aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
diff options
context:
space:
mode:
authorFlorian Fainelli <florian@openwrt.org>2010-02-04 10:10:45 +0000
committerFlorian Fainelli <florian@openwrt.org>2010-02-04 10:10:45 +0000
commit7b56fb6337756ff7cb07dec09420da7026d7d3e3 (patch)
treed45f59e7512a199eaadbb25303051dbb6f160d23 /target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
parentdc192096e9ac454520fd1aec7ab58a34fa42d02c (diff)
downloadupstream-7b56fb6337756ff7cb07dec09420da7026d7d3e3.tar.gz
upstream-7b56fb6337756ff7cb07dec09420da7026d7d3e3.tar.bz2
upstream-7b56fb6337756ff7cb07dec09420da7026d7d3e3.zip
move generic config and patches directory to be 2.6.30 specific
SVN-Revision: 19513
Diffstat (limited to 'target/linux/octeon/patches-2.6.30/018-dwc_otg.patch')
-rw-r--r--target/linux/octeon/patches-2.6.30/018-dwc_otg.patch17496
1 files changed, 17496 insertions, 0 deletions
diff --git a/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch b/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
new file mode 100644
index 0000000000..6f4a4d68ba
--- /dev/null
+++ b/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
@@ -0,0 +1,17496 @@
+Signed-off-by: David Daney <ddaney@caviumnetworks.com>
+---
+ arch/mips/cavium-octeon/octeon-platform.c | 105 ++
+ arch/mips/include/asm/octeon/cvmx-usbcx-defs.h | 1199 ++++++++++++++++++++++++
+ arch/mips/include/asm/octeon/cvmx-usbnx-defs.h | 760 +++++++++++++++
+ 3 files changed, 2064 insertions(+), 0 deletions(-)
+ create mode 100644 arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+ create mode 100644 arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+
+diff --git a/arch/mips/cavium-octeon/octeon-platform.c b/arch/mips/cavium-octeon/octeon-platform.c
+index cfdb4c2..20698a6 100644
+--- a/arch/mips/cavium-octeon/octeon-platform.c
++++ b/arch/mips/cavium-octeon/octeon-platform.c
+@@ -7,13 +7,19 @@
+ * Copyright (C) 2008 Wind River Systems
+ */
+
++#include <linux/delay.h>
+ #include <linux/init.h>
+ #include <linux/irq.h>
++#include <linux/kernel.h>
+ #include <linux/module.h>
+ #include <linux/platform_device.h>
+
++#include <asm/time.h>
++
+ #include <asm/octeon/octeon.h>
+ #include <asm/octeon/cvmx-rnm-defs.h>
++#include <asm/octeon/cvmx-usbnx-defs.h>
++#include <asm/octeon/cvmx-usbcx-defs.h>
+
+ static struct octeon_cf_data octeon_cf_data;
+
+@@ -247,6 +253,105 @@ out:
+ }
+ device_initcall(octeon_mgmt_device_init);
+
++/* Octeon USB. */
++static int __init octeon_usb_device_init(void)
++{
++ int p_rtype_ref_clk = 2;
++ int number_usb_ports;
++ int usb_port;
++ int ret = 0;
++
++ if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)) {
++ number_usb_ports = 0;
++ } else if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
++ number_usb_ports = 2;
++ /* CN52XX encodes this field differently */
++ p_rtype_ref_clk = 1;
++ } else {
++ number_usb_ports = 1;
++ }
++
++ for (usb_port = 0; usb_port < number_usb_ports; usb_port++) {
++ int divisor;
++ union cvmx_usbnx_clk_ctl usbn_clk_ctl;
++ struct platform_device *pdev;
++ struct resource usb_resource[2];
++
++ /*
++ * Divide the core clock down such that USB is as
++ * close as possible to 125Mhz.
++ */
++ divisor = DIV_ROUND_UP(mips_hpt_frequency, 125000000);
++ /* Lower than 4 doesn't seem to work properly */
++ if (divisor < 4)
++ divisor = 4;
++
++ /* Fetch the value of the Register, and de-assert POR */
++ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
++ usbn_clk_ctl.s.por = 0;
++ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
++ usbn_clk_ctl.cn31xx.p_rclk = 1;
++ usbn_clk_ctl.cn31xx.p_xenbn = 0;
++ } else {
++ if (cvmx_sysinfo_get()->board_type !=
++ CVMX_BOARD_TYPE_BBGW_REF)
++ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
++ else
++ usbn_clk_ctl.cn56xx.p_rtype = 0;
++ }
++ usbn_clk_ctl.s.divide = divisor;
++ usbn_clk_ctl.s.divide2 = 0;
++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++
++ /* Wait for POR */
++ udelay(850);
++
++ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
++ usbn_clk_ctl.s.por = 0;
++ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
++ usbn_clk_ctl.cn31xx.p_rclk = 1;
++ usbn_clk_ctl.cn31xx.p_xenbn = 0;
++ } else {
++ if (cvmx_sysinfo_get()->board_type !=
++ CVMX_BOARD_TYPE_BBGW_REF)
++ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
++ else
++ usbn_clk_ctl.cn56xx.p_rtype = 0;
++ }
++ usbn_clk_ctl.s.prst = 1;
++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++
++ udelay(1);
++
++ usbn_clk_ctl.s.hrst = 1;
++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++ udelay(1);
++
++ memset(usb_resource, 0, sizeof(usb_resource));
++ usb_resource[0].start =
++ XKPHYS_TO_PHYS(CVMX_USBCX_GOTGCTL(usb_port));
++ usb_resource[0].end = usb_resource[0].start + 0x10000;
++ usb_resource[0].flags = IORESOURCE_MEM;
++
++ usb_resource[1].start = (usb_port == 0) ?
++ OCTEON_IRQ_USB0 : OCTEON_IRQ_USB1;
++ usb_resource[1].end = usb_resource[1].start;
++ usb_resource[1].flags = IORESOURCE_IRQ;
++
++ pdev = platform_device_register_simple("dwc_otg",
++ usb_port,
++ usb_resource, 2);
++ if (!pdev) {
++ pr_err("dwc_otg: Failed to allocate platform device "
++ "for USB%d\n", usb_port);
++ ret = -ENOMEM;
++ }
++ }
++
++ return ret;
++}
++device_initcall(octeon_usb_device_init);
++
+ MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
+ MODULE_LICENSE("GPL");
+ MODULE_DESCRIPTION("Platform driver for Octeon SOC");
+diff --git a/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+new file mode 100644
+index 0000000..c1e078e
+--- /dev/null
++++ b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+@@ -0,0 +1,1199 @@
++/***********************license start***************
++ * Author: Cavium Networks
++ *
++ * Contact: support@caviumnetworks.com
++ * This file is part of the OCTEON SDK
++ *
++ * Copyright (c) 2003-2008 Cavium Networks
++ *
++ * This file is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License, Version 2, as
++ * published by the Free Software Foundation.
++ *
++ * This file is distributed in the hope that it will be useful, but
++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
++ * NONINFRINGEMENT. See the GNU General Public License for more
++ * details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this file; if not, write to the Free Software
++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
++ * or visit http://www.gnu.org/licenses/.
++ *
++ * This file may also be available under a different license from Cavium.
++ * Contact Cavium Networks for more information
++ ***********************license end**************************************/
++
++#ifndef __CVMX_USBCX_DEFS_H__
++#define __CVMX_USBCX_DEFS_H__
++
++#define CVMX_USBCX_DAINT(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000818ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DAINTMSK(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000081Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DCFG(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000800ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DCTL(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000804ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPCTLX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000900ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPINTX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000908ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPMSK(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000810ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPTSIZX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000910ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPCTLX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000B00ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPINTX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000B08ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPMSK(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000814ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPTSIZX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000B10ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DPTXFSIZX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((offset) & 7) * 4) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DSTS(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000808ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR1(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000820ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR2(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000824ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR3(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000830ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR4(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000834ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GAHBCFG(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000008ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG1(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000044ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG2(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000048ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG3(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000004Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG4(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000050ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GINTMSK(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000018ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GINTSTS(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000014ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GNPTXFSIZ(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000028ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GNPTXSTS(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000002Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GOTGCTL(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000000ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GOTGINT(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000004ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRSTCTL(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000010ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXFSIZ(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000024ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSPD(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010040020ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSPH(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000020ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSRD(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001004001Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSRH(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000001Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GSNPSID(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000040ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GUSBCFG(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000000Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HAINT(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000414ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HAINTMSK(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000418ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCCHARX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000500ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCFG(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000400ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCINTMSKX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F001000050Cull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCINTX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000508ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCSPLTX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000504ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCTSIZX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000510ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HFIR(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000404ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HFNUM(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000408ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPRT(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000440ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPTXFSIZ(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPTXSTS(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000410ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_NPTXDFIFOX(offset, block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010001000ull + (((offset) & 7) * 4096) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_PCGCCTL(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0010000E00ull + (((block_id) & 1) * 0x100000000000ull))
++
++union cvmx_usbcx_daint {
++ uint32_t u32;
++ struct cvmx_usbcx_daint_s {
++ uint32_t outepint:16;
++ uint32_t inepint:16;
++ } s;
++ struct cvmx_usbcx_daint_s cn30xx;
++ struct cvmx_usbcx_daint_s cn31xx;
++ struct cvmx_usbcx_daint_s cn50xx;
++ struct cvmx_usbcx_daint_s cn52xx;
++ struct cvmx_usbcx_daint_s cn52xxp1;
++ struct cvmx_usbcx_daint_s cn56xx;
++ struct cvmx_usbcx_daint_s cn56xxp1;
++};
++
++union cvmx_usbcx_daintmsk {
++ uint32_t u32;
++ struct cvmx_usbcx_daintmsk_s {
++ uint32_t outepmsk:16;
++ uint32_t inepmsk:16;
++ } s;
++ struct cvmx_usbcx_daintmsk_s cn30xx;
++ struct cvmx_usbcx_daintmsk_s cn31xx;
++ struct cvmx_usbcx_daintmsk_s cn50xx;
++ struct cvmx_usbcx_daintmsk_s cn52xx;
++ struct cvmx_usbcx_daintmsk_s cn52xxp1;
++ struct cvmx_usbcx_daintmsk_s cn56xx;
++ struct cvmx_usbcx_daintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_dcfg {
++ uint32_t u32;
++ struct cvmx_usbcx_dcfg_s {
++ uint32_t reserved_23_31:9;
++ uint32_t epmiscnt:5;
++ uint32_t reserved_13_17:5;
++ uint32_t perfrint:2;
++ uint32_t devaddr:7;
++ uint32_t reserved_3_3:1;
++ uint32_t nzstsouthshk:1;
++ uint32_t devspd:2;
++ } s;
++ struct cvmx_usbcx_dcfg_s cn30xx;
++ struct cvmx_usbcx_dcfg_s cn31xx;
++ struct cvmx_usbcx_dcfg_s cn50xx;
++ struct cvmx_usbcx_dcfg_s cn52xx;
++ struct cvmx_usbcx_dcfg_s cn52xxp1;
++ struct cvmx_usbcx_dcfg_s cn56xx;
++ struct cvmx_usbcx_dcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_dctl {
++ uint32_t u32;
++ struct cvmx_usbcx_dctl_s {
++ uint32_t reserved_12_31:20;
++ uint32_t pwronprgdone:1;
++ uint32_t cgoutnak:1;
++ uint32_t sgoutnak:1;
++ uint32_t cgnpinnak:1;
++ uint32_t sgnpinnak:1;
++ uint32_t tstctl:3;
++ uint32_t goutnaksts:1;
++ uint32_t gnpinnaksts:1;
++ uint32_t sftdiscon:1;
++ uint32_t rmtwkupsig:1;
++ } s;
++ struct cvmx_usbcx_dctl_s cn30xx;
++ struct cvmx_usbcx_dctl_s cn31xx;
++ struct cvmx_usbcx_dctl_s cn50xx;
++ struct cvmx_usbcx_dctl_s cn52xx;
++ struct cvmx_usbcx_dctl_s cn52xxp1;
++ struct cvmx_usbcx_dctl_s cn56xx;
++ struct cvmx_usbcx_dctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepctlx {
++ uint32_t u32;
++ struct cvmx_usbcx_diepctlx_s {
++ uint32_t epena:1;
++ uint32_t epdis:1;
++ uint32_t setd1pid:1;
++ uint32_t setd0pid:1;
++ uint32_t snak:1;
++ uint32_t cnak:1;
++ uint32_t txfnum:4;
++ uint32_t stall:1;
++ uint32_t reserved_20_20:1;
++ uint32_t eptype:2;
++ uint32_t naksts:1;
++ uint32_t dpid:1;
++ uint32_t usbactep:1;
++ uint32_t nextep:4;
++ uint32_t mps:11;
++ } s;
++ struct cvmx_usbcx_diepctlx_s cn30xx;
++ struct cvmx_usbcx_diepctlx_s cn31xx;
++ struct cvmx_usbcx_diepctlx_s cn50xx;
++ struct cvmx_usbcx_diepctlx_s cn52xx;
++ struct cvmx_usbcx_diepctlx_s cn52xxp1;
++ struct cvmx_usbcx_diepctlx_s cn56xx;
++ struct cvmx_usbcx_diepctlx_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepintx {
++ uint32_t u32;
++ struct cvmx_usbcx_diepintx_s {
++ uint32_t reserved_7_31:25;
++ uint32_t inepnakeff:1;
++ uint32_t intknepmis:1;
++ uint32_t intkntxfemp:1;
++ uint32_t timeout:1;
++ uint32_t ahberr:1;
++ uint32_t epdisbld:1;
++ uint32_t xfercompl:1;
++ } s;
++ struct cvmx_usbcx_diepintx_s cn30xx;
++ struct cvmx_usbcx_diepintx_s cn31xx;
++ struct cvmx_usbcx_diepintx_s cn50xx;
++ struct cvmx_usbcx_diepintx_s cn52xx;
++ struct cvmx_usbcx_diepintx_s cn52xxp1;
++ struct cvmx_usbcx_diepintx_s cn56xx;
++ struct cvmx_usbcx_diepintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepmsk {
++ uint32_t u32;
++ struct cvmx_usbcx_diepmsk_s {
++ uint32_t reserved_7_31:25;
++ uint32_t inepnakeffmsk:1;
++ uint32_t intknepmismsk:1;
++ uint32_t intkntxfempmsk:1;
++ uint32_t timeoutmsk:1;
++ uint32_t ahberrmsk:1;
++ uint32_t epdisbldmsk:1;
++ uint32_t xfercomplmsk:1;
++ } s;
++ struct cvmx_usbcx_diepmsk_s cn30xx;
++ struct cvmx_usbcx_diepmsk_s cn31xx;
++ struct cvmx_usbcx_diepmsk_s cn50xx;
++ struct cvmx_usbcx_diepmsk_s cn52xx;
++ struct cvmx_usbcx_diepmsk_s cn52xxp1;
++ struct cvmx_usbcx_diepmsk_s cn56xx;
++ struct cvmx_usbcx_diepmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_dieptsizx {
++ uint32_t u32;
++ struct cvmx_usbcx_dieptsizx_s {
++ uint32_t reserved_31_31:1;
++ uint32_t mc:2;
++ uint32_t pktcnt:10;
++ uint32_t xfersize:19;
++ } s;
++ struct cvmx_usbcx_dieptsizx_s cn30xx;
++ struct cvmx_usbcx_dieptsizx_s cn31xx;
++ struct cvmx_usbcx_dieptsizx_s cn50xx;
++ struct cvmx_usbcx_dieptsizx_s cn52xx;
++ struct cvmx_usbcx_dieptsizx_s cn52xxp1;
++ struct cvmx_usbcx_dieptsizx_s cn56xx;
++ struct cvmx_usbcx_dieptsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepctlx {
++ uint32_t u32;
++ struct cvmx_usbcx_doepctlx_s {
++ uint32_t epena:1;
++ uint32_t epdis:1;
++ uint32_t setd1pid:1;
++ uint32_t setd0pid:1;
++ uint32_t snak:1;
++ uint32_t cnak:1;
++ uint32_t reserved_22_25:4;
++ uint32_t stall:1;
++ uint32_t snp:1;
++ uint32_t eptype:2;
++ uint32_t naksts:1;
++ uint32_t dpid:1;
++ uint32_t usbactep:1;
++ uint32_t reserved_11_14:4;
++ uint32_t mps:11;
++ } s;
++ struct cvmx_usbcx_doepctlx_s cn30xx;
++ struct cvmx_usbcx_doepctlx_s cn31xx;
++ struct cvmx_usbcx_doepctlx_s cn50xx;
++ struct cvmx_usbcx_doepctlx_s cn52xx;
++ struct cvmx_usbcx_doepctlx_s cn52xxp1;
++ struct cvmx_usbcx_doepctlx_s cn56xx;
++ struct cvmx_usbcx_doepctlx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepintx {
++ uint32_t u32;
++ struct cvmx_usbcx_doepintx_s {
++ uint32_t reserved_5_31:27;
++ uint32_t outtknepdis:1;
++ uint32_t setup:1;
++ uint32_t ahberr:1;
++ uint32_t epdisbld:1;
++ uint32_t xfercompl:1;
++ } s;
++ struct cvmx_usbcx_doepintx_s cn30xx;
++ struct cvmx_usbcx_doepintx_s cn31xx;
++ struct cvmx_usbcx_doepintx_s cn50xx;
++ struct cvmx_usbcx_doepintx_s cn52xx;
++ struct cvmx_usbcx_doepintx_s cn52xxp1;
++ struct cvmx_usbcx_doepintx_s cn56xx;
++ struct cvmx_usbcx_doepintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepmsk {
++ uint32_t u32;
++ struct cvmx_usbcx_doepmsk_s {
++ uint32_t reserved_5_31:27;
++ uint32_t outtknepdismsk:1;
++ uint32_t setupmsk:1;
++ uint32_t ahberrmsk:1;
++ uint32_t epdisbldmsk:1;
++ uint32_t xfercomplmsk:1;
++ } s;
++ struct cvmx_usbcx_doepmsk_s cn30xx;
++ struct cvmx_usbcx_doepmsk_s cn31xx;
++ struct cvmx_usbcx_doepmsk_s cn50xx;
++ struct cvmx_usbcx_doepmsk_s cn52xx;
++ struct cvmx_usbcx_doepmsk_s cn52xxp1;
++ struct cvmx_usbcx_doepmsk_s cn56xx;
++ struct cvmx_usbcx_doepmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_doeptsizx {
++ uint32_t u32;
++ struct cvmx_usbcx_doeptsizx_s {
++ uint32_t reserved_31_31:1;
++ uint32_t mc:2;
++ uint32_t pktcnt:10;
++ uint32_t xfersize:19;
++ } s;
++ struct cvmx_usbcx_doeptsizx_s cn30xx;
++ struct cvmx_usbcx_doeptsizx_s cn31xx;
++ struct cvmx_usbcx_doeptsizx_s cn50xx;
++ struct cvmx_usbcx_doeptsizx_s cn52xx;
++ struct cvmx_usbcx_doeptsizx_s cn52xxp1;
++ struct cvmx_usbcx_doeptsizx_s cn56xx;
++ struct cvmx_usbcx_doeptsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_dptxfsizx {
++ uint32_t u32;
++ struct cvmx_usbcx_dptxfsizx_s {
++ uint32_t dptxfsize:16;
++ uint32_t dptxfstaddr:16;
++ } s;
++ struct cvmx_usbcx_dptxfsizx_s cn30xx;
++ struct cvmx_usbcx_dptxfsizx_s cn31xx;
++ struct cvmx_usbcx_dptxfsizx_s cn50xx;
++ struct cvmx_usbcx_dptxfsizx_s cn52xx;
++ struct cvmx_usbcx_dptxfsizx_s cn52xxp1;
++ struct cvmx_usbcx_dptxfsizx_s cn56xx;
++ struct cvmx_usbcx_dptxfsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_dsts {
++ uint32_t u32;
++ struct cvmx_usbcx_dsts_s {
++ uint32_t reserved_22_31:10;
++ uint32_t soffn:14;
++ uint32_t reserved_4_7:4;
++ uint32_t errticerr:1;
++ uint32_t enumspd:2;
++ uint32_t suspsts:1;
++ } s;
++ struct cvmx_usbcx_dsts_s cn30xx;
++ struct cvmx_usbcx_dsts_s cn31xx;
++ struct cvmx_usbcx_dsts_s cn50xx;
++ struct cvmx_usbcx_dsts_s cn52xx;
++ struct cvmx_usbcx_dsts_s cn52xxp1;
++ struct cvmx_usbcx_dsts_s cn56xx;
++ struct cvmx_usbcx_dsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr1 {
++ uint32_t u32;
++ struct cvmx_usbcx_dtknqr1_s {
++ uint32_t eptkn:24;
++ uint32_t wrapbit:1;
++ uint32_t reserved_5_6:2;
++ uint32_t intknwptr:5;
++ } s;
++ struct cvmx_usbcx_dtknqr1_s cn30xx;
++ struct cvmx_usbcx_dtknqr1_s cn31xx;
++ struct cvmx_usbcx_dtknqr1_s cn50xx;
++ struct cvmx_usbcx_dtknqr1_s cn52xx;
++ struct cvmx_usbcx_dtknqr1_s cn52xxp1;
++ struct cvmx_usbcx_dtknqr1_s cn56xx;
++ struct cvmx_usbcx_dtknqr1_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr2 {
++ uint32_t u32;
++ struct cvmx_usbcx_dtknqr2_s {
++ uint32_t eptkn:32;
++ } s;
++ struct cvmx_usbcx_dtknqr2_s cn30xx;
++ struct cvmx_usbcx_dtknqr2_s cn31xx;
++ struct cvmx_usbcx_dtknqr2_s cn50xx;
++ struct cvmx_usbcx_dtknqr2_s cn52xx;
++ struct cvmx_usbcx_dtknqr2_s cn52xxp1;
++ struct cvmx_usbcx_dtknqr2_s cn56xx;
++ struct cvmx_usbcx_dtknqr2_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr3 {
++ uint32_t u32;
++ struct cvmx_usbcx_dtknqr3_s {
++ uint32_t eptkn:32;
++ } s;
++ struct cvmx_usbcx_dtknqr3_s cn30xx;
++ struct cvmx_usbcx_dtknqr3_s cn31xx;
++ struct cvmx_usbcx_dtknqr3_s cn50xx;
++ struct cvmx_usbcx_dtknqr3_s cn52xx;
++ struct cvmx_usbcx_dtknqr3_s cn52xxp1;
++ struct cvmx_usbcx_dtknqr3_s cn56xx;
++ struct cvmx_usbcx_dtknqr3_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr4 {
++ uint32_t u32;
++ struct cvmx_usbcx_dtknqr4_s {
++ uint32_t eptkn:32;
++ } s;
++ struct cvmx_usbcx_dtknqr4_s cn30xx;
++ struct cvmx_usbcx_dtknqr4_s cn31xx;
++ struct cvmx_usbcx_dtknqr4_s cn50xx;
++ struct cvmx_usbcx_dtknqr4_s cn52xx;
++ struct cvmx_usbcx_dtknqr4_s cn52xxp1;
++ struct cvmx_usbcx_dtknqr4_s cn56xx;
++ struct cvmx_usbcx_dtknqr4_s cn56xxp1;
++};
++
++union cvmx_usbcx_gahbcfg {
++ uint32_t u32;
++ struct cvmx_usbcx_gahbcfg_s {
++ uint32_t reserved_9_31:23;
++ uint32_t ptxfemplvl:1;
++ uint32_t nptxfemplvl:1;
++ uint32_t reserved_6_6:1;
++ uint32_t dmaen:1;
++ uint32_t hbstlen:4;
++ uint32_t glblintrmsk:1;
++ } s;
++ struct cvmx_usbcx_gahbcfg_s cn30xx;
++ struct cvmx_usbcx_gahbcfg_s cn31xx;
++ struct cvmx_usbcx_gahbcfg_s cn50xx;
++ struct cvmx_usbcx_gahbcfg_s cn52xx;
++ struct cvmx_usbcx_gahbcfg_s cn52xxp1;
++ struct cvmx_usbcx_gahbcfg_s cn56xx;
++ struct cvmx_usbcx_gahbcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg1 {
++ uint32_t u32;
++ struct cvmx_usbcx_ghwcfg1_s {
++ uint32_t epdir:32;
++ } s;
++ struct cvmx_usbcx_ghwcfg1_s cn30xx;
++ struct cvmx_usbcx_ghwcfg1_s cn31xx;
++ struct cvmx_usbcx_ghwcfg1_s cn50xx;
++ struct cvmx_usbcx_ghwcfg1_s cn52xx;
++ struct cvmx_usbcx_ghwcfg1_s cn52xxp1;
++ struct cvmx_usbcx_ghwcfg1_s cn56xx;
++ struct cvmx_usbcx_ghwcfg1_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg2 {
++ uint32_t u32;
++ struct cvmx_usbcx_ghwcfg2_s {
++ uint32_t reserved_31_31:1;
++ uint32_t tknqdepth:5;
++ uint32_t ptxqdepth:2;
++ uint32_t nptxqdepth:2;
++ uint32_t reserved_20_21:2;
++ uint32_t dynfifosizing:1;
++ uint32_t periosupport:1;
++ uint32_t numhstchnl:4;
++ uint32_t numdeveps:4;
++ uint32_t fsphytype:2;
++ uint32_t hsphytype:2;
++ uint32_t singpnt:1;
++ uint32_t otgarch:2;
++ uint32_t otgmode:3;
++ } s;
++ struct cvmx_usbcx_ghwcfg2_s cn30xx;
++ struct cvmx_usbcx_ghwcfg2_s cn31xx;
++ struct cvmx_usbcx_ghwcfg2_s cn50xx;
++ struct cvmx_usbcx_ghwcfg2_s cn52xx;
++ struct cvmx_usbcx_ghwcfg2_s cn52xxp1;
++ struct cvmx_usbcx_ghwcfg2_s cn56xx;
++ struct cvmx_usbcx_ghwcfg2_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg3 {
++ uint32_t u32;
++ struct cvmx_usbcx_ghwcfg3_s {
++ uint32_t dfifodepth:16;
++ uint32_t reserved_13_15:3;
++ uint32_t ahbphysync:1;
++ uint32_t rsttype:1;
++ uint32_t optfeature:1;
++ uint32_t vendor_control_interface_support:1;
++ uint32_t i2c_selection:1;
++ uint32_t otgen:1;
++ uint32_t pktsizewidth:3;
++ uint32_t xfersizewidth:4;
++ } s;
++ struct cvmx_usbcx_ghwcfg3_s cn30xx;
++ struct cvmx_usbcx_ghwcfg3_s cn31xx;
++ struct cvmx_usbcx_ghwcfg3_s cn50xx;
++ struct cvmx_usbcx_ghwcfg3_s cn52xx;
++ struct cvmx_usbcx_ghwcfg3_s cn52xxp1;
++ struct cvmx_usbcx_ghwcfg3_s cn56xx;
++ struct cvmx_usbcx_ghwcfg3_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg4 {
++ uint32_t u32;
++ struct cvmx_usbcx_ghwcfg4_s {
++ uint32_t reserved_30_31:2;
++ uint32_t numdevmodinend:4;
++ uint32_t endedtrfifo:1;
++ uint32_t sessendfltr:1;
++ uint32_t bvalidfltr:1;
++ uint32_t avalidfltr:1;
++ uint32_t vbusvalidfltr:1;
++ uint32_t iddgfltr:1;
++ uint32_t numctleps:4;
++ uint32_t phydatawidth:2;
++ uint32_t reserved_6_13:8;
++ uint32_t ahbfreq:1;
++ uint32_t enablepwropt:1;
++ uint32_t numdevperioeps:4;
++ } s;
++ struct cvmx_usbcx_ghwcfg4_cn30xx {
++ uint32_t reserved_25_31:7;
++ uint32_t sessendfltr:1;
++ uint32_t bvalidfltr:1;
++ uint32_t avalidfltr:1;
++ uint32_t vbusvalidfltr:1;
++ uint32_t iddgfltr:1;
++ uint32_t numctleps:4;
++ uint32_t phydatawidth:2;
++ uint32_t reserved_6_13:8;
++ uint32_t ahbfreq:1;
++ uint32_t enablepwropt:1;
++ uint32_t numdevperioeps:4;
++ } cn30xx;
++ struct cvmx_usbcx_ghwcfg4_cn30xx cn31xx;
++ struct cvmx_usbcx_ghwcfg4_s cn50xx;
++ struct cvmx_usbcx_ghwcfg4_s cn52xx;
++ struct cvmx_usbcx_ghwcfg4_s cn52xxp1;
++ struct cvmx_usbcx_ghwcfg4_s cn56xx;
++ struct cvmx_usbcx_ghwcfg4_s cn56xxp1;
++};
++
++union cvmx_usbcx_gintmsk {
++ uint32_t u32;
++ struct cvmx_usbcx_gintmsk_s {
++ uint32_t wkupintmsk:1;
++ uint32_t sessreqintmsk:1;
++ uint32_t disconnintmsk:1;
++ uint32_t conidstschngmsk:1;
++ uint32_t reserved_27_27:1;
++ uint32_t ptxfempmsk:1;
++ uint32_t hchintmsk:1;
++ uint32_t prtintmsk:1;
++ uint32_t reserved_23_23:1;
++ uint32_t fetsuspmsk:1;
++ uint32_t incomplpmsk:1;
++ uint32_t incompisoinmsk:1;
++ uint32_t oepintmsk:1;
++ uint32_t inepintmsk:1;
++ uint32_t epmismsk:1;
++ uint32_t reserved_16_16:1;
++ uint32_t eopfmsk:1;
++ uint32_t isooutdropmsk:1;
++ uint32_t enumdonemsk:1;
++ uint32_t usbrstmsk:1;
++ uint32_t usbsuspmsk:1;
++ uint32_t erlysuspmsk:1;
++ uint32_t i2cint:1;
++ uint32_t ulpickintmsk:1;
++ uint32_t goutnakeffmsk:1;
++ uint32_t ginnakeffmsk:1;
++ uint32_t nptxfempmsk:1;
++ uint32_t rxflvlmsk:1;
++ uint32_t sofmsk:1;
++ uint32_t otgintmsk:1;
++ uint32_t modemismsk:1;
++ uint32_t reserved_0_0:1;
++ } s;
++ struct cvmx_usbcx_gintmsk_s cn30xx;
++ struct cvmx_usbcx_gintmsk_s cn31xx;
++ struct cvmx_usbcx_gintmsk_s cn50xx;
++ struct cvmx_usbcx_gintmsk_s cn52xx;
++ struct cvmx_usbcx_gintmsk_s cn52xxp1;
++ struct cvmx_usbcx_gintmsk_s cn56xx;
++ struct cvmx_usbcx_gintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_gintsts {
++ uint32_t u32;
++ struct cvmx_usbcx_gintsts_s {
++ uint32_t wkupint:1;
++ uint32_t sessreqint:1;
++ uint32_t disconnint:1;
++ uint32_t conidstschng:1;
++ uint32_t reserved_27_27:1;
++ uint32_t ptxfemp:1;
++ uint32_t hchint:1;
++ uint32_t prtint:1;
++ uint32_t reserved_23_23:1;
++ uint32_t fetsusp:1;
++ uint32_t incomplp:1;
++ uint32_t incompisoin:1;
++ uint32_t oepint:1;
++ uint32_t iepint:1;
++ uint32_t epmis:1;
++ uint32_t reserved_16_16:1;
++ uint32_t eopf:1;
++ uint32_t isooutdrop:1;
++ uint32_t enumdone:1;
++ uint32_t usbrst:1;
++ uint32_t usbsusp:1;
++ uint32_t erlysusp:1;
++ uint32_t i2cint:1;
++ uint32_t ulpickint:1;
++ uint32_t goutnakeff:1;
++ uint32_t ginnakeff:1;
++ uint32_t nptxfemp:1;
++ uint32_t rxflvl:1;
++ uint32_t sof:1;
++ uint32_t otgint:1;
++ uint32_t modemis:1;
++ uint32_t curmod:1;
++ } s;
++ struct cvmx_usbcx_gintsts_s cn30xx;
++ struct cvmx_usbcx_gintsts_s cn31xx;
++ struct cvmx_usbcx_gintsts_s cn50xx;
++ struct cvmx_usbcx_gintsts_s cn52xx;
++ struct cvmx_usbcx_gintsts_s cn52xxp1;
++ struct cvmx_usbcx_gintsts_s cn56xx;
++ struct cvmx_usbcx_gintsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_gnptxfsiz {
++ uint32_t u32;
++ struct cvmx_usbcx_gnptxfsiz_s {
++ uint32_t nptxfdep:16;
++ uint32_t nptxfstaddr:16;
++ } s;
++ struct cvmx_usbcx_gnptxfsiz_s cn30xx;
++ struct cvmx_usbcx_gnptxfsiz_s cn31xx;
++ struct cvmx_usbcx_gnptxfsiz_s cn50xx;
++ struct cvmx_usbcx_gnptxfsiz_s cn52xx;
++ struct cvmx_usbcx_gnptxfsiz_s cn52xxp1;
++ struct cvmx_usbcx_gnptxfsiz_s cn56xx;
++ struct cvmx_usbcx_gnptxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_gnptxsts {
++ uint32_t u32;
++ struct cvmx_usbcx_gnptxsts_s {
++ uint32_t reserved_31_31:1;
++ uint32_t nptxqtop:7;
++ uint32_t nptxqspcavail:8;
++ uint32_t nptxfspcavail:16;
++ } s;
++ struct cvmx_usbcx_gnptxsts_s cn30xx;
++ struct cvmx_usbcx_gnptxsts_s cn31xx;
++ struct cvmx_usbcx_gnptxsts_s cn50xx;
++ struct cvmx_usbcx_gnptxsts_s cn52xx;
++ struct cvmx_usbcx_gnptxsts_s cn52xxp1;
++ struct cvmx_usbcx_gnptxsts_s cn56xx;
++ struct cvmx_usbcx_gnptxsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_gotgctl {
++ uint32_t u32;
++ struct cvmx_usbcx_gotgctl_s {
++ uint32_t reserved_20_31:12;
++ uint32_t bsesvld:1;
++ uint32_t asesvld:1;
++ uint32_t dbnctime:1;
++ uint32_t conidsts:1;
++ uint32_t reserved_12_15:4;
++ uint32_t devhnpen:1;
++ uint32_t hstsethnpen:1;
++ uint32_t hnpreq:1;
++ uint32_t hstnegscs:1;
++ uint32_t reserved_2_7:6;
++ uint32_t sesreq:1;
++ uint32_t sesreqscs:1;
++ } s;
++ struct cvmx_usbcx_gotgctl_s cn30xx;
++ struct cvmx_usbcx_gotgctl_s cn31xx;
++ struct cvmx_usbcx_gotgctl_s cn50xx;
++ struct cvmx_usbcx_gotgctl_s cn52xx;
++ struct cvmx_usbcx_gotgctl_s cn52xxp1;
++ struct cvmx_usbcx_gotgctl_s cn56xx;
++ struct cvmx_usbcx_gotgctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_gotgint {
++ uint32_t u32;
++ struct cvmx_usbcx_gotgint_s {
++ uint32_t reserved_20_31:12;
++ uint32_t dbncedone:1;
++ uint32_t adevtoutchg:1;
++ uint32_t hstnegdet:1;
++ uint32_t reserved_10_16:7;
++ uint32_t hstnegsucstschng:1;
++ uint32_t sesreqsucstschng:1;
++ uint32_t reserved_3_7:5;
++ uint32_t sesenddet:1;
++ uint32_t reserved_0_1:2;
++ } s;
++ struct cvmx_usbcx_gotgint_s cn30xx;
++ struct cvmx_usbcx_gotgint_s cn31xx;
++ struct cvmx_usbcx_gotgint_s cn50xx;
++ struct cvmx_usbcx_gotgint_s cn52xx;
++ struct cvmx_usbcx_gotgint_s cn52xxp1;
++ struct cvmx_usbcx_gotgint_s cn56xx;
++ struct cvmx_usbcx_gotgint_s cn56xxp1;
++};
++
++union cvmx_usbcx_grstctl {
++ uint32_t u32;
++ struct cvmx_usbcx_grstctl_s {
++ uint32_t ahbidle:1;
++ uint32_t dmareq:1;
++ uint32_t reserved_11_29:19;
++ uint32_t txfnum:5;
++ uint32_t txfflsh:1;
++ uint32_t rxfflsh:1;
++ uint32_t intknqflsh:1;
++ uint32_t frmcntrrst:1;
++ uint32_t hsftrst:1;
++ uint32_t csftrst:1;
++ } s;
++ struct cvmx_usbcx_grstctl_s cn30xx;
++ struct cvmx_usbcx_grstctl_s cn31xx;
++ struct cvmx_usbcx_grstctl_s cn50xx;
++ struct cvmx_usbcx_grstctl_s cn52xx;
++ struct cvmx_usbcx_grstctl_s cn52xxp1;
++ struct cvmx_usbcx_grstctl_s cn56xx;
++ struct cvmx_usbcx_grstctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxfsiz {
++ uint32_t u32;
++ struct cvmx_usbcx_grxfsiz_s {
++ uint32_t reserved_16_31:16;
++ uint32_t rxfdep:16;
++ } s;
++ struct cvmx_usbcx_grxfsiz_s cn30xx;
++ struct cvmx_usbcx_grxfsiz_s cn31xx;
++ struct cvmx_usbcx_grxfsiz_s cn50xx;
++ struct cvmx_usbcx_grxfsiz_s cn52xx;
++ struct cvmx_usbcx_grxfsiz_s cn52xxp1;
++ struct cvmx_usbcx_grxfsiz_s cn56xx;
++ struct cvmx_usbcx_grxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstspd {
++ uint32_t u32;
++ struct cvmx_usbcx_grxstspd_s {
++ uint32_t reserved_25_31:7;
++ uint32_t fn:4;
++ uint32_t pktsts:4;
++ uint32_t dpid:2;
++ uint32_t bcnt:11;
++ uint32_t epnum:4;
++ } s;
++ struct cvmx_usbcx_grxstspd_s cn30xx;
++ struct cvmx_usbcx_grxstspd_s cn31xx;
++ struct cvmx_usbcx_grxstspd_s cn50xx;
++ struct cvmx_usbcx_grxstspd_s cn52xx;
++ struct cvmx_usbcx_grxstspd_s cn52xxp1;
++ struct cvmx_usbcx_grxstspd_s cn56xx;
++ struct cvmx_usbcx_grxstspd_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsph {
++ uint32_t u32;
++ struct cvmx_usbcx_grxstsph_s {
++ uint32_t reserved_21_31:11;
++ uint32_t pktsts:4;
++ uint32_t dpid:2;
++ uint32_t bcnt:11;
++ uint32_t chnum:4;
++ } s;
++ struct cvmx_usbcx_grxstsph_s cn30xx;
++ struct cvmx_usbcx_grxstsph_s cn31xx;
++ struct cvmx_usbcx_grxstsph_s cn50xx;
++ struct cvmx_usbcx_grxstsph_s cn52xx;
++ struct cvmx_usbcx_grxstsph_s cn52xxp1;
++ struct cvmx_usbcx_grxstsph_s cn56xx;
++ struct cvmx_usbcx_grxstsph_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsrd {
++ uint32_t u32;
++ struct cvmx_usbcx_grxstsrd_s {
++ uint32_t reserved_25_31:7;
++ uint32_t fn:4;
++ uint32_t pktsts:4;
++ uint32_t dpid:2;
++ uint32_t bcnt:11;
++ uint32_t epnum:4;
++ } s;
++ struct cvmx_usbcx_grxstsrd_s cn30xx;
++ struct cvmx_usbcx_grxstsrd_s cn31xx;
++ struct cvmx_usbcx_grxstsrd_s cn50xx;
++ struct cvmx_usbcx_grxstsrd_s cn52xx;
++ struct cvmx_usbcx_grxstsrd_s cn52xxp1;
++ struct cvmx_usbcx_grxstsrd_s cn56xx;
++ struct cvmx_usbcx_grxstsrd_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsrh {
++ uint32_t u32;
++ struct cvmx_usbcx_grxstsrh_s {
++ uint32_t reserved_21_31:11;
++ uint32_t pktsts:4;
++ uint32_t dpid:2;
++ uint32_t bcnt:11;
++ uint32_t chnum:4;
++ } s;
++ struct cvmx_usbcx_grxstsrh_s cn30xx;
++ struct cvmx_usbcx_grxstsrh_s cn31xx;
++ struct cvmx_usbcx_grxstsrh_s cn50xx;
++ struct cvmx_usbcx_grxstsrh_s cn52xx;
++ struct cvmx_usbcx_grxstsrh_s cn52xxp1;
++ struct cvmx_usbcx_grxstsrh_s cn56xx;
++ struct cvmx_usbcx_grxstsrh_s cn56xxp1;
++};
++
++union cvmx_usbcx_gsnpsid {
++ uint32_t u32;
++ struct cvmx_usbcx_gsnpsid_s {
++ uint32_t synopsysid:32;
++ } s;
++ struct cvmx_usbcx_gsnpsid_s cn30xx;
++ struct cvmx_usbcx_gsnpsid_s cn31xx;
++ struct cvmx_usbcx_gsnpsid_s cn50xx;
++ struct cvmx_usbcx_gsnpsid_s cn52xx;
++ struct cvmx_usbcx_gsnpsid_s cn52xxp1;
++ struct cvmx_usbcx_gsnpsid_s cn56xx;
++ struct cvmx_usbcx_gsnpsid_s cn56xxp1;
++};
++
++union cvmx_usbcx_gusbcfg {
++ uint32_t u32;
++ struct cvmx_usbcx_gusbcfg_s {
++ uint32_t reserved_17_31:15;
++ uint32_t otgi2csel:1;
++ uint32_t phylpwrclksel:1;
++ uint32_t reserved_14_14:1;
++ uint32_t usbtrdtim:4;
++ uint32_t hnpcap:1;
++ uint32_t srpcap:1;
++ uint32_t ddrsel:1;
++ uint32_t physel:1;
++ uint32_t fsintf:1;
++ uint32_t ulpi_utmi_sel:1;
++ uint32_t phyif:1;
++ uint32_t toutcal:3;
++ } s;
++ struct cvmx_usbcx_gusbcfg_s cn30xx;
++ struct cvmx_usbcx_gusbcfg_s cn31xx;
++ struct cvmx_usbcx_gusbcfg_s cn50xx;
++ struct cvmx_usbcx_gusbcfg_s cn52xx;
++ struct cvmx_usbcx_gusbcfg_s cn52xxp1;
++ struct cvmx_usbcx_gusbcfg_s cn56xx;
++ struct cvmx_usbcx_gusbcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_haint {
++ uint32_t u32;
++ struct cvmx_usbcx_haint_s {
++ uint32_t reserved_16_31:16;
++ uint32_t haint:16;
++ } s;
++ struct cvmx_usbcx_haint_s cn30xx;
++ struct cvmx_usbcx_haint_s cn31xx;
++ struct cvmx_usbcx_haint_s cn50xx;
++ struct cvmx_usbcx_haint_s cn52xx;
++ struct cvmx_usbcx_haint_s cn52xxp1;
++ struct cvmx_usbcx_haint_s cn56xx;
++ struct cvmx_usbcx_haint_s cn56xxp1;
++};
++
++union cvmx_usbcx_haintmsk {
++ uint32_t u32;
++ struct cvmx_usbcx_haintmsk_s {
++ uint32_t reserved_16_31:16;
++ uint32_t haintmsk:16;
++ } s;
++ struct cvmx_usbcx_haintmsk_s cn30xx;
++ struct cvmx_usbcx_haintmsk_s cn31xx;
++ struct cvmx_usbcx_haintmsk_s cn50xx;
++ struct cvmx_usbcx_haintmsk_s cn52xx;
++ struct cvmx_usbcx_haintmsk_s cn52xxp1;
++ struct cvmx_usbcx_haintmsk_s cn56xx;
++ struct cvmx_usbcx_haintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_hccharx {
++ uint32_t u32;
++ struct cvmx_usbcx_hccharx_s {
++ uint32_t chena:1;
++ uint32_t chdis:1;
++ uint32_t oddfrm:1;
++ uint32_t devaddr:7;
++ uint32_t ec:2;
++ uint32_t eptype:2;
++ uint32_t lspddev:1;
++ uint32_t reserved_16_16:1;
++ uint32_t epdir:1;
++ uint32_t epnum:4;
++ uint32_t mps:11;
++ } s;
++ struct cvmx_usbcx_hccharx_s cn30xx;
++ struct cvmx_usbcx_hccharx_s cn31xx;
++ struct cvmx_usbcx_hccharx_s cn50xx;
++ struct cvmx_usbcx_hccharx_s cn52xx;
++ struct cvmx_usbcx_hccharx_s cn52xxp1;
++ struct cvmx_usbcx_hccharx_s cn56xx;
++ struct cvmx_usbcx_hccharx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcfg {
++ uint32_t u32;
++ struct cvmx_usbcx_hcfg_s {
++ uint32_t reserved_3_31:29;
++ uint32_t fslssupp:1;
++ uint32_t fslspclksel:2;
++ } s;
++ struct cvmx_usbcx_hcfg_s cn30xx;
++ struct cvmx_usbcx_hcfg_s cn31xx;
++ struct cvmx_usbcx_hcfg_s cn50xx;
++ struct cvmx_usbcx_hcfg_s cn52xx;
++ struct cvmx_usbcx_hcfg_s cn52xxp1;
++ struct cvmx_usbcx_hcfg_s cn56xx;
++ struct cvmx_usbcx_hcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcintx {
++ uint32_t u32;
++ struct cvmx_usbcx_hcintx_s {
++ uint32_t reserved_11_31:21;
++ uint32_t datatglerr:1;
++ uint32_t frmovrun:1;
++ uint32_t bblerr:1;
++ uint32_t xacterr:1;
++ uint32_t nyet:1;
++ uint32_t ack:1;
++ uint32_t nak:1;
++ uint32_t stall:1;
++ uint32_t ahberr:1;
++ uint32_t chhltd:1;
++ uint32_t xfercompl:1;
++ } s;
++ struct cvmx_usbcx_hcintx_s cn30xx;
++ struct cvmx_usbcx_hcintx_s cn31xx;
++ struct cvmx_usbcx_hcintx_s cn50xx;
++ struct cvmx_usbcx_hcintx_s cn52xx;
++ struct cvmx_usbcx_hcintx_s cn52xxp1;
++ struct cvmx_usbcx_hcintx_s cn56xx;
++ struct cvmx_usbcx_hcintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcintmskx {
++ uint32_t u32;
++ struct cvmx_usbcx_hcintmskx_s {
++ uint32_t reserved_11_31:21;
++ uint32_t datatglerrmsk:1;
++ uint32_t frmovrunmsk:1;
++ uint32_t bblerrmsk:1;
++ uint32_t xacterrmsk:1;
++ uint32_t nyetmsk:1;
++ uint32_t ackmsk:1;
++ uint32_t nakmsk:1;
++ uint32_t stallmsk:1;
++ uint32_t ahberrmsk:1;
++ uint32_t chhltdmsk:1;
++ uint32_t xfercomplmsk:1;
++ } s;
++ struct cvmx_usbcx_hcintmskx_s cn30xx;
++ struct cvmx_usbcx_hcintmskx_s cn31xx;
++ struct cvmx_usbcx_hcintmskx_s cn50xx;
++ struct cvmx_usbcx_hcintmskx_s cn52xx;
++ struct cvmx_usbcx_hcintmskx_s cn52xxp1;
++ struct cvmx_usbcx_hcintmskx_s cn56xx;
++ struct cvmx_usbcx_hcintmskx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcspltx {
++ uint32_t u32;
++ struct cvmx_usbcx_hcspltx_s {
++ uint32_t spltena:1;
++ uint32_t reserved_17_30:14;
++ uint32_t compsplt:1;
++ uint32_t xactpos:2;
++ uint32_t hubaddr:7;
++ uint32_t prtaddr:7;
++ } s;
++ struct cvmx_usbcx_hcspltx_s cn30xx;
++ struct cvmx_usbcx_hcspltx_s cn31xx;
++ struct cvmx_usbcx_hcspltx_s cn50xx;
++ struct cvmx_usbcx_hcspltx_s cn52xx;
++ struct cvmx_usbcx_hcspltx_s cn52xxp1;
++ struct cvmx_usbcx_hcspltx_s cn56xx;
++ struct cvmx_usbcx_hcspltx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hctsizx {
++ uint32_t u32;
++ struct cvmx_usbcx_hctsizx_s {
++ uint32_t dopng:1;
++ uint32_t pid:2;
++ uint32_t pktcnt:10;
++ uint32_t xfersize:19;
++ } s;
++ struct cvmx_usbcx_hctsizx_s cn30xx;
++ struct cvmx_usbcx_hctsizx_s cn31xx;
++ struct cvmx_usbcx_hctsizx_s cn50xx;
++ struct cvmx_usbcx_hctsizx_s cn52xx;
++ struct cvmx_usbcx_hctsizx_s cn52xxp1;
++ struct cvmx_usbcx_hctsizx_s cn56xx;
++ struct cvmx_usbcx_hctsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hfir {
++ uint32_t u32;
++ struct cvmx_usbcx_hfir_s {
++ uint32_t reserved_16_31:16;
++ uint32_t frint:16;
++ } s;
++ struct cvmx_usbcx_hfir_s cn30xx;
++ struct cvmx_usbcx_hfir_s cn31xx;
++ struct cvmx_usbcx_hfir_s cn50xx;
++ struct cvmx_usbcx_hfir_s cn52xx;
++ struct cvmx_usbcx_hfir_s cn52xxp1;
++ struct cvmx_usbcx_hfir_s cn56xx;
++ struct cvmx_usbcx_hfir_s cn56xxp1;
++};
++
++union cvmx_usbcx_hfnum {
++ uint32_t u32;
++ struct cvmx_usbcx_hfnum_s {
++ uint32_t frrem:16;
++ uint32_t frnum:16;
++ } s;
++ struct cvmx_usbcx_hfnum_s cn30xx;
++ struct cvmx_usbcx_hfnum_s cn31xx;
++ struct cvmx_usbcx_hfnum_s cn50xx;
++ struct cvmx_usbcx_hfnum_s cn52xx;
++ struct cvmx_usbcx_hfnum_s cn52xxp1;
++ struct cvmx_usbcx_hfnum_s cn56xx;
++ struct cvmx_usbcx_hfnum_s cn56xxp1;
++};
++
++union cvmx_usbcx_hprt {
++ uint32_t u32;
++ struct cvmx_usbcx_hprt_s {
++ uint32_t reserved_19_31:13;
++ uint32_t prtspd:2;
++ uint32_t prttstctl:4;
++ uint32_t prtpwr:1;
++ uint32_t prtlnsts:2;
++ uint32_t reserved_9_9:1;
++ uint32_t prtrst:1;
++ uint32_t prtsusp:1;
++ uint32_t prtres:1;
++ uint32_t prtovrcurrchng:1;
++ uint32_t prtovrcurract:1;
++ uint32_t prtenchng:1;
++ uint32_t prtena:1;
++ uint32_t prtconndet:1;
++ uint32_t prtconnsts:1;
++ } s;
++ struct cvmx_usbcx_hprt_s cn30xx;
++ struct cvmx_usbcx_hprt_s cn31xx;
++ struct cvmx_usbcx_hprt_s cn50xx;
++ struct cvmx_usbcx_hprt_s cn52xx;
++ struct cvmx_usbcx_hprt_s cn52xxp1;
++ struct cvmx_usbcx_hprt_s cn56xx;
++ struct cvmx_usbcx_hprt_s cn56xxp1;
++};
++
++union cvmx_usbcx_hptxfsiz {
++ uint32_t u32;
++ struct cvmx_usbcx_hptxfsiz_s {
++ uint32_t ptxfsize:16;
++ uint32_t ptxfstaddr:16;
++ } s;
++ struct cvmx_usbcx_hptxfsiz_s cn30xx;
++ struct cvmx_usbcx_hptxfsiz_s cn31xx;
++ struct cvmx_usbcx_hptxfsiz_s cn50xx;
++ struct cvmx_usbcx_hptxfsiz_s cn52xx;
++ struct cvmx_usbcx_hptxfsiz_s cn52xxp1;
++ struct cvmx_usbcx_hptxfsiz_s cn56xx;
++ struct cvmx_usbcx_hptxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_hptxsts {
++ uint32_t u32;
++ struct cvmx_usbcx_hptxsts_s {
++ uint32_t ptxqtop:8;
++ uint32_t ptxqspcavail:8;
++ uint32_t ptxfspcavail:16;
++ } s;
++ struct cvmx_usbcx_hptxsts_s cn30xx;
++ struct cvmx_usbcx_hptxsts_s cn31xx;
++ struct cvmx_usbcx_hptxsts_s cn50xx;
++ struct cvmx_usbcx_hptxsts_s cn52xx;
++ struct cvmx_usbcx_hptxsts_s cn52xxp1;
++ struct cvmx_usbcx_hptxsts_s cn56xx;
++ struct cvmx_usbcx_hptxsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_nptxdfifox {
++ uint32_t u32;
++ struct cvmx_usbcx_nptxdfifox_s {
++ uint32_t data:32;
++ } s;
++ struct cvmx_usbcx_nptxdfifox_s cn30xx;
++ struct cvmx_usbcx_nptxdfifox_s cn31xx;
++ struct cvmx_usbcx_nptxdfifox_s cn50xx;
++ struct cvmx_usbcx_nptxdfifox_s cn52xx;
++ struct cvmx_usbcx_nptxdfifox_s cn52xxp1;
++ struct cvmx_usbcx_nptxdfifox_s cn56xx;
++ struct cvmx_usbcx_nptxdfifox_s cn56xxp1;
++};
++
++union cvmx_usbcx_pcgcctl {
++ uint32_t u32;
++ struct cvmx_usbcx_pcgcctl_s {
++ uint32_t reserved_5_31:27;
++ uint32_t physuspended:1;
++ uint32_t rstpdwnmodule:1;
++ uint32_t pwrclmp:1;
++ uint32_t gatehclk:1;
++ uint32_t stoppclk:1;
++ } s;
++ struct cvmx_usbcx_pcgcctl_s cn30xx;
++ struct cvmx_usbcx_pcgcctl_s cn31xx;
++ struct cvmx_usbcx_pcgcctl_s cn50xx;
++ struct cvmx_usbcx_pcgcctl_s cn52xx;
++ struct cvmx_usbcx_pcgcctl_s cn52xxp1;
++ struct cvmx_usbcx_pcgcctl_s cn56xx;
++ struct cvmx_usbcx_pcgcctl_s cn56xxp1;
++};
++
++#endif
+diff --git a/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+new file mode 100644
+index 0000000..90be974
+--- /dev/null
++++ b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+@@ -0,0 +1,760 @@
++/***********************license start***************
++ * Author: Cavium Networks
++ *
++ * Contact: support@caviumnetworks.com
++ * This file is part of the OCTEON SDK
++ *
++ * Copyright (c) 2003-2008 Cavium Networks
++ *
++ * This file is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License, Version 2, as
++ * published by the Free Software Foundation.
