aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/bcm53xx/patches-3.14
diff options
context:
space:
mode:
authorHauke Mehrtens <hauke@hauke-m.de>2014-09-21 21:58:02 +0000
committerHauke Mehrtens <hauke@hauke-m.de>2014-09-21 21:58:02 +0000
commit47aefcc563b4052f7d383e9ab1c075037ffc566d (patch)
treeb61e737662fca7bf22ccf51c311520cc25915264 /target/linux/bcm53xx/patches-3.14
parent2c6e0e0ae0e93be20c93ca3113c315b0616bbcfe (diff)
downloadupstream-47aefcc563b4052f7d383e9ab1c075037ffc566d.tar.gz
upstream-47aefcc563b4052f7d383e9ab1c075037ffc566d.tar.bz2
upstream-47aefcc563b4052f7d383e9ab1c075037ffc566d.zip
bcm53xx: add nand flash driver
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> SVN-Revision: 42641
Diffstat (limited to 'target/linux/bcm53xx/patches-3.14')
-rw-r--r--target/linux/bcm53xx/patches-3.14/420-mtd-bcm5301x_nand.patch1616
1 files changed, 1616 insertions, 0 deletions
diff --git a/target/linux/bcm53xx/patches-3.14/420-mtd-bcm5301x_nand.patch b/target/linux/bcm53xx/patches-3.14/420-mtd-bcm5301x_nand.patch
new file mode 100644
index 0000000000..86c288d41e
--- /dev/null
+++ b/target/linux/bcm53xx/patches-3.14/420-mtd-bcm5301x_nand.patch
@@ -0,0 +1,1616 @@
+--- a/drivers/mtd/nand/Kconfig
++++ b/drivers/mtd/nand/Kconfig
+@@ -510,4 +510,10 @@ config MTD_NAND_XWAY
+ Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+ to the External Bus Unit (EBU).
+
++config MTD_NAND_BCM
++ tristate "Support for NAND on some Broadcom SoC"
++ help
++ This driver is currently used for the NAND flash controller on the
++ Broadcom BCM5301X (NorthStar) SoCs.
++
+ endif # MTD_NAND
+--- a/drivers/mtd/nand/Makefile
++++ b/drivers/mtd/nand/Makefile
+@@ -49,5 +49,6 @@ obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740
+ obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
+ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
+ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
++obj-$(CONFIG_MTD_NAND_BCM) += bcm_nand.o
+
+ nand-objs := nand_base.o nand_bbt.o
+--- /dev/null
++++ b/drivers/mtd/nand/bcm_nand.c
+@@ -0,0 +1,1591 @@
++/*
++ * Nortstar NAND controller driver
++ * for Linux NAND library and MTD interface
++ *
++ * (c) Broadcom, Inc. 2012 All Rights Reserved.
++ * Copyright 2014 Hauke Mehrtens <hauke@hauke-m.de>
++ *
++ * Licensed under the GNU/GPL. See COPYING for details.
++ *
++ * This module interfaces the NAND controller and hardware ECC capabilities
++ * tp the generic NAND chip support in the NAND library.
++ *
++ * Notes:
++ * This driver depends on generic NAND driver, but works at the
++ * page level for operations.
++ *
++ * When a page is written, the ECC calculated also protects the OOB
++ * bytes not taken by ECC, and so the OOB must be combined with any
++ * OOB data that preceded the page-write operation in order for the
++ * ECC to be calculated correctly.
++ * Also, when the page is erased, but OOB data is not, HW ECC will
++ * indicate an error, because it checks OOB too, which calls for some
++ * help from the software in this driver.
++ *
++ * TBD:
++ * Block locking/unlocking support, OTP support
++ */
++
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/io.h>
++#include <linux/ioport.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <linux/err.h>
++#include <linux/slab.h>
++#include <linux/bcma/bcma.h>
++#include <linux/of_irq.h>
++
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/nand.h>
++
++#define NANDC_MAX_CHIPS 2 /* Only 2 CSn supported in NorthStar */
++
++#define DRV_NAME "bcmnand"
++#define DRV_DESC "Northstar on-chip NAND Flash Controller driver"
++
++/*
++ * Driver private control structure
++ */
++struct bcmnand_ctrl {
++ struct mtd_info mtd;
++ struct nand_chip nand;
++ struct bcma_device *core;
++
++ struct completion op_completion;
++
++ struct nand_ecclayout ecclayout;
++ int cmd_ret; /* saved error code */
++ unsigned char oob_index;
++ unsigned char id_byte_index;
++ unsigned char chip_num;
++ unsigned char last_cmd;
++ unsigned char ecc_level;
++ unsigned char sector_size_shift;
++ unsigned char sec_per_page_shift;
++};
++
++
++/*
++ * IRQ numbers - offset from first irq in nandc_irq resource
++ */
++#define NANDC_IRQ_RD_MISS 0
++#define NANDC_IRQ_ERASE_COMPLETE 1
++#define NANDC_IRQ_COPYBACK_COMPLETE 2
++#define NANDC_IRQ_PROGRAM_COMPLETE 3
++#define NANDC_IRQ_CONTROLLER_RDY 4
++#define NANDC_IRQ_RDBSY_RDY 5
++#define NANDC_IRQ_ECC_UNCORRECTABLE 6
++#define NANDC_IRQ_ECC_CORRECTABLE 7
++#define NANDC_IRQ_NUM 8
++
++struct bcmnand_reg_field {
++ unsigned int reg;
++ unsigned int pos;
++ unsigned int width;
++};
++
++/*
++ * REGISTERS
++ *
++ * Individual bit-fields aof registers are specificed here
++ * for clarity, and the rest of the code will access each field
++ * as if it was its own register.
++ *
++ * Following registers are off <reg_base>:
++ */
++#define REG_BIT_FIELD(r, p, w) ((struct bcmnand_reg_field){(r), (p), (w)})
++
++#define NANDC_8KB_PAGE_SUPPORT REG_BIT_FIELD(0x0, 31, 1)
++#define NANDC_REV_MAJOR REG_BIT_FIELD(0x0, 8, 8)
++#define NANDC_REV_MINOR REG_BIT_FIELD(0x0, 0, 8)
++
++#define NANDC_CMD_START_OPCODE REG_BIT_FIELD(0x4, 24, 5)
++
++#define NANDC_CMD_CS_SEL REG_BIT_FIELD(0x8, 16, 3)
++#define NANDC_CMD_EXT_ADDR REG_BIT_FIELD(0x8, 0, 16)
++
++#define NANDC_CMD_ADDRESS REG_BIT_FIELD(0xc, 0, 32)
