ req = handle_outep(rt_ep); ++ if(!req){ ++ // No usb request found. ++ // Just set up the flag (pending) and clear int. ++ rt_ep->pending = 1; ++ break; ++ }else{ ++ if(req && ( (req->req.actual % rt_ep->ep.maxpacket) || (req->req.actual >= req->req.length))){ ++ xprintk("q.l=%d,q.a=%d\n", req->req.length, req->req.actual); ++ done(rt_ep, req, 0); ++ } ++ } ++ ++ epcs = read_epcs(rt_ep); ++ write_epcs(rt_ep, 0x0); ++ epcs = read_epcs(rt_ep); ++ } ++ } ++} ++ ++static void nuke(struct rt_ep_struct *rt_ep, int status) ++{ ++ struct rt_request *req; ++ ++ DBG; ++ while (!list_empty(&rt_ep->queue)) { ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ done(rt_ep, req, status); ++ } ++} ++ ++/* ++ ******************************************************************************* ++ * Data tansfer over USB functions ++ ******************************************************************************* ++ */ ++static int read_ep0_fifo(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ u8 *buf; ++ int byte_count, req_bufferspace, count, i; ++ ++DBG; ++ if(!in_irq()) ++ FATAL_ERROR("not irq context."); ++ ++ byte_count = read_outbc(EP_NO(rt_ep)); ++ req_bufferspace = req->req.length - req->req.actual; ++ ++ buf = req->req.buf + req->req.actual; ++ ++ if(!req_bufferspace) ++ FATAL_ERROR("zlp"); ++ ++ if(byte_count > req_bufferspace) ++ FATAL_ERROR("buffer overflow, byte_count=%d, req->req.length=%d, req->req.actual=%d\n", byte_count, req->req.length ,req->req.actual); ++ ++ count = min(byte_count, req_bufferspace); ++ ++ //test, Access by CPU ++ if(dma) ++ usb_write(FIFOCTRL, 0x80); ++ ++ for (i = 0; i < count; i++){ ++ *buf = usb_read(EP0OUTDAT+i); ++ buf++; ++ } ++ req->req.actual += count; ++ ++ //test, Access by DMA ++ if(dma) ++ usb_write(FIFOCTRL, 0x00); ++ ++ return count; ++} ++ ++ ++static int read_ep_fifo(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ u8 *buf, ep_no, ep_no_shift; ++ int byte_count, req_bufferspace, count, i; ++ ++DBG; ++ ep_no = EP_NO(rt_ep); ++ ++ byte_count = read_outbc(ep_no); ++ if(unlikely(!byte_count)) ++ FATAL_ERROR("ep_no:%d bc = 0", ep_no); ++ ++ req_bufferspace = req->req.length - req->req.actual; ++ ++ buf = req->req.buf + req->req.actual; ++ ++ if(unlikely(!req_bufferspace)) ++ FATAL_ERROR("zlp"); ++ ++ xprintk("bc=%d,r.l=%d,r.a=%d\n", byte_count, req->req.length ,req->req.actual); ++ if(unlikely(byte_count > req_bufferspace)) ++ FATAL_ERROR("buffer overflow, byte_count=%d, req->req.length=%d, req->req.actual=%d\n", byte_count, req->req.length ,req->req.actual); ++ ++ count = min(byte_count, req_bufferspace); ++ ++ ep_no_shift = 0x80+ep_no * 4; ++ for (i = 0; i < count; i++){ ++ *buf = usb_read(ep_no_shift); ++ buf++; ++ } ++ ++ req->req.actual += count; ++ ++ // EP Out irq handler would arm another transaction. ++ return count; ++} ++ ++static int write_ep_fifo_zlp(struct rt_ep_struct *rt_ep) ++{ ++ u8 epcs; ++ int ep_no = EP_NO(rt_ep); ++ ++DBG; ++ xprintk("w%d ZLP\n", EP_NO(rt_ep)); ++ epcs = read_epcs(rt_ep); ++ if(epcs & EP_CS_BSY) ++ FATAL_ERROR("EP%d busy. cs=%x\n", ep_no, epcs); ++ ++ /* check INEP byte count is zero? */ ++ if(read_inbc(ep_no)) ++ FATAL_ERROR("EP%d bc zero. bc=%d\n", ep_no, read_inbc(ep_no)); ++ ++ epcs = read_epcs(rt_ep); ++ write_epcs(rt_ep, epcs); ++ return 0; ++} ++ ++ ++/* ++ * handle_epinirq() ++*/ ++static int write_ep_fifo(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ u8 *buf, epcs; ++ int length, i, ep_no = EP_NO(rt_ep); ++ ++DBG; ++ xprintk("w ep%d req=%p,r.l=%d,r.a=%d\n",EP_NO(rt_ep),&req->req,req->req.length,req->req.actual); ++ epcs = read_epcs(rt_ep); ++ if(epcs & EP_CS_BSY) ++ FATAL_ERROR("EP%d busy. epcs=%x\n", ep_no, epcs); ++ ++ /* check INEP byte count is zero? */ ++ if(read_inbc(ep_no)) ++ FATAL_ERROR("EP%d bc=%d\n", ep_no, read_inbc(ep_no)); ++ ++ buf = req->req.buf + req->req.actual; ++ length = (req->req.length - req->req.actual) < rt_ep->ep.maxpacket ? (req->req.length - req->req.actual) : rt_ep->ep.maxpacket; ++ req->req.actual += length; ++ if (!length) { /* zlp */ ++ // for debug ++ xprintk("<%s> zero packet\n", __func__); ++ write_ep_fifo_zlp(rt_ep); ++ return 0; ++ } ++ ++ // write to ep in fifo ++ for (i=0; i< length; i++) ++ usb_write(0x80+ep_no*4, *buf++); ++ ++ epcs = read_epcs(rt_ep); ++ write_epcs(rt_ep, epcs); ++ ++ return length; ++} ++ ++/* ++ * ++ */ ++static int write_ep0_fifo(struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ u8 *buf; ++ int length, i; ++ u32 maxpacket; ++ ++DBG; ++ xprintk("q.l=%d, q.a=%d, maxp=%d\n", req->req.length, req->req.actual, rt_ep->ep.maxpacket); ++ ++ buf = req->req.buf + req->req.actual; ++ maxpacket = (u32)(rt_ep->ep.maxpacket); ++ length = min(req->req.length - req->req.actual, maxpacket); ++ ++ req->req.actual += length; ++ ++ if (!length && req->req.zero) ++ FATAL_ERROR("zlp"); ++ ++ if(!in_irq()) ++ FATAL_ERROR("Not in irq context"); ++ ++ //test, Access by CPU ++ if(dma) ++ usb_write(FIFOCTRL, 0x80); ++ ++ //write to ep0in fifo ++ for (i=0; i< length; i++) ++ usb_write(EP0INDAT+i, *buf++); ++ ++ // arm ep0in ++ usb_write(IN0BC, length); ++ if(length != rt_ep->ep.maxpacket) ++ usb_write(EP0CS, 0x2); // clear NAK bit to ACK host. ++ ++ //test, Access by CPU ++ if(dma) ++ usb_write(FIFOCTRL, 0x00); ++ ++ return length; ++} ++ ++static struct rt_request *get_unhandled_req(struct rt_ep_struct *rt_ep) ++{ ++ struct list_head *p; ++ struct rt_request *req = NULL; ++ ++ if(EP_DIR(rt_ep) == EP_OUT) ++ FATAL_ERROR("Out EP"); ++ ++ if(dma){ ++ list_for_each(p, &rt_ep->queue){ ++ req = list_entry(p, struct rt_request, queue); ++ if(req->req.length > req->req.actual ) ++ return req; ++ else if(unlikely(req->req.length == 0 && req->zlp_dma_done == 0)) ++ return req; ++ else ++ continue; ++ } ++ return NULL; ++ }else{ ++ if (!list_empty(&rt_ep->queue)){ ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ }else { ++ FATAL_ERROR("%s No request", rt_ep->ep.name); ++ } ++ return req; ++ } ++} ++ ++#define PADDING_LENGTH 64 ++static int write_dma_txring(struct rt_ep_struct *rt_ep,struct rt_request *req) ++{ ++ u8 *buf; ++ int length; ++ int retry_times = 0; ++ u32 hw_current_idx; ++DBG; ++ xprintk("w%dr=%p,r.l=%d,r.a=%d\n", EP_NO(rt_ep), &req->req,req->req.length,req->req.actual); ++ ++ length = req->req.length; ++ ++ while(length > 0 || (req->req.length == 0 && req->zlp_dma_done == 0)){ ++retry: ++ /* wait for a free TXD */ ++ hw_current_idx = reg_read(RTUSB_TX_DTX_IDX0); ++ if ( tx_ring0_cache[tx_cpu_owner_idx0].txd_info2.DDONE_bit == 0 || ++ ((tx_cpu_owner_idx0+1) % NUM_TX_DESC == hw_current_idx) ) { ++ if(retry_times > 1000) ++ return -1; ++ mdelay(1); ++ retry_times++; ++ goto retry; ++ } ++ ++ if(length > TXMAXCAP) ++ length = TXMAXCAP; ++ ++ buf = req->req.buf + req->req.actual; ++ req->req.actual += length; ++ ++ /* deal with ZLP.