aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch
diff options
context:
space:
mode:
authorFlorian Fainelli <florian@openwrt.org>2014-02-28 20:30:08 +0000
committerFlorian Fainelli <florian@openwrt.org>2014-02-28 20:30:08 +0000
commitbb39b8d99aae1f7eb13a97bd874838da91080de6 (patch)
tree3046f53937c0bc5dc13e2b2ab7b688a1932199bf /target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch
parentc6c0d09f85c211560a1405441925681cfa25e8b1 (diff)
downloadupstream-bb39b8d99aae1f7eb13a97bd874838da91080de6.tar.gz
upstream-bb39b8d99aae1f7eb13a97bd874838da91080de6.tar.bz2
upstream-bb39b8d99aae1f7eb13a97bd874838da91080de6.zip
brcm2708: update against latest rpi-3.10.y branch
Update our copies of the brcm2708 patches to the latest rpi-3.10-y rebased against linux-3.10.y stable (3.10.32). This should hopefully make it easier for us in the future to leverage the raspberry/rpi-* branches. Signed-off-by: Florian Fainelli <florian@openwrt.org> SVN-Revision: 39770
Diffstat (limited to 'target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch')
-rw-r--r--target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch1325
1 files changed, 1325 insertions, 0 deletions
diff --git a/target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch b/target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch
new file mode 100644
index 0000000000..fa4184810e
--- /dev/null
+++ b/target/linux/brcm2708/patches-3.10/0041-Add-Simon-Hall-s-dma-helper-module-useful-in-future-.patch
@@ -0,0 +1,1325 @@
+From 87b48ac64b6b2aeb97b53eee080e74cb83ff25fe Mon Sep 17 00:00:00 2001
+From: popcornmix <popcornmix@gmail.com>
+Date: Mon, 19 Nov 2012 18:27:05 +0000
+Subject: [PATCH 041/174] Add Simon Hall's dma helper module, useful in future
+ for X acceleration
+
+---
+ arch/arm/mach-bcm2708/Kconfig | 8 +
+ arch/arm/mach-bcm2708/Makefile | 3 +
+ arch/arm/mach-bcm2708/dmaer.c | 887 ++++++++++++++++++++++++
+ arch/arm/mach-bcm2708/include/mach/vc_support.h | 69 ++
+ arch/arm/mach-bcm2708/vc_support.c | 319 +++++++++
+ 5 files changed, 1286 insertions(+)
+ create mode 100755 arch/arm/mach-bcm2708/dmaer.c
+ create mode 100755 arch/arm/mach-bcm2708/include/mach/vc_support.h
+ create mode 100755 arch/arm/mach-bcm2708/vc_support.c
+
+--- a/arch/arm/mach-bcm2708/Kconfig
++++ b/arch/arm/mach-bcm2708/Kconfig
+@@ -38,4 +38,12 @@ config BCM2708_SPIDEV
+ default y
+ help
+ Binds spidev driver to the SPI0 master
++
++config BCM2708_DMAER
++ tristate "BCM2708 DMA helper"
++ depends on MACH_BCM2708
++ default n
++ help
++ Enable DMA helper for accelerating X composition
++
+ endmenu
+--- a/arch/arm/mach-bcm2708/Makefile
++++ b/arch/arm/mach-bcm2708/Makefile
+@@ -6,3 +6,6 @@ obj-$(CONFIG_MACH_BCM2708) += clock.o b
+ obj-$(CONFIG_BCM2708_GPIO) += bcm2708_gpio.o
+ obj-$(CONFIG_BCM2708_VCMEM) += vc_mem.o
+
++obj-$(CONFIG_BCM2708_DMAER) += dmaer_master.o
++dmaer_master-objs := dmaer.o vc_support.o
++
+--- /dev/null
++++ b/arch/arm/mach-bcm2708/dmaer.c
+@@ -0,0 +1,887 @@
++#include <linux/init.h>
++#include <linux/sched.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/kdev_t.h>
++#include <linux/fs.h>
++#include <linux/cdev.h>
++#include <linux/mm.h>
++#include <linux/slab.h>
++#include <linux/pagemap.h>
++#include <linux/device.h>
++#include <linux/jiffies.h>
++#include <linux/timex.h>
++#include <linux/dma-mapping.h>
++
++#include <asm/uaccess.h>
++#include <asm/atomic.h>
++#include <asm/cacheflush.h>
++#include <asm/io.h>
++
++#include <mach/dma.h>
++#include <mach/vc_support.h>
++
++#ifdef ECLIPSE_IGNORE
++
++#define __user
++#define __init
++#define __exit
++#define __iomem
++#define KERN_DEBUG
++#define KERN_ERR
++#define KERN_WARNING
++#define KERN_INFO
++#define _IOWR(a, b, c) b
++#define _IOW(a, b, c) b
++#define _IO(a, b) b
++
++#endif
++
++//#define inline
++
++#define PRINTK(args...) printk(args)
++//#define PRINTK_VERBOSE(args...) printk(args)
++//#define PRINTK(args...)
++#define PRINTK_VERBOSE(args...)