++ *
++ * This file is distributed in the hope that it will be useful, but
++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
++ * NONINFRINGEMENT. See the GNU General Public License for more
++ * details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this file; if not, write to the Free Software
++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
++ * or visit http://www.gnu.org/licenses/.
++ *
++ * This file may also be available under a different license from Cavium.
++ * Contact Cavium Networks for more information
++ ***********************license end**************************************/
++
++#ifndef __CVMX_USBNX_DEFS_H__
++#define __CVMX_USBNX_DEFS_H__
++
++#define CVMX_USBNX_BIST_STATUS(block_id) \
++ CVMX_ADD_IO_SEG(0x00011800680007F8ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_CLK_CTL(block_id) \
++ CVMX_ADD_IO_SEG(0x0001180068000010ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_CTL_STATUS(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000800ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN0(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000818ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN1(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000820ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN2(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000828ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN3(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000830ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN4(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000838ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN5(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000840ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN6(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000848ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN7(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000850ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN0(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000858ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN1(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000860ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN2(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000868ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN3(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000870ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN4(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000878ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN5(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000880ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN6(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000888ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN7(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000890ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA_TEST(block_id) \
++ CVMX_ADD_IO_SEG(0x00016F0000000808ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_INT_ENB(block_id) \
++ CVMX_ADD_IO_SEG(0x0001180068000008ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_INT_SUM(block_id) \
++ CVMX_ADD_IO_SEG(0x0001180068000000ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_USBP_CTL_STATUS(block_id) \
++ CVMX_ADD_IO_SEG(0x0001180068000018ull + (((block_id) & 1) * 0x10000000ull))
++
++union cvmx_usbnx_bist_status {
++ uint64_t u64;
++ struct cvmx_usbnx_bist_status_s {
++ uint64_t reserved_7_63:57;
++ uint64_t u2nc_bis:1;
++ uint64_t u2nf_bis:1;
++ uint64_t e2hc_bis:1;
++ uint64_t n2uf_bis:1;
++ uint64_t usbc_bis:1;
++ uint64_t nif_bis:1;
++ uint64_t nof_bis:1;
++ } s;
++ struct cvmx_usbnx_bist_status_cn30xx {
++ uint64_t reserved_3_63:61;
++ uint64_t usbc_bis:1;
++ uint64_t nif_bis:1;
++ uint64_t nof_bis:1;
++ } cn30xx;
++ struct cvmx_usbnx_bist_status_cn30xx cn31xx;
++ struct cvmx_usbnx_bist_status_s cn50xx;
++ struct cvmx_usbnx_bist_status_s cn52xx;
++ struct cvmx_usbnx_bist_status_s cn52xxp1;
++ struct cvmx_usbnx_bist_status_s cn56xx;
++ struct cvmx_usbnx_bist_status_s cn56xxp1;
++};
++
++union cvmx_usbnx_clk_ctl {
++ uint64_t u64;
++ struct cvmx_usbnx_clk_ctl_s {
++ uint64_t reserved_20_63:44;
++ uint64_t divide2:2;
++ uint64_t hclk_rst:1;
++ uint64_t p_x_on:1;
++ uint64_t reserved_14_15:2;
++ uint64_t p_com_on:1;
++ uint64_t p_c_sel:2;
++ uint64_t cdiv_byp:1;
++ uint64_t sd_mode:2;
++ uint64_t s_bist:1;
++ uint64_t por:1;
++ uint64_t enable:1;
++ uint64_t prst:1;
++ uint64_t hrst:1;
++ uint64_t divide:3;
++ } s;
++ struct cvmx_usbnx_clk_ctl_cn30xx {
++ uint64_t reserved_18_63:46;
++ uint64_t hclk_rst:1;
++ uint64_t p_x_on:1;
++ uint64_t p_rclk:1;
++ uint64_t p_xenbn:1;
++ uint64_t p_com_on:1;
++ uint64_t p_c_sel:2;
++ uint64_t cdiv_byp:1;
++ uint64_t sd_mode:2;
++ uint64_t s_bist:1;
++ uint64_t por:1;
++ uint64_t enable:1;
++ uint64_t prst:1;
++ uint64_t hrst:1;
++ uint64_t divide:3;
++ } cn30xx;
++ struct cvmx_usbnx_clk_ctl_cn30xx cn31xx;
++ struct cvmx_usbnx_clk_ctl_cn50xx {
++ uint64_t reserved_20_63:44;
++ uint64_t divide2:2;
++ uint64_t hclk_rst:1;
++ uint64_t reserved_16_16:1;
++ uint64_t p_rtype:2;
++ uint64_t p_com_on:1;
++ uint64_t p_c_sel:2;
++ uint64_t cdiv_byp:1;
++ uint64_t sd_mode:2;
++ uint64_t s_bist:1;
++ uint64_t por:1;
++ uint64_t enable:1;
++ uint64_t prst:1;
++ uint64_t hrst:1;
++ uint64_t divide:3;
++ } cn50xx;
++ struct cvmx_usbnx_clk_ctl_cn50xx cn52xx;
++ struct cvmx_usbnx_clk_ctl_cn50xx cn52xxp1;
++ struct cvmx_usbnx_clk_ctl_cn50xx cn56xx;
++ struct cvmx_usbnx_clk_ctl_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_ctl_status {
++ uint64_t u64;
++ struct cvmx_usbnx_ctl_status_s {
++ uint64_t reserved_6_63:58;
++ uint64_t dma_0pag:1;
++ uint64_t dma_stt:1;
++ uint64_t dma_test:1;
++ uint64_t inv_a2:1;
++ uint64_t l2c_emod:2;
++ } s;
++ struct cvmx_usbnx_ctl_status_s cn30xx;
++ struct cvmx_usbnx_ctl_status_s cn31xx;
++ struct cvmx_usbnx_ctl_status_s cn50xx;
++ struct cvmx_usbnx_ctl_status_s cn52xx;
++ struct cvmx_usbnx_ctl_status_s cn52xxp1;
++ struct cvmx_usbnx_ctl_status_s cn56xx;
++ struct cvmx_usbnx_ctl_status_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn0 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn0_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn0_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn1 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn1_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn1_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn2 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn2_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn2_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn3 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn3_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn3_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn4 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn4_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn4_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn5 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn5_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn5_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn6 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn6_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn6_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn7 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_inb_chn7_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn30xx;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn31xx;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn50xx;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn52xx;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn52xxp1;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn56xx;
++ struct cvmx_usbnx_dma0_inb_chn7_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn0 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn0_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn0_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn1 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn1_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn1_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn2 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn2_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn2_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn3 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn3_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn3_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn4 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn4_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn4_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn5 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn5_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn5_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn6 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn6_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn6_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn7 {
++ uint64_t u64;
++ struct cvmx_usbnx_dma0_outb_chn7_s {
++ uint64_t reserved_36_63:28;
++ uint64_t addr:36;
++ } s;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn30xx;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn31xx;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn50xx;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn52xx;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn52xxp1;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn56xx;
++ struct cvmx_usbnx_dma0_outb_chn7_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma_test {
++ uint64_t u64;
++ struct cvmx_usbnx_dma_test_s {
++ uint64_t reserved_40_63:24;
++ uint64_t done:1;
++ uint64_t req:1;
++ uint64_t f_addr:18;
++ uint64_t count:11;
++ uint64_t channel:5;
++ uint64_t burst:4;
++ } s;
++ struct cvmx_usbnx_dma_test_s cn30xx;
++ struct cvmx_usbnx_dma_test_s cn31xx;
++ struct cvmx_usbnx_dma_test_s cn50xx;
++ struct cvmx_usbnx_dma_test_s cn52xx;
++ struct cvmx_usbnx_dma_test_s cn52xxp1;
++ struct cvmx_usbnx_dma_test_s cn56xx;
++ struct cvmx_usbnx_dma_test_s cn56xxp1;
++};
++
++union cvmx_usbnx_int_enb {
++ uint64_t u64;
++ struct cvmx_usbnx_int_enb_s {
++ uint64_t reserved_38_63:26;
++ uint64_t nd4o_dpf:1;
++ uint64_t nd4o_dpe:1;
++ uint64_t nd4o_rpf:1;
++ uint64_t nd4o_rpe:1;
++ uint64_t ltl_f_pf:1;
++ uint64_t ltl_f_pe:1;
++ uint64_t u2n_c_pe:1;
++ uint64_t u2n_c_pf:1;
++ uint64_t u2n_d_pf:1;
++ uint64_t u2n_d_pe:1;
++ uint64_t n2u_pe:1;
++ uint64_t n2u_pf:1;
++ uint64_t uod_pf:1;
++ uint64_t uod_pe:1;
++ uint64_t rq_q3_e:1;
++ uint64_t rq_q3_f:1;
++ uint64_t rq_q2_e:1;
++ uint64_t rq_q2_f:1;
++ uint64_t rg_fi_f:1;
++ uint64_t rg_fi_e:1;
++ uint64_t l2_fi_f:1;
++ uint64_t l2_fi_e:1;
++ uint64_t l2c_a_f:1;
++ uint64_t l2c_s_e:1;
++ uint64_t dcred_f:1;
++ uint64_t dcred_e:1;
++ uint64_t lt_pu_f:1;
++ uint64_t lt_po_e:1;
++ uint64_t nt_pu_f:1;
++ uint64_t nt_po_e:1;
++ uint64_t pt_pu_f:1;
++ uint64_t pt_po_e:1;
++ uint64_t lr_pu_f:1;
++ uint64_t lr_po_e:1;
++ uint64_t nr_pu_f:1;
++ uint64_t nr_po_e:1;
++ uint64_t pr_pu_f:1;
++ uint64_t pr_po_e:1;
++ } s;
++ struct cvmx_usbnx_int_enb_s cn30xx;
++ struct cvmx_usbnx_int_enb_s cn31xx;
++ struct cvmx_usbnx_int_enb_cn50xx {
++ uint64_t reserved_38_63:26;
++ uint64_t nd4o_dpf:1;
++ uint64_t nd4o_dpe:1;
++ uint64_t nd4o_rpf:1;
++ uint64_t nd4o_rpe:1;
++ uint64_t ltl_f_pf:1;
++ uint64_t ltl_f_pe:1;
++ uint64_t reserved_26_31:6;
++ uint64_t uod_pf:1;
++ uint64_t uod_pe:1;
++ uint64_t rq_q3_e:1;
++ uint64_t rq_q3_f:1;
++ uint64_t rq_q2_e:1;
++ uint64_t rq_q2_f:1;
++ uint64_t rg_fi_f:1;
++ uint64_t rg_fi_e:1;
++ uint64_t l2_fi_f:1;
++ uint64_t l2_fi_e:1;
++ uint64_t l2c_a_f:1;
++ uint64_t l2c_s_e:1;
++ uint64_t dcred_f:1;
++ uint64_t dcred_e:1;
++ uint64_t lt_pu_f:1;
++ uint64_t lt_po_e:1;
++ uint64_t nt_pu_f:1;
++ uint64_t nt_po_e:1;
++ uint64_t pt_pu_f:1;
++ uint64_t pt_po_e:1;
++ uint64_t lr_pu_f:1;
++ uint64_t lr_po_e:1;
++ uint64_t nr_pu_f:1;
++ uint64_t nr_po_e:1;
++ uint64_t pr_pu_f:1;
++ uint64_t pr_po_e:1;
++ } cn50xx;
++ struct cvmx_usbnx_int_enb_cn50xx cn52xx;
++ struct cvmx_usbnx_int_enb_cn50xx cn52xxp1;
++ struct cvmx_usbnx_int_enb_cn50xx cn56xx;
++ struct cvmx_usbnx_int_enb_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_int_sum {
++ uint64_t u64;
++ struct cvmx_usbnx_int_sum_s {
++ uint64_t reserved_38_63:26;
++ uint64_t nd4o_dpf:1;
++ uint64_t nd4o_dpe:1;
++ uint64_t nd4o_rpf:1;
++ uint64_t nd4o_rpe:1;
++ uint64_t ltl_f_pf:1;
++ uint64_t ltl_f_pe:1;
++ uint64_t u2n_c_pe:1;
++ uint64_t u2n_c_pf:1;
++ uint64_t u2n_d_pf:1;
++ uint64_t u2n_d_pe:1;
++ uint64_t n2u_pe:1;
++ uint64_t n2u_pf:1;
++ uint64_t uod_pf:1;
++ uint64_t uod_pe:1;
++ uint64_t rq_q3_e:1;
++ uint64_t rq_q3_f:1;
++ uint64_t rq_q2_e:1;
++ uint64_t rq_q2_f:1;
++ uint64_t rg_fi_f:1;
++ uint64_t rg_fi_e:1;
++ uint64_t lt_fi_f:1;
++ uint64_t lt_fi_e:1;
++ uint64_t l2c_a_f:1;
++ uint64_t l2c_s_e:1;
++ uint64_t dcred_f:1;
++ uint64_t dcred_e:1;
++ uint64_t lt_pu_f:1;
++ uint64_t lt_po_e:1;
++ uint64_t nt_pu_f:1;
++ uint64_t nt_po_e:1;
++ uint64_t pt_pu_f:1;
++ uint64_t pt_po_e:1;
++ uint64_t lr_pu_f:1;
++ uint64_t lr_po_e:1;
++ uint64_t nr_pu_f:1;
++ uint64_t nr_po_e:1;
++ uint64_t pr_pu_f:1;
++ uint64_t pr_po_e:1;
++ } s;
++ struct cvmx_usbnx_int_sum_s cn30xx;
++ struct cvmx_usbnx_int_sum_s cn31xx;
++ struct cvmx_usbnx_int_sum_cn50xx {
++ uint64_t reserved_38_63:26;
++ uint64_t nd4o_dpf:1;
++ uint64_t nd4o_dpe:1;
++ uint64_t nd4o_rpf:1;
++ uint64_t nd4o_rpe:1;
++ uint64_t ltl_f_pf:1;
++ uint64_t ltl_f_pe:1;
++ uint64_t reserved_26_31:6;
++ uint64_t uod_pf:1;
++ uint64_t uod_pe:1;
++ uint64_t rq_q3_e:1;
++ uint64_t rq_q3_f:1;
++ uint64_t rq_q2_e:1;
++ uint64_t rq_q2_f:1;
++ uint64_t rg_fi_f:1;
++ uint64_t rg_fi_e:1;
++ uint64_t lt_fi_f:1;
++ uint64_t lt_fi_e:1;
++ uint64_t l2c_a_f:1;
++ uint64_t l2c_s_e:1;
++ uint64_t dcred_f:1;
++ uint64_t dcred_e:1;
++ uint64_t lt_pu_f:1;
++ uint64_t lt_po_e:1;
++ uint64_t nt_pu_f:1;
++ uint64_t nt_po_e:1;
++ uint64_t pt_pu_f:1;
++ uint64_t pt_po_e:1;
++ uint64_t lr_pu_f:1;
++ uint64_t lr_po_e:1;
++ uint64_t nr_pu_f:1;
++ uint64_t nr_po_e:1;
++ uint64_t pr_pu_f:1;
++ uint64_t pr_po_e:1;
++ } cn50xx;
++ struct cvmx_usbnx_int_sum_cn50xx cn52xx;
++ struct cvmx_usbnx_int_sum_cn50xx cn52xxp1;
++ struct cvmx_usbnx_int_sum_cn50xx cn56xx;
++ struct cvmx_usbnx_int_sum_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_usbp_ctl_status {
++ uint64_t u64;
++ struct cvmx_usbnx_usbp_ctl_status_s {
++ uint64_t txrisetune:1;
++ uint64_t txvreftune:4;
++ uint64_t txfslstune:4;
++ uint64_t txhsxvtune:2;
++ uint64_t sqrxtune:3;
++ uint64_t compdistune:3;
++ uint64_t otgtune:3;
++ uint64_t otgdisable:1;
++ uint64_t portreset:1;
++ uint64_t drvvbus:1;
++ uint64_t lsbist:1;
++ uint64_t fsbist:1;
++ uint64_t hsbist:1;
++ uint64_t bist_done:1;
++ uint64_t bist_err:1;
++ uint64_t tdata_out:4;
++ uint64_t siddq:1;
++ uint64_t txpreemphasistune:1;
++ uint64_t dma_bmode:1;
++ uint64_t usbc_end:1;
++ uint64_t usbp_bist:1;
++ uint64_t tclk:1;
++ uint64_t dp_pulld:1;
++ uint64_t dm_pulld:1;
++ uint64_t hst_mode:1;
++ uint64_t tuning:4;
++ uint64_t tx_bs_enh:1;
++ uint64_t tx_bs_en:1;
++ uint64_t loop_enb:1;
++ uint64_t vtest_enb:1;
++ uint64_t bist_enb:1;
++ uint64_t tdata_sel:1;
++ uint64_t taddr_in:4;
++ uint64_t tdata_in:8;
++ uint64_t ate_reset:1;
++ } s;
++ struct cvmx_usbnx_usbp_ctl_status_cn30xx {
++ uint64_t reserved_38_63:26;
++ uint64_t bist_done:1;
++ uint64_t bist_err:1;
++ uint64_t tdata_out:4;
++ uint64_t reserved_30_31:2;
++ uint64_t dma_bmode:1;
++ uint64_t usbc_end:1;
++ uint64_t usbp_bist:1;
++ uint64_t tclk:1;
++ uint64_t dp_pulld:1;
++ uint64_t dm_pulld:1;
++ uint64_t hst_mode:1;
++ uint64_t tuning:4;
++ uint64_t tx_bs_enh:1;
++ uint64_t tx_bs_en:1;
++ uint64_t loop_enb:1;
++ uint64_t vtest_enb:1;
++ uint64_t bist_enb:1;
++ uint64_t tdata_sel:1;
++ uint64_t taddr_in:4;
++ uint64_t tdata_in:8;
++ uint64_t ate_reset:1;
++ } cn30xx;
++ struct cvmx_usbnx_usbp_ctl_status_cn30xx cn31xx;
++ struct cvmx_usbnx_usbp_ctl_status_cn50xx {
++ uint64_t txrisetune:1;
++ uint64_t txvreftune:4;
++ uint64_t txfslstune:4;
++ uint64_t txhsxvtune:2;
++ uint64_t sqrxtune:3;
++ uint64_t compdistune:3;
++ uint64_t otgtune:3;
++ uint64_t otgdisable:1;
++ uint64_t portreset:1;
++ uint64_t drvvbus:1;
++ uint64_t lsbist:1;
++ uint64_t fsbist:1;
++ uint64_t hsbist:1;
++ uint64_t bist_done:1;
++ uint64_t bist_err:1;
++ uint64_t tdata_out:4;
++ uint64_t reserved_31_31:1;
++ uint64_t txpreemphasistune:1;
++ uint64_t dma_bmode:1;
++ uint64_t usbc_end:1;
++ uint64_t usbp_bist:1;
++ uint64_t tclk:1;
++ uint64_t dp_pulld:1;
++ uint64_t dm_pulld:1;
++ uint64_t hst_mode:1;
++ uint64_t reserved_19_22:4;
++ uint64_t tx_bs_enh:1;
++ uint64_t tx_bs_en:1;
++ uint64_t loop_enb:1;
++ uint64_t vtest_enb:1;
++ uint64_t bist_enb:1;
++ uint64_t tdata_sel:1;
++ uint64_t taddr_in:4;
++ uint64_t tdata_in:8;
++ uint64_t ate_reset:1;
++ } cn50xx;
++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xx;
++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xxp1;
++ struct cvmx_usbnx_usbp_ctl_status_cn56xx {
++ uint64_t txrisetune:1;
++ uint64_t txvreftune:4;
++ uint64_t txfslstune:4;
++ uint64_t txhsxvtune:2;
++ uint64_t sqrxtune:3;
++ uint64_t compdistune:3;
++ uint64_t otgtune:3;
++ uint64_t otgdisable:1;
++ uint64_t portreset:1;
++ uint64_t drvvbus:1;
++ uint64_t lsbist:1;
++ uint64_t fsbist:1;
++ uint64_t hsbist:1;
++ uint64_t bist_done:1;
++ uint64_t bist_err:1;
++ uint64_t tdata_out:4;
++ uint64_t siddq:1;
++ uint64_t txpreemphasistune:1;
++ uint64_t dma_bmode:1;
++ uint64_t usbc_end:1;
++ uint64_t usbp_bist:1;
++ uint64_t tclk:1;
++ uint64_t dp_pulld:1;
++ uint64_t dm_pulld:1;
++ uint64_t hst_mode:1;
++ uint64_t reserved_19_22:4;
++ uint64_t tx_bs_enh:1;
++ uint64_t tx_bs_en:1;
++ uint64_t loop_enb:1;
++ uint64_t vtest_enb:1;
++ uint64_t bist_enb:1;
++ uint64_t tdata_sel:1;
++ uint64_t taddr_in:4;
++ uint64_t tdata_in:8;
++ uint64_t ate_reset:1;
++ } cn56xx;
++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn56xxp1;
++};
++
++#endif
+--
+1.6.0.6
+
+--
+To unsubscribe from this list: send the line "unsubscribe linux-usb" in
+the body of a message to majordomo@vger.kernel.org
+More majordomo info at http://vger.kernel.org/majordomo-info.htmlSigned-off-by: David Daney <ddaney@caviumnetworks.com>
+---
+ drivers/usb/host/Kconfig | 8 +
+ drivers/usb/host/Makefile | 1 +
+ drivers/usb/host/dwc_otg/Kbuild | 16 +
+ drivers/usb/host/dwc_otg/dwc_otg_attr.c | 854 ++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_attr.h | 63 +
+ drivers/usb/host/dwc_otg/dwc_otg_cil.c | 2887 ++++++++++++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_cil.h | 866 ++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c | 689 ++++++
+ drivers/usb/host/dwc_otg/dwc_otg_driver.h | 63 +
+ drivers/usb/host/dwc_otg/dwc_otg_hcd.c | 2878 +++++++++++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd.h | 661 ++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c | 1890 +++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c | 695 +++++++
+ drivers/usb/host/dwc_otg/dwc_otg_octeon.c | 1078 ++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_plat.h | 236 +++
+ drivers/usb/host/dwc_otg/dwc_otg_regs.h | 2355 +++++++++++++++++++++
+ 16 files changed, 15240 insertions(+), 0 deletions(-)
+ create mode 100644 drivers/usb/host/dwc_otg/Kbuild
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_driver.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_plat.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_regs.h
+
+diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig
+index 9b43b22..342dc54 100644
+--- a/drivers/usb/host/Kconfig
++++ b/drivers/usb/host/Kconfig
+@@ -381,3 +381,11 @@ config USB_HWA_HCD
+
+ To compile this driver a module, choose M here: the module
+ will be called "hwa-hc".
++
++config USB_DWC_OTG
++ tristate "Cavium Octeon USB"
++ depends on USB && CPU_CAVIUM_OCTEON
++ ---help---
++ The Cavium Octeon on-chip USB controller. To compile this
++ driver as a module, choose M here: the module will be called
++ "dwc_otg".
+diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile
+index f58b249..76faf12 100644
+--- a/drivers/usb/host/Makefile
++++ b/drivers/usb/host/Makefile
+@@ -15,6 +15,7 @@ endif
+ xhci-objs := xhci-hcd.o xhci-mem.o xhci-pci.o xhci-ring.o xhci-hub.o xhci-dbg.o
+
+ obj-$(CONFIG_USB_WHCI_HCD) += whci/
++obj-$(CONFIG_USB_DWC_OTG) += dwc_otg/
+
+ obj-$(CONFIG_PCI) += pci-quirks.o
+
+diff --git a/drivers/usb/host/dwc_otg/Kbuild b/drivers/usb/host/dwc_otg/Kbuild
+new file mode 100644
+index 0000000..cb32638
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/Kbuild
+@@ -0,0 +1,16 @@
++#
++# Makefile for DWC_otg Highspeed USB controller driver
++#
++
++# Use one of the following flags to compile the software in host-only or
++# device-only mode.
++#EXTRA_CFLAGS += -DDWC_HOST_ONLY
++#EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
++
++EXTRA_CFLAGS += -DDWC_HOST_ONLY
++obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o
++
++dwc_otg-y := dwc_otg_octeon.o dwc_otg_attr.o
++dwc_otg-y += dwc_otg_cil.o dwc_otg_cil_intr.o
++dwc_otg-y += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
++
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.c b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
+new file mode 100644
+index 0000000..d854a79
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
+@@ -0,0 +1,854 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/*
++ *
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing. The Linux driver attributes
++ * feature will be used to provide the Linux Diagnostic
++ * Interface. These attributes are accessed through sysfs.
++ */
++
++/** @page "Linux Module Attributes"
++ *
++ * The Linux module attributes feature is used to provide the Linux
++ * Diagnostic Interface. These attributes are accessed through sysfs.
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.
++
++ The following table shows the attributes.
++ <table>
++ <tr>
++ <td><b> Name</b></td>
++ <td><b> Description</b></td>
++ <td><b> Access</b></td>
++ </tr>
++
++ <tr>
++ <td> mode </td>
++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hnpcapable </td>
++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srpcapable </td>
++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hnp </td>
++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srp </td>
++ <td> Initiates the Session Request Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> buspower </td>
++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> bussuspend </td>
++ <td> Suspends the USB bus.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> busconnected </td>
++ <td> Gets the connection status of the bus</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> gotgctl </td>
++ <td> Gets or sets the Core Control Status Register.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gusbcfg </td>
++ <td> Gets or sets the Core USB Configuration Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> grxfsiz </td>
++ <td> Gets or sets the Receive FIFO Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gnptxfsiz </td>
++ <td> Gets or sets the non-periodic Transmit Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gpvndctl </td>
++ <td> Gets or sets the PHY Vendor Control Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> ggpio </td>
++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
++ or sets the upper 16 bits.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> guid </td>
++ <td> Gets or sets the value of the User ID Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gsnpsid </td>
++ <td> Gets the value of the Synopsys ID Regester</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> devspeed </td>
++ <td> Gets or sets the device speed setting in the DCFG register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> enumspeed </td>
++ <td> Gets the device enumeration Speed.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hptxfsiz </td>
++ <td> Gets the value of the Host Periodic Transmit FIFO</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hprt0 </td>
++ <td> Gets or sets the value in the Host Port Control and Status Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regoffset </td>
++ <td> Sets the register offset for the next Register Access</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regvalue </td>
++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> remote_wakeup </td>
++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
++ Wakeup signalling bit in the Device Control Register is set for 1
++ milli-second.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcddump </td>
++ <td> Dumps the current HCD state.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcd_frrem </td>
++ <td> Shows the average value of the Frame Remaining
++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
++ occurs. This can be used to determine the average interrupt latency. Also
++ shows the average Frame Remaining value for start_transfer and the "a" and
++ "b" sample points. The "a" and "b" sample points may be used during debugging
++ bto determine how long it takes to execute a section of the HCD code.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> rd_reg_test </td>
++ <td> Displays the time required to read the GNPTXFSIZ register many times
++ (the output shows the number of times the register is read).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> wr_reg_test </td>
++ <td> Displays the time required to write the GNPTXFSIZ register many times
++ (the output shows the number of times the register is written).
++ <td> Read</td>
++ </tr>
++
++ </table>
++
++ Example usage:
++ To get the current mode:
++ cat /sys/devices/lm0/mode
++
++ To power down the USB:
++ echo 0 > /sys/devices/lm0/buspower
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++
++#include <asm/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++#ifndef DWC_HOST_ONLY
++#include "dwc_otg_pcd.h"
++#endif
++#include "dwc_otg_hcd.h"
++
++/*
++ * MACROs for defining sysfs attribute
++ */
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ static ssize_t _otg_attr_name_##_show (struct device *_dev, \
++ struct device_attribute *attr, \
++ char *buf) \
++ { \
++ struct dwc_otg_device *otg_dev = _dev->platform_data; \
++ uint32_t val; \
++ val = dwc_read_reg32(_addr_); \
++ val = (val & (_mask_)) >> _shift_; \
++ return sprintf(buf, "%s = 0x%x\n", _string_, val); \
++ }
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ static ssize_t _otg_attr_name_##_store (struct device *_dev, \
++ struct device_attribute *attr, \
++ const char *buf, size_t count) \
++ { \
++ struct dwc_otg_device *otg_dev = _dev->platform_data; \
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ uint32_t clear = set; \
++ clear = ((~clear) << _shift_) & _mask_; \
++ set = (set << _shift_) & _mask_; \
++ dev_dbg(_dev, \
++ "Storing Address=%p Set=0x%08x Clear=0x%08x\n", \
++ _addr_, set, clear); \
++ dwc_modify_reg32(_addr_, clear, set); \
++ return count; \
++ }
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \
++ _otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _addr_, \
++ _mask_, _shift_, _string_) \
++ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, \
++ _addr_, _mask_, _shift_, _string_) \
++ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
++
++/*
++ * MACROs for defining sysfs attribute for 32-bit registers
++ */
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++ static ssize_t _otg_attr_name_##_show(struct device *_dev, \
++ struct device_attribute *attr, \
++ char *buf) \
++ { \
++ struct dwc_otg_device *otg_dev = _dev->platform_data; \
++ uint32_t val; \
++ val = dwc_read_reg32(_addr_); \
++ return sprintf(buf, "%s = 0x%08x\n", _string_, val); \
++ }
++
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
++ static ssize_t _otg_attr_name_##_store(struct device *_dev, \
++ struct device_attribute *attr, \
++ const char *buf, size_t count) \
++ { \
++ struct dwc_otg_device *otg_dev = _dev->platform_data; \
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dev_dbg(_dev, "Storing Address=%p Val=0x%08x\n", _addr_, val); \
++ dwc_write_reg32(_addr_, val); \
++ return count; \
++ }
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \
++ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++ DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
++ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \
++ _otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \
++ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
++
++/**
++ * Show the register offset of the Register Access.
++ */
++static ssize_t regoffset_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n",
++ otg_dev->reg_offset);
++}
++
++/**
++ * Set the register offset for the next Register Access Read/Write
++ */
++static ssize_t regoffset_store(struct device *_dev,
++ struct device_attribute *attr, const char *buf,
++ size_t count)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t offset = simple_strtoul(buf, NULL, 16);
++
++ if (offset < SZ_256K)
++ otg_dev->reg_offset = offset;
++ else
++ dev_err(_dev, "invalid offset\n");
++
++ return count;
++}
++
++DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store);
++
++/**
++ * Show the value of the register at the offset in the reg_offset
++ * attribute.
++ */
++static ssize_t regvalue_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t val;
++ uint32_t *addr;
++
++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t *) (otg_dev->reg_offset +
++ (uint8_t *) otg_dev->base);
++
++ val = dwc_read_reg32(addr);
++ return snprintf(buf,
++ sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1,
++ "Reg@0x%06x = 0x%08x\n", otg_dev->reg_offset,
++ val);
++ } else {
++ dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->reg_offset);
++ return sprintf(buf, "invalid offset\n");
++ }
++}
++
++/**
++ * Store the value in the register at the offset in the reg_offset
++ * attribute.
++ *
++ */
++static ssize_t regvalue_store(struct device *_dev,
++ struct device_attribute *attr, const char *buf,
++ size_t count)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t *addr;
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++
++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t *) (otg_dev->reg_offset +
++ (uint8_t *) otg_dev->base);
++
++ dwc_write_reg32(addr, val);
++ } else {
++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
++ otg_dev->reg_offset);
++ }
++ return count;
++}
++
++DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store);
++
++/*
++ * Attributes
++ */
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,
++ &(otg_dev->core_if->core_global_regs->gotgctl),
++ (1 << 20), 20, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,
++ &(otg_dev->core_if->core_global_regs->gusbcfg),
++ (1 << 9), 9, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,
++ &(otg_dev->core_if->core_global_regs->gusbcfg),
++ (1 << 8), 8, "Mode");
++#if 0
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
++#endif
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, otg_dev->core_if->host_if->hprt0,
++ 0x01, 0, "Bus Connected");
++
++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,
++ &(otg_dev->core_if->core_global_regs->gotgctl),
++ "GOTGCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,
++ &(otg_dev->core_if->core_global_regs->gusbcfg),
++ "GUSBCFG");
++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,
++ &(otg_dev->core_if->core_global_regs->grxfsiz),
++ "GRXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,
++ &(otg_dev->core_if->core_global_regs->gnptxfsiz),
++ "GNPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,
++ &(otg_dev->core_if->core_global_regs->gpvndctl),
++ "GPVNDCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,
++ &(otg_dev->core_if->core_global_regs->ggpio),
++ "GGPIO");
++DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid),
++ "GUID");
++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,
++ &(otg_dev->core_if->core_global_regs->gsnpsid),
++ "GSNPSID");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,
++ &(otg_dev->core_if->dev_if->dev_global_regs->
++ dcfg), 0x3, 0, "Device Speed");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,
++ &(otg_dev->core_if->dev_if->dev_global_regs->
++ dsts), 0x6, 1, "Device Enumeration Speed");
++
++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,
++ &(otg_dev->core_if->core_global_regs->hptxfsiz),
++ "HPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0");
++
++/**
++ * @todo Add code to initiate the HNP.
++ */
++/**
++ * Show the HNP status bit
++ */
++static ssize_t hnp_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ union gotgctl_data val;
++ val.d32 =
++ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf(buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
++}
++
++/**
++ * Set the HNP Request bit
++ */
++static ssize_t hnp_store(struct device *_dev, struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr =
++ (uint32_t *) &(otg_dev->core_if->core_global_regs->gotgctl);
++ union gotgctl_data mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.hnpreq = in;
++ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++
++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
++
++/**
++ * @todo Add code to initiate the SRP.
++ */
++/**
++ * Show the SRP status bit
++ */
++static ssize_t srp_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ union gotgctl_data val;
++ val.d32 =
++ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf(buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Set the SRP Request bit
++ */
++static ssize_t srp_store(struct device *_dev, struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
++#endif
++ return count;
++}
++
++DEVICE_ATTR(srp, 0644, srp_show, srp_store);
++
++/**
++ * @todo Need to do more for power on/off?
++ */
++/**
++ * Show the Bus Power status
++ */
++static ssize_t buspower_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ union hprt0_data val;
++ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
++ return sprintf(buf, "Bus Power = 0x%x\n", val.b.prtpwr);
++}
++
++/**
++ * Set the Bus Power status
++ */
++static ssize_t buspower_store(struct device *_dev,
++ struct device_attribute *attr, const char *buf,
++ size_t count)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t on = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
++ union hprt0_data mem;
++
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtpwr = on;
++
++ dwc_write_reg32(addr, mem.d32);
++
++ return count;
++}
++
++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
++
++/**
++ * @todo Need to do more for suspend?
++ */
++/**
++ * Show the Bus Suspend status
++ */
++static ssize_t bussuspend_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ union hprt0_data val;
++ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
++ return sprintf(buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
++}
++
++/**
++ * Set the Bus Suspend status
++ */
++static ssize_t bussuspend_store(struct device *_dev,
++ struct device_attribute *attr, const char *buf,
++ size_t count)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
++ union hprt0_data mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtsusp = in;
++ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++
++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
++
++/**
++ * Show the status of Remote Wakeup.
++ */
++static ssize_t remote_wakeup_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ union dctl_data val;
++ val.d32 =
++ dwc_read_reg32(&otg_dev->core_if->dev_if->dev_global_regs->dctl);
++ return sprintf(buf, "Remote Wakeup = %d Enabled = %d\n",
++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Initiate a remote wakeup of the host. The Device control register
++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
++ * flag is set.
++ *
++ */
++static ssize_t remote_wakeup_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ if (val & 1)
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
++ else
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
++#endif
++ return count;
++}
++
++DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show,
++ remote_wakeup_store);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t regdump_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++
++ dwc_otg_dump_global_registers(otg_dev->core_if);
++ if (dwc_otg_is_host_mode(otg_dev->core_if))
++ dwc_otg_dump_host_registers(otg_dev->core_if);
++ else
++ dwc_otg_dump_dev_registers(otg_dev->core_if);
++
++ return sprintf(buf, "Register Dump\n");
++}
++
++DEVICE_ATTR(regdump, S_IRUGO | S_IWUSR, regdump_show, 0);
++
++/**
++ * Dump the current hcd state.
++ */
++static ssize_t hcddump_show(struct device *_dev, struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ dwc_otg_hcd_dump_state(otg_dev->hcd);
++#endif
++ return sprintf(buf, "HCD Dump\n");
++}
++
++DEVICE_ATTR(hcddump, S_IRUGO | S_IWUSR, hcddump_show, 0);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ */
++static ssize_t hcd_frrem_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
++#endif
++ return sprintf(buf, "HCD Dump Frame Remaining\n");
++}
++
++DEVICE_ATTR(hcd_frrem, S_IRUGO | S_IWUSR, hcd_frrem_show, 0);
++
++/**
++ * Displays the time required to read the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is read).
++ */
++#define RW_REG_COUNT 10000000
++#define MSEC_PER_JIFFIE (1000/HZ)
++static ssize_t rd_reg_test_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ int i;
++ int time;
++ int start_jiffies;
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++
++ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++)
++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++
++ time = jiffies - start_jiffies;
++ return sprintf(buf,
++ "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(rd_reg_test, S_IRUGO | S_IWUSR, rd_reg_test_show, 0);
++
++/**
++ * Displays the time required to write the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is written).
++ */
++static ssize_t wr_reg_test_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ int i;
++ int time;
++ int start_jiffies;
++ struct dwc_otg_device *otg_dev = _dev->platform_data;
++ uint32_t reg_val;
++
++ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ reg_val =
++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++)
++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz,
++ reg_val);
++
++ time = jiffies - start_jiffies;
++ return sprintf(buf,
++ "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(wr_reg_test, S_IRUGO | S_IWUSR, wr_reg_test_show, 0);
++
++/*
++ * Create the device files
++ */
++void dwc_otg_attr_create(struct device *dev)
++{
++ int error;
++ error = device_create_file(dev, &dev_attr_regoffset);
++ error |= device_create_file(dev, &dev_attr_regvalue);
++ error |= device_create_file(dev, &dev_attr_mode);
++ error |= device_create_file(dev, &dev_attr_hnpcapable);
++ error |= device_create_file(dev, &dev_attr_srpcapable);
++ error |= device_create_file(dev, &dev_attr_hnp);
++ error |= device_create_file(dev, &dev_attr_srp);
++ error |= device_create_file(dev, &dev_attr_buspower);
++ error |= device_create_file(dev, &dev_attr_bussuspend);
++ error |= device_create_file(dev, &dev_attr_busconnected);
++ error |= device_create_file(dev, &dev_attr_gotgctl);
++ error |= device_create_file(dev, &dev_attr_gusbcfg);
++ error |= device_create_file(dev, &dev_attr_grxfsiz);
++ error |= device_create_file(dev, &dev_attr_gnptxfsiz);
++ error |= device_create_file(dev, &dev_attr_gpvndctl);
++ error |= device_create_file(dev, &dev_attr_ggpio);
++ error |= device_create_file(dev, &dev_attr_guid);
++ error |= device_create_file(dev, &dev_attr_gsnpsid);
++ error |= device_create_file(dev, &dev_attr_devspeed);
++ error |= device_create_file(dev, &dev_attr_enumspeed);
++ error |= device_create_file(dev, &dev_attr_hptxfsiz);
++ error |= device_create_file(dev, &dev_attr_hprt0);
++ error |= device_create_file(dev, &dev_attr_remote_wakeup);
++ error |= device_create_file(dev, &dev_attr_regdump);
++ error |= device_create_file(dev, &dev_attr_hcddump);
++ error |= device_create_file(dev, &dev_attr_hcd_frrem);
++ error |= device_create_file(dev, &dev_attr_rd_reg_test);
++ error |= device_create_file(dev, &dev_attr_wr_reg_test);
++ if (error)
++ pr_err("DWC_OTG: Creating some device files failed\n");
++}
++
++/*
++ * Remove the device files
++ */
++void dwc_otg_attr_remove(struct device *dev)
++{
++ device_remove_file(dev, &dev_attr_regoffset);
++ device_remove_file(dev, &dev_attr_regvalue);
++ device_remove_file(dev, &dev_attr_mode);
++ device_remove_file(dev, &dev_attr_hnpcapable);
++ device_remove_file(dev, &dev_attr_srpcapable);
++ device_remove_file(dev, &dev_attr_hnp);
++ device_remove_file(dev, &dev_attr_srp);
++ device_remove_file(dev, &dev_attr_buspower);
++ device_remove_file(dev, &dev_attr_bussuspend);
++ device_remove_file(dev, &dev_attr_busconnected);
++ device_remove_file(dev, &dev_attr_gotgctl);
++ device_remove_file(dev, &dev_attr_gusbcfg);
++ device_remove_file(dev, &dev_attr_grxfsiz);
++ device_remove_file(dev, &dev_attr_gnptxfsiz);
++ device_remove_file(dev, &dev_attr_gpvndctl);
++ device_remove_file(dev, &dev_attr_ggpio);
++ device_remove_file(dev, &dev_attr_guid);
++ device_remove_file(dev, &dev_attr_gsnpsid);
++ device_remove_file(dev, &dev_attr_devspeed);
++ device_remove_file(dev, &dev_attr_enumspeed);
++ device_remove_file(dev, &dev_attr_hptxfsiz);
++ device_remove_file(dev, &dev_attr_hprt0);
++ device_remove_file(dev, &dev_attr_remote_wakeup);
++ device_remove_file(dev, &dev_attr_regdump);
++ device_remove_file(dev, &dev_attr_hcddump);
++ device_remove_file(dev, &dev_attr_hcd_frrem);
++ device_remove_file(dev, &dev_attr_rd_reg_test);
++ device_remove_file(dev, &dev_attr_wr_reg_test);
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.h b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
+new file mode 100644
+index 0000000..925524f
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
+@@ -0,0 +1,63 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_ATTR_H__)
++#define __DWC_OTG_ATTR_H__
++
++/*
++ * This file contains the interface to the Linux device attributes.
++ */
++extern struct device_attribute dev_attr_regoffset;
++extern struct device_attribute dev_attr_regvalue;
++
++extern struct device_attribute dev_attr_mode;
++extern struct device_attribute dev_attr_hnpcapable;
++extern struct device_attribute dev_attr_srpcapable;
++extern struct device_attribute dev_attr_hnp;
++extern struct device_attribute dev_attr_srp;
++extern struct device_attribute dev_attr_buspower;
++extern struct device_attribute dev_attr_bussuspend;
++extern struct device_attribute dev_attr_busconnected;
++extern struct device_attribute dev_attr_gotgctl;
++extern struct device_attribute dev_attr_gusbcfg;
++extern struct device_attribute dev_attr_grxfsiz;
++extern struct device_attribute dev_attr_gnptxfsiz;
++extern struct device_attribute dev_attr_gpvndctl;
++extern struct device_attribute dev_attr_ggpio;
++extern struct device_attribute dev_attr_guid;
++extern struct device_attribute dev_attr_gsnpsid;
++extern struct device_attribute dev_attr_devspeed;
++extern struct device_attribute dev_attr_enumspeed;
++extern struct device_attribute dev_attr_hptxfsiz;
++extern struct device_attribute dev_attr_hprt0;
++
++void dwc_otg_attr_create(struct device *dev);
++void dwc_otg_attr_remove(struct device *dev);
++
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.c b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
+new file mode 100644
+index 0000000..86153ba
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
+@@ -0,0 +1,2887 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/*
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * The CIL manages the memory map for the core so that the HCD and PCD
++ * don't have to do this separately. It also handles basic tasks like
++ * reading/writing the registers and data FIFOs in the controller.
++ * Some of the data access functions provide encapsulation of several
++ * operations required to perform a task, such as writing multiple
++ * registers to start a transfer. Finally, the CIL performs basic
++ * services that are not specific to either the host or device modes
++ * of operation. These services include management of the OTG Host
++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
++ * Diagnostic API is also provided to allow testing of the controller
++ * hardware.
++ *
++ * The Core Interface Layer has the following requirements:
++ * - Provides basic controller operations.
++ * - Minimal use of OS services.
++ * - The OS services used will be abstracted by using inline functions
++ * or macros.
++ *
++ */
++#include <asm/unaligned.h>
++#ifdef DEBUG
++#include <linux/jiffies.h>
++#endif
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++/**
++ * This function is called to initialize the DWC_otg CSR data
++ * structures. The register addresses in the device and host
++ * structures are initialized from the base address supplied by the
++ * caller. The calling function must make the OS calls to get the
++ * base address of the DWC_otg controller registers. The core_params
++ * argument holds the parameters that specify how the core should be
++ * configured.
++ *
++ * @reg_base_addr: Base address of DWC_otg core registers
++ * @core_params: Pointer to the core configuration parameters
++ *
++ */
++struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
++ struct dwc_otg_core_params *core_params)
++{
++ struct dwc_otg_core_if *core_if = 0;
++ struct dwc_otg_dev_if *dev_if = 0;
++ struct dwc_otg_host_if *host_if = 0;
++ uint8_t *reg_base = (uint8_t *) reg_base_addr;
++ int i = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr,
++ core_params);
++
++ core_if = kmalloc(sizeof(struct dwc_otg_core_if), GFP_KERNEL);
++ if (core_if == 0) {
++ DWC_DEBUGPL(DBG_CIL,
++ "Allocation of struct dwc_otg_core_if failed\n");
++ return 0;
++ }
++ memset(core_if, 0, sizeof(struct dwc_otg_core_if));
++
++ core_if->core_params = core_params;
++ core_if->core_global_regs =
++ (struct dwc_otg_core_global_regs *)reg_base;
++ /*
++ * Allocate the Device Mode structures.
++ */
++ dev_if = kmalloc(sizeof(struct dwc_otg_dev_if), GFP_KERNEL);
++ if (dev_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of struct dwc_otg_dev_if "
++ "failed\n");
++ kfree(core_if);
++ return 0;
++ }
++
++ dev_if->dev_global_regs =
++ (struct dwc_otg_dev_global_regs *) (reg_base +
++ DWC_DEV_GLOBAL_REG_OFFSET);
++
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ dev_if->in_ep_regs[i] = (struct dwc_otg_dev_in_ep_regs *)
++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++
++ dev_if->out_ep_regs[i] = (struct dwc_otg_dev_out_ep_regs *)
++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
++ i, &dev_if->in_ep_regs[i]->diepctl);
++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
++ i, &dev_if->out_ep_regs[i]->doepctl);
++ }
++ dev_if->speed = 0; /* unknown */
++ dev_if->num_eps = MAX_EPS_CHANNELS;
++ dev_if->num_perio_eps = 0;
++
++ core_if->dev_if = dev_if;
++ /*
++ * Allocate the Host Mode structures.
++ */
++ host_if = kmalloc(sizeof(struct dwc_otg_host_if), GFP_KERNEL);
++ if (host_if == 0) {
++ DWC_DEBUGPL(DBG_CIL,
++ "Allocation of struct dwc_otg_host_if failed\n");
++ kfree(dev_if);
++ kfree(core_if);
++ return 0;
++ }
++
++ host_if->host_global_regs = (struct dwc_otg_host_global_regs *)
++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
++ host_if->hprt0 =
++ (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ host_if->hc_regs[i] = (struct dwc_otg_hc_regs *)
++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
++ (i * DWC_OTG_CHAN_REGS_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
++ i, &host_if->hc_regs[i]->hcchar);
++ }
++ host_if->num_host_channels = MAX_EPS_CHANNELS;
++ core_if->host_if = host_if;
++
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ core_if->data_fifo[i] =
++ (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
++ (i * DWC_OTG_DATA_FIFO_SIZE));
++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=%p\n",
++ i, core_if->data_fifo[i]);
++ }
++
++ core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
++
++ /*
++ * Store the contents of the hardware configuration registers here for
++ * easy access later.
++ */
++ core_if->hwcfg1.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
++ core_if->hwcfg2.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
++ core_if->hwcfg3.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
++ core_if->hwcfg4.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
++
++ DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32);
++
++ DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode);
++ DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture);
++ DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep);
++ DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",
++ core_if->hwcfg2.b.num_host_chan);
++ DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.nonperio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.host_perio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.dev_token_q_depth);
++
++ DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n",
++ core_if->hwcfg3.b.dfifo_depth);
++ DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n",
++ core_if->hwcfg3.b.xfer_size_cntr_width);
++
++ /*
++ * Set the SRP sucess bit for FS-I2c
++ */
++ core_if->srp_success = 0;
++ core_if->srp_timer_started = 0;
++
++ return core_if;
++}
++
++/**
++ * This function frees the structures allocated by dwc_otg_cil_init().
++ *
++ * @core_if: The core interface pointer returned from
++ * dwc_otg_cil_init().