*/ ++ if(req->req.length == 0 && req->zlp_dma_done == 0) ++ req->zlp_dma_done = 1; ++ ++ req->txd_count++; ++ ++#define phys_to_bus(a) ((u32)a & 0x1FFFFFFF) ++ if(length){ ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info1.SDP0 = cpu_to_le32(phys_to_bus(buf)); ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info2.SDL0 = cpu_to_le32(length); ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info4.zlp_flag = 0; ++ dma_cache_sync(NULL, (void *)buf, length, DMA_TO_DEVICE); ++ }else{ ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info1.SDP0 = cpu_to_le32(phys_to_bus(tx_zlp_dummy_buf)); ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info2.SDL0 = cpu_to_le32(sizeof(tx_zlp_dummy_buf)); ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info4.zlp_flag = 1; ++ } ++ ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info4.In_ep_addr = cpu_to_le32(EP_NO(rt_ep)); ++ tx_ring0_cache[tx_cpu_owner_idx0].txd_info2.DDONE_bit = 0; ++ tx_cpu_owner_idx0 = (tx_cpu_owner_idx0 + 1) % NUM_TX_DESC; ++ ++ length = req->req.length - req->req.actual; ++ } ++ ++ reg_write(RTUSB_TX_CTX_IDX0, tx_cpu_owner_idx0); ++ ++ return 0; ++} ++ ++ ++/******************************************************************************* ++ * Endpoint handlers ++ ******************************************************************************* ++ */ ++ ++/* ++ * Handle In Endpoint ++ * CPU(FIFO): ++ * Enqueue -> Write fifo -> TX_DONE -> Write fifo -> TX_DONE -> .. ++ * ++ * DMA ++ * Enqueue -> Kick off TxD. Enqueue -> Kick off TxD. Enqueue -> Kick off TxD. ++ */ ++static int handle_inep(struct rt_ep_struct *rt_ep) ++{ ++ struct rt_request *req; ++ ++DBG; ++ if(!(req = get_unhandled_req(rt_ep))) ++ return -1; ++ ++ if(dma){ ++ write_dma_txring(rt_ep, req); ++ }else{ ++ write_ep_fifo(rt_ep, req); ++ rt_ep->tx_done_count = 1; ++ } ++ return 0; ++} ++ ++/* ++ * IRQ context. ++ */ ++static struct rt_request *handle_outep(struct rt_ep_struct *rt_ep) ++{ ++ struct rt_request *req; ++ struct list_head *p; ++ int count = 0; ++ ++DBG; ++ if (list_empty(&rt_ep->queue)){ ++ return NULL; ++ } ++ ++ list_for_each(p, &rt_ep->queue){ ++ if(count != rt_ep->rx_done_count){ ++ count++; ++ continue; ++ } ++ req = list_entry(p, struct rt_request, queue); ++ read_ep_fifo(rt_ep, req); ++ return req; ++ } ++ ++ return NULL; ++} ++ ++static struct rt_request *handle_inep0(struct rt_ep_struct *rt_ep) ++{ ++ struct rt_request *req = NULL; ++ ++DBG; ++ if (list_empty(&rt_ep->queue)) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> no request on %s\n", __func__, rt_ep->ep.name); ++ return NULL; ++ } ++ ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ switch (rt_ep->rt_usb->ep0state) { ++ case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR */ ++ write_ep0_fifo(rt_ep, req); ++ break; ++ ++ // Impossible: ++ //case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR */ ++ //case EP0_NO_DATA_PHASE: /* for no data stage control transfer */ ++ ++ default: ++ D_ERR(rt_ep->rt_usb->dev, "<%s> ep0 i/o, odd state %d\n", __func__, rt_ep->rt_usb->ep0state); ++ ep_del_request(rt_ep, req); ++ req = NULL; ++ break; ++ } ++ ++ return req; ++} ++ ++static struct rt_request *handle_outep0(struct rt_ep_struct *rt_ep) ++{ ++ struct rt_request *req = NULL; ++ ++DBG; ++ if (list_empty(&rt_ep->queue)) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> no request on %s\n", __func__, rt_ep->ep.name); ++ return NULL; ++ } ++ ++ if(rt_ep->rt_usb->ep0state != EP0_OUT_DATA_PHASE){ ++ D_EP0(rt_ep->rt_usb->dev, "<%s> ep0 i/o, odd state %d\n", __func__, rt_ep->rt_usb->ep0state); ++ ep_del_request(rt_ep, req); ++ req = NULL; ++ } ++ ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ ++ read_ep0_fifo(rt_ep, req); ++ ++ return req; ++} ++ ++/******************************************************************************* ++ * USB gadget callback functions ++ ******************************************************************************* ++ */ ++static void handle_dma_rxdone(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ tasklet_schedule(&rx_dma_tasklet); ++} ++ ++static void handle_dma_txdone(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ tasklet_schedule(&tx_dma_tasklet); ++} ++ ++static void handle_dmairq(struct rt_udc_struct *rt_usb, u32 irq) ++{ ++ if(irq & RTUSB_RX_DONE_INT0){ ++ handle_dma_rxdone(rt_usb); ++ } ++ ++ if(irq & RTUSB_TX_DONE_INT0){ ++ handle_dma_txdone(rt_usb); ++ } ++ ++ reg_write(RTUSB_INT_STATUS, irq); ++} ++ ++static inline int udc_dma_reset_txring(void) ++{ ++ int count = 0; ++ u32 reg; ++ ++ while(count++< RING_RESET_TIMEOUT){ ++ reg = reg_read(RTUSB_PDMA_GLO_CFG); ++ if(reg & RTUSB_TX_DMA_BUSY){ ++ mdelay(1); ++ }else ++ break; ++ ++ } ++ if(count== RING_RESET_TIMEOUT) ++ return -1; ++ ++ reg = reg_read(RTUSB_PDMA_RST_IDX); ++ udelay(100); ++ reg |= (RTUSB_RST_DTX_IDX1 | RTUSB_RST_DTX_IDX0); ++ reg_write(RTUSB_PDMA_RST_IDX, reg); ++ udelay(100); ++ return 0; ++} ++ ++static inline int udc_dma_reset_rxring(void) ++{ ++ int count = 0; ++ u32 reg; ++ ++ while(count++< RING_RESET_TIMEOUT){ ++ reg = reg_read(RTUSB_PDMA_GLO_CFG); ++ if(reg & RTUSB_RX_DMA_BUSY){ ++ mdelay(1); ++ }else ++ break; ++ } ++ if(count== RING_RESET_TIMEOUT) ++ return -1; ++ ++ reg = reg_read(RTUSB_PDMA_RST_IDX); ++ udelay(100); ++ reg |= (RTUSB_RST_DRX_IDX1 | RTUSB_RST_DRX_IDX0); ++ reg_write(RTUSB_PDMA_RST_IDX, reg); ++ udelay(100);\ ++ return 0; ++} ++ ++static int udc_dma_hw_reset(void) ++{ ++ if(udc_dma_reset_rxring() == -1) ++ return -1; ++ if(udc_dma_reset_txring() == -1) ++ return -1; ++ return 0; ++} ++ ++static void udc_dma_enable(int enable) ++{ ++ u32 reg; ++ reg = reg_read(RTUSB_PDMA_GLO_CFG); ++ udelay(100); ++ if(enable) ++ reg |= RTUSB_TX_WB_DDONE | RTUSB_RX_DMA_EN | RTUSB_TX_DMA_EN ; ++ else ++ reg &= ~(RTUSB_TX_WB_DDONE | RTUSB_RX_DMA_EN | RTUSB_TX_DMA_EN) ; ++ reg_write(RTUSB_PDMA_GLO_CFG, reg); ++ udelay(500); ++} ++ ++static void udc_dma_int_enable(int enable) ++{ ++ u32 reg; ++ reg = reg_read(RTUSB_INT_MASK); ++ udelay(100); ++ if(enable) ++ reg |= RTUSB_RX_DONE_INT_MSK0 | RTUSB_TX_DONE_INT_MSK0 ; ++ else ++ reg &= ~(RTUSB_RX_DONE_INT_MSK0 | RTUSB_TX_DONE_INT_MSK0) ; ++ reg_write(RTUSB_INT_MASK, reg); ++ udelay(100); ++} ++ ++static inline void udc_dma_tx_int_clear(void) ++{ ++ reg_write(RTUSB_INT_STATUS, 0x0000000F); ++} ++ ++static inline void udc_dma_rx_int_clear(void) ++{ ++ reg_write(RTUSB_INT_STATUS, 0x00030000); ++} ++ ++static inline void udc_dma_all_int_clear(void) ++{ ++ reg_write(RTUSB_INT_STATUS, 0xFFFFFFFF); ++} ++ ++static int copy_data_to_ep(void *src, int length, int ep_num) ++{ ++ struct rt_ep_struct *rt_ep; ++ struct rt_udc_struct *rt_usb = &controller; ++ struct rt_request *req; ++ int req_bufferspace, count; ++ u8 *buf; ++ ++ DBG; ++ rt_ep = &rt_usb->rt_ep[ep_num+IN_EP_NUM]; ++ ++ if (list_empty(&rt_ep->queue)){ ++ /* It is safe to return 0 if no req queued. */ ++ return 0; ++ } ++ ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ req_bufferspace = req->req.length - req->req.actual; ++ ++ if(unlikely(!req_bufferspace)){ ++ // for debug ++ FATAL_ERROR("zlp"); ++ return -1; ++ } ++ ++ if(length > req_bufferspace){ ++ FATAL_ERROR("buffer overflow"); ++ return -1; ++ } ++ ++ // sync with cache. ++ if(likely(length)) ++ dma_cache_sync(NULL, src, length, DMA_FROM_DEVICE); ++ ++ buf = req->req.buf + req->req.actual; ++ count = min(length, req_bufferspace); ++ memcpy(buf, src, count); ++ ++ req->req.actual += count; ++ ++ if((req->req.actual % rt_ep->ep.maxpacket) || (req->req.actual >= req->req.length)){ ++ done(rt_ep, req, 0); // short packet indicates transaction is done. ++ } ++ return count; ++} ++ ++static void rx_dma_done_do_tasklet(unsigned long arg) ++{ ++ u32 *rxd_info; ++ u32 length; ++ int ep, rc; ++ int processed_count=0; ++ ++ DBG; ++ for (;;){ ++ if (rx_ring0_cache[rx_dma_owner_idx0].rxd_info2.DDONE_bit == 0) ++ break; ++ ++ if(processed_count++ > RX_RESCHEDULE){ ++ tasklet_schedule(&rx_dma_tasklet); ++ break; ++ } ++ ++ length = rx_ring0_cache[rx_dma_owner_idx0].rxd_info4.Rx_bcnt; ++ ep = rx_ring0_cache[rx_dma_owner_idx0].rxd_info4.Out_ep_addr; ++ ++ // copy data from RXD->buffer to ep queue. ++ rc = copy_data_to_ep((void *)USBRxPackets[rx_dma_owner_idx0], length, ep); ++ if(rc <= 0) ++ return; ++ ++ rxd_info = (u32 *)&rx_ring0_cache[rx_dma_owner_idx0].rxd_info4; ++ *rxd_info = 0; ++ ++ /* clear DDONE bit*/ ++ rxd_info = (u32 *)&rx_ring0_cache[rx_dma_owner_idx0].rxd_info2; ++ *rxd_info = 0; ++ //rx_ring0_cache[rx_dma_owner_idx0].rxd_info2.DDONE_bit = 0; ++ //rx_ring0_cache[i].rxd_info2.LS0= 0; ++ rx_ring0_cache[rx_dma_owner_idx0].rxd_info2.PLEN0= sizeof(u8) * RX_BUFF_SZ; ++ ++ /* Move point to next RXD which wants to alloc */ ++ //OUTL(cpu_to_le32((u32) rx_dma_owner_idx0), RTUSB_RX_CALC_IDX0); ++ reg_write(RTUSB_RX_CALC_IDX0, rx_dma_owner_idx0); ++ ++ /* Update to Next packet point that was received. ++ */ ++ rx_dma_owner_idx0 = (rx_dma_owner_idx0 + 1) % NUM_RX_DESC; ++ } ++} ++ ++/* ++ * Recycle reqs and call gadget complete callback function. ++ */ ++static void tx_dma_done_do_tasklet(unsigned long arg) ++{ ++ int ep_num; ++ u32 hw_current; ++ struct rt_ep_struct *rt_ep; ++ struct rt_request *rt_req; ++ struct rt_udc_struct *rt_usb = &controller; ++ ++ DBG; ++ while(tx_need_free_idx0 != (hw_current = reg_read(RTUSB_TX_DTX_IDX0))){ ++ int retry = 0; ++ while(tx_ring0_cache[tx_need_free_idx0].txd_info2.DDONE_bit != 1){ ++ mdelay(1); ++ retry++; ++ if(retry > 1000) ++ FATAL_ERROR("tx timeout"); ++ } ++ ++ // rt_ep = tx_ring0_req_mapping[tx_need_free_idx0]; ++ ep_num = tx_ring0_cache[tx_need_free_idx0].txd_info4.In_ep_addr; ++ if(!ep_num || ep_num > IN_EP_NUM) ++ FATAL_ERROR("Out of range"); ++ ++ rt_ep = &rt_usb->rt_ep[ep_num]; ++ if(list_empty(&rt_ep->queue)) ++ FATAL_ERROR("ep[%d] No request", ep_num); ++ ++ rt_req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ rt_req->txd_count--; ++ ++ ++ if(rt_req->txd_count == 0) ++ done(rt_ep, rt_req, 0); ++ ++ tx_need_free_idx0 = (tx_need_free_idx0 + 1) % NUM_TX_DESC; ++ ++ } ++} ++ ++static int udc_dma_rst(void) ++{ ++ if( udc_dma_reset_txring() == -1) ++ return -1; ++ if( udc_dma_reset_rxring() == -1) ++ return -1; ++ ++ tx_cpu_owner_idx0 = 0; ++ tx_need_free_idx0 = 0; ++ rx_dma_owner_idx0 = 0; ++ reg_write(RTUSB_RX_CALC_IDX0, cpu_to_le32(NUM_RX_DESC - 1)); ++ return 0; ++} ++ ++static int rt_udc_dma_init(void) ++{ ++ int i; ++ ++ if( udc_dma_hw_reset() == -1) ++ return -1; ++ ++ for(i=0; i<NUM_RX_DESC; i++){ ++ USBRxPackets[i] = kmalloc(sizeof(u8) * RX_BUFF_SZ, GFP_ATOMIC | GFP_DMA); // todo: use GFP_KERNEL instead. ++ if(!USBRxPackets[i]){ ++ for(i=i-1; i>=0; i--) ++ kfree((void *)USBRxPackets[i]); ++ printk("No mem."); ++ return -1; ++ } ++ } ++ ++ tx_ring0_cache = dma_alloc_coherent(NULL, sizeof(struct PDMA_txdesc) * NUM_TX_DESC, &tx_ring_bus_addr, GFP_KERNEL); ++ rx_ring0_cache = dma_alloc_coherent(NULL, sizeof(struct PDMA_rxdesc) * NUM_RX_DESC, &rx_ring_bus_addr, GFP_KERNEL); ++ ++ printk("USB PDMA mode enabled.\n"); ++ printk("tx_ring=%p\n", tx_ring0_cache); ++ printk("rx_ring=%p\n", rx_ring0_cache); ++ ++ tx_ring0_noncache = tx_ring0_cache; ++ rx_ring0_noncache = rx_ring0_cache; ++ ++ for(i=0; i < NUM_RX_DESC; i++){ ++ memset((void *)&rx_ring0_noncache[i], 0, 16 /* sizeof()*/); ++ rx_ring0_noncache[i].rxd_info2.DDONE_bit = 0; ++ rx_ring0_noncache[i].rxd_info2.LS0= 0; ++ rx_ring0_noncache[i].rxd_info2.PLEN0= sizeof(u8) * RX_BUFF_SZ; ++ rx_ring0_noncache[i].rxd_info1.PDP0 = dma_map_single(NULL, (void *)USBRxPackets[i], sizeof(u8) * RX_BUFF_SZ, DMA_FROM_DEVICE); ++ } ++ ++ for (i=0; i < NUM_TX_DESC; i++) { ++ memset((void *)&tx_ring0_noncache[i],0, 16 /* sizeof()*/); ++ tx_ring0_noncache[i].txd_info2.LS0_bit = 1; ++ tx_ring0_noncache[i].txd_info2.DDONE_bit = 1; ++ // we would map dma buffer dynamically in IRQ handler & ep_queue(); ++ } ++ ++ rx_dma_owner_idx0 = 0; ++ tx_cpu_owner_idx0 = 0; ++ tx_need_free_idx0 = 0; ++ ++ /* initial UDMA register */ ++ //OUTL(cpu_to_le32((u32) UDMA_Init_Setting), RTUSB_UDMA_CTRL); ++ ++ if(sm){ ++ printk("Storage mode enabled.