++
++/***** TYPES ****/
++#define PAGES_PER_LIST 500
++struct PageList
++{
++ struct page *m_pPages[PAGES_PER_LIST];
++ unsigned int m_used;
++ struct PageList *m_pNext;
++};
++
++struct VmaPageList
++{
++ //each vma has a linked list of pages associated with it
++ struct PageList *m_pPageHead;
++ struct PageList *m_pPageTail;
++ unsigned int m_refCount;
++};
++
++struct DmaControlBlock
++{
++ unsigned int m_transferInfo;
++ void __user *m_pSourceAddr;
++ void __user *m_pDestAddr;
++ unsigned int m_xferLen;
++ unsigned int m_tdStride;
++ struct DmaControlBlock *m_pNext;
++ unsigned int m_blank1, m_blank2;
++};
++
++/***** DEFINES ******/
++//magic number defining the module
++#define DMA_MAGIC 0xdd
++
++//do user virtual to physical translation of the CB chain
++#define DMA_PREPARE _IOWR(DMA_MAGIC, 0, struct DmaControlBlock *)
++
++//kick the pre-prepared CB chain
++#define DMA_KICK _IOW(DMA_MAGIC, 1, struct DmaControlBlock *)
++
++//prepare it, kick it, wait for it
++#define DMA_PREPARE_KICK_WAIT _IOWR(DMA_MAGIC, 2, struct DmaControlBlock *)
++
++//prepare it, kick it, don't wait for it
++#define DMA_PREPARE_KICK _IOWR(DMA_MAGIC, 3, struct DmaControlBlock *)
++
++//not currently implemented
++#define DMA_WAIT_ONE _IO(DMA_MAGIC, 4, struct DmaControlBlock *)
++
++//wait on all kicked CB chains
++#define DMA_WAIT_ALL _IO(DMA_MAGIC, 5)
++
++//in order to discover the largest AXI burst that should be programmed into the transfer params
++#define DMA_MAX_BURST _IO(DMA_MAGIC, 6)
++
++//set the address range through which the user address is assumed to already by a physical address
++#define DMA_SET_MIN_PHYS _IOW(DMA_MAGIC, 7, unsigned long)
++#define DMA_SET_MAX_PHYS _IOW(DMA_MAGIC, 8, unsigned long)
++#define DMA_SET_PHYS_OFFSET _IOW(DMA_MAGIC, 9, unsigned long)
++
++//used to define the size for the CMA-based allocation *in pages*, can only be done once once the file is opened
++#define DMA_CMA_SET_SIZE _IOW(DMA_MAGIC, 10, unsigned long)
++
++//used to get the version of the module, to test for a capability
++#define DMA_GET_VERSION _IO(DMA_MAGIC, 99)
++
++#define VERSION_NUMBER 1
++
++#define VIRT_TO_BUS_CACHE_SIZE 8
++
++/***** FILE OPS *****/
++static int Open(struct inode *pInode, struct file *pFile);
++static int Release(struct inode *pInode, struct file *pFile);
++static long Ioctl(struct file *pFile, unsigned int cmd, unsigned long arg);
++static ssize_t Read(struct file *pFile, char __user *pUser, size_t count, loff_t *offp);
++static int Mmap(struct file *pFile, struct vm_area_struct *pVma);
++
++/***** VMA OPS ****/
++static void VmaOpen4k(struct vm_area_struct *pVma);
++static void VmaClose4k(struct vm_area_struct *pVma);
++static int VmaFault4k(struct vm_area_struct *pVma, struct vm_fault *pVmf);
++
++/**** DMA PROTOTYPES */
++static struct DmaControlBlock __user *DmaPrepare(struct DmaControlBlock __user *pUserCB, int *pError);
++static int DmaKick(struct DmaControlBlock __user *pUserCB);
++static void DmaWaitAll(void);
++
++/**** GENERIC ****/
++static int __init dmaer_init(void);
++static void __exit dmaer_exit(void);
++
++/*** OPS ***/
++static struct vm_operations_struct g_vmOps4k = {
++ .open = VmaOpen4k,
++ .close = VmaClose4k,
++ .fault = VmaFault4k,
++};
++
++static struct file_operations g_fOps = {
++ .owner = THIS_MODULE,
++ .llseek = 0,
++ .read = Read,
++ .write = 0,
++ .unlocked_ioctl = Ioctl,
++ .open = Open,
++ .release = Release,
++ .mmap = Mmap,
++};
++
++/***** GLOBALS ******/
++static dev_t g_majorMinor;
++
++//tracking usage of the two files
++static atomic_t g_oneLock4k = ATOMIC_INIT(1);
++
++//device operations
++static struct cdev g_cDev;
++static int g_trackedPages = 0;
++
++//dma control
++static unsigned int *g_pDmaChanBase;
++static int g_dmaIrq;
++static int g_dmaChan;
++
++//cma allocation
++static int g_cmaHandle;
++
++//user virtual to bus address translation acceleration
++static unsigned long g_virtAddr[VIRT_TO_BUS_CACHE_SIZE];
++static unsigned long g_busAddr[VIRT_TO_BUS_CACHE_SIZE];
++static unsigned long g_cbVirtAddr;
++static unsigned long g_cbBusAddr;
++static int g_cacheInsertAt;
++static int g_cacheHit, g_cacheMiss;
++
++//off by default
++static void __user *g_pMinPhys;
++static void __user *g_pMaxPhys;
++static unsigned long g_physOffset;
++
++/****** CACHE OPERATIONS ********/
++static inline void FlushAddrCache(void)
++{
++ int count = 0;
++ for (count = 0; count < VIRT_TO_BUS_CACHE_SIZE; count++)
++ g_virtAddr[count] = 0xffffffff; //never going to match as we always chop the bottom bits anyway
++
++ g_cbVirtAddr = 0xffffffff;
++
++ g_cacheInsertAt = 0;
++}
++
++//translate from a user virtual address to a bus address by mapping the page