++ *
++ */
++void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if)
++{
++ /* Disable all interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
++ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
++
++ kfree(core_if->dev_if);
++ kfree(core_if->host_if);
++
++ kfree(core_if);
++}
++
++/**
++ * This function enables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if)
++{
++ union gahbcfg_data ahbcfg = {.d32 = 0 };
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
++}
++
++/**
++ * This function disables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if)
++{
++ union gahbcfg_data ahbcfg = {.d32 = 0 };
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++}
++
++/**
++ * This function initializes the commmon interrupts, used in both
++ * device and host modes.
++ *
++ * @core_if: Programming view of the DWC_otg controller
++ *
++ */
++static void dwc_otg_enable_common_interrupts(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs =
++ core_if->core_global_regs;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++ /* Clear any pending OTG Interrupts */
++ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
++ /* Clear any pending interrupts */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++ /*
++ * Enable the interrupts in the GINTMSK.
++ */
++ intr_mask.b.modemismatch = 1;
++ intr_mask.b.otgintr = 1;
++ if (!core_if->dma_enable)
++ intr_mask.b.rxstsqlvl = 1;
++
++ intr_mask.b.conidstschng = 1;
++ intr_mask.b.wkupintr = 1;
++ intr_mask.b.disconnect = 1;
++ intr_mask.b.usbsuspend = 1;
++ intr_mask.b.sessreqintr = 1;
++ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
++}
++
++/**
++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
++ * type.
++ */
++static void init_fslspclksel(struct dwc_otg_core_if *core_if)
++{
++ uint32_t val;
++ union hcfg_data hcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = DWC_HCFG_48_MHZ;
++ } else {
++ /* High speed PHY running at full speed or high speed */
++ val = DWC_HCFG_30_60_MHZ;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
++ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
++ hcfg.b.fslspclksel = val;
++ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/**
++ * Initializes the DevSpd field of the DCFG register depending on the PHY type
++ * and the enumeration speed of the device.
++ */
++static void init_devspd(struct dwc_otg_core_if *core_if)
++{
++ uint32_t val;
++ union dcfg_data dcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = 0x3;
++ } else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ /* High speed PHY running at full speed */
++ val = 0x1;
++ } else {
++ /* High speed PHY running at high speed */
++ val = 0x0;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.devspd = val;
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers and
++ * prepares the core for device mode or host mode operation.
++ *
++ * @core_if: Programming view of the DWC_otg controller
++ *
++ */
++void dwc_otg_core_init(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ int i = 0;
++ union gahbcfg_data ahbcfg = {.d32 = 0 };
++ union gusbcfg_data usbcfg = {.d32 = 0 };
++ union gi2cctl_data i2cctl = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
++
++ /* Common Initialization */
++
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++ /* Program the ULPI External VBUS bit if needed */
++ usbcfg.b.ulpi_ext_vbus_drv =
++ (core_if->core_params->phy_ulpi_ext_vbus ==
++ DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
++
++ /* Set external TS Dline pulsing */
++ usbcfg.b.term_sel_dl_pulse =
++ (core_if->core_params->ts_dline == 1) ? 1 : 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset the Controller */
++ dwc_otg_core_reset(core_if);
++
++ /* Initialize parameters from Hardware configuration registers. */
++ dev_if->num_eps = core_if->hwcfg2.b.num_dev_ep;
++ dev_if->num_perio_eps = core_if->hwcfg4.b.num_dev_perio_in_ep;
++
++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
++ core_if->hwcfg4.b.num_dev_perio_in_ep);
++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ dev_if->perio_tx_fifo_size[i] =
++ dwc_read_reg32(&global_regs->dptxfsiz[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
++ i, dev_if->perio_tx_fifo_size[i]);
++ }
++
++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
++ core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
++ core_if->nperio_tx_fifo_size =
++ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",
++ core_if->nperio_tx_fifo_size);
++
++ /* This programming sequence needs to happen in FS mode before any other
++ * programming occurs */
++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* If FS mode with FS PHY */
++
++ /* core_init() is now called on every switch so only call the
++ * following for the first time through. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.physel = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after a PHY select */
++ dwc_otg_core_reset(core_if);
++ }
++
++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
++ * do this on HNP Dev/Host mode switches (done in dev_init and
++ * host_init). */
++ if (dwc_otg_is_host_mode(core_if))
++ init_fslspclksel(core_if);
++ else
++ init_devspd(core_if);
++
++ if (core_if->core_params->i2c_enable) {
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
++ /* Program GUSBCFG.OtgUtmifsSel to I2C */
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.otgutmifssel = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Program GI2CCTL.I2CEn */
++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
++ i2cctl.b.i2cdevaddr = 1;
++ i2cctl.b.i2cen = 0;
++ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
++ i2cctl.b.i2cen = 1;
++ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
++ }
++
++ }
++ /* endif speed == DWC_SPEED_PARAM_FULL */
++ else {
++ /* High speed PHY. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ /* HS PHY parameters. These parameters are preserved
++ * during soft reset so only program the first time. Do
++ * a soft reset immediately after setting phyif. */
++ usbcfg.b.ulpi_utmi_sel =
++ (core_if->core_params->phy_type ==
++ DWC_PHY_TYPE_PARAM_ULPI);
++ if (usbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ usbcfg.b.phyif = 0;
++ usbcfg.b.ddrsel =
++ core_if->core_params->phy_ulpi_ddr;
++ } else {
++ /* UTMI+ interface */
++ if (core_if->core_params->phy_utmi_width == 16)
++ usbcfg.b.phyif = 1;
++ else
++ usbcfg.b.phyif = 0;
++ }
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after setting the PHY parameters */
++ dwc_otg_core_reset(core_if);
++ }
++ }
++
++ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) {
++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 1;
++ usbcfg.b.ulpi_clk_sus_m = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ } else {
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 0;
++ usbcfg.b.ulpi_clk_sus_m = 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ }
++
++ /* Program the GAHBCFG Register. */
++ switch (core_if->hwcfg2.b.architecture) {
++
++ case DWC_SLAVE_ONLY_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
++ ahbcfg.b.nptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ core_if->dma_enable = 0;
++ break;
++
++ case DWC_EXT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
++ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ break;
++
++ case DWC_INT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ break;
++
++ }
++ ahbcfg.b.dmaenable = core_if->dma_enable;
++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
++
++ /*
++ * Program the GUSBCFG register.
++ */
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++ switch (core_if->hwcfg2.b.op_mode) {
++ case DWC_MODE_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_SRP_ONLY_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++ }
++
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Enable common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Do device or host intialization based on mode during PCD
++ * and HCD initialization */
++ if (dwc_otg_is_host_mode(core_if)) {
++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
++ core_if->op_state = A_HOST;
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
++ core_if->op_state = B_PERIPHERAL;
++#ifdef DWC_DEVICE_ONLY
++ dwc_otg_core_dev_init(core_if);
++#endif
++ }
++}
++
++/**
++ * This function enables the Device mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if)
++{
++ union gintmsk_data intr_mask = {.d32 = 0 };
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Enable interrupts */
++ intr_mask.b.usbreset = 1;
++ intr_mask.b.enumdone = 1;
++ intr_mask.b.epmismatch = 1;
++ intr_mask.b.inepintr = 1;
++ intr_mask.b.outepintr = 1;
++ intr_mask.b.erlysuspend = 1;
++
++#ifdef USE_PERIODIC_EP
++ /** @todo NGS: Should this be a module parameter? */
++ intr_mask.b.isooutdrop = 1;
++ intr_mask.b.eopframe = 1;
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++#endif
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
++ dwc_read_reg32(&global_regs->gintmsk));
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * device mode.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ struct dwc_otg_core_params *params = core_if->core_params;
++ union dcfg_data dcfg = {.d32 = 0 };
++ union grstctl_data resetctl = {.d32 = 0 };
++ int i;
++ uint32_t rx_fifo_size;
++ union fifosize_data nptxfifosize;
++#ifdef USE_PERIODIC_EP
++ union fifosize_data ptxfifosize;
++#endif
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(core_if->pcgcctl, 0);
++
++ /* Device configuration register */
++ init_devspd(core_if);
++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++ core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++ params->dev_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++ params->dev_nperio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++ rx_fifo_size = params->dev_rx_fifo_size;
++ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++
++#ifdef USE_PERIODIC_EP
++ /**@todo NGS: Fix Periodic FIFO Sizing! */
++ /*
++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_perio_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz array run from 0 to 14.
++ */
++ /** @todo Finish debug of this */
++ ptxfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ for (i = 0; i < dev_if->num_perio_eps; i++) {
++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz[%d]=%08x\n", i,
++ dwc_read_reg32(&global_regs->dptxfsiz[i]));
++ dwc_write_reg32(&global_regs->dptxfsiz[i],
++ ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz[%d]=%08x\n", i,
++ dwc_read_reg32(&global_regs->dptxfsiz[i]));
++ ptxfifosize.b.startaddr += ptxfifosize.b.depth;
++ }
++#endif
++ }
++ /* Flush the FIFOs */
++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Flush the Learning Queue. */
++ resetctl.b.intknqflsh = 1;
++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++ /* Clear all pending Device Interrupts */
++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
++ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
++
++ for (i = 0; i < dev_if->num_eps; i++) {
++ union depctl_data depctl;
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ } else {
++ depctl.d32 = 0;
++ }
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++
++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ } else {
++ depctl.d32 = 0;
++ }
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
++ }
++
++ dwc_otg_enable_device_interrupts(core_if);
++}
++
++/**
++ * This function enables the Host mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts. */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /*
++ * Enable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++}
++
++/**
++ * This function disables the Host Mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
++
++ /*
++ * Disable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++ intr_mask.b.ptxfempty = 1;
++ intr_mask.b.nptxfempty = 1;
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++}
++
++/**
++ * The FIFOs are established based on a default percentage of the
++ * total FIFO depth. This function converts the percentage into the
++ * proper setting.
++ *
++ */
++static inline uint32_t fifo_percentage(uint16_t total_fifo_size,
++ int32_t percentage)
++{
++ /* 16-byte aligned */
++ return ((total_fifo_size * percentage) / 100) & (-1 << 3);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * host mode.
++ *
++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
++ * request queues. Host channels are reset to ensure that they are ready for
++ * performing transfers.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ struct dwc_otg_host_if *host_if = core_if->host_if;
++ struct dwc_otg_core_params *params = core_if->core_params;
++ union hprt0_data hprt0 = {.d32 = 0 };
++ union fifosize_data nptxfifosize;
++ union fifosize_data ptxfifosize;
++ int i;
++ union hcchar_data hcchar;
++ union hcfg_data hcfg;
++ struct dwc_otg_hc_regs *hc_regs;
++ int num_channels;
++ union gotgctl_data gotgctl = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if);
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(core_if->pcgcctl, 0);
++
++ /* Initialize Host Configuration Register */
++ init_fslspclksel(core_if);
++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++ hcfg.b.fslssupp = 1;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
++ }
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++ core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++ params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++ params->host_nperio_tx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n",
++ params->host_perio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++ dwc_write_reg32(&global_regs->grxfsiz,
++ fifo_percentage(core_if->total_fifo_size,
++ dwc_param_host_rx_fifo_size_percentage));
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth =
++ fifo_percentage(core_if->total_fifo_size,
++ dwc_param_host_nperio_tx_fifo_size_percentage);
++ nptxfifosize.b.startaddr =
++ dwc_read_reg32(&global_regs->grxfsiz);
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++
++ /* Periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->hptxfsiz));
++ ptxfifosize.b.depth =
++ core_if->total_fifo_size -
++ dwc_read_reg32(&global_regs->grxfsiz) -
++ nptxfifosize.b.depth;
++ ptxfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->hptxfsiz));
++ }
++
++ /* Clear Host Set HNP Enable in the OTG Control Register */
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++
++ /* Make sure the FIFOs are flushed. */
++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Flush out any leftover queued requests. */
++ num_channels = core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ /* Halt all channels to put them into a known state. */
++ for (i = 0; i < num_channels; i++) {
++ int count = 0;
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
++ do {
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (++count > 1000) {
++ DWC_ERROR
++ ("%s: Unable to clear halt on channel %d\n",
++ __func__, i);
++ break;
++ }
++ } while (hcchar.b.chen);
++ }
++
++ /* Turn on the vbus power. */
++ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
++ if (core_if->op_state == A_HOST) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
++ if (hprt0.b.prtpwr == 0) {
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(host_if->hprt0, hprt0.d32);
++ }
++ }
++
++ dwc_otg_enable_host_interrupts(core_if);
++}
++
++/**
++ * Prepares a host channel for transferring packets to/from a specific
++ * endpoint. The HCCHARn register is set up with the characteristics specified
++ * in hc. Host channel interrupts that may need to be serviced while this
++ * transfer is in progress are enabled.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ * @hc: Information needed to initialize the host channel
++ */
++void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++ uint32_t intr_enable;
++ union hcintmsk_data hc_intr_mask;
++ union gintmsk_data gintmsk = {.d32 = 0 };
++ union hcchar_data hcchar;
++ union hcsplt_data hcsplt;
++
++ uint8_t hc_num = hc->hc_num;
++ struct dwc_otg_host_if *host_if = core_if->host_if;
++ struct dwc_otg_hc_regs *hc_regs = host_if->hc_regs[hc_num];
++
++ /* Clear old interrupt conditions for this host channel. */
++ hc_intr_mask.d32 = 0xFFFFFFFF;
++ hc_intr_mask.b.reserved = 0;
++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
++
++ /* Enable channel interrupts required for this transfer. */
++ hc_intr_mask.d32 = 0;
++ hc_intr_mask.b.chhltd = 1;
++ if (core_if->dma_enable) {
++ hc_intr_mask.b.ahberr = 1;
++ if (hc->error_state && !hc->do_split &&
++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ hc_intr_mask.b.ack = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR)
++ hc_intr_mask.b.nak = 1;
++ }
++ }
++ } else {
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ } else {
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.nyet = 1;
++ if (hc->do_ping)
++ hc_intr_mask.b.ack = 1;
++ }
++
++ if (hc->do_split) {
++ hc_intr_mask.b.nak = 1;
++ if (hc->complete_split)
++ hc_intr_mask.b.nyet = 1;
++ else
++ hc_intr_mask.b.ack = 1;
++ }
++
++ if (hc->error_state)
++ hc_intr_mask.b.ack = 1;
++ break;
++ case DWC_OTG_EP_TYPE_INTR:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ hc_intr_mask.b.frmovrun = 1;
++
++ if (hc->ep_is_in)
++ hc_intr_mask.b.bblerr = 1;
++ if (hc->error_state)
++ hc_intr_mask.b.ack = 1;
++ if (hc->do_split) {
++ if (hc->complete_split)
++ hc_intr_mask.b.nyet = 1;
++ else
++ hc_intr_mask.b.ack = 1;
++ }
++ break;
++ case DWC_OTG_EP_TYPE_ISOC:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.frmovrun = 1;
++ hc_intr_mask.b.ack = 1;
++
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.bblerr = 1;
++ }
++ break;
++ }
++ }
++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
++
++ /* Enable the top level host channel interrupt. */
++ intr_enable = (1 << hc_num);
++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
++
++ /* Make sure host channel interrupts are enabled. */
++ gintmsk.b.hcintr = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
++
++ /*
++ * Program the HCCHARn register with the endpoint characteristics for
++ * the current transfer.
++ */
++ hcchar.d32 = 0;
++ hcchar.b.devaddr = hc->dev_addr;
++ hcchar.b.epnum = hc->ep_num;
++ hcchar.b.epdir = hc->ep_is_in;
++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
++ hcchar.b.eptype = hc->ep_type;
++ hcchar.b.mps = hc->max_packet;
++
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
++
++ /*
++ * Program the HCSPLIT register for SPLITs
++ */
++ hcsplt.d32 = 0;
++ if (hc->do_split) {
++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n",
++ hc->hc_num,
++ hc->complete_split ? "CSPLIT" : "SSPLIT");
++ hcsplt.b.compsplt = hc->complete_split;
++ hcsplt.b.xactpos = hc->xact_pos;
++ hcsplt.b.hubaddr = hc->hub_addr;
++ hcsplt.b.prtaddr = hc->port_addr;
++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n",
++ hc->complete_split);
++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
++ }
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
++
++}
++
++/**
++ * Attempts to halt a host channel. This function should only be called in
++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
++ * normal circumstances in DMA mode, the controller halts the channel when the
++ * transfer is complete or a condition occurs that requires application
++ * intervention.
++ *
++ * In slave mode, checks for a free request queue entry, then sets the Channel
++ * Enable and Channel Disable bits of the Host Channel Characteristics
++ * register of the specified channel to intiate the halt. If there is no free
++ * request queue entry, sets only the Channel Disable bit of the HCCHARn
++ * register to flush requests for this channel. In the latter case, sets a
++ * flag to indicate that the host channel needs to be halted when a request
++ * queue slot is open.
++ *
++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
++ * HCCHARn register. The controller ensures there is space in the request
++ * queue before submitting the halt request.
++ *
++ * Some time may elapse before the core flushes any posted requests for this
++ * host channel and halts. The Channel Halted interrupt handler completes the
++ * deactivation of the host channel.
++ *
++ * @core_if: Controller register interface.
++ * @hc: Host channel to halt.
++ * @halt_status: Reason for halting the channel.
++ */
++void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc, enum dwc_otg_halt_status halt_status)
++{
++ union gnptxsts_data nptxsts;
++ union hptxsts_data hptxsts;
++ union hcchar_data hcchar;
++ struct dwc_otg_hc_regs *hc_regs;
++ struct dwc_otg_core_global_regs *global_regs;
++ struct dwc_otg_host_global_regs *host_global_regs;
++
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ global_regs = core_if->core_global_regs;
++ host_global_regs = core_if->host_if->host_global_regs;
++
++ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
++
++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Disable all channel interrupts except Ch Halted. The QTD
++ * and QH state associated with this transfer has been cleared
++ * (in the case of URB_DEQUEUE), so the channel needs to be
++ * shut down carefully to prevent crashes.
++ */
++ union hcintmsk_data hcintmsk;
++ hcintmsk.d32 = 0;
++ hcintmsk.b.chhltd = 1;
++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
++
++ /*
++ * Make sure no other interrupts besides halt are currently
++ * pending. Handling another interrupt could cause a crash due
++ * to the QTD and QH state.
++ */
++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
++
++ /*
++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
++ * even if the channel was already halted for some other
++ * reason.
++ */
++ hc->halt_status = halt_status;
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen == 0) {
++ /*
++ * The channel is either already halted or it hasn't
++ * started yet. In DMA mode, the transfer may halt if
++ * it finishes normally or a condition occurs that
++ * requires driver intervention. Don't want to halt
++ * the channel again. In either Slave or DMA mode,
++ * it's possible that the transfer has been assigned
++ * to a channel, but not started yet when an URB is
++ * dequeued. Don't want to halt a channel that hasn't
++ * started yet.
++ */
++ return;
++ }
++ }
++
++ if (hc->halt_pending) {
++ /*
++ * A halt has already been issued for this channel. This might
++ * happen when a transfer is aborted by a higher level in
++ * the stack.
++ */
++#ifdef DEBUG
++ DWC_PRINT
++ ("*** %s: Channel %d, hc->halt_pending already set ***\n",
++ __func__, hc->hc_num);
++
++/* dwc_otg_dump_global_registers(core_if); */
++/* dwc_otg_dump_host_registers(core_if); */
++#endif
++ return;
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++
++ if (!core_if->dma_enable) {
++ /* Check for space in the request queue to issue the halt. */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (nptxsts.b.nptxqspcavail == 0)
++ hcchar.b.chen = 0;
++ } else {
++ hptxsts.d32 =
++ dwc_read_reg32(&host_global_regs->hptxsts);
++ if ((hptxsts.b.ptxqspcavail == 0)
++ || (core_if->queuing_high_bandwidth)) {
++ hcchar.b.chen = 0;
++ }
++ }
++ }
++
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->halt_status = halt_status;
++
++ if (hcchar.b.chen) {
++ hc->halt_pending = 1;
++ hc->halt_on_queue = 0;
++ } else {
++ hc->halt_on_queue = 1;
++ }
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
++
++ return;
++}
++
++/**
++ * Clears the transfer state for a host channel. This function is normally
++ * called after a transfer is done and the host channel is being released.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Identifies the host channel to clean up.
++ */
++void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++ struct dwc_otg_hc_regs *hc_regs;
++
++ hc->xfer_started = 0;
++
++ /*
++ * Clear channel interrupt enables and any unhandled channel interrupt
++ * conditions.
++ */
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ dwc_write_reg32(&hc_regs->hcintmsk, 0);
++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
++
++#ifdef DEBUG
++ del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++ {
++ union hcchar_data hcchar;
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++ }
++#endif
++}
++
++/**
++ * Sets the channel property that indicates in which frame a periodic transfer
++ * should occur. This is always set to the _next_ frame. This function has no
++ * effect on non-periodic transfers.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Identifies the host channel to set up and its properties.
++ * @hcchar: Current value of the HCCHAR register for the specified host
++ * channel.
++ */
++static inline void hc_set_even_odd_frame(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc,
++ union hcchar_data *hcchar)
++{
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ union hfnum_data hfnum;
++ hfnum.d32 =
++ dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
++ /* 1 if _next_ frame is odd, 0 if it's even */
++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
++#ifdef DEBUG
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split
++ && !hc->complete_split) {
++ switch (hfnum.b.frnum & 0x7) {
++ case 7:
++ core_if->hfnum_7_samples++;
++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
++ break;
++ case 0:
++ core_if->hfnum_0_samples++;
++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
++ break;
++ default:
++ core_if->hfnum_other_samples++;
++ core_if->hfnum_other_frrem_accum +=
++ hfnum.b.frrem;
++ break;
++ }
++ }
++#endif
++ }
++}
++
++#ifdef DEBUG
++static void hc_xfer_timeout(unsigned long _ptr)
++{
++ struct hc_xfer_info *xfer_info = (struct hc_xfer_info *) _ptr;
++ int hc_num = xfer_info->hc->hc_num;
++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
++ DWC_WARN(" start_hcchar_val 0x%08x\n",
++ xfer_info->core_if->start_hcchar_val[hc_num]);
++}
++#endif
++
++/**
++ * This function does the setup for a data transfer for a host channel and
++ * starts the transfer. May be called in either Slave mode or DMA mode. In
++ * Slave mode, the caller must ensure that there is sufficient space in the
++ * request queue and Tx Data FIFO.
++ *
++ * For an OUT transfer in Slave mode, it loads a data packet into the
++ * appropriate FIFO. If necessary, additional data packets will be loaded in
++ * the Host ISR.
++ *
++ * For an IN transfer in Slave mode, a data packet is requested. The data
++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
++ * additional data packets are requested in the Host ISR.
++ *
++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
++ * register along with a packet count of 1 and the channel is enabled. This
++ * causes a single PING transaction to occur. Other fields in HCTSIZ are
++ * simply set to 0 since no data transfer occurs in this case.
++ *
++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
++ * all the information required to perform the subsequent data transfer. In
++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
++ * controller performs the entire PING protocol, then starts the data
++ * transfer.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Information needed to initialize the host channel. The xfer_len
++ * value may be reduced to accommodate the max widths of the XferSize and
++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
++ * to reflect the final xfer_len value.
++ */
++void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc)
++{
++ union hcchar_data hcchar;
++ union hctsiz_data hctsiz;
++ uint16_t num_packets;
++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
++ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ hctsiz.d32 = 0;
++
++ if (hc->do_ping) {
++ if (!core_if->dma_enable) {
++ dwc_otg_hc_do_ping(core_if, hc);
++ hc->xfer_started = 1;
++ return;
++ } else {
++ hctsiz.b.dopng = 1;
++ }
++ }
++
++ if (hc->do_split) {
++ num_packets = 1;
++
++ if (hc->complete_split && !hc->ep_is_in) {
++ /* For CSPLIT OUT Transfer, set the size to 0 so the
++ * core doesn't expect any data written to the FIFO */
++ hc->xfer_len = 0;
++ } else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
++ hc->xfer_len = hc->max_packet;
++ } else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
++ hc->xfer_len = 188;
++ }
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ } else {
++ /*
++ * Ensure that the transfer length and packet count will fit
++ * in the widths allocated for them in the HCTSIZn register.
++ */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure the transfer size is no larger than one
++ * (micro)frame's worth of data. (A check was done
++ * when the periodic transfer was accepted to ensure
++ * that a (micro)frame's worth of data can be
++ * programmed into a channel.)
++ */
++ uint32_t max_periodic_len =
++ hc->multi_count * hc->max_packet;
++ if (hc->xfer_len > max_periodic_len)
++ hc->xfer_len = max_periodic_len;
++ } else if (hc->xfer_len > max_hc_xfer_size) {
++ /*
++ * Make sure that xfer_len is a multiple of
++ * max packet size.
++ */
++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
++ }
++
++ if (hc->xfer_len > 0) {
++ num_packets =
++ (hc->xfer_len + hc->max_packet -
++ 1) / hc->max_packet;
++ if (num_packets > max_hc_pkt_count) {
++ num_packets = max_hc_pkt_count;
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++ } else {
++ /* Need 1 packet for transfer length of 0. */
++ num_packets = 1;
++ }
++
++ if (hc->ep_is_in) {
++ /*
++ * Always program an integral # of max packets
++ * for IN transfers.
++ */
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure that the multi_count field matches the
++ * actual transfer length.
++ */
++ hc->multi_count = num_packets;
++
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /* Set up the initial PID for the transfer. */
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++ if (hc->ep_is_in) {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start =
++ DWC_OTG_HC_PID_DATA0;
++ } else if (hc->multi_count == 2) {
++ hc->data_pid_start =
++ DWC_OTG_HC_PID_DATA1;
++ } else {
++ hc->data_pid_start =
++ DWC_OTG_HC_PID_DATA2;
++ }
++ } else {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start =
++ DWC_OTG_HC_PID_DATA0;
++ } else {
++ hc->data_pid_start =
++ DWC_OTG_HC_PID_MDATA;
++ }
++ }
++ } else {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++ }
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ }
++
++ hc->start_pkt_count = num_packets;
++ hctsiz.b.pktcnt = num_packets;
++ hctsiz.b.pid = hc->data_pid_start;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
++
++ if (core_if->dma_enable) {
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++ /* Octeon uses external DMA */
++ const uint64_t USBN_DMA0_OUTB_CHN0 =
++ CVMX_USBNX_DMA0_OUTB_CHN0(core_if->usb_num);
++ wmb();
++ cvmx_write_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8,
++ (unsigned long)hc->xfer_buff);
++ cvmx_read_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8);
++ DWC_DEBUGPL(DBG_HCDV,
++ "OUT: hc->hc_num = %d, hc->xfer_buff = %p\n",
++ hc->hc_num, hc->xfer_buff);
++#else
++ dwc_write_reg32(&hc_regs->hcdma,
++ (uint32_t) (long)hc->xfer_buff);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++ }
++
++ /* Start the split */
++ if (hc->do_split) {
++ union hcsplt_data hcsplt;
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hcsplt.b.spltena = 1;
++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.multicnt = hc->multi_count;
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++#ifdef DEBUG
++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++#endif
++
++ /* Set host channel enable after all other setup is complete. */
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->xfer_started = 1;
++ hc->requests++;
++
++ if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) {
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ }
++#ifdef DEBUG
++ /* Start a timer for this transfer. */
++ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
++ core_if->hc_xfer_info[hc->hc_num].hc = hc;
++ core_if->hc_xfer_timer[hc->hc_num].data =
++ (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
++ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ * 10);
++ add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++#endif
++}
++
++/**
++ * This function continues a data transfer that was started by previous call
++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
++ * sufficient space in the request queue and Tx Data FIFO. This function
++ * should only be called in Slave mode. In DMA mode, the controller acts
++ * autonomously to complete transfers programmed to a host channel.
++ *
++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
++ * if there is any data remaining to be queued. For an IN transfer, another
++ * data packet is always requested. For the SETUP phase of a control transfer,
++ * this function does nothing.
++ *
++ * Returns 1 if a new request is queued, 0 if no more requests are required
++ * for this transfer.
++ */
++int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ if (hc->do_split) {
++ /* SPLITs always queue just once per channel */
++ return 0;
++ } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ /* SETUPs are queued only once since they can't be NAKed. */
++ return 0;
++ } else if (hc->ep_is_in) {
++ /*
++ * Always queue another request for other IN transfers. If
++ * back-to-back INs are issued and NAKs are received for both,
++ * the driver may still be processing the first NAK when the
++ * second NAK is received. When the interrupt handler clears
++ * the NAK interrupt for the first NAK, the second NAK will
++ * not be seen. So we can't depend on the NAK interrupt
++ * handler to requeue a NAKed request. Instead, IN requests
++ * are issued each time this function is called. When the
++ * transfer completes, the extra requests for the channel will
++ * be flushed.
++ */
++ union hcchar_data hcchar;
++ struct dwc_otg_hc_regs *hc_regs =
++ core_if->host_if->hc_regs[hc->hc_num];
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n",
++ hcchar.d32);
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ hc->requests++;
++ return 1;
++ } else {
++ /* OUT transfers. */
++ if (hc->xfer_count < hc->xfer_len) {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ union hcchar_data hcchar;
++ struct dwc_otg_hc_regs *hc_regs;
++ hc_regs =
++ core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ }
++
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ hc->requests++;
++ return 1;
++ } else {
++ return 0;
++ }
++ }
++}
++
++/**
++ * Starts a PING transfer. This function should only be called in Slave mode.
++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
++ */
++void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++ union hcchar_data hcchar;
++ union hctsiz_data hctsiz;
++ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ hctsiz.d32 = 0;
++ hctsiz.b.dopng = 1;
++ hctsiz.b.pktcnt = 1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++}
++
++/*
++ * This function writes a packet into the Tx FIFO associated with the Host
++ * Channel. For a channel associated with a non-periodic EP, the non-periodic
++ * Tx FIFO is written. For a channel associated with a periodic EP, the
++ * periodic Tx FIFO is written. This function should only be called in Slave
++ * mode.
++ *
++ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
++ * then number of bytes written to the Tx FIFO.
++ */
++void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++ uint32_t i;
++ uint32_t remaining_count;
++ uint32_t byte_count;
++ uint32_t dword_count;
++
++ uint32_t *data_buff = (uint32_t *) (hc->xfer_buff);
++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
++
++ remaining_count = hc->xfer_len - hc->xfer_count;
++ if (remaining_count > hc->max_packet)
++ byte_count = hc->max_packet;
++ else
++ byte_count = remaining_count;
++
++ dword_count = (byte_count + 3) / 4;
++
++ if ((((unsigned long)data_buff) & 0x3) == 0) {
++ /* xfer_buff is DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++)
++ dwc_write_reg32(data_fifo, *data_buff);
++ } else {
++ /* xfer_buff is not DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++)
++ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
++ }
++
++ hc->xfer_count += byte_count;
++ hc->xfer_buff += byte_count;
++}
++
++/**
++ * Gets the current USB frame number. This is the frame number from the last
++ * SOF packet.
++ */
++uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if)
++{
++ union dsts_data dsts;
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ /* read current frame/microfreme number from DSTS register */
++ return dsts.b.soffn;
++}
++
++/**
++ * This function reads a setup packet from the Rx FIFO into the destination
++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
++ * Interrupt routine when a SETUP packet has been received in Slave mode.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @dest: Destination buffer for packet data.
++ */
++void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, uint32_t *dest)
++{
++ /* Get the 8 bytes of a setup transaction data */
++
++ /* Pop 2 DWORDS off the receive data FIFO into memory */
++ dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
++ dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
++}
++
++/**
++ * This function enables EP0 OUT to receive SETUP packets and configures EP0
++ * IN for transmitting packets. It is normally called when the
++ * "Enumeration Done" interrupt occurs.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ union dsts_data dsts;
++ union depctl_data diepctl;
++ union depctl_data doepctl;
++ union dctl_data dctl = {.d32 = 0 };
++
++ /* Read the Device Status and Endpoint 0 Control registers */
++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
++
++ /* Set the MPS of the IN EP based on the enumeration speed */
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
++ break;
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
++ break;
++ }
++
++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Enable OUT EP for receive */
++ doepctl.b.epena = 1;
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++ dctl.b.cgnpinnak = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++ DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
++}
++
++/**
++ * This function activates an EP. The Device EP control register for
++ * the EP is configured as defined in the ep structure. Note: This
++ * function is not used for EP0.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to activate.
++ */
++void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ union depctl_data depctl;
++ uint32_t *addr;
++ union daint_data daintmsk = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1 << ep->num;
++ } else {
++ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1 << ep->num;
++ }
++
++ /* If the EP is already active don't change the EP Control
++ * register. */
++ depctl.d32 = dwc_read_reg32(addr);
++ if (!depctl.b.usbactep) {
++ depctl.b.mps = ep->maxpacket;
++ depctl.b.eptype = ep->type;
++ depctl.b.txfnum = ep->tx_fifo_num;
++
++ if (ep->type != DWC_OTG_EP_TYPE_ISOC)
++ depctl.b.setd0pid = 1;
++
++ depctl.b.usbactep = 1;
++
++ dwc_write_reg32(addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr));
++ }
++
++ /* Enable the Interrupt for this EP */
++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, daintmsk.d32);
++ DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
++ return;
++}
++
++/**
++ * This function deactivates an EP. This is done by clearing the USB Active
++ * EP bit in the Device EP control register. Note: This function is not used
++ * for EP0. EP0 cannot be deactivated.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to deactivate.
++ */
++void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ union depctl_data depctl = {.d32 = 0 };
++ uint32_t *addr;
++ union daint_data daintmsk = {.d32 = 0 };
++
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1 << ep->num;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1 << ep->num;
++ }
++
++ depctl.b.usbactep = 0;
++ dwc_write_reg32(addr, depctl.d32);
++
++ /* Disable the Interrupt for this EP */
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
++ daintmsk.d32, 0);
++
++ return;
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to start the transfer on.
++ */
++void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep)
++{
++ /*
++ * @todo Refactor this funciton to check the transfer size
++ * count value does not execed the number bits in the Transfer
++ * count register.
++ */
++ union depctl_data depctl;
++ union deptsiz_data deptsiz;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++#ifdef CHECK_PACKET_COUNTER_WIDTH
++ const uint32_t MAX_XFER_SIZE = core_if->core_params->max_transfer_size;
++ const uint32_t MAX_PKT_COUNT = core_if->core_params->max_packet_count;
++ uint32_t num_packets;
++ uint32_t transfer_len;
++ struct dwc_otg_dev_out_ep_regs *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++ struct dwc_otg_dev_in_ep_regs *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++ union gnptxsts_data txstatus;
++
++ int lvl = SET_DEBUG_LEVEL(DBG_PCD);
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p\n",
++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++ transfer_len = ep->xfer_len - ep->xfer_count;
++ if (transfer_len > MAX_XFER_SIZE)
++ transfer_len = MAX_XFER_SIZE;
++
++ if (transfer_len == 0) {
++ num_packets = 1;
++ /* OUT EP to recieve Zero-length packet set transfer
++ * size to maxpacket size. */
++ if (!ep->is_in)
++ transfer_len = ep->maxpacket;
++ } else {
++ num_packets =
++ (transfer_len + ep->maxpacket - 1) / ep->maxpacket;
++ if (num_packets > MAX_PKT_COUNT)
++ num_packets = MAX_PKT_COUNT;
++ }
++ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
++ num_packets);
++
++ deptsiz.b.xfersize = transfer_len;
++ deptsiz.b.pktcnt = num_packets;
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ } else { /* OUT endpoint */
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ txstatus.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++ if (txstatus.b.nptxqspcavail == 0) {
++ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
++ txstatus.d32);
++ return;
++ }
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++ /*
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&in_regs->diepdma,
++ (uint32_t) ep->xfer_buff);
++ } else {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++ intr_mask.d32, 0);
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++ } else { /* OUT endpoint */
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&out_regs->doepdma,
++ (uint32_t) ep->xfer_buff);
++ }
++ }
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++ dwc_read_reg32(&out_regs->doepctl),
++ dwc_read_reg32(&out_regs->doeptsiz));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++ daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++
++ SET_DEBUG_LEVEL(lvl);
++#endif
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p\n",
++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ struct dwc_otg_dev_in_ep_regs *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++ union gnptxsts_data txstatus;
++
++ txstatus.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++ if (txstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ DWC_PRINT("TX Queue Full (0x%0x)\n", txstatus.d32);
++#endif
++ return;
++ }
++
++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
++
++ /* Zero Length Packet? */
++ if (ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->xfer_len;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - 1 + ep->maxpacket) /
++ ep->maxpacket;
++ }
++
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ } else {
++ /*
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * the data will be written into the fifo by the ISR.
++ */
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++ intr_mask.d32, 0);
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ depctl.d32 =
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
++ depctl.b.nextep = ep->num;
++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl,
++ depctl.d32);
++
++ } else {
++ /* OUT endpoint */
++ struct dwc_otg_dev_out_ep_regs *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
++
++ /* Program the transfer size and packet count as follows:
++ *
++ * pktcnt = N
++ * xfersize = N * maxpacket
++ */
++ if (ep->xfer_len == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++ }
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
++ ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++ }
++
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * @todo NGS: dpid is read-only. Use setd0pid
++ * or setd1pid.
++ */
++ depctl.b.dpid = ep->even_odd_frame;
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++ dwc_read_reg32(&out_regs->doepctl),
++ dwc_read_reg32(&out_regs->doeptsiz));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++ daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->
++ gintmsk));
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for EP0 and starts
++ * the transfer. For an IN transfer, the packets will be loaded into
++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
++ * unloaded from the Rx FIFO in the ISR.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep)
++{
++ union depctl_data depctl;
++ union deptsiz0_data deptsiz;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,
++ ep->total_len);
++ ep->total_len = ep->xfer_len;
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ struct dwc_otg_dev_in_ep_regs *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++ union gnptxsts_data tx_status = {.d32 = 0 };
++
++ tx_status.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++ if (tx_status.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n",
++ dwc_read_reg32(&in_regs->diepctl));
++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
++ deptsiz.d32,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
++ tx_status.d32);
++#endif
++
++ return;
++ }
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /* Zero Length Packet? */
++ if (ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ if (ep->xfer_len > ep->maxpacket) {
++ ep->xfer_len = ep->maxpacket;
++ deptsiz.b.xfersize = ep->maxpacket;
++ } else {
++ deptsiz.b.xfersize = ep->xfer_len;
++ }
++ deptsiz.b.pktcnt = 1;
++
++ }
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /*
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ /* First clear it from GINTSTS */
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++ intr_mask.d32, 0);
++
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++
++ } else { /* OUT endpoint */
++ struct dwc_otg_dev_out_ep_regs *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count as follows:
++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
++ * pktcnt = N */
++ if (ep->xfer_len == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++ }
++
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
++ ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&(out_regs->doepctl), depctl.d32);
++ }
++}
++
++/**
++ * This function continues control IN transfers started by
++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
++ * bit for the packet count.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep)
++{
++ union depctl_data depctl;
++ union deptsiz0_data deptsiz;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++ if (ep->is_in == 1) {
++ struct dwc_otg_dev_in_ep_regs *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++ union gnptxsts_data tx_status = {.d32 = 0 };
++
++ tx_status.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++ /*
++ * @todo Should there be check for room in the Tx
++ * Status Queue. If not remove the code above this comment.
++ */
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /*
++ * Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize =
++ (ep->total_len - ep->xfer_count) >
++ ep->maxpacket ? ep->maxpacket : (ep->total_len -
++ ep->xfer_count);
++ deptsiz.b.pktcnt = 1;
++ ep->xfer_len += deptsiz.b.xfersize;
++
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ dwc_write_reg32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /*
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ /* First clear it from GINTSTS */
++ intr_mask.b.nptxfempty = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts,
++ intr_mask.d32);
++
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++
++ }
++
++}
++
++#ifdef DEBUG
++void dump_msg(const u8 *buf, unsigned int length)
++{
++ unsigned int start, num, i;
++ char line[52], *p;
++
++ if (length >= 512)
++ return;
++ start = 0;
++ while (length > 0) {
++ num = min(length, 16u);
++ p = line;
++ for (i = 0; i < num; ++i) {
++ if (i == 8)
++ *p++ = ' ';
++ sprintf(p, " %02x", buf[i]);
++ p += 3;
++ }
++ *p = 0;
++ DWC_PRINT("%6x: %s\n", start, line);
++ buf += num;
++ start += num;
++ length -= num;
++ }
++}
++#else
++static inline void dump_msg(const u8 *buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function writes a packet into the Tx FIFO associated with the
++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
++ * periodic EPs the periodic Tx FIFO associated with the EP is written
++ * with all packets for the next micro-frame.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to write packet for.
++ * @_dma: Indicates if DMA is being used.
++ */
++void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep,
++ int _dma)
++{
++ /**
++ * The buffer is padded to DWORD on a per packet basis in
++ * slave/dma mode if the MPS is not DWORD aligned. The last
++ * packet, if short, is also padded to a multiple of DWORD.
++ *
++ * ep->xfer_buff always starts DWORD aligned in memory and is a
++ * multiple of DWORD in length
++ *
++ * ep->xfer_len can be any number of bytes
++ *
++ * ep->xfer_count is a multiple of ep->maxpacket until the last
++ * packet
++ *
++ * FIFO access is DWORD */
++
++ uint32_t i;
++ uint32_t byte_count;
++ uint32_t dword_count;
++ uint32_t *fifo;
++ uint32_t *data_buff = (uint32_t *) ep->xfer_buff;
++
++ if (ep->xfer_count >= ep->xfer_len) {
++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
++ return;
++ }
++
++ /* Find the byte length of the packet either short packet or MPS */
++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket)
++ byte_count = ep->xfer_len - ep->xfer_count;
++ else
++ byte_count = ep->maxpacket;
++
++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
++ * is not a multiple of DWORD */
++ dword_count = (byte_count + 3) / 4;
++
++#ifdef VERBOSE
++ dump_msg(ep->xfer_buff, byte_count);
++#endif
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC)
++ /*
++ *@todo NGS Where are the Periodic Tx FIFO addresses
++ * intialized? What should this be?
++ */
++ fifo = core_if->data_fifo[ep->tx_fifo_num];
++ else
++ fifo = core_if->data_fifo[ep->num];
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
++ fifo, data_buff, *data_buff, byte_count);
++
++ if (!_dma) {
++ for (i = 0; i < dword_count; i++, data_buff++)
++ dwc_write_reg32(fifo, *data_buff);
++ }
++
++ ep->xfer_count += byte_count;
++ ep->xfer_buff += byte_count;
++}
++
++/**
++ * Set the EP STALL.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to set the stall on.
++ */
++void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ union depctl_data depctl;
++ uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++ if (ep->is_in == 1) {
++ depctl_addr =
++ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the disable and stall bits */
++ if (depctl.b.epena)
++ depctl.b.epdis = 1;
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++
++ } else {
++ depctl_addr =
++ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the stall bit */
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ }
++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
++ return;
++}
++
++/**
++ * Clear the EP STALL.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to clear stall from.
++ */
++void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ union depctl_data depctl;
++ uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++ if (ep->is_in == 1) {
++ depctl_addr =
++ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ } else {
++ depctl_addr =
++ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ }
++
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* clear the stall bits */
++ depctl.b.stall = 0;
++
++ /*
++ * USB Spec 9.4.5: For endpoints using data toggle, regardless
++ * of whether an endpoint has the Halt feature set, a
++ * ClearFeature(ENDPOINT_HALT) request always results in the
++ * data toggle being reinitialized to DATA0.
++ */
++ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
++ ep->type == DWC_OTG_EP_TYPE_BULK) {
++ depctl.b.setd0pid = 1; /* DATA0 */
++ }
++
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
++ return;
++}
++
++/**
++ * This function reads a packet from the Rx FIFO into the destination
++ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @dest: Destination buffer for the packet.
++ * @bytes: Number of bytes to copy to the destination.
++ */
++void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
++ uint8_t *dest, uint16_t bytes)
++{
++ int i;
++ int word_count = (bytes + 3) / 4;
++
++ uint32_t *fifo = core_if->data_fifo[0];
++ uint32_t *data_buff = (uint32_t *) dest;
++
++ /**
++ * @todo Account for the case where dest is not dword aligned. This
++ * requires reading data from the FIFO into a uint32_t temp buffer,
++ * then moving it into the data buffer.
++ */
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
++ core_if, dest, bytes);
++
++ for (i = 0; i < word_count; i++, data_buff++)
++ *data_buff = dwc_read_reg32(fifo);
++ return;
++}
++
++/**
++ * This functions reads the device registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if)
++{
++ int i;
++ uint32_t *addr;
++
++ DWC_PRINT("Device Global Registers\n");
++ addr = &core_if->dev_if->dev_global_regs->dcfg;
++ DWC_PRINT("DCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dctl;
++ DWC_PRINT("DCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dsts;
++ DWC_PRINT("DSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->diepmsk;
++ DWC_PRINT("DIEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->doepmsk;
++ DWC_PRINT("DOEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->daint;
++ DWC_PRINT("DAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dtknqr1;
++ DWC_PRINT("DTKNQR1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
++ addr = &core_if->dev_if->dev_global_regs->dtknqr2;
++ DWC_PRINT("DTKNQR2 @%p : 0x%08X\n",
++ addr, dwc_read_reg32(addr));
++ }
++
++ addr = &core_if->dev_if->dev_global_regs->dvbusdis;
++ DWC_PRINT("DVBUSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++ addr = &core_if->dev_if->dev_global_regs->dvbuspulse;
++ DWC_PRINT("DVBUSPULSE @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++ if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
++ addr = &core_if->dev_if->dev_global_regs->dtknqr3;
++ DWC_PRINT("DTKNQR3 @%p : 0x%08X\n",
++ addr, dwc_read_reg32(addr));
++ }
++
++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
++ addr = &core_if->dev_if->dev_global_regs->dtknqr4;
++ DWC_PRINT("DTKNQR4 @%p : 0x%08X\n",
++ addr, dwc_read_reg32(addr));
++ }
++
++ for (i = 0; i < core_if->dev_if->num_eps; i++) {
++ DWC_PRINT("Device IN EP %d Registers\n", i);
++ addr = &core_if->dev_if->in_ep_regs[i]->diepctl;
++ DWC_PRINT("DIEPCTL @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->diepint;
++ DWC_PRINT("DIEPINT @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz;
++ DWC_PRINT("DIETSIZ @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->diepdma;
++ DWC_PRINT("DIEPDMA @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++
++ DWC_PRINT("Device OUT EP %d Registers\n", i);
++ addr = &core_if->dev_if->out_ep_regs[i]->doepctl;
++ DWC_PRINT("DOEPCTL @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doepfn;
++ DWC_PRINT("DOEPFN @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doepint;
++ DWC_PRINT("DOEPINT @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz;
++ DWC_PRINT("DOETSIZ @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doepdma;
++ DWC_PRINT("DOEPDMA @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ }
++ return;
++}
++
++/**
++ * This function reads the host registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if)
++{
++ int i;
++ uint32_t *addr;
++
++ DWC_PRINT("Host Global Registers\n");
++ addr = &core_if->host_if->host_global_regs->hcfg;
++ DWC_PRINT("HCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->host_if->host_global_regs->hfir;
++ DWC_PRINT("HFIR @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->host_if->host_global_regs->hfnum;
++ DWC_PRINT("HFNUM @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->host_if->host_global_regs->hptxsts;
++ DWC_PRINT("HPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->host_if->host_global_regs->haint;
++ DWC_PRINT("HAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->host_if->host_global_regs->haintmsk;
++ DWC_PRINT("HAINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = core_if->host_if->hprt0;
++ DWC_PRINT("HPRT0 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++ for (i = 0; i < core_if->core_params->host_channels; i++) {
++ DWC_PRINT("Host Channel %d Specific Registers\n", i);
++ addr = &core_if->host_if->hc_regs[i]->hcchar;
++ DWC_PRINT("HCCHAR @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcsplt;
++ DWC_PRINT("HCSPLT @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcint;
++ DWC_PRINT("HCINT @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcintmsk;
++ DWC_PRINT("HCINTMSK @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hctsiz;
++ DWC_PRINT("HCTSIZ @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcdma;
++ DWC_PRINT("HCDMA @%p : 0x%08X\n", addr,
++ dwc_read_reg32(addr));
++
++ }
++ return;
++}
++
++/**
++ * This function reads the core global registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if)
++{
++ int i;
++ uint32_t *addr;
++
++ DWC_PRINT("Core Global Registers\n");
++ addr = &core_if->core_global_regs->gotgctl;
++ DWC_PRINT("GOTGCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gotgint;
++ DWC_PRINT("GOTGINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gahbcfg;
++ DWC_PRINT("GAHBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gusbcfg;
++ DWC_PRINT("GUSBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->grstctl;
++ DWC_PRINT("GRSTCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gintsts;
++ DWC_PRINT("GINTSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gintmsk;
++ DWC_PRINT("GINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->grxstsr;
++ DWC_PRINT("GRXSTSR @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->grxfsiz;
++ DWC_PRINT("GRXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gnptxfsiz;
++ DWC_PRINT("GNPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gnptxsts;
++ DWC_PRINT("GNPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gi2cctl;
++ DWC_PRINT("GI2CCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gpvndctl;
++ DWC_PRINT("GPVNDCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->ggpio;
++ DWC_PRINT("GGPIO @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->guid;
++ DWC_PRINT("GUID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->gsnpsid;
++ DWC_PRINT("GSNPSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->ghwcfg1;
++ DWC_PRINT("GHWCFG1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->ghwcfg2;
++ DWC_PRINT("GHWCFG2 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->ghwcfg3;
++ DWC_PRINT("GHWCFG3 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->ghwcfg4;
++ DWC_PRINT("GHWCFG4 @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++ addr = &core_if->core_global_regs->hptxfsiz;
++ DWC_PRINT("HPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ addr = &core_if->core_global_regs->dptxfsiz[i];
++ DWC_PRINT("DPTXFSIZ[%d] @%p : 0x%08X\n", i, addr,
++ dwc_read_reg32(addr));
++ }
++
++}
++
++/**
++ * Flush a Tx FIFO.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_num: Tx FIFO to flush.
++ */
++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, const int _num)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union grstctl_data greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num);
++
++ greset.b.txfflsh = 1;
++ greset.b.txfnum = _num;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
++ __func__, greset.d32,
++ dwc_read_reg32(&global_regs->gnptxsts));
++ break;
++ }
++
++ } while (greset.b.txfflsh == 1);
++ /* Wait for 3 PHY Clocks */
++ udelay(1);
++}
++
++/**
++ * Flush Rx FIFO.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union grstctl_data greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__);
++ /*
++ *
++ */
++ greset.b.rxfflsh = 1;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ } while (greset.b.rxfflsh == 1);
++ /* Wait for 3 PHY Clocks */
++ udelay(1);
++}
++
++/**
++ * Do core a soft reset of the core. Be careful with this because it
++ * resets all the internal state machines of the core.
++ */
++void dwc_otg_core_reset(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union grstctl_data greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
++ /* Wait for AHB master IDLE state. */
++ do {
++ udelay(10);
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 100000) {
++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ return;
++ }
++ } while (greset.b.ahbidle == 0);
++
++ /* Core Soft Reset */
++ count = 0;
++ greset.b.csftrst = 1;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n",
++ __func__, greset.d32);
++ break;
++ }
++ } while (greset.b.csftrst == 1);
++ /* Wait for 3 PHY Clocks */
++ mdelay(100);
++}
++
++/**
++ * Register HCD callbacks. The callbacks are used to start and stop
++ * the HCD for interrupt processing.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_cb: the HCD callback structure.
++ * @_p: pointer to be passed to callback function (usb_hcd*).
++ */
++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
++ struct dwc_otg_cil_callbacks *_cb,
++ void *_p)
++{
++ core_if->hcd_cb = _cb;
++ _cb->p = _p;
++}
++
++/**
++ * Register PCD callbacks. The callbacks are used to start and stop
++ * the PCD for interrupt processing.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_cb: the PCD callback structure.
++ * @_p: pointer to be passed to callback function (pcd*).