\n"); ++ reg_write(RTUSB_UDMA_CTRL, 0x3F000063); /* enable storage mode */ ++ }else ++ reg_write(RTUSB_UDMA_CTRL, 0x3F000003); ++ ++ ++ /* Tell the adapter where the TX/RX rings are located. */ ++ //OUTL(phys_to_bus((u32) &rx_ring[0]), RTUSB_RX_BASE_PTR0); ++ reg_write(RTUSB_RX_BASE_PTR0, rx_ring_bus_addr); ++ ++ //OUTL(phys_to_bus((u32) &tx_ring0[0]), RTUSB_TX_BASE_PTR0); ++ reg_write(RTUSB_TX_BASE_PTR0, tx_ring_bus_addr); ++ ++ //OUTL(cpu_to_le32((u32) NUM_RX_DESC), RTUSB_RX_MAX_CNT0); ++ //OUTL(cpu_to_le32((u32) NUM_TX_DESC), RTUSB_TX_MAX_CNT0); ++ reg_write(RTUSB_RX_MAX_CNT0, cpu_to_le32(NUM_RX_DESC)); ++ reg_write(RTUSB_TX_MAX_CNT0, cpu_to_le32(NUM_TX_DESC)); ++ ++ //OUTL(cpu_to_le32((u32) tx_cpu_owner_idx0), RTUSB_TX_CTX_IDX0); ++ //OUTL(cpu_to_le32((u32) (NUM_RX_DESC - 1)), RTUSB_RX_CALC_IDX0); ++ reg_write(RTUSB_TX_CTX_IDX0, cpu_to_le32(tx_cpu_owner_idx0)); ++ reg_write(RTUSB_RX_CALC_IDX0, cpu_to_le32(NUM_RX_DESC - 1)); ++ ++ udelay(500); ++ return 0; ++} ++ ++static int udc_dma_fini(void) ++{ ++ int i; ++ u32 len; ++ dma_addr_t addr; ++ ++ udc_dma_enable(false); ++ udc_dma_int_enable(false); ++ ++ /* restore UDMA register */ ++ reg_write(RTUSB_UDMA_CTRL, 0x0); ++ ++ // unmap & free RX buffer ++ for(i=0; i<NUM_RX_DESC; i++){ ++ addr = rx_ring0_noncache[i].rxd_info1.PDP0; ++ if(addr) ++ dma_unmap_single(NULL, addr, sizeof(u8) * RX_BUFF_SZ, DMA_FROM_DEVICE); ++ kfree((void *)USBRxPackets[i]); ++ } ++ ++ // unmap Tx buffer only(but not free it) ++ for(i=0; i<NUM_TX_DESC; i++){ ++ addr = tx_ring0_noncache[i].txd_info1.SDP0; ++ if(addr){ ++ len = tx_ring0_noncache[i].txd_info2.SDL0; ++ dma_unmap_single(NULL, addr, sizeof(u8) * len, DMA_TO_DEVICE); ++ } ++ } ++ ++ dma_free_coherent(NULL, sizeof(struct PDMA_txdesc) * NUM_TX_DESC, tx_ring0_cache, tx_ring_bus_addr); ++ dma_free_coherent(NULL, sizeof(struct PDMA_rxdesc) * NUM_RX_DESC, rx_ring0_cache, rx_ring_bus_addr); ++ ++ return 0; ++} ++ ++static int rt_ep_enable(struct usb_ep *usb_ep, const struct usb_endpoint_descriptor *desc) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ struct rt_udc_struct *rt_usb = rt_ep->rt_usb; ++ unsigned long flags; ++ ++ DBG; ++ ++ if (!usb_ep || !desc || !EP_NO(rt_ep) || desc->bDescriptorType != USB_DT_ENDPOINT || rt_ep->bEndpointAddress != desc->bEndpointAddress) { ++ D_ERR(rt_usb->dev, "<%s> bad ep or descriptor\n", __func__); ++ return -EINVAL; ++ } ++ if (rt_ep->bmAttributes != desc->bmAttributes) { ++ D_ERR(rt_usb->dev, "<%s> %s type mismatch, 0x%x, 0x%x\n", __func__, usb_ep->name, rt_ep->bmAttributes, desc->bmAttributes); ++ return -EINVAL; ++ } ++ if (!rt_usb->driver || rt_usb->gadget.speed == USB_SPEED_UNKNOWN) { ++ D_ERR(rt_usb->dev, "<%s> bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ local_irq_save(flags); ++ rt_ep->stopped = 0; ++ if(dma){ ++ //rt_ep_irq_enable(rt_ep); ++ }else ++ rt_ep_irq_enable(rt_ep); ++ local_irq_restore(flags); ++ ++ xprintk("<%s> ENABLED %s\n", __func__, usb_ep->name); ++ return 0; ++} ++ ++static int rt_ep_disable(struct usb_ep *usb_ep) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ unsigned long flags; ++ ++DBG; ++ if (!usb_ep || !EP_NO(rt_ep) /* || !list_empty(&rt_ep->queue) */) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> %s can not be disabled\n", __func__, usb_ep ? rt_ep->ep.name : NULL); ++ return -EINVAL; ++ } ++ ++ local_irq_save(flags); ++ rt_ep->stopped = 1; ++ nuke(rt_ep, -ESHUTDOWN); ++ rt_flush(rt_ep); ++ rt_ep_irq_disable(rt_ep); ++ ++ local_irq_restore(flags); ++ ++ xprintk("<%s> DISABLED %s\n", __func__, usb_ep->name); ++ return 0; ++} ++ ++static struct usb_request *rt_ep_alloc_request (struct usb_ep *usb_ep, gfp_t gfp_flags) ++{ ++ struct rt_request *req; ++ ++ DBG; ++ req = kzalloc(sizeof *req, gfp_flags); ++ if (!req || !usb_ep) ++ return 0; ++ ++ INIT_LIST_HEAD(&req->queue); ++ req->in_use = 0; ++ return &req->req; ++} ++ ++static void rt_ep_free_request(struct usb_ep *usb_ep, struct usb_request *usb_req) ++{ ++ struct rt_request *req; ++ ++ DBG; ++ req = container_of(usb_req, struct rt_request, req); ++ WARN_ON(!list_empty(&req->queue)); ++ kfree(req); ++} ++ ++/* ++ * Two cases : ++ * 1) UDC TX (IN EPs) ++ * enqueue req -> handle_ep() -> write fifo -> TX_DONE -> handle_ep() -> write next fifo -> TX_DONE... ++ * ++ * 2) UDC RX (OUT EPs) ++ * enqueue req -> RX_DONE -> handle_ep() -> read_fifo -> RX_DONE -> handle_ep() -> read fifo... ++ */ ++static int rt_ep_queue(struct usb_ep *usb_ep, struct usb_request *req, gfp_t gfp_flags) ++{ ++ struct rt_ep_struct *rt_ep; ++ struct rt_udc_struct *rt_usb; ++ struct rt_request *rt_req; ++ unsigned long flags; ++ int ret = 0; ++ int handle_right_now = 0; ++ ++ rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ rt_usb = rt_ep->rt_usb; ++ rt_req = container_of(req, struct rt_request, req); ++ rt_req->rt_ep = rt_ep; ++ ++ if (rt_usb->set_config && !EP_NO(rt_ep)) { ++ rt_usb->set_config = 0; ++ D_ERR(rt_usb->dev, "<%s> gadget reply set config\n", __func__); ++ return 0; ++ } ++ ++ if (unlikely(!req || !rt_req || !req->complete || !req->buf)) { ++ D_ERR(rt_usb->dev, "<%s> bad params\n", __func__); ++ return -EINVAL; ++ } ++ ++ if (unlikely(!usb_ep || !rt_ep)) { ++ D_ERR(rt_usb->dev, "<%s> bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ if (!rt_usb->driver || rt_usb->gadget.speed == USB_SPEED_UNKNOWN) { ++ D_ERR(rt_usb->dev, "<%s> bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ /* debug */ ++ xprintk("<eq> ep%d%s %p %dB\n", EP_NO(rt_ep), ((!EP_NO(rt_ep) && rt_ep->rt_usb->ep0state == EP0_IN_DATA_PHASE) || (EP_NO(rt_ep) && EP_DIR(rt_ep) == EP_IN )) ? "IN" : "OUT", &rt_req->req, req->length); ++ ++ if (rt_ep->stopped) { ++ printk("EP%d -> stopped.\n", EP_NO(rt_ep)); ++ req->status = -ESHUTDOWN; ++ return -ESHUTDOWN; ++ } ++ ++ if (rt_req->in_use) { ++ D_ERR(rt_usb->dev, "<%s> refusing to queue req %p (already queued)\n", __func__, req); ++ return -1; ++ } ++ ++ local_irq_save(flags); ++ /* ++ * handle No-data Ctrl transfer. ++ */ ++ if(!EP_NO(rt_ep)/* EP0 */ && EP_DIR(rt_ep) == EP_OUT && !req->length){ ++ done(rt_ep, rt_req, 0); ++ local_irq_restore(flags); ++ return ret; ++ } ++ ++ req->status = -EINPROGRESS; ++ req->actual = 0; ++ ++ if(dma || list_empty(&rt_ep->queue)) ++ handle_right_now = 1; ++ ++ ep_add_request(rt_ep, rt_req); ++ ++ if(handle_right_now){ ++ if(!EP_NO(rt_ep) && rt_ep->rt_usb->ep0state != EP0_OUT_DATA_PHASE){ /* ep0 && TX*/ ++ handle_inep0(rt_ep); ++ }else if( EP_DIR(rt_ep) == EP_IN){ /* epin[1-x] */ ++ handle_inep(rt_ep); ++ }else{ ++ // other reqs are waiting for TX_DONE int. ++ } ++ } ++ ++ if(dma){ ++ if(EP_NO(rt_ep) && (EP_DIR(rt_ep) == EP_OUT)) ++ tasklet_schedule(&rx_dma_tasklet); ++ }else{ ++ if( (EP_DIR(rt_ep) == EP_OUT)/* OUT EP */ && rt_ep->pending){ ++ rt_ep->pending = 0; ++ handle_pending_epoutirq(rt_usb, rt_ep, rt_req); ++ } ++ } ++ ++ local_irq_restore(flags); ++ return ret; ++} ++ ++static