++#define NANDC_CMD_END_ADDRESS REG_BIT_FIELD(0x10, 0, 32)
++
++#define NANDC_INT_STATUS REG_BIT_FIELD(0x14, 0, 32)
++#define NANDC_INT_STAT_CTLR_RDY REG_BIT_FIELD(0x14, 31, 1)
++#define NANDC_INT_STAT_FLASH_RDY REG_BIT_FIELD(0x14, 30, 1)
++#define NANDC_INT_STAT_CACHE_VALID REG_BIT_FIELD(0x14, 29, 1)
++#define NANDC_INT_STAT_SPARE_VALID REG_BIT_FIELD(0x14, 28, 1)
++#define NANDC_INT_STAT_ERASED REG_BIT_FIELD(0x14, 27, 1)
++#define NANDC_INT_STAT_PLANE_RDY REG_BIT_FIELD(0x14, 26, 1)
++#define NANDC_INT_STAT_FLASH_STATUS REG_BIT_FIELD(0x14, 0, 8)
++
++#define NANDC_CS_LOCK REG_BIT_FIELD(0x18, 31, 1)
++#define NANDC_CS_AUTO_CONFIG REG_BIT_FIELD(0x18, 30, 1)
++#define NANDC_CS_NAND_WP REG_BIT_FIELD(0x18, 29, 1)
++#define NANDC_CS_BLK0_WP REG_BIT_FIELD(0x18, 28, 1)
++#define NANDC_CS_SW_USING_CS(n) REG_BIT_FIELD(0x18, 8+(n), 1)
++#define NANDC_CS_MAP_SEL_CS(n) REG_BIT_FIELD(0x18, 0+(n), 1)
++
++#define NANDC_XOR_ADDR_BLK0_ONLY REG_BIT_FIELD(0x1c, 31, 1)
++#define NANDC_XOR_ADDR_CS(n) REG_BIT_FIELD(0x1c, 0+(n), 1)
++
++#define NANDC_LL_OP_RET_IDLE REG_BIT_FIELD(0x20, 31, 1)
++#define NANDC_LL_OP_CLE REG_BIT_FIELD(0x20, 19, 1)
++#define NANDC_LL_OP_ALE REG_BIT_FIELD(0x20, 18, 1)
++#define NANDC_LL_OP_WE REG_BIT_FIELD(0x20, 17, 1)
++#define NANDC_LL_OP_RE REG_BIT_FIELD(0x20, 16, 1)
++#define NANDC_LL_OP_DATA REG_BIT_FIELD(0x20, 0, 16)
++
++#define NANDC_MPLANE_ADDR_EXT REG_BIT_FIELD(0x24, 0, 16)
++#define NANDC_MPLANE_ADDR REG_BIT_FIELD(0x28, 0, 32)
++
++#define NANDC_ACC_CTRL_CS(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 32)
++#define NANDC_ACC_CTRL_RD_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 31, 1)
++#define NANDC_ACC_CTRL_WR_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 30, 1)
++#define NANDC_ACC_CTRL_CE_CARE(n) REG_BIT_FIELD(0x50+((n)<<4), 29, 1)
++#define NANDC_ACC_CTRL_PGM_RDIN(n) REG_BIT_FIELD(0x50+((n)<<4), 28, 1)
++#define NANDC_ACC_CTRL_ERA_ECC_ERR(n) REG_BIT_FIELD(0x50+((n)<<4), 27, 1)
++#define NANDC_ACC_CTRL_PGM_PARTIAL(n) REG_BIT_FIELD(0x50+((n)<<4), 26, 1)
++#define NANDC_ACC_CTRL_WR_PREEMPT(n) REG_BIT_FIELD(0x50+((n)<<4), 25, 1)
++#define NANDC_ACC_CTRL_PG_HIT(n) REG_BIT_FIELD(0x50+((n)<<4), 24, 1)
++#define NANDC_ACC_CTRL_PREFETCH(n) REG_BIT_FIELD(0x50+((n)<<4), 23, 1)
++#define NANDC_ACC_CTRL_CACHE_MODE(n) REG_BIT_FIELD(0x50+((n)<<4), 22, 1)
++#define NANDC_ACC_CTRL_CACHE_LASTPG(n) REG_BIT_FIELD(0x50+((n)<<4), 21, 1)
++#define NANDC_ACC_CTRL_ECC_LEVEL(n) REG_BIT_FIELD(0x50+((n)<<4), 16, 5)
++#define NANDC_ACC_CTRL_SECTOR_1K(n) REG_BIT_FIELD(0x50+((n)<<4), 7, 1)
++#define NANDC_ACC_CTRL_SPARE_SIZE(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 7)
++
++#define NANDC_CONFIG_CS(n) REG_BIT_FIELD(0x54+((n)<<4), 0, 32)
++#define NANDC_CONFIG_LOCK(n) REG_BIT_FIELD(0x54+((n)<<4), 31, 1)
++#define NANDC_CONFIG_BLK_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 28, 3)
++#define NANDC_CONFIG_CHIP_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 24, 4)
++#define NANDC_CONFIG_CHIP_WIDTH(n) REG_BIT_FIELD(0x54+((n)<<4), 23, 1)
++#define NANDC_CONFIG_PAGE_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 20, 2)
++#define NANDC_CONFIG_FUL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 16, 3)
++#define NANDC_CONFIG_COL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 12, 3)
++#define NANDC_CONFIG_BLK_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 8, 3)
++
++#define NANDC_TIMING_1_CS(n) REG_BIT_FIELD(0x58+((n)<<4), 0, 32)
++#define NANDC_TIMING_2_CS(n) REG_BIT_FIELD(0x5c+((n)<<4), 0, 32)
++ /* Individual bits for Timing registers - TBD */
++
++#define NANDC_CORR_STAT_THRESH_CS(n) REG_BIT_FIELD(0xc0, 6*(n), 6)
++
++#define NANDC_BLK_WP_END_ADDR REG_BIT_FIELD(0xc8, 0, 32)
++
++#define NANDC_MPLANE_ERASE_CYC2_OPCODE REG_BIT_FIELD(0xcc, 24, 8)
++#define NANDC_MPLANE_READ_STAT_OPCODE REG_BIT_FIELD(0xcc, 16, 8)
++#define NANDC_MPLANE_PROG_ODD_OPCODE REG_BIT_FIELD(0xcc, 8, 8)
++#define NANDC_MPLANE_PROG_TRL_OPCODE REG_BIT_FIELD(0xcc, 0, 8)
++
++#define NANDC_MPLANE_PGCACHE_TRL_OPCODE REG_BIT_FIELD(0xd0, 24, 8)
++#define NANDC_MPLANE_READ_STAT2_OPCODE REG_BIT_FIELD(0xd0, 16, 8)
++#define NANDC_MPLANE_READ_EVEN_OPCODE REG_BIT_FIELD(0xd0, 8, 8)
++#define NANDC_MPLANE_READ_ODD__OPCODE REG_BIT_FIELD(0xd0, 0, 8)
++
++#define NANDC_MPLANE_CTRL_ERASE_CYC2_EN REG_BIT_FIELD(0xd4, 31, 1)
++#define NANDC_MPLANE_CTRL_RD_ADDR_SIZE REG_BIT_FIELD(0xd4, 30, 1)
++#define NANDC_MPLANE_CTRL_RD_CYC_ADDR REG_BIT_FIELD(0xd4, 29, 1)
++#define NANDC_MPLANE_CTRL_RD_COL_ADDR REG_BIT_FIELD(0xd4, 28, 1)
++
++#define NANDC_UNCORR_ERR_COUNT REG_BIT_FIELD(0xfc, 0, 32)
++
++#define NANDC_CORR_ERR_COUNT REG_BIT_FIELD(0x100, 0, 32)
++
++#define NANDC_READ_CORR_BIT_COUNT REG_BIT_FIELD(0x104, 0, 32)
++
++#define NANDC_BLOCK_LOCK_STATUS REG_BIT_FIELD(0x108, 0, 8)
++
++#define NANDC_ECC_CORR_ADDR_CS REG_BIT_FIELD(0x10c, 16, 3)
++#define NANDC_ECC_CORR_ADDR_EXT REG_BIT_FIELD(0x10c, 0, 16)
++
++#define NANDC_ECC_CORR_ADDR REG_BIT_FIELD(0x110, 0, 32)
++
++#define NANDC_ECC_UNC_ADDR_CS REG_BIT_FIELD(0x114, 16, 3)
++#define NANDC_ECC_UNC_ADDR_EXT REG_BIT_FIELD(0x114, 0, 16)
++
++#define NANDC_ECC_UNC_ADDR REG_BIT_FIELD(0x118, 0, 32)
++
++#define NANDC_READ_ADDR_CS REG_BIT_FIELD(0x11c, 16, 3)
++#define NANDC_READ_ADDR_EXT REG_BIT_FIELD(0x11c, 0, 16)