++//NB this won't lock a page in memory, so to avoid potential paging issues using kernel logical addresses
++static inline void __iomem *UserVirtualToBus(void __user *pUser)
++{
++ int mapped;
++ struct page *pPage;
++ void *phys;
++
++ //map it (requiring that the pointer points to something that does not hang off the page boundary)
++ mapped = get_user_pages(current, current->mm,
++ (unsigned long)pUser, 1,
++ 1, 0,
++ &pPage,
++ 0);
++
++ if (mapped <= 0) //error
++ return 0;
++
++ PRINTK_VERBOSE(KERN_DEBUG "user virtual %p arm phys %p bus %p\n",
++ pUser, page_address(pPage), (void __iomem *)__virt_to_bus(page_address(pPage)));
++
++ //get the arm physical address
++ phys = page_address(pPage) + offset_in_page(pUser);
++ page_cache_release(pPage);
++
++ //and now the bus address
++ return (void __iomem *)__virt_to_bus(phys);
++}
++
++static inline void __iomem *UserVirtualToBusViaCbCache(void __user *pUser)
++{
++ unsigned long virtual_page = (unsigned long)pUser & ~4095;
++ unsigned long page_offset = (unsigned long)pUser & 4095;
++ unsigned long bus_addr;
++
++ if (g_cbVirtAddr == virtual_page)
++ {
++ bus_addr = g_cbBusAddr + page_offset;
++ g_cacheHit++;
++ return (void __iomem *)bus_addr;
++ }
++ else
++ {
++ bus_addr = (unsigned long)UserVirtualToBus(pUser);
++
++ if (!bus_addr)
++ return 0;
++
++ g_cbVirtAddr = virtual_page;
++ g_cbBusAddr = bus_addr & ~4095;
++ g_cacheMiss++;
++
++ return (void __iomem *)bus_addr;
++ }
++}
++
++//do the same as above, by query our virt->bus cache
++static inline void __iomem *UserVirtualToBusViaCache(void __user *pUser)
++{
++ int count;
++ //get the page and its offset
++ unsigned long virtual_page = (unsigned long)pUser & ~4095;
++ unsigned long page_offset = (unsigned long)pUser & 4095;
++ unsigned long bus_addr;
++
++ if (pUser >= g_pMinPhys && pUser < g_pMaxPhys)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "user->phys passthrough on %p\n", pUser);
++ return (void __iomem *)((unsigned long)pUser + g_physOffset);
++ }
++
++ //check the cache for our entry
++ for (count = 0; count < VIRT_TO_BUS_CACHE_SIZE; count++)
++ if (g_virtAddr[count] == virtual_page)
++ {
++ bus_addr = g_busAddr[count] + page_offset;
++ g_cacheHit++;
++ return (void __iomem *)bus_addr;
++ }
++
++ //not found, look up manually and then insert its page address
++ bus_addr = (unsigned long)UserVirtualToBus(pUser);
++
++ if (!bus_addr)
++ return 0;
++
++ g_virtAddr[g_cacheInsertAt] = virtual_page;
++ g_busAddr[g_cacheInsertAt] = bus_addr & ~4095;
++
++ //round robin
++ g_cacheInsertAt++;
++ if (g_cacheInsertAt == VIRT_TO_BUS_CACHE_SIZE)
++ g_cacheInsertAt = 0;
++
++ g_cacheMiss++;
++
++ return (void __iomem *)bus_addr;
++}
++
++/***** FILE OPERATIONS ****/
++static int Open(struct inode *pInode, struct file *pFile)
++{
++ PRINTK(KERN_DEBUG "file opening: %d/%d\n", imajor(pInode), iminor(pInode));
++
++ //check which device we are
++ if (iminor(pInode) == 0) //4k
++ {
++ //only one at a time
++ if (!atomic_dec_and_test(&g_oneLock4k))
++ {
++ atomic_inc(&g_oneLock4k);
++ return -EBUSY;
++ }
++ }
++ else
++ return -EINVAL;
++
++ //todo there will be trouble if two different processes open the files
++
++ //reset after any file is opened
++ g_pMinPhys = (void __user *)-1;
++ g_pMaxPhys = (void __user *)0;
++ g_physOffset = 0;
++ g_cmaHandle = 0;
++
++ return 0;
++}
++
++static int Release(struct inode *pInode, struct file *pFile)
++{
++ PRINTK(KERN_DEBUG "file closing, %d pages tracked\n", g_trackedPages);
++ if (g_trackedPages)
++ PRINTK(KERN_ERR "we\'re leaking memory!\n");
++
++ //wait for any dmas to finish
++ DmaWaitAll();
++
++ //free this memory on the application closing the file or it crashing (implicitly closing the file)
++ if (g_cmaHandle)
++ {
++ PRINTK(KERN_DEBUG "unlocking vc memory\n");
++ if (UnlockVcMemory(g_cmaHandle))
++ PRINTK(KERN_ERR "uh-oh, unable to unlock vc memory!\n");
++ PRINTK(KERN_DEBUG "releasing vc memory\n");
++ if (ReleaseVcMemory(g_cmaHandle))
++ PRINTK(KERN_ERR "uh-oh, unable to release vc memory!\n");
++ }
++
++ if (iminor(pInode) == 0)
++ atomic_inc(&g_oneLock4k);
++ else
++ return -EINVAL;
++
++ return 0;
++}
++
++static struct DmaControlBlock __user *DmaPrepare(struct DmaControlBlock __user *pUserCB, int *pError)
++{
++ struct DmaControlBlock kernCB;
++ struct DmaControlBlock __user *pUNext;
++ void __iomem *pSourceBus, __iomem *pDestBus;
++
++ //get the control block into kernel memory so we can work on it
++ if (copy_from_user(&kernCB, pUserCB, sizeof(struct DmaControlBlock)) != 0)
++ {
++ PRINTK(KERN_ERR "copy_from_user failed for user cb %p\n", pUserCB);
++ *pError = 1;
++ return 0;
++ }
++
++ if (kernCB.m_pSourceAddr == 0 || kernCB.m_pDestAddr == 0)
++ {
++ PRINTK(KERN_ERR "faulty source (%p) dest (%p) addresses for user cb %p\n",