int rt_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ struct rt_request *req; ++ unsigned long flags; ++ ++ DBG; ++ if (unlikely(!usb_ep || !EP_NO(rt_ep))) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ local_irq_save(flags); ++ ++ /* make sure it's actually queued on this endpoint */ ++ list_for_each_entry(req, &rt_ep->queue, queue) { ++ if (&req->req == usb_req) ++ break; ++ } ++ if (&req->req != usb_req) { ++ local_irq_restore(flags); ++ return -EINVAL; ++ } ++ ++ done(rt_ep, req, -ECONNRESET); ++ ++ local_irq_restore(flags); ++ return 0; ++} ++ ++static int rt_ep_set_halt(struct usb_ep *usb_ep, int value) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ unsigned long flags; ++ ++ DBG; ++ if (unlikely(!usb_ep || !EP_NO(rt_ep))) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ local_irq_save(flags); ++ ++ if ((rt_ep->bEndpointAddress & USB_DIR_IN) && !list_empty(&rt_ep->queue)) { ++ local_irq_restore(flags); ++ return -EAGAIN; ++ } ++ ++ rt_ep_stall(rt_ep, 1); ++ ++ local_irq_restore(flags); ++ ++ D_EPX(rt_ep->rt_usb->dev, "<%s> %s halt\n", __func__, usb_ep->name); ++ return 0; ++} ++ ++static int rt_ep_fifo_status(struct usb_ep *usb_ep) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ ++ DBG; ++ if (!usb_ep) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> bad ep\n", __func__); ++ return -ENODEV; ++ } ++ ++ if (rt_ep->rt_usb->gadget.speed == USB_SPEED_UNKNOWN) ++ return 0; ++ else ++ return rt_fifo_bcount(rt_ep); ++} ++ ++static void rt_ep_fifo_flush(struct usb_ep *usb_ep) ++{ ++ struct rt_ep_struct *rt_ep = container_of(usb_ep, struct rt_ep_struct, ep); ++ unsigned long flags; ++ ++ DBG; ++ local_irq_save(flags); ++ ++ if (!usb_ep || !EP_NO(rt_ep) || !list_empty(&rt_ep->queue)) { ++ D_ERR(rt_ep->rt_usb->dev, "<%s> bad ep\n", __func__); ++ local_irq_restore(flags); ++ return; ++ } ++ ++ /* toggle and halt bits stay unchanged */ ++ rt_flush(rt_ep); ++ ++ local_irq_restore(flags); ++} ++ ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,36) ++static void *rt_ep_alloc_buffer(struct usb_ep *_ep, unsigned bytes, dma_addr_t *dma, gfp_t gfp_flags) ++{ ++ char *retval; ++ ++ retval = kmalloc (bytes, gfp_flags & ~(__GFP_DMA|__GFP_HIGHMEM)); ++ if (retval) ++// *dma = virt_to_bus (retval); ++ *dma = (dma_addr_t)~0; ++ return retval; ++} ++ ++static void rt_ep_free_buffer(struct usb_ep *_ep, void *buf, dma_addr_t dma, unsigned bytes) ++{ ++ kfree (buf); ++} ++#endif ++ ++static struct usb_ep_ops rt_ep_ops = { ++ .enable = rt_ep_enable, ++ .disable = rt_ep_disable, ++ ++ .alloc_request = rt_ep_alloc_request, ++ .free_request = rt_ep_free_request, ++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,36) ++ .alloc_buffer = rt_ep_alloc_buffer, ++ .free_buffer = rt_ep_free_buffer, ++#endif ++ .queue = rt_ep_queue, ++ .dequeue = rt_ep_dequeue, ++ ++ .set_halt = rt_ep_set_halt, ++ .fifo_status= rt_ep_fifo_status, ++ .fifo_flush = rt_ep_fifo_flush, ++}; ++ ++/******************************************************************************* ++ * USB endpoint control functions ++ ******************************************************************************* ++ */ ++static void usb_init_data(struct rt_udc_struct *rt_usb) ++{ ++ struct rt_ep_struct *rt_ep; ++ u8 i; ++ ++ DBG; ++ /* device/ep0 records init */ ++ INIT_LIST_HEAD(&rt_usb->gadget.ep_list); ++ INIT_LIST_HEAD(&rt_usb->gadget.ep0->ep_list); ++ ep0_chg_stat(__func__, rt_usb, EP0_IDLE); ++ ++ /* basic endpoint records init */ ++ for (i = 0; i < RT_USB_NB_EP; i++) { ++ rt_ep = &rt_usb->rt_ep[i]; ++ ++ if (i) { ++ list_add_tail(&rt_ep->ep.ep_list, &rt_usb->gadget.ep_list); ++ rt_ep->stopped = 1; ++ } else ++ rt_ep->stopped = 0; ++ ++ INIT_LIST_HEAD(&rt_ep->queue); ++ } ++} ++ ++static void udc_stop_activity(struct rt_udc_struct *rt_usb, struct usb_gadget_driver *driver) ++{ ++ struct rt_ep_struct *rt_ep; ++ int i; ++ ++ if (rt_usb->gadget.speed == USB_SPEED_UNKNOWN) ++ driver = NULL; ++ ++ /* prevent new request submissions, kill any outstanding requests */ ++ for (i = 0; i < RT_USB_NB_EP; i++) { ++ rt_ep = &rt_usb->rt_ep[i]; ++ if(i != 0){ /* don't have to flush EP[0]. */ ++ rt_flush(rt_ep); ++ rt_ep->stopped = 1; ++ rt_ep_irq_disable(rt_ep); ++ } ++ nuke(rt_ep, -ESHUTDOWN); ++ } ++ ++ rt_usb->cfg = 0; ++ rt_usb->intf = 0; ++ rt_usb->alt = 0; ++ ++ if (driver) ++ driver->disconnect(&rt_usb->gadget); ++} ++ ++/* ++ * keep for reference. ++ */ ++static void handle_config(unsigned long data) ++{ ++ DBG; ++#if 0 ++ struct imx_udc_struct *imx_usb = (void *)data; ++ struct usb_ctrlrequest u; ++ int temp, cfg, intf, alt; ++ ++ local_irq_disable(); ++ ++ temp = __raw_readl(imx_usb->base + USB_STAT); ++ cfg = (temp & STAT_CFG) >> 5; ++ intf = (temp & STAT_INTF) >> 3; ++ alt = temp & STAT_ALTSET; ++ ++ xprintk("<%s> orig config C=%d, I=%d, A=%d / req config C=%d, I=%d, A=%d\n", __func__, imx_usb->cfg, imx_usb->intf, imx_usb->alt, cfg, intf, alt); ++ ++ if (cfg == 1 || cfg == 2) { ++ ++ if (imx_usb->cfg != cfg) { ++ u.bRequest = USB_REQ_SET_CONFIGURATION; ++ u.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE; ++ u.wValue = cfg; ++ u.wIndex = 0; ++ u.wLength = 0; ++ imx_usb->cfg = cfg; ++ imx_usb->driver->setup(&imx_usb->gadget, &u); ++ ++ } ++ if (imx_usb->intf != intf || imx_usb->alt != alt) { ++ u.bRequest = USB_REQ_SET_INTERFACE; ++ u.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_INTERFACE; ++ u.wValue = alt; ++ u.wIndex = intf; ++ u.wLength = 0; ++ imx_usb->intf = intf; ++ imx_usb->alt = alt; ++ imx_usb->driver->setup(&imx_usb->gadget, &u); ++ } ++ } ++ ++ imx_usb->set_config = 0; ++ ++ local_irq_enable(); ++#endif ++} ++ ++static void handle_setup(struct rt_udc_struct *rt_usb) ++{ ++ u8 epcs; ++ int i; ++ union { ++ struct usb_ctrlrequest r; ++ u8 raw[8]; ++ u32 word[2]; ++ } u; ++ struct rt_ep_struct *rt_ep = &rt_usb->rt_ep[0]; ++ ++ nuke(rt_ep, -EPROTO); ++ ++ // read setup packet ++ for (i = 0; i < 8; i++) ++ u.raw[i] = usb_read(SETUPDATA + i); ++ ++ le16_to_cpus(&u.r.wValue); ++ le16_to_cpus(&u.r.wIndex); ++ le16_to_cpus(&u.r.wLength); ++ ++ xprintk("<SETUP> %02x.%02x v%04x\n", u.r.bRequestType, u.r.bRequest, u.r.wValue); ++ ++ switch(u.r.bRequest){ ++ /* HW(CUSB2) has handled it. */ ++ case USB_REQ_SET_ADDRESS: ++ if (u.r.