++#define NANDC_READ_ADDR REG_BIT_FIELD(0x120, 0, 32)
++
++#define NANDC_PROG_ADDR_CS REG_BIT_FIELD(0x124, 16, 3)
++#define NANDC_PROG_ADDR_EXT REG_BIT_FIELD(0x124, 0, 16)
++#define NANDC_PROG_ADDR REG_BIT_FIELD(0x128, 0, 32)
++
++#define NANDC_CPYBK_ADDR_CS REG_BIT_FIELD(0x12c, 16, 3)
++#define NANDC_CPYBK_ADDR_EXT REG_BIT_FIELD(0x12c, 0, 16)
++#define NANDC_CPYBK_ADDR REG_BIT_FIELD(0x130, 0, 32)
++
++#define NANDC_ERASE_ADDR_CS REG_BIT_FIELD(0x134, 16, 3)
++#define NANDC_ERASE_ADDR_EXT REG_BIT_FIELD(0x134, 0, 16)
++#define NANDC_ERASE_ADDR REG_BIT_FIELD(0x138, 0, 32)
++
++#define NANDC_INV_READ_ADDR_CS REG_BIT_FIELD(0x13c, 16, 3)
++#define NANDC_INV_READ_ADDR_EXT REG_BIT_FIELD(0x13c, 0, 16)
++#define NANDC_INV_READ_ADDR REG_BIT_FIELD(0x140, 0, 32)
++
++#define NANDC_INIT_STAT REG_BIT_FIELD(0x144, 0, 32)
++#define NANDC_INIT_ONFI_DONE REG_BIT_FIELD(0x144, 31, 1)
++#define NANDC_INIT_DEVID_DONE REG_BIT_FIELD(0x144, 30, 1)
++#define NANDC_INIT_SUCCESS REG_BIT_FIELD(0x144, 29, 1)
++#define NANDC_INIT_FAIL REG_BIT_FIELD(0x144, 28, 1)
++#define NANDC_INIT_BLANK REG_BIT_FIELD(0x144, 27, 1)
++#define NANDC_INIT_TIMEOUT REG_BIT_FIELD(0x144, 26, 1)
++#define NANDC_INIT_UNC_ERROR REG_BIT_FIELD(0x144, 25, 1)
++#define NANDC_INIT_CORR_ERROR REG_BIT_FIELD(0x144, 24, 1)
++#define NANDC_INIT_PARAM_RDY REG_BIT_FIELD(0x144, 23, 1)
++#define NANDC_INIT_AUTH_FAIL REG_BIT_FIELD(0x144, 22, 1)
++
++#define NANDC_ONFI_STAT REG_BIT_FIELD(0x148, 0, 32)
++#define NANDC_ONFI_DEBUG REG_BIT_FIELD(0x148, 28, 4)
++#define NANDC_ONFI_PRESENT REG_BIT_FIELD(0x148, 27, 1)
++#define NANDC_ONFI_BADID_PG2 REG_BIT_FIELD(0x148, 5, 1)
++#define NANDC_ONFI_BADID_PG1 REG_BIT_FIELD(0x148, 4, 1)
++#define NANDC_ONFI_BADID_PG0 REG_BIT_FIELD(0x148, 3, 1)
++#define NANDC_ONFI_BADCRC_PG2 REG_BIT_FIELD(0x148, 2, 1)
++#define NANDC_ONFI_BADCRC_PG1 REG_BIT_FIELD(0x148, 1, 1)
++#define NANDC_ONFI_BADCRC_PG0 REG_BIT_FIELD(0x148, 0, 1)
++
++#define NANDC_ONFI_DEBUG_DATA REG_BIT_FIELD(0x14c, 0, 32)
++
++#define NANDC_SEMAPHORE REG_BIT_FIELD(0x150, 0, 8)
++
++#define NANDC_DEVID_BYTE(b) REG_BIT_FIELD(0x194+((b)&0x4), \
++ 24-(((b)&3)<<3), 8)
++
++#define NANDC_LL_RDDATA REG_BIT_FIELD(0x19c, 0, 16)
++
++#define NANDC_INT_N_REG(n) REG_BIT_FIELD(0xf00|((n)<<2), 0, 1)
++#define NANDC_INT_DIREC_READ_MISS REG_BIT_FIELD(0xf00, 0, 1)
++#define NANDC_INT_ERASE_DONE REG_BIT_FIELD(0xf04, 0, 1)
++#define NANDC_INT_CPYBK_DONE REG_BIT_FIELD(0xf08, 0, 1)
++#define NANDC_INT_PROGRAM_DONE REG_BIT_FIELD(0xf0c, 0, 1)
++#define NANDC_INT_CONTROLLER_RDY REG_BIT_FIELD(0xf10, 0, 1)
++#define NANDC_INT_RDBSY_RDY REG_BIT_FIELD(0xf14, 0, 1)
++#define NANDC_INT_ECC_UNCORRECTABLE REG_BIT_FIELD(0xf18, 0, 1)
++#define NANDC_INT_ECC_CORRECTABLE REG_BIT_FIELD(0xf1c, 0, 1)
++
++/*
++ * Following registers are treated as contigous IO memory, offset is from
++ * <reg_base>, and the data is in big-endian byte order
++ */
++#define NANDC_SPARE_AREA_READ_OFF 0x200
++#define NANDC_SPARE_AREA_WRITE_OFF 0x280
++#define NANDC_CACHE_OFF 0x400
++#define NANDC_CACHE_SIZE (128*4)
++
++struct bcmnand_areg_field {
++ unsigned int reg;
++ unsigned int pos;
++ unsigned int width;
++};
++
++/*
++ * Following are IDM (a.k.a. Slave Wrapper) registers are off <idm_base>:
++ */
++#define IDMREG_BIT_FIELD(r, p, w) ((struct bcmnand_areg_field){(r), (p), (w)})
++
++#define NANDC_IDM_AXI_BIG_ENDIAN IDMREG_BIT_FIELD(0x408, 28, 1)
++#define NANDC_IDM_APB_LITTLE_ENDIAN IDMREG_BIT_FIELD(0x408, 24, 1)
++#define NANDC_IDM_TM IDMREG_BIT_FIELD(0x408, 16, 5)
++#define NANDC_IDM_IRQ_CORRECABLE_EN IDMREG_BIT_FIELD(0x408, 9, 1)
++#define NANDC_IDM_IRQ_UNCORRECABLE_EN IDMREG_BIT_FIELD(0x408, 8, 1)
++#define NANDC_IDM_IRQ_RDYBSY_RDY_EN IDMREG_BIT_FIELD(0x408, 7, 1)
++#define NANDC_IDM_IRQ_CONTROLLER_RDY_EN IDMREG_BIT_FIELD(0x408, 6, 1)
++#define NANDC_IDM_IRQ_PRPOGRAM_COMP_EN IDMREG_BIT_FIELD(0x408, 5, 1)
++#define NANDC_IDM_IRQ_COPYBK_COMP_EN IDMREG_BIT_FIELD(0x408, 4, 1)
++#define NANDC_IDM_IRQ_ERASE_COMP_EN IDMREG_BIT_FIELD(0x408, 3, 1)
++#define NANDC_IDM_IRQ_READ_MISS_EN IDMREG_BIT_FIELD(0x408, 2, 1)
++#define NANDC_IDM_IRQ_N_EN(n) IDMREG_BIT_FIELD(0x408, 2+(n), 1)
++
++#define NANDC_IDM_CLOCK_EN IDMREG_BIT_FIELD(0x408, 0, 1)
++
++#define NANDC_IDM_IO_ECC_CORR IDMREG_BIT_FIELD(0x500, 3, 1)
++#define NANDC_IDM_IO_ECC_UNCORR IDMREG_BIT_FIELD(0x500, 2, 1)
++#define NANDC_IDM_IO_RDYBSY IDMREG_BIT_FIELD(0x500, 1, 1)
++#define NANDC_IDM_IO_CTRL_RDY IDMREG_BIT_FIELD(0x500, 0, 1)
++
++#define NANDC_IDM_RESET IDMREG_BIT_FIELD(0x800, 0, 1)
++ /* Remaining IDM registers do not seem to be useful, skipped */
++
++/*
++ * NAND Controller has its own command opcodes
++ * different from opcodes sent to the actual flash chip
++ */
++#define NANDC_CMD_OPCODE_NULL 0
++#define NANDC_CMD_OPCODE_PAGE_READ 1
++#define NANDC_CMD_OPCODE_SPARE_READ 2
++#define NANDC_CMD_OPCODE_STATUS_READ 3
++#define NANDC_CMD_OPCODE_PAGE_PROG 4
++#define NANDC_CMD_OPCODE_SPARE_PROG 5
++#define NANDC_CMD_OPCODE_DEVID_READ 7
++#define NANDC_CMD_OPCODE_BLOCK_ERASE 8
++#define NANDC_CMD_OPCODE_FLASH_RESET 9
++
++/*
++ * NAND Controller hardware ECC data size
++ *
++ * The following table contains the number of bytes needed for
++ * each of the ECC levels, per "sector", which is either 512 or 1024 bytes.