++ kernCB.m_pSourceAddr, kernCB.m_pDestAddr, pUserCB);
++ *pError = 1;
++ return 0;
++ }
++
++ pSourceBus = UserVirtualToBusViaCache(kernCB.m_pSourceAddr);
++ pDestBus = UserVirtualToBusViaCache(kernCB.m_pDestAddr);
++
++ if (!pSourceBus || !pDestBus)
++ {
++ PRINTK(KERN_ERR "virtual to bus translation failure for source/dest %p/%p->%p/%p\n",
++ kernCB.m_pSourceAddr, kernCB.m_pDestAddr,
++ pSourceBus, pDestBus);
++ *pError = 1;
++ return 0;
++ }
++
++ //update the user structure with the new bus addresses
++ kernCB.m_pSourceAddr = pSourceBus;
++ kernCB.m_pDestAddr = pDestBus;
++
++ PRINTK_VERBOSE(KERN_DEBUG "final source %p dest %p\n", kernCB.m_pSourceAddr, kernCB.m_pDestAddr);
++
++ //sort out the bus address for the next block
++ pUNext = kernCB.m_pNext;
++
++ if (kernCB.m_pNext)
++ {
++ void __iomem *pNextBus;
++ pNextBus = UserVirtualToBusViaCbCache(kernCB.m_pNext);
++
++ if (!pNextBus)
++ {
++ PRINTK(KERN_ERR "virtual to bus translation failure for m_pNext\n");
++ *pError = 1;
++ return 0;
++ }
++
++ //update the pointer with the bus address
++ kernCB.m_pNext = pNextBus;
++ }
++
++ //write it back to user space
++ if (copy_to_user(pUserCB, &kernCB, sizeof(struct DmaControlBlock)) != 0)
++ {
++ PRINTK(KERN_ERR "copy_to_user failed for cb %p\n", pUserCB);
++ *pError = 1;
++ return 0;
++ }
++
++ __cpuc_flush_dcache_area(pUserCB, 32);
++
++ *pError = 0;
++ return pUNext;
++}
++
++static int DmaKick(struct DmaControlBlock __user *pUserCB)
++{
++ void __iomem *pBusCB;
++
++ pBusCB = UserVirtualToBusViaCbCache(pUserCB);
++ if (!pBusCB)
++ {
++ PRINTK(KERN_ERR "virtual to bus translation failure for cb\n");
++ return 1;
++ }
++
++ //flush_cache_all();
++
++ bcm_dma_start(g_pDmaChanBase, (dma_addr_t)pBusCB);
++
++ return 0;
++}
++
++static void DmaWaitAll(void)
++{
++ int counter = 0;
++ volatile int inner_count;
++ volatile unsigned int cs;
++ unsigned long time_before, time_after;
++
++ time_before = jiffies;
++ //bcm_dma_wait_idle(g_pDmaChanBase);
++ dsb();
++
++ cs = readl(g_pDmaChanBase);
++
++ while ((cs & 1) == 1)
++ {
++ cs = readl(g_pDmaChanBase);
++ counter++;
++
++ for (inner_count = 0; inner_count < 32; inner_count++);
++
++ asm volatile ("MCR p15,0,r0,c7,c0,4 \n");
++ //cpu_do_idle();
++ if (counter >= 1000000)
++ {
++ PRINTK(KERN_WARNING "DMA failed to finish in a timely fashion\n");
++ break;
++ }
++ }
++ time_after = jiffies;
++ PRINTK_VERBOSE(KERN_DEBUG "done, counter %d, cs %08x", counter, cs);
++ PRINTK_VERBOSE(KERN_DEBUG "took %ld jiffies, %d HZ\n", time_after - time_before, HZ);
++}
++
++static long Ioctl(struct file *pFile, unsigned int cmd, unsigned long arg)
++{
++ int error = 0;
++ PRINTK_VERBOSE(KERN_DEBUG "ioctl cmd %x arg %lx\n", cmd, arg);
++
++ switch (cmd)
++ {
++ case DMA_PREPARE:
++ case DMA_PREPARE_KICK:
++ case DMA_PREPARE_KICK_WAIT:
++ {
++ struct DmaControlBlock __user *pUCB = (struct DmaControlBlock *)arg;
++ int steps = 0;
++ unsigned long start_time = jiffies;
++ (void)start_time;
++
++ //flush our address cache
++ FlushAddrCache();
++
++ PRINTK_VERBOSE(KERN_DEBUG "dma prepare\n");
++
++ //do virtual to bus translation for each entry
++ do
++ {
++ pUCB = DmaPrepare(pUCB, &error);
++ } while (error == 0 && ++steps && pUCB);
++ PRINTK_VERBOSE(KERN_DEBUG "prepare done in %d steps, %ld\n", steps, jiffies - start_time);
++
++ //carry straight on if we want to kick too
++ if (cmd == DMA_PREPARE || error)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "falling out\n");
++ return error ? -EINVAL : 0;
++ }
++ }
++ case DMA_KICK:
++ PRINTK_VERBOSE(KERN_DEBUG "dma begin\n");
++
++ if (cmd == DMA_KICK)
++ FlushAddrCache();
++
++ DmaKick((struct DmaControlBlock __user *)arg);
++
++ if (cmd != DMA_PREPARE_KICK_WAIT)
++ break;
++/* case DMA_WAIT_ONE:
++ //PRINTK(KERN_DEBUG "dma wait one\n");
++ break;*/
++ case DMA_WAIT_ALL:
++ //PRINTK(KERN_DEBUG "dma wait all\n");
++ DmaWaitAll();
++ break;
++ case DMA_MAX_BURST:
++ if (g_dmaChan == 0)
++ return 10;
++ else
++ return 5;
++ case DMA_SET_MIN_PHYS:
++ g_pMinPhys = (void __user *)arg;
++ PRINTK(KERN_DEBUG "min/max user/phys bypass set to %p %p\n", g_pMinPhys, g_pMaxPhys);
++ break;
++ case DMA_SET_MAX_PHYS:
++ g_pMaxPhys = (void __user *)arg;
++ PRINTK(KERN_DEBUG "min/max user/phys bypass set to %p %p\n", g_pMinPhys, g_pMaxPhys);
++ break;
++ case DMA_SET_PHYS_OFFSET:
++ g_physOffset = arg;
++ PRINTK(KERN_DEBUG "user/phys bypass offset set to %ld\n", g_physOffset);
++ break;
++ case DMA_CMA_SET_SIZE:
++ {
++ unsigned int pBusAddr;
++
++ if (g_cmaHandle)
++ {
++ PRINTK(KERN_ERR "memory has already been allocated (handle %d)\n", g_cmaHandle);
++ return -EINVAL;
++ }
++
++ PRINTK(KERN_INFO "allocating %ld bytes of VC memory\n", arg * 4096);
++