++ */
++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
++ struct dwc_otg_cil_callbacks *_cb,
++ void *_p)
++{
++ core_if->pcd_cb = _cb;
++ _cb->p = _p;
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.h b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
+new file mode 100644
+index 0000000..36ef561
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
+@@ -0,0 +1,866 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CIL_H__)
++#define __DWC_CIL_H__
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#ifdef DEBUG
++#include "linux/timer.h"
++#endif
++
++/*
++ * This file contains the interface to the Core Interface Layer.
++ */
++
++/**
++ * The <code>dwc_ep</code> structure represents the state of a single
++ * endpoint when acting in device mode. It contains the data items
++ * needed for an endpoint to be activated and transfer packets.
++ */
++struct dwc_ep {
++ /** EP number used for register address lookup */
++ uint8_t num;
++ /** EP direction 0 = OUT */
++ unsigned is_in:1;
++ /** EP active. */
++ unsigned active:1;
++
++ /*
++ * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use
++ * non-periodic Tx FIFO
++ */
++ unsigned tx_fifo_num:4;
++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
++ unsigned type:2;
++#define DWC_OTG_EP_TYPE_CONTROL 0
++#define DWC_OTG_EP_TYPE_ISOC 1
++#define DWC_OTG_EP_TYPE_BULK 2
++#define DWC_OTG_EP_TYPE_INTR 3
++
++ /** DATA start PID for INTR and BULK EP */
++ unsigned data_pid_start:1;
++ /** Frame (even/odd) for ISOC EP */
++ unsigned even_odd_frame:1;
++ /** Max Packet bytes */
++ unsigned maxpacket:11;
++
++ /** @name Transfer state */
++ /** @{ */
++
++ /**
++ * Pointer to the beginning of the transfer buffer -- do not modify
++ * during transfer.
++ */
++
++ uint32_t dma_addr;
++
++ uint8_t *start_xfer_buff;
++ /** pointer to the transfer buffer */
++ uint8_t *xfer_buff;
++ /** Number of bytes to transfer */
++ unsigned xfer_len:19;
++ /** Number of bytes transferred. */
++ unsigned xfer_count:19;
++ /** Sent ZLP */
++ unsigned sent_zlp:1;
++ /** Total len for control transfer */
++ unsigned total_len:19;
++
++ /** @} */
++};
++
++/*
++ * Reasons for halting a host channel.
++ */
++enum dwc_otg_halt_status {
++ DWC_OTG_HC_XFER_NO_HALT_STATUS,
++ DWC_OTG_HC_XFER_COMPLETE,
++ DWC_OTG_HC_XFER_URB_COMPLETE,
++ DWC_OTG_HC_XFER_ACK,
++ DWC_OTG_HC_XFER_NAK,
++ DWC_OTG_HC_XFER_NYET,
++ DWC_OTG_HC_XFER_STALL,
++ DWC_OTG_HC_XFER_XACT_ERR,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN,
++ DWC_OTG_HC_XFER_BABBLE_ERR,
++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
++ DWC_OTG_HC_XFER_AHB_ERR,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
++ DWC_OTG_HC_XFER_URB_DEQUEUE
++};
++
++/**
++ * Host channel descriptor. This structure represents the state of a single
++ * host channel when acting in host mode. It contains the data items needed to
++ * transfer packets to an endpoint via a host channel.
++ */
++struct dwc_hc {
++ /** Host channel number used for register address lookup */
++ uint8_t hc_num;
++
++ /** Device to access */
++ unsigned dev_addr:7;
++
++ /** EP to access */
++ unsigned ep_num:4;
++
++ /** EP direction. 0: OUT, 1: IN */
++ unsigned ep_is_in:1;
++
++ /**
++ * EP speed.
++ * One of the following values:
++ * - DWC_OTG_EP_SPEED_LOW
++ * - DWC_OTG_EP_SPEED_FULL
++ * - DWC_OTG_EP_SPEED_HIGH
++ */
++ unsigned speed:2;
++#define DWC_OTG_EP_SPEED_LOW 0
++#define DWC_OTG_EP_SPEED_FULL 1
++#define DWC_OTG_EP_SPEED_HIGH 2
++
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - DWC_OTG_EP_TYPE_CONTROL: 0
++ * - DWC_OTG_EP_TYPE_ISOC: 1
++ * - DWC_OTG_EP_TYPE_BULK: 2
++ * - DWC_OTG_EP_TYPE_INTR: 3
++ */
++ unsigned ep_type:2;
++
++ /** Max packet size in bytes */
++ unsigned max_packet:11;
++
++ /**
++ * PID for initial transaction.
++ * 0: DATA0,<br>
++ * 1: DATA2,<br>
++ * 2: DATA1,<br>
++ * 3: MDATA (non-Control EP),
++ * SETUP (Control EP)
++ */
++ unsigned data_pid_start:2;
++#define DWC_OTG_HC_PID_DATA0 0
++#define DWC_OTG_HC_PID_DATA2 1
++#define DWC_OTG_HC_PID_DATA1 2
++#define DWC_OTG_HC_PID_MDATA 3
++#define DWC_OTG_HC_PID_SETUP 3
++
++ /** Number of periodic transactions per (micro)frame */
++ unsigned multi_count:2;
++
++ /** @name Transfer State */
++ /** @{ */
++
++ /** Pointer to the current transfer buffer position. */
++ uint8_t *xfer_buff;
++ /** Total number of bytes to transfer. */
++ uint32_t xfer_len;
++ /** Number of bytes transferred so far. */
++ uint32_t xfer_count;
++ /** Packet count at start of transfer.*/
++ uint16_t start_pkt_count;
++
++ /**
++ * Flag to indicate whether the transfer has been started. Set to 1 if
++ * it has been started, 0 otherwise.
++ */
++ uint8_t xfer_started;
++
++ /**
++ * Set to 1 to indicate that a PING request should be issued on this
++ * channel. If 0, process normally.
++ */
++ uint8_t do_ping;
++
++ /**
++ * Set to 1 to indicate that the error count for this transaction is
++ * non-zero. Set to 0 if the error count is 0.
++ */
++ uint8_t error_state;
++
++ /**
++ * Set to 1 to indicate that this channel should be halted the next
++ * time a request is queued for the channel. This is necessary in
++ * slave mode if no request queue space is available when an attempt
++ * is made to halt the channel.
++ */
++ uint8_t halt_on_queue;
++
++ /**
++ * Set to 1 if the host channel has been halted, but the core is not
++ * finished flushing queued requests. Otherwise 0.
++ */
++ uint8_t halt_pending;
++
++ /**
++ * Reason for halting the host channel.
++ */
++ enum dwc_otg_halt_status halt_status;
++
++ /*
++ * Split settings for the host channel
++ */
++ uint8_t do_split; /**< Enable split for the channel */
++ uint8_t complete_split; /**< Enable complete split */
++ uint8_t hub_addr; /**< Address of high speed hub */
++
++ uint8_t port_addr; /**< Port of the low/full speed device */
++ /** Split transaction position
++ * One of the following values:
++ * - DWC_HCSPLIT_XACTPOS_MID
++ * - DWC_HCSPLIT_XACTPOS_BEGIN
++ * - DWC_HCSPLIT_XACTPOS_END
++ * - DWC_HCSPLIT_XACTPOS_ALL */
++ uint8_t xact_pos;
++
++ /** Set when the host channel does a short read. */
++ uint8_t short_read;
++
++ /**
++ * Number of requests issued for this channel since it was assigned to
++ * the current transfer (not counting PINGs).
++ */
++ uint8_t requests;
++
++ /**
++ * Queue Head for the transfer being processed by this channel.
++ */
++ struct dwc_otg_qh *qh;
++
++ /** @} */
++
++ /** Entry in list of host channels. */
++ struct list_head hc_list_entry;
++};
++
++/**
++ * The following parameters may be specified when starting the module. These
++ * parameters define how the DWC_otg controller should be configured.
++ * Parameter values are passed to the CIL initialization function
++ * dwc_otg_cil_init.
++ */
++struct dwc_otg_core_params {
++ int32_t opt;
++#define dwc_param_opt_default 1
++
++ /*
++ * Specifies the OTG capabilities. The driver will automatically
++ * detect the value for this parameter if none is specified.
++ * 0 - HNP and SRP capable (default)
++ * 1 - SRP Only capable
++ * 2 - No HNP/SRP capable
++ */
++ int32_t otg_cap;
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
++
++ /*
++ * Specifies whether to use slave or DMA mode for accessing the data
++ * FIFOs. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - Slave
++ * 1 - DMA (default, if available)
++ */
++ int32_t dma_enable;
++#define dwc_param_dma_enable_default 1
++
++ /*
++ * The DMA Burst size (applicable only for External DMA
++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ */
++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
++#define dwc_param_dma_burst_size_default 32
++
++ /*
++ * Specifies the maximum speed of operation in host and device mode.
++ * The actual speed depends on the speed of the attached device and
++ * the value of phy_type. The actual speed depends on the speed of the
++ * attached device.
++ * 0 - High Speed (default)
++ * 1 - Full Speed
++ */
++ int32_t speed;
++#define dwc_param_speed_default 0
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++
++ /** Specifies whether low power mode is supported when attached
++ * to a Full Speed or Low Speed device in host mode.
++ * 0 - Don't support low power mode (default)
++ * 1 - Support low power mode
++ */
++ int32_t host_support_fs_ls_low_power;
++#define dwc_param_host_support_fs_ls_low_power_default 0
++
++ /** Specifies the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. This parameter is applicable only if
++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
++ * then defaults to 6 MHZ otherwise 48 MHZ.
++ *
++ * 0 - 48 MHz
++ * 1 - 6 MHz
++ */
++ int32_t host_ls_low_power_phy_clk;
++#define dwc_param_host_ls_low_power_phy_clk_default 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++
++ /**
++ * 0 - Use cC FIFO size parameters
++ * 1 - Allow dynamic FIFO sizing (default)
++ */
++ int32_t enable_dynamic_fifo;
++#define dwc_param_enable_dynamic_fifo_default 1
++
++ /** Total number of 4-byte words in the data FIFO memory. This
++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++ * Tx FIFOs.
++ * 32 to 32768 (default 8192)
++ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ */
++ int32_t data_fifo_size;
++#define dwc_param_data_fifo_size_default 8192
++
++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1064)
++ */
++ int32_t dev_rx_fifo_size;
++#define dwc_param_dev_rx_fifo_size_default 1064
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++ * when dynamic FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t dev_nperio_tx_fifo_size;
++#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++
++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++#define dwc_param_dev_perio_tx_fifo_size_default 256
++
++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_rx_fifo_size;
++#define dwc_param_host_rx_fifo_size_default 1024
++#define dwc_param_host_rx_fifo_size_percentage 30
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++ * when Dynamic FIFO sizing is enabled in the core.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_nperio_tx_fifo_size;
++#define dwc_param_host_nperio_tx_fifo_size_default 1024
++#define dwc_param_host_nperio_tx_fifo_size_percentage 40
++
++ /*
++ * Number of 4-byte words in the host periodic Tx FIFO when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_perio_tx_fifo_size;
++#define dwc_param_host_perio_tx_fifo_size_default 1024
++#define dwc_param_host_perio_tx_fifo_size_percentage 30
++
++ /*
++ * The maximum transfer size supported in bytes.
++ * 2047 to 65,535 (default 65,535)
++ */
++ int32_t max_transfer_size;
++#define dwc_param_max_transfer_size_default 65535
++
++ /*
++ * The maximum number of packets in a transfer.
++ * 15 to 511 (default 511)
++ */
++ int32_t max_packet_count;
++#define dwc_param_max_packet_count_default 511
++
++ /*
++ * The number of host channel registers to use.
++ * 1 to 16 (default 12)
++ * Note: The FPGA configuration supports a maximum of 12 host channels.
++ */
++ int32_t host_channels;
++#define dwc_param_host_channels_default 12
++
++ /*
++ * The number of endpoints in addition to EP0 available for device
++ * mode operations.
++ * 1 to 15 (default 6 IN and OUT)
++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++ * endpoints in addition to EP0.
++ */
++ int32_t dev_endpoints;
++#define dwc_param_dev_endpoints_default 6
++
++ /*
++ * Specifies the type of PHY interface to use. By default, the driver
++ * will automatically detect the phy_type.
++ *
++ * 0 - Full Speed PHY
++ * 1 - UTMI+ (default)
++ * 2 - ULPI
++ */
++ int32_t phy_type;
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++
++ /*
++ * Specifies the UTMI+ Data Width. This parameter is
++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++ * PHY_TYPE, this parameter indicates the data width between
++ * the MAC and the ULPI Wrapper.) Also, this parameter is
++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++ * to "8 and 16 bits", meaning that the core has been
++ * configured to work at either data path width.
++ *
++ * 8 or 16 bits (default 16)
++ */
++ int32_t phy_utmi_width;
++#define dwc_param_phy_utmi_width_default 16
++
++ /*
++ * Specifies whether the ULPI operates at double or single
++ * data rate. This parameter is only applicable if PHY_TYPE is
++ * ULPI.
++ *
++ * 0 - single data rate ULPI interface with 8 bit wide data
++ * bus (default)
++ * 1 - double data rate ULPI interface with 4 bit wide data
++ * bus
++ */
++ int32_t phy_ulpi_ddr;
++#define dwc_param_phy_ulpi_ddr_default 0
++
++ /*
++ * Specifies whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy.
++ */
++ int32_t phy_ulpi_ext_vbus;
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++
++ /*
++ * Specifies whether to use the I2Cinterface for full speed PHY. This
++ * parameter is only applicable if PHY_TYPE is FS.
++ * 0 - No (default)
++ * 1 - Yes
++ */
++ int32_t i2c_enable;
++#define dwc_param_i2c_enable_default 0
++
++ int32_t ulpi_fs_ls;
++#define dwc_param_ulpi_fs_ls_default 0
++
++ int32_t ts_dline;
++#define dwc_param_ts_dline_default 0
++
++};
++
++/**
++ * The FIFOs are established based on a default percentage of the total
++ * FIFO depth. This check insures that the defaults are reasonable.
++ */
++#if (((dwc_param_host_rx_fifo_size_percentage) \
++ +(dwc_param_host_nperio_tx_fifo_size_percentage) \
++ +(dwc_param_host_perio_tx_fifo_size_percentage)) > 100)
++#error Invalid FIFO allocation
++#endif
++
++#ifdef DEBUG
++struct dwc_otg_core_if;
++struct hc_xfer_info {
++ struct dwc_otg_core_if *core_if;
++ struct dwc_hc *hc;
++};
++#endif
++
++/*
++ * The <code>dwc_otg_core_if</code> structure contains information
++ * needed to manage the DWC_otg controller acting in either host or
++ * device mode. It represents the programming view of the controller
++ * as a whole.
++ */
++struct dwc_otg_core_if {
++ /** USB block index number for Octeon's that support multiple */
++ int usb_num;
++
++ /** Parameters that define how the core should be configured.*/
++ struct dwc_otg_core_params *core_params;
++
++ /** Core Global registers starting at offset 000h. */
++ struct dwc_otg_core_global_regs *core_global_regs;
++
++ /** Device-specific information */
++ struct dwc_otg_dev_if *dev_if;
++ /** Host-specific information */
++ struct dwc_otg_host_if *host_if;
++
++ /*
++ * Set to 1 if the core PHY interface bits in USBCFG have been
++ * initialized.
++ */
++ uint8_t phy_init_done;
++
++ /*
++ * SRP Success flag, set by srp success interrupt in FS I2C mode
++ */
++ uint8_t srp_success;
++ uint8_t srp_timer_started;
++
++ /* Common configuration information */
++ /** Power and Clock Gating Control Register */
++ uint32_t *pcgcctl;
++#define DWC_OTG_PCGCCTL_OFFSET 0xE00
++
++ /** Push/pop addresses for endpoints or host channels.*/
++ uint32_t *data_fifo[MAX_EPS_CHANNELS];
++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
++#define DWC_OTG_DATA_FIFO_SIZE 0x1000
++
++ /** Total RAM for FIFOs (Bytes) */
++ uint16_t total_fifo_size;
++ /** Size of Rx FIFO (Bytes) */
++ uint16_t rx_fifo_size;
++ /** Size of Non-periodic Tx FIFO (Bytes) */
++ uint16_t nperio_tx_fifo_size;
++
++ /** 1 if DMA is enabled, 0 otherwise. */
++ uint8_t dma_enable;
++
++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
++ * process of being queued */
++ uint8_t queuing_high_bandwidth;
++
++ /** Hardware Configuration -- stored here for convenience.*/
++ union hwcfg1_data hwcfg1;
++ union hwcfg2_data hwcfg2;
++ union hwcfg3_data hwcfg3;
++ union hwcfg4_data hwcfg4;
++
++ /*
++ * The operational State, during transations
++ * (a_host>>a_peripherial and b_device=>b_host) this may not
++ * match the core but allows the software to determine
++ * transitions.
++ */
++ uint8_t op_state;
++
++ /*
++ * Set to 1 if the HCD needs to be restarted on a session request
++ * interrupt. This is required if no connector ID status change has
++ * occurred since the HCD was last disconnected.
++ */
++ uint8_t restart_hcd_on_session_req;
++
++ /** HCD callbacks */
++ /** A-Device is a_host */
++#define A_HOST (1)
++ /** A-Device is a_suspend */
++#define A_SUSPEND (2)
++ /** A-Device is a_peripherial */
++#define A_PERIPHERAL (3)
++ /** B-Device is operating as a Peripheral. */
++#define B_PERIPHERAL (4)
++ /** B-Device is operating as a Host. */
++#define B_HOST (5)
++
++ /** HCD callbacks */
++ struct dwc_otg_cil_callbacks *hcd_cb;
++ /** PCD callbacks */
++ struct dwc_otg_cil_callbacks *pcd_cb;
++
++#ifdef DEBUG
++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
++
++ struct hc_xfer_info hc_xfer_info[MAX_EPS_CHANNELS];
++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
++
++ uint32_t hfnum_7_samples;
++ uint64_t hfnum_7_frrem_accum;
++ uint32_t hfnum_0_samples;
++ uint64_t hfnum_0_frrem_accum;
++ uint32_t hfnum_other_samples;
++ uint64_t hfnum_other_frrem_accum;
++#endif
++
++};
++
++/*
++ * The following functions support initialization of the CIL driver component
++ * and the DWC_otg controller.
++ */
++extern struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
++ struct dwc_otg_core_params *
++ _core_params);
++extern void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if);
++
++/* Device CIL Functions
++ * The following functions support managing the DWC_otg controller in device
++ * mode.
++ */
++
++extern void dwc_otg_wakeup(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if,
++ uint32_t *dest);
++extern uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep, int _dma);
++extern void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if,
++ struct dwc_ep *ep);
++extern void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if);
++
++/* Host CIL Functions
++ * The following functions support managing the DWC_otg controller in host
++ * mode.
++ */
++
++extern void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc);
++extern void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc,
++ enum dwc_otg_halt_status halt_status);
++extern void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc);
++extern void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc);
++extern int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc);
++extern void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc);
++extern void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc);
++extern void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if);
++
++/**
++ * This function Reads HPRT0 in preparation to modify. It keeps the
++ * WC bits 0 so that if they are read as 1, they won't clear when you
++ * write it back
++ */
++static inline uint32_t dwc_otg_read_hprt0(struct dwc_otg_core_if *core_if)
++{
++ union hprt0_data hprt0;
++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++ hprt0.b.prtena = 0;
++ hprt0.b.prtconndet = 0;
++ hprt0.b.prtenchng = 0;
++ hprt0.b.prtovrcurrchng = 0;
++ return hprt0.d32;
++}
++
++extern void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if);
++
++/* Common CIL Functions
++ * The following functions support managing the DWC_otg controller in either
++ * device or host mode.
++ */
++
++
++extern void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
++ uint8_t *dest, uint16_t bytes);
++
++extern void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if);
++
++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if,
++ const int _num);
++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_reset(struct dwc_otg_core_if *core_if);
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_core_intr(struct dwc_otg_core_if *core_if)
++{
++ return dwc_read_reg32(&core_if->core_global_regs->gintsts) &
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk);
++}
++
++/**
++ * This function returns the OTG Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_otg_intr(struct dwc_otg_core_if *core_if)
++{
++ return dwc_read_reg32(&core_if->core_global_regs->gotgint);
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the IN endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(struct dwc_otg_core_if *
++ core_if)
++{
++ uint32_t v;
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++ return v & 0xffff;
++
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the OUT endpoint interrupt bits.
++ */
++static inline uint32_t
++dwc_otg_read_dev_all_out_ep_intr(struct dwc_otg_core_if *core_if)
++{
++ uint32_t v;
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++ return (v & 0xffff0000) >> 16;
++}
++
++/**
++ * This function returns the Device IN EP Interrupt register
++ */
++static inline uint32_t
++dwc_otg_read_dev_in_ep_intr(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ uint32_t v;
++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) &
++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++ return v;
++}
++
++/**
++ * This function returns the Device OUT EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_out_ep_intr(struct dwc_otg_core_if *
++ core_if, struct dwc_ep *ep)
++{
++ struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++ uint32_t v;
++ v = dwc_read_reg32(&dev_if->out_ep_regs[ep->num]->doepint) &
++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++ return v;
++}
++
++/**
++ * This function returns the Host All Channel Interrupt register
++ */
++static inline uint32_t
++dwc_otg_read_host_all_channels_intr(struct dwc_otg_core_if *core_if)
++{
++ return dwc_read_reg32(&core_if->host_if->host_global_regs->haint);
++}
++
++static inline uint32_t
++dwc_otg_read_host_channel_intr(struct dwc_otg_core_if *core_if,
++ struct dwc_hc *hc)
++{
++ return dwc_read_reg32(&core_if->host_if->hc_regs[hc->hc_num]->hcint);
++}
++
++/**
++ * This function returns the mode of the operation, host or device.
++ *
++ * Returns 0 - Device Mode, 1 - Host Mode
++ */
++static inline uint32_t dwc_otg_mode(struct dwc_otg_core_if *core_if)
++{
++ return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1;
++}
++
++static inline uint8_t dwc_otg_is_device_mode(struct dwc_otg_core_if *core_if)
++{
++ return dwc_otg_mode(core_if) != DWC_HOST_MODE;
++}
++
++static inline uint8_t dwc_otg_is_host_mode(struct dwc_otg_core_if *core_if)
++{
++ return dwc_otg_mode(core_if) == DWC_HOST_MODE;
++}
++
++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if);
++
++/*
++ * DWC_otg CIL callback structure. This structure allows the HCD and
++ * PCD to register functions used for starting and stopping the PCD
++ * and HCD for role change on for a DRD.
++ */
++struct dwc_otg_cil_callbacks {
++ /* Start function for role change */
++ int (*start) (void *p);
++ /* Stop Function for role change */
++ int (*stop) (void *p);
++ /* Disconnect Function for role change */
++ int (*disconnect) (void *p);
++ /* Resume/Remote wakeup Function */
++ int (*resume_wakeup) (void *p);
++ /* Suspend function */
++ int (*suspend) (void *p);
++ /* Session Start (SRP) */
++ int (*session_start) (void *p);
++ /* Pointer passed to start() and stop() */
++ void *p;
++};
++
++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
++ struct dwc_otg_cil_callbacks *cb,
++ void *p);
++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
++ struct dwc_otg_cil_callbacks *cb,
++ void *p);
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+new file mode 100644
+index 0000000..38c46df
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+@@ -0,0 +1,689 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/**
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * This file contains the Common Interrupt handlers.
++ */
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++#ifdef DEBUG
++inline const char *op_state_str(struct dwc_otg_core_if *core_if)
++{
++ return (core_if->op_state == A_HOST ? "a_host" :
++ (core_if->op_state == A_SUSPEND ? "a_suspend" :
++ (core_if->op_state == A_PERIPHERAL ? "a_peripheral" :
++ (core_if->op_state == B_PERIPHERAL ? "b_peripheral" :
++ (core_if->op_state == B_HOST ? "b_host" : "unknown")))));
++}
++#endif
++
++/** This function will log a debug message
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_mode_mismatch_intr(struct dwc_otg_core_if *core_if)
++{
++ union gintsts_data gintsts;
++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
++ dwc_otg_mode(core_if) ? "Host" : "Device");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.modemismatch = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/** Start the HCD. Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_start(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->start)
++ core_if->hcd_cb->start(core_if->hcd_cb->p);
++}
++
++/** Stop the HCD. Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_stop(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->stop)
++ core_if->hcd_cb->stop(core_if->hcd_cb->p);
++}
++
++/** Disconnect the HCD. Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_disconnect(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect)
++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
++}
++
++/** Inform the HCD the a New Session has begun. Helper function for
++ * using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_session_start(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->session_start)
++ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
++}
++
++/** Start the PCD. Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_start(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->start)
++ core_if->pcd_cb->start(core_if->pcd_cb->p);
++}
++
++/** Stop the PCD. Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_stop(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->stop)
++ core_if->pcd_cb->stop(core_if->pcd_cb->p);
++}
++
++/** Suspend the PCD. Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_suspend(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->suspend)
++ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
++}
++
++/** Resume the PCD. Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_resume(struct dwc_otg_core_if *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++}
++
++/**
++ * This function handles the OTG Interrupts. It reads the OTG
++ * Interrupt Register (GOTGINT) to determine what interrupt has
++ * occurred.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_otg_intr(struct dwc_otg_core_if *core_if)
++{
++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++ union gotgint_data gotgint;
++ union gotgctl_data gotgctl;
++ union gintmsk_data gintmsk;
++
++ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
++ op_state_str(core_if));
++
++ if (gotgint.b.sesenddet) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session End Detected++ (%s)\n",
++ op_state_str(core_if));
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++
++ if (core_if->op_state == B_HOST) {
++ pcd_start(core_if);
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ /* If not B_HOST and Device HNP still set. HNP
++ * Did not succeed!*/
++ if (gotgctl.b.devhnpen) {
++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
++ DWC_ERROR("Device Not Connected/Responding!\n");
++ }
++
++ /* If Session End Detected the B-Cable has
++ * been disconnected. */
++ /* Reset PCD and Gadget driver to a
++ * clean state. */
++ pcd_stop(core_if);
++ }
++ gotgctl.d32 = 0;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++ }
++ if (gotgint.b.sesreqsucstschng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session Reqeust Success Status Change++\n");
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ if (gotgctl.b.sesreqscs) {
++ if ((core_if->core_params->phy_type ==
++ DWC_PHY_TYPE_PARAM_FS)
++ && (core_if->core_params->i2c_enable)) {
++ core_if->srp_success = 1;
++ } else {
++ pcd_resume(core_if);
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ dwc_modify_reg32(&global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ }
++ }
++ if (gotgint.b.hstnegsucstschng) {
++ /* Print statements during the HNP interrupt handling
++ * can cause it to fail.*/
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ if (gotgctl.b.hstnegscs) {
++ if (dwc_otg_is_host_mode(core_if)) {
++ core_if->op_state = B_HOST;
++ /*
++ * Need to disable SOF interrupt immediately.
++ * When switching from device to host, the PCD
++ * interrupt handler won't handle the
++ * interrupt if host mode is already set. The
++ * HCD interrupt handler won't get called if
++ * the HCD state is HALT. This means that the
++ * interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++ pcd_stop(core_if);
++ /*
++ * Initialize the Core for Host mode.
++ */
++ hcd_start(core_if);
++ core_if->op_state = B_HOST;
++ }
++ } else {
++ gotgctl.d32 = 0;
++ gotgctl.b.hnpreq = 1;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
++ DWC_ERROR("Device Not Connected/Responding\n");
++ }
++ }
++ if (gotgint.b.hstnegdet) {
++ /* The disconnect interrupt is set at the same time as
++ * Host Negotiation Detected. During the mode
++ * switch all interrupts are cleared so the disconnect
++ * interrupt handler will not get executed.
++ */
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Host Negotiation Detected++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Device"));
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",
++ core_if->op_state);
++ hcd_disconnect(core_if);
++ pcd_start(core_if);
++ core_if->op_state = A_PERIPHERAL;
++ } else {
++ /*
++ * Need to disable SOF interrupt immediately. When
++ * switching from device to host, the PCD interrupt
++ * handler won't handle the interrupt if host mode is
++ * already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that
++ * the interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0);
++ pcd_stop(core_if);
++ hcd_start(core_if);
++ core_if->op_state = A_HOST;
++ }
++ }
++ if (gotgint.b.adevtoutchng)
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "A-Device Timeout Change++\n");
++ if (gotgint.b.debdone)
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n");
++
++ /* Clear GOTGINT */
++ dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32);
++
++ return 1;
++}
++
++/**
++ * This function handles the Connector ID Status Change Interrupt. It
++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
++ * is a Device to Host Mode transition or a Host Mode to Device
++ * Transition.
++ *
++ * This only occurs when the cable is connected/removed from the PHY
++ * connector.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_conn_id_status_change_intr(struct dwc_otg_core_if *core_if)
++{
++ uint32_t count = 0;
++
++ union gintsts_data gintsts = {.d32 = 0 };
++ union gintmsk_data gintmsk = {.d32 = 0 };
++ union gotgctl_data gotgctl = {.d32 = 0 };
++
++ /*
++ * Need to disable SOF interrupt immediately. If switching from device
++ * to host, the PCD interrupt handler won't handle the interrupt if
++ * host mode is already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that the interrupt does
++ * not get handled and Linux complains loudly.
++ */
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++ DWC_DEBUGPL(DBG_CIL,
++ " ++Connector ID Status Change Interrupt++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"));
++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
++
++ /* B-Device connector (Device Mode) */
++ if (gotgctl.b.conidsts) {
++ /* Wait for switch to device mode. */
++ while (!dwc_otg_is_device_mode(core_if)) {
++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Peripheral"));
++ mdelay(100);
++ if (++count > 10000)
++ *(uint32_t *) NULL = 0;
++ }
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ pcd_start(core_if);
++ } else {
++ /* A-Device connector (Host Mode) */
++ while (!dwc_otg_is_host_mode(core_if)) {
++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Peripheral"));
++ mdelay(100);
++ if (++count > 10000)
++ *(uint32_t *) NULL = 0;
++ }
++ core_if->op_state = A_HOST;
++ /*
++ * Initialize the Core for Host mode.
++ */
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ hcd_start(core_if);
++ }
++
++ /* Set flag and clear interrupt */
++ gintsts.b.conidstschng = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device is initiating the Session
++ * Request Protocol to request the host to turn on bus power so a new
++ * session can begin. The handler responds by turning on bus power. If
++ * the DWC_otg controller is in low power mode, the handler brings the
++ * controller out of low power mode before turning on bus power.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_session_req_intr(struct dwc_otg_core_if *core_if)
++{
++ union gintsts_data gintsts;
++#ifndef DWC_HOST_ONLY
++ union hprt0_data hprt0;
++
++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_PRINT("SRP: Device mode\n");
++ } else {
++ DWC_PRINT("SRP: Host mode\n");
++
++ /* Turn on the port power bit. */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Start the Connection timer. So a message can be displayed
++ * if connect does not occur within 10 seconds. */
++ hcd_session_start(core_if);
++ }
++#endif
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sessreqintr = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the DWC_otg controller has detected a
++ * resume or remote wakeup sequence. If the DWC_otg controller is in
++ * low power mode, the handler must brings the controller out of low
++ * power mode. The controller automatically begins resume
++ * signaling. The handler schedules a time to stop resume signaling.
++ */
++int32_t dwc_otg_handle_wakeup_detected_intr(struct dwc_otg_core_if *core_if)
++{
++ union gintsts_data gintsts;
++
++ DWC_DEBUGPL(DBG_ANY,
++ "++Resume and Remote Wakeup Detected Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ union dctl_data dctl = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++ dsts));
++#ifdef PARTIAL_POWER_DOWN
++ if (core_if->hwcfg4.b.power_optimiz) {
++ union pcgcctl_data power = {.d32 = 0 };
++
++ power.d32 = dwc_read_reg32(core_if->pcgcctl);
++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
++
++ power.b.stoppclk = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.pwrclmp = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++ }
++#endif
++ /* Clear the Remote Wakeup Signalling */
++ dctl.b.rmtwkupsig = 1;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32, 0);
++
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ } else {
++ /*
++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
++ * so that OPT tests pass with all PHYs).
++ */
++ union hprt0_data hprt0 = {.d32 = 0 };
++ union pcgcctl_data pcgcctl = {.d32 = 0 };
++ /* Restart the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
++ udelay(10);
++
++ /* Now wait for 70 ms. */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32);
++ mdelay(70);
++ hprt0.b.prtres = 0; /* Resume */
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n",
++ dwc_read_reg32(core_if->host_if->hprt0));
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.wkupintr = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device has been disconnected from
++ * the root port.
++ */
++int32_t dwc_otg_handle_disconnect_intr(struct dwc_otg_core_if *core_if)
++{
++ union gintsts_data gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"),
++ op_state_str(core_if));
++
++/** @todo Consolidate this if statement. */
++#ifndef DWC_HOST_ONLY
++ if (core_if->op_state == B_HOST) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect(core_if);
++ pcd_start(core_if);
++ core_if->op_state = B_PERIPHERAL;
++ } else if (dwc_otg_is_device_mode(core_if)) {
++ union gotgctl_data gotgctl = {.d32 = 0 };
++ gotgctl.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++ if (gotgctl.b.hstsethnpen == 1) {
++ /* Do nothing, if HNP in process the OTG
++ * interrupt "Host Negotiation Detected"
++ * interrupt will do the mode switch.
++ */
++ } else if (gotgctl.b.devhnpen == 0) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect(core_if);
++ pcd_start(core_if);
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n");
++ }
++ } else {
++ if (core_if->op_state == A_HOST) {
++ /* A-Cable still connected but device disconnected. */
++ hcd_disconnect(core_if);
++ }
++ }
++#endif
++
++ gintsts.d32 = 0;
++ gintsts.b.disconnect = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/**
++ * This interrupt indicates that SUSPEND state has been detected on
++ * the USB.
++ *
++ * For HNP the USB Suspend interrupt signals the change from
++ * "a_peripheral" to "a_host".
++ *
++ * When power management is enabled the core will be put in low power
++ * mode.
++ */
++int32_t dwc_otg_handle_usb_suspend_intr(struct dwc_otg_core_if *core_if)
++{
++ union dsts_data dsts;
++ union gintsts_data gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ /* Check the Device status register to determine if the Suspend
++ * state is active. */
++ dsts.d32 =
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
++ "HWCFG4.power Optimize=%d\n",
++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
++
++#ifdef PARTIAL_POWER_DOWN
++/** @todo Add a module parameter for power management. */
++
++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
++ union pcgcctl_data_t power = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_CIL, "suspend\n");
++
++ power.b.pwrclmp = 1;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 1;
++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++
++ power.b.stoppclk = 1;
++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "disconnect?\n");
++ }
++#endif
++ /* PCD callback for suspend. */
++ pcd_suspend(core_if);
++ } else {
++ if (core_if->op_state == A_PERIPHERAL) {
++ DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n");
++ /* Clear the a_peripheral flag, back to a_host. */
++ pcd_stop(core_if);
++ hcd_start(core_if);
++ core_if->op_state = A_HOST;
++ }
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_common_intr(struct dwc_otg_core_if *core_if)
++{
++ union gintsts_data gintsts;
++ union gintmsk_data gintmsk;
++ union gintmsk_data gintmsk_common = {.d32 = 0 };
++ gintmsk_common.b.wkupintr = 1;
++ gintmsk_common.b.sessreqintr = 1;
++ gintmsk_common.b.conidstschng = 1;
++ gintmsk_common.b.otgintr = 1;
++ gintmsk_common.b.modemismatch = 1;
++ gintmsk_common.b.disconnect = 1;
++ gintmsk_common.b.usbsuspend = 1;
++ /*
++ * @todo: The port interrupt occurs while in device
++ * mode. Added code to CIL to clear the interrupt for now!
++ */
++ gintmsk_common.b.portintr = 1;
++
++ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
++ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
++#ifdef DEBUG
++ /* if any common interrupts set */
++ if (gintsts.d32 & gintmsk_common.d32) {
++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
++ gintsts.d32, gintmsk.d32);
++ }
++#endif
++
++ return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32;
++
++}
++
++/**
++ * Common interrupt handler.
++ *
++ * The common interrupts are those that occur in both Host and Device mode.
++ * This handler handles the following interrupts:
++ * - Mode Mismatch Interrupt
++ * - Disconnect Interrupt
++ * - OTG Interrupt
++ * - Connector ID Status Change Interrupt
++ * - Session Request Interrupt.
++ * - Resume / Remote Wakeup Detected Interrupt.
++ *
++ */
++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if)
++{
++ int retval = 0;
++ union gintsts_data gintsts;
++
++ gintsts.d32 = dwc_otg_read_common_intr(core_if);
++
++ if (gintsts.b.modemismatch)
++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
++ if (gintsts.b.otgintr)
++ retval |= dwc_otg_handle_otg_intr(core_if);
++ if (gintsts.b.conidstschng)
++ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
++ if (gintsts.b.disconnect)
++ retval |= dwc_otg_handle_disconnect_intr(core_if);
++ if (gintsts.b.sessreqintr)
++ retval |= dwc_otg_handle_session_req_intr(core_if);
++ if (gintsts.b.wkupintr)
++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
++ if (gintsts.b.usbsuspend)
++ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
++ /* The port interrupt occurs while in device mode with HPRT0
++ * Port Enable/Disable.
++ */
++ gintsts.d32 = 0;
++ gintsts.b.portintr = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts,
++ gintsts.d32);
++ retval |= 1;
++
++ }
++ return retval;
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_driver.h b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
+new file mode 100644
+index 0000000..1cc116d
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
+@@ -0,0 +1,63 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_DRIVER_H__
++#define __DWC_OTG_DRIVER_H__
++
++#include "dwc_otg_cil.h"
++
++/* Type declarations */
++struct dwc_otg_pcd;
++struct dwc_otg_hcd;
++
++/**
++ * This structure is a wrapper that encapsulates the driver components used to
++ * manage a single DWC_otg controller.
++ */
++struct dwc_otg_device {
++ /** Base address returned from ioremap() */
++ void *base;
++
++ /** Pointer to the core interface structure. */
++ struct dwc_otg_core_if *core_if;
++
++ /** Register offset for Diagnostic API.*/
++ uint32_t reg_offset;
++
++ /** Pointer to the PCD structure. */
++ struct dwc_otg_pcd *pcd;
++
++ /** Pointer to the HCD structure. */
++ struct dwc_otg_hcd *hcd;
++
++ /** Flag to indicate whether the common IRQ handler is installed. */
++ uint8_t common_irq_installed;
++
++};
++
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+new file mode 100644
+index 0000000..a4392f5
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+@@ -0,0 +1,2878 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ *
++ * This file contains the implementation of the HCD. In Linux, the HCD
++ * implements the hc_driver API.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/workqueue.h>
++#include <linux/platform_device.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
++
++static const struct hc_driver dwc_otg_hc_driver = {
++
++ .description = dwc_otg_hcd_name,
++ .product_desc = "DWC OTG Controller",
++ .hcd_priv_size = sizeof(struct dwc_otg_hcd),
++
++ .irq = dwc_otg_hcd_irq,
++
++ .flags = HCD_MEMORY | HCD_USB2,
++
++ .start = dwc_otg_hcd_start,
++ .stop = dwc_otg_hcd_stop,
++
++ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
++ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
++ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
++
++ .get_frame_number = dwc_otg_hcd_get_frame_number,
++
++ .hub_status_data = dwc_otg_hcd_hub_status_data,
++ .hub_control = dwc_otg_hcd_hub_control,
++};
++
++/**
++ * Work queue function for starting the HCD when A-Cable is connected.
++ * The dwc_otg_hcd_start() must be called in a process context.
++ */
++static void hcd_start_func(struct work_struct *work)
++{
++ void *_vp =
++ (void *)(atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp;
++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
++ if (usb_hcd)
++ dwc_otg_hcd_start(usb_hcd);
++}
++
++/**
++ * HCD Callback function for starting the HCD when A-Cable is
++ * connected.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_start_cb(void *_p)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++ union hprt0_data hprt0;
++
++ if (core_if->op_state == B_HOST) {
++ /*
++ * Reset the port. During a HNP mode switch the reset
++ * needs to occur within 1ms and have a duration of at
++ * least 50ms.
++ */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ ((struct usb_hcd *)_p)->self.is_b_host = 1;
++ } else {
++ ((struct usb_hcd *)_p)->self.is_b_host = 0;
++ }
++
++ /* Need to start the HCD in a non-interrupt context. */
++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
++ atomic_long_set(&dwc_otg_hcd->start_work.data, (long)_p);
++ schedule_work(&dwc_otg_hcd->start_work);
++
++ return 1;
++}
++
++/**
++ * HCD Callback function for stopping the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_stop_cb(void *_p)
++{
++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++ dwc_otg_hcd_stop(usb_hcd);
++ return 1;
++}
++
++static void del_xfer_timers(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++ int i;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++)
++ del_timer(&hcd->core_if->hc_xfer_timer[i]);
++#endif
++}
++
++static void del_timers(struct dwc_otg_hcd *hcd)
++{
++ del_xfer_timers(hcd);
++ del_timer(&hcd->conn_timer);
++}
++
++/**
++ * Processes all the URBs in a single list of QHs. Completes them with
++ * -ETIMEDOUT and frees the QTD.
++ */
++static void kill_urbs_in_qh_list(struct dwc_otg_hcd *hcd,
++ struct list_head *_qh_list)
++{
++ struct dwc_otg_qh *qh;
++ struct dwc_otg_qtd *qtd;
++ struct dwc_otg_qtd *qtd_next;
++
++ list_for_each_entry(qh, _qh_list, qh_list_entry) {
++ list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list,
++ qtd_list_entry) {
++ if (qtd->urb != NULL) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb,
++ -ETIMEDOUT);
++ qtd->urb = NULL;
++ }
++ dwc_otg_hcd_qtd_remove_and_free(qtd);
++ }
++ }
++}
++
++/**
++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
++ * and periodic schedules. The QTD associated with each URB is removed from
++ * the schedule and freed. This function may be called when a disconnect is
++ * detected or when the HCD is being stopped.
++ */
++static void kill_all_urbs(struct dwc_otg_hcd *hcd)
++{
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_disconnect_cb(void *_p)
++{
++ union gintsts_data intr;
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++
++ /*
++ * Set status flags for the hub driver.
++ */
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 0;
++
++ /*
++ * Shutdown any transfers in process by clearing the Tx FIFO Empty
++ * interrupt mask and status bits and disabling subsequent host
++ * channel interrupts.
++ */
++ intr.d32 = 0;
++ intr.b.nptxfempty = 1;
++ intr.b.ptxfempty = 1;
++ intr.b.hcintr = 1;
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk,
++ intr.d32, 0);
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts,
++ intr.d32, 0);
++
++ del_timers(dwc_otg_hcd);
++
++ /*
++ * Turn off the vbus power only if the core has transitioned to device
++ * mode. If still in host mode, need to keep power on to detect a
++ * reconnection.
++ */
++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
++ union hprt0_data hprt0 = {.d32 = 0 };
++ DWC_PRINT("Disconnect: PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
++ hprt0.d32);
++ }
++
++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++ }
++
++ /* Respond with an error status to all URBs in the schedule. */
++ kill_all_urbs(dwc_otg_hcd);
++
++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
++ /* Clean up any host channels that were in use. */
++ int num_channels;
++ int i;
++ struct dwc_hc *channel;
++ struct dwc_otg_hc_regs *hc_regs;
++ union hcchar_data hcchar;
++
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ /* Flush out any channel requests in slave mode. */
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs =
++ dwc_otg_hcd->core_if->host_if->
++ hc_regs[i];
++ hcchar.d32 =
++ dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->
++ hcchar,
++ hcchar.d32);
++ }
++ }
++ }
++ }
++
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs =
++ dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ /* Halt the channel. */
++ hcchar.b.chdis = 1;
++ dwc_write_reg32(&hc_regs->hcchar,
++ hcchar.d32);
++ }
++
++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if,
++ channel);
++ list_add_tail(&channel->hc_list_entry,
++ &dwc_otg_hcd->free_hc_list);
++ }
++ }
++ }
++
++ /* A disconnect will end the session so the B-Device is no
++ * longer a B-host. */
++ ((struct usb_hcd *)_p)->self.is_b_host = 0;
++ return 1;
++}
++
++/**
++ * Connection timeout function. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.
++ */
++void dwc_otg_hcd_connect_timeout(unsigned long _ptr)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
++ DWC_PRINT("Connect Timeout\n");
++ DWC_ERROR("Device Not Connected/Responding\n");
++}
++
++/**
++ * Start the connection timer. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds. The
++ * timer is deleted if a port connect interrupt occurs before the
++ * timer expires.
++ */
++static void dwc_otg_hcd_start_connect_timer(struct dwc_otg_hcd *hcd)
++{
++ init_timer(&hcd->conn_timer);
++ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
++ hcd->conn_timer.data = (unsigned long)0;
++ hcd->conn_timer.expires = jiffies + (HZ * 10);
++ add_timer(&hcd->conn_timer);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_session_start_cb(void *_p)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
++ return 1;
++}
++
++/**
++ * HCD Callback structure for handling mode switching.
++ */
++static struct dwc_otg_cil_callbacks hcd_cil_callbacks = {
++ .start = dwc_otg_hcd_start_cb,
++ .stop = dwc_otg_hcd_stop_cb,
++ .disconnect = dwc_otg_hcd_disconnect_cb,
++ .session_start = dwc_otg_hcd_session_start_cb,
++ .p = 0,
++};
++
++/**
++ * Reset tasklet function
++ */
++static void reset_tasklet_func(unsigned long data)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = (struct dwc_otg_hcd *)data;
++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++ union hprt0_data hprt0;
++
++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ mdelay(60);
++
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++
++ return;
++}
++
++static struct tasklet_struct reset_tasklet = {
++ .next = NULL,
++ .state = 0,
++ .count = ATOMIC_INIT(0),
++ .func = reset_tasklet_func,
++ .data = 0,
++};
++
++static enum hrtimer_restart delayed_enable(struct hrtimer *t)
++{
++ struct dwc_otg_hcd *hcd = container_of(t, struct dwc_otg_hcd,
++ poll_rate_limit);
++ struct dwc_otg_core_global_regs *global_regs =
++ hcd->core_if->core_global_regs;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++
++ return HRTIMER_NORESTART;
++}
++
++/**
++ * Initializes the HCD. This function allocates memory for and initializes the
++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
++ * USB bus with the core and calls the hc_driver->start() function. It returns
++ * a negative error on failure.
++ */
++int __devinit dwc_otg_hcd_init(struct device *dev)
++{
++ struct usb_hcd *hcd = NULL;
++ struct dwc_otg_hcd *dwc_otg_hcd = NULL;
++ struct dwc_otg_device *otg_dev = dev->platform_data;
++
++ int num_channels;
++ int i;
++ struct dwc_hc *channel;
++
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
++
++ /* Set device flags indicating whether the HCD supports DMA. */
++ if (otg_dev->core_if->dma_enable) {
++ DWC_PRINT("Using DMA mode\n");
++ dev->coherent_dma_mask = ~0;
++ dev->dma_mask = &dev->coherent_dma_mask;
++ } else {
++ DWC_PRINT("Using Slave mode\n");
++ dev->coherent_dma_mask = 0;
++ dev->dma_mask = NULL;
++ }
++
++ /*
++ * Allocate memory for the base HCD plus the DWC OTG HCD.
++ * Initialize the base HCD.
++ */
++ hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev));
++ if (hcd == NULL) {
++ retval = -ENOMEM;
++ goto error1;
++ }
++ hcd->regs = otg_dev->base;
++ hcd->self.otg_port = 1;
++
++ /* Integrate TT in root hub, by default this is disbled. */
++ hcd->has_tt = 1;
++
++ /* Initialize the DWC OTG HCD. */
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ spin_lock_init(&dwc_otg_hcd->global_lock);
++
++ dwc_otg_hcd->core_if = otg_dev->core_if;
++ otg_dev->hcd = dwc_otg_hcd;
++
++ /* Register the HCD CIL Callbacks */
++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
++ &hcd_cil_callbacks, hcd);
++
++ /* Initialize the non-periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
++
++ /* Initialize the periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
++
++ /*
++ * Create a host channel descriptor for each host channel implemented
++ * in the controller. Initialize the channel descriptor array.
++ */
++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = kmalloc(sizeof(struct dwc_hc), GFP_KERNEL);
++ if (channel == NULL) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: host channel allocation failed\n",
++ __func__);
++ goto error2;
++ }
++ memset(channel, 0, sizeof(struct dwc_hc));
++ channel->hc_num = i;
++ dwc_otg_hcd->hc_ptr_array[i] = channel;
++#ifdef DEBUG
++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
++#endif
++
++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i,
++ channel);
++ }
++
++ /* Initialize the Connection timeout timer. */
++ init_timer(&dwc_otg_hcd->conn_timer);
++
++ /* Initialize reset tasklet. */
++ reset_tasklet.data = (unsigned long)dwc_otg_hcd;
++ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
++
++ hrtimer_init(&dwc_otg_hcd->poll_rate_limit, CLOCK_MONOTONIC,
++ HRTIMER_MODE_REL);
++ dwc_otg_hcd->poll_rate_limit.function = delayed_enable;
++
++ /*
++ * Finish generic HCD initialization and start the HCD. This function
++ * allocates the DMA buffer pool, registers the USB bus, requests the
++ * IRQ line, and calls dwc_otg_hcd_start method.
++ */
++ retval =
++ usb_add_hcd(hcd, platform_get_irq(to_platform_device(dev), 0),
++ IRQF_SHARED);
++ if (retval < 0)
++ goto error2;
++
++ /*
++ * Allocate space for storing data on status transactions. Normally no
++ * data is sent, but this space acts as a bit bucket. This must be
++ * done after usb_add_hcd since that function allocates the DMA buffer
++ * pool.
++ */
++ if (otg_dev->core_if->dma_enable) {
++ dwc_otg_hcd->status_buf =
++ dma_alloc_coherent(dev,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ &dwc_otg_hcd->status_buf_dma,
++ GFP_KERNEL | GFP_DMA);
++ } else {
++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
++ GFP_KERNEL);
++ }
++ if (dwc_otg_hcd->status_buf == NULL) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
++ goto error3;
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
++ hcd->self.busnum);
++
++ return 0;
++
++ /* Error conditions */
++error3:
++ usb_remove_hcd(hcd);
++error2:
++ dwc_otg_hcd_free(hcd);
++ usb_put_hcd(hcd);
++error1:
++ return retval;
++}
++
++/**
++ * Removes the HCD.
++ * Frees memory and resources associated with the HCD and deregisters the bus.
++ */
++void dwc_otg_hcd_remove(struct device *dev)
++{
++ struct dwc_otg_device *otg_dev = dev->platform_data;
++ struct dwc_otg_hcd *dwc_otg_hcd = otg_dev->hcd;
++ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
++
++ /* Turn off all interrupts */
++ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1,
++ 0);
++
++ usb_remove_hcd(hcd);
++ dwc_otg_hcd_free(hcd);
++ usb_put_hcd(hcd);
++
++ return;
++}
++
++/* =========================================================================
++ * Linux HC Driver Functions
++ * ========================================================================= */
++
++/**
++ * Initializes dynamic portions of the DWC_otg HCD state.
++ */
++static void hcd_reinit(struct dwc_otg_hcd *hcd)
++{
++ struct list_head *item;
++ int num_channels;
++ int i;
++ struct dwc_hc *channel;
++
++ hcd->flags.d32 = 0;
++
++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
++ hcd->non_periodic_channels = 0;
++ hcd->periodic_channels = 0;
++
++ /*
++ * Put all channels in the free channel list and clean up channel
++ * states.