++ * The actual layout is as follows:
++ * The entire spare area is equally divided into as many sections as there
++ * are sectors per page, and the ECC data is located at the end of each
++ * of these sections.
++ * For example, given a 2K per page and 64 bytes spare device, configured for
++ * sector size 1k and ECC level of 4, the spare area will be divided into 2
++ * sections 32 bytes each, and the last 14 bytes of 32 in each section will
++ * be filled with ECC data.
++ * Note: the name of the algorythm and the number of error bits it can correct
++ * is of no consequence to this driver, therefore omitted.
++ */
++struct bcmnand_ecc_size_s {
++ unsigned char sector_size_shift;
++ unsigned char ecc_level;
++ unsigned char ecc_bytes_per_sec;
++ unsigned char reserved;
++};
++
++static const struct bcmnand_ecc_size_s bcmnand_ecc_sizes[] = {
++ { 9, 0, 0 },
++ { 10, 0, 0 },
++ { 9, 1, 2 },
++ { 10, 1, 4 },
++ { 9, 2, 4 },
++ { 10, 2, 7 },
++ { 9, 3, 6 },
++ { 10, 3, 11 },
++ { 9, 4, 7 },
++ { 10, 4, 14 },
++ { 9, 5, 9 },
++ { 10, 5, 18 },
++ { 9, 6, 11 },
++ { 10, 6, 21 },
++ { 9, 7, 13 },
++ { 10, 7, 25 },
++ { 9, 8, 14 },
++ { 10, 8, 28 },
++
++ { 9, 9, 16 },
++ { 9, 10, 18 },
++ { 9, 11, 20 },
++ { 9, 12, 21 },
++
++ { 10, 9, 32 },
++ { 10, 10, 35 },
++ { 10, 11, 39 },
++ { 10, 12, 42 },
++};
++
++/*
++ * Populate the various fields that depend on how
++ * the hardware ECC data is located in the spare area
++ *
++ * For this controiller, it is easier to fill-in these
++ * structures at run time.
++ *
++ * The bad-block marker is assumed to occupy one byte
++ * at chip->badblockpos, which must be in the first
++ * sector of the spare area, namely it is either
++ * at offset 0 or 5.
++ * Some chips use both for manufacturer's bad block
++ * markers, but we ingore that issue here, and assume only
++ * one byte is used as bad-block marker always.
++ */
++static int bcmnand_hw_ecc_layout(struct bcmnand_ctrl *ctrl)
++{
++ struct nand_ecclayout *layout;
++ unsigned int i, j, k;
++ unsigned int ecc_per_sec, oob_per_sec;
++ unsigned int bbm_pos = ctrl->nand.badblockpos;
++
++ /* Caclculate spare area per sector size */
++ oob_per_sec = ctrl->mtd.oobsize >> ctrl->sec_per_page_shift;
++
++ /* Try to calculate the amount of ECC bytes per sector with a formula */
++ if (ctrl->sector_size_shift == 9)
++ ecc_per_sec = ((ctrl->ecc_level * 14) + 7) >> 3;
++ else if (ctrl->sector_size_shift == 10)
++ ecc_per_sec = ((ctrl->ecc_level * 14) + 3) >> 2;
++ else
++ ecc_per_sec = oob_per_sec + 1; /* cause an error if not in table */
++
++ /* Now find out the answer according to the table */
++ for (i = 0; i < ARRAY_SIZE(bcmnand_ecc_sizes); i++) {
++ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
++ bcmnand_ecc_sizes[i].sector_size_shift ==
++ ctrl->sector_size_shift) {
++ break;
++ }
++ }
++
++ /* Table match overrides formula */
++ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
++ bcmnand_ecc_sizes[i].sector_size_shift == ctrl->sector_size_shift)
++ ecc_per_sec = bcmnand_ecc_sizes[i].ecc_bytes_per_sec;
++
++ /* Return an error if calculated ECC leaves no room for OOB */
++ if ((ctrl->sec_per_page_shift != 0 && ecc_per_sec >= oob_per_sec) ||
++ (ctrl->sec_per_page_shift == 0 && ecc_per_sec >= (oob_per_sec - 1))) {
++ pr_err("%s: ECC level %d too high, leaves no room for OOB data\n",
++ DRV_NAME, ctrl->ecc_level);
++ return -EINVAL;
++ }
++
++ /* Fill in the needed fields */
++ ctrl->nand.ecc.size = ctrl->mtd.writesize >> ctrl->sec_per_page_shift;
++ ctrl->nand.ecc.bytes = ecc_per_sec;
++ ctrl->nand.ecc.steps = 1 << ctrl->sec_per_page_shift;
++ ctrl->nand.ecc.total = ecc_per_sec << ctrl->sec_per_page_shift;
++ ctrl->nand.ecc.strength = ctrl->ecc_level;
++
++ /* Build an ecc layout data structure */
++ layout = &ctrl->ecclayout;
++ memset(layout, 0, sizeof(*layout));
++
++ /* Total number of bytes used by HW ECC */
++ layout->eccbytes = ecc_per_sec << ctrl->sec_per_page_shift;
++
++ /* Location for each of the HW ECC bytes */
++ for (i = j = 0, k = 1;
++ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes;
++ i++, j++) {
++ /* switch sector # */
++ if (j == ecc_per_sec) {
++ j = 0;
++ k++;
++ }
++ /* save position of each HW-generated ECC byte */
++ layout->eccpos[i] = (oob_per_sec * k) - ecc_per_sec + j;
++
++ /* Check that HW ECC does not overlap bad-block marker */
++ if (bbm_pos == layout->eccpos[i]) {
++ pr_err("%s: ECC level %d too high, HW ECC collides with bad-block marker position\n",
++ DRV_NAME, ctrl->ecc_level);
++ return -EINVAL;
++ }
++ }
++
++ /* Location of all user-available OOB byte-ranges */
++ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++) {
++ struct nand_oobfree *oobfree = &layout->oobfree[i];
++
++ if (i >= (1 << ctrl->sec_per_page_shift))
++ break;
++ oobfree->offset = oob_per_sec * i;
++ oobfree->length = oob_per_sec - ecc_per_sec;
++
++ /* Bad-block marker must be in the first sector spare area */
++ if (WARN_ON(bbm_pos >= (oobfree->offset + oobfree->length)))
++ return -EINVAL;
++
++ if (i != 0)
++ continue;
++
++ /* Remove bad-block marker from available byte range */
++ if (bbm_pos == oobfree->offset) {
++ oobfree->offset += 1;
++ oobfree->length -= 1;
++ } else if (bbm_pos == (oobfree->offset + oobfree->length - 1)) {
++ oobfree->length -= 1;
++ } else {
++ layout->oobfree[i + 1].offset = bbm_pos + 1;
++ layout->oobfree[i + 1].length =
++ oobfree->length - bbm_pos - 1;
++ oobfree->length = bbm_pos;
++ i++;
++ }
++ }
++
++ layout->oobavail = ((oob_per_sec - ecc_per_sec)
++ << ctrl->sec_per_page_shift) - 1;
++
++ ctrl->mtd.oobavail = layout->oobavail;
++ ctrl->nand.ecc.layout = layout;
++
++ /* Output layout for debugging */
++ pr_debug("%s: Spare area=%d eccbytes %d, ecc bytes located at:\n",
++ DRV_NAME, ctrl->mtd.oobsize, layout->eccbytes);
++ for (i = j = 0;
++ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes; i++)
++ pr_debug(" %d", layout->eccpos[i]);
++
++ pr_debug("\n%s: Available %d bytes at (off,len):\n", DRV_NAME,
++ layout->oobavail);
++ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++)
++ pr_debug("(%d,%d) ", layout->oobfree[i].offset,
++ layout->oobfree[i].length);
++
++ pr_debug("\n");
++
++ return 0;
++}
++
++/*
++ * Register bit-field manipulation routines
++ */
++
++static inline unsigned int bcmnand_reg_read(struct bcmnand_ctrl *ctrl,
++ struct bcmnand_reg_field rbf)
++{
++ u32 val;
++
++ val = bcma_read32(ctrl->core, rbf.reg);
++ val >>= rbf.pos;
++ val &= (1 << rbf.width) - 1;
++
++ return val;
++}
++
++static inline void bcmnand_reg_write(struct bcmnand_ctrl *ctrl,
++ struct bcmnand_reg_field rbf,
++ unsigned newval)
++{
++ u32 val, msk;
++
++ msk = (1 << rbf.width) - 1;
++ msk <<= rbf.pos;
++ newval <<= rbf.pos;
++ newval &= msk;
++
++ val = bcma_read32(ctrl->core, rbf.reg);
++ val &= ~msk;
++ val |= newval;
++ bcma_write32(ctrl->core, rbf.reg, val);
++}
++
++static inline unsigned int bcmnand_reg_aread(struct bcmnand_ctrl *ctrl,
++ struct bcmnand_areg_field rbf)
++{
++ u32 val;
++
++ val = bcma_aread32(ctrl->core, rbf.reg);
++ val >>= rbf.pos;
++ val &= (1 << rbf.width) - 1;
++
++ return val;
++}
++
++static inline void bcmnand_reg_awrite(struct bcmnand_ctrl *ctrl,
++ struct bcmnand_areg_field rbf,
++ unsigned int newval)
++{
++ u32 val, msk;
++
++ msk = (1 << rbf.width) - 1;
++ msk <<= rbf.pos;
++ newval <<= rbf.pos;
++ newval &= msk;
++
++ val = bcma_aread32(ctrl->core, rbf.reg);
++ val &= ~msk;
++ val |= newval;