++ //get the memory
++ if (AllocateVcMemory(&g_cmaHandle, arg * 4096, 4096, MEM_FLAG_L1_NONALLOCATING | MEM_FLAG_NO_INIT | MEM_FLAG_HINT_PERMALOCK))
++ {
++ PRINTK(KERN_ERR "failed to allocate %ld bytes of VC memory\n", arg * 4096);
++ g_cmaHandle = 0;
++ return -EINVAL;
++ }
++
++ //get an address for it
++ PRINTK(KERN_INFO "trying to map VC memory\n");
++
++ if (LockVcMemory(&pBusAddr, g_cmaHandle))
++ {
++ PRINTK(KERN_ERR "failed to map CMA handle %d, releasing memory\n", g_cmaHandle);
++ ReleaseVcMemory(g_cmaHandle);
++ g_cmaHandle = 0;
++ }
++
++ PRINTK(KERN_INFO "bus address for CMA memory is %x\n", pBusAddr);
++ return pBusAddr;
++ }
++ case DMA_GET_VERSION:
++ PRINTK(KERN_DEBUG "returning version number, %d\n", VERSION_NUMBER);
++ return VERSION_NUMBER;
++ default:
++ PRINTK(KERN_DEBUG "unknown ioctl: %d\n", cmd);
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++static ssize_t Read(struct file *pFile, char __user *pUser, size_t count, loff_t *offp)
++{
++ return -EIO;
++}
++
++static int Mmap(struct file *pFile, struct vm_area_struct *pVma)
++{
++ struct PageList *pPages;
++ struct VmaPageList *pVmaList;
++
++ PRINTK_VERBOSE(KERN_DEBUG "MMAP vma %p, length %ld (%s %d)\n",
++ pVma, pVma->vm_end - pVma->vm_start,
++ current->comm, current->pid);
++ PRINTK_VERBOSE(KERN_DEBUG "MMAP %p %d (tracked %d)\n", pVma, current->pid, g_trackedPages);
++
++ //make a new page list
++ pPages = (struct PageList *)kmalloc(sizeof(struct PageList), GFP_KERNEL);
++ if (!pPages)
++ {
++ PRINTK(KERN_ERR "couldn\'t allocate a new page list (%s %d)\n",
++ current->comm, current->pid);
++ return -ENOMEM;
++ }
++
++ //clear the page list
++ pPages->m_used = 0;
++ pPages->m_pNext = 0;
++
++ //insert our vma and new page list somewhere
++ if (!pVma->vm_private_data)
++ {
++ struct VmaPageList *pList;
++
++ PRINTK_VERBOSE(KERN_DEBUG "new vma list, making new one (%s %d)\n",
++ current->comm, current->pid);
++
++ //make a new vma list
++ pList = (struct VmaPageList *)kmalloc(sizeof(struct VmaPageList), GFP_KERNEL);
++ if (!pList)
++ {
++ PRINTK(KERN_ERR "couldn\'t allocate vma page list (%s %d)\n",
++ current->comm, current->pid);
++ kfree(pPages);
++ return -ENOMEM;
++ }
++
++ //clear this list
++ pVma->vm_private_data = (void *)pList;
++ pList->m_refCount = 0;
++ }
++
++ pVmaList = (struct VmaPageList *)pVma->vm_private_data;
++
++ //add it to the vma list
++ pVmaList->m_pPageHead = pPages;
++ pVmaList->m_pPageTail = pPages;
++
++ pVma->vm_ops = &g_vmOps4k;
++ pVma->vm_flags |= VM_IO;
++
++ VmaOpen4k(pVma);
++
++ return 0;
++}
++
++/****** VMA OPERATIONS ******/
++
++static void VmaOpen4k(struct vm_area_struct *pVma)
++{
++ struct VmaPageList *pVmaList;
++
++ PRINTK_VERBOSE(KERN_DEBUG "vma open %p private %p (%s %d), %d live pages\n", pVma, pVma->vm_private_data, current->comm, current->pid, g_trackedPages);
++ PRINTK_VERBOSE(KERN_DEBUG "OPEN %p %d %ld pages (tracked pages %d)\n",
++ pVma, current->pid, (pVma->vm_end - pVma->vm_start) >> 12,
++ g_trackedPages);
++
++ pVmaList = (struct VmaPageList *)pVma->vm_private_data;
++
++ if (pVmaList)
++ {
++ pVmaList->m_refCount++;
++ PRINTK_VERBOSE(KERN_DEBUG "ref count is now %d\n", pVmaList->m_refCount);
++ }
++ else
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "err, open but no vma page list\n");
++ }
++}
++
++static void VmaClose4k(struct vm_area_struct *pVma)
++{
++ struct VmaPageList *pVmaList;
++ int freed = 0;
++
++ PRINTK_VERBOSE(KERN_DEBUG "vma close %p private %p (%s %d)\n", pVma, pVma->vm_private_data, current->comm, current->pid);
++
++ //wait for any dmas to finish
++ DmaWaitAll();
++
++ //find our vma in the list
++ pVmaList = (struct VmaPageList *)pVma->vm_private_data;
++
++ //may be a fork
++ if (pVmaList)
++ {
++ struct PageList *pPages;
++
++ pVmaList->m_refCount--;
++
++ if (pVmaList->m_refCount == 0)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "found vma, freeing pages (%s %d)\n",
++ current->comm, current->pid);
++
++ pPages = pVmaList->m_pPageHead;
++
++ if (!pPages)
++ {
++ PRINTK(KERN_ERR "no page list (%s %d)!\n",
++ current->comm, current->pid);
++ return;
++ }
++
++ while (pPages)
++ {
++ struct PageList *next;
++ int count;
++
++ PRINTK_VERBOSE(KERN_DEBUG "page list (%s %d)\n",
++ current->comm, current->pid);
++
++ next = pPages->m_pNext;
++ for (count = 0; count < pPages->m_used; count++)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "freeing page %p (%s %d)\n",
++ pPages->m_pPages[count],
++ current->comm, current->pid);
++ __free_pages(pPages->m_pPages[count], 0);
++ g_trackedPages--;
++ freed++;
++ }
++
++ PRINTK_VERBOSE(KERN_DEBUG "freeing page list (%s %d)\n",
++ current->comm, current->pid);
++ kfree(pPages);
++ pPages = next;
++ }
++
++ //remove our vma from the list