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) ++ break; ++ return; ++ } ++ ++ if(!u.r.wLength){ ++ ep0_chg_stat(__func__, rt_usb, EP0_NO_DATA_PHASE); ++ }else if (u.r.bRequestType & USB_DIR_IN){ ++ ep0_chg_stat(__func__, rt_usb, EP0_IN_DATA_PHASE); ++ }else{ ++ // reload and clear out0bc ++ usb_write(OUT0BC, 0); ++ ep0_chg_stat(__func__, rt_usb, EP0_OUT_DATA_PHASE); ++ } ++ ++ if(!rt_usb->driver){ ++ printk("<%s> please insert gadget driver/module.\n", __func__); ++ goto stall; ++ } ++ ++ if(!rt_usb->driver->setup) ++ goto stall; ++ ++ i = rt_usb->driver->setup(&rt_usb->gadget, &u.r); // gadget would queue more usb req here ++ ++ if (i < 0) { ++ printk("<%s> device setup error %d\n", __func__, i); ++ goto stall; ++ } ++ ++ if(rt_usb->ep0state == EP0_NO_DATA_PHASE){ ++ epcs = read_epcs(rt_ep); ++ epcs |= EP_CS_EP0_HSNAK; // clear hsnak to let HW ack the status stage. ++ write_epcs(rt_ep, epcs); ++ } ++ ++ return; ++stall: ++ printk("<%s> protocol STALL\n", __func__); ++ rt_ep_stall(rt_ep, 1); ++ ep0_chg_stat(__func__, rt_usb, EP0_STALL); ++ return; ++} ++ ++/* ++ * handle TX done interrupt ++ */ ++static void handle_epinirq(struct rt_udc_struct *rt_usb, u8 epinirq) ++{ ++ u8 irq = 0x0; ++ struct rt_request *req; ++ struct rt_ep_struct *rt_ep; ++ ++ rt_ep = &rt_usb->rt_ep[epinirq]; ++ ++ if (list_empty(&rt_ep->queue)) ++ FATAL_ERROR("empty queue"); ++ ++ // clear ep interrupt ++ if(epinirq < 8){ ++ irq |= 1 << epinirq; ++ usb_write(IN07IRQ, irq); ++ }else{ ++ irq |= 1 << (epinirq-8); ++ usb_write(IN815IRQ, irq); ++ } ++ ++ req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ xprintk("r.l=%d, r.a=%d\n", req->req.length, req->req.actual); ++ if(req->req.actual >= req->req.length ){ ++ if( req->req.actual && (!(req->req.actual % rt_ep->ep.maxpacket)) && req->req.zero){ ++ // deal with one more "zlp" ++ req->req.zero = 0; ++ write_ep_fifo_zlp(rt_ep); ++ return; ++ } ++ ++ // the first tx req in ep->queue is done. ++ rt_ep->tx_done_count = 0; ++ if(!epinirq /* EP0 */) ++ ep0_chg_stat(__func__, rt_usb, EP0_IDLE); ++ done(rt_ep, req, 0); ++#if 1 ++ // more reqs there. ++ if (!list_empty(&rt_ep->queue) && !rt_ep->tx_done_count){ ++ if(!epinirq /* EP0 */){ ++ handle_inep0(rt_ep); ++ }else{ ++ handle_inep(rt_ep); ++ } ++ } ++#endif ++ }else{ ++ if(!epinirq /* EP0 */){ ++ handle_inep0(rt_ep); ++ }else ++ handle_inep(rt_ep); ++ } ++} ++ ++static void handle_ep0outirq(struct rt_udc_struct *rt_usb, u8 epoutirq) ++{ ++ u8 epcs, irq = 0x0; ++ struct rt_request *req = NULL; ++ struct rt_ep_struct *rt_ep = NULL; ++ ++DBG; ++ rt_ep = &rt_usb->rt_ep[0]; ++ ++ if(rt_usb->ep0state == EP0_STALL){ ++ printk("<%s> protocol STALL\n", __func__); ++ rt_ep_stall(rt_ep, 1); ++ return; ++ } ++ ++ if(rt_usb->ep0state != EP0_OUT_DATA_PHASE) ++ FATAL_ERROR("Odd stage"); ++ ++ do{ ++ if(unlikely(!read_outbc(0x0))) ++ FATAL_ERROR("EP0 BC"); ++ ++ if (unlikely(list_empty(&rt_ep->queue))) ++ FATAL_ERROR("EP0 no req"); ++ ++ req = handle_outep0(rt_ep); ++ ++ //req = list_entry(rt_ep->queue.next, struct rt_request, queue); ++ xprintk("q.l=%d,q.a=%d\n", req->req.length, req->req.actual); ++ ++ // clear ep interrupt ++ irq |= 1; ++ usb_write(OUT07IRQ, irq); ++ ++ if(req && ((req->req.actual % rt_ep->ep.maxpacket) || (req->req.actual >= req->req.length))){ ++ ep0_chg_stat(__func__, rt_usb, EP0_IDLE); ++ done(rt_ep, req, 0); // short packet indicates transaction is done. ++ ++ epcs = read_epcs(rt_ep); ++ epcs |= EP_CS_EP0_HSNAK; // clear hsnak bit to let HW ack the status stage. ++ write_epcs(rt_ep, epcs); ++ break; ++ } ++ ++ // reload EP[0] ++ usb_write(OUT0BC /*out0bc*/, 0x0); ++ epcs = read_epcs(rt_ep); ++ }while(!(epcs & EP0_OUT_BSY)); ++} ++ ++static void handle_pending_epoutirq(struct rt_udc_struct *rt_usb, struct rt_ep_struct *rt_ep, struct rt_request *req) ++{ ++ u8 epcs; ++ ++DBG; ++ do{ ++ if(unlikely(!read_outbc(EP_NO(rt_ep)))) ++ FATAL_ERROR("No BC"); ++ ++ handle_outep(rt_ep); ++ if(req && ( (req->req.actual % rt_ep->ep.maxpacket) || (req->req.actual >= req->req.length))){ ++ xprintk("q.l=%d,q.a=%d\n", req->req.length, req->req.actual); ++ ++ //rx_done(rt_ep, req, 0); ++ done(rt_ep, req, 0); ++ } ++ ++ epcs = read_epcs(rt_ep); ++ write_epcs(rt_ep, 0x0); ++ epcs = read_epcs(rt_ep); ++ ++ }while(!(epcs & EP_CS_BSY)); ++} ++ ++static void handle_epoutirq(struct rt_udc_struct *rt_usb, u8 epoutirq) ++{ ++ u8 irq = 0x0; ++ ++DBG; ++ if(unlikely(epoutirq == 0x0)){ ++ handle_ep0outirq(rt_usb, 0x0); ++ return; ++ } ++ ++ tasklet_schedule(&rx_tasklet); ++ ++ // clear ep interrupt ++ irq |= 1 << epoutirq; ++ usb_write(OUT07IRQ, irq); ++ return; ++} ++ ++static void eps_change_to_hs(struct rt_udc_struct *rt_usb) ++{ ++ int i; ++ struct rt_ep_struct *rt_ep; ++ for(i = 0; i < RT_USB_NB_EP; i++){ ++ rt_ep = &rt_usb->rt_ep[i]; ++ if(rt_ep->bmAttributes == USB_ENDPOINT_XFER_BULK){ ++ rt_ep->ep.maxpacket = 512; ++ } ++ } ++} ++ ++static void eps_change_to_fs(struct rt_udc_struct *rt_usb) ++{ ++ int i; ++ struct rt_ep_struct *rt_ep; ++ for(i = 0; i < RT_USB_NB_EP; i++){ ++ rt_ep = &rt_usb->rt_ep[i]; ++ if(rt_ep->bmAttributes == USB_ENDPOINT_XFER_BULK){ ++ rt_ep->ep.maxpacket = 64; ++ } ++ } ++} ++ ++void handle_highspeed(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ ++ eps_change_to_hs(rt_usb); ++ ++ if(dma){ ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++ usb_write(IN1CON, 0x8D); // InEP1 : Int, 2 subfifos ++ usb_write(IN2CON, 0x89); // InEP2 : Bulk, 2 subfifo ++ usb_write(OUT1CON, 0x8D); // OutEP1 : Int, 2 subfifos ++ usb_write(OUT2CON, 0x89); // OutEP2 : Bulk, 2 subfifos ++ //usb_write(OUT3CON, 0x89); // OutEP3 : Bulk, 2 subfifo ++ //usb_write(OUT4CON, 0x89); // OutEP4 : Bulk. 2 subfifo ++#elif defined (CONFIG_RALINK_RT5350) ++ // Access by CPU ++ usb_write(IN1CON, 0x89); // InEP1 : Bulk, 2 subfifos ++ usb_write(OUT1CON, 0x89); // OutEP1 : Bulk, 2 subfifos ++#else ++#error "define a platform" ++#endif ++ }else{ ++ // Access by CPU ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++ usb_write(IN1CON, 0x8C); // InEP1 : Int , 1 subfifos ++ usb_write(IN2CON, 0x88); // InEP2 : Bulk, 1 subfifo ++ ++ usb_write(OUT1CON, 0x8C); // OutEP1 : Int, 1 subfifos ++ usb_write(OUT2CON, 0x88); // OutEP2 : Bulk, 1 subfifos ++ //usb_write(OUT3CON, 0x88); // OutEP3 : Bulk, 1 subfifo ++ //usb_write(OUT4CON, 0x88); // OutEP4 : Bulk. 1 subfifo ++#elif defined (CONFIG_RALINK_RT5350) ++ // Access by CPU ++ usb_write(IN1CON, 0x88); // InEP1 : Bulk , 1 subfifos ++ usb_write(OUT1CON, 0x88); // OutEP1 : Bulk, 1 subfifos ++#else ++#error "define a platform" ++#endif ++ ++ } ++ // clear all pending interrupts ++ usb_write(IN07IRQ, 0xFF); ++ usb_write(OUT07IRQ, 