++ */
++ item = hcd->free_hc_list.next;
++ while (item != &hcd->free_hc_list) {
++ list_del(item);
++ item = hcd->free_hc_list.next;
++ }
++ num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = hcd->hc_ptr_array[i];
++ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
++ dwc_otg_hc_cleanup(hcd->core_if, channel);
++ }
++
++ /* Initialize the DWC core for host mode operation. */
++ dwc_otg_core_host_init(hcd->core_if);
++}
++
++/** Initializes the DWC_otg controller and its root hub and prepares it for host
++ * mode operation. Activates the root port. Returns 0 on success and a negative
++ * error code on failure. */
++int dwc_otg_hcd_start(struct usb_hcd *hcd)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++ unsigned long flags;
++
++ struct usb_bus *bus;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
++
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ bus = hcd_to_bus(hcd);
++
++ /* Initialize the bus state. If the core is in Device Mode
++ * HALT the USB bus and return. */
++ if (dwc_otg_is_device_mode(core_if)) {
++ hcd->state = HC_STATE_HALT;
++ goto out;
++ }
++ hcd->state = HC_STATE_RUNNING;
++
++ hcd_reinit(dwc_otg_hcd);
++out:
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ return 0;
++}
++
++static void qh_list_free(struct dwc_otg_hcd *hcd, struct list_head *_qh_list)
++{
++ struct list_head *item;
++ struct dwc_otg_qh *qh;
++
++ if (_qh_list->next == NULL) {
++ /* The list hasn't been initialized yet. */
++ return;
++ }
++
++ /* Ensure there are no QTDs or URBs left. */
++ kill_urbs_in_qh_list(hcd, _qh_list);
++
++ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
++ qh = list_entry(item, struct dwc_otg_qh, qh_list_entry);
++ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
++ }
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void dwc_otg_hcd_stop(struct usb_hcd *hcd)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ union hprt0_data hprt0 = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
++
++ /* Turn off all host-specific interrupts. */
++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++
++ /*
++ * The root hub should be disconnected before this function is called.
++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
++ * and the QH lists (via ..._hcd_endpoint_disable).
++ */
++
++ /* Turn off the vbus power */
++ DWC_PRINT("PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++
++ return;
++}
++
++/** Returns the current frame number. */
++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ union hfnum_data hfnum;
++
++ hfnum.d32 =
++ dwc_read_reg32(&dwc_otg_hcd->core_if->host_if->host_global_regs->
++ hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n",
++ hfnum.b.frnum);
++#endif
++ return hfnum.b.frnum;
++}
++
++/**
++ * Frees secondary storage associated with the dwc_otg_hcd structure contained
++ * in the struct usb_hcd field.
++ */
++void dwc_otg_hcd_free(struct usb_hcd *hcd)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ int i;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
++
++ del_timers(dwc_otg_hcd);
++
++ /* Free memory for QH/QTD lists */
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
++
++ /* Free memory for the host channels. */
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ struct dwc_hc *hc = dwc_otg_hcd->hc_ptr_array[i];
++ if (hc != NULL) {
++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n",
++ i, hc);
++ kfree(hc);
++ }
++ }
++
++ if (dwc_otg_hcd->core_if->dma_enable) {
++ if (dwc_otg_hcd->status_buf_dma) {
++ dma_free_coherent(hcd->self.controller,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ dwc_otg_hcd->status_buf,
++ dwc_otg_hcd->status_buf_dma);
++ }
++ } else if (dwc_otg_hcd->status_buf != NULL) {
++ kfree(dwc_otg_hcd->status_buf);
++ }
++
++ return;
++}
++
++#ifdef DEBUG
++static void dump_urb_info(struct urb *urb, char *_fn_name)
++{
++ DWC_PRINT("%s, urb %p\n", _fn_name, urb);
++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_PRINT(" Endpoint type: %s\n",
++ ({
++ char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ pipetype = "CONTROL";
++ break;
++ case PIPE_BULK:
++ pipetype = "BULK";
++ break;
++ case PIPE_INTERRUPT:
++ pipetype = "INTERRUPT";
++ break;
++ case PIPE_ISOCHRONOUS:
++ pipetype = "ISOCHRONOUS";
++ break;
++ default:
++ pipetype = "UNKNOWN";
++ break;
++ }
++ pipetype;
++ })) ;
++ DWC_PRINT(" Speed: %s\n",
++ ({
++ char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_HIGH:
++ speed = "HIGH";
++ break;
++ case USB_SPEED_FULL:
++ speed = "FULL";
++ break;
++ case USB_SPEED_LOW:
++ speed = "LOW";
++ break;
++ default:
++ speed = "UNKNOWN";
++ break;
++ }
++ speed;
++ }));
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe,
++ usb_pipeout(urb->pipe)));
++ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->transfer_buffer, (void *)urb->transfer_dma);
++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)urb->setup_dma);
++ DWC_PRINT(" Interval: %d\n", urb->interval);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d:\n", i);
++ DWC_PRINT(" offset: %d, length %d\n",
++ urb->iso_frame_desc[i].offset,
++ urb->iso_frame_desc[i].length);
++ }
++ }
++}
++
++static void dump_channel_info(struct dwc_otg_hcd *hcd, struct dwc_otg_qh * qh)
++{
++ if (qh->channel != NULL) {
++ struct dwc_hc *hc = qh->channel;
++ struct list_head *item;
++ struct dwc_otg_qh *qh_item;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ int i;
++
++ struct dwc_otg_hc_regs *hc_regs;
++ union hcchar_data hcchar;
++ union hcsplt_data hcsplt;
++ union hctsiz_data hctsiz;
++ uint32_t hcdma;
++
++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++ DWC_PRINT(" Assigned to channel %p:\n", hc);
++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32,
++ hcsplt.d32);
++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32,
++ hcdma);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ DWC_PRINT(" NP inactive sched:\n");
++ list_for_each(item, &hcd->non_periodic_sched_inactive) {
++ qh_item = list_entry(item, struct dwc_otg_qh,
++ qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ }
++ DWC_PRINT(" NP active sched:\n");
++ list_for_each(item, &hcd->non_periodic_sched_active) {
++ qh_item = list_entry(item, struct dwc_otg_qh,
++ qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ }
++ DWC_PRINT(" Channels: \n");
++ for (i = 0; i < num_channels; i++) {
++ struct dwc_hc *hc = hcd->hc_ptr_array[i];
++ DWC_PRINT(" %2d: %p\n", i, hc);
++ }
++ }
++}
++#endif
++
++/* Starts processing a USB transfer request specified by a USB Request Block
++ * (URB). mem_flags indicates the type of memory allocation to use while
++ * processing this URB. */
++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++ struct urb *urb, unsigned _mem_flags)
++{
++ unsigned long flags;
++ int retval = 0;
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ struct dwc_otg_qtd *qtd;
++
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ /*
++ * Make sure the start of frame interrupt is enabled now that
++ * we know we should have queued data. The SOF interrupt
++ * handler automatically disables itself when idle to reduce
++ * the number of interrupts. See dwc_otg_hcd_handle_sof_intr()
++ * for the disable
++ */
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0,
++ DWC_SOF_INTR_MASK);
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB))
++ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
++#endif
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /* No longer connected. */
++ retval = -ENODEV;
++ goto out;
++ }
++
++ qtd = dwc_otg_hcd_qtd_create(urb);
++ if (qtd == NULL) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
++ retval = -ENOMEM;
++ goto out;
++ }
++
++ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
++ if (retval < 0) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
++ "Error status %d\n", retval);
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++out:
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ return retval;
++}
++
++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
++ * success. */
++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
++{
++ unsigned long flags;
++ struct dwc_otg_hcd *dwc_otg_hcd;
++ struct dwc_otg_qtd *urb_qtd;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
++
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ urb_qtd = urb->hcpriv;
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
++ if (urb_qtd == urb_qtd->qh->qtd_in_process)
++ dump_channel_info(dwc_otg_hcd, urb_qtd->qh);
++ }
++#endif
++
++ if (urb_qtd == urb_qtd->qh->qtd_in_process) {
++ /* The QTD is in process (it has been assigned to a channel). */
++
++ if (dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * If still connected (i.e. in host mode), halt the
++ * channel so it can be used for other transfers. If
++ * no longer connected, the host registers can't be
++ * written to halt the channel since the core is in
++ * device mode.
++ */
++ dwc_otg_hc_halt(dwc_otg_hcd->core_if,
++ urb_qtd->qh->channel,
++ DWC_OTG_HC_XFER_URB_DEQUEUE);
++ }
++ }
++
++ /*
++ * Free the QTD and clean up the associated QH. Leave the QH in the
++ * schedule if it has any remaining QTDs.
++ */
++ dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
++ if (urb_qtd == urb_qtd->qh->qtd_in_process) {
++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, urb_qtd->qh, 0);
++ urb_qtd->qh->channel = NULL;
++ urb_qtd->qh->qtd_in_process = NULL;
++ } else if (list_empty(&urb_qtd->qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, urb_qtd->qh);
++ }
++
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ urb->hcpriv = NULL;
++
++ /* Higher layer software sets URB status. */
++ usb_hcd_giveback_urb(hcd, urb, status);
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
++ DWC_PRINT(" urb->status = %d\n", urb->status);
++ }
++
++ return 0;
++}
++
++/* Frees resources in the DWC_otg controller related to a given endpoint. Also
++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
++ * must already be dequeued. */
++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *_ep)
++{
++ unsigned long flags;
++ struct dwc_otg_qh *qh;
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
++ "endpoint=%d\n", _ep->desc.bEndpointAddress,
++ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
++
++ qh = _ep->hcpriv;
++ if (qh != NULL) {
++#if 1
++ /*
++ * FIXME: Kludge to not crash on Octeon in SMP
++ * mode. Normally dwc_otg_hcd_qh_remove_and_free() is
++ * called even if the list isn't empty. This causes a
++ * crash on SMP, so we don't call it now. It works
++ * better, but probably does evil things I don't know
++ * about.
++ */
++ /* Check that the QTD list is really empty */
++ if (!list_empty(&qh->qtd_list)) {
++ pr_err("DWC OTG HCD EP DISABLE:"
++ " QTD List for this endpoint is not empty\n");
++ } else
++#endif
++ {
++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
++ _ep->hcpriv = NULL;
++ }
++ }
++
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ return;
++}
++
++/* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
++ * interrupt.
++ *
++ * This function is called by the USB core when an interrupt occurs */
++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
++{
++ irqreturn_t result;
++ unsigned long flags;
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ result = IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
++
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ return result;
++}
++
++/** Creates Status Change bitmap for the root hub and root port. The bitmap is
++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
++ * is the status change indicator for the single root port. Returns 1 if either
++ * change indicator is 1, otherwise returns 0. */
++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *_buf)
++{
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ _buf[0] = 0;
++ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
++ dwc_otg_hcd->flags.b.port_reset_change ||
++ dwc_otg_hcd->flags.b.port_enable_change ||
++ dwc_otg_hcd->flags.b.port_suspend_change ||
++ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
++
++#ifdef DEBUG
++ if (_buf[0]) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
++ " Root port status changed\n");
++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
++ dwc_otg_hcd->flags.b.port_connect_status_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
++ dwc_otg_hcd->flags.b.port_reset_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
++ dwc_otg_hcd->flags.b.port_enable_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
++ dwc_otg_hcd->flags.b.port_suspend_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
++ dwc_otg_hcd->flags.b.port_over_current_change);
++ }
++#endif
++ return (_buf[0] != 0);
++}
++
++#ifdef DWC_HS_ELECT_TST
++/*
++ * Quick and dirty hack to implement the HS Electrical Test
++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
++ *
++ * This code was copied from our userspace app "hset". It sends a
++ * Get Device Descriptor control sequence in two parts, first the
++ * Setup packet by itself, followed some time later by the In and
++ * Ack packets. Rather than trying to figure out how to add this
++ * functionality to the normal driver code, we just hijack the
++ * hardware, using these two function to drive the hardware
++ * directly.
++ */
++
++struct dwc_otg_core_global_regs *global_regs;
++struct dwc_otg_host_global_regs *hc_global_regs;
++struct dwc_otg_hc_regs *hc_regs;
++uint32_t *data_fifo;
++
++static void do_setup(void)
++{
++ union gintsts_data gintsts;
++ union hctsiz_data hctsiz;
++ union hcchar_data hcchar;
++ union haint_data haint;
++ union hcint_data hcint;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /*
++ * Send Setup packet (Get Device Descriptor)
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ /* Fill FIFO with Setup data for Get Device Descriptor */
++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++ dwc_write_reg32(data_fifo++, 0x01000680);
++ dwc_write_reg32(data_fifo++, 0x00080000);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++}
++
++static void do_in_ack(void)
++{
++ union gintsts_data gintsts;
++ union hctsiz_data hctsiz;
++ union hcchar_data hcchar;
++ union haint_data haint;
++ union hcint_data hcint;
++ union host_grxsts_data grxsts;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /*
++ * Receive Control In packet
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 1;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer */
++ if (grxsts.b.bcnt > 0) {
++ int i;
++ int word_count = (grxsts.b.bcnt + 3) / 4;
++
++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++
++ for (i = 0; i < word_count; i++)
++ (void)dwc_read_reg32(data_fifo++);
++ }
++ break;
++
++ default:
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ break;
++
++ default:
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ mdelay(1);
++
++ /*
++ * Send handshake packet
++ */
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 0;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++}
++#endif /* DWC_HS_ELECT_TST */
++
++/* Handles hub class-specific requests.*/
++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++ u16 _typeReq,
++ u16 _wValue, u16 _wIndex, char *_buf, u16 _wLength)
++{
++ int retval = 0;
++ unsigned long flags;
++
++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ struct dwc_otg_core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
++ struct usb_hub_descriptor *desc;
++ union hprt0_data hprt0 = {.d32 = 0 };
++
++ uint32_t port_status;
++#ifdef DWC_HS_ELECT_TST
++ uint32_t t;
++ union gintmsk_data gintmsk;
++#endif
++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++ switch (_typeReq) {
++ case ClearHubFeature:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearHubFeature 0x%x\n", _wValue);
++ switch (_wValue) {
++ case C_HUB_LOCAL_POWER:
++ case C_HUB_OVER_CURRENT:
++ /* Nothing required here */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearHubFeature request %xh unknown\n",
++ _wValue);
++ }
++ break;
++ case ClearPortFeature:
++ if (!_wIndex || _wIndex > 1)
++ goto error;
++
++ switch (_wValue) {
++ case USB_PORT_FEAT_ENABLE:
++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtena = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ /* Clear Resume bit */
++ mdelay(100);
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
++ /* Port inidicator not supported */
++ break;
++ case USB_PORT_FEAT_C_CONNECTION:
++ /* Clears drivers internal connect status change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
++ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
++ break;
++ case USB_PORT_FEAT_C_RESET:
++ /* Clears the driver's internal Port Reset Change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
++ dwc_otg_hcd->flags.b.port_reset_change = 0;
++ break;
++ case USB_PORT_FEAT_C_ENABLE:
++ /* Clears the driver's internal Port
++ * Enable/Disable Change flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
++ dwc_otg_hcd->flags.b.port_enable_change = 0;
++ break;
++ case USB_PORT_FEAT_C_SUSPEND:
++ /* Clears the driver's internal Port Suspend
++ * Change flag, which is set when resume signaling on
++ * the host port is complete */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
++ dwc_otg_hcd->flags.b.port_suspend_change = 0;
++ break;
++ case USB_PORT_FEAT_C_OVER_CURRENT:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
++ dwc_otg_hcd->flags.b.port_over_current_change = 0;
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearPortFeature request %xh "
++ "unknown or unsupported\n", _wValue);
++ }
++ break;
++ case GetHubDescriptor:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubDescriptor\n");
++ desc = (struct usb_hub_descriptor *)_buf;
++ desc->bDescLength = 9;
++ desc->bDescriptorType = 0x29;
++ desc->bNbrPorts = 1;
++ desc->wHubCharacteristics = 0x08;
++ desc->bPwrOn2PwrGood = 1;
++ desc->bHubContrCurrent = 0;
++ desc->bitmap[0] = 0;
++ desc->bitmap[1] = 0xff;
++ break;
++ case GetHubStatus:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubStatus\n");
++ memset(_buf, 0, 4);
++ break;
++ case GetPortStatus:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetPortStatus\n");
++
++ if (!_wIndex || _wIndex > 1)
++ goto error;
++
++ port_status = 0;
++
++ if (dwc_otg_hcd->flags.b.port_connect_status_change)
++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
++
++ if (dwc_otg_hcd->flags.b.port_enable_change)
++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
++
++ if (dwc_otg_hcd->flags.b.port_suspend_change)
++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
++
++ if (dwc_otg_hcd->flags.b.port_reset_change)
++ port_status |= (1 << USB_PORT_FEAT_C_RESET);
++
++ if (dwc_otg_hcd->flags.b.port_over_current_change) {
++ DWC_ERROR("Device Not Supported\n");
++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
++ }
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return 0's for the remainder of the port status
++ * since the port register can't be read if the core
++ * is in device mode.
++ */
++ *((__le32 *) _buf) = cpu_to_le32(port_status);
++ break;
++ }
++
++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
++
++ if (hprt0.b.prtconnsts)
++ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
++
++ if (hprt0.b.prtena)
++ port_status |= (1 << USB_PORT_FEAT_ENABLE);
++
++ if (hprt0.b.prtsusp)
++ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
++
++ if (hprt0.b.prtovrcurract)
++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
++
++ if (hprt0.b.prtrst)
++ port_status |= (1 << USB_PORT_FEAT_RESET);
++
++ if (hprt0.b.prtpwr)
++ port_status |= (1 << USB_PORT_FEAT_POWER);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
++ port_status |= (1 << USB_PORT_FEAT_HIGHSPEED);
++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++ port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
++
++ if (hprt0.b.prttstctl)
++ port_status |= (1 << USB_PORT_FEAT_TEST);
++
++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
++
++ *((__le32 *) _buf) = cpu_to_le32(port_status);
++
++ break;
++ case SetHubFeature:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetHubFeature\n");
++ /* No HUB features supported */
++ break;
++ case SetPortFeature:
++ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
++ goto error;
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return without doing anything since the port
++ * register can't be written if the core is in device
++ * mode.
++ */
++ break;
++ }
++
++ switch (_wValue) {
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
++ if (hcd->self.otg_port == _wIndex &&
++ hcd->self.b_hnp_enable) {
++ union gotgctl_data gotgctl = {.d32 = 0 };
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->
++ gotgctl, 0, gotgctl.d32);
++ core_if->op_state = A_SUSPEND;
++ }
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ /* Suspend the Phy Clock */
++ {
++ union pcgcctl_data pcgcctl = {.d32 = 0 };
++ pcgcctl.b.stoppclk = 1;
++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
++ }
++
++ /*
++ * For HNP the bus must be suspended for at
++ * least 200ms.
++ */
++ if (hcd->self.b_hnp_enable)
++ mdelay(200);
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_RESET:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_RESET\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ /* When B-Host the Port reset bit is set in
++ * the Start HCD Callback function, so that
++ * the reset is started within 1ms of the HNP
++ * success interrupt. */
++ if (!hcd->self.is_b_host) {
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0,
++ hprt0.d32);
++ }
++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
++ mdelay(60);
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++
++#ifdef DWC_HS_ELECT_TST
++ case USB_PORT_FEAT_TEST:
++ t = (_wIndex >> 8); /* MSB wIndex USB */
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
++ warn("USB_PORT_FEAT_TEST %d\n", t);
++ if (t < 6) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prttstctl = t;
++ dwc_write_reg32(core_if->host_if->hprt0,
++ hprt0.d32);
++ } else {
++ /* Setup global vars with reg
++ * addresses (quick and dirty hack,
++ * should be cleaned up)
++ */
++ global_regs = core_if->core_global_regs;
++ hc_global_regs =
++ core_if->host_if->host_global_regs;
++ hc_regs =
++ (struct dwc_otg_hc_regs *) ((char *)
++ global_regs +
++ 0x500);
++ data_fifo =
++ (uint32_t *) ((char *)global_regs +
++ 0x1000);
++
++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts
++ * while we muck with the
++ * hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk,
++ 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive suspend on the root port */
++ hprt0.d32 =
++ dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0,
++ hprt0.d32);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive resume on the root port */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 0;
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0,
++ hprt0.d32);
++ mdelay(100);
++
++ /* Clear the resume bit */
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0,
++ hprt0.d32);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk,
++ gintmsk.d32);
++ } else if (t == 7) {
++ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ dwc_read_reg32(&global_regs->gintmsk);
++
++ /*
++ * Disable all interrupts
++ * while we muck with the
++ * hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk,
++ 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /*
++ * 15 second delay so nothing
++ * else happens for awhile.
++ */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk,
++ gintmsk.d32);
++ } else if (t == 8) {
++ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ dwc_read_reg32(&global_regs->gintmsk);
++
++ /*
++ * Disable all interrupts
++ * while we muck with the
++ * hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk,
++ 0);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Send the In and Ack packets */
++ do_in_ack();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk,
++ gintmsk.d32);
++ }
++ }
++ break;
++#endif /* DWC_HS_ELECT_TST */
++
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
++ /* Not supported */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "SetPortFeature request %xh "
++ "unknown or unsupported\n", _wValue);
++ break;
++ }
++ break;
++ default:
++error:
++ retval = -EINVAL;
++ DWC_WARN("DWC OTG HCD - Unknown hub control request type or "
++ "invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
++ _typeReq, _wIndex, _wValue);
++ break;
++ }
++
++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++ return retval;
++}
++
++/**
++ * Assigns transactions from a QTD to a free host channel and initializes the
++ * host channel to perform the transactions. The host channel is removed from
++ * the free list.
++ *
++ * @hcd: The HCD state structure.
++ * @_qh: Transactions from the first QTD for this QH are selected and
++ * assigned to a free host channel.
++ */
++static void assign_and_init_hc(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *_qh)
++{
++ struct dwc_hc *hc;
++ struct dwc_otg_qtd *qtd;
++ struct urb *urb;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, _qh);
++
++ hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry);
++
++ /* Remove the host channel from the free list. */
++ list_del_init(&hc->hc_list_entry);
++
++ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd,
++ qtd_list_entry);
++ urb = qtd->urb;
++ _qh->channel = hc;
++ _qh->qtd_in_process = qtd;
++
++ /*
++ * Use usb_pipedevice to determine device address. This address is
++ * 0 before the SET_ADDRESS command and the correct address afterward.
++ */
++ hc->dev_addr = usb_pipedevice(urb->pipe);
++ hc->ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (urb->dev->speed == USB_SPEED_LOW)
++ hc->speed = DWC_OTG_EP_SPEED_LOW;
++ else if (urb->dev->speed == USB_SPEED_FULL)
++ hc->speed = DWC_OTG_EP_SPEED_FULL;
++ else
++ hc->speed = DWC_OTG_EP_SPEED_HIGH;
++
++ hc->max_packet = dwc_max_packet(_qh->maxp);
++
++ hc->xfer_started = 0;
++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
++ hc->error_state = (qtd->error_count > 0);
++ hc->halt_on_queue = 0;
++ hc->halt_pending = 0;
++ hc->requests = 0;
++
++ /*
++ * The following values may be modified in the transfer type section
++ * below. The xfer_len value may be reduced when the transfer is
++ * started to accommodate the max widths of the XferSize and PktCnt
++ * fields in the HCTSIZn register.
++ */
++ hc->do_ping = _qh->ping_state;
++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
++ hc->data_pid_start = _qh->data_toggle;
++ hc->multi_count = 1;
++
++ if (hcd->core_if->dma_enable) {
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++ const uint64_t USBN_DMA0_INB_CHN0 =
++ CVMX_USBNX_DMA0_INB_CHN0(hcd->core_if->usb_num);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++ hc->xfer_buff =
++ (uint8_t *) (unsigned long)urb->transfer_dma +
++ urb->actual_length;
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++ /* Octeon uses external DMA */
++ wmb();
++ cvmx_write_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8,
++ (unsigned long)hc->xfer_buff);
++ cvmx_read_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8);
++ DWC_DEBUGPL(DBG_HCDV,
++ "IN: hc->hc_num = %d, hc->xfer_buff = %p\n",
++ hc->hc_num, hc->xfer_buff);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++ } else {
++ hc->xfer_buff =
++ (uint8_t *) urb->transfer_buffer + urb->actual_length;
++ }
++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
++ hc->xfer_count = 0;
++
++ /*
++ * Set the split attributes
++ */
++ hc->do_split = 0;
++ if (_qh->do_split) {
++ hc->do_split = 1;
++ hc->xact_pos = qtd->isoc_split_pos;
++ hc->complete_split = qtd->complete_split;
++ hc->hub_addr = urb->dev->tt->hub->devnum;
++ hc->port_addr = urb->dev->ttport;
++ }
++
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
++ hc->do_ping = 0;
++ hc->ep_is_in = 0;
++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff =
++ (uint8_t *) (unsigned long)urb->setup_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *) urb->setup_packet;
++ }
++ hc->xfer_len = 8;
++ break;
++ case DWC_OTG_CONTROL_DATA:
++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
++ hc->data_pid_start = qtd->data_toggle;
++ break;
++ case DWC_OTG_CONTROL_STATUS:
++ /*
++ * Direction is opposite of data direction or IN if no
++ * data.
++ */
++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
++ if (urb->transfer_buffer_length == 0) {
++ hc->ep_is_in = 1;
++ } else {
++ hc->ep_is_in =
++ (usb_pipein(urb->pipe) != USB_DIR_IN);
++ }
++ if (hc->ep_is_in)
++ hc->do_ping = 0;
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ hc->xfer_len = 0;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff =
++ (uint8_t *) (unsigned long)hcd->
++ status_buf_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *) hcd->status_buf;
++ }
++ break;
++ }
++ break;
++ case PIPE_BULK:
++ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
++ break;
++ case PIPE_INTERRUPT:
++ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ struct usb_iso_packet_descriptor *frame_desc;
++ frame_desc =
++ &urb->iso_frame_desc[qtd->isoc_frame_index];
++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff =
++ (uint8_t *) (unsigned long)urb->
++ transfer_dma;
++ } else {
++ hc->xfer_buff =
++ (uint8_t *) urb->transfer_buffer;
++ }
++ hc->xfer_buff +=
++ frame_desc->offset + qtd->isoc_split_offset;
++ hc->xfer_len =
++ frame_desc->length - qtd->isoc_split_offset;
++
++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ if (hc->xfer_len <= 188) {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ } else {
++ hc->xact_pos =
++ DWC_HCSPLIT_XACTPOS_BEGIN;
++ }
++ }
++ }
++ break;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This value may be modified when the transfer is started to
++ * reflect the actual transfer length.
++ */
++ hc->multi_count = dwc_hb_mult(_qh->maxp);
++ }
++
++ dwc_otg_hc_init(hcd->core_if, hc);
++ hc->qh = _qh;
++}
++
++/**
++ * This function selects transactions from the HCD transfer schedule and
++ * assigns them to available host channels. It is called from HCD interrupt
++ * handler functions.
++ *
++ * @hcd: The HCD state structure.
++ *
++ * Returns The types of new transactions that were assigned to host channels.
++ */
++enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct dwc_otg_hcd
++ *hcd)
++{
++ struct list_head *qh_ptr;
++ struct dwc_otg_qh *qh;
++ int num_channels;
++ enum dwc_otg_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE;
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
++#endif
++
++ /* Process entries in the periodic ready list. */
++ qh_ptr = hcd->periodic_sched_ready.next;
++ while (qh_ptr != &hcd->periodic_sched_ready &&
++ !list_empty(&hcd->free_hc_list)) {
++
++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the periodic ready schedule to the
++ * periodic assigned schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
++
++ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
++ }
++
++ /*
++ * Process entries in the inactive portion of the non-periodic
++ * schedule. Some free host channels may not be used if they are
++ * reserved for periodic transfers.
++ */
++ qh_ptr = hcd->non_periodic_sched_inactive.next;
++ num_channels = hcd->core_if->core_params->host_channels;
++ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
++ (hcd->non_periodic_channels <
++ num_channels - hcd->periodic_channels) &&
++ !list_empty(&hcd->free_hc_list)) {
++
++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the non-periodic inactive schedule to the
++ * non-periodic active schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
++
++ if (ret_val == DWC_OTG_TRANSACTION_NONE)
++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
++ else
++ ret_val = DWC_OTG_TRANSACTION_ALL;
++
++ hcd->non_periodic_channels++;
++ }
++
++ return ret_val;
++}
++
++/**
++ * Attempts to queue a single transaction request for a host channel
++ * associated with either a periodic or non-periodic transfer. This function
++ * assumes that there is space available in the appropriate request queue. For
++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
++ * is available in the appropriate Tx FIFO.
++ *
++ * @hcd: The HCD state structure.
++ * @_hc: Host channel descriptor associated with either a periodic or
++ * non-periodic transfer.
++ * @_fifo_dwords_avail: Number of DWORDs available in the periodic Tx
++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
++ * transfers.
++ *
++ * Returns 1 if a request is queued and more requests may be needed to
++ * complete the transfer, 0 if no more requests are required for this
++ * transfer, -1 if there is insufficient space in the Tx FIFO.
++ */
++static int queue_transaction(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *_hc, uint16_t _fifo_dwords_avail)
++{
++ int retval;
++
++ if (hcd->core_if->dma_enable) {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++ _hc->qh->ping_state = 0;
++ }
++ retval = 0;
++ } else if (_hc->halt_pending) {
++ /* Don't queue a request if the channel has been halted. */
++ retval = 0;
++ } else if (_hc->halt_on_queue) {
++ dwc_otg_hc_halt(hcd->core_if, _hc, _hc->halt_status);
++ retval = 0;
++ } else if (_hc->do_ping) {
++ if (!_hc->xfer_started)
++ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++ retval = 0;
++ } else if (!_hc->ep_is_in ||
++ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++ retval = 1;
++ } else {
++ retval =
++ dwc_otg_hc_continue_transfer(hcd->core_if,
++ _hc);
++ }
++ } else {
++ retval = -1;
++ }
++ } else {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++ retval = 1;
++ } else {
++ retval =
++ dwc_otg_hc_continue_transfer(hcd->core_if, _hc);
++ }
++ }
++
++ return retval;
++}
++
++/**
++ * Processes active non-periodic channels and queues transactions for these
++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
++ * FIFO Empty interrupt is enabled if there are more transactions to queue as
++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
++ * FIFO Empty interrupt is disabled.
++ */
++static void process_non_periodic_channels(struct dwc_otg_hcd *hcd)
++{
++ union gnptxsts_data tx_status;
++ struct list_head *orig_qh_ptr;
++ struct dwc_otg_qh *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++ int more_to_do = 0;
++
++ struct dwc_otg_core_global_regs *global_regs =
++ hcd->core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ /*
++ * Keep track of the starting point. Skip over the start-of-list
++ * entry.
++ */
++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++
++ orig_qh_ptr = hcd->non_periodic_qh_ptr;
++
++ /*
++ * Process once through the active list or until no more space is
++ * available in the request queue or the Tx FIFO.
++ */
++ do {
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (!hcd->core_if->dma_enable
++ && tx_status.b.nptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_otg_qh,
++ qh_list_entry);
++ status =
++ queue_transaction(hcd, qh->channel,
++ tx_status.b.nptxfspcavail);
++
++ if (status > 0) {
++ more_to_do = 1;
++ } else if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /* Advance to next QH, skipping start-of-list entry. */
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ if (hcd->non_periodic_qh_ptr ==
++ &hcd->non_periodic_sched_active) {
++ hcd->non_periodic_qh_ptr =
++ hcd->non_periodic_qh_ptr->next;
++ }
++
++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
++
++ if (!hcd->core_if->dma_enable) {
++ union gintmsk_data intr_mask = {.d32 = 0 };
++ intr_mask.b.nptxfempty = 1;
++
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ if (no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the non-periodic
++ * Tx FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0,
++ intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
++ 0);
++ if (more_to_do) {
++ /* When not using DMA, many USB
++ * devices cause excessive loads on
++ * the serial bus simply because they
++ * continuously poll the device for
++ * status. Here we use the timer to
++ * rate limit how fast we can get the
++ * the NP TX fifo empty interrupt. We
++ * leave the interrupt disable until
++ * the timer fires and reenables it */
++
++ /* We'll rate limit the interrupt at
++ * 20000 per second. Making this
++ * faster improves USB performance but
++ * uses more CPU */
++ hrtimer_start_range_ns(&hcd->poll_rate_limit,
++ ktime_set(0, 50000),
++ 5000, HRTIMER_MODE_REL);
++ }
++ }
++ }
++}
++
++/**
++ * Processes periodic channels for the next frame and queues transactions for
++ * these channels to the DWC_otg controller. After queueing transactions, the
++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
++ * to queue as Periodic Tx FIFO or request queue space becomes available.
++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
++ */
++static void process_periodic_channels(struct dwc_otg_hcd *hcd)
++{
++ union hptxsts_data tx_status;
++ struct list_head *qh_ptr;
++ struct dwc_otg_qh *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++
++ struct dwc_otg_host_global_regs *host_regs;
++ host_regs = hcd->core_if->host_if->host_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++
++ qh_ptr = hcd->periodic_sched_assigned.next;
++ while (qh_ptr != &hcd->periodic_sched_assigned) {
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ if (tx_status.b.ptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++
++ /*
++ * Set a flag if we're queuing high-bandwidth in slave mode.
++ * The flag prevents any halts to get into the request queue in
++ * the middle of multiple high-bandwidth packets getting queued.
++ */
++ if ((!hcd->core_if->dma_enable) &&
++ (qh->channel->multi_count > 1)) {
++ hcd->core_if->queuing_high_bandwidth = 1;
++ }
++
++ status =
++ queue_transaction(hcd, qh->channel,
++ tx_status.b.ptxfspcavail);
++ if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /*
++ * In Slave mode, stay on the current transfer until there is
++ * nothing more to do or the high-bandwidth request count is
++ * reached. In DMA mode, only need to queue one request. The
++ * controller automatically handles multiple packets for
++ * high-bandwidth transfers.
++ */
++ if (hcd->core_if->dma_enable ||
++ (status == 0 ||
++ qh->channel->requests == qh->channel->multi_count)) {
++ qh_ptr = qh_ptr->next;
++ /*
++ * Move the QH from the periodic assigned schedule to
++ * the periodic queued schedule.
++ */
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_queued);
++
++ /* done queuing high bandwidth */
++ hcd->core_if->queuing_high_bandwidth = 0;
++ }
++ }
++
++ if (!hcd->core_if->dma_enable) {
++ struct dwc_otg_core_global_regs *global_regs;
++ union gintmsk_data intr_mask = {.d32 = 0 };
++
++ global_regs = hcd->core_if->core_global_regs;
++ intr_mask.b.ptxfempty = 1;
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++ if (!(list_empty(&hcd->periodic_sched_assigned)) ||
++ no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the periodic Tx
++ * FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0,
++ intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
++ 0);
++ }
++ }
++}
++
++/**
++ * This function processes the currently active host channels and queues
++ * transactions for these channels to the DWC_otg controller. It is called
++ * from HCD interrupt handler functions.
++ *
++ * @hcd: The HCD state structure.
++ * @_tr_type: The type(s) of transactions to queue (non-periodic,
++ * periodic, or both).
++ */
++void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
++ enum dwc_otg_transaction_type _tr_type)
++{
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
++#endif
++ /* Process host channels associated with periodic transfers. */
++ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
++ _tr_type == DWC_OTG_TRANSACTION_ALL) &&
++ !list_empty(&hcd->periodic_sched_assigned)) {
++
++ process_periodic_channels(hcd);
++ }
++
++ /* Process host channels associated with non-periodic transfers. */
++ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
++ _tr_type == DWC_OTG_TRANSACTION_ALL)) {
++ if (!list_empty(&hcd->non_periodic_sched_active)) {
++ process_non_periodic_channels(hcd);
++ } else {
++ /*
++ * Ensure NP Tx FIFO empty interrupt is disabled when
++ * there are no non-periodic transfers to process.
++ */
++ union gintmsk_data gintmsk = {.d32 = 0 };
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&hcd->core_if->core_global_regs->
++ gintmsk, gintmsk.d32, 0);
++ }
++ }
++}
++
++/**
++ * Sets the final status of an URB and returns it to the device driver. Any
++ * required cleanup of the URB is performed.
++ */
++void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
++ int status)
++{
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
++ __func__, urb, usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d status: %d\n",
++ i, urb->iso_frame_desc[i].status);
++ }
++ }
++ }
++#endif
++
++ urb->status = status;
++ urb->hcpriv = NULL;
++
++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
++}
++
++/*
++ * Returns the Queue Head for an URB.
++ */
++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb)
++{
++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
++ return ep->hcpriv;
++}
++
++#ifdef DEBUG
++void dwc_print_setup_data(uint8_t *setup)
++{
++ int i;
++ if (CHK_DEBUG_LEVEL(DBG_HCD)) {
++ DWC_PRINT("Setup Data = MSB ");
++ for (i = 7; i >= 0; i--)
++ DWC_PRINT("%02x ", setup[i]);
++ DWC_PRINT("\n");
++ DWC_PRINT(" bmRequestType Tranfer = %s\n",
++ (setup[0] & 0x80) ? "Device-to-Host" :
++ "Host-to-Device");
++ DWC_PRINT(" bmRequestType Type = ");
++ switch ((setup[0] & 0x60) >> 5) {
++ case 0:
++ DWC_PRINT("Standard\n");
++ break;
++ case 1:
++ DWC_PRINT("Class\n");
++ break;
++ case 2:
++ DWC_PRINT("Vendor\n");
++ break;
++ case 3:
++ DWC_PRINT("Reserved\n");
++ break;
++ }
++ DWC_PRINT(" bmRequestType Recipient = ");
++ switch (setup[0] & 0x1f) {
++ case 0:
++ DWC_PRINT("Device\n");
++ break;
++ case 1:
++ DWC_PRINT("Interface\n");
++ break;
++ case 2:
++ DWC_PRINT("Endpoint\n");
++ break;
++ case 3:
++ DWC_PRINT("Other\n");
++ break;
++ default:
++ DWC_PRINT("Reserved\n");
++ break;
++ }
++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *) &setup[2]));
++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *) &setup[4]));
++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *) &setup[6]));
++ }
++}
++#endif
++
++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++ DWC_PRINT("Frame remaining at SOF:\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->frrem_samples, hcd->frrem_accum,
++ (hcd->frrem_samples > 0) ?
++ hcd->frrem_accum / hcd->frrem_samples : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->core_if->hfnum_7_samples,
++ hcd->core_if->hfnum_7_frrem_accum,
++ (hcd->core_if->hfnum_7_samples >
++ 0) ? hcd->core_if->hfnum_7_frrem_accum /
++ hcd->core_if->hfnum_7_samples : 0);
++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->core_if->hfnum_0_samples,
++ hcd->core_if->hfnum_0_frrem_accum,
++ (hcd->core_if->hfnum_0_samples >
++ 0) ? hcd->core_if->hfnum_0_frrem_accum /
++ hcd->core_if->hfnum_0_samples : 0);
++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->core_if->hfnum_other_samples,
++ hcd->core_if->hfnum_other_frrem_accum,
++ (hcd->core_if->hfnum_other_samples >
++ 0) ? hcd->core_if->hfnum_other_frrem_accum /
++ hcd->core_if->hfnum_other_samples : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a,
++ (hcd->hfnum_7_samples_a > 0) ?
++ hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0);
++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a,
++ (hcd->hfnum_0_samples_a > 0) ?
++ hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0);
++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a,
++ (hcd->hfnum_other_samples_a > 0) ?
++ hcd->hfnum_other_frrem_accum_a /
++ hcd->hfnum_other_samples_a : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b,
++ (hcd->hfnum_7_samples_b > 0) ?
++ hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0);
++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b,
++ (hcd->hfnum_0_samples_b > 0) ?
++ hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0);
++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n",
++ hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b,
++ (hcd->hfnum_other_samples_b > 0) ?
++ hcd->hfnum_other_frrem_accum_b /
++ hcd->hfnum_other_samples_b : 0);
++#endif
++}
++
++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++ int num_channels;
++ int i;
++ union gnptxsts_data np_tx_status;
++ union hptxsts_data p_tx_status;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ DWC_PRINT("\n");
++ DWC_PRINT
++ ("************************************************************\n");
++ DWC_PRINT("HCD State:\n");
++ DWC_PRINT(" Num channels: %d\n", num_channels);
++ for (i = 0; i < num_channels; i++) {
++ struct dwc_hc *hc = hcd->hc_ptr_array[i];
++ DWC_PRINT(" Channel %d:\n", i);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" speed: %d\n", hc->speed);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" do_split: %d\n", hc->do_split);
++ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
++ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
++ DWC_PRINT(" requests: %d\n", hc->requests);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ if (hc->xfer_started) {
++ union hfnum_data hfnum;
++ union hcchar_data hcchar;
++ union hctsiz_data hctsiz;
++ union hcint_data hcint;
++ union hcintmsk_data hcintmsk;
++ hfnum.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->
++ host_global_regs->hfnum);
++ hcchar.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++ hcchar);
++ hctsiz.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++ hctsiz);
++ hcint.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++ hcint);
++ hcintmsk.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++ hcintmsk);
++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
++ }
++ if (hc->xfer_started && (hc->qh != NULL)
++ && (hc->qh->qtd_in_process != NULL)) {
++ struct dwc_otg_qtd *qtd;
++ struct urb *urb;
++ qtd = hc->qh->qtd_in_process;
++ urb = qtd->urb;
++ DWC_PRINT(" URB Info:\n");
++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
++ if (urb != NULL) {
++ DWC_PRINT(" Dev: %d, EP: %d %s\n",
++ usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT");
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe,
++ usb_pipeout(urb->
++ pipe)));
++ DWC_PRINT(" transfer_buffer: %p\n",
++ urb->transfer_buffer);
++ DWC_PRINT(" transfer_dma: %p\n",
++ (void *)urb->transfer_dma);
++ DWC_PRINT(" transfer_buffer_length: %d\n",
++ urb->transfer_buffer_length);
++ DWC_PRINT(" actual_length: %d\n",
++ urb->actual_length);
++ }
++ }
++ }
++ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
++ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
++ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
++ np_tx_status.d32 =
++ dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n",
++ np_tx_status.b.nptxqspcavail);
++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n",
++ np_tx_status.b.nptxfspcavail);
++ p_tx_status.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n",
++ p_tx_status.b.ptxqspcavail);
++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
++ dwc_otg_hcd_dump_frrem(hcd);
++ dwc_otg_dump_global_registers(hcd->core_if);
++ dwc_otg_dump_host_registers(hcd->core_if);
++ DWC_PRINT
++ ("************************************************************\n");
++ DWC_PRINT("\n");
++#endif
++}
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.h b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+new file mode 100644
+index 0000000..6dcf1f5
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+@@ -0,0 +1,661 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#if !defined(__DWC_HCD_H__)
++#define __DWC_HCD_H__
++
++#include <linux/list.h>
++#include <linux/usb.h>
++#include <linux/hrtimer.h>
++
++#include <../drivers/usb/core/hcd.h>
++
++struct dwc_otg_device;
++
++#include "dwc_otg_cil.h"
++
++/**
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Host Contoller Driver (HCD).
++ *
++ * The Host Controller Driver (HCD) is responsible for translating requests
++ * from the USB Driver into the appropriate actions on the DWC_otg controller.
++ * It isolates the USBD from the specifics of the controller by providing an
++ * API to the USBD.
++ */
++
++/**
++ * Phases for control transfers.
++ */
++enum dwc_otg_control_phase {
++ DWC_OTG_CONTROL_SETUP,
++ DWC_OTG_CONTROL_DATA,
++ DWC_OTG_CONTROL_STATUS
++};
++
++/** Transaction types. */
++enum dwc_otg_transaction_type {
++ DWC_OTG_TRANSACTION_NONE,
++ DWC_OTG_TRANSACTION_PERIODIC,
++ DWC_OTG_TRANSACTION_NON_PERIODIC,
++ DWC_OTG_TRANSACTION_ALL
++};
++
++struct dwc_otg_qh;
++
++/*
++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
++ * interrupt, or isochronous transfer. A single QTD is created for each URB
++ * (of one of these types) submitted to the HCD. The transfer associated with
++ * a QTD may require one or multiple transactions.
++ *
++ * A QTD is linked to a Queue Head, which is entered in either the
++ * non-periodic or periodic schedule for execution. When a QTD is chosen for
++ * execution, some or all of its transactions may be executed. After
++ * execution, the state of the QTD is updated. The QTD may be retired if all
++ * its transactions are complete or if an error occurred. Otherwise, it
++ * remains in the schedule so more transactions can be executed later.
++ */
++struct dwc_otg_qtd {
++ /*
++ * Determines the PID of the next data packet for the data phase of
++ * control transfers. Ignored for other transfer types.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Current phase for control transfers (Setup, Data, or Status). */
++ enum dwc_otg_control_phase control_phase;
++
++ /** Keep track of the current split type
++ * for FS/LS endpoints on a HS Hub */
++ uint8_t complete_split;
++
++ /** How many bytes transferred during SSPLIT OUT */
++ uint32_t ssplit_out_xfer_count;
++
++ /**
++ * Holds the number of bus errors that have occurred for a transaction
++ * within this transfer.
++ */
++ uint8_t error_count;
++
++ /**
++ * Index of the next frame descriptor for an isochronous transfer. A
++ * frame descriptor describes the buffer position and length of the
++ * data to be transferred in the next scheduled (micro)frame of an
++ * isochronous transfer. It also holds status for that transaction.
++ * The frame index starts at 0.
++ */
++ int isoc_frame_index;
++
++ /** Position of the ISOC split on full/low speed */
++ uint8_t isoc_split_pos;
++
++ /** Position of the ISOC split in the buffer for the current frame */
++ uint16_t isoc_split_offset;
++
++ /** URB for this transfer */
++ struct urb *urb;
++
++ /* The queue head for this transfer. */
++ struct dwc_otg_qh *qh;
++
++ /** This list of QTDs */
++ struct list_head qtd_list_entry;
++
++};
++
++/**
++ * A Queue Head (QH) holds the static characteristics of an endpoint and
++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
++ * be entered in either the non-periodic or periodic schedule.
++ */
++struct dwc_otg_qh {
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - USB_ENDPOINT_XFER_CONTROL
++ * - USB_ENDPOINT_XFER_ISOC
++ * - USB_ENDPOINT_XFER_BULK
++ * - USB_ENDPOINT_XFER_INT
++ */
++ uint8_t ep_type;
++ uint8_t ep_is_in;
++
++ /** wMaxPacketSize Field of Endpoint Descriptor. */
++ uint16_t maxp;
++
++ /**
++ * Determines the PID of the next data packet for non-control
++ * transfers. Ignored for control transfers.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Ping state if 1. */
++ uint8_t ping_state;
++
++ /**
++ * List of QTDs for this QH.
++ */
++ struct list_head qtd_list;
++
++ /** Host channel currently processing transfers for this QH. */
++ struct dwc_hc *channel;
++
++ /** QTD currently assigned to a host channel for this QH. */
++ struct dwc_otg_qtd *qtd_in_process;
++
++ /** Full/low speed endpoint on high-speed hub requires split. */
++ uint8_t do_split;
++
++ /** @name Periodic schedule information */
++ /** @{ */
++
++ /** Bandwidth in microseconds per (micro)frame. */
++ uint8_t usecs;
++
++ /** Interval between transfers in (micro)frames. */
++ uint16_t interval;
++
++ /**
++ * (micro)frame to initialize a periodic transfer. The transfer
++ * executes in the following (micro)frame.
++ */
++ uint16_t sched_frame;
++
++ /** (micro)frame at which last start split was initialized. */
++ uint16_t start_split_frame;
++
++ /** @} */
++
++ /** Entry for QH in either the periodic or non-periodic schedule. */
++ struct list_head qh_list_entry;
++};
++
++/**
++ * This structure holds the state of the HCD, including the non-periodic and
++ * periodic schedules.
++ */
++struct dwc_otg_hcd {
++
++ /** DWC OTG Core Interface Layer */
++ struct dwc_otg_core_if *core_if;
++
++ /** Internal DWC HCD Flags */
++ union dwc_otg_hcd_internal_flags {
++ uint32_t d32;
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:26;
++ unsigned port_over_current_change:1;
++ unsigned port_suspend_change:1;
++ unsigned port_enable_change:1;
++ unsigned port_reset_change:1;
++ unsigned port_connect_status:1;
++ unsigned port_connect_status_change:1;
++#else
++ unsigned port_connect_status_change:1;
++ unsigned port_connect_status:1;
++ unsigned port_reset_change:1;
++ unsigned port_enable_change:1;
++ unsigned port_suspend_change:1;
++ unsigned port_over_current_change:1;
++ unsigned reserved:26;
++#endif
++ } b;
++ } flags;
++
++ /**
++ * Inactive items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are not
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_inactive;
++
++ /**
++ * Active items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_active;
++
++ /**
++ * Pointer to the next Queue Head to process in the active
++ * non-periodic schedule.
++ */
++ struct list_head *non_periodic_qh_ptr;
++
++ /**
++ * Inactive items in the periodic schedule. This is a list of QHs for
++ * periodic transfers that are _not_ scheduled for the next frame.
++ * Each QH in the list has an interval counter that determines when it
++ * needs to be scheduled for execution. This scheduling mechanism
++ * allows only a simple calculation for periodic bandwidth used (i.e.
++ * must assume that all periodic transfers may need to execute in the
++ * same frame). However, it greatly simplifies scheduling and should
++ * be sufficient for the vast majority of OTG hosts, which need to
++ * connect to a small number of peripherals at one time.
++ *
++ * Items move from this list to periodic_sched_ready when the QH
++ * interval counter is 0 at SOF.
++ */
++ struct list_head periodic_sched_inactive;
++
++ /**
++ * List of periodic QHs that are ready for execution in the next
++ * frame, but have not yet been assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_assigned as host
++ * channels become available during the current frame.
++ */
++ struct list_head periodic_sched_ready;
++
++ /**
++ * List of periodic QHs to be executed in the next frame that are
++ * assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_queued as the
++ * transactions for the QH are queued to the DWC_otg controller.
++ */
++ struct list_head periodic_sched_assigned;
++
++ /**
++ * List of periodic QHs that have been queued for execution.
++ *
++ * Items move from this list to either periodic_sched_inactive or
++ * periodic_sched_ready when the channel associated with the transfer
++ * is released. If the interval for the QH is 1, the item moves to
++ * periodic_sched_ready because it must be rescheduled for the next
++ * frame. Otherwise, the item moves to periodic_sched_inactive.
++ */
++ struct list_head periodic_sched_queued;
++
++ /**
++ * Total bandwidth claimed so far for periodic transfers. This value
++ * is in microseconds per (micro)frame. The assumption is that all
++ * periodic transfers may occur in the same (micro)frame.
++ */
++ uint16_t periodic_usecs;
++
++ /**
++ * Frame number read from the core at SOF. The value ranges from 0 to
++ * DWC_HFNUM_MAX_FRNUM.
++ */
++ uint16_t frame_number;
++
++ /**
++ * Free host channels in the controller. This is a list of
++ * struct dwc_hc items.
++ */
++ struct list_head free_hc_list;
++
++ /**
++ * Number of host channels assigned to periodic transfers. Currently
++ * assuming that there is a dedicated host channel for each periodic
++ * transaction and at least one host channel available for
++ * non-periodic transactions.
++ */
++ int periodic_channels;
++
++ /**
++ * Number of host channels assigned to non-periodic transfers.
++ */
++ int non_periodic_channels;
++
++ /**
++ * Array of pointers to the host channel descriptors. Allows accessing
++ * a host channel descriptor given the host channel number. This is
++ * useful in interrupt handlers.
++ */
++ struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
++
++ /**
++ * Buffer to use for any data received during the status phase of a
++ * control transfer. Normally no data is transferred during the status
++ * phase. This buffer is used as a bit bucket.
++ */
++ uint8_t *status_buf;
++
++ /**
++ * DMA address for status_buf.
++ */
++ dma_addr_t status_buf_dma;
++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
++
++ /**
++ * Structure to allow starting the HCD in a non-interrupt context
++ * during an OTG role change.