++ kfree(pVmaList);
++ pVma->vm_private_data = 0;
++ }
++ else
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "ref count is %d, not closing\n", pVmaList->m_refCount);
++ }
++ }
++ else
++ {
++ PRINTK_VERBOSE(KERN_ERR "uh-oh, vma %p not found (%s %d)!\n", pVma, current->comm, current->pid);
++ PRINTK_VERBOSE(KERN_ERR "CLOSE ERR\n");
++ }
++
++ PRINTK_VERBOSE(KERN_DEBUG "CLOSE %p %d %d pages (tracked pages %d)",
++ pVma, current->pid, freed, g_trackedPages);
++
++ PRINTK_VERBOSE(KERN_DEBUG "%d pages open\n", g_trackedPages);
++}
++
++static int VmaFault4k(struct vm_area_struct *pVma, struct vm_fault *pVmf)
++{
++ PRINTK_VERBOSE(KERN_DEBUG "vma fault for vma %p private %p at offset %ld (%s %d)\n", pVma, pVma->vm_private_data, pVmf->pgoff,
++ current->comm, current->pid);
++ PRINTK_VERBOSE(KERN_DEBUG "FAULT\n");
++ pVmf->page = alloc_page(GFP_KERNEL);
++
++ if (pVmf->page)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "alloc page virtual %p\n", page_address(pVmf->page));
++ }
++
++ if (!pVmf->page)
++ {
++ PRINTK(KERN_ERR "vma fault oom (%s %d)\n", current->comm, current->pid);
++ return VM_FAULT_OOM;
++ }
++ else
++ {
++ struct VmaPageList *pVmaList;
++
++ get_page(pVmf->page);
++ g_trackedPages++;
++
++ //find our vma in the list
++ pVmaList = (struct VmaPageList *)pVma->vm_private_data;
++
++ if (pVmaList)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "vma found (%s %d)\n", current->comm, current->pid);
++
++ if (pVmaList->m_pPageTail->m_used == PAGES_PER_LIST)
++ {
++ PRINTK_VERBOSE(KERN_DEBUG "making new page list (%s %d)\n", current->comm, current->pid);
++ //making a new page list
++ pVmaList->m_pPageTail->m_pNext = (struct PageList *)kmalloc(sizeof(struct PageList), GFP_KERNEL);
++ if (!pVmaList->m_pPageTail->m_pNext)
++ return -ENOMEM;
++
++ //update the tail pointer
++ pVmaList->m_pPageTail = pVmaList->m_pPageTail->m_pNext;
++ pVmaList->m_pPageTail->m_used = 0;
++ pVmaList->m_pPageTail->m_pNext = 0;
++ }
++
++ PRINTK_VERBOSE(KERN_DEBUG "adding page to list (%s %d)\n", current->comm, current->pid);
++
++ pVmaList->m_pPageTail->m_pPages[pVmaList->m_pPageTail->m_used] = pVmf->page;
++ pVmaList->m_pPageTail->m_used++;
++ }
++ else
++ PRINTK(KERN_ERR "returned page for vma we don\'t know %p (%s %d)\n", pVma, current->comm, current->pid);
++
++ return 0;
++ }
++}
++
++/****** GENERIC FUNCTIONS ******/
++static int __init dmaer_init(void)
++{
++ int result = alloc_chrdev_region(&g_majorMinor, 0, 1, "dmaer");
++ if (result < 0)
++ {
++ PRINTK(KERN_ERR "unable to get major device number\n");
++ return result;
++ }
++ else
++ PRINTK(KERN_DEBUG "major device number %d\n", MAJOR(g_majorMinor));
++
++ PRINTK(KERN_DEBUG "vma list size %d, page list size %d, page size %ld\n",
++ sizeof(struct VmaPageList), sizeof(struct PageList), PAGE_SIZE);
++
++ //get a dma channel to work with
++ result = bcm_dma_chan_alloc(BCM_DMA_FEATURE_FAST, (void **)&g_pDmaChanBase, &g_dmaIrq);
++
++ //uncomment to force to channel 0
++ //result = 0;
++ //g_pDmaChanBase = 0xce808000;
++
++ if (result < 0)
++ {
++ PRINTK(KERN_ERR "failed to allocate dma channel\n");
++ cdev_del(&g_cDev);
++ unregister_chrdev_region(g_majorMinor, 1);
++ }
++
++ //reset the channel
++ PRINTK(KERN_DEBUG "allocated dma channel %d (%p), initial state %08x\n", result, g_pDmaChanBase, *g_pDmaChanBase);
++ *g_pDmaChanBase = 1 << 31;
++ PRINTK(KERN_DEBUG "post-reset %08x\n", *g_pDmaChanBase);
++
++ g_dmaChan = result;
++
++ //clear the cache stats
++ g_cacheHit = 0;
++ g_cacheMiss = 0;
++
++ //register our device - after this we are go go go
++ cdev_init(&g_cDev, &g_fOps);
++ g_cDev.owner = THIS_MODULE;
++ g_cDev.ops = &g_fOps;
++
++ result = cdev_add(&g_cDev, g_majorMinor, 1);
++ if (result < 0)
++ {
++ PRINTK(KERN_ERR "failed to add character device\n");
++ unregister_chrdev_region(g_majorMinor, 1);
++ bcm_dma_chan_free(g_dmaChan);
++ return result;
++ }
++
++ return 0;
++}
++
++static void __exit dmaer_exit(void)
++{
++ PRINTK(KERN_INFO "closing dmaer device, cache stats: %d hits %d misses\n", g_cacheHit, g_cacheMiss);
++ //unregister the device
++ cdev_del(&g_cDev);
++ unregister_chrdev_region(g_majorMinor, 1);
++ //free the dma channel
++ bcm_dma_chan_free(g_dmaChan);
++}
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("Simon Hall");
++module_init(dmaer_init);
++module_exit(dmaer_exit);
++
+--- /dev/null
++++ b/arch/arm/mach-bcm2708/include/mach/vc_support.h
+@@ -0,0 +1,69 @@
++#ifndef _VC_SUPPORT_H_
++#define _VC_SUPPORT_H_
++
++/*
++ * vc_support.h
++ *
++ * Created on: 25 Nov 2012
++ * Author: Simon
++ */
++
++enum {
++/*
++ If a MEM_HANDLE_T is discardable, the memory manager may resize it to size
++ 0 at any time when it is not locked or retained.