++ bcma_awrite32(ctrl->core, rbf.reg, val);
++}
++
++/*
++ * NAND Interface - dev_ready
++ *
++ * Return 1 iff device is ready, 0 otherwise
++ */
++static int bcmnand_dev_ready(struct mtd_info *mtd)
++{
++ struct nand_chip *chip = mtd->priv;
++ struct bcmnand_ctrl *ctrl = chip->priv;
++
++ return bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY);
++}
++
++/*
++ * Interrupt service routines
++ */
++static irqreturn_t bcmnand_isr(int irq, void *dev_id)
++{
++ struct bcmnand_ctrl *ctrl = dev_id;
++ int irq_off;
++
++ irq_off = irq - ctrl->core->irq;
++ WARN_ON(irq_off < 0 || irq_off >= NANDC_IRQ_NUM);
++
++ if (!bcmnand_reg_read(ctrl, NANDC_INT_N_REG(irq_off)))
++ return IRQ_NONE;
++
++ /* Acknowledge interrupt */
++ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
++
++ /* Wake up task */
++ complete(&ctrl->op_completion);
++
++ return IRQ_HANDLED;
++}
++
++static int bcmnand_wait_interrupt(struct bcmnand_ctrl *ctrl,
++ unsigned int irq_off,
++ unsigned int timeout_usec)
++{
++ long timeout_jiffies;
++ int ret = 0;
++
++ reinit_completion(&ctrl->op_completion);
++
++ /* Acknowledge interrupt */
++ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
++
++ /* Enable IRQ to wait on */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 1);
++
++ timeout_jiffies = 1 + usecs_to_jiffies(timeout_usec);
++
++ if (irq_off != NANDC_IRQ_CONTROLLER_RDY ||
++ 0 == bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)) {
++
++ timeout_jiffies = wait_for_completion_interruptible_timeout(
++ &ctrl->op_completion, timeout_jiffies);
++
++ if (timeout_jiffies < 0)
++ ret = timeout_jiffies;
++ if (timeout_jiffies == 0)
++ ret = -ETIME;
++ }
++
++ /* Disable IRQ, we're done waiting */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
++
++ if (bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY))
++ ret = 0;
++
++ return ret;
++}
++
++/*
++ * wait for command completion
++ */
++static int bcmnand_wait_cmd(struct bcmnand_ctrl *ctrl, unsigned int timeout_usec)
++{
++ unsigned int retries;
++
++ if (bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY))
++ return 0;
++
++ /* If the timeout is long, wait for interrupt */
++ if (timeout_usec >= jiffies_to_usecs(1) >> 4)
++ return bcmnand_wait_interrupt(
++ ctrl, NANDC_IRQ_CONTROLLER_RDY, timeout_usec);
++
++ /* Wait for completion of the prior command */
++ retries = (timeout_usec >> 3) + 1;
++
++ while (retries-- &&
++ 0 == bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY)) {
++ cpu_relax();
++ udelay(6);
++ }
++
++ if (retries == 0)
++ return -ETIME;
++
++ return 0;
++}
++
++
++/*
++ * NAND Interface - waitfunc
++ */
++static int bcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
++{
++ struct bcmnand_ctrl *ctrl = chip->priv;
++ unsigned int to;
++ int ret;
++
++ /* figure out timeout based on what command is on */
++ switch (ctrl->last_cmd) {
++ default:
++ case NAND_CMD_ERASE1:
++ case NAND_CMD_ERASE2:
++ to = 1 << 16;
++ break;
++ case NAND_CMD_STATUS:
++ case NAND_CMD_RESET:
++ to = 256;
++ break;
++ case NAND_CMD_READID:
++ to = 1024;
++ break;
++ case NAND_CMD_READ1:
++ case NAND_CMD_READ0:
++ to = 2048;
++ break;
++ case NAND_CMD_PAGEPROG:
++ to = 4096;
++ break;
++ case NAND_CMD_READOOB:
++ to = 512;
++ break;
++ }
++
++ /* deliver deferred error code if any */
++ ret = ctrl->cmd_ret;
++ if (ret < 0)
++ ctrl->cmd_ret = 0;
++ else
++ ret = bcmnand_wait_cmd(ctrl, to);
++
++ /* Timeout */
++ if (ret < 0)
++ return NAND_STATUS_FAIL;
++
++ ret = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
++
++ return ret;
++}
++
++/*
++ * NAND Interface - read_oob
++ */
++static int bcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ struct bcmnand_ctrl *ctrl = chip->priv;
++ unsigned int n = ctrl->chip_num;
++ void __iomem *ctrl_spare;
++ unsigned int spare_per_sec, sector;
++ u64 nand_addr;
++
++ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
++
++ /* Set the page address for the following commands */
++ nand_addr = ((u64)page << chip->page_shift);
++ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
++
++ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
++
++ /* Disable ECC validation for spare area reads */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), 0);
++
++ /* Loop all sectors in page */
++ for (sector = 0; sector < (1<<ctrl->sec_per_page_shift); sector++) {
++ unsigned int col;
++
++ col = (sector << ctrl->sector_size_shift);
++
++ /* Issue command to read partial page */
++ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
++
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_SPARE_READ);
++
++ /* Wait for the command to complete */
++ if (bcmnand_wait_cmd(ctrl, (sector == 0) ? 10000 : 100))
++ return -EIO;
++
++ if (!bcmnand_reg_read(ctrl, NANDC_INT_STAT_SPARE_VALID))
++ return -EIO;
++
++ /* Set controller to Little Endian mode for copying */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
++
++ memcpy(chip->oob_poi + sector * spare_per_sec,
++ ctrl_spare,
++ spare_per_sec);
++
++ /* Return to Big Endian mode for commands etc */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
++ }
++
++ return 0;
++}
++
++/*
++ * NAND Interface - write_oob
++ */
++static int bcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ struct bcmnand_ctrl *ctrl = chip->priv;
++ unsigned int n = ctrl->chip_num;
++ void __iomem *ctrl_spare;
++ unsigned int spare_per_sec, sector, num_sec;
++ u64 nand_addr;
++ int to, status = 0;
++
++ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
++
++ /* Disable ECC generation for spare area writes */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), 0);
++
++ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
++
++ /* Set the page address for the following commands */
++ nand_addr = ((u64)page << chip->page_shift);
++ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
++
++ /* Must allow partial programming to change spare area only */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 1);
++
++ num_sec = 1 << ctrl->sec_per_page_shift;
++ /* Loop all sectors in page */
++ for (sector = 0; sector < num_sec; sector++) {
++ unsigned int col;
++
++ /* Spare area accessed by the data sector offset */
++ col = (sector << ctrl->sector_size_shift);
++
++ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
++
++ /* Set controller to Little Endian mode for copying */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
++
++ memcpy(ctrl_spare,
++ chip->oob_poi + sector * spare_per_sec,
++ spare_per_sec);
++
++ /* Return to Big Endian mode for commands etc */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
++
++ /* Push spare bytes into internal buffer, last goes to flash */
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_SPARE_PROG);
++
++ if (sector == (num_sec - 1))
++ to = 1 << 16;
++ else
++ to = 1 << 10;
++
++ if (bcmnand_wait_cmd(ctrl, to))
++ return -EIO;
++ }
++
++ /* Restore partial programming inhibition */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 0);
++
++ status = bcmnand_waitfunc(mtd, chip);
++ return status & NAND_STATUS_FAIL ? -EIO : 0;
++}
++
++/*
++ * verify that a buffer is all erased
++ */
++static bool bcmnand_buf_erased(const void *buf, unsigned int len)
++{
++ unsigned int i;
++ const u32 *p = buf;
++
++ for (i = 0; i < (len >> 2); i++) {
++ if (p[i] != 0xffffffff)
++ return false;
++ }
++ return true;
++}
++
++/*
++ * read a page, with or without ECC checking
++ */