0xFF); ++ ++ rt_usb->gadget.speed = USB_SPEED_HIGH; ++ ++ // reset ALL endpoints ++ rt_all_eps_reset(); ++ ++ // Enable ep0 interrupt. ++ // (EPx interrupt is enabled in EPx_enable(). ) ++ rt_ep_irq_enable(&rt_usb->rt_ep[0]); ++} ++ ++static void handle_reset(struct rt_udc_struct *rt_usb) ++{ ++ struct rt_ep_struct *rt_ep; ++ int i; ++ ++ eps_change_to_fs(rt_usb); ++ ++ // remove all EPs' usb request ++ for (i = 0; i < RT_USB_NB_EP; i++) { ++ rt_ep = &rt_usb->rt_ep[i]; ++ if(i != 0){ /* don't have to flush EP[0]. */ ++ rt_flush(rt_ep); ++ rt_ep->stopped = 1; ++ rt_ep_irq_disable(rt_ep); ++ } ++ nuke(rt_ep, -ESHUTDOWN); ++ } ++ ++ rt_usb->cfg = 0; ++ rt_usb->intf = 0; ++ rt_usb->alt = 0; ++ ++ if(dma){ ++ // clear all PDMA interrupts ++ udc_dma_all_int_clear(); ++ // reset PDMA ++ udc_dma_rst(); ++ } ++ ++ // clear all pending interrupts ++ usb_write(IN07IRQ, 0xFF); ++ usb_write(OUT07IRQ, 0xFF); ++ ++ // flush all EP's fifo ++ rt_all_eps_reset(); ++} ++ ++static void handle_usbirq(struct rt_udc_struct *rt_usb, u8 usbirq) ++{ ++ if(usbirq & USB_INTR_SETUP_TOKEN_VALID){ ++ // Setup token is arrival. ++ // get setup data and pass it to gadget driver. ++ handle_setup(rt_usb); ++ } ++ ++ if(usbirq & USB_INTR_RESET) ++ handle_reset(rt_usb); ++ ++ if(usbirq & USB_INTR_HSPEED) ++ handle_highspeed(rt_usb); ++ ++ /* ++ * DO NOT try to clear SoF and token Interrupt! ++ */ ++ if( (usbirq & USB_INTR_SETUP_TOKEN_VALID) || ++ (usbirq & USB_INTR_HSPEED) || ++ (usbirq & USB_INTR_RESET)) ++ usb_write(USBIRQ, usbirq); ++} ++ ++static int irq_count = 100; /* for debug */ ++/* ++ * Interrupt handler ++ */ ++irqreturn_t rt_irq_handler(int irq, void *_dev) ++{ ++ u32 usbirq,epin07irq,epin07ien,epout07irq,epout07ien; ++ struct rt_udc_struct *rt_usb = _dev; ++#ifdef DEBUG ++ u32 count_tmp = irq_count; ++#endif ++ ++ ++ DBG; ++ irq_count++; ++ ++ usbirq = usb_read(USBIRQ); ++ epin07irq = usb_read(IN07IRQ); ++ epin07ien = usb_read(IN07IEN); ++ epout07irq = usb_read(OUT07IRQ); ++ epout07ien = usb_read(OUT07IEN); ++ ++ //epin07irq = epin07irq & epin07ien; ++ //epout07irq = epout07irq & epout07ien; ++ ++ xprintk(">%x\n", count_tmp); ++ dump_usbirq(usbirq); ++ dump_epirq(epin07irq, epin07ien, 1); ++ dump_epirq(epout07irq, epout07ien, 0); ++ ++ if(dma){ ++ u32 dma_irq = reg_read(RTUSB_INT_STATUS); ++ if(epin07irq & 0x1) // INEP0 ++ handle_epinirq(rt_usb, 0); ++ ++ if(usbirq) // HS, Reset, SetupValid ++ handle_usbirq(rt_usb, usbirq); ++ ++ if(epout07irq & 0x1) // OUTEP0 ++ handle_epoutirq(rt_usb, 0); ++ ++ if(dma_irq) ++ handle_dmairq(rt_usb, dma_irq); ++ ++ }else{ ++ if(epin07irq & 0x1) // INEP0 ++ handle_epinirq(rt_usb, 0); ++ ++ if(usbirq) // HS, Reset, SetupValid ++ handle_usbirq(rt_usb, usbirq); ++ ++ if(epout07irq & 0x1) // OUTEP0 ++ handle_epoutirq(rt_usb, 0); ++ ++ if(epout07irq & 0x2) // OUTEP1 ++ handle_epoutirq(rt_usb, 1); ++ ++ if(epin07irq & 0x2) // INEP1 ++ handle_epinirq(rt_usb, 1); ++ ++ if(epout07irq & 0x4) // OUTEP2 ++ handle_epoutirq(rt_usb, 2); ++ ++ if(epin07irq & 0x4) // INEP2 ++ handle_epinirq(rt_usb, 2); ++ ++ //if(epout07irq & 0x8) // OUTEP3 ++ // handle_epoutirq(rt_usb, 3); ++ ++ //if(epout07irq & 0x10) // OUTEP4 ++ // handle_epoutirq(rt_usb, 4); ++ } ++ xprintk("<%x\n", count_tmp); ++ return IRQ_HANDLED; ++} ++ ++/* ++ ****************************************************************************** ++ * Static defined Ralink UDC structure ++ ******************************************************************************* ++ */ ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) ++static void nop_release(struct device *dev) ++{ ++ return; ++} ++#endif ++ ++static const struct usb_gadget_ops rt_udc_ops = { ++ .get_frame = rt_udc_get_frame, ++ .wakeup = rt_udc_wakeup, ++}; ++ ++static struct rt_udc_struct controller = { ++ .gadget = { ++ .ops = &rt_udc_ops, ++ .ep0 = &controller.rt_ep[0].ep, ++ .name = driver_name, ++ .dev = { ++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) ++ .init_name = "gadget", ++ .release = nop_release, ++#else ++ .bus_id = "gadget", ++#endif ++ }, ++ }, ++ .rt_ep[0] = { ++ .ep = { ++ .name = ep0name, ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = 0, ++ .bmAttributes = USB_ENDPOINT_XFER_CONTROL, ++ .pending = 0, ++ }, ++#if defined (CONFIG_RALINK_RT3883) || defined (CONFIG_RALINK_RT3352) || defined (CONFIG_RALINK_MT7620) ++ .rt_ep[1] = { ++ .ep = { ++ .name = "ep1in-int", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_IN | 1, ++ .bmAttributes = USB_ENDPOINT_XFER_INT, ++ .pending = 0, ++ }, ++ .rt_ep[2] = { ++ .ep = { ++ .name = "ep2in-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_IN | 2, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++ .rt_ep[3] = { ++ .ep = { ++ .name = "ep1out-int", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_OUT | 1, ++ .bmAttributes = USB_ENDPOINT_XFER_INT, ++ .pending = 0, ++ }, ++ .rt_ep[4] = { ++ .ep = { ++ .name = "ep2out-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_OUT | 2, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++ /* ++ .rt_ep[5] = { ++ .ep = { ++ .name = "ep3out-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_OUT | 3, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++ .rt_ep[6] = { ++ .ep = { ++ .name = "ep4out-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_OUT | 4, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++ */ ++ ++#elif defined (CONFIG_RALINK_RT5350) ++ .rt_ep[1] = { ++ .ep = { ++ .name = "ep1in-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_IN | 1, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++ .rt_ep[2] = { ++ .ep = { ++ .name = "ep1out-bulk", ++ .ops = &rt_ep_ops, ++ .maxpacket = 64, ++ }, ++ .rt_usb = &controller, ++ .bEndpointAddress = USB_DIR_OUT | 1, ++ .bmAttributes = USB_ENDPOINT_XFER_BULK, ++ .pending = 0, ++ }, ++#else ++#error "define a platform" ++#endif ++}; ++ ++/* ++ ******************************************************************************* ++ * USB gadged driver functions ++ ******************************************************************************* ++ */ ++ ++static void rt_udc_enable(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ rt_usb->gadget.speed = USB_SPEED_FULL; ++ if(dma){ ++ // enable dma interrupts ++ udc_dma_all_int_clear(); ++ udc_dma_int_enable(true); ++ ++ udc_dma_rst(); ++ ++ // enable dma ++ udc_dma_enable(true); ++ } ++} ++ ++static void rt_udc_disable(struct rt_udc_struct *rt_usb) ++{ ++ DBG; ++ ep0_chg_stat(__func__, rt_usb, EP0_IDLE); ++ rt_usb->gadget.speed = USB_SPEED_UNKNOWN; ++ if(dma){ ++ // disable dma interrupts ++ udc_dma_all_int_clear(); ++ udc_dma_int_enable(false); ++ ++ udc_dma_rst(); ++ ++ // disable dma ++ udc_dma_enable(false); ++ } ++} ++ ++int usb_gadget_register_driver(struct usb_gadget_driver *driver) ++{ ++ struct rt_udc_struct *rt_usb = &controller; ++ int retval; ++ ++ DBG; ++ if (!driver || driver->speed < USB_SPEED_FULL || !driver->bind || !driver->disconnect || !driver->setup) ++ return -EINVAL; ++ if (!rt_usb) ++ return -ENODEV; ++ if (rt_usb->driver) ++ return -EBUSY; ++ ++ /* first hook up the driver ... */ ++ rt_usb->driver = driver; ++ rt_usb->gadget.dev.driver = &driver->driver; ++ retval = device_add(&rt_usb->gadget.dev); ++ if (retval) ++ goto fail; ++ ++ retval = driver->bind(&rt_usb->gadget); ++ if (retval) { ++ D_ERR(rt_usb->dev, "<%s> bind to driver --> error %d\n", __func__, retval); ++ device_del(&rt_usb->gadget.dev); ++ goto fail; ++ } ++ ++ D_INI(rt_usb->dev, "<%s> registered gadget driver '%s'\n", __func__, driver->driver.name); ++ rt_udc_enable(rt_usb); ++ return 0; ++ ++fail: ++ rt_usb->driver = NULL; ++ rt_usb->gadget.dev.driver = NULL; ++ return retval; ++} ++EXPORT_SYMBOL(usb_gadget_register_driver); ++ ++int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) ++{ ++ struct rt_udc_struct *rt_usb = &controller; ++ ++DBG; ++ if (!rt_usb) ++ return -ENODEV; ++ if (!driver || driver != rt_usb->driver || !driver->unbind) ++ return -EINVAL; ++ ++ udc_stop_activity(rt_usb, driver); ++ rt_udc_disable(rt_usb); ++ del_timer(&rt_usb->timer); ++ ++ driver->unbind(&rt_usb->gadget); ++ rt_usb->gadget.dev.driver = NULL; ++ rt_usb->driver = NULL; ++ ++ device_del(&rt_usb->gadget.dev); ++ ++ D_INI(rt_usb->dev, "<%s> unregistered gadget driver '%s'\n", __func__, driver->driver.name); ++ ++ return 0; ++} ++EXPORT_SYMBOL(usb_gadget_unregister_driver); ++ ++/******************************************************************************* ++ * Module functions ++ ******************************************************************************* ++ */ ++static int __init rt_udc_probe(struct platform_device *pdev) ++{ ++ struct rt_udc_struct *rt_usb = &controller; ++ struct resource *res_mem, *res_irq; ++ void __iomem *base; ++ int ret = 0, res_mem_size; ++ ++DBG; ++ res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (!res_mem) { ++ dev_err(&pdev->dev, "can't get device resources\n"); ++ return -ENODEV; ++ } ++ ++ res_mem_size = res_mem->end - res_mem->start + 1; ++ if (!request_mem_region(res_mem->start, res_mem_size, res_mem->name)) { ++ dev_err(&pdev->dev, "can't allocate %d bytes at %d address\n", res_mem_size, res_mem->start); ++ return -ENOMEM; ++ } ++ ++ base = ioremap(res_mem->start, res_mem_size); ++ if (!base) { ++ dev_err(&pdev->dev, "ioremap failed\n"); ++ ret = -EIO; ++ goto fail1; ++ } ++ ++ res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (!res_irq) { ++ dev_err(&pdev->dev, "can't get irq number\n"); ++ ret = -ENODEV; ++ goto fail3; ++ } ++ rt_usb->interrupt = res_irq->start; ++ ++ ret = request_irq(rt_usb->interrupt, rt_irq_handler, IRQF_DISABLED, driver_name, rt_usb); ++ if (ret) { ++ dev_err(&pdev->dev, "can't get irq %i, err %d\n", rt_usb->interrupt, ret); ++ goto fail3; ++ } ++ ++ rt_usb->res = res_mem; ++ rt_usb->base = base; ++ rt_usb->dev = &pdev->dev; ++ ++ device_initialize(&rt_usb->gadget.dev); ++ ++ rt_usb->gadget.dev.parent = &pdev->dev; ++ rt_usb->gadget.dev.dma_mask = pdev->dev.dma_mask; ++ ++ platform_set_drvdata(pdev, rt_usb); ++ ++ usb_init_data(rt_usb); ++ ++ if(dma){ ++ if(rt_udc_dma_init()) ++ goto fail4; ++ } ++ ++ rt_udc_init(rt_usb); ++ ++ init_timer(&rt_usb->timer); ++ rt_usb->timer.function = handle_config; ++ rt_usb->timer.data = (unsigned long)rt_usb; ++ ++ return 0; ++fail4: ++ free_irq(rt_usb->interrupt, rt_usb); ++fail3: ++ iounmap(base); ++fail1: ++ release_mem_region(res_mem->start, res_mem_size); ++ return ret; ++} ++ ++static int __exit rt_udc_remove(struct platform_device *pdev) ++{ ++ struct rt_udc_struct *rt_usb = platform_get_drvdata(pdev); ++ ++ DBG; ++ rt_udc_disable(rt_usb); ++ del_timer(&rt_usb->timer); ++ ++ free_irq(rt_usb->interrupt, rt_usb); ++ ++ iounmap(rt_usb->base); ++ release_mem_region(rt_usb->res->start, rt_usb->res->end - rt_usb->res->start + 1); ++ ++ //if (pdata->exit) ++ // pdata->exit(&pdev->dev); ++ platform_set_drvdata(pdev, NULL); ++ ++ return 0; ++} ++ ++static void set_device_mode(void) ++{ ++ u32 val; ++ val = le32_to_cpu(*(volatile u_long *)(SYSCFG1)); ++ val = val & ~(USB0_HOST_MODE); ++ *(volatile u_long *)(SYSCFG1) = cpu_to_le32(val); ++ udelay(10000); ++} ++ ++/*----------------------------------------------------------------------------*/ ++static struct platform_driver udc_driver = { ++ ++ .driver = { ++ .name = driver_name, ++ .owner = THIS_MODULE, ++ }, ++ .probe = rt_udc_probe, ++ .remove = __exit_p(rt_udc_remove), ++ .suspend = NULL, ++ .resume = NULL, ++}; ++ ++static int udc_create_proc(void) ++{ ++ pProcDir = proc_mkdir(PROC_DIR, NULL); ++ if ((pProcDebugLevel = create_proc_entry(DEBUGLEVEL_PROCFILE, 0, pProcDir))){ ++ pProcDebugLevel->read_proc = (read_proc_t*)&debuglevel_read; ++ pProcDebugLevel->write_proc = (write_proc_t*)&debuglevel_write; ++ } ++ return 0; ++} ++ ++static int udc_remove_proc(void) ++{ ++ if (pProcDebugLevel) ++ remove_proc_entry(DEBUGLEVEL_PROCFILE, pProcDir); ++ if (pProcDir) ++ remove_proc_entry(PROC_DIR, 0); ++ ++ return 0; ++} ++ ++static int __init udc_init(void) ++{ ++ int ret; ++ udc_create_proc(); ++ ++ try_wake_up(); ++ set_device_mode(); ++ ++ ret = platform_driver_register(&udc_driver); ++ ++ tasklet_init(&rx_tasklet, rx_do_tasklet, 0); ++ tasklet_init(&tx_tasklet, tx_do_tasklet, 0); ++ ++ if(dma){ ++ printk("DMA TXMAXCAP=%d\n", TXMAXCAP); ++ tasklet_init(&rx_dma_tasklet, rx_dma_done_do_tasklet, 0); ++ tasklet_init(&tx_dma_tasklet, tx_dma_done_do_tasklet, 0); ++ } ++ ++ return ret; //platform_driver_probe(&udc_driver, rt_udc_probe); ++} ++module_init(udc_init); ++ ++static void __exit udc_exit(void) ++{ ++ DBG; ++ udc_remove_proc(); ++ if(dma) ++ udc_dma_fini(); ++ platform_driver_unregister(&udc_driver); ++} ++module_exit(udc_exit); ++ ++MODULE_DESCRIPTION("Ralink USB Device Controller driver"); ++MODULE_AUTHOR("Ying Yuan Huang <yy_huang@ralinktech.com>"); ++MODULE_LICENSE("GPL"); ++MODULE_ALIAS("platform:rt_udc"); ++ +-- +1.7.10.4 + |