++ */
++ MEM_FLAG_DISCARDABLE = 1 << 0,
++
++ /*
++ If a MEM_HANDLE_T is allocating (or normal), its block of memory will be
++ accessed in an allocating fashion through the cache.
++ */
++ MEM_FLAG_NORMAL = 0 << 2,
++ MEM_FLAG_ALLOCATING = MEM_FLAG_NORMAL,
++
++ /*
++ If a MEM_HANDLE_T is direct, its block of memory will be accessed
++ directly, bypassing the cache.
++ */
++ MEM_FLAG_DIRECT = 1 << 2,
++
++ /*
++ If a MEM_HANDLE_T is coherent, its block of memory will be accessed in a
++ non-allocating fashion through the cache.
++ */
++ MEM_FLAG_COHERENT = 2 << 2,
++
++ /*
++ If a MEM_HANDLE_T is L1-nonallocating, its block of memory will be accessed by
++ the VPU in a fashion which is allocating in L2, but only coherent in L1.
++ */
++ MEM_FLAG_L1_NONALLOCATING = (MEM_FLAG_DIRECT | MEM_FLAG_COHERENT),
++
++ /*
++ If a MEM_HANDLE_T is zero'd, its contents are set to 0 rather than
++ MEM_HANDLE_INVALID on allocation and resize up.
++ */
++ MEM_FLAG_ZERO = 1 << 4,
++
++ /*
++ If a MEM_HANDLE_T is uninitialised, it will not be reset to a defined value
++ (either zero, or all 1's) on allocation.
++ */
++ MEM_FLAG_NO_INIT = 1 << 5,
++
++ /*
++ Hints.
++ */
++ MEM_FLAG_HINT_PERMALOCK = 1 << 6, /* Likely to be locked for long periods of time. */
++};
++
++unsigned int AllocateVcMemory(unsigned int *pHandle, unsigned int size, unsigned int alignment, unsigned int flags);
++unsigned int ReleaseVcMemory(unsigned int handle);
++unsigned int LockVcMemory(unsigned int *pBusAddress, unsigned int handle);
++unsigned int UnlockVcMemory(unsigned int handle);
++
++unsigned int ExecuteVcCode(unsigned int code,
++ unsigned int r0, unsigned int r1, unsigned int r2, unsigned int r3, unsigned int r4, unsigned int r5);
++
++#endif
+--- /dev/null
++++ b/arch/arm/mach-bcm2708/vc_support.c
+@@ -0,0 +1,319 @@
++/*
++ * vc_support.c
++ *
++ * Created on: 25 Nov 2012
++ * Author: Simon
++ */
++
++#include <linux/module.h>
++#include <mach/vcio.h>
++
++#ifdef ECLIPSE_IGNORE
++
++#define __user
++#define __init
++#define __exit
++#define __iomem
++#define KERN_DEBUG
++#define KERN_ERR
++#define KERN_WARNING
++#define KERN_INFO
++#define _IOWR(a, b, c) b
++#define _IOW(a, b, c) b
++#define _IO(a, b) b
++
++#endif
++
++/****** VC MAILBOX FUNCTIONALITY ******/
++unsigned int AllocateVcMemory(unsigned int *pHandle, unsigned int size, unsigned int alignment, unsigned int flags)
++{
++ struct vc_msg
++ {
++ unsigned int m_msgSize;
++ unsigned int m_response;
++
++ struct vc_tag
++ {
++ unsigned int m_tagId;
++ unsigned int m_sendBufferSize;
++ union {
++ unsigned int m_sendDataSize;
++ unsigned int m_recvDataSize;
++ };
++
++ struct args
++ {
++ union {
++ unsigned int m_size;
++ unsigned int m_handle;
++ };
++ unsigned int m_alignment;
++ unsigned int m_flags;
++ } m_args;
++ } m_tag;
++
++ unsigned int m_endTag;
++ } msg;
++ int s;
++
++ msg.m_msgSize = sizeof(msg);
++ msg.m_response = 0;
++ msg.m_endTag = 0;
++
++ //fill in the tag for the allocation command
++ msg.m_tag.m_tagId = 0x3000c;
++ msg.m_tag.m_sendBufferSize = 12;
++ msg.m_tag.m_sendDataSize = 12;
++
++ //fill in our args
++ msg.m_tag.m_args.m_size = size;
++ msg.m_tag.m_args.m_alignment = alignment;
++ msg.m_tag.m_args.m_flags = flags;
++
++ //run the command
++ s = bcm_mailbox_property(&msg, sizeof(msg));
++
++ if (s == 0 && msg.m_response == 0x80000000 && msg.m_tag.m_recvDataSize == 0x80000004)
++ {
++ *pHandle = msg.m_tag.m_args.m_handle;
++ return 0;
++ }
++ else
++ {
++ printk(KERN_ERR "failed to allocate vc memory: s=%d response=%08x recv data size=%08x\n",
++ s, msg.m_response, msg.m_tag.m_recvDataSize);
++ return 1;
++ }
++}
++
++unsigned int ReleaseVcMemory(unsigned int handle)
++{
++ struct vc_msg
++ {
++ unsigned int m_msgSize;
++ unsigned int m_response;
++
++ struct vc_tag
++ {
++ unsigned int m_tagId;
++ unsigned int m_sendBufferSize;
++ union {
++ unsigned int m_sendDataSize;
++ unsigned int m_recvDataSize;
++ };
++
++ struct args
++ {
++ union {
++ unsigned int m_handle;
++ unsigned int m_error;
++ };
++ } m_args;
++ } m_tag;
++
++ unsigned int m_endTag;
++ } msg;
++ int s;
++
++ msg.m_msgSize = sizeof(msg);
++ msg.m_response = 0;
++ msg.m_endTag = 0;
++
++ //fill in the tag for the release command
++ msg.m_tag.m_tagId = 0x3000f;
++ msg.m_tag.m_sendBufferSize = 4;
++ msg.m_tag.m_sendDataSize = 4;
++
++ //pass across the handle
++ msg.m_tag.m_args.m_handle = handle;