++static int bcmnand_read_page_do(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int page, bool ecc)
++{
++ struct bcmnand_ctrl *ctrl = chip->priv;
++ unsigned int n = ctrl->chip_num;
++ void __iomem *ctrl_cache;
++ void __iomem *ctrl_spare;
++ unsigned int data_bytes;
++ unsigned int spare_per_sec;
++ unsigned int sector, to = 1 << 16;
++ u32 err_soft_reg, err_hard_reg;
++ unsigned int hard_err_count = 0;
++ int ret;
++ u64 nand_addr;
++
++ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
++ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
++
++ /* Reset ECC error stats */
++ err_hard_reg = bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT);
++ err_soft_reg = bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
++
++ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
++
++ /* Set the page address for the following commands */
++ nand_addr = ((u64)page << chip->page_shift);
++ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
++
++ /* Enable ECC validation for ecc page reads */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), ecc);
++
++ /* Loop all sectors in page */
++ for (sector = 0; sector < (1 << ctrl->sec_per_page_shift); sector++) {
++ data_bytes = 0;
++
++ /* Copy partial sectors sized by cache reg */
++ while (data_bytes < (1<<ctrl->sector_size_shift)) {
++ unsigned int col;
++
++ col = data_bytes + (sector << ctrl->sector_size_shift);
++
++ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
++ nand_addr + col);
++
++ /* Issue command to read partial page */
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_PAGE_READ);
++
++ /* Wait for the command to complete */
++ ret = bcmnand_wait_cmd(ctrl, to);
++ if (ret < 0)
++ return ret;
++
++ /* Set controller to Little Endian mode for copying */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
++
++ if (data_bytes == 0) {
++ memcpy(chip->oob_poi + sector * spare_per_sec,
++ ctrl_spare, spare_per_sec);
++ }
++
++ memcpy(buf + col, ctrl_cache, NANDC_CACHE_SIZE);
++ data_bytes += NANDC_CACHE_SIZE;
++
++ /* Return to Big Endian mode for commands etc */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
++
++ /* Next iterations should go fast */
++ to = 1 << 10;
++
++ /* capture hard errors for each partial */
++ if (err_hard_reg != bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT)) {
++ int era = bcmnand_reg_read(ctrl, NANDC_INT_STAT_ERASED);
++
++ if (!era &&
++ !bcmnand_buf_erased(buf + col, NANDC_CACHE_SIZE))
++ hard_err_count++;
++
++ err_hard_reg = bcmnand_reg_read(ctrl,
++ NANDC_UNCORR_ERR_COUNT);
++ }
++ }
++ }
++
++ if (!ecc)
++ return 0;
++
++ /* Report hard ECC errors */
++ if (hard_err_count)
++ mtd->ecc_stats.failed++;
++
++ /* Get ECC soft error stats */
++ mtd->ecc_stats.corrected += err_soft_reg -
++ bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
++
++ return 0;
++}
++
++/*
++ * NAND Interface - read_page_ecc
++ */
++static int bcmnand_read_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_required, int page)
++{
++ return bcmnand_read_page_do(mtd, chip, buf, page, true);
++}
++
++/*
++ * NAND Interface - read_page_raw
++ */
++static int bcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_required, int page)
++{
++ return bcmnand_read_page_do(mtd, chip, buf, page, true);
++}
++
++/*
++ * do page write, with or without ECC generation enabled
++ */
++static int bcmnand_write_page_do(struct mtd_info *mtd, struct nand_chip *chip,
++ const uint8_t *buf, bool ecc)
++{
++ struct bcmnand_ctrl *ctrl = chip->priv;
++ unsigned int n = ctrl->chip_num;
++ void __iomem *ctrl_cache;
++ void __iomem *ctrl_spare;
++ unsigned int spare_per_sec, sector, num_sec;
++ unsigned int data_bytes, spare_bytes;
++ int i, to;
++ uint8_t *tmp_poi;
++ u32 nand_addr;
++
++ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
++ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
++
++ /* Get start-of-page address */
++ nand_addr = bcmnand_reg_read(ctrl, NANDC_CMD_ADDRESS);
++
++ tmp_poi = kmalloc(mtd->oobsize, GFP_KERNEL);
++ if (!tmp_poi)
++ return -ENOMEM;
++
++ /* Retreive pre-existing OOB values */
++ memcpy(tmp_poi, chip->oob_poi, mtd->oobsize);
++ ctrl->cmd_ret = bcmnand_read_oob(mtd, chip,
++ nand_addr >> chip->page_shift);
++ if (ctrl->cmd_ret < 0) {
++ kfree(tmp_poi);
++ return ctrl->cmd_ret;
++ }
++
++ /* Apply new OOB data bytes just like they would end up on the chip */
++ for (i = 0; i < mtd->oobsize; i++)
++ chip->oob_poi[i] &= tmp_poi[i];
++ kfree(tmp_poi);
++
++ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
++
++ /* Enable ECC generation for ecc page write, if requested */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), ecc);
++
++ spare_bytes = 0;
++ num_sec = 1 << ctrl->sec_per_page_shift;
++
++ /* Loop all sectors in page */
++ for (sector = 0; sector < num_sec; sector++) {
++ data_bytes = 0;
++
++ /* Copy partial sectors sized by cache reg */
++ while (data_bytes < (1<<ctrl->sector_size_shift)) {
++ unsigned int col;
++
++ col = data_bytes +
++ (sector << ctrl->sector_size_shift);
++
++ /* Set address of 512-byte sub-page */
++ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
++ nand_addr + col);
++
++ /* Set controller to Little Endian mode for copying */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN,
++ 1);
++
++ /* Set spare area is written at each sector start */
++ if (data_bytes == 0) {
++ memcpy(ctrl_spare,
++ chip->oob_poi + spare_bytes,
++ spare_per_sec);
++ spare_bytes += spare_per_sec;
++ }
++
++ /* Copy sub-page data */
++ memcpy(ctrl_cache, buf + col, NANDC_CACHE_SIZE);
++ data_bytes += NANDC_CACHE_SIZE;
++
++ /* Return to Big Endian mode for commands etc */
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
++
++ /* Push data into internal cache */
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_PAGE_PROG);
++
++ /* Wait for the command to complete */
++ if (sector == (num_sec - 1))
++ to = 1 << 16;
++ else
++ to = 1 << 10;
++ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
++ if (ctrl->cmd_ret < 0)
++ return ctrl->cmd_ret;
++ }
++ }
++ return 0;
++}
++
++/*
++ * NAND Interface = write_page_ecc
++ */
++static int bcmnand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
++ const uint8_t *buf, int oob_required)
++{
++ return bcmnand_write_page_do(mtd, chip, buf, true);
++}
++
++/*
++ * NAND Interface = write_page_raw
++ */
++static int bcmnand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ const uint8_t *buf, int oob_required)
++{
++ return bcmnand_write_page_do(mtd, chip, buf, false);
++}
++
++/*
++ * MTD Interface - read_byte
++ *
++ * This function emulates simple controllers behavior
++ * for just a few relevant commands
++ */
++static uint8_t bcmnand_read_byte(struct mtd_info *mtd)
++{
++ struct nand_chip *nand = mtd->priv;
++ struct bcmnand_ctrl *ctrl = nand->priv;
++ uint8_t b = ~0;
++
++ switch (ctrl->last_cmd) {
++ case NAND_CMD_READID:
++ if (ctrl->id_byte_index < 8) {
++ b = bcmnand_reg_read(ctrl, NANDC_DEVID_BYTE(
++ ctrl->id_byte_index));
++ ctrl->id_byte_index++;
++ }
++ break;
++ case NAND_CMD_READOOB:
++ if (ctrl->oob_index < mtd->oobsize)
++ b = nand->oob_poi[ctrl->oob_index++];
++ break;
++ case NAND_CMD_STATUS:
++ b = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
++ break;
++ default:
++ pr_err("%s: got unkown command: 0x%x in %s\n", DRV_NAME,
++ ctrl->last_cmd, __func__);
++ }
++ return b;
++}
++
++/*
++ * MTD Interface - read_word
++ *
++ * Can not be tested without x16 chip, but the SoC does not support x16 i/f.