++ */
++ struct work_struct start_work;
++
++ /**
++ * Connection timer. An OTG host must display a message if the device
++ * does not connect. Started when the VBus power is turned on via
++ * sysfs attribute "buspower".
++ */
++ struct timer_list conn_timer;
++
++ /* Tasket to do a reset */
++ struct tasklet_struct *reset_tasklet;
++
++ struct hrtimer poll_rate_limit;
++
++ spinlock_t global_lock;
++
++#ifdef DEBUG
++ uint32_t frrem_samples;
++ uint64_t frrem_accum;
++
++ uint32_t hfnum_7_samples_a;
++ uint64_t hfnum_7_frrem_accum_a;
++ uint32_t hfnum_0_samples_a;
++ uint64_t hfnum_0_frrem_accum_a;
++ uint32_t hfnum_other_samples_a;
++ uint64_t hfnum_other_frrem_accum_a;
++
++ uint32_t hfnum_7_samples_b;
++ uint64_t hfnum_7_frrem_accum_b;
++ uint32_t hfnum_0_samples_b;
++ uint64_t hfnum_0_frrem_accum_b;
++ uint32_t hfnum_other_samples_b;
++ uint64_t hfnum_other_frrem_accum_b;
++#endif
++
++};
++
++/** Gets the dwc_otg_hcd from a struct usb_hcd */
++static inline struct dwc_otg_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
++{
++ return (struct dwc_otg_hcd *)(hcd->hcd_priv);
++}
++
++/** Gets the struct usb_hcd that contains a struct dwc_otg_hcd. */
++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_otg_hcd
++ *dwc_otg_hcd)
++{
++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
++}
++
++/** @name HCD Create/Destroy Functions */
++/** @{ */
++extern int __init dwc_otg_hcd_init(struct device *_dev);
++extern void dwc_otg_hcd_remove(struct device *_dev);
++/** @} */
++
++/** @name Linux HC Driver API Functions */
++
++extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++ struct urb *urb, unsigned mem_flags);
++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
++ struct urb *urb, int status);
++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep);
++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf);
++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++ u16 typeReq,
++ u16 wValue,
++ u16 wIndex, char *buf, u16 wLength);
++
++
++/** @name Transaction Execution Functions */
++extern enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct
++ dwc_otg_hcd
++ *hcd);
++extern void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
++ enum dwc_otg_transaction_type tr_type);
++extern void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
++ int status);
++
++/** @name Interrupt Handler Functions */
++extern int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_disconnect_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
++ uint32_t num);
++extern int32_t dwc_otg_hcd_handle_session_req_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(struct dwc_otg_hcd
++ *dwc_otg_hcd);
++
++/** @name Schedule Queue Functions */
++
++/* Implemented in dwc_otg_hcd_queue.c */
++extern struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
++ struct urb *urb);
++extern void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++ struct urb *urb);
++extern void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh);
++extern int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
++extern void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
++extern void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd,
++ struct dwc_otg_qh *qh, int sched_csplit);
++
++/** Remove and free a QH */
++static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_otg_hcd *hcd,
++ struct dwc_otg_qh *qh)
++{
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ dwc_otg_hcd_qh_free(qh);
++}
++
++/** Allocates memory for a QH structure.
++ * Returns Returns the memory allocate or NULL on error. */
++static inline struct dwc_otg_qh *dwc_otg_hcd_qh_alloc(void)
++{
++ return kmalloc(sizeof(struct dwc_otg_qh), GFP_ATOMIC);
++}
++
++extern struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb);
++extern void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb);
++extern int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
++ struct dwc_otg_hcd *dwc_otg_hcd);
++
++/** Allocates memory for a QTD structure.
++ * Returns Returns the memory allocate or NULL on error. */
++static inline struct dwc_otg_qtd *dwc_otg_hcd_qtd_alloc(void)
++{
++ return kmalloc(sizeof(struct dwc_otg_qtd), GFP_ATOMIC);
++}
++
++/**
++ * Frees the memory for a QTD structure. QTD should already be removed from
++ * list.
++ * @qtd: QTD to free.
++ */
++static inline void dwc_otg_hcd_qtd_free(struct dwc_otg_qtd *qtd)
++{
++ kfree(qtd);
++}
++
++/**
++ * Removes a QTD from list.
++ * @qtd: QTD to remove from list.
++ */
++static inline void dwc_otg_hcd_qtd_remove(struct dwc_otg_qtd *qtd)
++{
++ list_del(&qtd->qtd_list_entry);
++}
++
++/** Remove and free a QTD */
++static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_otg_qtd *qtd)
++{
++ dwc_otg_hcd_qtd_remove(qtd);
++ dwc_otg_hcd_qtd_free(qtd);
++}
++
++/** @name Internal Functions */
++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb);
++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd);
++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd);
++
++/** Gets the usb_host_endpoint associated with an URB. */
++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
++{
++ struct usb_device *dev = urb->dev;
++ int ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (usb_pipein(urb->pipe))
++ return dev->ep_in[ep_num];
++ else
++ return dev->ep_out[ep_num];
++}
++
++/*
++ * Gets the endpoint number from a bEndpointAddress argument. The endpoint is
++ * qualified with its direction (possible 32 endpoints per device).
++ */
++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
++ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
++
++/** Gets the QH that contains the list_head */
++#define dwc_list_to_qh(_list_head_ptr_) \
++ (container_of(_list_head_ptr_, struct dwc_otg_qh, qh_list_entry))
++
++/** Gets the QTD that contains the list_head */
++#define dwc_list_to_qtd(_list_head_ptr_) \
++ (container_of(_list_head_ptr_, struct dwc_otg_qtd, qtd_list_entry))
++
++/** Check if QH is non-periodic */
++#define dwc_qh_is_non_per(_qh_ptr_) \
++ ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
++
++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
++
++/** Packet size for any kind of endpoint descriptor */
++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
++
++/**
++ * Returns true if frame1 is less than or equal to frame2. The comparison is
++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
++ * frame number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
++{
++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
++ (DWC_HFNUM_MAX_FRNUM >> 1);
++}
++
++/**
++ * Returns true if frame1 is greater than frame2. The comparison is done
++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
++ * number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
++{
++ return (frame1 != frame2) &&
++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
++ (DWC_HFNUM_MAX_FRNUM >> 1));
++}
++
++/**
++ * Increments frame by the amount specified by inc. The addition is done
++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
++ */
++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
++{
++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
++}
++
++static inline uint16_t dwc_full_frame_num(uint16_t frame)
++{
++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
++}
++
++static inline uint16_t dwc_micro_frame_num(uint16_t frame)
++{
++ return frame & 0x7;
++}
++
++#ifdef DEBUG
++/**
++ * Macro to sample the remaining PHY clocks left in the current frame. This
++ * may be used during debugging to determine the average time it takes to
++ * execute sections of code. There are two possible sample points, "a" and
++ * "b", so the letter argument must be one of these values.
++ *
++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
++ * example, "cat /sys/devices/lm0/hcd_frrem".
++ */
++#define dwc_sample_frrem(_hcd, _qh, _letter) \
++{ \
++ union hfnum_data hfnum; \
++ struct dwc_otg_qtd *qtd; \
++ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); \
++ if (usb_pipeint(qtd->urb->pipe) && qh->start_split_frame != 0 && !qtd->complete_split) { \
++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
++ switch (hfnum.b.frnum & 0x7) { \
++ case 7: \
++ _hcd->hfnum_7_samples_##_letter++; \
++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ case 0: \
++ _hcd->hfnum_0_samples_##_letter++; \
++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ default: \
++ _hcd->hfnum_other_samples_##_letter++; \
++ _hcd->hfnum_other_frrem_accum_##_letter += \
++ hfnum.b.frrem; \
++ break; \
++ } \
++ } \
++}
++#else
++#define dwc_sample_frrem(hcd, qh, letter)
++#endif
++#endif
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+new file mode 100644
+index 0000000..2c4266f
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+@@ -0,0 +1,1890 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++/*
++ * This file contains the implementation of the HCD Interrupt handlers.
++ */
++
++/* This function handles interrupts for the HCD. */
++int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++ int retval = 0;
++
++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++ union gintsts_data gintsts;
++#ifdef DEBUG
++ struct dwc_otg_core_global_regs *global_regs =
++ core_if->core_global_regs;
++#endif
++
++ /* Check if HOST Mode */
++ if (dwc_otg_is_host_mode(core_if)) {
++ gintsts.d32 = dwc_otg_read_core_intr(core_if);
++ if (!gintsts.d32)
++ return 0;
++#ifdef DEBUG
++ /* Don't print debug message in the interrupt handler on SOF */
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected "
++ "gintsts&gintmsk=0x%08x\n",
++ gintsts.d32);
++#endif
++
++ if (gintsts.b.sofintr)
++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
++
++ if (gintsts.b.rxstsqlvl)
++ retval |=
++ dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
++
++ if (gintsts.b.nptxfempty)
++ retval |=
++ dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
++
++ if (gintsts.b.i2cintr)
++ ;/** @todo Implement i2cintr handler. */
++
++ if (gintsts.b.portintr)
++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
++
++ if (gintsts.b.hcintr)
++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
++
++ if (gintsts.b.ptxfempty) {
++ retval |=
++ dwc_otg_hcd_handle_perio_tx_fifo_empty_intr
++ (dwc_otg_hcd);
++ }
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ {
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD Finished Servicing Interrupts\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintmsk));
++ }
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++ }
++
++ return retval;
++}
++
++#ifdef DWC_TRACK_MISSED_SOFS
++#warning Compiling code to track missed SOFs
++#define FRAME_NUM_ARRAY_SIZE 1000
++/**
++ * This function is for debug only.
++ */
++static inline void track_missed_sofs(uint16_t _curr_frame_number)
++{
++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static int frame_num_idx;
++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
++ static int dumped_frame_num_array;
++
++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
++ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) !=
++ _curr_frame_number)) {
++ frame_num_array[frame_num_idx] = _curr_frame_number;
++ last_frame_num_array[frame_num_idx++] = last_frame_num;
++ }
++ } else if (!dumped_frame_num_array) {
++ int i;
++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
++ printk(KERN_EMERG USB_DWC "----- ----------\n");
++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
++ frame_num_array[i], last_frame_num_array[i]);
++ }
++ dumped_frame_num_array = 1;
++ }
++ last_frame_num = _curr_frame_number;
++}
++#endif
++
++/**
++ * Handles the start-of-frame interrupt in host mode. Non-periodic
++ * transactions may be queued to the DWC_otg controller for the current
++ * (micro)frame. Periodic transactions may be queued to the controller for the
++ * next (micro)frame.
++ */
++int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *hcd)
++{
++ union hfnum_data hfnum;
++ struct list_head *qh_entry;
++ struct dwc_otg_qh *qh;
++ enum dwc_otg_transaction_type tr_type;
++ union gintsts_data gintsts = {.d32 = 0 };
++
++ hfnum.d32 =
++ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
++#endif
++
++ hcd->frame_number = hfnum.b.frnum;
++
++#ifdef DEBUG
++ hcd->frrem_accum += hfnum.b.frrem;
++ hcd->frrem_samples++;
++#endif
++
++#ifdef DWC_TRACK_MISSED_SOFS
++ track_missed_sofs(hcd->frame_number);
++#endif
++
++ /* Determine whether any periodic QHs should be executed. */
++ qh_entry = hcd->periodic_sched_inactive.next;
++ while (qh_entry != &hcd->periodic_sched_inactive) {
++ qh = list_entry(qh_entry, struct dwc_otg_qh, qh_list_entry);
++ qh_entry = qh_entry->next;
++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
++ /*
++ * Move QH to the ready list to be executed next
++ * (micro)frame.
++ */
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_ready);
++ }
++ }
++
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ } else if (list_empty(&hcd->periodic_sched_inactive) &&
++ list_empty(&hcd->periodic_sched_ready) &&
++ list_empty(&hcd->periodic_sched_assigned) &&
++ list_empty(&hcd->periodic_sched_queued)) {
++ /*
++ * We don't have USB data to send. Unfortunately the
++ * Synopsis block continues to generate interrupts at
++ * about 8k/sec. In order not waste time on these
++ * useless interrupts, we're going to disable the SOF
++ * interrupt. It will be re-enabled when a new packet
++ * is enqueued in dwc_otg_hcd_urb_enqueue()
++ */
++ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
++ DWC_SOF_INTR_MASK, 0);
++ }
++
++ /* Clear interrupt */
++ gintsts.b.sofintr = 1;
++ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/* Handles the Rx Status Queue Level Interrupt, which indicates that
++ * there is at least one packet in the Rx FIFO. The packets are moved
++ * from the FIFO to memory if the DWC_otg controller is operating in
++ * Slave mode. */
++int32_t
++dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++ union host_grxsts_data grxsts;
++ struct dwc_hc *hc = NULL;
++
++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
++
++ grxsts.d32 =
++ dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
++
++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
++
++ /* Packet Status */
++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid,
++ hc->data_pid_start);
++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer. */
++ if (grxsts.b.bcnt > 0) {
++ dwc_otg_read_packet(dwc_otg_hcd->core_if,
++ hc->xfer_buff, grxsts.b.bcnt);
++
++ /* Update the HC fields for the next packet received. */
++ hc->xfer_count += grxsts.b.bcnt;
++ hc->xfer_buff += grxsts.b.bcnt;
++ }
++
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
++ case DWC_GRXSTS_PKTSTS_CH_HALTED:
++ /* Handled in interrupt, just ignore data */
++ break;
++ default:
++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n",
++ grxsts.b.pktsts);
++ break;
++ }
++
++ return 1;
++}
++
++/* This interrupt occurs when the non-periodic Tx FIFO is
++ * half-empty. More data packets may be written to the FIFO for OUT
++ * transfers. More requests may be written to the non-periodic request
++ * queue for IN transfers. This interrupt is enabled only in Slave
++ * mode. */
++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd *
++ dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_NON_PERIODIC);
++ return 1;
++}
++
++/* This interrupt occurs when the periodic Tx FIFO is half-empty. More
++ * data packets may be written to the FIFO for OUT transfers. More
++ * requests may be written to the periodic request queue for IN
++ * transfers. This interrupt is enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd *
++ dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_PERIODIC);
++ return 1;
++}
++
++/* There are multiple conditions that can cause a port interrupt. This
++ * function determines which interrupt conditions have occurred and
++ * handles them appropriately. */
++int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++ int retval = 0;
++ union hprt0_data hprt0;
++ union hprt0_data hprt0_modify;
++
++ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++ hprt0_modify.d32 =
++ dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++
++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
++ * GINTSTS */
++
++ hprt0_modify.b.prtena = 0;
++ hprt0_modify.b.prtconndet = 0;
++ hprt0_modify.b.prtenchng = 0;
++ hprt0_modify.b.prtovrcurrchng = 0;
++
++ /* Port Connect Detected
++ * Set flag and clear if detected */
++ if (hprt0.b.prtconndet) {
++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
++ "Port Connect Detected--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 1;
++ hprt0_modify.b.prtconndet = 1;
++
++ /* B-Device has connected, Delete the connection timer. */
++ del_timer(&dwc_otg_hcd->conn_timer);
++
++ /* The Hub driver asserts a reset when it sees port connect
++ * status change flag */
++ retval |= 1;
++ }
++
++ /* Port Enable Changed
++ * Clear if detected - Set internal flag if disabled */
++ if (hprt0.b.prtenchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Enable Changed--\n", hprt0.d32);
++ hprt0_modify.b.prtenchng = 1;
++ if (hprt0.b.prtena == 1) {
++ int do_reset = 0;
++ struct dwc_otg_core_params *params =
++ dwc_otg_hcd->core_if->core_params;
++ struct dwc_otg_core_global_regs *global_regs =
++ dwc_otg_hcd->core_if->core_global_regs;
++ struct dwc_otg_host_if *host_if =
++ dwc_otg_hcd->core_if->host_if;
++
++ /* Check if we need to adjust the PHY clock speed for
++ * low power and adjust it */
++ if (params->host_support_fs_ls_low_power) {
++ union gusbcfg_data usbcfg;
++
++ usbcfg.d32 =
++ dwc_read_reg32(&global_regs->gusbcfg);
++
++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++ || (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) {
++ /*
++ * Low power
++ */
++ union hcfg_data hcfg;
++ if (usbcfg.b.phylpwrclksel == 0) {
++ /* Set PHY low power clock select for FS/LS devices */
++ usbcfg.b.phylpwrclksel = 1;
++ dwc_write_reg32(&global_regs->gusbcfg,
++ usbcfg.d32);
++ do_reset = 1;
++ }
++
++ hcfg.d32 =
++ dwc_read_reg32(&host_if->host_global_regs->hcfg);
++
++ if ((hprt0.b.prtspd ==
++ DWC_HPRT0_PRTSPD_LOW_SPEED)
++ && (params->
++ host_ls_low_power_phy_clk ==
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
++ /* 6 MHZ */
++ DWC_DEBUGPL(DBG_CIL,
++ "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
++ if (hcfg.b.fslspclksel !=
++ DWC_HCFG_6_MHZ) {
++ hcfg.b.fslspclksel =
++ DWC_HCFG_6_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ } else {
++ /* 48 MHZ */
++ DWC_DEBUGPL(DBG_CIL,
++ "FS_PHY programming HCFG to 48 MHz ()\n");
++ if (hcfg.b.fslspclksel !=
++ DWC_HCFG_48_MHZ) {
++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ }
++ } else {
++ /*
++ * Not low power
++ */
++ if (usbcfg.b.phylpwrclksel == 1) {
++ usbcfg.b.phylpwrclksel = 0;
++ dwc_write_reg32(&global_regs->gusbcfg,
++ usbcfg.d32);
++ do_reset = 1;
++ }
++ }
++ if (do_reset)
++ tasklet_schedule(dwc_otg_hcd->reset_tasklet);
++ }
++ if (!do_reset)
++ /*
++ * Port has been enabled set the reset
++ * change flag
++ */
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++ } else {
++ dwc_otg_hcd->flags.b.port_enable_change = 1;
++ }
++ retval |= 1;
++ }
++
++ /** Overcurrent Change Interrupt */
++ if (hprt0.b.prtovrcurrchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Overcurrent Changed--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_over_current_change = 1;
++ hprt0_modify.b.prtovrcurrchng = 1;
++ retval |= 1;
++ }
++
++ /* Clear Port Interrupts */
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
++ hprt0_modify.d32);
++
++ return retval;
++}
++
++/** This interrupt indicates that one or more host channels has a pending
++ * interrupt. There are multiple conditions that can cause each host channel
++ * interrupt. This function determines which conditions have occurred for each
++ * host channel interrupt and handles them appropriately. */
++int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++ int i;
++ int retval = 0;
++ union haint_data haint;
++
++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
++ * GINTSTS */
++
++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
++
++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
++ if (haint.b2.chint & (1 << i))
++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
++ }
++
++ return retval;
++}
++
++/* Macro used to clear one channel interrupt */
++#define clear_hc_int(_hc_regs_, _intr_) \
++do { \
++ union hcint_data hcint_clear = {.d32 = 0}; \
++ hcint_clear.b._intr_ = 1; \
++ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
++} while (0)
++
++/*
++ * Macro used to disable one channel interrupt. Channel interrupts are
++ * disabled when the channel is halted or released by the interrupt handler.
++ * There is no need to handle further interrupts of that type until the
++ * channel is re-assigned. In fact, subsequent handling may cause crashes
++ * because the channel structures are cleaned up when the channel is released.
++ */
++#define disable_hc_int(_hc_regs_, _intr_) \
++ do { \
++ union hcintmsk_data hcintmsk = {.d32 = 0}; \
++ hcintmsk.b._intr_ = 1; \
++ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
++ } while (0)
++
++/**
++ * Gets the actual length of a transfer after the transfer halts. _halt_status
++ * holds the reason for the halt.
++ *
++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
++ * *_short_read is set to 1 upon return if less than the requested
++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
++ * return. _short_read may also be NULL on entry, in which case it remains
++ * unchanged.
++ */
++static uint32_t get_actual_xfer_length(struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status _halt_status,
++ int *_short_read)
++{
++ union hctsiz_data hctsiz;
++ uint32_t length;
++
++ if (_short_read != NULL)
++ *_short_read = 0;
++
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ if (hc->ep_is_in) {
++ length = hc->xfer_len - hctsiz.b.xfersize;
++ if (_short_read != NULL)
++ *_short_read = (hctsiz.b.xfersize != 0);
++ } else if (hc->qh->do_split) {
++ length = qtd->ssplit_out_xfer_count;
++ } else {
++ length = hc->xfer_len;
++ }
++ } else {
++ /*
++ * Must use the hctsiz.pktcnt field to determine how much data
++ * has been transferred. This field reflects the number of
++ * packets that have been transferred via the USB. This is
++ * always an integral number of packets if the transfer was
++ * halted before its normal completion. (Can't use the
++ * hctsiz.xfersize field because that reflects the number of
++ * bytes transferred via the AHB, not the USB).
++ */
++ length =
++ (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
++ }
++
++ return length;
++}
++
++/**
++ * Updates the state of the URB after a Transfer Complete interrupt on the
++ * host channel. Updates the actual_length field of the URB based on the
++ * number of bytes transferred via the host channel. Sets the URB status
++ * if the data transfer is finished.
++ *
++ * Returns 1 if the data transfer specified by the URB is completely finished,
++ * 0 otherwise.
++ */
++static int update_urb_state_xfer_comp(struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct urb *urb, struct dwc_otg_qtd *qtd)
++{
++ int xfer_done = 0;
++ int short_read = 0;
++
++ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE,
++ &short_read);
++
++ if (short_read || (urb->actual_length == urb->transfer_buffer_length)) {
++ xfer_done = 1;
++ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK))
++ urb->status = -EREMOTEIO;
++ else
++ urb->status = 0;
++ }
++#ifdef DEBUG
++ {
++ union hctsiz_data hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"),
++ hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n",
++ hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->transfer_buffer_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
++ urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
++ short_read, xfer_done);
++ }
++#endif
++
++ return xfer_done;
++}
++
++/*
++ * Save the starting data toggle for the next transfer. The data toggle is
++ * saved in the QH for non-control transfers and it's saved in the QTD for
++ * control transfers.
++ */
++static void save_data_toggle(struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ union hctsiz_data hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
++ struct dwc_otg_qh *qh = hc->qh;
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ else
++ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
++ } else {
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
++ else
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++}
++
++/**
++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
++ * still linked to the QH, the QH is added to the end of the inactive
++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
++ * schedule if no more QTDs are linked to the QH.
++ */
++static void deactivate_qh(struct dwc_otg_hcd *hcd,
++ struct dwc_otg_qh *qh, int free_qtd)
++{
++ int continue_split = 0;
++ struct dwc_otg_qtd *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
++
++ qtd = list_entry(qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry);
++
++ if (qtd->complete_split) {
++ continue_split = 1;
++ } else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
++ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) {
++ continue_split = 1;
++ }
++
++ if (free_qtd) {
++ dwc_otg_hcd_qtd_remove_and_free(qtd);
++ continue_split = 0;
++ }
++
++ qh->channel = NULL;
++ qh->qtd_in_process = NULL;
++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
++}
++
++/**
++ * Updates the state of an Isochronous URB when the transfer is stopped for
++ * any reason. The fields of the current entry in the frame descriptor array
++ * are set based on the transfer state and the input _halt_status. Completes
++ * the Isochronous URB if all the URB frames have been completed.
++ *
++ * Returns DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
++ */
++static enum dwc_otg_halt_status
++update_isoc_urb_state(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ struct urb *urb = qtd->urb;
++ enum dwc_otg_halt_status ret_val = halt_status;
++ struct usb_iso_packet_descriptor *frame_desc;
++
++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_COMPLETE:
++ frame_desc->status = 0;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ break;
++ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
++ urb->error_count++;
++ if (hc->ep_is_in)
++ frame_desc->status = -ENOSR;
++ else
++ frame_desc->status = -ECOMM;
++ frame_desc->actual_length = 0;
++ break;
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ urb->error_count++;
++ frame_desc->status = -EOVERFLOW;
++ /* Don't need to update actual_length in this case. */
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ urb->error_count++;
++ frame_desc->status = -EPROTO;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ break;
++ default:
++ DWC_ERROR("%s: Unhandled halt_status (%d)\n", __func__,
++ halt_status);
++ BUG();
++ break;
++ }
++
++ if (++qtd->isoc_frame_index == urb->number_of_packets) {
++ /*
++ * urb->status is not used for isoc transfers.
++ * The individual frame_desc statuses are used instead.
++ */
++ dwc_otg_hcd_complete_urb(hcd, urb, 0);
++ qtd->urb = NULL;
++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ ret_val = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ return ret_val;
++}
++
++/**
++ * Releases a host channel for use by other transfers. Attempts to select and
++ * queue more transactions since at least one host channel is available.
++ *
++ * @hcd: The HCD state structure.
++ * @hc: The host channel to release.
++ * @qtd: The QTD associated with the host channel. This QTD may be freed
++ * if the transfer is complete or an error has occurred.
++ * @_halt_status: Reason the channel is being released. This status
++ * determines the actions taken by this function.
++ */
++static void release_channel(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ enum dwc_otg_transaction_type tr_type;
++ int free_qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
++ __func__, hc->hc_num, halt_status);
++
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_URB_COMPLETE:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_AHB_ERR:
++ case DWC_OTG_HC_XFER_STALL:
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ if (qtd->error_count >= 3) {
++ DWC_DEBUGPL(DBG_HCDV,
++ " Complete URB with transaction error\n");
++ free_qtd = 1;
++ qtd->urb->status = -EPROTO;
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
++ qtd->urb = NULL;
++ } else {
++ free_qtd = 0;
++ }
++ break;
++ case DWC_OTG_HC_XFER_URB_DEQUEUE:
++ /*
++ * The QTD has already been removed and the QH has been
++ * deactivated. Don't want to do anything except release the
++ * host channel and try to queue more transfers.
++ */
++ goto cleanup;
++ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__,
++ hc->hc_num);
++ free_qtd = 0;
++ break;
++ default:
++ free_qtd = 0;
++ break;
++ }
++
++ deactivate_qh(hcd, hc->qh, free_qtd);
++
++cleanup:
++ /*
++ * Release the host channel for use by other transfers. The cleanup
++ * function clears the channel interrupt enables and conditions, so
++ * there's no need to clear the Channel Halted interrupt separately.
++ */
++ dwc_otg_hc_cleanup(hcd->core_if, hc);
++ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
++
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hcd->non_periodic_channels--;
++ break;
++
++ default:
++ /*
++ * Don't release reservations for periodic channels here.
++ * That's done when a periodic transfer is descheduled (i.e.
++ * when the QH is removed from the periodic schedule).
++ */
++ break;
++ }
++
++ /* Try to queue more transfers now that there's a free channel. */
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE)
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++}
++
++/**
++ * Halts a host channel. If the channel cannot be halted immediately because
++ * the request queue is full, this function ensures that the FIFO empty
++ * interrupt for the appropriate queue is enabled so that the halt request can
++ * be queued when there is space in the request queue.
++ *
++ * This function may also be called in DMA mode. In that case, the channel is
++ * simply released since the core always halts the channel automatically in
++ * DMA mode.
++ */
++static void halt_channel(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ if (hcd->core_if->dma_enable) {
++ release_channel(hcd, hc, qtd, halt_status);
++ return;
++ }
++
++ /* Slave mode processing... */
++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
++
++ if (hc->halt_on_queue) {
++ union gintmsk_data gintmsk = {.d32 = 0 };
++ struct dwc_otg_core_global_regs *global_regs;
++ global_regs = hcd->core_if->core_global_regs;
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ /*
++ * Make sure the Non-periodic Tx FIFO empty interrupt
++ * is enabled so that the non-periodic schedule will
++ * be processed.
++ */
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ } else {
++ /*
++ * Move the QH from the periodic queued schedule to
++ * the periodic assigned schedule. This allows the
++ * halt to be queued when the periodic schedule is
++ * processed.
++ */
++ list_move(&hc->qh->qh_list_entry,
++ &hcd->periodic_sched_assigned);
++
++ /*
++ * Make sure the Periodic Tx FIFO Empty interrupt is
++ * enabled so that the periodic schedule will be
++ * processed.
++ */
++ gintmsk.b.ptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ }
++ }
++}
++
++/**
++ * Performs common cleanup for non-periodic transfers after a Transfer
++ * Complete interrupt. This function should be called after any endpoint type
++ * specific handling is finished to release the host channel.
++ */
++static void complete_non_periodic_xfer(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ union hcint_data hcint;
++
++ qtd->error_count = 0;
++
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ if (hcint.b.nyet) {
++ /*
++ * Got a NYET on the last transaction of the transfer. This
++ * means that the endpoint should be in the PING state at the
++ * beginning of the next transfer.
++ */
++ hc->qh->ping_state = 1;
++ clear_hc_int(hc_regs, nyet);
++ }
++
++ /*
++ * Always halt and release the host channel to make it available for
++ * more transfers. There may still be more phases for a control
++ * transfer or more data packets for a bulk transfer at this point,
++ * but the host channel is still halted. A channel will be reassigned
++ * to the transfer when the non-periodic schedule is processed after
++ * the channel is released. This allows transactions to be queued
++ * properly via dwc_otg_hcd_queue_transactions, which also enables the
++ * Tx FIFO Empty interrupt if necessary.
++ */
++ if (hc->ep_is_in) {
++ /*
++ * IN transfers in Slave mode require an explicit disable to
++ * halt the channel. (In DMA mode, this call simply releases
++ * the channel.)
++ */
++ halt_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /*
++ * The channel is automatically disabled by the core for OUT
++ * transfers in Slave mode.
++ */
++ release_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++/**
++ * Performs common cleanup for periodic transfers after a Transfer Complete
++ * interrupt. This function should be called after any endpoint type specific
++ * handling is finished to release the host channel.
++ */
++static void complete_periodic_xfer(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ union hctsiz_data hctsiz;
++ qtd->error_count = 0;
++
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
++ /* Core halts channel in these cases. */
++ release_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /* Flush any outstanding requests from the Tx queue. */
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++/**
++ * Handles a host channel Transfer Complete interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xfercomp_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ int urb_xfer_done;
++ enum dwc_otg_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ struct urb *urb = qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transfer Complete--\n", hc->hc_num);
++
++ /*
++ * Handle xfer complete on CSPLIT.
++ */
++ if (hc->qh->do_split)
++ qtd->complete_split = 0;
++
++ /* Update the QTD and URB states. */
++ switch (pipe_type) {
++ case PIPE_CONTROL:
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ if (urb->transfer_buffer_length > 0)
++ qtd->control_phase = DWC_OTG_CONTROL_DATA;
++ else
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV,
++ " Control setup transaction done\n");
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ case DWC_OTG_CONTROL_DATA:{
++ urb_xfer_done =
++ update_urb_state_xfer_comp(hc, hc_regs,
++ urb, qtd);
++ if (urb_xfer_done) {
++ qtd->control_phase =
++ DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV,
++ " Control data transfer done\n");
++ } else {
++ save_data_toggle(hc, hc_regs, qtd);
++ }
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ }
++ case DWC_OTG_CONTROL_STATUS:
++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
++ if (urb->status == -EINPROGRESS)
++ urb->status = 0;
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ qtd->urb = NULL;
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ break;
++ }
++
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
++ halt_status);
++ break;
++ case PIPE_BULK:
++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
++ urb_xfer_done =
++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++ if (urb_xfer_done) {
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ qtd->urb = NULL;
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ save_data_toggle(hc, hc_regs, qtd);
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
++ halt_status);
++ break;
++ case PIPE_INTERRUPT:
++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++
++ /*
++ * Interrupt URB is done on the first transfer complete
++ * interrupt.
++ */
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ qtd->urb = NULL;
++ save_data_toggle(hc, hc_regs, qtd);
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_URB_COMPLETE);
++ break;
++ case PIPE_ISOCHRONOUS:
++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE);
++ }
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ }
++
++ disable_hc_int(hc_regs, xfercompl);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel STALL interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_stall_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ struct urb *urb = qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "STALL Received--\n", hc->hc_num);
++
++ if (pipe_type == PIPE_CONTROL) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
++ qtd->urb = NULL;
++ }
++
++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
++ qtd->urb = NULL;
++ /*
++ * USB protocol requires resetting the data toggle for bulk
++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
++ * setup command is issued to the endpoint. Anticipate the
++ * CLEAR_FEATURE command since a STALL has occurred and reset
++ * the data toggle now.
++ */
++ hc->qh->data_toggle = 0;
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
++
++ disable_hc_int(hc_regs, stall);
++
++ return 1;
++}
++
++/*
++ * Updates the state of the URB when a transfer has been stopped due to an
++ * abnormal condition before the transfer completes. Modifies the
++ * actual_length field of the URB to reflect the number of bytes that have
++ * actually been transferred via the host channel.
++ */
++static void update_urb_state_xfer_intr(struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct urb *urb,
++ struct dwc_otg_qtd *qtd,
++ enum dwc_otg_halt_status halt_status)
++{
++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ urb->actual_length += bytes_transferred;
++
++#ifdef DEBUG
++ {
++ union hctsiz_data hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"),
++ hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n",
++ hc->start_pkt_count);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n",
++ hc->max_packet);
++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n",
++ bytes_transferred);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
++ urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->transfer_buffer_length);
++ }
++#endif
++}
++
++/**
++ * Handles a host channel NAK interrupt. This handler may be called in either
++ * DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nak_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NAK Received--\n", hc->hc_num);
++
++ /*
++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
++ * interrupt. Re-start the SSPLIT transfer.
++ */
++ if (hc->do_split) {
++ if (hc->complete_split)
++ qtd->error_count = 0;
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ goto handle_nak_done;
++ }
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ if (hcd->core_if->dma_enable && hc->ep_is_in) {
++ /*
++ * NAK interrupts are enabled on bulk/control IN
++ * transfers in DMA mode for the sole purpose of
++ * resetting the error count after a transaction error
++ * occurs. The core will continue transferring data.
++ */
++ qtd->error_count = 0;
++ goto handle_nak_done;
++ }
++
++ /*
++ * NAK interrupts normally occur during OUT transfers in DMA
++ * or Slave mode. For IN transfers, more requests will be
++ * queued as request queue space is available.
++ */
++ qtd->error_count = 0;
++
++ if (!hc->qh->ping_state) {
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++ qtd, DWC_OTG_HC_XFER_NAK);
++ save_data_toggle(hc, hc_regs, qtd);
++ if (qtd->urb->dev->speed == USB_SPEED_HIGH)
++ hc->qh->ping_state = 1;
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will
++ * start/continue.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case PIPE_INTERRUPT:
++ qtd->error_count = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case PIPE_ISOCHRONOUS:
++ /* Should never get called for isochronous transfers. */
++ BUG();
++ break;
++ }
++
++handle_nak_done:
++ disable_hc_int(hc_regs, nak);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel ACK interrupt. This interrupt is enabled when
++ * performing the PING protocol in Slave mode, when errors occur during
++ * either Slave mode or DMA mode, and during Start Split transactions.
++ */
++static int32_t handle_hc_ack_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "ACK Received--\n", hc->hc_num);
++
++ if (hc->do_split) {
++ /*
++ * Handle ACK on SSPLIT.
++ * ACK should not occur in CSPLIT.
++ */
++ if ((!hc->ep_is_in)
++ && (hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
++ qtd->ssplit_out_xfer_count = hc->xfer_len;
++ }
++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
++ /* Don't need complete for isochronous out transfers. */
++ qtd->complete_split = 1;
++ }
++
++ /* ISOC OUT */
++ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !hc->ep_is_in) {
++ switch (hc->xact_pos) {
++ case DWC_HCSPLIT_XACTPOS_ALL:
++ break;
++ case DWC_HCSPLIT_XACTPOS_END:
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++ break;
++ case DWC_HCSPLIT_XACTPOS_BEGIN:
++ case DWC_HCSPLIT_XACTPOS_MID:
++ /*
++ * For BEGIN or MID, calculate the length for
++ * the next microframe to determine the correct
++ * SSPLIT token, either MID or END.
++ */
++ do {
++ struct usb_iso_packet_descriptor
++ *frame_desc;
++
++ frame_desc =
++ &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
++ qtd->isoc_split_offset += 188;
++
++ if ((frame_desc->length -
++ qtd->isoc_split_offset) <= 188) {
++ qtd->isoc_split_pos =
++ DWC_HCSPLIT_XACTPOS_END;
++ } else {
++ qtd->isoc_split_pos =
++ DWC_HCSPLIT_XACTPOS_MID;
++ }
++
++ } while (0);
++ break;
++ }
++ } else {
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ } else {
++ qtd->error_count = 0;
++
++ if (hc->qh->ping_state) {
++ hc->qh->ping_state = 0;
++ /*
++ * Halt the channel so the transfer can be re-started
++ * from the appropriate point. This only happens in
++ * Slave mode. In DMA mode, the ping_state is cleared
++ * when the transfer is started because the core
++ * automatically executes the PING, then the transfer.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ }
++
++ /*
++ * If the ACK occurred when _not_ in the PING state, let the channel
++ * continue transferring data after clearing the error count.
++ */
++
++ disable_hc_int(hc_regs, ack);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel NYET interrupt. This interrupt should only occur on
++ * Bulk and Control OUT endpoints and for complete split transactions. If a
++ * NYET occurs at the same time as a Transfer Complete interrupt, it is
++ * handled in the xfercomp interrupt handler, not here. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nyet_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NYET Received--\n", hc->hc_num);
++
++ /*
++ * NYET on CSPLIT
++ * re-do the CSPLIT immediately on non-periodic
++ */
++ if ((hc->do_split) && (hc->complete_split)) {
++ if ((hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
++ (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
++ int frnum =
++ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd
++ (hcd));
++
++ if (dwc_full_frame_num(frnum) !=
++ dwc_full_frame_num(hc->qh->sched_frame)) {
++ /*
++ * No longer in the same full speed frame.
++ * Treat this as a transaction error.
++ */
++#if 0
++ /** @todo Fix system performance so this can
++ * be treated as an error. Right now complete
++ * splits cannot be scheduled precisely enough
++ * due to other system activity, so this error
++ * occurs regularly in Slave mode.
++ */
++ qtd->error_count++;
++#endif
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++ /** @todo add support for isoc release */
++ goto handle_nyet_done;
++ }
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++ goto handle_nyet_done;
++ }
++
++ hc->qh->ping_state = 1;
++ qtd->error_count = 0;
++
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
++ DWC_OTG_HC_XFER_NYET);
++ save_data_toggle(hc, hc_regs, qtd);
++
++ /*
++ * Halt the channel and re-start the transfer so the PING
++ * protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++
++handle_nyet_done:
++ disable_hc_int(hc_regs, nyet);
++ return 1;
++}
++
++/**
++ * Handles a host channel babble interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_babble_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Babble Error--\n", hc->hc_num);
++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
++ qtd->urb = NULL;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
++ } else {
++ enum dwc_otg_halt_status halt_status;
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_BABBLE_ERR);
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ disable_hc_int(hc_regs, bblerr);
++ return 1;
++}
++
++/**
++ * Handles a host channel AHB error interrupt. This handler is only called in
++ * DMA mode.
++ */
++static int32_t handle_hc_ahberr_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ union hcchar_data hcchar;
++ union hcsplt_data hcsplt;
++ union hctsiz_data hctsiz;
++ uint32_t hcdma;
++ struct urb *urb = qtd->urb;
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "AHB Error--\n", hc->hc_num);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_ERROR(" Endpoint type: %s\n",
++ ({
++ char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ pipetype = "CONTROL";
++ break;
++ case PIPE_BULK:
++ pipetype = "BULK";
++ break;
++ case PIPE_INTERRUPT:
++ pipetype = "INTERRUPT";
++ break;
++ case PIPE_ISOCHRONOUS:
++ pipetype = "ISOCHRONOUS";
++ break;
++ default:
++ pipetype = "UNKNOWN";
++ break;
++ }
++ pipetype;
++ }));
++ DWC_ERROR(" Speed: %s\n",
++ ({
++ char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_HIGH:
++ speed = "HIGH";
++ break;
++ case USB_SPEED_FULL:
++ speed = "FULL";
++ break;
++ case USB_SPEED_LOW:
++ speed = "LOW";
++ break;
++ default:
++ speed = "UNKNOWN";
++ break;
++ }
++ speed;
++ }));
++ DWC_ERROR(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: 0x%llx\n",
++ urb->transfer_buffer, (unsigned long long)urb->transfer_dma);
++ DWC_ERROR(" Setup buffer: %p, Setup DMA: 0x%llx\n",
++ urb->setup_packet, (unsigned long long)urb->setup_dma);
++ DWC_ERROR(" Interval: %d\n", urb->interval);
++
++ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
++ qtd->urb = NULL;
++
++ /*
++ * Force a channel halt. Don't call halt_channel because that won't
++ * write to the HCCHARn register in DMA mode to force the halt.
++ */
++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
++
++ disable_hc_int(hc_regs, ahberr);
++ return 1;
++}
++
++/**
++ * Handles a host channel transaction error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xacterr_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transaction Error--\n", hc->hc_num);
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ qtd->error_count++;
++ if (!hc->qh->ping_state) {
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++ qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++ save_data_toggle(hc, hc_regs, qtd);
++ if (!hc->ep_is_in
++ && qtd->urb->dev->speed == USB_SPEED_HIGH) {
++ hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case PIPE_INTERRUPT:
++ qtd->error_count++;
++ if ((hc->do_split) && (hc->complete_split))
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ enum dwc_otg_halt_status halt_status;
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ break;
++ }
++
++ disable_hc_int(hc_regs, xacterr);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel frame overrun interrupt. This handler may be called
++ * in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_frmovrun_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ enum dwc_otg_halt_status halt_status;
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Frame Overrun--\n", hc->hc_num);
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ break;
++ case PIPE_INTERRUPT:
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
++ break;
++ case PIPE_ISOCHRONOUS:
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN);
++ halt_channel(hcd, hc, qtd, halt_status);
++ break;
++ }
++
++ disable_hc_int(hc_regs, frmovrun);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel data toggle error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_datatglerr_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Data Toggle Error--\n", hc->hc_num);
++
++ if (hc->ep_is_in) {
++ qtd->error_count = 0;
++ } else {
++ DWC_ERROR("Data Toggle Error on OUT transfer,"
++ "channel %d\n", hc->hc_num);
++ }
++
++ disable_hc_int(hc_regs, datatglerr);
++
++ return 1;
++}
++
++#ifdef DEBUG
++/**
++ * This function is for debug only. It checks that a valid halt status is set
++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
++ * taken and a warning is issued.
++ * Returns 1 if halt status is ok, 0 otherwise.
++ */
++static inline int halt_status_ok(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ union hcchar_data hcchar;
++ union hctsiz_data hctsiz;
++ union hcint_data hcint;
++ union hcintmsk_data hcintmsk;
++ union hcsplt_data hcsplt;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
++ /*
++ * This code is here only as a check. This condition should
++ * never happen. Ignore the halt if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ DWC_WARN
++ ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
++ "hcint 0x%08x, hcintmsk 0x%08x, "
++ "hcsplt 0x%08x, qtd->complete_split %d\n", __func__,
++ hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32,
++ hcintmsk.d32, hcsplt.d32, qtd->complete_split);
++
++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
++ __func__, hc->hc_num);
++ DWC_WARN("\n");
++ clear_hc_int(hc_regs, chhltd);
++ return 0;
++ }
++
++ /*
++ * This code is here only as a check. hcchar.chdis should
++ * never be set when the halt interrupt occurs. Halt the
++ * channel again if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
++ "hcchar 0x%08x, trying to halt again\n",
++ __func__, hcchar.d32);
++ clear_hc_int(hc_regs, chhltd);
++ hc->halt_pending = 0;
++ halt_channel(hcd, hc, qtd, hc->halt_status);
++ return 0;
++ }
++
++ return 1;
++}
++#endif
++
++/**
++ * Handles a host Channel Halted interrupt in DMA mode. This handler
++ * determines the reason the channel halted and proceeds accordingly.
++ */
++static void handle_hc_chhltd_intr_dma(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ union hcint_data hcint;
++ union hcintmsk_data hcintmsk;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Just release the channel. A dequeue can happen on a
++ * transfer timeout. In the case of an AHB Error, the channel
++ * was forced to halt because there's no way to gracefully
++ * recover.
++ */
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ return;
++ }
++
++ /* Read the HCINTn register to determine the cause for the halt. */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++
++ if (hcint.b.xfercomp) {
++ /*
++ * @todo This is here because of a possible hardware
++ * bug. Spec says that on SPLIT-ISOC OUT transfers in
++ * DMA mode that a HALT interrupt w/ACK bit set should
++ * occur, but I only see the XFERCOMP bit, even with
++ * it masked out. This is a workaround for that
++ * behavior. Should fix this when hardware is fixed.
++ */
++ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!hc->ep_is_in))
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.stall) {
++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.xacterr) {
++ /*
++ * Must handle xacterr before nak or ack. Could get a xacterr
++ * at the same time as either of these on a BULK/CONTROL OUT
++ * that started with a PING. The xacterr takes precedence.
++ */
++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.nyet) {
++ /*
++ * Must handle nyet before nak or ack. Could get a nyet at the
++ * same time as either of those on a BULK/CONTROL OUT that
++ * started with a PING. The nyet takes precedence.
++ */
++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.bblerr) {
++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.frmovrun) {
++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.nak && !hcintmsk.b.nak) {
++ /*
++ * If nak is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the nak is handled by
++ * the nak interrupt handler, not here. Handle nak here for
++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
++ * rewinding the buffer pointer.
++ */
++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.ack && !hcintmsk.b.ack) {
++ /*
++ * If ack is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the ack is handled by
++ * the ack interrupt handler, not here. Handle ack here for
++ * split transfers. Start splits halt on ACK.
++ */
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ } else {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * A periodic transfer halted with no other channel
++ * interrupts set. Assume it was halted by the core
++ * because it could not be completed in its scheduled
++ * (micro)frame.
++ */
++#ifdef DEBUG
++ DWC_PRINT("%s: Halt channel %d (assume incomplete "
++ "periodic transfer)\n",
++ __func__, hc->hc_num);
++#endif
++ halt_channel(hcd, hc, qtd,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
++ } else {
++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, "
++ "but reason for halting is unknown, hcint "
++ "0x%08x, intsts 0x%08x\n",
++ __func__, hc->hc_num, hcint.d32,
++ dwc_read_reg32(&hcd->core_if->core_global_regs->
++ gintsts));
++ }
++ }
++}
++
++/**
++ * Handles a host channel Channel Halted interrupt.
++ *
++ * In slave mode, this handler is called only when the driver specifically
++ * requests a halt. This occurs during handling other host channel interrupts
++ * (e.g. nak, xacterr, stall, nyet, etc.).
++ *
++ * In DMA mode, this is the interrupt that occurs when the core has finished
++ * processing a transfer on a channel. Other host channel interrupts (except
++ * ahberr) are disabled in DMA mode.
++ */
++static int32_t handle_hc_chhltd_intr(struct dwc_otg_hcd *hcd,
++ struct dwc_hc *hc,
++ struct dwc_otg_hc_regs *hc_regs,
++ struct dwc_otg_qtd *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Channel Halted--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_enable) {
++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
++ } else {
++#ifdef DEBUG
++ if (!halt_status_ok(hcd, hc, hc_regs, qtd))
++ return 1;
++#endif
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ }
++
++ return 1;
++}
++
++/** Handles interrupt for a specific Host Channel */
++int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
++ uint32_t _num)
++{
++ int retval = 0;
++ union hcint_data hcint;
++ union hcintmsk_data hcintmsk;
++ struct dwc_hc *hc;
++ struct dwc_otg_hc_regs *hc_regs;
++ struct dwc_otg_qtd *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
++
++ hc = dwc_otg_hcd->hc_ptr_array[_num];
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[_num];
++ qtd = list_entry(hc->qh->qtd_list.next, struct dwc_otg_qtd,
++ qtd_list_entry);
++
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++ DWC_DEBUGPL(DBG_HCDV,
++ " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
++ hcint.d32 = hcint.d32 & hcintmsk.d32;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ if ((hcint.b.chhltd) && (hcint.d32 != 0x2))
++ hcint.b.chhltd = 0;
++ }
++
++ if (hcint.b.xfercomp) {
++ retval |=
++ handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ /*
++ * If NYET occurred at same time as Xfer Complete, the NYET is
++ * handled by the Xfer Complete interrupt handler. Don't want
++ * to call the NYET interrupt handler in this case.
++ */
++ hcint.b.nyet = 0;
++ }
++ if (hcint.b.chhltd)
++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.ahberr)
++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.stall)
++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.nak)
++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.ack)
++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.nyet)
++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.xacterr)
++ retval |=
++ handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.bblerr)
++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.frmovrun)
++ retval |=
++ handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ if (hcint.b.datatglerr)
++ retval |=
++ handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+new file mode 100644
+index 0000000..e4c96f2
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+@@ -0,0 +1,695 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/*
++ *
++ * This file contains the functions to manage Queue Heads and Queue
++ * Transfer Descriptors.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++/**
++ * This function allocates and initializes a QH.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @urb: Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ *
++ * Returns Returns pointer to the newly allocated QH, or NULL on error. */
++struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
++ struct urb *urb)
++{
++ struct dwc_otg_qh *qh;
++
++ /* Allocate memory */
++ /** @todo add memflags argument */
++ qh = dwc_otg_hcd_qh_alloc();
++ if (qh == NULL)
++ return NULL;
++
++ dwc_otg_hcd_qh_init(hcd, qh, urb);
++ return qh;
++}
++
++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
++ * removed from a list. QTD list should already be empty if called from URB
++ * Dequeue.
++ *
++ * @qh: The QH to free.
++ */
++void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh)
++{
++ struct dwc_otg_qtd *qtd;
++ struct list_head *pos;
++
++ /* Free each QTD in the QTD list */
++ for (pos = qh->qtd_list.next;
++ pos != &qh->qtd_list; pos = qh->qtd_list.next) {
++ list_del(pos);
++ qtd = dwc_list_to_qtd(pos);
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++
++ kfree(qh);
++ return;
++}
++
++/** Initializes a QH structure.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: The QH to init.