++
++ s = bcm_mailbox_property(&msg, sizeof(msg));
++
++ if (s == 0 && msg.m_response == 0x80000000 && msg.m_tag.m_recvDataSize == 0x80000004 && msg.m_tag.m_args.m_error == 0)
++ return 0;
++ else
++ {
++ printk(KERN_ERR "failed to release vc memory: s=%d response=%08x recv data size=%08x error=%08x\n",
++ s, msg.m_response, msg.m_tag.m_recvDataSize, msg.m_tag.m_args.m_error);
++ return 1;
++ }
++}
++
++unsigned int LockVcMemory(unsigned int *pBusAddress, unsigned int handle)
++{
++ struct vc_msg
++ {
++ unsigned int m_msgSize;
++ unsigned int m_response;
++
++ struct vc_tag
++ {
++ unsigned int m_tagId;
++ unsigned int m_sendBufferSize;
++ union {
++ unsigned int m_sendDataSize;
++ unsigned int m_recvDataSize;
++ };
++
++ struct args
++ {
++ union {
++ unsigned int m_handle;
++ unsigned int m_busAddress;
++ };
++ } m_args;
++ } m_tag;
++
++ unsigned int m_endTag;
++ } msg;
++ int s;
++
++ msg.m_msgSize = sizeof(msg);
++ msg.m_response = 0;
++ msg.m_endTag = 0;
++
++ //fill in the tag for the lock command
++ msg.m_tag.m_tagId = 0x3000d;
++ msg.m_tag.m_sendBufferSize = 4;
++ msg.m_tag.m_sendDataSize = 4;
++
++ //pass across the handle
++ msg.m_tag.m_args.m_handle = handle;
++
++ s = bcm_mailbox_property(&msg, sizeof(msg));
++
++ if (s == 0 && msg.m_response == 0x80000000 && msg.m_tag.m_recvDataSize == 0x80000004)
++ {
++ //pick out the bus address
++ *pBusAddress = msg.m_tag.m_args.m_busAddress;
++ return 0;
++ }
++ else
++ {
++ printk(KERN_ERR "failed to lock vc memory: s=%d response=%08x recv data size=%08x\n",
++ s, msg.m_response, msg.m_tag.m_recvDataSize);
++ return 1;
++ }
++}
++
++unsigned int UnlockVcMemory(unsigned int handle)
++{
++ struct vc_msg
++ {
++ unsigned int m_msgSize;
++ unsigned int m_response;
++
++ struct vc_tag
++ {
++ unsigned int m_tagId;
++ unsigned int m_sendBufferSize;
++ union {
++ unsigned int m_sendDataSize;
++ unsigned int m_recvDataSize;
++ };
++
++ struct args
++ {
++ union {
++ unsigned int m_handle;
++ unsigned int m_error;
++ };
++ } m_args;
++ } m_tag;
++
++ unsigned int m_endTag;
++ } msg;
++ int s;
++
++ msg.m_msgSize = sizeof(msg);
++ msg.m_response = 0;
++ msg.m_endTag = 0;
++
++ //fill in the tag for the unlock command
++ msg.m_tag.m_tagId = 0x3000e;
++ msg.m_tag.m_sendBufferSize = 4;
++ msg.m_tag.m_sendDataSize = 4;
++
++ //pass across the handle
++ msg.m_tag.m_args.m_handle = handle;
++
++ s = bcm_mailbox_property(&msg, sizeof(msg));
++
++ //check the error code too
++ if (s == 0 && msg.m_response == 0x80000000 && msg.m_tag.m_recvDataSize == 0x80000004 && msg.m_tag.m_args.m_error == 0)
++ return 0;
++ else
++ {
++ printk(KERN_ERR "failed to unlock vc memory: s=%d response=%08x recv data size=%08x error%08x\n",
++ s, msg.m_response, msg.m_tag.m_recvDataSize, msg.m_tag.m_args.m_error);
++ return 1;
++ }
++}
++
++unsigned int ExecuteVcCode(unsigned int code,
++ unsigned int r0, unsigned int r1, unsigned int r2, unsigned int r3, unsigned int r4, unsigned int r5)
++{
++ struct vc_msg
++ {
++ unsigned int m_msgSize;
++ unsigned int m_response;
++
++ struct vc_tag
++ {
++ unsigned int m_tagId;
++ unsigned int m_sendBufferSize;
++ union {
++ unsigned int m_sendDataSize;
++ unsigned int m_recvDataSize;
++ };
++
++ struct args
++ {
++ union {
++ unsigned int m_pCode;
++ unsigned int m_return;
++ };
++ unsigned int m_r0;
++ unsigned int m_r1;
++ unsigned int m_r2;
++ unsigned int m_r3;
++ unsigned int m_r4;
++ unsigned int m_r5;
++ } m_args;
++ } m_tag;
++
++ unsigned int m_endTag;
++ } msg;
++ int s;
++
++ msg.m_msgSize = sizeof(msg);
++ msg.m_response = 0;
++ msg.m_endTag = 0;
++
++ //fill in the tag for the unlock command
++ msg.m_tag.m_tagId = 0x30010;
++ msg.m_tag.m_sendBufferSize = 28;
++ msg.m_tag.m_sendDataSize = 28;
++
++ //pass across the handle
++ msg.m_tag.m_args.m_pCode = code;
++ msg.m_tag.m_args.m_r0 = r0;
++ msg.m_tag.m_args.m_r1 = r1;
++ msg.m_tag.m_args.m_r2 = r2;
++ msg.m_tag.m_args.m_r3 = r3;
++ msg.m_tag.m_args.m_r4 = r4;
++ msg.m_tag.m_args.m_r5 = r5;
++
++ s = bcm_mailbox_property(&msg, sizeof(msg));
++
++ //check the error code too
++ if (s == 0 && msg.m_response == 0x80000000 && msg.m_tag.m_recvDataSize == 0x80000004)
++ return msg.m_tag.m_args.m_return;
++ else
++ {
++ printk(KERN_ERR "failed to execute: s=%d response=%08x recv data size=%08x\n",
++ s, msg.m_response, msg.m_tag.m_recvDataSize);
++ return 1;
++ }
++}
++