++ */
++static u16 bcmnand_read_word(struct mtd_info *mtd)
++{
++ u16 w = ~0;
++
++ w = bcmnand_read_byte(mtd);
++ barrier();
++ w |= bcmnand_read_byte(mtd) << 8;
++
++ return w;
++}
++
++/*
++ * MTD Interface - select a chip from an array
++ */
++static void bcmnand_select_chip(struct mtd_info *mtd, int chip)
++{
++ struct nand_chip *nand = mtd->priv;
++ struct bcmnand_ctrl *ctrl = nand->priv;
++
++ ctrl->chip_num = chip;
++ bcmnand_reg_write(ctrl, NANDC_CMD_CS_SEL, chip);
++}
++
++/*
++ * NAND Interface - emulate low-level NAND commands
++ *
++ * Only a few low-level commands are really needed by generic NAND,
++ * and they do not call for CMD_LL operations the controller can support.
++ */
++static void bcmnand_cmdfunc(struct mtd_info *mtd, unsigned int command,
++ int column, int page_addr)
++{
++ struct nand_chip *nand = mtd->priv;
++ struct bcmnand_ctrl *ctrl = nand->priv;
++ u64 nand_addr;
++ unsigned int to = 1;
++
++ ctrl->last_cmd = command;
++
++ /* Set address for some commands */
++ switch (command) {
++ case NAND_CMD_ERASE1:
++ column = 0;
++ /*FALLTHROUGH*/
++ case NAND_CMD_SEQIN:
++ case NAND_CMD_READ0:
++ case NAND_CMD_READ1:
++ WARN_ON(column >= mtd->writesize);
++ nand_addr = (u64) column |
++ ((u64)page_addr << nand->page_shift);
++ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
++ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr);
++ break;
++ case NAND_CMD_ERASE2:
++ case NAND_CMD_RESET:
++ case NAND_CMD_READID:
++ case NAND_CMD_READOOB:
++ case NAND_CMD_PAGEPROG:
++ default:
++ /* Do nothing, address not used */
++ break;
++ }
++
++ /* Issue appropriate command to controller */
++ switch (command) {
++ case NAND_CMD_SEQIN:
++ /* Only need to load command address, done */
++ return;
++
++ case NAND_CMD_RESET:
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_FLASH_RESET);
++ to = 1 << 8;
++ break;
++
++ case NAND_CMD_READID:
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_DEVID_READ);
++ ctrl->id_byte_index = 0;
++ to = 1 << 8;
++ break;
++
++ case NAND_CMD_READ0:
++ case NAND_CMD_READ1:
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_PAGE_READ);
++ to = 1 << 15;
++ break;
++ case NAND_CMD_STATUS:
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_STATUS_READ);
++ to = 1 << 8;
++ break;
++ case NAND_CMD_ERASE1:
++ return;
++
++ case NAND_CMD_ERASE2:
++ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
++ NANDC_CMD_OPCODE_BLOCK_ERASE);
++ to = 1 << 18;
++ break;
++
++ case NAND_CMD_PAGEPROG:
++ /* Cmd already set from write_page */
++ return;
++
++ case NAND_CMD_READOOB:
++ /* Emulate simple interface */
++ bcmnand_read_oob(mtd, nand, page_addr);
++ ctrl->oob_index = 0;
++ return;
++
++ default:
++ pr_err("%s: got unkown command: 0x%x in %s\n", DRV_NAME,
++ ctrl->last_cmd, __func__);
++ }
++
++ /* Wait for command to complete */
++ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
++
++}
++
++static int bcmnand_scan(struct mtd_info *mtd)
++{
++ struct nand_chip *nand = mtd->priv;
++ struct bcmnand_ctrl *ctrl = nand->priv;
++ bool sector_1k = false;
++ unsigned int chip_num = 0;
++ int ecc_level = 0;
++ int ret;
++
++ ret = nand_scan_ident(mtd, NANDC_MAX_CHIPS, NULL);
++ if (ret)
++ return ret;
++
++ /* Get configuration from first chip */
++ sector_1k = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_SECTOR_1K(0));
++ ecc_level = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(0));
++ mtd->writesize_shift = nand->page_shift;
++
++ ctrl->ecc_level = ecc_level;
++ ctrl->sector_size_shift = sector_1k ? 10 : 9;
++
++ /* Configure spare area, tweak as needed */
++ do {
++ ctrl->sec_per_page_shift =
++ mtd->writesize_shift - ctrl->sector_size_shift;
++
++ /* will return -EINVAL if OOB space exhausted */
++ ret = bcmnand_hw_ecc_layout(ctrl);
++
++ /* First try to bump sector size to 1k, then decrease level */
++ if (ret && nand->page_shift > 9 && ctrl->sector_size_shift < 10)
++ ctrl->sector_size_shift = 10;
++ else if (ret)
++ ctrl->ecc_level--;
++
++ } while (ret && ctrl->ecc_level > 0);
++
++ if (WARN_ON(ctrl->ecc_level == 0))
++ return -ENOENT;
++
++ if ((ctrl->sector_size_shift > 9) != (sector_1k == 1)) {
++ pr_info("%s: sector size adjusted to 1k\n", DRV_NAME);
++ sector_1k = 1;
++ }
++
++ if (ecc_level != ctrl->ecc_level) {
++ pr_info("%s: ECC level adjusted from %u to %u\n",
++ DRV_NAME, ecc_level, ctrl->ecc_level);
++ ecc_level = ctrl->ecc_level;
++ }
++
++ /* handle the hardware chip config registers */
++ for (chip_num = 0; chip_num < nand->numchips; chip_num++) {
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_SECTOR_1K(chip_num),
++ sector_1k);
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip_num),
++ ecc_level);
++
++ /* Large pages: no partial page programming */
++ if (mtd->writesize > 512) {
++ bcmnand_reg_write(ctrl,
++ NANDC_ACC_CTRL_PGM_RDIN(chip_num), 0);
++ bcmnand_reg_write(ctrl,
++ NANDC_ACC_CTRL_PGM_PARTIAL(chip_num), 0);
++ }
++
++ /* Do not raise ECC error when reading erased pages */
++ /* This bit has only partial effect, driver needs to help */
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ERA_ECC_ERR(chip_num),
++ 0);
++
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PG_HIT(chip_num), 0);
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PREFETCH(chip_num), 0);
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_MODE(chip_num), 0);
++ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_LASTPG(chip_num),
++ 0);
++
++ /* TBD: consolidate or at least verify the s/w and h/w geometries agree */
++ }
++
++ /* Allow writing on device */
++ if (!(nand->options & NAND_ROM))
++ bcmnand_reg_write(ctrl, NANDC_CS_NAND_WP, 0);
++
++ pr_debug("%s: layout.oobavail=%d\n", DRV_NAME,
++ nand->ecc.layout->oobavail);
++
++ ret = nand_scan_tail(mtd);
++
++ if (nand->badblockbits == 0)
++ nand->badblockbits = 8;
++ if (WARN_ON((1 << nand->page_shift) != mtd->writesize))
++ return -EIO;
++