++ * @urb: Holds the information about the device/endpoint that we need
++ * to initialize the QH. */
++#define SCHEDULE_SLOP 10
++void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++ struct urb *urb)
++{
++ memset(qh, 0, sizeof(struct dwc_otg_qh));
++
++ /* Initialize QH */
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
++ break;
++ case PIPE_BULK:
++ qh->ep_type = USB_ENDPOINT_XFER_BULK;
++ break;
++ case PIPE_ISOCHRONOUS:
++ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
++ break;
++ case PIPE_INTERRUPT:
++ qh->ep_type = USB_ENDPOINT_XFER_INT;
++ break;
++ }
++
++ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
++
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ qh->maxp =
++ usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
++ INIT_LIST_HEAD(&qh->qtd_list);
++ INIT_LIST_HEAD(&qh->qh_list_entry);
++ qh->channel = NULL;
++
++ /* FS/LS Enpoint on HS Hub
++ * NOT virtual root hub */
++ qh->do_split = 0;
++ if (((urb->dev->speed == USB_SPEED_LOW) ||
++ (urb->dev->speed == USB_SPEED_FULL)) &&
++ (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) {
++ DWC_DEBUGPL(DBG_HCD,
++ "QH init: EP %d: TT found at hub addr %d, for "
++ "port %d\n",
++ usb_pipeendpoint(urb->pipe),
++ urb->dev->tt->hub->devnum, urb->dev->ttport);
++ qh->do_split = 1;
++ }
++
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
++ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
++ /* Compute scheduling parameters once and save them. */
++ union hprt0_data hprt;
++
++ /* todo Account for split transfers in the bus time. */
++ int bytecount =
++ dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
++ /*
++ * The results from usb_calc_bus_time are in nanosecs,
++ * so divide the result by 1000 to convert to
++ * microsecs expected by this driver
++ */
++ qh->usecs = usb_calc_bus_time(urb->dev->speed,
++ usb_pipein(urb->pipe),
++ (qh->ep_type ==
++ USB_ENDPOINT_XFER_ISOC),
++ bytecount) / 1000;
++
++ /* Start in a slightly future (micro)frame. */
++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
++ SCHEDULE_SLOP);
++ qh->interval = urb->interval;
++#if 0
++ /* Increase interrupt polling rate for debugging. */
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
++ qh->interval = 8;
++#endif
++ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
++ ((urb->dev->speed == USB_SPEED_LOW) ||
++ (urb->dev->speed == USB_SPEED_FULL))) {
++ qh->interval *= 8;
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
++ urb->dev->devnum);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n",
++ ({
++ char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_LOW:
++ speed = "low";
++ break;
++ case USB_SPEED_FULL:
++ speed = "full";
++ break;
++ case USB_SPEED_HIGH:
++ speed = "high";
++ break;
++ default:
++ speed = "?";
++ break;
++ }
++ speed;
++ }));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",
++ ({
++ char *type;
++ switch (qh->ep_type) {
++ case USB_ENDPOINT_XFER_ISOC:
++ type = "isochronous";
++ break;
++ case USB_ENDPOINT_XFER_INT:
++ type = "interrupt";
++ break;
++ case USB_ENDPOINT_XFER_CONTROL:
++ type = "control";
++ break;
++ case USB_ENDPOINT_XFER_BULK:
++ type = "bulk";
++ break;
++ default:
++ type = "?";
++ break;
++ }
++ type;
++ }));
++#ifdef DEBUG
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
++ qh->usecs);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
++ qh->interval);
++ }
++#endif
++
++ return;
++}
++
++/**
++ * Checks that a channel is available for a periodic transfer.
++ *
++ * Returns 0 if successful, negative error code otherise.
++ */
++static int periodic_channel_available(struct dwc_otg_hcd *hcd)
++{
++ /*
++ * Currently assuming that there is a dedicated host channnel for each
++ * periodic transaction plus at least one host channel for
++ * non-periodic transactions.
++ */
++ int status;
++ int num_channels;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ if ((hcd->periodic_channels + hcd->non_periodic_channels <
++ num_channels) && (hcd->periodic_channels < num_channels - 1)) {
++ status = 0;
++ } else {
++ DWC_NOTICE
++ ("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
++ __func__, num_channels, hcd->periodic_channels,
++ hcd->non_periodic_channels);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Checks that there is sufficient bandwidth for the specified QH in the
++ * periodic schedule. For simplicity, this calculation assumes that all the
++ * transfers in the periodic schedule may occur in the same (micro)frame.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH containing periodic bandwidth required.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int check_periodic_bandwidth(struct dwc_otg_hcd *hcd,
++ struct dwc_otg_qh *qh)
++{
++ int status;
++ uint16_t max_claimed_usecs;
++
++ status = 0;
++
++ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
++ /*
++ * High speed mode.
++ * Max periodic usecs is 80% x 125 usec = 100 usec.
++ */
++ max_claimed_usecs = 100 - qh->usecs;
++ } else {
++ /*
++ * Full speed mode.
++ * Max periodic usecs is 90% x 1000 usec = 900 usec.
++ */
++ max_claimed_usecs = 900 - qh->usecs;
++ }
++
++ if (hcd->periodic_usecs > max_claimed_usecs) {
++ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
++ __func__, hcd->periodic_usecs, qh->usecs);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Checks that the max transfer size allowed in a host channel is large enough
++ * to handle the maximum data transfer in a single (micro)frame for a periodic
++ * transfer.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for a periodic endpoint.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int check_max_xfer_size(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++ int status;
++ uint32_t max_xfer_size;
++ uint32_t max_channel_xfer_size;
++
++ status = 0;
++
++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
++
++ if (max_xfer_size > max_channel_xfer_size) {
++ DWC_NOTICE("%s: Periodic xfer length %d > "
++ "max xfer length for channel %d\n",
++ __func__, max_xfer_size, max_channel_xfer_size);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Schedules an interrupt or isochronous transfer in the periodic schedule.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for the periodic transfer. The QH should already contain the
++ * scheduling information.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int schedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++ int status = 0;
++
++ status = periodic_channel_available(hcd);
++ if (status) {
++ DWC_NOTICE("%s: No host channel available for periodic "
++ "transfer.\n", __func__);
++ return status;
++ }
++
++ status = check_periodic_bandwidth(hcd, qh);
++ if (status) {
++ DWC_NOTICE("%s: Insufficient periodic bandwidth for "
++ "periodic transfer.\n", __func__);
++ return status;
++ }
++
++ status = check_max_xfer_size(hcd, qh);
++ if (status) {
++ DWC_NOTICE("%s: Channel max transfer size too small "
++ "for periodic transfer.\n", __func__);
++ return status;
++ }
++
++ /* Always start in the inactive schedule. */
++ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
++
++ /* Reserve the periodic channel. */
++ hcd->periodic_channels++;
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs += qh->usecs;
++
++ /*
++ * Update average periodic bandwidth claimed and # periodic
++ * reqs for usbfs.
++ */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated +=
++ qh->usecs / qh->interval;
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
++ DWC_DEBUGPL(DBG_HCD,
++ "Scheduled intr: qh %p, usecs %d, period %d\n", qh,
++ qh->usecs, qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
++ DWC_DEBUGPL(DBG_HCD,
++ "Scheduled isoc: qh %p, usecs %d, period %d\n", qh,
++ qh->usecs, qh->interval);
++ }
++
++ return status;
++}
++
++/**
++ * This function adds a QH to either the non periodic or periodic schedule if
++ * it is not already in the schedule. If the QH is already in the schedule, no
++ * action is taken.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++ int status = 0;
++
++ if (!spin_is_locked(&hcd->global_lock)) {
++ pr_err("%s don't have hcd->global_lock", __func__);
++ BUG();
++ }
++
++ if (!list_empty(&qh->qh_list_entry)) {
++ /* QH already in a schedule. */
++ goto done;
++ }
++
++ /* Add the new QH to the appropriate schedule */
++ if (dwc_qh_is_non_per(qh)) {
++ /* Always start in the inactive schedule. */
++ list_add_tail(&qh->qh_list_entry,
++ &hcd->non_periodic_sched_inactive);
++ } else {
++ status = schedule_periodic(hcd, qh);
++ }
++
++done:
++ return status;
++}
++
++/**
++ * Removes an interrupt or isochronous transfer from the periodic schedule.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for the periodic transfer.
++ */
++static void deschedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++ list_del_init(&qh->qh_list_entry);
++
++ /* Release the periodic channel reservation. */
++ hcd->periodic_channels--;
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs -= qh->usecs;
++
++ /*
++ * Update average periodic bandwidth claimed and # periodic
++ * reqs for usbfs.
++ */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -=
++ qh->usecs / qh->interval;
++
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
++ DWC_DEBUGPL(DBG_HCD,
++ "Descheduled intr: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
++ DWC_DEBUGPL(DBG_HCD,
++ "Descheduled isoc: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ }
++}
++
++/**
++ * Removes a QH from either the non-periodic or periodic schedule. Memory is
++ * not freed.
++ *
++ * @hcd: The HCD state structure.
++ * @qh: QH to remove from schedule. */
++void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++ if (!spin_is_locked(&hcd->global_lock)) {
++ pr_err("%s don't have hcd->global_lock", __func__);
++ BUG();
++ }
++
++ if (list_empty(&qh->qh_list_entry)) {
++ /* QH is not in a schedule. */
++ goto done;
++ }
++
++ if (dwc_qh_is_non_per(qh)) {
++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
++ hcd->non_periodic_qh_ptr =
++ hcd->non_periodic_qh_ptr->next;
++ }
++ list_del_init(&qh->qh_list_entry);
++ } else {
++ deschedule_periodic(hcd, qh);
++ }
++
++done:
++ ;
++}
++
++/**
++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the inactive non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ *
++ * For periodic QHs, the QH is removed from the periodic queued schedule. If
++ * there are any QTDs still attached to the QH, the QH is added to either the
++ * periodic inactive schedule or the periodic ready schedule and its next
++ * scheduled frame is calculated. The QH is placed in the ready schedule if
++ * the scheduled frame has been reached already. Otherwise it's placed in the
++ * inactive schedule. If there are no QTDs attached to the QH, the QH is
++ * completely removed from the periodic schedule.
++ */
++void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++ int sched_next_periodic_split)
++{
++ uint16_t frame_number;
++
++ if (!spin_is_locked(&hcd->global_lock)) {
++ pr_err("%s don't have hcd->global_lock", __func__);
++ BUG();
++ }
++
++ if (dwc_qh_is_non_per(qh)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ if (!list_empty(&qh->qtd_list))
++ /* Add back to inactive non-periodic schedule. */
++ dwc_otg_hcd_qh_add(hcd, qh);
++ return;
++ }
++
++ frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
++
++ if (qh->do_split) {
++ /* Schedule the next continuing periodic split transfer */
++ if (sched_next_periodic_split) {
++
++ qh->sched_frame = frame_number;
++ if (dwc_frame_num_le(frame_number,
++ dwc_frame_num_inc(qh->start_split_frame,
++ 1))) {
++ /*
++ * Allow one frame to elapse after
++ * start split microframe before
++ * scheduling complete split, but DONT
++ * if we are doing the next start
++ * split in the same frame for an ISOC
++ * out.
++ */
++ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC)
++ || (qh->ep_is_in != 0)) {
++ qh->sched_frame =
++ dwc_frame_num_inc(qh->sched_frame,
++ 1);
++ }
++ }
++ } else {
++ qh->sched_frame =
++ dwc_frame_num_inc(qh->start_split_frame,
++ qh->interval);
++ if (dwc_frame_num_le(qh->sched_frame, frame_number))
++ qh->sched_frame = frame_number;
++
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++ } else {
++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame,
++ qh->interval);
++ if (dwc_frame_num_le(qh->sched_frame, frame_number))
++ qh->sched_frame = frame_number;
++ }
++
++ if (list_empty(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ } else {
++ /*
++ * Remove from periodic_sched_queued and move to
++ * appropriate queue.
++ */
++ if (qh->sched_frame == frame_number) {
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_ready);
++ } else {
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_inactive);
++ }
++ }
++}
++
++/**
++ * This function allocates and initializes a QTD.
++ *
++ * @urb: The URB to create a QTD from. Each URB-QTD pair will end up
++ * pointing to each other so each pair should have a unique correlation.
++ *
++ * Returns Returns pointer to the newly allocated QTD, or NULL on error. */
++struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb)
++{
++ struct dwc_otg_qtd *qtd;
++
++ qtd = dwc_otg_hcd_qtd_alloc();
++ if (qtd == NULL)
++ return NULL;
++
++ dwc_otg_hcd_qtd_init(qtd, urb);
++ return qtd;
++}
++
++/**
++ * Initializes a QTD structure.
++ *
++ * @qtd: The QTD to initialize.
++ * @urb: The URB to use for initialization.
++ */
++void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb)
++{
++ memset(qtd, 0, sizeof(struct dwc_otg_qtd));
++ qtd->urb = urb;
++ if (usb_pipecontrol(urb->pipe)) {
++ /*
++ * The only time the QTD data toggle is used is on the data
++ * phase of control transfers. This phase always starts with
++ * DATA1.
++ */
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
++ }
++
++ /* start split */
++ qtd->complete_split = 0;
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++
++ /* Store the qtd ptr in the urb to reference what QTD. */
++ urb->hcpriv = qtd;
++ return;
++}
++
++/**
++ * This function adds a QTD to the QTD-list of a QH. It will find the correct
++ * QH to place the QTD into. If it does not find a QH, then it will create a
++ * new QH. If the QH to which the QTD is added is not currently scheduled, it
++ * is placed into the proper schedule based on its EP type.
++ *
++ * @qtd: The QTD to add
++ * @dwc_otg_hcd: The DWC HCD structure
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
++ struct dwc_otg_hcd *dwc_otg_hcd)
++{
++ struct usb_host_endpoint *ep;
++ struct dwc_otg_qh *qh;
++ int retval = 0;
++
++ struct urb *urb = qtd->urb;
++
++ /*
++ * Get the QH which holds the QTD-list to insert to. Create QH if it
++ * doesn't exist.
++ */
++ ep = dwc_urb_to_endpoint(urb);
++ qh = ep->hcpriv;
++ if (qh == NULL) {
++ qh = dwc_otg_hcd_qh_create(dwc_otg_hcd, urb);
++ if (qh == NULL) {
++ retval = -ENOMEM;
++ goto done;
++ }
++ ep->hcpriv = qh;
++ }
++ qtd->qh = qh;
++ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
++ if (retval == 0)
++ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
++done:
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_octeon.c b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+new file mode 100644
+index 0000000..5e92b3c
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+@@ -0,0 +1,1078 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++#include <linux/platform_device.h>
++#include <linux/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_cil.h"
++#ifndef DWC_HOST_ONLY
++#include "dwc_otg_pcd.h"
++#endif
++#include "dwc_otg_hcd.h"
++
++#define DWC_DRIVER_VERSION "2.40a 10-APR-2006"
++#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
++
++static const char dwc_driver_name[] = "dwc_otg";
++int dwc_errata_write_count; /* See dwc_otg_plat.h, dwc_write_reg32 */
++
++/*-------------------------------------------------------------------------*/
++/* Encapsulate the module parameter settings */
++
++static struct dwc_otg_core_params dwc_otg_module_params = {
++ .opt = -1,
++ .otg_cap = -1,
++ .dma_enable = -1,
++ .dma_burst_size = -1,
++ .speed = -1,
++ .host_support_fs_ls_low_power = -1,
++ .host_ls_low_power_phy_clk = -1,
++ .enable_dynamic_fifo = -1,
++ .data_fifo_size = -1,
++ .dev_rx_fifo_size = -1,
++ .dev_nperio_tx_fifo_size = -1,
++ .dev_perio_tx_fifo_size = {-1, /* dev_perio_tx_fifo_size_1 */
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1}, /* 15 */
++ .host_rx_fifo_size = -1,
++ .host_nperio_tx_fifo_size = -1,
++ .host_perio_tx_fifo_size = -1,
++ .max_transfer_size = -1,
++ .max_packet_count = -1,
++ .host_channels = -1,
++ .dev_endpoints = -1,
++ .phy_type = -1,
++ .phy_utmi_width = -1,
++ .phy_ulpi_ddr = -1,
++ .phy_ulpi_ext_vbus = -1,
++ .i2c_enable = -1,
++ .ulpi_fs_ls = -1,
++ .ts_dline = -1,
++};
++
++/**
++ * Global Debug Level Mask.
++ */
++uint32_t g_dbg_lvl; /* 0 -> OFF */
++
++/**
++ * This function shows the Driver Version.
++ */
++static ssize_t version_show(struct device_driver *dev, char *buf)
++{
++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n",
++ DWC_DRIVER_VERSION);
++}
++
++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
++
++/**
++ * This function is called during module intialization to verify that
++ * the module parameters are in a valid state.
++ */
++static int check_parameters(struct dwc_otg_core_if *core_if)
++{
++ int i;
++ int retval = 0;
++
++/* Checks if the parameter is outside of its valid range of values */
++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
++ ((dwc_otg_module_params._param_ < (_low_)) || \
++ (dwc_otg_module_params._param_ > (_high_)))
++
++/* If the parameter has been set by the user, check that the parameter value is
++ * within the value range of values. If not, report a module error. */
++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
++ do { \
++ if (dwc_otg_module_params._param_ != -1) { \
++ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
++ dwc_otg_module_params._param_, _string_); \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ retval++; \
++ } \
++ } \
++ } while (0)
++
++ DWC_OTG_PARAM_ERR(opt, 0, 1, "opt");
++ DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap");
++ DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable");
++ DWC_OTG_PARAM_ERR(speed, 0, 1, "speed");
++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1,
++ "host_support_fs_ls_low_power");
++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1,
++ "host_ls_low_power_phy_clk");
++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo");
++ DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768,
++ "dev_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768,
++ "host_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768,
++ "host_perio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, "max_transfer_size");
++ DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count");
++ DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels");
++ DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints");
++ DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus");
++ DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable");
++ DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls");
++ DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline");
++
++ if (dwc_otg_module_params.dma_burst_size != -1) {
++ if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) {
++ DWC_ERROR
++ ("`%d' invalid for parameter `dma_burst_size'\n",
++ dwc_otg_module_params.dma_burst_size);
++ dwc_otg_module_params.dma_burst_size = 32;
++ retval++;
++ }
++ }
++
++ if (dwc_otg_module_params.phy_utmi_width != -1) {
++ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
++ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
++ DWC_ERROR
++ ("`%d' invalid for parameter `phy_utmi_width'\n",
++ dwc_otg_module_params.phy_utmi_width);
++ dwc_otg_module_params.phy_utmi_width = 16;
++ retval++;
++ }
++ }
++
++ for (i = 0; i < 15; i++) {
++ /* @todo should be like above */
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] !=
++ (unsigned)-1) {
++ if (DWC_OTG_PARAM_TEST
++ (dev_perio_tx_fifo_size[i], 4, 768)) {
++ DWC_ERROR
++ ("`%d' invalid for parameter `%s_%d'\n",
++ dwc_otg_module_params.
++ dev_perio_tx_fifo_size[i],
++ "dev_perio_tx_fifo_size", i);
++ dwc_otg_module_params.
++ dev_perio_tx_fifo_size[i] =
++ dwc_param_dev_perio_tx_fifo_size_default;
++ retval++;
++ }
++ }
++ }
++
++ /* At this point, all module parameters that have been set by the user
++ * are valid, and those that have not are left unset. Now set their
++ * default values and/or check the parameters against the hardware
++ * configurations of the OTG core. */
++
++/* This sets the parameter to the default value if it has not been set by the
++ * user */
++#define PARAM_SET_DEFAULT(_param_) \
++ ({ \
++ int changed = 1; \
++ if (dwc_otg_module_params._param_ == -1) { \
++ changed = 0; \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ } \
++ changed; \
++ })
++
++/* This checks the macro agains the hardware configuration to see if it is
++ * valid. It is possible that the default value could be invalid. In this
++ * case, it will report a module error if the user touched the parameter.
++ * Otherwise it will adjust the value without any error. */
++#define PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
++ ({ \
++ int changed = PARAM_SET_DEFAULT(_param_); \
++ int error = 0; \
++ if (!(_is_valid_)) { \
++ if (changed) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
++ error = 1; \
++ } \
++ dwc_otg_module_params._param_ = (_set_valid_); \
++ } \
++ error; \
++ })
++
++ /* OTG Cap */
++ retval += PARAM_CHECK_VALID(otg_cap, "otg_cap",
++ ({
++ int valid;
++ valid = 1;
++ switch (dwc_otg_module_params.otg_cap) {
++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ valid = 0;
++ break;
++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
++ valid = 0;
++ break;
++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
++ /* always valid */
++ break;
++ }
++ valid;
++ }),
++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
++ ?
++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
++
++ retval += PARAM_CHECK_VALID(dma_enable, "dma_enable",
++ ((dwc_otg_module_params.
++ dma_enable == 1)
++ && (core_if->hwcfg2.b.
++ architecture == 0)) ? 0 : 1,
++ 0);
++
++ retval += PARAM_CHECK_VALID(opt, "opt", 1, 0);
++
++ PARAM_SET_DEFAULT(dma_burst_size);
++
++ retval += PARAM_CHECK_VALID(host_support_fs_ls_low_power,
++ "host_support_fs_ls_low_power",
++ 1, 0);
++
++ retval += PARAM_CHECK_VALID(enable_dynamic_fifo,
++ "enable_dynamic_fifo",
++ ((dwc_otg_module_params.enable_dynamic_fifo == 0)
++ || (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
++
++ retval += PARAM_CHECK_VALID(data_fifo_size,
++ "data_fifo_size",
++ dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth,
++ core_if->hwcfg3.b.dfifo_depth);
++
++ retval += PARAM_CHECK_VALID(dev_rx_fifo_size,
++ "dev_rx_fifo_size",
++ (dwc_otg_module_params.dev_rx_fifo_size <=
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++ retval += PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
++ "dev_nperio_tx_fifo_size",
++ dwc_otg_module_params.dev_nperio_tx_fifo_size <=
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
++ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
++
++ retval += PARAM_CHECK_VALID(host_rx_fifo_size,
++ "host_rx_fifo_size",
++ dwc_otg_module_params.host_rx_fifo_size <=
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++ retval += PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
++ "host_nperio_tx_fifo_size",
++ dwc_otg_module_params.host_nperio_tx_fifo_size <=
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
++ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
++
++ retval += PARAM_CHECK_VALID(host_perio_tx_fifo_size,
++ "host_perio_tx_fifo_size",
++ dwc_otg_module_params.host_perio_tx_fifo_size <=
++ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16),
++ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16));
++
++ retval += PARAM_CHECK_VALID(max_transfer_size,
++ "max_transfer_size",
++ dwc_otg_module_params.max_transfer_size <
++ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)),
++ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1);
++
++ retval += PARAM_CHECK_VALID(max_packet_count,
++ "max_packet_count",
++ dwc_otg_module_params.max_packet_count <
++ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)),
++ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1);
++
++ retval += PARAM_CHECK_VALID(host_channels,
++ "host_channels",
++ dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1),
++ core_if->hwcfg2.b.num_host_chan + 1);
++
++ retval += PARAM_CHECK_VALID(dev_endpoints,
++ "dev_endpoints",
++ dwc_otg_module_params.dev_endpoints <= core_if->hwcfg2.b.num_dev_ep,
++ core_if->hwcfg2.b.num_dev_ep);
++
++/*
++ * Define the following to disable the FS PHY Hardware checking. This is for
++ * internal testing only.
++ *
++ * #define NO_FS_PHY_HW_CHECKS
++ */
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0);
++#else
++ retval += PARAM_CHECK_VALID(phy_type, "phy_type",
++ ({
++ int valid = 0;
++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ((core_if->hwcfg2.b.hs_phy_type == 1) || (core_if->hwcfg2.b.hs_phy_type == 3)))
++ valid = 1;
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ((core_if->hwcfg2.b.hs_phy_type == 2) || (core_if->hwcfg2.b.hs_phy_type == 3)))
++ valid = 1;
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && (core_if->hwcfg2.b.fs_phy_type == 1))
++ valid = 1;
++ valid;
++ }),
++ ({
++ int set = DWC_PHY_TYPE_PARAM_FS;
++ if (core_if->hwcfg2.b.hs_phy_type) {
++ if ((core_if->hwcfg2.b.hs_phy_type == 3)
++ || (core_if->hwcfg2.b.hs_phy_type == 1))
++ set = DWC_PHY_TYPE_PARAM_UTMI;
++ else
++ set = DWC_PHY_TYPE_PARAM_ULPI;
++ }
++ set;
++ }));
++#endif
++
++ retval += PARAM_CHECK_VALID(speed, "speed",
++ dwc_otg_module_params.speed == 0
++ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
++
++ retval += PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
++ "host_ls_low_power_phy_clk",
++ dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
++ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++ (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ?
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ);
++
++ PARAM_SET_DEFAULT(phy_ulpi_ddr);
++ PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
++ PARAM_SET_DEFAULT(phy_utmi_width);
++ PARAM_SET_DEFAULT(ulpi_fs_ls);
++ PARAM_SET_DEFAULT(ts_dline);
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
++#else
++ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable",
++ dwc_otg_module_params.i2c_enable == 1
++ && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0);
++#endif
++
++ for (i = 0; i < 15; i++) {
++
++ int changed = 1;
++ int error = 0;
++
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
++ changed = 0;
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
++ dwc_param_dev_perio_tx_fifo_size_default;
++ }
++ if (!
++ (dwc_otg_module_params.dev_perio_tx_fifo_size[i] <=
++ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz[i])))) {
++ if (changed) {
++ DWC_ERROR("`%d' invalid for parameter "
++ "`dev_perio_fifo_size_%d'. "
++ "Check HW configuration.\n",
++ dwc_otg_module_params.
++ dev_perio_tx_fifo_size[i], i);
++ error = 1;
++ }
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
++ dwc_read_reg32(&core_if->core_global_regs->
++ dptxfsiz[i]);
++ }
++ retval += error;
++ }
++
++ return retval;
++}
++
++/**
++ * This function is the top level interrupt handler for the Common
++ * (Device and host modes) interrupts.
++ */
++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
++{
++ struct dwc_otg_device *otg_dev = _dev;
++ int32_t retval = IRQ_NONE;
++ unsigned long flags;
++
++ spin_lock_irqsave(&otg_dev->hcd->global_lock, flags);
++
++ retval = dwc_otg_handle_common_intr(otg_dev->core_if);
++
++ spin_unlock_irqrestore(&otg_dev->hcd->global_lock, flags);
++
++ return IRQ_RETVAL(retval);
++}
++
++/**
++ * This function is called when a device is unregistered with the
++ * dwc_otg_driver. This happens, for example, when the rmmod command is
++ * executed. The device may or may not be electrically present. If it is
++ * present, the driver stops device processing. Any resources used on behalf
++ * of this device are freed.
++ *
++ * @dev:
++ */
++static int dwc_otg_driver_remove(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct dwc_otg_device *otg_dev = dev->platform_data;
++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, dev);
++
++ if (otg_dev == NULL)
++ /* Memory allocation for the dwc_otg_device failed. */
++ return -ENOMEM;
++
++ /*
++ * Free the IRQ
++ */
++ if (otg_dev->common_irq_installed)
++ free_irq(platform_get_irq(to_platform_device(dev), 0), otg_dev);
++
++#ifndef DWC_DEVICE_ONLY
++ if (otg_dev->hcd != NULL)
++ dwc_otg_hcd_remove(dev);
++#endif
++
++#ifndef DWC_HOST_ONLY
++ if (otg_dev->pcd != NULL)
++ dwc_otg_pcd_remove(dev);
++#endif
++ if (otg_dev->core_if != NULL)
++ dwc_otg_cil_remove(otg_dev->core_if);
++
++ /*
++ * Remove the device attributes
++ */
++ dwc_otg_attr_remove(dev);
++
++ /*
++ * Clear the platform_data pointer.
++ */
++ dev->platform_data = 0;
++ return 0;
++}
++
++/**
++ * This function is called when an device is bound to a
++ * dwc_otg_driver. It creates the driver components required to
++ * control the device (CIL, HCD, and PCD) and it initializes the
++ * device. The driver components are stored in a dwc_otg_device
++ * structure. A reference to the dwc_otg_device is saved in the
++ * device. This allows the driver to access the dwc_otg_device
++ * structure on subsequent calls to driver methods for this device.
++ *
++ * @dev: device definition
++ */
++static __devinit int dwc_otg_driver_probe(struct platform_device *pdev)
++{
++ struct resource *res_base;
++ struct device *dev = &pdev->dev;
++ struct dwc_otg_device *dwc_otg_device;
++ int32_t snpsid;
++ unsigned long flags;
++ int irq;
++ int retval;
++
++ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev);
++
++ dwc_otg_device = devm_kzalloc(&pdev->dev,
++ sizeof(struct dwc_otg_device),
++ GFP_KERNEL);
++ if (!dwc_otg_device) {
++ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
++ return -ENOMEM;
++ }
++ dwc_otg_device->reg_offset = 0xFFFFFFFF;
++
++ /*
++ * Map the DWC_otg Core memory into virtual address space.
++ */
++ res_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ if (!res_base)
++ goto err_ports;
++
++ dwc_otg_device->base =
++ devm_ioremap_nocache(&pdev->dev,
++ res_base->start,
++ res_base->end - res_base->start);
++
++ if (!dwc_otg_device->base)
++ goto err_ports;
++
++ dev_dbg(dev, "base=%p\n", dwc_otg_device->base);
++
++ /*
++ * Attempt to ensure this device is really a DWC_otg Controller.
++ * Read and verify the SNPSID register contents. The value should be
++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
++ */
++ snpsid =
++ dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base +
++ 0x40));
++ if ((snpsid & 0xFFFFF000) != 0x4F542000) {
++ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
++ goto err_ports;
++ }
++
++ /*
++ * Initialize driver data to point to the global DWC_otg
++ * Device structure.
++ */
++ dev->platform_data = dwc_otg_device;
++ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
++
++ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
++ &dwc_otg_module_params);
++ if (dwc_otg_device->core_if == 0) {
++ dev_err(dev, "CIL initialization failed!\n");
++ goto err_ports;
++ }
++ dwc_otg_device->core_if->usb_num = to_platform_device(dev)->id;
++
++ /*
++ * Validate parameter values.
++ */
++ if (check_parameters(dwc_otg_device->core_if) != 0)
++ goto err_ports;
++
++ /*
++ * Create Device Attributes in sysfs
++ */
++ dwc_otg_attr_create(dev);
++
++ /*
++ * Disable the global interrupt until all the interrupt
++ * handlers are installed.
++ */
++ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
++ /*
++ * Install the interrupt handler for the common interrupts before
++ * enabling common interrupts in core_init below.
++ */
++ irq = platform_get_irq(to_platform_device(dev), 0);
++ DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", irq);
++ retval = request_irq(irq, dwc_otg_common_irq,
++ IRQF_SHARED, "dwc_otg", dwc_otg_device);
++ if (retval != 0) {
++ DWC_ERROR("request of irq%d failed\n", irq);
++ goto err_ports;
++ } else {
++ dwc_otg_device->common_irq_installed = 1;
++ }
++
++ /*
++ * Initialize the DWC_otg core.
++ */
++ dwc_otg_core_init(dwc_otg_device->core_if);
++
++#ifndef DWC_HOST_ONLY
++ /*
++ * Initialize the PCD
++ */
++ retval = dwc_otg_pcd_init(dev);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_pcd_init failed\n");
++ dwc_otg_device->pcd = NULL;
++ goto err_ports;
++ }
++#endif
++#ifndef DWC_DEVICE_ONLY
++ /*
++ * Initialize the HCD
++ */
++ retval = dwc_otg_hcd_init(dev);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_hcd_init failed\n");
++ dwc_otg_device->hcd = NULL;
++ goto err_ports;
++ }
++#endif
++
++ /*
++ * Enable the global interrupt after all the interrupt
++ * handlers are installed.
++ */
++ local_irq_save(flags);
++ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
++ local_irq_restore(flags);
++
++ return 0;
++
++err_ports:
++ devm_kfree(&pdev->dev, dwc_otg_device);
++ return -ENOENT;
++}
++
++/**
++ * This structure defines the methods to be called by a bus driver
++ * during the lifecycle of a device on that bus. Both drivers and
++ * devices are registered with a bus driver. The bus driver matches
++ * devices to drivers based on information in the device and driver
++ * structures.
++ *
++ * The probe function is called when the bus driver matches a device
++ * to this driver. The remove function is called when a device is
++ * unregistered with the bus driver.
++ */
++static struct platform_driver dwc_otg_driver = {
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++ .driver = {
++ .name = dwc_driver_name,
++ .owner = THIS_MODULE},
++};
++
++/**
++ * This function is called when the dwc_otg_driver is installed with the
++ * insmod command. It registers the dwc_otg_driver structure with the
++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
++ * to be called. In addition, the bus driver will automatically expose
++ * attributes defined for the device and driver in the special sysfs file
++ * system.
++ *
++ * Returns
++ */
++static int __init dwc_otg_driver_init(void)
++{
++ int retval;
++
++ pr_info("%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
++
++ /* Though core was configured for external dma override that with slave
++ mode only for CN31XX. DMA is broken in this chip */
++ if (OCTEON_IS_MODEL(OCTEON_CN31XX))
++ dwc_otg_module_params.dma_enable = 0;
++
++ retval = platform_driver_register(&dwc_otg_driver);
++
++ if (retval < 0) {
++ pr_err("%s retval=%d\n", __func__, retval);
++ return retval;
++ }
++ if (driver_create_file(&dwc_otg_driver.driver, &driver_attr_version))
++ pr_warning("DWC_OTG: Failed to create driver version file\n");
++
++ return retval;
++}
++module_init(dwc_otg_driver_init);
++
++/**
++ * This function is called when the driver is removed from the kernel
++ * with the rmmod command. The driver unregisters itself with its bus
++ * driver.
++ *
++ */
++static void __exit dwc_otg_driver_cleanup(void)
++{
++ printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n");
++
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++
++ platform_driver_unregister(&dwc_otg_driver);
++
++ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
++}
++module_exit(dwc_otg_driver_cleanup);
++
++MODULE_DESCRIPTION(DWC_DRIVER_DESC);
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE("GPL");
++
++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
++module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
++MODULE_PARM_DESC(opt, "OPT Mode");
++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int,
++ 0444);
++MODULE_PARM_DESC(dma_burst_size,
++ "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
++module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
++module_param_named(host_support_fs_ls_low_power,
++ dwc_otg_module_params.host_support_fs_ls_low_power, int,
++ 0444);
++MODULE_PARM_DESC(host_support_fs_ls_low_power,
++ "Support Low Power w/FS or LS 0=Support 1=Don't Support");
++module_param_named(host_ls_low_power_phy_clk,
++ dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
++MODULE_PARM_DESC(host_ls_low_power_phy_clk,
++ "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
++module_param_named(enable_dynamic_fifo,
++ dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int,
++ 0444);
++MODULE_PARM_DESC(data_fifo_size,
++ "Total number of words in the data FIFO memory 32-32768");
++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size,
++ int, 0444);
++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(dev_nperio_tx_fifo_size,
++ dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_nperio_tx_fifo_size,
++ "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(dev_perio_tx_fifo_size_1,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_2,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_3,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_4,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_5,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_6,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_7,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_8,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_9,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_10,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_11,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_12,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_13,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_14,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_15,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size,
++ int, 0444);
++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(host_nperio_tx_fifo_size,
++ dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_nperio_tx_fifo_size,
++ "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(host_perio_tx_fifo_size,
++ dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_perio_tx_fifo_size,
++ "Number of words in the host periodic Tx FIFO 16-32768");
++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size,
++ int, 0444);
++/** @todo Set the max to 512K, modify checks */
++MODULE_PARM_DESC(max_transfer_size,
++ "The maximum transfer size supported in bytes 2047-65535");
++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count,
++ int, 0444);
++MODULE_PARM_DESC(max_packet_count,
++ "The maximum number of packets in a transfer 15-511");
++module_param_named(host_channels, dwc_otg_module_params.host_channels, int,
++ 0444);
++MODULE_PARM_DESC(host_channels,
++ "The number of host channel registers to use 1-16");
++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int,
++ 0444);
++MODULE_PARM_DESC(dev_endpoints,
++ "The number of endpoints in addition to EP0 available "
++ "for device mode 1-15");
++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int,
++ 0444);
++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ddr,
++ "ULPI at double or single data rate 0=Single 1=Double");
++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus,
++ int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ext_vbus,
++ "ULPI PHY using internal or external vbus 0=Internal");
++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
++module_param_named(debug, g_dbg_lvl, int, 0644);
++MODULE_PARM_DESC(debug, "");
++
++/** @page "Module Parameters"
++ *
++ * The following parameters may be specified when starting the module.
++ * These parameters define how the DWC_otg controller should be
++ * configured. Parameter values are passed to the CIL initialization
++ * function dwc_otg_cil_init
++ *
++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
++ *
++
++ <table>
++ <tr><td>Parameter Name</td><td>Meaning</td></tr>
++
++ <tr>
++ <td>otg_cap</td>
++ <td>Specifies the OTG capabilities. The driver will automatically detect the
++ value for this parameter if none is specified.
++ - 0: HNP and SRP capable (default, if available)
++ - 1: SRP Only capable
++ - 2: No HNP/SRP capable
++ </td></tr>
++
++ <tr>
++ <td>dma_enable</td>
++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Slave
++ - 1: DMA (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dma_burst_size</td>
++ <td>The DMA Burst size (applicable only for External DMA Mode).
++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ </td></tr>
++
++ <tr>
++ <td>speed</td>
++ <td>Specifies the maximum speed of operation in host and device mode. The
++ actual speed depends on the speed of the attached device and the value of
++ phy_type.
++ - 0: High Speed (default)
++ - 1: Full Speed
++ </td></tr>
++
++ <tr>
++ <td>host_support_fs_ls_low_power</td>
++ <td>Specifies whether low power mode is supported when attached to a Full
++ Speed or Low Speed device in host mode.
++ - 0: Don't support low power mode (default)
++ - 1: Support low power mode
++ </td></tr>
++
++ <tr>
++ <td>host_ls_low_power_phy_clk</td>
++ <td>Specifies the PHY clock rate in low power mode when connected to a Low
++ Speed device in host mode. This parameter is applicable only if
++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
++ - 0: 48 MHz (default)
++ - 1: 6 MHz
++ </td></tr>
++
++ <tr>
++ <td>enable_dynamic_fifo</td>
++ <td> Specifies whether FIFOs may be resized by the driver software.
++ - 0: Use cC FIFO size parameters
++ - 1: Allow dynamic FIFO sizing (default)
++ </td></tr>
++
++ <tr>
++ <td>data_fifo_size</td>
++ <td>Total number of 4-byte words in the data FIFO memory. This memory
++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
++ - Values: 32 to 32768 (default 8192)
++
++ Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ </td></tr>
++
++ <tr>
++ <td>dev_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1064)
++ </td></tr>
++
++ <tr>
++ <td>dev_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
++ dynamic FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++ <tr>
++ <td>host_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
++ dynamic FIFO sizing is enabled in the core.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_perio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>max_transfer_size</td>
++ <td>The maximum transfer size supported in bytes.
++ - Values: 2047 to 65,535 (default 65,535)
++ </td></tr>
++
++ <tr>
++ <td>max_packet_count</td>
++ <td>The maximum number of packets in a transfer.
++ - Values: 15 to 511 (default 511)
++ </td></tr>
++
++ <tr>
++ <td>host_channels</td>
++ <td>The number of host channel registers to use.
++ - Values: 1 to 16 (default 12)
++
++ Note: The FPGA configuration supports a maximum of 12 host channels.
++ </td></tr>
++
++ <tr>
++ <td>dev_endpoints</td>
++ <td>The number of endpoints in addition to EP0 available for device mode
++ operations.
++ - Values: 1 to 15 (default 6 IN and OUT)
++
++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
++ addition to EP0.
++ </td></tr>
++
++ <tr>
++ <td>phy_type</td>
++ <td>Specifies the type of PHY interface to use. By default, the driver will
++ automatically detect the phy_type.
++ - 0: Full Speed
++ - 1: UTMI+ (default, if available)
++ - 2: ULPI
++ </td></tr>
++
++ <tr>
++ <td>phy_utmi_width</td>
++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
++ phy_type of UTMI+. Also, this parameter is applicable only if the
++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
++ core has been configured to work at either data path width.
++ - Values: 8 or 16 bits (default 16)
++ </td></tr>
++
++ <tr>
++ <td>phy_ulpi_ddr</td>
++ <td>Specifies whether the ULPI operates at double or single data rate. This
++ parameter is only applicable if phy_type is ULPI.
++ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
++ - 1: double data rate ULPI interface with 4 bit wide data bus
++ </td></tr>
++
++ <tr>
++ <td>i2c_enable</td>
++ <td>Specifies whether to use the I2C interface for full speed PHY. This
++ parameter is only applicable if PHY_TYPE is FS.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++*/
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_plat.h b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
+new file mode 100644
+index 0000000..93ef282
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
+@@ -0,0 +1,236 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_PLAT_H__)
++#define __DWC_OTG_PLAT_H__
++
++#include <linux/types.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/io.h>
++
++#include <asm/octeon/octeon.h>
++#include <asm/octeon/cvmx-usbnx-defs.h>
++
++#define SZ_256K 0x00040000
++#ifndef CONFIG_64BIT
++#define OCTEON_USB_BASE_ADDRESS 0x80016F0010000000ull
++#endif
++
++/**
++ * @file
++ *
++ * This file contains the Platform Specific constants, interfaces
++ * (functions and macros) for Linux.
++ *
++ */
++
++/**
++ * Reads the content of a register.
++ *
++ * @_reg: address of register to read.
++ * Returns contents of the register.
++ *
++
++ * Usage:<br>
++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
++ */
++static inline uint32_t dwc_read_reg32(uint32_t *_reg)
++{
++ uint32_t result;
++ /* USB device registers on Octeon are 32bit address swapped */
++#ifdef CONFIG_64BIT
++ uint64_t address = (unsigned long)_reg ^ 4;
++#else
++ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
++#endif
++ result = cvmx_read64_uint32(address);
++ return result;
++};
++
++/**
++ * Writes a register with a 32 bit value.
++ *
++ * @_reg: address of register to read.
++ * @_value: to write to _reg.
++ *
++ * Usage:<br>
++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
++ */
++static inline void dwc_write_reg32(uint32_t *_reg,
++ const uint32_t _value)
++{
++ /* USB device registers on Octeon are 32bit address swapped */
++#ifdef CONFIG_64BIT
++ uint64_t address = (unsigned long)_reg ^ 4;
++#else
++ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
++#endif
++ wmb();
++ cvmx_write64_uint32(address, _value);
++
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++ /* O2P/O1P pass 1 bug workaround: A read must occur for at least
++ every 3rd write to insure that the writes do not overrun the
++ USBN. */
++ if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) {
++ extern int dwc_errata_write_count;
++ if (++dwc_errata_write_count > 2) {
++ cvmx_read_csr(CVMX_USBNX_DMA0_INB_CHN0(0));
++ dwc_errata_write_count = 0;
++ }
++ }
++#endif
++};
++
++/**
++ * This function modifies bit values in a register. Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ *
++ * @_reg: address of register to read.
++ * @_clear_mask: bit mask to be cleared.
++ * @_set_mask: bit mask to be set.
++ *
++ * Usage:<br>
++ * <code> // Clear the SOF Interrupt Mask bit and <br>
++ * // set the OTG Interrupt mask bit, leaving all others as they were.
++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
++ */
++static inline void dwc_modify_reg32(uint32_t *_reg,
++ const uint32_t _clear_mask,
++ const uint32_t _set_mask)
++{
++ uint32_t value = dwc_read_reg32(_reg);
++ value &= ~_clear_mask;
++ value |= _set_mask;
++ dwc_write_reg32(_reg, value);
++};
++
++/*
++ * Debugging support vanishes in non-debug builds.
++ */
++
++/**
++ * The Debug Level bit-mask variable.
++ */
++extern uint32_t g_dbg_lvl;
++/**
++ * Set the Debug Level variable.
++ */
++static inline uint32_t SET_DEBUG_LEVEL(const uint32_t _new)
++{
++ uint32_t old = g_dbg_lvl;
++ g_dbg_lvl = _new;
++ return old;
++}
++
++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
++#define DBG_CIL (0x2)
++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
++ * messages */
++#define DBG_CILV (0x20)
++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
++ * messages */
++#define DBG_PCD (0x4)
++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
++ * messages */
++#define DBG_PCDV (0x40)
++/** When debug level has the DBG_HCD bit set, display Host debug messages */
++#define DBG_HCD (0x8)
++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
++ * messages */
++#define DBG_HCDV (0x80)
++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
++ * mode. */
++#define DBG_HCD_URB (0x800)
++
++/** When debug level has any bit set, display debug messages */
++#define DBG_ANY (0xFF)
++
++/** All debug messages off */
++#define DBG_OFF 0
++
++/** Prefix string for DWC_DEBUG print macros. */
++#define USB_DWC "DWC_otg: "
++
++/**
++ * Print a debug message when the Global debug level variable contains
++ * the bit defined in <code>lvl</code>.
++ *
++ * @lvl: - Debug level, use one of the DBG_ constants above.
++ * @x: - like printf
++ *
++ * Example:<p>
++ * <code>
++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
++ * </code>
++ * <br>
++ * results in:<br>
++ * <code>
++ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
++ * </code>
++ */
++#ifdef DEBUG
++
++# define DWC_DEBUGPL(lvl, x...) \
++ do { \
++ if ((lvl)&g_dbg_lvl) \
++ printk(KERN_DEBUG USB_DWC x); \
++ } while (0)
++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x)
++
++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
++
++#else
++
++# define DWC_DEBUGPL(lvl, x...) do { } while (0)
++# define DWC_DEBUGP(x...)
++
++# define CHK_DEBUG_LEVEL(level) (0)
++
++#endif /*DEBUG*/
++/*
++ * Print an Error message.
++ */
++#define DWC_ERROR(x...) printk(KERN_ERR USB_DWC x)
++/*
++ * Print a Warning message.
++ */
++#define DWC_WARN(x...) printk(KERN_WARNING USB_DWC x)
++/*
++ * Print a notice (normal but significant message).
++ */
++#define DWC_NOTICE(x...) printk(KERN_NOTICE USB_DWC x)
++/*
++ * Basic message printing.
++ */
++#define DWC_PRINT(x...) printk(KERN_INFO USB_DWC x)
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_regs.h b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
+new file mode 100644
+index 0000000..34cc4f7
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
+@@ -0,0 +1,2355 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_REGS_H__
++#define __DWC_OTG_REGS_H__
++
++/*
++ *
++ * This file contains the data structures for accessing the DWC_otg
++ * core registers.
++ *
++ * The application interfaces with the HS OTG core by reading from and
++ * writing to the Control and Status Register (CSR) space through the
++ * AHB Slave interface. These registers are 32 bits wide, and the
++ * addresses are 32-bit-block aligned.
++ * CSRs are classified as follows:
++ * - Core Global Registers
++ * - Device Mode Registers
++ * - Device Global Registers
++ * - Device Endpoint Specific Registers
++ * - Host Mode Registers
++ * - Host Global Registers
++ * - Host Port CSRs
++ * - Host Channel Specific Registers
++ *
++ * Only the Core Global registers can be accessed in both Device and
++ * Host modes. When the HS OTG core is operating in one mode, either
++ * Device or Host, the application must not access registers from the
++ * other mode. When the core switches from one mode to another, the
++ * registers in the new mode of operation must be reprogrammed as they
++ * would be after a power-on reset.
++ */
++
++/****************************************************************************/
++/* DWC_otg Core registers .
++ * The dwc_otg_core_global_regs structure defines the size
++ * and relative field offsets for the Core Global registers.
++ */
++struct dwc_otg_core_global_regs {
++ /* OTG Control and Status Register. Offset: 000h */
++ uint32_t gotgctl;
++ /* OTG Interrupt Register. Offset: 004h */
++ uint32_t gotgint;
++ /* Core AHB Configuration Register. Offset: 008h */
++ uint32_t gahbcfg;
++#define DWC_GLBINTRMASK 0x0001
++#define DWC_DMAENABLE 0x0020
++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
++#define DWC_PTXEMPTYLVL_EMPTY 0x0100
++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
++
++ /* Core USB Configuration Register. Offset: 00Ch */
++ uint32_t gusbcfg;
++ /* Core Reset Register. Offset: 010h */
++ uint32_t grstctl;
++ /* Core Interrupt Register. Offset: 014h */
++ uint32_t gintsts;
++ /* Core Interrupt Mask Register. Offset: 018h */
++ uint32_t gintmsk;
++ /* Receive Status Queue Read Register (Read Only). Offset: 01Ch */
++ uint32_t grxstsr;
++ /* Receive Status Queue Read & POP Register (Read Only). Offset: 020h*/
++ uint32_t grxstsp;
++ /* Receive FIFO Size Register. Offset: 024h */
++ uint32_t grxfsiz;
++ /* Non Periodic Transmit FIFO Size Register. Offset: 028h */
++ uint32_t gnptxfsiz;
++ /*
++ *Non Periodic Transmit FIFO/Queue Status Register (Read
++ * Only). Offset: 02Ch
++ */
++ uint32_t gnptxsts;
++ /* I2C Access Register. Offset: 030h */
++ uint32_t gi2cctl;
++ /* PHY Vendor Control Register. Offset: 034h */
++ uint32_t gpvndctl;
++ /* General Purpose Input/Output Register. Offset: 038h */
++ uint32_t ggpio;
++ /* User ID Register. Offset: 03Ch */
++ uint32_t guid;
++ /* Synopsys ID Register (Read Only). Offset: 040h */
++ uint32_t gsnpsid;
++ /* User HW Config1 Register (Read Only). Offset: 044h */
++ uint32_t ghwcfg1;
++ /* User HW Config2 Register (Read Only). Offset: 048h */
++ uint32_t ghwcfg2;
++#define DWC_SLAVE_ONLY_ARCH 0
++#define DWC_EXT_DMA_ARCH 1
++#define DWC_INT_DMA_ARCH 2
++
++#define DWC_MODE_HNP_SRP_CAPABLE 0
++#define DWC_MODE_SRP_ONLY_CAPABLE 1
++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
++#define DWC_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_MODE_SRP_CAPABLE_HOST 5
++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
++
++ /* User HW Config3 Register (Read Only). Offset: 04Ch */
++ uint32_t ghwcfg3;
++ /* User HW Config4 Register (Read Only). Offset: 050h*/
++ uint32_t ghwcfg4;
++ /* Reserved Offset: 054h-0FFh */
++ uint32_t reserved[43];
++ /* Host Periodic Transmit FIFO Size Register. Offset: 100h */
++ uint32_t hptxfsiz;
++ /*
++ * Device Periodic Transmit FIFO#n Register.
++ * Offset: 104h + (FIFO_Number-1)*04h,
++ * 1 <= FIFO Number <= 15 (1<=n<=15).
++ */
++ uint32_t dptxfsiz[15];
++};
++
++/*
++ * This union represents the bit fields of the Core OTG Control
++ * and Status Register (GOTGCTL). Set the bits using the bit
++ * fields then write the d32 value to the register.
++ */
++union gotgctl_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved21_31:11;
++ unsigned currmod:1;
++ unsigned bsesvld:1;
++ unsigned asesvld:1;
++ unsigned reserved17:1;
++ unsigned conidsts:1;
++ unsigned reserved12_15:4;
++ unsigned devhnpen:1;
++ unsigned hstsethnpen:1;
++ unsigned hnpreq:1;
++ unsigned hstnegscs:1;
++ unsigned reserved2_7:6;
++ unsigned sesreq:1;
++ unsigned sesreqscs:1;
++#else
++ unsigned sesreqscs:1;
++ unsigned sesreq:1;
++ unsigned reserved2_7:6;
++ unsigned hstnegscs:1;
++ unsigned hnpreq:1;
++ unsigned hstsethnpen:1;
++ unsigned devhnpen:1;
++ unsigned reserved12_15:4;
++ unsigned conidsts:1;
++ unsigned reserved17:1;
++ unsigned asesvld:1;
++ unsigned bsesvld:1;
++ unsigned currmod:1;
++ unsigned reserved21_31:11;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core OTG Interrupt Register
++ * (GOTGINT). Set/clear the bits using the bit fields then write the d32
++ * value to the register.
++ */
++union gotgint_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved31_20:12;
++ unsigned debdone:1;
++ unsigned adevtoutchng:1;
++ unsigned hstnegdet:1;
++ unsigned reserver10_16:7;
++ unsigned hstnegsucstschng:1;
++ unsigned sesreqsucstschng:1;
++ unsigned reserved3_7:5;
++ unsigned sesenddet:1;
++ unsigned reserved0_1:2;
++#else
++
++ /* Current Mode */
++ unsigned reserved0_1:2;
++
++ /* Session End Detected */
++ unsigned sesenddet:1;
++
++ unsigned reserved3_7:5;
++
++ /* Session Request Success Status Change */
++ unsigned sesreqsucstschng:1;
++ /* Host Negotiation Success Status Change */
++ unsigned hstnegsucstschng:1;
++
++ unsigned reserver10_16:7;
++
++ /* Host Negotiation Detected */
++ unsigned hstnegdet:1;
++ /* A-Device Timeout Change */
++ unsigned adevtoutchng:1;
++ /* Debounce Done */
++ unsigned debdone:1;
++
++ unsigned reserved31_20:12;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core AHB Configuration
++ * Register (GAHBCFG). Set/clear the bits using the bit fields then
++ * write the d32 value to the register.