++ /* Spit out some key chip parameters as detected by nand_base */
++ pr_debug("%s: erasesize=%d writesize=%d oobsize=%d page_shift=%d badblockpos=%d badblockbits=%d\n",
++ DRV_NAME, mtd->erasesize, mtd->writesize, mtd->oobsize,
++ nand->page_shift, nand->badblockpos, nand->badblockbits);
++
++ return ret;
++}
++
++/*
++ * main intiailization function
++ */
++static int bcmnand_ctrl_init(struct bcmnand_ctrl *ctrl)
++{
++ unsigned int chip;
++ struct nand_chip *nand;
++ struct mtd_info *mtd;
++ unsigned int n = 0;
++ int ret;
++
++ /* Software variables init */
++ nand = &ctrl->nand;
++ mtd = &ctrl->mtd;
++
++ init_completion(&ctrl->op_completion);
++
++ mtd->priv = nand;
++ mtd->owner = THIS_MODULE;
++ mtd->name = DRV_NAME;
++
++ nand->priv = ctrl;
++
++ nand->chip_delay = 5; /* not used */
++ nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)~0L;
++
++ if (bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_WIDTH(n)))
++ nand->options |= NAND_BUSWIDTH_16;
++ nand->options |= NAND_SKIP_BBTSCAN; /* Dont need BBTs */
++
++ nand->options |= NAND_NO_SUBPAGE_WRITE; /* Subpages unsupported */
++
++ nand->dev_ready = bcmnand_dev_ready;
++ nand->read_byte = bcmnand_read_byte;
++ nand->read_word = bcmnand_read_word;
++ nand->select_chip = bcmnand_select_chip;
++ nand->cmdfunc = bcmnand_cmdfunc;
++ nand->waitfunc = bcmnand_waitfunc;
++
++ nand->ecc.mode = NAND_ECC_HW;
++ nand->ecc.read_page_raw = bcmnand_read_page_raw;
++ nand->ecc.write_page_raw = bcmnand_write_page_raw;
++ nand->ecc.read_page = bcmnand_read_page_ecc;
++ nand->ecc.write_page = bcmnand_write_page_ecc;
++ nand->ecc.read_oob = bcmnand_read_oob;
++ nand->ecc.write_oob = bcmnand_write_oob;
++
++ /* Set AUTO_CNFIG bit - try to auto-detect chips */
++ bcmnand_reg_write(ctrl, NANDC_CS_AUTO_CONFIG, 1);
++
++ usleep_range(1000, 1500);
++
++ /* Print out current chip config */
++ for (chip = 0; chip < NANDC_MAX_CHIPS; chip++) {
++ pr_debug("%s: chip[%d]: size=%#x block=%#x page=%#x ecc_level=%#x\n",
++ DRV_NAME, chip,
++ bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_SIZE(chip)),
++ bcmnand_reg_read(ctrl, NANDC_CONFIG_BLK_SIZE(chip)),
++ bcmnand_reg_read(ctrl, NANDC_CONFIG_PAGE_SIZE(chip)),
++ bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip)));
++ }
++
++ pr_debug("%s: Nand controller is reads=%d\n", DRV_NAME,
++ bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY));
++
++ ret = bcmnand_scan(mtd);
++ if (ret) {
++ pr_err("%s: scanning the nand flash chip failed with %i\n",
++ DRV_NAME, ret);
++ return ret;
++ }
++
++ return 0;
++}
++
++static int __init bcmnand_idm_init(struct bcmnand_ctrl *ctrl)
++{
++ int irq_off;
++ unsigned int retries = 0x1000;
++
++ if (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET))
++ pr_err("%s: stuck in reset\n", DRV_NAME);
++
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 1);
++ if (!bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
++ pr_err("%s: reset of failed\n", DRV_NAME);
++ return -EIO;
++ }
++
++ while (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 0);
++ cpu_relax();
++ usleep_range(100, 150);
++ if (!(retries--)) {
++ pr_err("%s: did not came back from reset\n",
++ DRV_NAME);
++ return -ETIMEDOUT;
++ }
++ }
++
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_CLOCK_EN, 1);
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
++ udelay(10);
++
++ pr_info("%s: NAND Controller rev %d.%d\n", DRV_NAME,
++ bcmnand_reg_read(ctrl, NANDC_REV_MAJOR),
++ bcmnand_reg_read(ctrl, NANDC_REV_MINOR));
++
++ usleep_range(250, 350);
++
++ /* Disable all IRQs */
++ for (irq_off = 0; irq_off < NANDC_IRQ_NUM; irq_off++)
++ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
++
++ return 0;
++}
++
++static const char * const part_probes[] = { "bcm47xxpart", "cmdlinepart", NULL };
++
++/*
++ * Top-level init function
++ */
++static int bcmnand_probe(struct bcma_device *core)
++{
++ struct device *dev = &core->dev;
++ struct device_node *np = dev->of_node;
++ struct bcmnand_ctrl *ctrl;
++ int res, i, irq;
++
++ if (!np) {
++ pr_err("%s: no device tree node found\n", DRV_NAME);
++ return -ENOENT;
++ }
++
++ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
++ if (!ctrl)
++ return -ENOMEM;
++
++ bcma_set_drvdata(core, ctrl);
++
++ ctrl->mtd.dev.parent = &core->dev;
++ ctrl->core = core;
++
++ /* Acquire all interrupt lines */
++ for (i = 0; i < of_irq_count(np); i++) {
++ irq = irq_of_parse_and_map(np, i);
++ res = devm_request_irq(dev, irq, bcmnand_isr, 0, DRV_NAME, ctrl);
++ if (res < 0) {
++ pr_err("%s: problem requesting irq: %i (idx: %i)\n",
++ DRV_NAME, irq, i);
++ return res;
++ }
++ }
++
++ res = bcmnand_idm_init(ctrl);
++ if (res)
++ return res;
++
++ res = bcmnand_ctrl_init(ctrl);
++ if (res)
++ return res;
++
++ res = mtd_device_parse_register(&ctrl->mtd, part_probes, NULL, NULL, 0);
++ if (res) {
++ pr_err("%s: Failed to register MTD device: %d\n", DRV_NAME, res);
++ return res;
++ }
++ return 0;
++}
++
++static void bcmnand_remove(struct bcma_device *core)
++{
++ struct bcmnand_ctrl *ctrl = bcma_get_drvdata(core);
++
++ mtd_device_unregister(&ctrl->mtd);
++}
++
++static const struct bcma_device_id bcmnand_bcma_tbl[] = {
++ BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_NAND, BCMA_ANY_REV, BCMA_ANY_CLASS),
++ BCMA_CORETABLE_END
++};
++MODULE_DEVICE_TABLE(bcma, bgmac_bcma_tbl);
++
++static struct bcma_driver bcmnand_bcma_driver = {
++ .name = KBUILD_MODNAME,
++ .id_table = bcmnand_bcma_tbl,
++ .probe = bcmnand_probe,
++ .remove = bcmnand_remove,
++};
++
++static int __init bcmnand_init(void)
++{
++ int err;
++
++ err = bcma_driver_register(&bcmnand_bcma_driver);
++ if (err)
++ return err;
++ pr_info("%s: Broadcom NAND Controller driver loaded\n", DRV_NAME);
++
++ return 0;
++}
++
++static void __exit bcmnand_exit(void)
++{
++ bcma_driver_unregister(&bcmnand_bcma_driver);
++}
++
++module_init(bcmnand_init)
++module_exit(bcmnand_exit)
++
++MODULE_LICENSE("GPL");
++MODULE_DESCRIPTION(DRV_DESC);