++ */
++union gahbcfg_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
++#define DWC_GAHBCFG_DMAENABLE 1
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
++#define DWC_GAHBCFG_GLBINT_ENABLE 1
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved9_31:23;
++ unsigned ptxfemplvl:1;
++ unsigned nptxfemplvl:1;
++ unsigned reserved:1;
++ unsigned dmaenable:1;
++ unsigned hburstlen:4;
++ unsigned glblintrmsk:1;
++#else
++ unsigned glblintrmsk:1;
++ unsigned hburstlen:4;
++ unsigned dmaenable:1;
++ unsigned reserved:1;
++ unsigned nptxfemplvl:1;
++ unsigned ptxfemplvl:1;
++ unsigned reserved9_31:23;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core USB Configuration
++ * Register (GUSBCFG). Set the bits using the bit fields then write
++ * the d32 value to the register.
++ */
++union gusbcfg_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:9;
++ unsigned term_sel_dl_pulse:1;
++ unsigned ulpi_int_vbus_indicator:1;
++ unsigned ulpi_ext_vbus_drv:1;
++ unsigned ulpi_clk_sus_m:1;
++ unsigned ulpi_auto_res:1;
++ unsigned ulpi_fsls:1;
++ unsigned otgutmifssel:1;
++ unsigned phylpwrclksel:1;
++ unsigned nptxfrwnden:1;
++ unsigned usbtrdtim:4;
++ unsigned hnpcap:1;
++ unsigned srpcap:1;
++ unsigned ddrsel:1;
++ unsigned physel:1;
++ unsigned fsintf:1;
++ unsigned ulpi_utmi_sel:1;
++ unsigned phyif:1;
++ unsigned toutcal:3;
++#else
++ unsigned toutcal:3;
++ unsigned phyif:1;
++ unsigned ulpi_utmi_sel:1;
++ unsigned fsintf:1;
++ unsigned physel:1;
++ unsigned ddrsel:1;
++ unsigned srpcap:1;
++ unsigned hnpcap:1;
++ unsigned usbtrdtim:4;
++ unsigned nptxfrwnden:1;
++ unsigned phylpwrclksel:1;
++ unsigned otgutmifssel:1;
++ unsigned ulpi_fsls:1;
++ unsigned ulpi_auto_res:1;
++ unsigned ulpi_clk_sus_m:1;
++ unsigned ulpi_ext_vbus_drv:1;
++ unsigned ulpi_int_vbus_indicator:1;
++ unsigned term_sel_dl_pulse:1;
++ unsigned reserved:9;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core Reset Register
++ * (GRSTCTL). Set/clear the bits using the bit fields then write the
++ * d32 value to the register.
++ */
++union grstctl_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned ahbidle:1;
++ unsigned dmareq:1;
++ unsigned reserved11_29:19;
++ unsigned txfnum:5;
++ unsigned txfflsh:1;
++ unsigned rxfflsh:1;
++ unsigned intknqflsh:1;
++ unsigned hstfrm:1;
++ unsigned hsftrst:1;
++ unsigned csftrst:1;
++#else
++
++ /*
++ * Core Soft Reset (CSftRst) (Device and Host)
++ *
++ * The application can flush the control logic in the
++ * entire core using this bit. This bit resets the
++ * pipelines in the AHB Clock domain as well as the
++ * PHY Clock domain.
++ *
++ * The state machines are reset to an IDLE state, the
++ * control bits in the CSRs are cleared, all the
++ * transmit FIFOs and the receive FIFO are flushed.
++ *
++ * The status mask bits that control the generation of
++ * the interrupt, are cleared, to clear the
++ * interrupt. The interrupt status bits are not
++ * cleared, so the application can get the status of
++ * any events that occurred in the core after it has
++ * set this bit.
++ *
++ * Any transactions on the AHB are terminated as soon
++ * as possible following the protocol. Any
++ * transactions on the USB are terminated immediately.
++ *
++ * The configuration settings in the CSRs are
++ * unchanged, so the software doesn't have to
++ * reprogram these registers (Device
++ * Configuration/Host Configuration/Core System
++ * Configuration/Core PHY Configuration).
++ *
++ * The application can write to this bit, any time it
++ * wants to reset the core. This is a self clearing
++ * bit and the core clears this bit after all the
++ * necessary logic is reset in the core, which may
++ * take several clocks, depending on the current state
++ * of the core.
++ */
++ unsigned csftrst:1;
++ /*
++ * Hclk Soft Reset
++ *
++ * The application uses this bit to reset the control logic in
++ * the AHB clock domain. Only AHB clock domain pipelines are
++ * reset.
++ */
++ unsigned hsftrst:1;
++ /*
++ * Host Frame Counter Reset (Host Only)<br>
++ *
++ * The application can reset the (micro)frame number
++ * counter inside the core, using this bit. When the
++ * (micro)frame counter is reset, the subsequent SOF
++ * sent out by the core, will have a (micro)frame
++ * number of 0.
++ */
++ unsigned hstfrm:1;
++ /*
++ * In Token Sequence Learning Queue Flush
++ * (INTknQFlsh) (Device Only)
++ */
++ unsigned intknqflsh:1;
++ /*
++ * RxFIFO Flush (RxFFlsh) (Device and Host)
++ *
++ * The application can flush the entire Receive FIFO
++ * using this bit. <p>The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is reading from the RxFIFO nor the MAC
++ * is writing the data in to the FIFO. <p>The
++ * application should wait until the bit is cleared
++ * before performing any other operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned rxfflsh:1;
++ /*
++ * TxFIFO Flush (TxFFlsh) (Device and Host).
++ *
++ * This bit is used to selectively flush a single or
++ * all transmit FIFOs. The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is writing into the TxFIFO nor the MAC
++ * is reading the data out of the FIFO. <p>The
++ * application should wait until the core clears this
++ * bit, before performing any operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned txfflsh:1;
++
++ /*
++ * TxFIFO Number (TxFNum) (Device and Host).
++ *
++ * This is the FIFO number which needs to be flushed,
++ * using the TxFIFO Flush bit. This field should not
++ * be changed until the TxFIFO Flush bit is cleared by
++ * the core.
++ * - 0x0:Non Periodic TxFIFO Flush
++ * - 0x1:Periodic TxFIFO #1 Flush in device mode
++ * or Periodic TxFIFO in host mode
++ * - 0x2:Periodic TxFIFO #2 Flush in device mode.
++ * - ...
++ * - 0xF:Periodic TxFIFO #15 Flush in device mode
++ * - 0x10: Flush all the Transmit NonPeriodic and
++ * Transmit Periodic FIFOs in the core
++ */
++ unsigned txfnum:5;
++ /* Reserved */
++ unsigned reserved11_29:19;
++ /*
++ * DMA Request Signal. Indicated DMA request is in
++ * probress. Used for debug purpose.
++ */
++ unsigned dmareq:1;
++ /*
++ * AHB Master Idle. Indicates the AHB Master State
++ * Machine is in IDLE condition.
++ */
++ unsigned ahbidle:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core Interrupt Mask
++ * Register (GINTMSK). Set/clear the bits using the bit fields then
++ * write the d32 value to the register.
++ */
++union gintmsk_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned wkupintr:1;
++ unsigned sessreqintr:1;
++ unsigned disconnect:1;
++ unsigned conidstschng:1;
++ unsigned reserved27:1;
++ unsigned ptxfempty:1;
++ unsigned hcintr:1;
++ unsigned portintr:1;
++ unsigned reserved22_23:2;
++ unsigned incomplisoout:1;
++ unsigned incomplisoin:1;
++ unsigned outepintr:1;
++ unsigned inepintr:1;
++ unsigned epmismatch:1;
++ unsigned reserved16:1;
++ unsigned eopframe:1;
++ unsigned isooutdrop:1;
++ unsigned enumdone:1;
++ unsigned usbreset:1;
++ unsigned usbsuspend:1;
++ unsigned erlysuspend:1;
++ unsigned i2cintr:1;
++ unsigned reserved8:1;
++ unsigned goutnakeff:1;
++ unsigned ginnakeff:1;
++ unsigned nptxfempty:1;
++ unsigned rxstsqlvl:1;
++ unsigned sofintr:1;
++ unsigned otgintr:1;
++ unsigned modemismatch:1;
++ unsigned reserved0:1;
++#else
++ unsigned reserved0:1;
++ unsigned modemismatch:1;
++ unsigned otgintr:1;
++ unsigned sofintr:1;
++ unsigned rxstsqlvl:1;
++ unsigned nptxfempty:1;
++ unsigned ginnakeff:1;
++ unsigned goutnakeff:1;
++ unsigned reserved8:1;
++ unsigned i2cintr:1;
++ unsigned erlysuspend:1;
++ unsigned usbsuspend:1;
++ unsigned usbreset:1;
++ unsigned enumdone:1;
++ unsigned isooutdrop:1;
++ unsigned eopframe:1;
++ unsigned reserved16:1;
++ unsigned epmismatch:1;
++ unsigned inepintr:1;
++ unsigned outepintr:1;
++ unsigned incomplisoin:1;
++ unsigned incomplisoout:1;
++ unsigned reserved22_23:2;
++ unsigned portintr:1;
++ unsigned hcintr:1;
++ unsigned ptxfempty:1;
++ unsigned reserved27:1;
++ unsigned conidstschng:1;
++ unsigned disconnect:1;
++ unsigned sessreqintr:1;
++ unsigned wkupintr:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields of the Core Interrupt Register
++ * (GINTSTS). Set/clear the bits using the bit fields then write the
++ * d32 value to the register.
++ */
++union gintsts_data {
++ /* raw register data */
++ uint32_t d32;
++#define DWC_SOF_INTR_MASK 0x0008
++
++ /* register bits */
++ struct {
++#define DWC_HOST_MODE 1
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned wkupintr:1;
++ unsigned sessreqintr:1;
++ unsigned disconnect:1;
++ unsigned conidstschng:1;
++ unsigned reserved27:1;
++ unsigned ptxfempty:1;
++ unsigned hcintr:1;
++ unsigned portintr:1;
++ unsigned reserved22_23:2;
++ unsigned incomplisoout:1;
++ unsigned incomplisoin:1;
++ unsigned outepintr:1;
++ unsigned inepint:1;
++ unsigned epmismatch:1;
++ unsigned intokenrx:1;
++ unsigned eopframe:1;
++ unsigned isooutdrop:1;
++ unsigned enumdone:1;
++ unsigned usbreset:1;
++ unsigned usbsuspend:1;
++ unsigned erlysuspend:1;
++ unsigned i2cintr:1;
++ unsigned reserved8:1;
++ unsigned goutnakeff:1;
++ unsigned ginnakeff:1;
++ unsigned nptxfempty:1;
++ unsigned rxstsqlvl:1;
++ unsigned sofintr:1;
++ unsigned otgintr:1;
++ unsigned modemismatch:1;
++ unsigned curmode:1;
++#else
++ unsigned curmode:1;
++ unsigned modemismatch:1;
++ unsigned otgintr:1;
++ unsigned sofintr:1;
++ unsigned rxstsqlvl:1;
++ unsigned nptxfempty:1;
++ unsigned ginnakeff:1;
++ unsigned goutnakeff:1;
++ unsigned reserved8:1;
++ unsigned i2cintr:1;
++ unsigned erlysuspend:1;
++ unsigned usbsuspend:1;
++ unsigned usbreset:1;
++ unsigned enumdone:1;
++ unsigned isooutdrop:1;
++ unsigned eopframe:1;
++ unsigned intokenrx:1;
++ unsigned epmismatch:1;
++ unsigned inepint:1;
++ unsigned outepintr:1;
++ unsigned incomplisoin:1;
++ unsigned incomplisoout:1;
++ unsigned reserved22_23:2;
++ unsigned portintr:1;
++ unsigned hcintr:1;
++ unsigned ptxfempty:1;
++ unsigned reserved27:1;
++ unsigned conidstschng:1;
++ unsigned disconnect:1;
++ unsigned sessreqintr:1;
++ unsigned wkupintr:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
++ * element then read out the bits using the bit elements.
++ */
++union device_grxsts_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */
++#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */
++#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */
++#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */
++#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:7;
++ unsigned fn:4;
++ unsigned pktsts:4;
++ unsigned dpid:2;
++ unsigned bcnt:11;
++ unsigned epnum:4;
++#else
++ unsigned epnum:4;
++ unsigned bcnt:11;
++ unsigned dpid:2;
++ unsigned pktsts:4;
++ unsigned fn:4;
++ unsigned reserved:7;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Host Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
++ * element then read out the bits using the bit elements.
++ */
++union host_grxsts_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
++#define DWC_GRXSTS_PKTSTS_IN 0x2
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:11;
++ unsigned pktsts:4;
++ unsigned dpid:2;
++ unsigned bcnt:11;
++ unsigned chnum:4;
++#else
++ unsigned chnum:4;
++ unsigned bcnt:11;
++ unsigned dpid:2;
++ unsigned pktsts:4;
++ unsigned reserved:11;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then
++ * read out the bits using the bit elements.
++ */
++union fifosize_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned depth:16;
++ unsigned startaddr:16;
++#else
++ unsigned startaddr:16;
++ unsigned depth:16;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Non-Periodic Transmit
++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
++ * d32 element then read out the bits using the bit
++ * elements.
++ */
++union gnptxsts_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:1;
++ unsigned nptxqtop_chnep:4;
++ unsigned nptxqtop_token:2;
++ unsigned nptxqtop_terminate:1;
++ unsigned nptxqspcavail:8;
++ unsigned nptxfspcavail:16;
++#else
++ unsigned nptxfspcavail:16;
++ unsigned nptxqspcavail:8;
++ /*
++ * Top of the Non-Periodic Transmit Request Queue
++ * - bit 24 - Terminate (Last entry for the selected
++ * channel/EP)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - IN/OUT
++ * - 2'b01 - Zero Length OUT
++ * - 2'b10 - PING/Complete Split
++ * - 2'b11 - Channel Halt
++ * - bits 30:27 - Channel/EP Number
++ */
++ unsigned nptxqtop_terminate:1;
++ unsigned nptxqtop_token:2;
++ unsigned nptxqtop_chnep:4;
++ unsigned reserved:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the I2C Control Register
++ * (I2CCTL). Read the register into the d32 element then read out the
++ * bits using the bit elements.
++ */
++union gi2cctl_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned bsydne:1;
++ unsigned rw:1;
++ unsigned reserved:2;
++ unsigned i2cdevaddr:2;
++ unsigned i2csuspctl:1;
++ unsigned ack:1;
++ unsigned i2cen:1;
++ unsigned addr:7;
++ unsigned regaddr:8;
++ unsigned rwdata:8;
++#else
++ unsigned rwdata:8;
++ unsigned regaddr:8;
++ unsigned addr:7;
++ unsigned i2cen:1;
++ unsigned ack:1;
++ unsigned i2csuspctl:1;
++ unsigned i2cdevaddr:2;
++ unsigned reserved:2;
++ unsigned rw:1;
++ unsigned bsydne:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the User HW Config1
++ * Register. Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg1_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned ep_dir15:2;
++ unsigned ep_dir14:2;
++ unsigned ep_dir13:2;
++ unsigned ep_dir12:2;
++ unsigned ep_dir11:2;
++ unsigned ep_dir10:2;
++ unsigned ep_dir9:2;
++ unsigned ep_dir8:2;
++ unsigned ep_dir7:2;
++ unsigned ep_dir6:2;
++ unsigned ep_dir5:2;
++ unsigned ep_dir4:2;
++ unsigned ep_dir3:2;
++ unsigned ep_dir2:2;
++ unsigned ep_dir1:2;
++ unsigned ep_dir0:2;
++#else
++ unsigned ep_dir0:2;
++ unsigned ep_dir1:2;
++ unsigned ep_dir2:2;
++ unsigned ep_dir3:2;
++ unsigned ep_dir4:2;
++ unsigned ep_dir5:2;
++ unsigned ep_dir6:2;
++ unsigned ep_dir7:2;
++ unsigned ep_dir8:2;
++ unsigned ep_dir9:2;
++ unsigned ep_dir10:2;
++ unsigned ep_dir11:2;
++ unsigned ep_dir12:2;
++ unsigned ep_dir13:2;
++ unsigned ep_dir14:2;
++ unsigned ep_dir15:2;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the User HW Config2
++ * Register. Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg2_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved31:1;
++ unsigned dev_token_q_depth:5;
++ unsigned host_perio_tx_q_depth:2;
++ unsigned nonperio_tx_q_depth:2;
++ unsigned rx_status_q_depth:2;
++ unsigned dynamic_fifo:1;
++ unsigned perio_ep_supported:1;
++ unsigned num_host_chan:4;
++ unsigned num_dev_ep:4;
++ unsigned fs_phy_type:2;
++ unsigned hs_phy_type:2;
++ unsigned point2point:1;
++ unsigned architecture:2;
++ unsigned op_mode:3;
++#else
++ unsigned op_mode:3;
++ unsigned architecture:2;
++ unsigned point2point:1;
++ unsigned hs_phy_type:2;
++ unsigned fs_phy_type:2;
++ unsigned num_dev_ep:4;
++ unsigned num_host_chan:4;
++ unsigned perio_ep_supported:1;
++ unsigned dynamic_fifo:1;
++ unsigned rx_status_q_depth:2;
++ unsigned nonperio_tx_q_depth:2;
++ unsigned host_perio_tx_q_depth:2;
++ unsigned dev_token_q_depth:5;
++ unsigned reserved31:1;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the User HW Config3
++ * Register. Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg3_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++ /* GHWCFG3 */
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned dfifo_depth:16;
++ unsigned reserved15_13:3;
++ unsigned ahb_phy_clock_synch:1;
++ unsigned synch_reset_type:1;
++ unsigned optional_features:1;
++ unsigned vendor_ctrl_if:1;
++ unsigned i2c:1;
++ unsigned otg_func:1;
++ unsigned packet_size_cntr_width:3;
++ unsigned xfer_size_cntr_width:4;
++#else
++ unsigned xfer_size_cntr_width:4;
++ unsigned packet_size_cntr_width:3;
++ unsigned otg_func:1;
++ unsigned i2c:1;
++ unsigned vendor_ctrl_if:1;
++ unsigned optional_features:1;
++ unsigned synch_reset_type:1;
++ unsigned ahb_phy_clock_synch:1;
++ unsigned reserved15_13:3;
++ unsigned dfifo_depth:16;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the User HW Config4
++ * Register. Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg4_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved31_25:7;
++ unsigned session_end_filt_en:1;
++ unsigned b_valid_filt_en:1;
++ unsigned a_valid_filt_en:1;
++ unsigned vbus_valid_filt_en:1;
++ unsigned iddig_filt_en:1;
++ unsigned num_dev_mode_ctrl_ep:4;
++ unsigned utmi_phy_data_width:2;
++ unsigned min_ahb_freq:9;
++ unsigned power_optimiz:1;
++ unsigned num_dev_perio_in_ep:4;
++#else
++ unsigned num_dev_perio_in_ep:4;
++ unsigned power_optimiz:1;
++ unsigned min_ahb_freq:9;
++ unsigned utmi_phy_data_width:2;
++ unsigned num_dev_mode_ctrl_ep:4;
++ unsigned iddig_filt_en:1;
++ unsigned vbus_valid_filt_en:1;
++ unsigned a_valid_filt_en:1;
++ unsigned b_valid_filt_en:1;
++ unsigned session_end_filt_en:1;
++ unsigned reserved31_25:7;
++#endif
++ } b;
++};
++
++
++/*
++ * Device Global Registers. Offsets 800h-BFFh
++ *
++ * The following structures define the size and relative field offsets
++ * for the Device Mode Registers.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_global_regs {
++ /* Device Configuration Register. Offset 800h */
++ uint32_t dcfg;
++ /* Device Control Register. Offset: 804h */
++ uint32_t dctl;
++ /* Device Status Register (Read Only). Offset: 808h */
++ uint32_t dsts;
++ /* Reserved. Offset: 80Ch */
++ uint32_t unused;
++ /*
++ * Device IN Endpoint Common Interrupt Mask Register. Offset: 810h
++ */
++ uint32_t diepmsk;
++ /*
++ * Device OUT Endpoint Common Interrupt Mask
++ * Register. Offset: 814h
++ */
++ uint32_t doepmsk;
++ /*
++ * Device All Endpoints Interrupt Register. Offset: 818h
++ */
++ uint32_t daint;
++ /*
++ * Device All Endpoints Interrupt Mask Register. Offset:
++ * 81Ch
++ */
++ uint32_t daintmsk;
++ /*
++ * Device IN Token Queue Read Register-1 (Read Only).
++ * Offset: 820h
++ */
++ uint32_t dtknqr1;
++ /*
++ * Device IN Token Queue Read Register-2 (Read Only).
++ * Offset: 824h
++ */
++ uint32_t dtknqr2;
++ /*
++ * Device VBUS discharge Register. Offset: 828h
++ */
++ uint32_t dvbusdis;
++ /*
++ * Device VBUS Pulse Register. Offset: 82Ch
++ */
++ uint32_t dvbuspulse;
++ /*
++ * Device IN Token Queue Read Register-3 (Read Only).
++ * Offset: 830h
++ */
++ uint32_t dtknqr3;
++ /*
++ * Device IN Token Queue Read Register-4 (Read Only).
++ * Offset: 834h
++ */
++ uint32_t dtknqr4;
++};
++
++/*
++ * This union represents the bit fields in the Device Configuration
++ * Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements. Write the
++ * d32 member to the dcfg register.
++ */
++union dcfg_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_DCFG_FRAME_INTERVAL_95 3
++#define DWC_DCFG_FRAME_INTERVAL_90 2
++#define DWC_DCFG_FRAME_INTERVAL_85 1
++#define DWC_DCFG_FRAME_INTERVAL_80 0
++#define DWC_DCFG_SEND_STALL 1
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved9:10;
++ unsigned epmscnt:4;
++ unsigned reserved13_17:5;
++ unsigned perfrint:2;
++ unsigned devaddr:7;
++ unsigned reserved3:1;
++ unsigned nzstsouthshk:1;
++ unsigned devspd:2;
++#else
++
++ /* Device Speed */
++ unsigned devspd:2;
++ /* Non Zero Length Status OUT Handshake */
++ unsigned nzstsouthshk:1;
++ unsigned reserved3:1;
++ /* Device Addresses */
++ unsigned devaddr:7;
++ /* Periodic Frame Interval */
++ unsigned perfrint:2;
++ unsigned reserved13_17:5;
++ /* In Endpoint Mis-match count */
++ unsigned epmscnt:4;
++ unsigned reserved9:10;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Device Control
++ * Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union dctl_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:21;
++ unsigned cgoutnak:1;
++ unsigned sgoutnak:1;
++ unsigned cgnpinnak:1;
++ unsigned sgnpinnak:1;
++ unsigned tstctl:3;
++ unsigned goutnaksts:1;
++ unsigned gnpinnaksts:1;
++ unsigned sftdiscon:1;
++ unsigned rmtwkupsig:1;
++#else
++
++ /* Remote Wakeup */
++ unsigned rmtwkupsig:1;
++ /* Soft Disconnect */
++ unsigned sftdiscon:1;
++ /* Global Non-Periodic IN NAK Status */
++ unsigned gnpinnaksts:1;
++ /* Global OUT NAK Status */
++ unsigned goutnaksts:1;
++ /* Test Control */
++ unsigned tstctl:3;
++ /* Set Global Non-Periodic IN NAK */
++ unsigned sgnpinnak:1;
++ /* Clear Global Non-Periodic IN NAK */
++ unsigned cgnpinnak:1;
++ /* Set Global OUT NAK */
++ unsigned sgoutnak:1;
++ /* Clear Global OUT NAK */
++ unsigned cgoutnak:1;
++
++ unsigned reserved:21;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device Status
++ * Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union dsts_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved22_31:10;
++ unsigned soffn:14;
++ unsigned reserved4_7:4;
++ unsigned errticerr:1;
++ unsigned enumspd:2;
++ unsigned suspsts:1;
++#else
++
++ /* Suspend Status */
++ unsigned suspsts:1;
++ /* Enumerated Speed */
++ unsigned enumspd:2;
++ /* Erratic Error */
++ unsigned errticerr:1;
++ unsigned reserved4_7:4;
++ /* Frame or Microframe Number of the received SOF */
++ unsigned soffn:14;
++ unsigned reserved22_31:10;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Device IN EP Interrupt
++ * Register and the Device IN EP Common Mask Register.
++ *
++ * It also represents the bit fields in the Device IN EP Common
++ * Interrupt Mask Register.
++
++ * - Read the register into the d32 member then set/clear the
++ * bits using the bit elements.
++ */
++union diepint_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved07_31:25;
++ unsigned inepnakeff:1;
++ unsigned intknepmis:1;
++ unsigned intktxfemp:1;
++ unsigned timeout:1;
++ unsigned ahberr:1;
++ unsigned epdisabled:1;
++ unsigned xfercompl:1;
++#else
++
++y /* Transfer complete mask */
++ unsigned xfercompl:1;
++ /* Endpoint disable mask */
++ unsigned epdisabled:1;
++ /* AHB Error mask */
++ unsigned ahberr:1;
++ /* TimeOUT Handshake mask (non-ISOC EPs) */
++ unsigned timeout:1;
++ /* IN Token received with TxF Empty mask */
++ unsigned intktxfemp:1;
++ /* IN Token Received with EP mismatch mask */
++ unsigned intknepmis:1;
++ /* IN Endpoint HAK Effective mask */
++ unsigned inepnakeff:1;
++ unsigned reserved07_31:25;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Device OUT EP Interrupt
++ * Registerand Device OUT EP Common Interrupt Mask Register.
++ *
++ * It also represents the bit fields in the Device OUT EP Common
++ * Interrupt Mask Register.
++ *
++ * - Read the register into the d32 member then set/clear the
++ * bits using the bit elements.
++ */
++union doepint_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved04_31:28;
++ unsigned setup:1;
++ unsigned ahberr:1;
++ unsigned epdisabled:1;
++ unsigned xfercompl:1;
++#else
++
++ /* Transfer complete */
++ unsigned xfercompl:1;
++ /* Endpoint disable */
++ unsigned epdisabled:1;
++ /* AHB Error */
++ unsigned ahberr:1;
++ /* Setup Phase Done (contorl EPs) */
++ unsigned setup:1;
++ unsigned reserved04_31:28;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device All EP Interrupt
++ * and Mask Registers.
++ * - Read the register into the d32 member then set/clear the
++ * bits using the bit elements.
++ */
++union daint_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned out:16;
++ unsigned in:16;
++#else
++
++ /* IN Endpoint bits */
++ unsigned in:16;
++ /* OUT Endpoint bits */
++ unsigned out:16;
++#endif
++ } ep;
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned outep15:1;
++ unsigned outep14:1;
++ unsigned outep13:1;
++ unsigned outep12:1;
++ unsigned outep11:1;
++ unsigned outep10:1;
++ unsigned outep9:1;
++ unsigned outep8:1;
++ unsigned outep7:1;
++ unsigned outep6:1;
++ unsigned outep5:1;
++ unsigned outep4:1;
++ unsigned outep3:1;
++ unsigned outep2:1;
++ unsigned outep1:1;
++ unsigned outep0:1;
++ unsigned inep15:1;
++ unsigned inep14:1;
++ unsigned inep13:1;
++ unsigned inep12:1;
++ unsigned inep11:1;
++ unsigned inep10:1;
++ unsigned inep9:1;
++ unsigned inep8:1;
++ unsigned inep7:1;
++ unsigned inep6:1;
++ unsigned inep5:1;
++ unsigned inep4:1;
++ unsigned inep3:1;
++ unsigned inep2:1;
++ unsigned inep1:1;
++ unsigned inep0:1;
++#else
++
++ /* IN Endpoint bits */
++ unsigned inep0:1;
++ unsigned inep1:1;
++ unsigned inep2:1;
++ unsigned inep3:1;
++ unsigned inep4:1;
++ unsigned inep5:1;
++ unsigned inep6:1;
++ unsigned inep7:1;
++ unsigned inep8:1;
++ unsigned inep9:1;
++ unsigned inep10:1;
++ unsigned inep11:1;
++ unsigned inep12:1;
++ unsigned inep13:1;
++ unsigned inep14:1;
++ unsigned inep15:1;
++ /* OUT Endpoint bits */
++ unsigned outep0:1;
++ unsigned outep1:1;
++ unsigned outep2:1;
++ unsigned outep3:1;
++ unsigned outep4:1;
++ unsigned outep5:1;
++ unsigned outep6:1;
++ unsigned outep7:1;
++ unsigned outep8:1;
++ unsigned outep9:1;
++ unsigned outep10:1;
++ unsigned outep11:1;
++ unsigned outep12:1;
++ unsigned outep13:1;
++ unsigned outep14:1;
++ unsigned outep15:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device IN Token Queue
++ * Read Registers.
++ * - Read the register into the d32 member.
++ * - READ-ONLY Register
++ */
++union dtknq1_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned epnums0_5:24;
++ unsigned wrap_bit:1;
++ unsigned reserved05_06:2;
++ unsigned intknwptr:5;
++#else
++
++ /* In Token Queue Write Pointer */
++ unsigned intknwptr:5;
++ /* Reserved */
++ unsigned reserved05_06:2;
++ /* write pointer has wrapped. */
++ unsigned wrap_bit:1;
++ /* EP Numbers of IN Tokens 0 ... 4 */
++ unsigned epnums0_5:24;
++#endif
++ } b;
++};
++
++/*
++ * Device Logical IN Endpoint-Specific Registers. Offsets
++ * 900h-AFCh
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_in_ep_regs {
++ /*
++ * Device IN Endpoint Control Register. Offset:900h +
++ * (ep_num * 20h) + 00h
++ */
++ uint32_t diepctl;
++ /* Reserved. Offset:900h + (ep_num * 20h) + 04h */
++ uint32_t reserved04;
++ /*
++ * Device IN Endpoint Interrupt Register. Offset:900h +
++ * (ep_num * 20h) + 08h
++ */
++ uint32_t diepint;
++ /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */
++ uint32_t reserved0C;
++ /*
++ * Device IN Endpoint Transfer Size
++ * Register. Offset:900h + (ep_num * 20h) + 10h
++ */
++ uint32_t dieptsiz;
++ /*
++ * Device IN Endpoint DMA Address Register. Offset:900h +
++ * (ep_num * 20h) + 14h
++ */
++ uint32_t diepdma;
++ /*
++ * Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h +
++ * (ep_num * 20h) + 1Ch
++ */
++ uint32_t reserved18[2];
++};
++
++/**
++ * Device Logical OUT Endpoint-Specific Registers. Offsets:
++ * B00h-CFCh
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_out_ep_regs {
++ /*
++ * Device OUT Endpoint Control Register. Offset:B00h +
++ * (ep_num * 20h) + 00h
++ */
++ uint32_t doepctl;
++ /*
++ * Device OUT Endpoint Frame number Register. Offset:
++ * B00h + (ep_num * 20h) + 04h
++ */
++ uint32_t doepfn;
++ /*
++ * Device OUT Endpoint Interrupt Register. Offset:B00h +
++ * (ep_num * 20h) + 08h
++ */
++ uint32_t doepint;
++ /*
++ * Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */
++ uint32_t reserved0C;
++ /*
++ * Device OUT Endpoint Transfer Size Register. Offset:
++ * B00h + (ep_num * 20h) + 10h
++ */
++ uint32_t doeptsiz;
++ /*
++ * Device OUT Endpoint DMA Address Register. Offset:B00h
++ * + (ep_num * 20h) + 14h
++ */
++ uint32_t doepdma;
++ /*
++ * Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h +
++ * (ep_num * 20h) + 1Ch
++ */
++ uint32_t unused[2];
++};
++
++/*
++ * This union represents the bit fields in the Device EP Control
++ * Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union depctl_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#define DWC_DEP0CTL_MPS_64 0
++#define DWC_DEP0CTL_MPS_32 1
++#define DWC_DEP0CTL_MPS_16 2
++#define DWC_DEP0CTL_MPS_8 3
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned mps:11;
++ unsigned epena:1;
++ unsigned epdis:1;
++ unsigned setd1pid:1;
++ unsigned setd0pid:1;
++ unsigned snak:1;
++ unsigned cnak:1;
++ unsigned txfnum:4;
++ unsigned stall:1;
++ unsigned snp:1;
++ unsigned eptype:2;
++ unsigned naksts:1;
++ unsigned dpid:1;
++ unsigned usbactep:1;
++ unsigned nextep:4;
++#else
++
++ /*
++ * Maximum Packet Size
++ * IN/OUT EPn
++ * IN/OUT EP0 - 2 bits
++ * 2'b00: 64 Bytes
++ * 2'b01: 32
++ * 2'b10: 16
++ * 2'b11: 8
++ */
++ unsigned mps:11;
++ /*
++ * Next Endpoint
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved
++ */
++ unsigned nextep:4;
++
++ /* USB Active Endpoint */
++ unsigned usbactep:1;
++
++ /*
++ * Endpoint DPID (INTR/Bulk IN and OUT endpoints)
++ * This field contains the PID of the packet going to
++ * be received or transmitted on this endpoint. The
++ * application should program the PID of the first
++ * packet going to be received or transmitted on this
++ * endpoint , after the endpoint is
++ * activated. Application use the SetD1PID and
++ * SetD0PID fields of this register to program either
++ * D0 or D1 PID.
++ *
++ * The encoding for this field is
++ * - 0: D0
++ * - 1: D1
++ */
++ unsigned dpid:1;
++
++ /* NAK Status */
++ unsigned naksts:1;
++
++ /*
++ * Endpoint Type
++ * 2'b00: Control
++ * 2'b01: Isochronous
++ * 2'b10: Bulk
++ * 2'b11: Interrupt
++ */
++ unsigned eptype:2;
++
++ /*
++ * Snoop Mode
++ * OUT EPn/OUT EP0
++ * IN EPn/IN EP0 - reserved
++ */
++ unsigned snp:1;
++
++ /* Stall Handshake */
++ unsigned stall:1;
++
++ /*
++ * Tx Fifo Number
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved
++ */
++ unsigned txfnum:4;
++
++ /* Clear NAK */
++ unsigned cnak:1;
++ /* Set NAK */
++ unsigned snak:1;
++ /*
++ * Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA0. Set Even
++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to even (micro)
++ * frame.
++ */
++ unsigned setd0pid:1;
++ /*
++ * Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA1 Set Odd
++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to odd (micro) frame.
++ */
++ unsigned setd1pid:1;
++
++ /* Endpoint Disable */
++ unsigned epdis:1;
++ /* Endpoint Enable */
++ unsigned epena:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device EP Transfer
++ * Size Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union deptsiz_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:1;
++ unsigned mc:2;
++ unsigned pktcnt:10;
++ unsigned xfersize:19;
++#else
++
++ /* Transfer size */
++ unsigned xfersize:19;
++ /* Packet Count */
++ unsigned pktcnt:10;
++ /* Multi Count - Periodic IN endpoints */
++ unsigned mc:2;
++ unsigned reserved:1;
++#endif
++ } b;
++};
++
++/*
++ * This union represents the bit fields in the Device EP 0 Transfer
++ * Size Register. Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union deptsiz0_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved31:1;
++ unsigned supcnt:2;
++ unsigned reserved20_28:9;
++ unsigned pktcnt:1;
++ unsigned reserved7_18:12;
++ unsigned xfersize:7;
++#else
++
++ /* Transfer size */
++ unsigned xfersize:7;
++ /* Reserved */
++ unsigned reserved7_18:12;
++ /* Packet Count */
++ unsigned pktcnt:1;
++ /* Reserved */
++ unsigned reserved20_28:9;
++ /* Setup Packet Count (DOEPTSIZ0 Only) */
++ unsigned supcnt:2;
++ unsigned reserved31:1;
++#endif
++ } b;
++};
++
++/** Maximum number of Periodic FIFOs */
++#define MAX_PERIO_FIFOS 15
++
++/** Maximum number of Endpoints/HostChannels */
++#define MAX_EPS_CHANNELS 16
++
++/*
++ * The dwc_otg_dev_if structure contains information needed to manage
++ * the DWC_otg controller acting in device mode. It represents the
++ * programming view of the device-specific aspects of the controller.
++ */
++struct dwc_otg_dev_if {
++ /*
++ * Pointer to device Global registers.
++ * Device Global Registers starting at offset 800h
++ */
++ struct dwc_otg_dev_global_regs *dev_global_regs;
++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
++
++ /*
++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
++ */
++ struct dwc_otg_dev_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_IN_EP_REG_OFFSET 0x900
++#define DWC_EP_REG_OFFSET 0x20
++
++ /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
++ struct dwc_otg_dev_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
++
++ /* Device configuration information */
++ uint8_t speed; /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
++ uint8_t num_eps; /* Number of EPs range: 1-16 (includes EP0) */
++ uint8_t num_perio_eps; /* # of Periodic EP range: 0-15 */
++
++ /* Size of periodic FIFOs (Bytes) */
++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++};
++
++
++/* Host Mode Register Structures */
++
++/*
++ * The Host Global Registers structure defines the size and relative
++ * field offsets for the Host Mode Global Registers. Host Global
++ * Registers offsets 400h-7FFh.
++ */
++struct dwc_otg_host_global_regs {
++ /* Host Configuration Register. Offset: 400h */
++ uint32_t hcfg;
++ /* Host Frame Interval Register. Offset: 404h */
++ uint32_t hfir;
++ /* Host Frame Number / Frame Remaining Register. Offset: 408h */
++ uint32_t hfnum;
++ /* Reserved. Offset: 40Ch */
++ uint32_t reserved40C;
++ /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */
++ uint32_t hptxsts;
++ /* Host All Channels Interrupt Register. Offset: 414h */
++ uint32_t haint;
++ /* Host All Channels Interrupt Mask Register. Offset: 418h */
++ uint32_t haintmsk;
++};
++
++/*
++ * This union represents the bit fields in the Host Configuration Register.
++ * Read the register into the d32 member then set/clear the bits using
++ * the bit elements. Write the d32 member to the hcfg register.
++ */
++union hcfg_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++#define DWC_HCFG_6_MHZ 2
++#define DWC_HCFG_48_MHZ 1
++#define DWC_HCFG_30_60_MHZ 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:29;
++ unsigned fslssupp:1;
++ unsigned fslspclksel:2;
++#else
++
++ /* FS/LS Phy Clock Select */
++ unsigned fslspclksel:2;
++ /* FS/LS Only Support */
++ unsigned fslssupp:1;
++ unsigned reserved:29;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++union hfir_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:16;
++ unsigned frint:16;
++#else
++ unsigned frint:16;
++ unsigned reserved:16;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++union hfnum_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#define DWC_HFNUM_MAX_FRNUM 0x3FFF
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned frrem:16;
++ unsigned frnum:16;
++#else
++ unsigned frnum:16;
++ unsigned frrem:16;
++#endif
++ } b;
++};
++
++union hptxsts_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned ptxqtop_odd:1;
++ unsigned ptxqtop_chnum:4;
++ unsigned ptxqtop_token:2;
++ unsigned ptxqtop_terminate:1;
++ unsigned ptxqspcavail:8;
++ unsigned ptxfspcavail:16;
++#else
++ unsigned ptxfspcavail:16;
++ unsigned ptxqspcavail:8;
++ /*
++ * Top of the Periodic Transmit Request Queue
++ * - bit 24 - Terminate (last entry for the selected channel)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - Zero length
++ * - 2'b01 - Ping
++ * - 2'b10 - Disable
++ * - bits 30:27 - Channel Number
++ * - bit 31 - Odd/even microframe
++ */
++ unsigned ptxqtop_terminate:1;
++ unsigned ptxqtop_token:2;
++ unsigned ptxqtop_chnum:4;
++ unsigned ptxqtop_odd:1;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host Port Control and Status
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hprt0 register.
++ */
++union hprt0_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved19_31:13;
++ unsigned prtspd:2;
++ unsigned prttstctl:4;
++ unsigned prtpwr:1;
++ unsigned prtlnsts:2;
++ unsigned reserved9:1;
++ unsigned prtrst:1;
++ unsigned prtsusp:1;
++ unsigned prtres:1;
++ unsigned prtovrcurrchng:1;
++ unsigned prtovrcurract:1;
++ unsigned prtenchng:1;
++ unsigned prtena:1;
++ unsigned prtconndet:1;
++ unsigned prtconnsts:1;
++#else
++ unsigned prtconnsts:1;
++ unsigned prtconndet:1;
++ unsigned prtena:1;
++ unsigned prtenchng:1;
++ unsigned prtovrcurract:1;
++ unsigned prtovrcurrchng:1;
++ unsigned prtres:1;
++ unsigned prtsusp:1;
++ unsigned prtrst:1;
++ unsigned reserved9:1;
++ unsigned prtlnsts:2;
++ unsigned prtpwr:1;
++ unsigned prttstctl:4;
++ unsigned prtspd:2;
++ unsigned reserved19_31:13;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union haint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:16;
++ unsigned ch15:1;
++ unsigned ch14:1;
++ unsigned ch13:1;
++ unsigned ch12:1;
++ unsigned ch11:1;
++ unsigned ch10:1;
++ unsigned ch9:1;
++ unsigned ch8:1;
++ unsigned ch7:1;
++ unsigned ch6:1;
++ unsigned ch5:1;
++ unsigned ch4:1;
++ unsigned ch3:1;
++ unsigned ch2:1;
++ unsigned ch1:1;
++ unsigned ch0:1;
++#else
++ unsigned ch0:1;
++ unsigned ch1:1;
++ unsigned ch2:1;
++ unsigned ch3:1;
++ unsigned ch4:1;
++ unsigned ch5:1;
++ unsigned ch6:1;
++ unsigned ch7:1;
++ unsigned ch8:1;
++ unsigned ch9:1;
++ unsigned ch10:1;
++ unsigned ch11:1;
++ unsigned ch12:1;
++ unsigned ch13:1;
++ unsigned ch14:1;
++ unsigned ch15:1;
++ unsigned reserved:16;
++#endif
++ } b;
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:16;
++ unsigned chint:16;
++#else
++ unsigned chint:16;
++ unsigned reserved:16;
++#endif
++ } b2;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union haintmsk_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:16;
++ unsigned ch15:1;
++ unsigned ch14:1;
++ unsigned ch13:1;
++ unsigned ch12:1;
++ unsigned ch11:1;
++ unsigned ch10:1;
++ unsigned ch9:1;
++ unsigned ch8:1;
++ unsigned ch7:1;
++ unsigned ch6:1;
++ unsigned ch5:1;
++ unsigned ch4:1;
++ unsigned ch3:1;
++ unsigned ch2:1;
++ unsigned ch1:1;
++ unsigned ch0:1;
++#else
++ unsigned ch0:1;
++ unsigned ch1:1;
++ unsigned ch2:1;
++ unsigned ch3:1;
++ unsigned ch4:1;
++ unsigned ch5:1;
++ unsigned ch6:1;
++ unsigned ch7:1;
++ unsigned ch8:1;
++ unsigned ch9:1;
++ unsigned ch10:1;
++ unsigned ch11:1;
++ unsigned ch12:1;
++ unsigned ch13:1;
++ unsigned ch14:1;
++ unsigned ch15:1;
++ unsigned reserved:16;
++#endif
++ } b;
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:16;
++ unsigned chint:16;
++#else
++ unsigned chint:16;
++ unsigned reserved:16;
++#endif
++ } b2;
++};
++
++/*
++ * Host Channel Specific Registers. 500h-5FCh
++ */
++struct dwc_otg_hc_regs {
++ /*
++ * Host Channel 0 Characteristic Register.
++ * Offset: 500h + (chan_num * 20h) + 00h
++ */
++ uint32_t hcchar;
++ /*
++ * Host Channel 0 Split Control Register.
++ * Offset: 500h + (chan_num * 20h) + 04h
++ */
++ uint32_t hcsplt;
++ /*
++ * Host Channel 0 Interrupt Register.
++ * Offset: 500h + (chan_num * 20h) + 08h
++ */
++ uint32_t hcint;
++ /*
++ * Host Channel 0 Interrupt Mask Register.
++ * Offset: 500h + (chan_num * 20h) + 0Ch
++ */
++ uint32_t hcintmsk;
++ /*
++ * Host Channel 0 Transfer Size Register.
++ * Offset: 500h + (chan_num * 20h) + 10h
++ */
++ uint32_t hctsiz;
++ /*
++ * Host Channel 0 DMA Address Register.
++ * Offset: 500h + (chan_num * 20h) + 14h
++ */
++ uint32_t hcdma;
++ /*
++ * Reserved.
++ * Offset: 500h + (chan_num * 20h) + 18h -
++ * 500h + (chan_num * 20h) + 1Ch
++ */
++ uint32_t reserved[2];
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Characteristics
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcchar register.
++ */
++union hcchar_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned chen:1;
++ unsigned chdis:1;
++ unsigned oddfrm:1;
++ unsigned devaddr:7;
++ unsigned multicnt:2;
++ unsigned eptype:2;
++ unsigned lspddev:1;
++ unsigned reserved:1;
++ unsigned epdir:1;
++ unsigned epnum:4;
++ unsigned mps:11;
++#else
++
++ /* Maximum packet size in bytes */
++ unsigned mps:11;
++
++ /* Endpoint number */
++ unsigned epnum:4;
++
++ /* 0: OUT, 1: IN */
++ unsigned epdir:1;
++
++ unsigned reserved:1;
++
++ /* 0: Full/high speed device, 1: Low speed device */
++ unsigned lspddev:1;
++
++ /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
++ unsigned eptype:2;
++
++ /* Packets per frame for periodic transfers. 0 is reserved. */
++ unsigned multicnt:2;
++
++ /* Device address */
++ unsigned devaddr:7;
++
++ /*
++ * Frame to transmit periodic transaction.
++ * 0: even, 1: odd
++ */
++ unsigned oddfrm:1;
++
++ /* Channel disable */
++ unsigned chdis:1;
++
++ /* Channel enable */
++ unsigned chen:1;
++#endif
++ } b;
++};
++
++union hcsplt_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#define DWC_HCSPLIT_XACTPOS_ALL 3
++#define DWC_HCSPLIT_XACTPOS_BEGIN 2
++#define DWC_HCSPLIT_XACTPOS_END 1
++#define DWC_HCSPLIT_XACTPOS_MID 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned spltena:1;
++ unsigned reserved:14;
++ unsigned compsplt:1;
++ unsigned xactpos:2;
++ unsigned hubaddr:7;
++ unsigned prtaddr:7;
++#else
++
++ /* Port Address */
++ unsigned prtaddr:7;
++
++ /* Hub Address */
++ unsigned hubaddr:7;
++
++ /* Transaction Position */
++ unsigned xactpos:2;
++
++ /* Do Complete Split */
++ unsigned compsplt:1;
++
++ /* Reserved */
++ unsigned reserved:14;
++
++ /* Split Enble */
++ unsigned spltena:1;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union hcint_data {
++ /* raw register data */
++ uint32_t d32;
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:21;
++ unsigned datatglerr:1;
++ unsigned frmovrun:1;
++ unsigned bblerr:1;
++ unsigned xacterr:1;
++ unsigned nyet:1;
++ unsigned ack:1;
++ unsigned nak:1;
++ unsigned stall:1;
++ unsigned ahberr:1;
++ unsigned chhltd:1;
++ unsigned xfercomp:1;
++#else
++
++ /* Transfer Complete */
++ unsigned xfercomp:1;
++ /* Channel Halted */
++ unsigned chhltd:1;
++ /* AHB Error */
++ unsigned ahberr:1;
++ /* STALL Response Received */
++ unsigned stall:1;
++ /* NAK Response Received */
++ unsigned nak:1;
++ /* ACK Response Received */
++ unsigned ack:1;
++ /* NYET Response Received */
++ unsigned nyet:1;
++ /* Transaction Err */
++ unsigned xacterr:1;
++ /* Babble Error */
++ unsigned bblerr:1;
++ /* Frame Overrun */
++ unsigned frmovrun:1;
++ /* Data Toggle Error */
++ unsigned datatglerr:1;
++ /* Reserved */
++ unsigned reserved:21;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Transfer Size
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcchar register.
++ */
++union hctsiz_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#define DWC_HCTSIZ_SETUP 3
++#define DWC_HCTSIZ_MDATA 3
++#define DWC_HCTSIZ_DATA2 1
++#define DWC_HCTSIZ_DATA1 2
++#define DWC_HCTSIZ_DATA0 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned dopng:1;
++ unsigned pid:2;
++ unsigned pktcnt:10;
++ unsigned xfersize:19;
++#else
++
++ /* Total transfer size in bytes */
++ unsigned xfersize:19;
++
++ /* Data packets to transfer */
++ unsigned pktcnt:10;
++
++ /*
++ * Packet ID for next data packet
++ * 0: DATA0
++ * 1: DATA2
++ * 2: DATA1
++ * 3: MDATA (non-Control), SETUP (Control)
++ */
++ unsigned pid:2;
++
++ /* Do PING protocol when 1 */
++ unsigned dopng:1;
++#endif
++ } b;
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Interrupt Mask
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcintmsk register.
++ */
++union hcintmsk_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:21;
++ unsigned datatglerr:1;
++ unsigned frmovrun:1;
++ unsigned bblerr:1;
++ unsigned xacterr:1;
++ unsigned nyet:1;
++ unsigned ack:1;
++ unsigned nak:1;
++ unsigned stall:1;
++ unsigned ahberr:1;
++ unsigned chhltd:1;
++ unsigned xfercompl:1;
++#else
++ unsigned xfercompl:1;
++ unsigned chhltd:1;
++ unsigned ahberr:1;
++ unsigned stall:1;
++ unsigned nak:1;
++ unsigned ack:1;
++ unsigned nyet:1;
++ unsigned xacterr:1;
++ unsigned bblerr:1;
++ unsigned frmovrun:1;
++ unsigned datatglerr:1;
++ unsigned reserved:21;
++#endif
++ } b;
++};
++
++/** OTG Host Interface Structure.
++ *
++ * The OTG Host Interface Structure structure contains information
++ * needed to manage the DWC_otg controller acting in host mode. It
++ * represents the programming view of the host-specific aspects of the
++ * controller.
++ */
++struct dwc_otg_host_if {
++ /* Host Global Registers starting at offset 400h.*/
++ struct dwc_otg_host_global_regs *host_global_regs;
++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
++
++ /* Host Port 0 Control and Status Register */
++ uint32_t *hprt0;
++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
++
++ /* Host Channel Specific Registers at offsets 500h-5FCh. */
++ struct dwc_otg_hc_regs *hc_regs[MAX_EPS_CHANNELS];
++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
++#define DWC_OTG_CHAN_REGS_OFFSET 0x20
++
++ /* Host configuration information */
++ /* Number of Host Channels (range: 1-16) */
++ uint8_t num_host_channels;
++ /* Periodic EPs supported (0: no, 1: yes) */
++ uint8_t perio_eps_supported;
++ /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
++ uint16_t perio_tx_fifo_size;
++
++};
++
++/**
++ * This union represents the bit fields in the Power and Clock Gating Control
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements.
++ */
++union pcgcctl_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /* register bits */
++ struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++ unsigned reserved:27;
++ unsigned physuspended:1;
++ unsigned rstpdwnmodule:1;
++ unsigned pwrclmp:1;
++ unsigned gatehclk:1;
++ unsigned stoppclk:1;
++#else
++
++ /* Stop Pclk */
++ unsigned stoppclk:1;
++ /* Gate Hclk */
++ unsigned gatehclk:1;
++ /* Power Clamp */
++ unsigned pwrclmp:1;
++ /* Reset Power Down Modules */
++ unsigned rstpdwnmodule:1;
++ /* PHY Suspended */
++ unsigned physuspended:1;
++
++ unsigned reserved:27;
++#endif
++ } b;
++};
++
++#endif
+--
+1.6.0.6
+